2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
22 extern struct workqueue_struct
*gfs2_control_wq
;
24 static void gdlm_ast(void *arg
)
26 struct gfs2_glock
*gl
= arg
;
27 unsigned ret
= gl
->gl_state
;
29 BUG_ON(gl
->gl_lksb
.sb_flags
& DLM_SBF_DEMOTED
);
31 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_VALNOTVALID
)
32 memset(gl
->gl_lvb
, 0, GDLM_LVB_SIZE
);
34 switch (gl
->gl_lksb
.sb_status
) {
35 case -DLM_EUNLOCK
: /* Unlocked, so glock can be freed */
38 case -DLM_ECANCEL
: /* Cancel while getting lock */
39 ret
|= LM_OUT_CANCELED
;
41 case -EAGAIN
: /* Try lock fails */
42 case -EDEADLK
: /* Deadlock detected */
44 case -ETIMEDOUT
: /* Canceled due to timeout */
49 default: /* Something unexpected */
54 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_ALTMODE
) {
55 if (gl
->gl_req
== LM_ST_SHARED
)
57 else if (gl
->gl_req
== LM_ST_DEFERRED
)
63 set_bit(GLF_INITIAL
, &gl
->gl_flags
);
64 gfs2_glock_complete(gl
, ret
);
67 if (!test_bit(GLF_INITIAL
, &gl
->gl_flags
))
68 gl
->gl_lksb
.sb_lkid
= 0;
69 gfs2_glock_complete(gl
, ret
);
72 static void gdlm_bast(void *arg
, int mode
)
74 struct gfs2_glock
*gl
= arg
;
78 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
81 gfs2_glock_cb(gl
, LM_ST_DEFERRED
);
84 gfs2_glock_cb(gl
, LM_ST_SHARED
);
87 printk(KERN_ERR
"unknown bast mode %d", mode
);
92 /* convert gfs lock-state to dlm lock-mode */
94 static int make_mode(const unsigned int lmstate
)
106 printk(KERN_ERR
"unknown LM state %d", lmstate
);
111 static u32
make_flags(const u32 lkid
, const unsigned int gfs_flags
,
116 if (gfs_flags
& LM_FLAG_TRY
)
117 lkf
|= DLM_LKF_NOQUEUE
;
119 if (gfs_flags
& LM_FLAG_TRY_1CB
) {
120 lkf
|= DLM_LKF_NOQUEUE
;
121 lkf
|= DLM_LKF_NOQUEUEBAST
;
124 if (gfs_flags
& LM_FLAG_PRIORITY
) {
125 lkf
|= DLM_LKF_NOORDER
;
126 lkf
|= DLM_LKF_HEADQUE
;
129 if (gfs_flags
& LM_FLAG_ANY
) {
130 if (req
== DLM_LOCK_PR
)
131 lkf
|= DLM_LKF_ALTCW
;
132 else if (req
== DLM_LOCK_CW
)
133 lkf
|= DLM_LKF_ALTPR
;
139 lkf
|= DLM_LKF_CONVERT
;
141 lkf
|= DLM_LKF_VALBLK
;
146 static int gdlm_lock(struct gfs2_glock
*gl
, unsigned int req_state
,
149 struct lm_lockstruct
*ls
= &gl
->gl_sbd
->sd_lockstruct
;
153 req
= make_mode(req_state
);
154 lkf
= make_flags(gl
->gl_lksb
.sb_lkid
, flags
, req
);
157 * Submit the actual lock request.
