staging: brcm80211: assure common sources are truly common
[zen-stable.git] / drivers / scsi / libfc / fc_exch.c
blobd21367d3305fd6de6bd68f0505618ff97b6b927b
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 * Maintained at www.Open-FCoE.org
23 * Fibre Channel exchange and sequence handling.
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
30 #include <scsi/fc/fc_fc2.h>
32 #include <scsi/libfc.h>
33 #include <scsi/fc_encode.h>
35 #include "fc_libfc.h"
37 u16 fc_cpu_mask; /* cpu mask for possible cpus */
38 EXPORT_SYMBOL(fc_cpu_mask);
39 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
40 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
41 struct workqueue_struct *fc_exch_workqueue;
44 * Structure and function definitions for managing Fibre Channel Exchanges
45 * and Sequences.
47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49 * fc_exch_mgr holds the exchange state for an N port
51 * fc_exch holds state for one exchange and links to its active sequence.
53 * fc_seq holds the state for an individual sequence.
56 /**
57 * struct fc_exch_pool - Per cpu exchange pool
58 * @next_index: Next possible free exchange index
59 * @total_exches: Total allocated exchanges
60 * @lock: Exch pool lock
61 * @ex_list: List of exchanges
63 * This structure manages per cpu exchanges in array of exchange pointers.
64 * This array is allocated followed by struct fc_exch_pool memory for
65 * assigned range of exchanges to per cpu pool.
67 struct fc_exch_pool {
68 u16 next_index;
69 u16 total_exches;
71 /* two cache of free slot in exch array */
72 u16 left;
73 u16 right;
75 spinlock_t lock;
76 struct list_head ex_list;
79 /**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
93 struct fc_exch_mgr {
94 enum fc_class class;
95 struct kref kref;
96 u16 min_xid;
97 u16 max_xid;
98 mempool_t *ep_pool;
99 u16 pool_max_index;
100 struct fc_exch_pool *pool;
103 * currently exchange mgr stats are updated but not used.
104 * either stats can be expose via sysfs or remove them
105 * all together if not used XXX
107 struct {
108 atomic_t no_free_exch;
109 atomic_t no_free_exch_xid;
110 atomic_t xid_not_found;
111 atomic_t xid_busy;
112 atomic_t seq_not_found;
113 atomic_t non_bls_resp;
114 } stats;
118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
119 * @ema_list: Exchange Manager Anchor list
120 * @mp: Exchange Manager associated with this anchor
121 * @match: Routine to determine if this anchor's EM should be used
123 * When walking the list of anchors the match routine will be called
124 * for each anchor to determine if that EM should be used. The last
125 * anchor in the list will always match to handle any exchanges not
126 * handled by other EMs. The non-default EMs would be added to the
127 * anchor list by HW that provides FCoE offloads.
129 struct fc_exch_mgr_anchor {
130 struct list_head ema_list;
131 struct fc_exch_mgr *mp;
132 bool (*match)(struct fc_frame *);
135 static void fc_exch_rrq(struct fc_exch *);
136 static void fc_seq_ls_acc(struct fc_frame *);
137 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 enum fc_els_rjt_explan);
139 static void fc_exch_els_rec(struct fc_frame *);
140 static void fc_exch_els_rrq(struct fc_frame *);
143 * Internal implementation notes.
145 * The exchange manager is one by default in libfc but LLD may choose
146 * to have one per CPU. The sequence manager is one per exchange manager
147 * and currently never separated.
149 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
150 * assigned by the Sequence Initiator that shall be unique for a specific
151 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
152 * qualified by exchange ID, which one might think it would be.
153 * In practice this limits the number of open sequences and exchanges to 256
154 * per session. For most targets we could treat this limit as per exchange.
156 * The exchange and its sequence are freed when the last sequence is received.
157 * It's possible for the remote port to leave an exchange open without
158 * sending any sequences.
160 * Notes on reference counts:
162 * Exchanges are reference counted and exchange gets freed when the reference
163 * count becomes zero.
165 * Timeouts:
166 * Sequences are timed out for E_D_TOV and R_A_TOV.
168 * Sequence event handling:
170 * The following events may occur on initiator sequences:
172 * Send.
173 * For now, the whole thing is sent.
174 * Receive ACK
175 * This applies only to class F.
176 * The sequence is marked complete.
177 * ULP completion.
178 * The upper layer calls fc_exch_done() when done
179 * with exchange and sequence tuple.
180 * RX-inferred completion.
181 * When we receive the next sequence on the same exchange, we can
182 * retire the previous sequence ID. (XXX not implemented).
183 * Timeout.
184 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
185 * E_D_TOV causes abort and calls upper layer response handler
186 * with FC_EX_TIMEOUT error.
187 * Receive RJT
188 * XXX defer.
189 * Send ABTS
190 * On timeout.
192 * The following events may occur on recipient sequences:
194 * Receive
195 * Allocate sequence for first frame received.
196 * Hold during receive handler.
197 * Release when final frame received.
198 * Keep status of last N of these for the ELS RES command. XXX TBD.
199 * Receive ABTS
200 * Deallocate sequence
201 * Send RJT
202 * Deallocate
204 * For now, we neglect conditions where only part of a sequence was
205 * received or transmitted, or where out-of-order receipt is detected.
209 * Locking notes:
211 * The EM code run in a per-CPU worker thread.
213 * To protect against concurrency between a worker thread code and timers,
214 * sequence allocation and deallocation must be locked.
215 * - exchange refcnt can be done atomicly without locks.
216 * - sequence allocation must be locked by exch lock.
217 * - If the EM pool lock and ex_lock must be taken at the same time, then the
218 * EM pool lock must be taken before the ex_lock.
222 * opcode names for debugging.
224 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
227 * fc_exch_name_lookup() - Lookup name by opcode
228 * @op: Opcode to be looked up
229 * @table: Opcode/name table
230 * @max_index: Index not to be exceeded
232 * This routine is used to determine a human-readable string identifying
233 * a R_CTL opcode.
235 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 unsigned int max_index)
238 const char *name = NULL;
240 if (op < max_index)
241 name = table[op];
242 if (!name)
243 name = "unknown";
244 return name;
248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249 * @op: The opcode to be looked up
251 static const char *fc_exch_rctl_name(unsigned int op)
253 return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 ARRAY_SIZE(fc_exch_rctl_names));
258 * fc_exch_hold() - Increment an exchange's reference count
259 * @ep: Echange to be held
261 static inline void fc_exch_hold(struct fc_exch *ep)
263 atomic_inc(&ep->ex_refcnt);
267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268 * and determine SOF and EOF.
269 * @ep: The exchange to that will use the header
270 * @fp: The frame whose header is to be modified
271 * @f_ctl: F_CTL bits that will be used for the frame header
273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
276 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 u32 f_ctl)
279 struct fc_frame_header *fh = fc_frame_header_get(fp);
280 u16 fill;
282 fr_sof(fp) = ep->class;
283 if (ep->seq.cnt)
284 fr_sof(fp) = fc_sof_normal(ep->class);
286 if (f_ctl & FC_FC_END_SEQ) {
287 fr_eof(fp) = FC_EOF_T;
288 if (fc_sof_needs_ack(ep->class))
289 fr_eof(fp) = FC_EOF_N;
291 * From F_CTL.
292 * The number of fill bytes to make the length a 4-byte
293 * multiple is the low order 2-bits of the f_ctl.
294 * The fill itself will have been cleared by the frame
295 * allocation.
296 * After this, the length will be even, as expected by
297 * the transport.
299 fill = fr_len(fp) & 3;
300 if (fill) {
301 fill = 4 - fill;
302 /* TODO, this may be a problem with fragmented skb */
303 skb_put(fp_skb(fp), fill);
304 hton24(fh->fh_f_ctl, f_ctl | fill);
306 } else {
307 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
308 fr_eof(fp) = FC_EOF_N;
312 * Initialize remainig fh fields
313 * from fc_fill_fc_hdr
315 fh->fh_ox_id = htons(ep->oxid);
316 fh->fh_rx_id = htons(ep->rxid);
317 fh->fh_seq_id = ep->seq.id;
318 fh->fh_seq_cnt = htons(ep->seq.cnt);
322 * fc_exch_release() - Decrement an exchange's reference count
323 * @ep: Exchange to be released
325 * If the reference count reaches zero and the exchange is complete,
326 * it is freed.
