staging: brcm80211: assure common sources are truly common
[zen-stable.git] / drivers / media / video / ivtv / ivtv-i2c.c
blobe103b8fc74525753ef0fe08d236bea3c818823eb
1 /*
2 I2C functions
3 Copyright (C) 2003-2004 Kevin Thayer <nufan_wfk at yahoo.com>
4 Copyright (C) 2005-2007 Hans Verkuil <hverkuil@xs4all.nl>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 This file includes an i2c implementation that was reverse engineered
23 from the Hauppauge windows driver. Older ivtv versions used i2c-algo-bit,
24 which whilst fine under most circumstances, had trouble with the Zilog
25 CPU on the PVR-150 which handles IR functions (occasional inability to
26 communicate with the chip until it was reset) and also with the i2c
27 bus being completely unreachable when multiple PVR cards were present.
29 The implementation is very similar to i2c-algo-bit, but there are enough
30 subtle differences that the two are hard to merge. The general strategy
31 employed by i2c-algo-bit is to use udelay() to implement the timing
32 when putting out bits on the scl/sda lines. The general strategy taken
33 here is to poll the lines for state changes (see ivtv_waitscl and
34 ivtv_waitsda). In addition there are small delays at various locations
35 which poll the SCL line 5 times (ivtv_scldelay). I would guess that
36 since this is memory mapped I/O that the length of those delays is tied
37 to the PCI bus clock. There is some extra code to do with recovery
38 and retries. Since it is not known what causes the actual i2c problems
39 in the first place, the only goal if one was to attempt to use
40 i2c-algo-bit would be to try to make it follow the same code path.
41 This would be a lot of work, and I'm also not convinced that it would
42 provide a generic benefit to i2c-algo-bit. Therefore consider this
43 an engineering solution -- not pretty, but it works.
45 Some more general comments about what we are doing:
47 The i2c bus is a 2 wire serial bus, with clock (SCL) and data (SDA)
48 lines. To communicate on the bus (as a master, we don't act as a slave),
49 we first initiate a start condition (ivtv_start). We then write the
50 address of the device that we want to communicate with, along with a flag
51 that indicates whether this is a read or a write. The slave then issues
52 an ACK signal (ivtv_ack), which tells us that it is ready for reading /
53 writing. We then proceed with reading or writing (ivtv_read/ivtv_write),
54 and finally issue a stop condition (ivtv_stop) to make the bus available
55 to other masters.
57 There is an additional form of transaction where a write may be
58 immediately followed by a read. In this case, there is no intervening
59 stop condition. (Only the msp3400 chip uses this method of data transfer).
62 #include "ivtv-driver.h"
63 #include "ivtv-cards.h"
64 #include "ivtv-gpio.h"
65 #include "ivtv-i2c.h"
66 #include <media/cx25840.h>
68 /* i2c implementation for cx23415/6 chip, ivtv project.