160 return dlm_lock(ls
->ls_dlm
, req
, &gl
->gl_lksb
, lkf
, gl
->gl_strname
,
161 GDLM_STRNAME_BYTES
- 1, 0, gdlm_ast
, gl
, gdlm_bast
);
164 static void gdlm_put_lock(struct gfs2_glock
*gl
)
166 struct gfs2_sbd
*sdp
= gl
->gl_sbd
;
167 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
170 if (gl
->gl_lksb
.sb_lkid
== 0) {
175 error
= dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_VALBLK
,
178 printk(KERN_ERR
"gdlm_unlock %x,%llx err=%d\n",
180 (unsigned long long)gl
->gl_name
.ln_number
, error
);
185 static void gdlm_cancel(struct gfs2_glock
*gl
)
187 struct lm_lockstruct
*ls
= &gl
->gl_sbd
->sd_lockstruct
;
188 dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_CANCEL
, NULL
, gl
);
192 * dlm/gfs2 recovery coordination using dlm_recover callbacks
194 * 1. dlm_controld sees lockspace members change
195 * 2. dlm_controld blocks dlm-kernel locking activity
196 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
197 * 4. dlm_controld starts and finishes its own user level recovery
198 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
199 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
200 * 7. dlm_recoverd does its own lock recovery
201 * 8. dlm_recoverd unblocks dlm-kernel locking activity
202 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
203 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
204 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
205 * 12. gfs2_recover dequeues and recovers journals of failed nodes
206 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
207 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
208 * 15. gfs2_control unblocks normal locking when all journals are recovered
210 * - failures during recovery
212 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
213 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
214 * recovering for a prior failure. gfs2_control needs a way to detect
215 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
216 * the recover_block and recover_start values.
218 * recover_done() provides a new lockspace generation number each time it
219 * is called (step 9). This generation number is saved as recover_start.
220 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
221 * recover_block = recover_start. So, while recover_block is equal to
222 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
223 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
225 * - more specific gfs2 steps in sequence above
227 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
228 * 6. recover_slot records any failed jids (maybe none)
229 * 9. recover_done sets recover_start = new generation number
230 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
231 * 12. gfs2_recover does journal recoveries for failed jids identified above
232 * 14. gfs2_control clears control_lock lvb bits for recovered jids
233 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
234 * again) then do nothing, otherwise if recover_start > recover_block
235 * then clear BLOCK_LOCKS.
237 * - parallel recovery steps across all nodes
239 * All nodes attempt to update the control_lock lvb with the new generation
240 * number and jid bits, but only the first to get the control_lock EX will
241 * do so; others will see that it's already done (lvb already contains new
242 * generation number.)
244 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
245 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
246 * . One node gets control_lock first and writes the lvb, others see it's done
247 * . All nodes attempt to recover jids for which they see control_lock bits set
248 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
249 * . All nodes will eventually see all lvb bits clear and unblock locks
251 * - is there a problem with clearing an lvb bit that should be set
252 * and missing a journal recovery?
255 * 2. lvb bit set for step 1
256 * 3. jid recovered for step 1
257 * 4. jid taken again (new mount)
258 * 5. jid fails (for step 4)
259 * 6. lvb bit set for step 5 (will already be set)
260 * 7. lvb bit cleared for step 3
262 * This is not a problem because the failure in step 5 does not
263 * require recovery, because the mount in step 4 could not have
264 * progressed far enough to unblock locks and access the fs. The
265 * control_mount() function waits for all recoveries to be complete
266 * for the latest lockspace generation before ever unblocking locks
267 * and returning. The mount in step 4 waits until the recovery in
270 * - special case of first mounter: first node to mount the fs
272 * The first node to mount a gfs2 fs needs to check all the journals
273 * and recover any that need recovery before other nodes are allowed
274 * to mount the fs. (Others may begin mounting, but they must wait
275 * for the first mounter to be done before taking locks on the fs
276 * or accessing the fs.) This has two parts:
278 * 1. The mounted_lock tells a node it's the first to mount the fs.
279 * Each node holds the mounted_lock in PR while it's mounted.
280 * Each node tries to acquire the mounted_lock in EX when it mounts.
281 * If a node is granted the mounted_lock EX it means there are no
282 * other mounted nodes (no PR locks exist), and it is the first mounter.
283 * The mounted_lock is demoted to PR when first recovery is done, so
284 * others will fail to get an EX lock, but will get a PR lock.
286 * 2. The control_lock blocks others in control_mount() while the first
287 * mounter is doing first mount recovery of all journals.