328 static void fc_exch_release(struct fc_exch *ep)
330 struct fc_exch_mgr *mp;
332 if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 mp = ep->em;
334 if (ep->destructor)
335 ep->destructor(&ep->seq, ep->arg);
336 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 mempool_free(ep, mp->ep_pool);
342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343 * @ep: The exchange that is complete
345 static int fc_exch_done_locked(struct fc_exch *ep)
347 int rc = 1;
350 * We must check for completion in case there are two threads
351 * tyring to complete this. But the rrq code will reuse the
352 * ep, and in that case we only clear the resp and set it as
353 * complete, so it can be reused by the timer to send the rrq.
355 ep->resp = NULL;
356 if (ep->state & FC_EX_DONE)
357 return rc;
358 ep->esb_stat |= ESB_ST_COMPLETE;
360 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 ep->state |= FC_EX_DONE;
362 if (cancel_delayed_work(&ep->timeout_work))
363 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 rc = 0;
366 return rc;
370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
371 * @pool: Exchange Pool to get an exchange from
372 * @index: Index of the exchange within the pool
374 * Use the index to get an exchange from within an exchange pool. exches
375 * will point to an array of exchange pointers. The index will select
376 * the exchange within the array.
378 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 u16 index)
381 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 return exches[index];
386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387 * @pool: The pool to assign the exchange to
388 * @index: The index in the pool where the exchange will be assigned
389 * @ep: The exchange to assign to the pool
391 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 struct fc_exch *ep)
394 ((struct fc_exch **)(pool + 1))[index] = ep;
398 * fc_exch_delete() - Delete an exchange
399 * @ep: The exchange to be deleted
401 static void fc_exch_delete(struct fc_exch *ep)
403 struct fc_exch_pool *pool;
404 u16 index;
406 pool = ep->pool;
407 spin_lock_bh(&pool->lock);
408 WARN_ON(pool->total_exches <= 0);
409 pool->total_exches--;
411 /* update cache of free slot */
412 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 if (pool->left == FC_XID_UNKNOWN)
414 pool->left = index;
415 else if (pool->right == FC_XID_UNKNOWN)
416 pool->right = index;
417 else
418 pool->next_index = index;
420 fc_exch_ptr_set(pool, index, NULL);
421 list_del(&ep->ex_list);
422 spin_unlock_bh(&pool->lock);
423 fc_exch_release(ep); /* drop hold for exch in mp */
427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428 * the exchange lock held
429 * @ep: The exchange whose timer will start
430 * @timer_msec: The timeout period
432 * Used for upper level protocols to time out the exchange.
433 * The timer is cancelled when it fires or when the exchange completes.
435 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 unsigned int timer_msec)
438 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 return;
441 FC_EXCH_DBG(ep, "Exchange timer armed\n");
443 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 msecs_to_jiffies(timer_msec)))
445 fc_exch_hold(ep); /* hold for timer */
449 * fc_exch_timer_set() - Lock the exchange and set the timer
450 * @ep: The exchange whose timer will start
451 * @timer_msec: The timeout period
453 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
455 spin_lock_bh(&ep->ex_lock);
456 fc_exch_timer_set_locked(ep, timer_msec);
457 spin_unlock_bh(&ep->ex_lock);
461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
462 * @lport: The local port that the exchange will be sent on
463 * @sp: The sequence to be sent
464 * @fp: The frame to be sent on the exchange
466 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error;
472 u32 f_ctl;
474 ep = fc_seq_exch(sp);
475 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
477 f_ctl = ntoh24(fh->fh_f_ctl);
478 fc_exch_setup_hdr(ep, fp, f_ctl);
479 fr_encaps(fp) = ep->encaps;
482 * update sequence count if this frame is carrying
483 * multiple FC frames when sequence offload is enabled
484 * by LLD.
486 if (fr_max_payload(fp))
487 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
488 fr_max_payload(fp));
489 else
490 sp->cnt++;
493 * Send the frame.
495 error = lport->tt.frame_send(lport, fp);
498 * Update the exchange and sequence flags,
499 * assuming all frames for the sequence have been sent.
500 * We can only be called to send once for each sequence.
502 spin_lock_bh(&ep->ex_lock);
503 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
504 if (f_ctl & FC_FC_SEQ_INIT)
505 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
506 spin_unlock_bh(&ep->ex_lock);
507 return error;
511 * fc_seq_alloc() - Allocate a sequence for a given exchange
512 * @ep: The exchange to allocate a new sequence for
513 * @seq_id: The sequence ID to be used
515 * We don't support multiple originated sequences on the same exchange.
516 * By implication, any previously originated sequence on this exchange
517 * is complete, and we reallocate the same sequence.
519 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
521 struct fc_seq *sp;
523 sp = &ep->seq;
524 sp->ssb_stat = 0;
525 sp->cnt = 0;
526 sp->id = seq_id;
527 return sp;
531 * fc_seq_start_next_locked() - Allocate a new sequence on the same
532 * exchange as the supplied sequence
533 * @sp: The sequence/exchange to get a new sequence for
535 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
537 struct fc_exch *ep = fc_seq_exch(sp);
539 sp = fc_seq_alloc(ep, ep->seq_id++);
540 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
541 ep->f_ctl, sp->id);
542 return sp;
546 * fc_seq_start_next() - Lock the exchange and get a new sequence
547 * for a given sequence/exchange pair
548 * @sp: The sequence/exchange to get a new exchange for
550 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
552 struct fc_exch *ep = fc_seq_exch(sp);
554 spin_lock_bh(&ep->ex_lock);
555 sp = fc_seq_start_next_locked(sp);
556 spin_unlock_bh(&ep->ex_lock);
558 return sp;
562 * fc_seq_exch_abort() - Abort an exchange and sequence
563 * @req_sp: The sequence to be aborted
564 * @timer_msec: The period of time to wait before aborting
566 * Generally called because of a timeout or an abort from the upper layer.
568 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
569 unsigned int timer_msec)
571 struct fc_seq *sp;
572 struct fc_exch *ep;
573 struct fc_frame *fp;
574 int error;
576 ep = fc_seq_exch(req_sp);
578 spin_lock_bh(&ep->ex_lock);
579 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
580 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
581 spin_unlock_bh(&ep->ex_lock);
582 return -ENXIO;
586 * Send the abort on a new sequence if possible.
588 sp = fc_seq_start_next_locked(&ep->seq);
589 if (!sp) {
590 spin_unlock_bh(&ep->ex_lock);
591 return -ENOMEM;
594 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
595 if (timer_msec)
596 fc_exch_timer_set_locked(ep, timer_msec);
597 spin_unlock_bh(&ep->ex_lock);
600 * If not logged into the fabric, don't send ABTS but leave
601 * sequence active until next timeout.
603 if (!ep->sid)
604 return 0;
607 * Send an abort for the sequence that timed out.
609 fp = fc_frame_alloc(ep->lp, 0);
610 if (fp) {
611 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
612 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
613 error = fc_seq_send(ep->lp, sp, fp);
614 } else
615 error = -ENOBUFS;
616 return error;
620 * fc_exch_timeout() - Handle exchange timer expiration
621 * @work: The work_struct identifying the exchange that timed out
623 static void fc_exch_timeout(struct work_struct *work)
625 struct fc_exch *ep = container_of(work, struct fc_exch,
626 timeout_work.work);
627 struct fc_seq *sp = &ep->seq;
628 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
629 void *arg;
630 u32 e_stat;
631 int rc = 1;
633 FC_EXCH_DBG(ep, "Exchange timed out\n");
635 spin_lock_bh(&ep->ex_lock);
636 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
637 goto unlock;
639 e_stat = ep->esb_stat;
640 if (e_stat & ESB_ST_COMPLETE) {
641 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
642 spin_unlock_bh(&ep->ex_lock);
643 if (e_stat & ESB_ST_REC_QUAL)
644 fc_exch_rrq(ep);
645 goto done;
646 } else {
647 resp = ep->resp;
648 arg = ep->arg;
649 ep->resp = NULL;
650 if (e_stat & ESB_ST_ABNORMAL)
651 rc = fc_exch_done_locked(ep);
652 spin_unlock_bh(&ep->ex_lock);
653 if (resp)
654 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
655 if (!rc) {
656 /* delete the exchange if it's already being aborted */
657 fc_exch_delete(ep);
658 return;
660 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
661 goto done;
663 unlock:
664 spin_unlock_bh(&ep->ex_lock);
665 done:
667 * This release matches the hold taken when the timer was set.