69 * Author: Kevin Thayer (nufan_wfk at yahoo.com)
71 /* i2c stuff */
72 #define IVTV_REG_I2C_SETSCL_OFFSET 0x7000
73 #define IVTV_REG_I2C_SETSDA_OFFSET 0x7004
74 #define IVTV_REG_I2C_GETSCL_OFFSET 0x7008
75 #define IVTV_REG_I2C_GETSDA_OFFSET 0x700c
77 #define IVTV_CS53L32A_I2C_ADDR 0x11
78 #define IVTV_M52790_I2C_ADDR 0x48
79 #define IVTV_CX25840_I2C_ADDR 0x44
80 #define IVTV_SAA7115_I2C_ADDR 0x21
81 #define IVTV_SAA7127_I2C_ADDR 0x44
82 #define IVTV_SAA717x_I2C_ADDR 0x21
83 #define IVTV_MSP3400_I2C_ADDR 0x40
84 #define IVTV_HAUPPAUGE_I2C_ADDR 0x50
85 #define IVTV_WM8739_I2C_ADDR 0x1a
86 #define IVTV_WM8775_I2C_ADDR 0x1b
87 #define IVTV_TEA5767_I2C_ADDR 0x60
88 #define IVTV_UPD64031A_I2C_ADDR 0x12
89 #define IVTV_UPD64083_I2C_ADDR 0x5c
90 #define IVTV_VP27SMPX_I2C_ADDR 0x5b
91 #define IVTV_M52790_I2C_ADDR 0x48
92 #define IVTV_AVERMEDIA_IR_RX_I2C_ADDR 0x40
93 #define IVTV_HAUP_EXT_IR_RX_I2C_ADDR 0x1a
94 #define IVTV_HAUP_INT_IR_RX_I2C_ADDR 0x18
95 #define IVTV_Z8F0811_IR_TX_I2C_ADDR 0x70
96 #define IVTV_Z8F0811_IR_RX_I2C_ADDR 0x71
97 #define IVTV_ADAPTEC_IR_ADDR 0x6b
99 /* This array should match the IVTV_HW_ defines */
100 static const u8 hw_addrs[] = {
101 IVTV_CX25840_I2C_ADDR,
102 IVTV_SAA7115_I2C_ADDR,
103 IVTV_SAA7127_I2C_ADDR,
104 IVTV_MSP3400_I2C_ADDR,
106 IVTV_WM8775_I2C_ADDR,
107 IVTV_CS53L32A_I2C_ADDR,
109 IVTV_SAA7115_I2C_ADDR,
110 IVTV_UPD64031A_I2C_ADDR,
111 IVTV_UPD64083_I2C_ADDR,
112 IVTV_SAA717x_I2C_ADDR,
113 IVTV_WM8739_I2C_ADDR,
114 IVTV_VP27SMPX_I2C_ADDR,
115 IVTV_M52790_I2C_ADDR,
116 0, /* IVTV_HW_GPIO dummy driver ID */
117 IVTV_AVERMEDIA_IR_RX_I2C_ADDR, /* IVTV_HW_I2C_IR_RX_AVER */
118 IVTV_HAUP_EXT_IR_RX_I2C_ADDR, /* IVTV_HW_I2C_IR_RX_HAUP_EXT */
119 IVTV_HAUP_INT_IR_RX_I2C_ADDR, /* IVTV_HW_I2C_IR_RX_HAUP_INT */
120 IVTV_Z8F0811_IR_TX_I2C_ADDR, /* IVTV_HW_Z8F0811_IR_TX_HAUP */
121 IVTV_Z8F0811_IR_RX_I2C_ADDR, /* IVTV_HW_Z8F0811_IR_RX_HAUP */
122 IVTV_ADAPTEC_IR_ADDR, /* IVTV_HW_I2C_IR_RX_ADAPTEC */
125 /* This array should match the IVTV_HW_ defines */
126 static const char * const hw_devicenames[] = {
127 "cx25840",
128 "saa7115",
129 "saa7127_auto", /* saa7127 or saa7129 */
130 "msp3400",
131 "tuner",
132 "wm8775",
133 "cs53l32a",
134 "tveeprom",
135 "saa7114",
136 "upd64031a",
137 "upd64083",
138 "saa717x",
139 "wm8739",
140 "vp27smpx",
141 "m52790",
142 "gpio",
143 "ir_video", /* IVTV_HW_I2C_IR_RX_AVER */
144 "ir_video", /* IVTV_HW_I2C_IR_RX_HAUP_EXT */
145 "ir_video", /* IVTV_HW_I2C_IR_RX_HAUP_INT */
146 "ir_tx_z8f0811_haup", /* IVTV_HW_Z8F0811_IR_TX_HAUP */
147 "ir_rx_z8f0811_haup", /* IVTV_HW_Z8F0811_IR_RX_HAUP */
148 "ir_video", /* IVTV_HW_I2C_IR_RX_ADAPTEC */
151 static int get_key_adaptec(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
153 unsigned char keybuf[4];
155 keybuf[0] = 0x00;
156 i2c_master_send(ir->c, keybuf, 1);
157 /* poll IR chip */
158 if (i2c_master_recv(ir->c, keybuf, sizeof(keybuf)) != sizeof(keybuf)) {
159 return 0;
162 /* key pressed ? */
163 if (keybuf[2] == 0xff)