288 * A mounting node needs to acquire control_lock in EX mode before
289 * it can proceed. The first mounter holds control_lock in EX while doing
290 * the first mount recovery, blocking mounts from other nodes, then demotes
291 * control_lock to NL when it's done (others_may_mount/first_done),
292 * allowing other nodes to continue mounting.
295 * control_lock EX/NOQUEUE success
296 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
298 * do first mounter recovery
299 * mounted_lock EX->PR
300 * control_lock EX->NL, write lvb generation
303 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
304 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
305 * mounted_lock PR/NOQUEUE success
306 * read lvb generation
307 * control_lock EX->NL
310 * - mount during recovery
312 * If a node mounts while others are doing recovery (not first mounter),
313 * the mounting node will get its initial recover_done() callback without
314 * having seen any previous failures/callbacks.
316 * It must wait for all recoveries preceding its mount to be finished
317 * before it unblocks locks. It does this by repeating the "other mounter"
318 * steps above until the lvb generation number is >= its mount generation
319 * number (from initial recover_done) and all lvb bits are clear.
321 * - control_lock lvb format
323 * 4 bytes generation number: the latest dlm lockspace generation number
324 * from recover_done callback. Indicates the jid bitmap has been updated
325 * to reflect all slot failures through that generation.
327 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
328 * that jid N needs recovery.
331 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
333 static void control_lvb_read(struct lm_lockstruct
*ls
, uint32_t *lvb_gen
,
337 memcpy(lvb_bits
, ls
->ls_control_lvb
, GDLM_LVB_SIZE
);
338 memcpy(&gen
, lvb_bits
, sizeof(uint32_t));
339 *lvb_gen
= le32_to_cpu(gen
);
342 static void control_lvb_write(struct lm_lockstruct
*ls
, uint32_t lvb_gen
,
346 memcpy(ls
->ls_control_lvb
, lvb_bits
, GDLM_LVB_SIZE
);
347 gen
= cpu_to_le32(lvb_gen
);
348 memcpy(ls
->ls_control_lvb
, &gen
, sizeof(uint32_t));
351 static int all_jid_bits_clear(char *lvb
)
354 for (i
= JID_BITMAP_OFFSET
; i
< GDLM_LVB_SIZE
; i
++) {
361 static void sync_wait_cb(void *arg
)
363 struct lm_lockstruct
*ls
= arg
;
364 complete(&ls
->ls_sync_wait
);
367 static int sync_unlock(struct gfs2_sbd
*sdp
, struct dlm_lksb
*lksb
, char *name
)
369 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
372 error
= dlm_unlock(ls
->ls_dlm
, lksb
->sb_lkid
, 0, lksb
, ls
);
374 fs_err(sdp
, "%s lkid %x error %d\n",
375 name
, lksb
->sb_lkid
, error
);
379 wait_for_completion(&ls
->ls_sync_wait
);
381 if (lksb
->sb_status
!= -DLM_EUNLOCK
) {
382 fs_err(sdp
, "%s lkid %x status %d\n",
383 name
, lksb
->sb_lkid
, lksb
->sb_status
);
389 static int sync_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
,
390 unsigned int num
, struct dlm_lksb
*lksb
, char *name
)
392 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
393 char strname
[GDLM_STRNAME_BYTES
];
396 memset(strname
, 0, GDLM_STRNAME_BYTES
);
397 snprintf(strname
, GDLM_STRNAME_BYTES
, "%8x%16x", LM_TYPE_NONDISK
, num
);
399 error
= dlm_lock(ls
->ls_dlm
, mode
, lksb
, flags
,
400 strname
, GDLM_STRNAME_BYTES
- 1,
401 0, sync_wait_cb
, ls
, NULL
);
403 fs_err(sdp
, "%s lkid %x flags %x mode %d error %d\n",
404 name
, lksb
->sb_lkid
, flags
, mode
, error
);
408 wait_for_completion(&ls
->ls_sync_wait
);
410 status
= lksb
->sb_status
;
412 if (status
&& status
!= -EAGAIN
) {
413 fs_err(sdp
, "%s lkid %x flags %x mode %d status %d\n",
414 name
, lksb
->sb_lkid
, flags
, mode
, status
);
420 static int mounted_unlock(struct gfs2_sbd
*sdp
)
422 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