669 fc_exch_release(ep);
673 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
674 * @lport: The local port that the exchange is for
675 * @mp: The exchange manager that will allocate the exchange
677 * Returns pointer to allocated fc_exch with exch lock held.
679 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
680 struct fc_exch_mgr *mp)
682 struct fc_exch *ep;
683 unsigned int cpu;
684 u16 index;
685 struct fc_exch_pool *pool;
687 /* allocate memory for exchange */
688 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
689 if (!ep) {
690 atomic_inc(&mp->stats.no_free_exch);
691 goto out;
693 memset(ep, 0, sizeof(*ep));
695 cpu = get_cpu();
696 pool = per_cpu_ptr(mp->pool, cpu);
697 spin_lock_bh(&pool->lock);
698 put_cpu();
700 /* peek cache of free slot */
701 if (pool->left != FC_XID_UNKNOWN) {
702 index = pool->left;
703 pool->left = FC_XID_UNKNOWN;
704 goto hit;
706 if (pool->right != FC_XID_UNKNOWN) {
707 index = pool->right;
708 pool->right = FC_XID_UNKNOWN;
709 goto hit;
712 index = pool->next_index;
713 /* allocate new exch from pool */
714 while (fc_exch_ptr_get(pool, index)) {
715 index = index == mp->pool_max_index ? 0 : index + 1;
716 if (index == pool->next_index)
717 goto err;
719 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
720 hit:
721 fc_exch_hold(ep); /* hold for exch in mp */
722 spin_lock_init(&ep->ex_lock);
724 * Hold exch lock for caller to prevent fc_exch_reset()
725 * from releasing exch while fc_exch_alloc() caller is
726 * still working on exch.
728 spin_lock_bh(&ep->ex_lock);
730 fc_exch_ptr_set(pool, index, ep);
731 list_add_tail(&ep->ex_list, &pool->ex_list);
732 fc_seq_alloc(ep, ep->seq_id++);
733 pool->total_exches++;
734 spin_unlock_bh(&pool->lock);
737 * update exchange
739 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
740 ep->em = mp;
741 ep->pool = pool;
742 ep->lp = lport;
743 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
744 ep->rxid = FC_XID_UNKNOWN;
745 ep->class = mp->class;
746 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
747 out:
748 return ep;
749 err:
750 spin_unlock_bh(&pool->lock);
751 atomic_inc(&mp->stats.no_free_exch_xid);
752 mempool_free(ep, mp->ep_pool);
753 return NULL;
757 * fc_exch_alloc() - Allocate an exchange from an EM on a
758 * local port's list of EMs.
759 * @lport: The local port that will own the exchange
760 * @fp: The FC frame that the exchange will be for
762 * This function walks the list of exchange manager(EM)
763 * anchors to select an EM for a new exchange allocation. The
764 * EM is selected when a NULL match function pointer is encountered
765 * or when a call to a match function returns true.
767 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
768 struct fc_frame *fp)
770 struct fc_exch_mgr_anchor *ema;
772 list_for_each_entry(ema, &lport->ema_list, ema_list)
773 if (!ema->match || ema->match(fp))
774 return fc_exch_em_alloc(lport, ema->mp);
775 return NULL;
779 * fc_exch_find() - Lookup and hold an exchange
780 * @mp: The exchange manager to lookup the exchange from
781 * @xid: The XID of the exchange to look up
783 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
785 struct fc_exch_pool *pool;
786 struct fc_exch *ep = NULL;
788 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
789 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
790 spin_lock_bh(&pool->lock);
791 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
792 if (ep) {
793 fc_exch_hold(ep);
794 WARN_ON(ep->xid != xid);
796 spin_unlock_bh(&pool->lock);
798 return ep;
803 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
804 * the memory allocated for the related objects may be freed.
805 * @sp: The sequence that has completed
807 static void fc_exch_done(struct fc_seq *sp)
809 struct fc_exch *ep = fc_seq_exch(sp);
810 int rc;
812 spin_lock_bh(&ep->ex_lock);
813 rc = fc_exch_done_locked(ep);
814 spin_unlock_bh(&ep->ex_lock);
815 if (!rc)
816 fc_exch_delete(ep);
820 * fc_exch_resp() - Allocate a new exchange for a response frame
821 * @lport: The local port that the exchange was for
822 * @mp: The exchange manager to allocate the exchange from
823 * @fp: The response frame
825 * Sets the responder ID in the frame header.
827 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
828 struct fc_exch_mgr *mp,
829 struct fc_frame *fp)
831 struct fc_exch *ep;
832 struct fc_frame_header *fh;
834 ep = fc_exch_alloc(lport, fp);
835 if (ep) {
836 ep->class = fc_frame_class(fp);
839 * Set EX_CTX indicating we're responding on this exchange.
841 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
842 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
843 fh = fc_frame_header_get(fp);
844 ep->sid = ntoh24(fh->fh_d_id);
845 ep->did = ntoh24(fh->fh_s_id);
846 ep->oid = ep->did;
849 * Allocated exchange has placed the XID in the
850 * originator field. Move it to the responder field,
851 * and set the originator XID from the frame.
853 ep->rxid = ep->xid;
854 ep->oxid = ntohs(fh->fh_ox_id);
855 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
856 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
857 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
859 fc_exch_hold(ep); /* hold for caller */
860 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
862 return ep;
866 * fc_seq_lookup_recip() - Find a sequence where the other end
867 * originated the sequence
868 * @lport: The local port that the frame was sent to
869 * @mp: The Exchange Manager to lookup the exchange from
870 * @fp: The frame associated with the sequence we're looking for
872 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
873 * on the ep that should be released by the caller.
875 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
876 struct fc_exch_mgr *mp,
877 struct fc_frame *fp)
879 struct fc_frame_header *fh = fc_frame_header_get(fp);
880 struct fc_exch *ep = NULL;
881 struct fc_seq *sp = NULL;
882 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
883 u32 f_ctl;
884 u16 xid;
886 f_ctl = ntoh24(fh->fh_f_ctl);
887 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
890 * Lookup or create the exchange if we will be creating the sequence.
892 if (f_ctl & FC_FC_EX_CTX) {
893 xid = ntohs(fh->fh_ox_id); /* we originated exch */
894 ep = fc_exch_find(mp, xid);
895 if (!ep) {
896 atomic_inc(&mp->stats.xid_not_found);
897 reject = FC_RJT_OX_ID;
898 goto out;
900 if (ep->rxid == FC_XID_UNKNOWN)
901 ep->rxid = ntohs(fh->fh_rx_id);
902 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
903 reject = FC_RJT_OX_ID;
904 goto rel;
906 } else {
907 xid = ntohs(fh->fh_rx_id); /* we are the responder */
910 * Special case for MDS issuing an ELS TEST with a
911 * bad rxid of 0.
912 * XXX take this out once we do the proper reject.
914 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
915 fc_frame_payload_op(fp) == ELS_TEST) {
916 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
917 xid = FC_XID_UNKNOWN;
921 * new sequence - find the exchange
923 ep = fc_exch_find(mp, xid);
924 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
925 if (ep) {
926 atomic_inc(&mp->stats.xid_busy);
927 reject = FC_RJT_RX_ID;
928 goto rel;
930 ep = fc_exch_resp(lport, mp, fp);
931 if (!ep) {
932 reject = FC_RJT_EXCH_EST; /* XXX */
933 goto out;
935 xid = ep->xid; /* get our XID */
936 } else if (!ep) {
937 atomic_inc(&mp->stats.xid_not_found);
938 reject = FC_RJT_RX_ID; /* XID not found */
939 goto out;
944 * At this point, we have the exchange held.
945 * Find or create the sequence.
947 if (fc_sof_is_init(fr_sof(fp))) {
948 sp = &ep->seq;
949 sp->ssb_stat |= SSB_ST_RESP;
950 sp->id = fh->fh_seq_id;
951 } else {
952 sp = &ep->seq;
953 if (sp->id != fh->fh_seq_id) {
954 atomic_inc(&mp->stats.seq_not_found);
955 reject = FC_RJT_SEQ_ID; /* sequence/exch should exist */
956 goto rel;
959 WARN_ON(ep != fc_seq_exch(sp));
961 if (f_ctl & FC_FC_SEQ_INIT)
962 ep->esb_stat |= ESB_ST_SEQ_INIT;
964 fr_seq(fp) = sp;
965 out:
966 return reject;
967 rel:
968 fc_exch_done(&ep->seq);
969 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
970 return reject;
974 * fc_seq_lookup_orig() - Find a sequence where this end
975 * originated the sequence
976 * @mp: The Exchange Manager to lookup the exchange from
977 * @fp: The frame associated with the sequence we're looking for
979 * Does not hold the sequence for the caller.