164 return 0;
166 /* remove repeat bit */
167 keybuf[2] &= 0x7f;
168 keybuf[3] |= 0x80;
170 *ir_key = keybuf[3] | keybuf[2] << 8 | keybuf[1] << 16 |keybuf[0] << 24;
171 *ir_raw = *ir_key;
173 return 1;
176 static int ivtv_i2c_new_ir(struct ivtv *itv, u32 hw, const char *type, u8 addr)
178 struct i2c_board_info info;
179 struct i2c_adapter *adap = &itv->i2c_adap;
180 struct IR_i2c_init_data *init_data = &itv->ir_i2c_init_data;
181 unsigned short addr_list[2] = { addr, I2C_CLIENT_END };
183 /* Only allow one IR transmitter to be registered per board */
184 if (hw & IVTV_HW_IR_TX_ANY) {
185 if (itv->hw_flags & IVTV_HW_IR_TX_ANY)
186 return -1;
187 memset(&info, 0, sizeof(struct i2c_board_info));
188 strlcpy(info.type, type, I2C_NAME_SIZE);
189 return i2c_new_probed_device(adap, &info, addr_list, NULL)
190 == NULL ? -1 : 0;
193 /* Only allow one IR receiver to be registered per board */
194 if (itv->hw_flags & IVTV_HW_IR_RX_ANY)
195 return -1;
197 /* Our default information for ir-kbd-i2c.c to use */
198 switch (hw) {
199 case IVTV_HW_I2C_IR_RX_AVER:
200 init_data->ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
201 init_data->internal_get_key_func =
202 IR_KBD_GET_KEY_AVERMEDIA_CARDBUS;
203 init_data->type = RC_TYPE_OTHER;
204 init_data->name = "AVerMedia AVerTV card";
205 break;
206 case IVTV_HW_I2C_IR_RX_HAUP_EXT:
207 case IVTV_HW_I2C_IR_RX_HAUP_INT:
208 /* Default to old black remote */
209 init_data->ir_codes = RC_MAP_RC5_TV;
210 init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP;
211 init_data->type = RC_TYPE_RC5;
212 init_data->name = itv->card_name;
213 break;
214 case IVTV_HW_Z8F0811_IR_RX_HAUP:
215 /* Default to grey remote */
216 init_data->ir_codes = RC_MAP_HAUPPAUGE_NEW;
217 init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR;
218 init_data->type = RC_TYPE_RC5;
219 init_data->name = itv->card_name;
220 break;
221 case IVTV_HW_I2C_IR_RX_ADAPTEC:
222 init_data->get_key = get_key_adaptec;
223 init_data->name = itv->card_name;
224 /* FIXME: The protocol and RC_MAP needs to be corrected */
225 init_data->ir_codes = RC_MAP_EMPTY;
226 init_data->type = RC_TYPE_UNKNOWN;
227 break;
230 memset(&info, 0, sizeof(struct i2c_board_info));
231 info.platform_data = init_data;
232 strlcpy(info.type, type, I2C_NAME_SIZE);
234 return i2c_new_probed_device(adap, &info, addr_list, NULL) == NULL ?
235 -1 : 0;
238 /* Instantiate the IR receiver device using probing -- undesirable */
239 struct i2c_client *ivtv_i2c_new_ir_legacy(struct ivtv *itv)
241 struct i2c_board_info info;
243 * The external IR receiver is at i2c address 0x34.
244 * The internal IR receiver is at i2c address 0x30.
246 * In theory, both can be fitted, and Hauppauge suggests an external
247 * overrides an internal. That's why we probe 0x1a (~0x34) first. CB
249 * Some of these addresses we probe may collide with other i2c address
250 * allocations, so this function must be called after all other i2c
251 * devices we care about are registered.