423 return sync_unlock(sdp
, &ls
->ls_mounted_lksb
, "mounted_lock");
426 static int mounted_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
428 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
429 return sync_lock(sdp
, mode
, flags
, GFS2_MOUNTED_LOCK
,
430 &ls
->ls_mounted_lksb
, "mounted_lock");
433 static int control_unlock(struct gfs2_sbd
*sdp
)
435 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
436 return sync_unlock(sdp
, &ls
->ls_control_lksb
, "control_lock");
439 static int control_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
441 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
442 return sync_lock(sdp
, mode
, flags
, GFS2_CONTROL_LOCK
,
443 &ls
->ls_control_lksb
, "control_lock");
446 static void gfs2_control_func(struct work_struct
*work
)
448 struct gfs2_sbd
*sdp
= container_of(work
, struct gfs2_sbd
, sd_control_work
.work
);
449 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
450 char lvb_bits
[GDLM_LVB_SIZE
];
451 uint32_t block_gen
, start_gen
, lvb_gen
, flags
;
457 spin_lock(&ls
->ls_recover_spin
);
459 * No MOUNT_DONE means we're still mounting; control_mount()
460 * will set this flag, after which this thread will take over
461 * all further clearing of BLOCK_LOCKS.
463 * FIRST_MOUNT means this node is doing first mounter recovery,
464 * for which recovery control is handled by
465 * control_mount()/control_first_done(), not this thread.
467 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
468 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
469 spin_unlock(&ls
->ls_recover_spin
);
472 block_gen
= ls
->ls_recover_block
;
473 start_gen
= ls
->ls_recover_start
;
474 spin_unlock(&ls
->ls_recover_spin
);
477 * Equal block_gen and start_gen implies we are between
478 * recover_prep and recover_done callbacks, which means
479 * dlm recovery is in progress and dlm locking is blocked.
480 * There's no point trying to do any work until recover_done.
483 if (block_gen
== start_gen
)
487 * Propagate recover_submit[] and recover_result[] to lvb:
488 * dlm_recoverd adds to recover_submit[] jids needing recovery
489 * gfs2_recover adds to recover_result[] journal recovery results
491 * set lvb bit for jids in recover_submit[] if the lvb has not
492 * yet been updated for the generation of the failure
494 * clear lvb bit for jids in recover_result[] if the result of
495 * the journal recovery is SUCCESS
498 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
500 fs_err(sdp
, "control lock EX error %d\n", error
);
504 control_lvb_read(ls
, &lvb_gen
, lvb_bits
);
506 spin_lock(&ls
->ls_recover_spin
);
507 if (block_gen
!= ls
->ls_recover_block
||
508 start_gen
!= ls
->ls_recover_start
) {
509 fs_info(sdp
, "recover generation %u block1 %u %u\n",
510 start_gen
, block_gen
, ls
->ls_recover_block
);
511 spin_unlock(&ls
->ls_recover_spin
);
512 control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
516 recover_size
= ls
->ls_recover_size
;
518 if (lvb_gen
<= start_gen
) {
520 * Clear lvb bits for jids we've successfully recovered.
521 * Because all nodes attempt to recover failed journals,
522 * a journal can be recovered multiple times successfully
523 * in succession. Only the first will really do recovery,
524 * the others find it clean, but still report a successful
525 * recovery. So, another node may have already recovered
526 * the jid and cleared the lvb bit for it.
528 for (i
= 0; i
< recover_size
; i
++) {
529 if (ls
->ls_recover_result
[i
] != LM_RD_SUCCESS
)
532 ls
->ls_recover_result
[i
] = 0;
534 if (!test_bit_le(i
, lvb_bits
+ JID_BITMAP_OFFSET
))
537 __clear_bit_le(i
, lvb_bits
+ JID_BITMAP_OFFSET
);
542 if (lvb_gen
== start_gen
) {
544 * Failed slots before start_gen are already set in lvb.