981 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
982 struct fc_frame *fp)
984 struct fc_frame_header *fh = fc_frame_header_get(fp);
985 struct fc_exch *ep;
986 struct fc_seq *sp = NULL;
987 u32 f_ctl;
988 u16 xid;
990 f_ctl = ntoh24(fh->fh_f_ctl);
991 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
992 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
993 ep = fc_exch_find(mp, xid);
994 if (!ep)
995 return NULL;
996 if (ep->seq.id == fh->fh_seq_id) {
998 * Save the RX_ID if we didn't previously know it.
1000 sp = &ep->seq;
1001 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1002 ep->rxid == FC_XID_UNKNOWN) {
1003 ep->rxid = ntohs(fh->fh_rx_id);
1006 fc_exch_release(ep);
1007 return sp;
1011 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1012 * @ep: The exchange to set the addresses for
1013 * @orig_id: The originator's ID
1014 * @resp_id: The responder's ID
1016 * Note this must be done before the first sequence of the exchange is sent.
1018 static void fc_exch_set_addr(struct fc_exch *ep,
1019 u32 orig_id, u32 resp_id)
1021 ep->oid = orig_id;
1022 if (ep->esb_stat & ESB_ST_RESP) {
1023 ep->sid = resp_id;
1024 ep->did = orig_id;
1025 } else {
1026 ep->sid = orig_id;
1027 ep->did = resp_id;
1032 * fc_seq_els_rsp_send() - Send an ELS response using infomation from
1033 * the existing sequence/exchange.
1034 * @fp: The received frame
1035 * @els_cmd: The ELS command to be sent
1036 * @els_data: The ELS data to be sent
1038 * The received frame is not freed.
1040 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1041 struct fc_seq_els_data *els_data)
1043 switch (els_cmd) {
1044 case ELS_LS_RJT:
1045 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1046 break;
1047 case ELS_LS_ACC:
1048 fc_seq_ls_acc(fp);
1049 break;
1050 case ELS_RRQ:
1051 fc_exch_els_rrq(fp);
1052 break;
1053 case ELS_REC:
1054 fc_exch_els_rec(fp);
1055 break;
1056 default:
1057 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1062 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1063 * @sp: The sequence that is to be sent
1064 * @fp: The frame that will be sent on the sequence
1065 * @rctl: The R_CTL information to be sent
1066 * @fh_type: The frame header type
1068 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1069 enum fc_rctl rctl, enum fc_fh_type fh_type)
1071 u32 f_ctl;
1072 struct fc_exch *ep = fc_seq_exch(sp);
1074 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1075 f_ctl |= ep->f_ctl;
1076 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1077 fc_seq_send(ep->lp, sp, fp);
1081 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1082 * @sp: The sequence to send the ACK on
1083 * @rx_fp: The received frame that is being acknoledged
1085 * Send ACK_1 (or equiv.) indicating we received something.
1087 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1089 struct fc_frame *fp;
1090 struct fc_frame_header *rx_fh;
1091 struct fc_frame_header *fh;
1092 struct fc_exch *ep = fc_seq_exch(sp);
1093 struct fc_lport *lport = ep->lp;
1094 unsigned int f_ctl;
1097 * Don't send ACKs for class 3.
1099 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1100 fp = fc_frame_alloc(lport, 0);
1101 if (!fp)
1102 return;
1104 fh = fc_frame_header_get(fp);
1105 fh->fh_r_ctl = FC_RCTL_ACK_1;
1106 fh->fh_type = FC_TYPE_BLS;
1109 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1110 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1111 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1112 * Last ACK uses bits 7-6 (continue sequence),
1113 * bits 5-4 are meaningful (what kind of ACK to use).
1115 rx_fh = fc_frame_header_get(rx_fp);
1116 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1117 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1118 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1119 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1120 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1121 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1122 hton24(fh->fh_f_ctl, f_ctl);
1124 fc_exch_setup_hdr(ep, fp, f_ctl);
1125 fh->fh_seq_id = rx_fh->fh_seq_id;
1126 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1127 fh->fh_parm_offset = htonl(1); /* ack single frame */
1129 fr_sof(fp) = fr_sof(rx_fp);
1130 if (f_ctl & FC_FC_END_SEQ)
1131 fr_eof(fp) = FC_EOF_T;
1132 else
1133 fr_eof(fp) = FC_EOF_N;
1135 lport->tt.frame_send(lport, fp);
1140 * fc_exch_send_ba_rjt() - Send BLS Reject
1141 * @rx_fp: The frame being rejected
1142 * @reason: The reason the frame is being rejected
1143 * @explan: The explaination for the rejection
1145 * This is for rejecting BA_ABTS only.
1147 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1148 enum fc_ba_rjt_reason reason,
1149 enum fc_ba_rjt_explan explan)
1151 struct fc_frame *fp;
1152 struct fc_frame_header *rx_fh;
1153 struct fc_frame_header *fh;
1154 struct fc_ba_rjt *rp;
1155 struct fc_lport *lport;
1156 unsigned int f_ctl;
1158 lport = fr_dev(rx_fp);
1159 fp = fc_frame_alloc(lport, sizeof(*rp));
1160 if (!fp)
1161 return;
1162 fh = fc_frame_header_get(fp);
1163 rx_fh = fc_frame_header_get(rx_fp);
1165 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1167 rp = fc_frame_payload_get(fp, sizeof(*rp));
1168 rp->br_reason = reason;
1169 rp->br_explan = explan;
1172 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1174 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1175 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1176 fh->fh_ox_id = rx_fh->fh_ox_id;
1177 fh->fh_rx_id = rx_fh->fh_rx_id;
1178 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1179 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1180 fh->fh_type = FC_TYPE_BLS;
1183 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1184 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1185 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1186 * Last ACK uses bits 7-6 (continue sequence),
1187 * bits 5-4 are meaningful (what kind of ACK to use).
1188 * Always set LAST_SEQ, END_SEQ.
1190 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1191 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1192 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1193 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1194 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1195 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1196 f_ctl &= ~FC_FC_FIRST_SEQ;
1197 hton24(fh->fh_f_ctl, f_ctl);
1199 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1200 fr_eof(fp) = FC_EOF_T;
1201 if (fc_sof_needs_ack(fr_sof(fp)))
1202 fr_eof(fp) = FC_EOF_N;
1204 lport->tt.frame_send(lport, fp);
1208 * fc_exch_recv_abts() - Handle an incoming ABTS
1209 * @ep: The exchange the abort was on
1210 * @rx_fp: The ABTS frame
1212 * This would be for target mode usually, but could be due to lost
1213 * FCP transfer ready, confirm or RRQ. We always handle this as an
1214 * exchange abort, ignoring the parameter.
1216 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1218 struct fc_frame *fp;
1219 struct fc_ba_acc *ap;
1220 struct fc_frame_header *fh;
1221 struct fc_seq *sp;
1223 if (!ep)
1224 goto reject;
1225 spin_lock_bh(&ep->ex_lock);
1226 if (ep->esb_stat & ESB_ST_COMPLETE) {
1227 spin_unlock_bh(&ep->ex_lock);
1228 goto reject;
1230 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1231 fc_exch_hold(ep); /* hold for REC_QUAL */
1232 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1233 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1235 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1236 if (!fp) {
1237 spin_unlock_bh(&ep->ex_lock);
1238 goto free;
1240 fh = fc_frame_header_get(fp);
1241 ap = fc_frame_payload_get(fp, sizeof(*ap));
1242 memset(ap, 0, sizeof(*ap));
1243 sp = &ep->seq;
1244 ap->ba_high_seq_cnt = htons(0xffff);
1245 if (sp->ssb_stat & SSB_ST_RESP) {
1246 ap->ba_seq_id = sp->id;
1247 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1248 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1249 ap->ba_low_seq_cnt = htons(sp->cnt);
1251 sp = fc_seq_start_next_locked(sp);
1252 spin_unlock_bh(&ep->ex_lock);
1253 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1254 fc_frame_free(rx_fp);
1255 return;
1257 reject:
1258 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1259 free:
1260 fc_frame_free(rx_fp);
1264 * fc_seq_assign() - Assign exchange and sequence for incoming request
1265 * @lport: The local port that received the request
1266 * @fp: The request frame
1268 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1270 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1272 struct fc_exch_mgr_anchor *ema;
1274 WARN_ON(lport != fr_dev(fp));
1275 WARN_ON(fr_seq(fp));
1276 fr_seq(fp) = NULL;
1278 list_for_each_entry(ema, &lport->ema_list, ema_list)
1279 if ((!ema->match || ema->match(fp)) &&
1280 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1281 break;
1282 return fr_seq(fp);
1286 * fc_exch_recv_req() - Handler for an incoming request
1287 * @lport: The local port that received the request
1288 * @mp: The EM that the exchange is on
1289 * @fp: The request frame
1291 * This is used when the other end is originating the exchange
1292 * and the sequence.