253 const unsigned short addr_list[] = {
254 0x1a, /* Hauppauge IR external - collides with WM8739 */
255 0x18, /* Hauppauge IR internal */
256 I2C_CLIENT_END
259 memset(&info, 0, sizeof(struct i2c_board_info));
260 strlcpy(info.type, "ir_video", I2C_NAME_SIZE);
261 return i2c_new_probed_device(&itv->i2c_adap, &info, addr_list, NULL);
264 int ivtv_i2c_register(struct ivtv *itv, unsigned idx)
266 struct v4l2_subdev *sd;
267 struct i2c_adapter *adap = &itv->i2c_adap;
268 const char *type = hw_devicenames[idx];
269 u32 hw = 1 << idx;
271 if (idx >= ARRAY_SIZE(hw_addrs))
272 return -1;
273 if (hw == IVTV_HW_TUNER) {
274 /* special tuner handling */
275 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
276 itv->card_i2c->radio);
277 if (sd)
278 sd->grp_id = 1 << idx;
279 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
280 itv->card_i2c->demod);
281 if (sd)
282 sd->grp_id = 1 << idx;
283 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
284 itv->card_i2c->tv);
285 if (sd)
286 sd->grp_id = 1 << idx;
287 return sd ? 0 : -1;
290 if (hw & IVTV_HW_IR_ANY)
291 return ivtv_i2c_new_ir(itv, hw, type, hw_addrs[idx]);
293 /* Is it not an I2C device or one we do not wish to register? */
294 if (!hw_addrs[idx])
295 return -1;
297 /* It's an I2C device other than an analog tuner or IR chip */
298 if (hw == IVTV_HW_UPD64031A || hw == IVTV_HW_UPD6408X) {
299 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
300 adap, type, 0, I2C_ADDRS(hw_addrs[idx]));
301 } else if (hw == IVTV_HW_CX25840) {
302 struct cx25840_platform_data pdata;
304 pdata.pvr150_workaround = itv->pvr150_workaround;
305 sd = v4l2_i2c_new_subdev_cfg(&itv->v4l2_dev,
306 adap, type, 0, &pdata, hw_addrs[idx], NULL);
307 } else {
308 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
309 adap, type, hw_addrs[idx], NULL);
311 if (sd)
312 sd->grp_id = 1 << idx;
313 return sd ? 0 : -1;
316 struct v4l2_subdev *ivtv_find_hw(struct ivtv *itv, u32 hw)
318 struct v4l2_subdev *result = NULL;
319 struct v4l2_subdev *sd;
321 spin_lock(&itv->v4l2_dev.lock);
322 v4l2_device_for_each_subdev(sd, &itv->v4l2_dev) {
323 if (sd->grp_id == hw) {
324 result = sd;
325 break;
328 spin_unlock(&itv->v4l2_dev.lock);
329 return result;
332 /* Set the serial clock line to the desired state */
333 static void ivtv_setscl(struct ivtv *itv, int state)
335 /* write them out */
336 /* write bits are inverted */
337 write_reg(~state, IVTV_REG_I2C_SETSCL_OFFSET);
340 /* Set the serial data line to the desired state */
341 static void ivtv_setsda(struct ivtv *itv, int state)
343 /* write them out */
344 /* write bits are inverted */
345 write_reg(~state & 1, IVTV_REG_I2C_SETSDA_OFFSET);
348 /* Read the serial clock line */
349 static int ivtv_getscl(struct ivtv *itv)
351 return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
354 /* Read the serial data line */
355 static int ivtv_getsda(struct ivtv *itv)
357 return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
360 /* Implement a short delay by polling the serial clock line */
361 static void ivtv_scldelay(struct ivtv *itv)
363 int i;
365 for (i = 0; i < 5; ++i)
366 ivtv_getscl(itv);
369 /* Wait for the serial clock line to become set to a specific value */
370 static int ivtv_waitscl(struct ivtv *itv, int val)