546 for (i
= 0; i
< recover_size
; i
++) {
547 if (!ls
->ls_recover_submit
[i
])
549 if (ls
->ls_recover_submit
[i
] < lvb_gen
)
550 ls
->ls_recover_submit
[i
] = 0;
552 } else if (lvb_gen
< start_gen
) {
554 * Failed slots before start_gen are not yet set in lvb.
556 for (i
= 0; i
< recover_size
; i
++) {
557 if (!ls
->ls_recover_submit
[i
])
559 if (ls
->ls_recover_submit
[i
] < start_gen
) {
560 ls
->ls_recover_submit
[i
] = 0;
561 __set_bit_le(i
, lvb_bits
+ JID_BITMAP_OFFSET
);
564 /* even if there are no bits to set, we need to write the
565 latest generation to the lvb */
569 * we should be getting a recover_done() for lvb_gen soon
572 spin_unlock(&ls
->ls_recover_spin
);
575 control_lvb_write(ls
, start_gen
, lvb_bits
);
576 flags
= DLM_LKF_CONVERT
| DLM_LKF_VALBLK
;
578 flags
= DLM_LKF_CONVERT
;
581 error
= control_lock(sdp
, DLM_LOCK_NL
, flags
);
583 fs_err(sdp
, "control lock NL error %d\n", error
);
588 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
589 * and clear a jid bit in the lvb if the recovery is a success.
590 * Eventually all journals will be recovered, all jid bits will
591 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
594 for (i
= 0; i
< recover_size
; i
++) {
595 if (test_bit_le(i
, lvb_bits
+ JID_BITMAP_OFFSET
)) {
596 fs_info(sdp
, "recover generation %u jid %d\n",
598 gfs2_recover_set(sdp
, i
);
606 * No more jid bits set in lvb, all recovery is done, unblock locks
607 * (unless a new recover_prep callback has occured blocking locks
608 * again while working above)
611 spin_lock(&ls
->ls_recover_spin
);
612 if (ls
->ls_recover_block
== block_gen
&&
613 ls
->ls_recover_start
== start_gen
) {
614 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
615 spin_unlock(&ls
->ls_recover_spin
);
616 fs_info(sdp
, "recover generation %u done\n", start_gen
);
617 gfs2_glock_thaw(sdp
);
619 fs_info(sdp
, "recover generation %u block2 %u %u\n",
620 start_gen
, block_gen
, ls
->ls_recover_block
);
621 spin_unlock(&ls
->ls_recover_spin
);
625 static int control_mount(struct gfs2_sbd
*sdp
)
627 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
628 char lvb_bits
[GDLM_LVB_SIZE
];
629 uint32_t start_gen
, block_gen
, mount_gen
, lvb_gen
;
634 memset(&ls
->ls_mounted_lksb
, 0, sizeof(struct dlm_lksb
));
635 memset(&ls
->ls_control_lksb
, 0, sizeof(struct dlm_lksb
));
636 memset(&ls
->ls_control_lvb
, 0, GDLM_LVB_SIZE
);
637 ls
->ls_control_lksb
.sb_lvbptr
= ls
->ls_control_lvb
;
638 init_completion(&ls
->ls_sync_wait
);
640 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
642 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_VALBLK
);
644 fs_err(sdp
, "control_mount control_lock NL error %d\n", error
);
648 error
= mounted_lock(sdp
, DLM_LOCK_NL
, 0);
650 fs_err(sdp
, "control_mount mounted_lock NL error %d\n", error
);
654 mounted_mode
= DLM_LOCK_NL
;
657 if (retries
++ && signal_pending(current
)) {
663 * We always start with both locks in NL. control_lock is
664 * demoted to NL below so we don't need to do it here.