1294 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1295 struct fc_frame *fp)
1297 struct fc_frame_header *fh = fc_frame_header_get(fp);
1298 struct fc_seq *sp = NULL;
1299 struct fc_exch *ep = NULL;
1300 enum fc_pf_rjt_reason reject;
1302 /* We can have the wrong fc_lport at this point with NPIV, which is a
1303 * problem now that we know a new exchange needs to be allocated
1305 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1306 if (!lport) {
1307 fc_frame_free(fp);
1308 return;
1310 fr_dev(fp) = lport;
1312 BUG_ON(fr_seq(fp)); /* XXX remove later */
1315 * If the RX_ID is 0xffff, don't allocate an exchange.
1316 * The upper-level protocol may request one later, if needed.
1318 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1319 return lport->tt.lport_recv(lport, fp);
1321 reject = fc_seq_lookup_recip(lport, mp, fp);
1322 if (reject == FC_RJT_NONE) {
1323 sp = fr_seq(fp); /* sequence will be held */
1324 ep = fc_seq_exch(sp);
1325 fc_seq_send_ack(sp, fp);
1326 ep->encaps = fr_encaps(fp);
1329 * Call the receive function.
1331 * The receive function may allocate a new sequence
1332 * over the old one, so we shouldn't change the
1333 * sequence after this.
1335 * The frame will be freed by the receive function.
1336 * If new exch resp handler is valid then call that
1337 * first.
1339 if (ep->resp)
1340 ep->resp(sp, fp, ep->arg);
1341 else
1342 lport->tt.lport_recv(lport, fp);
1343 fc_exch_release(ep); /* release from lookup */
1344 } else {
1345 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1346 reject);
1347 fc_frame_free(fp);
1352 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1353 * end is the originator of the sequence that is a
1354 * response to our initial exchange
1355 * @mp: The EM that the exchange is on
1356 * @fp: The response frame
1358 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1360 struct fc_frame_header *fh = fc_frame_header_get(fp);
1361 struct fc_seq *sp;
1362 struct fc_exch *ep;
1363 enum fc_sof sof;
1364 u32 f_ctl;
1365 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1366 void *ex_resp_arg;
1367 int rc;
1369 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1370 if (!ep) {
1371 atomic_inc(&mp->stats.xid_not_found);
1372 goto out;
1374 if (ep->esb_stat & ESB_ST_COMPLETE) {
1375 atomic_inc(&mp->stats.xid_not_found);
1376 goto rel;
1378 if (ep->rxid == FC_XID_UNKNOWN)
1379 ep->rxid = ntohs(fh->fh_rx_id);
1380 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1381 atomic_inc(&mp->stats.xid_not_found);
1382 goto rel;
1384 if (ep->did != ntoh24(fh->fh_s_id) &&
1385 ep->did != FC_FID_FLOGI) {
1386 atomic_inc(&mp->stats.xid_not_found);
1387 goto rel;
1389 sof = fr_sof(fp);
1390 sp = &ep->seq;
1391 if (fc_sof_is_init(sof)) {
1392 sp->ssb_stat |= SSB_ST_RESP;
1393 sp->id = fh->fh_seq_id;
1394 } else if (sp->id != fh->fh_seq_id) {
1395 atomic_inc(&mp->stats.seq_not_found);
1396 goto rel;
1399 f_ctl = ntoh24(fh->fh_f_ctl);
1400 fr_seq(fp) = sp;
1401 if (f_ctl & FC_FC_SEQ_INIT)
1402 ep->esb_stat |= ESB_ST_SEQ_INIT;
1404 if (fc_sof_needs_ack(sof))
1405 fc_seq_send_ack(sp, fp);
1406 resp = ep->resp;
1407 ex_resp_arg = ep->arg;
1409 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1410 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1411 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1412 spin_lock_bh(&ep->ex_lock);
1413 rc = fc_exch_done_locked(ep);
1414 WARN_ON(fc_seq_exch(sp) != ep);
1415 spin_unlock_bh(&ep->ex_lock);
1416 if (!rc)
1417 fc_exch_delete(ep);
1421 * Call the receive function.
1422 * The sequence is held (has a refcnt) for us,
1423 * but not for the receive function.
1425 * The receive function may allocate a new sequence
1426 * over the old one, so we shouldn't change the
1427 * sequence after this.
1429 * The frame will be freed by the receive function.
1430 * If new exch resp handler is valid then call that
1431 * first.
1433 if (resp)
1434 resp(sp, fp, ex_resp_arg);
1435 else
1436 fc_frame_free(fp);
1437 fc_exch_release(ep);
1438 return;
1439 rel:
1440 fc_exch_release(ep);
1441 out:
1442 fc_frame_free(fp);
1446 * fc_exch_recv_resp() - Handler for a sequence where other end is
1447 * responding to our sequence
1448 * @mp: The EM that the exchange is on
1449 * @fp: The response frame
1451 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1453 struct fc_seq *sp;
1455 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1457 if (!sp)
1458 atomic_inc(&mp->stats.xid_not_found);
1459 else
1460 atomic_inc(&mp->stats.non_bls_resp);
1462 fc_frame_free(fp);
1466 * fc_exch_abts_resp() - Handler for a response to an ABT
1467 * @ep: The exchange that the frame is on
1468 * @fp: The response frame
1470 * This response would be to an ABTS cancelling an exchange or sequence.
1471 * The response can be either BA_ACC or BA_RJT
1473 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1475 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1476 void *ex_resp_arg;
1477 struct fc_frame_header *fh;
1478 struct fc_ba_acc *ap;
1479 struct fc_seq *sp;
1480 u16 low;
1481 u16 high;
1482 int rc = 1, has_rec = 0;
1484 fh = fc_frame_header_get(fp);
1485 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1486 fc_exch_rctl_name(fh->fh_r_ctl));
1488 if (cancel_delayed_work_sync(&ep->timeout_work))
1489 fc_exch_release(ep); /* release from pending timer hold */
1491 spin_lock_bh(&ep->ex_lock);
1492 switch (fh->fh_r_ctl) {
1493 case FC_RCTL_BA_ACC:
1494 ap = fc_frame_payload_get(fp, sizeof(*ap));
1495 if (!ap)
1496 break;
1499 * Decide whether to establish a Recovery Qualifier.
1500 * We do this if there is a non-empty SEQ_CNT range and
1501 * SEQ_ID is the same as the one we aborted.
1503 low = ntohs(ap->ba_low_seq_cnt);
1504 high = ntohs(ap->ba_high_seq_cnt);
1505 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1506 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1507 ap->ba_seq_id == ep->seq_id) && low != high) {
1508 ep->esb_stat |= ESB_ST_REC_QUAL;
1509 fc_exch_hold(ep); /* hold for recovery qualifier */
1510 has_rec = 1;
1512 break;
1513 case FC_RCTL_BA_RJT:
1514 break;
1515 default:
1516 break;
1519 resp = ep->resp;
1520 ex_resp_arg = ep->arg;
1522 /* do we need to do some other checks here. Can we reuse more of
1523 * fc_exch_recv_seq_resp
1525 sp = &ep->seq;
1527 * do we want to check END_SEQ as well as LAST_SEQ here?
1529 if (ep->fh_type != FC_TYPE_FCP &&
1530 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1531 rc = fc_exch_done_locked(ep);
1532 spin_unlock_bh(&ep->ex_lock);
1533 if (!rc)
1534 fc_exch_delete(ep);
1536 if (resp)
1537 resp(sp, fp, ex_resp_arg);
1538 else
1539 fc_frame_free(fp);
1541 if (has_rec)
1542 fc_exch_timer_set(ep, ep->r_a_tov);
1547 * fc_exch_recv_bls() - Handler for a BLS sequence
1548 * @mp: The EM that the exchange is on
1549 * @fp: The request frame
1551 * The BLS frame is always a sequence initiated by the remote side.