372 int i;
374 ivtv_scldelay(itv);
375 for (i = 0; i < 1000; ++i) {
376 if (ivtv_getscl(itv) == val)
377 return 1;
379 return 0;
382 /* Wait for the serial data line to become set to a specific value */
383 static int ivtv_waitsda(struct ivtv *itv, int val)
385 int i;
387 ivtv_scldelay(itv);
388 for (i = 0; i < 1000; ++i) {
389 if (ivtv_getsda(itv) == val)
390 return 1;
392 return 0;
395 /* Wait for the slave to issue an ACK */
396 static int ivtv_ack(struct ivtv *itv)
398 int ret = 0;
400 if (ivtv_getscl(itv) == 1) {
401 IVTV_DEBUG_HI_I2C("SCL was high starting an ack\n");
402 ivtv_setscl(itv, 0);
403 if (!ivtv_waitscl(itv, 0)) {
404 IVTV_DEBUG_I2C("Could not set SCL low starting an ack\n");
405 return -EREMOTEIO;
408 ivtv_setsda(itv, 1);
409 ivtv_scldelay(itv);
410 ivtv_setscl(itv, 1);
411 if (!ivtv_waitsda(itv, 0)) {
412 IVTV_DEBUG_I2C("Slave did not ack\n");
413 ret = -EREMOTEIO;
415 ivtv_setscl(itv, 0);
416 if (!ivtv_waitscl(itv, 0)) {
417 IVTV_DEBUG_I2C("Failed to set SCL low after ACK\n");
418 ret = -EREMOTEIO;
420 return ret;
423 /* Write a single byte to the i2c bus and wait for the slave to ACK */
424 static int ivtv_sendbyte(struct ivtv *itv, unsigned char byte)
426 int i, bit;
428 IVTV_DEBUG_HI_I2C("write %x\n",byte);
429 for (i = 0; i < 8; ++i, byte<<=1) {
430 ivtv_setscl(itv, 0);
431 if (!ivtv_waitscl(itv, 0)) {
432 IVTV_DEBUG_I2C("Error setting SCL low\n");
433 return -EREMOTEIO;
435 bit = (byte>>7)&1;
436 ivtv_setsda(itv, bit);
437 if (!ivtv_waitsda(itv, bit)) {
438 IVTV_DEBUG_I2C("Error setting SDA\n");
439 return -EREMOTEIO;
441 ivtv_setscl(itv, 1);
442 if (!ivtv_waitscl(itv, 1)) {
443 IVTV_DEBUG_I2C("Slave not ready for bit\n");
444 return -EREMOTEIO;
447 ivtv_setscl(itv, 0);
448 if (!ivtv_waitscl(itv, 0)) {
449 IVTV_DEBUG_I2C("Error setting SCL low\n");
450 return -EREMOTEIO;
452 return ivtv_ack(itv);
455 /* Read a byte from the i2c bus and send a NACK if applicable (i.e. for the
456 final byte) */
457 static int ivtv_readbyte(struct ivtv *itv, unsigned char *byte, int nack)
459 int i;
461 *byte = 0;
463 ivtv_setsda(itv, 1);
464 ivtv_scldelay(itv);
465 for (i = 0; i < 8; ++i) {
466 ivtv_setscl(itv, 0);
467 ivtv_scldelay(itv);
468 ivtv_setscl(itv, 1);
469 if (!ivtv_waitscl(itv, 1)) {
470 IVTV_DEBUG_I2C("Error setting SCL high\n");
471 return -EREMOTEIO;
473 *byte = ((*byte)<<1)|ivtv_getsda(itv);
475 ivtv_setscl(itv, 0);
476 ivtv_scldelay(itv);
477 ivtv_setsda(itv, nack);
478 ivtv_scldelay(itv);
479 ivtv_setscl(itv, 1);
480 ivtv_scldelay(itv);
481 ivtv_setscl(itv, 0);
482 ivtv_scldelay(itv);
483 IVTV_DEBUG_HI_I2C("read %x\n",*byte);
484 return 0;
487 /* Issue a start condition on the i2c bus to alert slaves to prepare for
488 an address write */
489 static int ivtv_start(struct ivtv *itv)
491 int sda;
493 sda = ivtv_getsda(itv);
494 if (sda != 1) {
495 IVTV_DEBUG_HI_I2C("SDA was low at start\n");
496 ivtv_setsda(itv, 1);
497 if (!ivtv_waitsda(itv, 1)) {
498 IVTV_DEBUG_I2C("SDA stuck low\n");
499 return -EREMOTEIO;
502 if (ivtv_getscl(itv) != 1) {
503 ivtv_setscl(itv, 1);
504 if (!ivtv_waitscl(itv, 1)) {
505 IVTV_DEBUG_I2C("SCL stuck low at start\n");
506 return -EREMOTEIO;
509 ivtv_setsda(itv, 0);
510 ivtv_scldelay(itv);
511 return 0;