667 if (mounted_mode
!= DLM_LOCK_NL
) {
668 error
= mounted_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
671 mounted_mode
= DLM_LOCK_NL
;
675 * Other nodes need to do some work in dlm recovery and gfs2_control
676 * before the recover_done and control_lock will be ready for us below.
677 * A delay here is not required but often avoids having to retry.
680 msleep_interruptible(500);
683 * Acquire control_lock in EX and mounted_lock in either EX or PR.
684 * control_lock lvb keeps track of any pending journal recoveries.
685 * mounted_lock indicates if any other nodes have the fs mounted.
688 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
|DLM_LKF_VALBLK
);
689 if (error
== -EAGAIN
) {
692 fs_err(sdp
, "control_mount control_lock EX error %d\n", error
);
696 error
= mounted_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
698 mounted_mode
= DLM_LOCK_EX
;
700 } else if (error
!= -EAGAIN
) {
701 fs_err(sdp
, "control_mount mounted_lock EX error %d\n", error
);
705 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
707 mounted_mode
= DLM_LOCK_PR
;
710 /* not even -EAGAIN should happen here */
711 fs_err(sdp
, "control_mount mounted_lock PR error %d\n", error
);
717 * If we got both locks above in EX, then we're the first mounter.
718 * If not, then we need to wait for the control_lock lvb to be
719 * updated by other mounted nodes to reflect our mount generation.
721 * In simple first mounter cases, first mounter will see zero lvb_gen,
722 * but in cases where all existing nodes leave/fail before mounting
723 * nodes finish control_mount, then all nodes will be mounting and
724 * lvb_gen will be non-zero.
727 control_lvb_read(ls
, &lvb_gen
, lvb_bits
);
729 if (lvb_gen
== 0xFFFFFFFF) {
730 /* special value to force mount attempts to fail */
731 fs_err(sdp
, "control_mount control_lock disabled\n");
736 if (mounted_mode
== DLM_LOCK_EX
) {
737 /* first mounter, keep both EX while doing first recovery */
738 spin_lock(&ls
->ls_recover_spin
);
739 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
740 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
741 set_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
742 spin_unlock(&ls
->ls_recover_spin
);
743 fs_info(sdp
, "first mounter control generation %u\n", lvb_gen
);
747 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
752 * We are not first mounter, now we need to wait for the control_lock
753 * lvb generation to be >= the generation from our first recover_done
754 * and all lvb bits to be clear (no pending journal recoveries.)
757 if (!all_jid_bits_clear(lvb_bits
)) {
758 /* journals need recovery, wait until all are clear */
759 fs_info(sdp
, "control_mount wait for journal recovery\n");
763 spin_lock(&ls
->ls_recover_spin
);
764 block_gen
= ls
->ls_recover_block
;
765 start_gen
= ls
->ls_recover_start
;
766 mount_gen
= ls
->ls_recover_mount
;
768 if (lvb_gen
< mount_gen
) {
769 /* wait for mounted nodes to update control_lock lvb to our
770 generation, which might include new recovery bits set */
771 fs_info(sdp
, "control_mount wait1 block %u start %u mount %u "
772 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
773 lvb_gen
, ls
->ls_recover_flags
);
774 spin_unlock(&ls
->ls_recover_spin
);
778 if (lvb_gen
!= start_gen
) {
779 /* wait for mounted nodes to update control_lock lvb to the
780 latest recovery generation */
781 fs_info(sdp
, "control_mount wait2 block %u start %u mount %u "
782 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
783 lvb_gen
, ls
->ls_recover_flags
);
784 spin_unlock(&ls
->ls_recover_spin
);
788 if (block_gen
== start_gen
) {
789 /* dlm recovery in progress, wait for it to finish */
790 fs_info(sdp
, "control_mount wait3 block %u start %u mount %u "
791 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
792 lvb_gen
, ls
->ls_recover_flags
);
793 spin_unlock(&ls
->ls_recover_spin
);
797 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
798 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
799 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
800 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
801 spin_unlock(&ls
->ls_recover_spin
);
810 static int dlm_recovery_wait(void *word
)
816 static int control_first_done(struct gfs2_sbd
*sdp
)
818 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
819 char lvb_bits
[GDLM_LVB_SIZE
];
820 uint32_t start_gen
, block_gen
;
824 spin_lock(&ls
->ls_recover_spin
);
825 start_gen
= ls
->ls_recover_start
;
826 block_gen
= ls
->ls_recover_block
;
828 if (test_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
) ||
829 !test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
830 !test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
831 /* sanity check, should not happen */
832 fs_err(sdp
, "control_first_done start %u block %u flags %lx\n",
833 start_gen
, block_gen
, ls
->ls_recover_flags
);
834 spin_unlock(&ls
->ls_recover_spin
);
839 if (start_gen
== block_gen
) {
841 * Wait for the end of a dlm recovery cycle to switch from
842 * first mounter recovery. We can ignore any recover_slot
843 * callbacks between the recover_prep and next recover_done
844 * because we are still the first mounter and any failed nodes
845 * have not fully mounted, so they don't need recovery.