1552 * We may be either the originator or recipient of the exchange.
1554 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1556 struct fc_frame_header *fh;
1557 struct fc_exch *ep;
1558 u32 f_ctl;
1560 fh = fc_frame_header_get(fp);
1561 f_ctl = ntoh24(fh->fh_f_ctl);
1562 fr_seq(fp) = NULL;
1564 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1565 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1566 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1567 spin_lock_bh(&ep->ex_lock);
1568 ep->esb_stat |= ESB_ST_SEQ_INIT;
1569 spin_unlock_bh(&ep->ex_lock);
1571 if (f_ctl & FC_FC_SEQ_CTX) {
1573 * A response to a sequence we initiated.
1574 * This should only be ACKs for class 2 or F.
1576 switch (fh->fh_r_ctl) {
1577 case FC_RCTL_ACK_1:
1578 case FC_RCTL_ACK_0:
1579 break;
1580 default:
1581 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1582 fh->fh_r_ctl,
1583 fc_exch_rctl_name(fh->fh_r_ctl));
1584 break;
1586 fc_frame_free(fp);
1587 } else {
1588 switch (fh->fh_r_ctl) {
1589 case FC_RCTL_BA_RJT:
1590 case FC_RCTL_BA_ACC:
1591 if (ep)
1592 fc_exch_abts_resp(ep, fp);
1593 else
1594 fc_frame_free(fp);
1595 break;
1596 case FC_RCTL_BA_ABTS:
1597 fc_exch_recv_abts(ep, fp);
1598 break;
1599 default: /* ignore junk */
1600 fc_frame_free(fp);
1601 break;
1604 if (ep)
1605 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1609 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1610 * @rx_fp: The received frame, not freed here.
1612 * If this fails due to allocation or transmit congestion, assume the
1613 * originator will repeat the sequence.
1615 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1617 struct fc_lport *lport;
1618 struct fc_els_ls_acc *acc;
1619 struct fc_frame *fp;
1621 lport = fr_dev(rx_fp);
1622 fp = fc_frame_alloc(lport, sizeof(*acc));
1623 if (!fp)
1624 return;
1625 acc = fc_frame_payload_get(fp, sizeof(*acc));
1626 memset(acc, 0, sizeof(*acc));
1627 acc->la_cmd = ELS_LS_ACC;
1628 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1629 lport->tt.frame_send(lport, fp);
1633 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1634 * @rx_fp: The received frame, not freed here.
1635 * @reason: The reason the sequence is being rejected
1636 * @explan: The explanation for the rejection
1638 * If this fails due to allocation or transmit congestion, assume the
1639 * originator will repeat the sequence.
1641 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1642 enum fc_els_rjt_explan explan)
1644 struct fc_lport *lport;
1645 struct fc_els_ls_rjt *rjt;
1646 struct fc_frame *fp;
1648 lport = fr_dev(rx_fp);
1649 fp = fc_frame_alloc(lport, sizeof(*rjt));
1650 if (!fp)
1651 return;
1652 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1653 memset(rjt, 0, sizeof(*rjt));
1654 rjt->er_cmd = ELS_LS_RJT;
1655 rjt->er_reason = reason;
1656 rjt->er_explan = explan;
1657 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1658 lport->tt.frame_send(lport, fp);
1662 * fc_exch_reset() - Reset an exchange
1663 * @ep: The exchange to be reset
1665 static void fc_exch_reset(struct fc_exch *ep)
1667 struct fc_seq *sp;
1668 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1669 void *arg;
1670 int rc = 1;
1672 spin_lock_bh(&ep->ex_lock);
1673 ep->state |= FC_EX_RST_CLEANUP;
1674 if (cancel_delayed_work(&ep->timeout_work))
1675 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1676 resp = ep->resp;
1677 ep->resp = NULL;
1678 if (ep->esb_stat & ESB_ST_REC_QUAL)
1679 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1680 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1681 arg = ep->arg;
1682 sp = &ep->seq;
1683 rc = fc_exch_done_locked(ep);
1684 spin_unlock_bh(&ep->ex_lock);
1685 if (!rc)
1686 fc_exch_delete(ep);
1688 if (resp)
1689 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1693 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1694 * @lport: The local port that the exchange pool is on
1695 * @pool: The exchange pool to be reset
1696 * @sid: The source ID
1697 * @did: The destination ID
1699 * Resets a per cpu exches pool, releasing all of its sequences
1700 * and exchanges. If sid is non-zero then reset only exchanges
1701 * we sourced from the local port's FID. If did is non-zero then
1702 * only reset exchanges destined for the local port's FID.
1704 static void fc_exch_pool_reset(struct fc_lport *lport,
1705 struct fc_exch_pool *pool,
1706 u32 sid, u32 did)
1708 struct fc_exch *ep;
1709 struct fc_exch *next;
1711 spin_lock_bh(&pool->lock);
1712 restart:
1713 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1714 if ((lport == ep->lp) &&
1715 (sid == 0 || sid == ep->sid) &&
1716 (did == 0 || did == ep->did)) {
1717 fc_exch_hold(ep);
1718 spin_unlock_bh(&pool->lock);
1720 fc_exch_reset(ep);
1722 fc_exch_release(ep);
1723 spin_lock_bh(&pool->lock);
1726 * must restart loop incase while lock
1727 * was down multiple eps were released.
1729 goto restart;
1732 spin_unlock_bh(&pool->lock);
1736 * fc_exch_mgr_reset() - Reset all EMs of a local port
1737 * @lport: The local port whose EMs are to be reset
1738 * @sid: The source ID
1739 * @did: The destination ID
1741 * Reset all EMs associated with a given local port. Release all
1742 * sequences and exchanges. If sid is non-zero then reset only the
1743 * exchanges sent from the local port's FID. If did is non-zero then
1744 * reset only exchanges destined for the local port's FID.
1746 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1748 struct fc_exch_mgr_anchor *ema;
1749 unsigned int cpu;
1751 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1752 for_each_possible_cpu(cpu)
1753 fc_exch_pool_reset(lport,
1754 per_cpu_ptr(ema->mp->pool, cpu),
1755 sid, did);
1758 EXPORT_SYMBOL(fc_exch_mgr_reset);
1761 * fc_exch_lookup() - find an exchange
1762 * @lport: The local port
1763 * @xid: The exchange ID
1765 * Returns exchange pointer with hold for caller, or NULL if not found.
1767 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1769 struct fc_exch_mgr_anchor *ema;
1771 list_for_each_entry(ema, &lport->ema_list, ema_list)
1772 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1773 return fc_exch_find(ema->mp, xid);
1774 return NULL;
1778 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1779 * @rfp: The REC frame, not freed here.
1781 * Note that the requesting port may be different than the S_ID in the request.
1783 static void fc_exch_els_rec(struct fc_frame *rfp)
1785 struct fc_lport *lport;
1786 struct fc_frame *fp;
1787 struct fc_exch *ep;
1788 struct fc_els_rec *rp;
1789 struct fc_els_rec_acc *acc;
1790 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1791 enum fc_els_rjt_explan explan;
1792 u32 sid;
1793 u16 rxid;
1794 u16 oxid;
1796 lport = fr_dev(rfp);
1797 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1798 explan = ELS_EXPL_INV_LEN;
1799 if (!rp)
1800 goto reject;
1801 sid = ntoh24(rp->rec_s_id);
1802 rxid = ntohs(rp->rec_rx_id);
1803 oxid = ntohs(rp->rec_ox_id);
1805 ep = fc_exch_lookup(lport,
1806 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1807 explan = ELS_EXPL_OXID_RXID;
1808 if (!ep)
1809 goto reject;
1810 if (ep->oid != sid || oxid != ep->oxid)
1811 goto rel;
1812 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1813 goto rel;
1814 fp = fc_frame_alloc(lport, sizeof(*acc));
1815 if (!fp)
1816 goto out;
1818 acc = fc_frame_payload_get(fp, sizeof(*acc));
1819 memset(acc, 0, sizeof(*acc));
1820 acc->reca_cmd = ELS_LS_ACC;
1821 acc->reca_ox_id = rp->rec_ox_id;
1822 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1823 acc->reca_rx_id = htons(ep->rxid);
1824 if (ep->sid == ep->oid)
1825 hton24(acc->reca_rfid, ep->did);
1826 else
1827 hton24(acc->reca_rfid, ep->sid);
1828 acc->reca_fc4value = htonl(ep->seq.rec_data);
1829 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1830 ESB_ST_SEQ_INIT |
1831 ESB_ST_COMPLETE));
1832 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1833 lport->tt.frame_send(lport, fp);
1834 out:
1835 fc_exch_release(ep);
1836 return;
1838 rel:
1839 fc_exch_release(ep);
1840 reject:
1841 fc_seq_ls_rjt(rfp, reason, explan);
1845 * fc_exch_rrq_resp() - Handler for RRQ responses
1846 * @sp: The sequence that the RRQ is on
1847 * @fp: The RRQ frame
1848 * @arg: The exchange that the RRQ is on
1850 * TODO: fix error handler.