514 /* Issue a stop condition on the i2c bus to release it */
515 static int ivtv_stop(struct ivtv *itv)
517 int i;
519 if (ivtv_getscl(itv) != 0) {
520 IVTV_DEBUG_HI_I2C("SCL not low when stopping\n");
521 ivtv_setscl(itv, 0);
522 if (!ivtv_waitscl(itv, 0)) {
523 IVTV_DEBUG_I2C("SCL could not be set low\n");
526 ivtv_setsda(itv, 0);
527 ivtv_scldelay(itv);
528 ivtv_setscl(itv, 1);
529 if (!ivtv_waitscl(itv, 1)) {
530 IVTV_DEBUG_I2C("SCL could not be set high\n");
531 return -EREMOTEIO;
533 ivtv_scldelay(itv);
534 ivtv_setsda(itv, 1);
535 if (!ivtv_waitsda(itv, 1)) {
536 IVTV_DEBUG_I2C("resetting I2C\n");
537 for (i = 0; i < 16; ++i) {
538 ivtv_setscl(itv, 0);
539 ivtv_scldelay(itv);
540 ivtv_setscl(itv, 1);
541 ivtv_scldelay(itv);
542 ivtv_setsda(itv, 1);
544 ivtv_waitsda(itv, 1);
545 return -EREMOTEIO;
547 return 0;
550 /* Write a message to the given i2c slave. do_stop may be 0 to prevent
551 issuing the i2c stop condition (when following with a read) */
552 static int ivtv_write(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len, int do_stop)
554 int retry, ret = -EREMOTEIO;
555 u32 i;
557 for (retry = 0; ret != 0 && retry < 8; ++retry) {
558 ret = ivtv_start(itv);
560 if (ret == 0) {
561 ret = ivtv_sendbyte(itv, addr<<1);
562 for (i = 0; ret == 0 && i < len; ++i)
563 ret = ivtv_sendbyte(itv, data[i]);
565 if (ret != 0 || do_stop) {
566 ivtv_stop(itv);
569 if (ret)
570 IVTV_DEBUG_I2C("i2c write to %x failed\n", addr);
571 return ret;
574 /* Read data from the given i2c slave. A stop condition is always issued. */
575 static int ivtv_read(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len)
577 int retry, ret = -EREMOTEIO;
578 u32 i;
580 for (retry = 0; ret != 0 && retry < 8; ++retry) {
581 ret = ivtv_start(itv);
582 if (ret == 0)
583 ret = ivtv_sendbyte(itv, (addr << 1) | 1);
584 for (i = 0; ret == 0 && i < len; ++i) {
585 ret = ivtv_readbyte(itv, &data[i], i == len - 1);
587 ivtv_stop(itv);
589 if (ret)
590 IVTV_DEBUG_I2C("i2c read from %x failed\n", addr);
591 return ret;
594 /* Kernel i2c transfer implementation. Takes a number of messages to be read
595 or written. If a read follows a write, this will occur without an
596 intervening stop condition */
597 static int ivtv_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
599 struct v4l2_device *v4l2_dev = i2c_get_adapdata(i2c_adap);
600 struct ivtv *itv = to_ivtv(v4l2_dev);
601 int retval;
602 int i;
604 mutex_lock(&itv->i2c_bus_lock);
605 for (i = retval = 0; retval == 0 && i < num; i++) {
606 if (msgs[i].flags & I2C_M_RD)
607 retval = ivtv_read(itv, msgs[i].addr, msgs[i].buf, msgs[i].len);
608 else {
609 /* if followed by a read, don't stop */
610 int stop = !(i + 1 < num && msgs[i + 1].flags == I2C_M_RD);
612 retval = ivtv_write(itv, msgs[i].addr, msgs[i].buf, msgs[i].len, stop);
615 mutex_unlock(&itv->i2c_bus_lock);
616 return retval ? retval : num;
619 /* Kernel i2c capabilities */
620 static u32 ivtv_functionality(struct i2c_adapter *adap)
622 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
625 static struct i2c_algorithm ivtv_algo = {
626 .master_xfer = ivtv_xfer,
627 .functionality = ivtv_functionality,
630 /* template for our-bit banger */
631 static struct i2c_adapter ivtv_i2c_adap_hw_template = {
632 .name = "ivtv i2c driver",
633 .algo = &ivtv_algo,
634 .algo_data = NULL, /* filled from template */
635 .owner = THIS_MODULE,
638 static void ivtv_setscl_old(void *data, int state)
640 struct ivtv *itv = (struct ivtv *)data;
642 if (state)
643 itv->i2c_state |= 0x01;
644 else
645 itv->i2c_state &= ~0x01;
647 /* write them out */
648 /* write bits are inverted */
649 write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSCL_OFFSET);
652 static void ivtv_setsda_old(void *data, int state)
654 struct ivtv *itv = (struct ivtv *)data;
656 if (state)
657 itv->i2c_state |= 0x01;
658 else
659 itv->i2c_state &= ~0x01;
661 /* write them out */
662 /* write bits are inverted */
663 write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSDA_OFFSET);
666 static int ivtv_getscl_old(void *data)
668 struct ivtv *itv = (struct ivtv *)data;
670 return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
673 static int ivtv_getsda_old(void *data)
675 struct ivtv *itv = (struct ivtv *)data;
677 return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
680 /* template for i2c-bit-algo */
681 static struct i2c_adapter ivtv_i2c_adap_template = {
682 .name = "ivtv i2c driver",
683 .algo = NULL, /* set by i2c-algo-bit */
684 .algo_data = NULL, /* filled from template */
685 .owner = THIS_MODULE,
688 #define IVTV_ALGO_BIT_TIMEOUT (2) /* seconds */
690 static const struct i2c_algo_bit_data ivtv_i2c_algo_template = {
691 .setsda = ivtv_setsda_old,
692 .setscl = ivtv_setscl_old,
693 .getsda = ivtv_getsda_old,
694 .getscl = ivtv_getscl_old,
695 .udelay = IVTV_DEFAULT_I2C_CLOCK_PERIOD / 2, /* microseconds */
696 .timeout = IVTV_ALGO_BIT_TIMEOUT * HZ, /* jiffies */
699 static struct i2c_client ivtv_i2c_client_template = {
700 .name = "ivtv internal",
703 /* init + register i2c adapter */
704 int init_ivtv_i2c(struct ivtv *itv)
706 int retval;
708 IVTV_DEBUG_I2C("i2c init\n");
710 /* Sanity checks for the I2C hardware arrays. They must be the
711 * same size.
713 if (ARRAY_SIZE(hw_devicenames) != ARRAY_SIZE(hw_addrs)) {
714 IVTV_ERR("Mismatched I2C hardware arrays\n");
715 return -ENODEV;
717 if (itv->options.newi2c > 0) {
718 memcpy(&itv->i2c_adap, &ivtv_i2c_adap_hw_template,
719 sizeof(struct i2c_adapter));
720 } else {
721 memcpy(&itv->i2c_adap, &ivtv_i2c_adap_template,
722 sizeof(struct i2c_adapter));
723 memcpy(&itv->i2c_algo, &ivtv_i2c_algo_template,
724 sizeof(struct i2c_algo_bit_data));
726 itv->i2c_algo.udelay = itv->options.i2c_clock_period / 2;
727 itv->i2c_algo.data = itv;
728 itv->i2c_adap.algo_data = &itv->i2c_algo;
730 sprintf(itv->i2c_adap.name + strlen(itv->i2c_adap.name), " #%d",
731 itv->instance);
732 i2c_set_adapdata(&itv->i2c_adap, &itv->v4l2_dev);
734 memcpy(&itv->i2c_client, &ivtv_i2c_client_template,
735 sizeof(struct i2c_client));
736 itv->i2c_client.adapter = &itv->i2c_adap;
737 itv->i2c_adap.dev.parent = &itv->pdev->dev;
739 IVTV_DEBUG_I2C("setting scl and sda to 1\n");
740 ivtv_setscl(itv, 1);
741 ivtv_setsda(itv, 1);
743 if (itv->options.newi2c > 0)
744 retval = i2c_add_adapter(&itv->i2c_adap);
745 else
746 retval = i2c_bit_add_bus(&itv->i2c_adap);
748 return retval;
751 void exit_ivtv_i2c(struct ivtv *itv)
753 IVTV_DEBUG_I2C("i2c exit\n");
755 i2c_del_adapter(&itv->i2c_adap);