1852 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1854 struct fc_exch *aborted_ep = arg;
1855 unsigned int op;
1857 if (IS_ERR(fp)) {
1858 int err = PTR_ERR(fp);
1860 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1861 goto cleanup;
1862 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1863 "frame error %d\n", err);
1864 return;
1867 op = fc_frame_payload_op(fp);
1868 fc_frame_free(fp);
1870 switch (op) {
1871 case ELS_LS_RJT:
1872 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1873 /* fall through */
1874 case ELS_LS_ACC:
1875 goto cleanup;
1876 default:
1877 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1878 "for RRQ", op);
1879 return;
1882 cleanup:
1883 fc_exch_done(&aborted_ep->seq);
1884 /* drop hold for rec qual */
1885 fc_exch_release(aborted_ep);
1890 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1891 * @lport: The local port to send the frame on
1892 * @fp: The frame to be sent
1893 * @resp: The response handler for this request
1894 * @destructor: The destructor for the exchange
1895 * @arg: The argument to be passed to the response handler
1896 * @timer_msec: The timeout period for the exchange
1898 * The frame pointer with some of the header's fields must be
1899 * filled before calling this routine, those fields are:
1901 * - routing control
1902 * - FC port did
1903 * - FC port sid
1904 * - FC header type
1905 * - frame control
1906 * - parameter or relative offset
1908 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1909 struct fc_frame *fp,
1910 void (*resp)(struct fc_seq *,
1911 struct fc_frame *fp,
1912 void *arg),
1913 void (*destructor)(struct fc_seq *,
1914 void *),
1915 void *arg, u32 timer_msec)
1917 struct fc_exch *ep;
1918 struct fc_seq *sp = NULL;
1919 struct fc_frame_header *fh;
1920 int rc = 1;
1922 ep = fc_exch_alloc(lport, fp);
1923 if (!ep) {
1924 fc_frame_free(fp);
1925 return NULL;
1927 ep->esb_stat |= ESB_ST_SEQ_INIT;
1928 fh = fc_frame_header_get(fp);
1929 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1930 ep->resp = resp;
1931 ep->destructor = destructor;
1932 ep->arg = arg;
1933 ep->r_a_tov = FC_DEF_R_A_TOV;
1934 ep->lp = lport;
1935 sp = &ep->seq;
1937 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
1938 ep->f_ctl = ntoh24(fh->fh_f_ctl);
1939 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
1940 sp->cnt++;
1942 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD)
1943 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
1945 if (unlikely(lport->tt.frame_send(lport, fp)))
1946 goto err;
1948 if (timer_msec)
1949 fc_exch_timer_set_locked(ep, timer_msec);
1950 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
1952 if (ep->f_ctl & FC_FC_SEQ_INIT)
1953 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1954 spin_unlock_bh(&ep->ex_lock);
1955 return sp;
1956 err:
1957 rc = fc_exch_done_locked(ep);
1958 spin_unlock_bh(&ep->ex_lock);
1959 if (!rc)
1960 fc_exch_delete(ep);
1961 return NULL;
1965 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
1966 * @ep: The exchange to send the RRQ on
1968 * This tells the remote port to stop blocking the use of
1969 * the exchange and the seq_cnt range.
1971 static void fc_exch_rrq(struct fc_exch *ep)
1973 struct fc_lport *lport;
1974 struct fc_els_rrq *rrq;
1975 struct fc_frame *fp;
1976 u32 did;
1978 lport = ep->lp;
1980 fp = fc_frame_alloc(lport, sizeof(*rrq));
1981 if (!fp)
1982 goto retry;
1984 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
1985 memset(rrq, 0, sizeof(*rrq));
1986 rrq->rrq_cmd = ELS_RRQ;
1987 hton24(rrq->rrq_s_id, ep->sid);
1988 rrq->rrq_ox_id = htons(ep->oxid);
1989 rrq->rrq_rx_id = htons(ep->rxid);
1991 did = ep->did;
1992 if (ep->esb_stat & ESB_ST_RESP)
1993 did = ep->sid;
1995 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
1996 lport->port_id, FC_TYPE_ELS,
1997 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
1999 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2000 lport->e_d_tov))
2001 return;
2003 retry:
2004 spin_lock_bh(&ep->ex_lock);
2005 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2006 spin_unlock_bh(&ep->ex_lock);
2007 /* drop hold for rec qual */
2008 fc_exch_release(ep);
2009 return;
2011 ep->esb_stat |= ESB_ST_REC_QUAL;
2012 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2013 spin_unlock_bh(&ep->ex_lock);
2017 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2018 * @fp: The RRQ frame, not freed here.
2020 static void fc_exch_els_rrq(struct fc_frame *fp)
2022 struct fc_lport *lport;
2023 struct fc_exch *ep = NULL; /* request or subject exchange */
2024 struct fc_els_rrq *rp;
2025 u32 sid;
2026 u16 xid;
2027 enum fc_els_rjt_explan explan;
2029 lport = fr_dev(fp);
2030 rp = fc_frame_payload_get(fp, sizeof(*rp));
2031 explan = ELS_EXPL_INV_LEN;
2032 if (!rp)
2033 goto reject;
2036 * lookup subject exchange.
2038 sid = ntoh24(rp->rrq_s_id); /* subject source */
2039 xid = fc_host_port_id(lport->host) == sid ?
2040 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2041 ep = fc_exch_lookup(lport, xid);
2042 explan = ELS_EXPL_OXID_RXID;
2043 if (!ep)
2044 goto reject;
2045 spin_lock_bh(&ep->ex_lock);
2046 if (ep->oxid != ntohs(rp->rrq_ox_id))
2047 goto unlock_reject;
2048 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2049 ep->rxid != FC_XID_UNKNOWN)
2050 goto unlock_reject;
2051 explan = ELS_EXPL_SID;
2052 if (ep->sid != sid)
2053 goto unlock_reject;
2056 * Clear Recovery Qualifier state, and cancel timer if complete.
2058 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2059 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2060 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2062 if (ep->esb_stat & ESB_ST_COMPLETE) {
2063 if (cancel_delayed_work(&ep->timeout_work))
2064 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2067 spin_unlock_bh(&ep->ex_lock);
2070 * Send LS_ACC.
2072 fc_seq_ls_acc(fp);
2073 goto out;
2075 unlock_reject:
2076 spin_unlock_bh(&ep->ex_lock);
2077 reject:
2078 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2079 out:
2080 if (ep)
2081 fc_exch_release(ep); /* drop hold from fc_exch_find */
2085 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2086 * @lport: The local port to add the exchange manager to
2087 * @mp: The exchange manager to be added to the local port
2088 * @match: The match routine that indicates when this EM should be used
2090 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2091 struct fc_exch_mgr *mp,
2092 bool (*match)(struct fc_frame *))
2094 struct fc_exch_mgr_anchor *ema;
2096 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2097 if (!ema)
2098 return ema;
2100 ema->mp = mp;
2101 ema->match = match;
2102 /* add EM anchor to EM anchors list */
2103 list_add_tail(&ema->ema_list, &lport->ema_list);
2104 kref_get(&mp->kref);
2105 return ema;
2107 EXPORT_SYMBOL(fc_exch_mgr_add);
2110 * fc_exch_mgr_destroy() - Destroy an exchange manager
2111 * @kref: The reference to the EM to be destroyed
2113 static void fc_exch_mgr_destroy(struct kref *kref)
2115 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2117 mempool_destroy(mp->ep_pool);
2118 free_percpu(mp->pool);
2119 kfree(mp);
2123 * fc_exch_mgr_del() - Delete an EM from a local port's list
2124 * @ema: The exchange manager anchor identifying the EM to be deleted
2126 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2128 /* remove EM anchor from EM anchors list */
2129 list_del(&ema->ema_list);
2130 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2131 kfree(ema);
2133 EXPORT_SYMBOL(fc_exch_mgr_del);
2136 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2137 * @src: Source lport to clone exchange managers from
2138 * @dst: New lport that takes references to all the exchange managers
2140 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2142 struct fc_exch_mgr_anchor *ema, *tmp;
2144 list_for_each_entry(ema, &src->ema_list, ema_list) {
2145 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2146 goto err;
2148 return 0;
2149 err:
2150 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2151 fc_exch_mgr_del(ema);
2152 return -ENOMEM;
2156 * fc_exch_mgr_alloc() - Allocate an exchange manager
2157 * @lport: The local port that the new EM will be associated with
2158 * @class: The default FC class for new exchanges
2159 * @min_xid: The minimum XID for exchanges from the new EM
2160 * @max_xid: The maximum XID for exchanges from the new EM
2161 * @match: The match routine for the new EM
2163 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2164 enum fc_class class,
2165 u16 min_xid, u16 max_xid,
2166 bool (*match)(struct fc_frame *))
2168 struct fc_exch_mgr *mp;
2169 u16 pool_exch_range;
2170 size_t pool_size;
2171 unsigned int cpu;
2172 struct fc_exch_pool *pool;
2174 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2175 (min_xid & fc_cpu_mask) != 0) {
2176 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2177 min_xid, max_xid);
2178 return NULL;
2182 * allocate memory for EM
2184 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2185 if (!mp)
2186 return NULL;
2188 mp->class = class;
2189 /* adjust em exch xid range for offload */
2190 mp->min_xid = min_xid;
2191 mp->max_xid = max_xid;
2193 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2194 if (!mp->ep_pool)
2195 goto free_mp;
2198 * Setup per cpu exch pool with entire exchange id range equally
2199 * divided across all cpus. The exch pointers array memory is
2200 * allocated for exch range per pool.
2202 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2203 mp->pool_max_index = pool_exch_range - 1;
2206 * Allocate and initialize per cpu exch pool
2208 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2209 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2210 if (!mp->pool)
2211 goto free_mempool;
2212 for_each_possible_cpu(cpu) {
2213 pool = per_cpu_ptr(mp->pool, cpu);
2214 pool->left = FC_XID_UNKNOWN;
2215 pool->right = FC_XID_UNKNOWN;
2216 spin_lock_init(&pool->lock);
2217 INIT_LIST_HEAD(&pool->ex_list);
2220 kref_init(&mp->kref);
2221 if (!fc_exch_mgr_add(lport, mp, match)) {
2222 free_percpu(mp->pool);
2223 goto free_mempool;
2227 * Above kref_init() sets mp->kref to 1 and then
2228 * call to fc_exch_mgr_add incremented mp->kref again,
2229 * so adjust that extra increment.
2231 kref_put(&mp->kref, fc_exch_mgr_destroy);
2232 return mp;
2234 free_mempool:
2235 mempool_destroy(mp->ep_pool);
2236 free_mp:
2237 kfree(mp);
2238 return NULL;
2240 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2243 * fc_exch_mgr_free() - Free all exchange managers on a local port
2244 * @lport: The local port whose EMs are to be freed
2246 void fc_exch_mgr_free(struct fc_lport *lport)
2248 struct fc_exch_mgr_anchor *ema, *next;
2250 flush_workqueue(fc_exch_workqueue);
2251 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2252 fc_exch_mgr_del(ema);
2254 EXPORT_SYMBOL(fc_exch_mgr_free);
2257 * fc_exch_recv() - Handler for received frames
2258 * @lport: The local port the frame was received on
2259 * @fp: The received frame
2261 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2263 struct fc_frame_header *fh = fc_frame_header_get(fp);
2264 struct fc_exch_mgr_anchor *ema;
2265 u32 f_ctl, found = 0;
2266 u16 oxid;
2268 /* lport lock ? */
2269 if (!lport || lport->state == LPORT_ST_DISABLED) {
2270 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2271 "has not been initialized correctly\n");
2272 fc_frame_free(fp);
2273 return;
2276 f_ctl = ntoh24(fh->fh_f_ctl);
2277 oxid = ntohs(fh->fh_ox_id);
2278 if (f_ctl & FC_FC_EX_CTX) {
2279 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2280 if ((oxid >= ema->mp->min_xid) &&
2281 (oxid <= ema->mp->max_xid)) {
2282 found = 1;
2283 break;
2287 if (!found) {
2288 FC_LPORT_DBG(lport, "Received response for out "
2289 "of range oxid:%hx\n", oxid);
2290 fc_frame_free(fp);
2291 return;
2293 } else
2294 ema = list_entry(lport->ema_list.prev, typeof(*ema), ema_list);
2297 * If frame is marked invalid, just drop it.
2299 switch (fr_eof(fp)) {
2300 case FC_EOF_T:
2301 if (f_ctl & FC_FC_END_SEQ)
2302 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2303 /* fall through */
2304 case FC_EOF_N:
2305 if (fh->fh_type == FC_TYPE_BLS)
2306 fc_exch_recv_bls(ema->mp, fp);
2307 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2308 FC_FC_EX_CTX)
2309 fc_exch_recv_seq_resp(ema->mp, fp);
2310 else if (f_ctl & FC_FC_SEQ_CTX)
2311 fc_exch_recv_resp(ema->mp, fp);
2312 else /* no EX_CTX and no SEQ_CTX */
2313 fc_exch_recv_req(lport, ema->mp, fp);
2314 break;
2315 default:
2316 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2317 fr_eof(fp));
2318 fc_frame_free(fp);
2321 EXPORT_SYMBOL(fc_exch_recv);
2324 * fc_exch_init() - Initialize the exchange layer for a local port
2325 * @lport: The local port to initialize the exchange layer for
2327 int fc_exch_init(struct fc_lport *lport)
2329 if (!lport->tt.seq_start_next)
2330 lport->tt.seq_start_next = fc_seq_start_next;
2332 if (!lport->tt.exch_seq_send)
2333 lport->tt.exch_seq_send = fc_exch_seq_send;
2335 if (!lport->tt.seq_send)
2336 lport->tt.seq_send = fc_seq_send;
2338 if (!lport->tt.seq_els_rsp_send)
2339 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2341 if (!lport->tt.exch_done)
2342 lport->tt.exch_done = fc_exch_done;
2344 if (!lport->tt.exch_mgr_reset)
2345 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2347 if (!lport->tt.seq_exch_abort)
2348 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2350 if (!lport->tt.seq_assign)
2351 lport->tt.seq_assign = fc_seq_assign;
2353 return 0;
2355 EXPORT_SYMBOL(fc_exch_init);
2358 * fc_setup_exch_mgr() - Setup an exchange manager
2360 int fc_setup_exch_mgr()
2362 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2363 0, SLAB_HWCACHE_ALIGN, NULL);
2364 if (!fc_em_cachep)
2365 return -ENOMEM;
2368 * Initialize fc_cpu_mask and fc_cpu_order. The
2369 * fc_cpu_mask is set for nr_cpu_ids rounded up
2370 * to order of 2's * power and order is stored
2371 * in fc_cpu_order as this is later required in
2372 * mapping between an exch id and exch array index
2373 * in per cpu exch pool.
2375 * This round up is required to align fc_cpu_mask
2376 * to exchange id's lower bits such that all incoming
2377 * frames of an exchange gets delivered to the same
2378 * cpu on which exchange originated by simple bitwise
2379 * AND operation between fc_cpu_mask and exchange id.
2381 fc_cpu_mask = 1;
2382 fc_cpu_order = 0;
2383 while (fc_cpu_mask < nr_cpu_ids) {
2384 fc_cpu_mask <<= 1;
2385 fc_cpu_order++;
2387 fc_cpu_mask--;
2389 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2390 if (!fc_exch_workqueue)
2391 return -ENOMEM;
2392 return 0;
2396 * fc_destroy_exch_mgr() - Destroy an exchange manager
2398 void fc_destroy_exch_mgr()
2400 destroy_workqueue(fc_exch_workqueue);
2401 kmem_cache_destroy(fc_em_cachep);