847 spin_unlock(&ls
->ls_recover_spin
);
848 fs_info(sdp
, "control_first_done wait gen %u\n", start_gen
);
850 wait_on_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
,
851 dlm_recovery_wait
, TASK_UNINTERRUPTIBLE
);
855 clear_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
856 set_bit(DFL_FIRST_MOUNT_DONE
, &ls
->ls_recover_flags
);
857 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
858 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
859 spin_unlock(&ls
->ls_recover_spin
);
861 memset(lvb_bits
, 0, sizeof(lvb_bits
));
862 control_lvb_write(ls
, start_gen
, lvb_bits
);
864 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
);
866 fs_err(sdp
, "control_first_done mounted PR error %d\n", error
);
868 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
870 fs_err(sdp
, "control_first_done control NL error %d\n", error
);
876 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
877 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
878 * gfs2 jids start at 0, so jid = slot - 1)
881 #define RECOVER_SIZE_INC 16
883 static int set_recover_size(struct gfs2_sbd
*sdp
, struct dlm_slot
*slots
,
886 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
887 uint32_t *submit
= NULL
;
888 uint32_t *result
= NULL
;
889 uint32_t old_size
, new_size
;
893 for (i
= 0; i
< num_slots
; i
++) {
894 if (max_jid
< slots
[i
].slot
- 1)
895 max_jid
= slots
[i
].slot
- 1;
898 old_size
= ls
->ls_recover_size
;
900 if (old_size
>= max_jid
+ 1)
903 new_size
= old_size
+ RECOVER_SIZE_INC
;
905 submit
= kzalloc(new_size
* sizeof(uint32_t), GFP_NOFS
);
906 result
= kzalloc(new_size
* sizeof(uint32_t), GFP_NOFS
);
907 if (!submit
|| !result
) {
913 spin_lock(&ls
->ls_recover_spin
);
914 memcpy(submit
, ls
->ls_recover_submit
, old_size
* sizeof(uint32_t));
915 memcpy(result
, ls
->ls_recover_result
, old_size
* sizeof(uint32_t));
916 kfree(ls
->ls_recover_submit
);
917 kfree(ls
->ls_recover_result
);
918 ls
->ls_recover_submit
= submit
;
919 ls
->ls_recover_result
= result
;
920 ls
->ls_recover_size
= new_size
;
921 spin_unlock(&ls
->ls_recover_spin
);
925 static void free_recover_size(struct lm_lockstruct
*ls
)
927 kfree(ls
->ls_recover_submit
);
928 kfree(ls
->ls_recover_result
);
929 ls
->ls_recover_submit
= NULL
;
930 ls
->ls_recover_result
= NULL
;
931 ls
->ls_recover_size
= 0;
934 /* dlm calls before it does lock recovery */
936 static void gdlm_recover_prep(void *arg
)
938 struct gfs2_sbd
*sdp
= arg
;
939 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
941 spin_lock(&ls
->ls_recover_spin
);
942 ls
->ls_recover_block
= ls
->ls_recover_start
;
943 set_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
945 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
946 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
947 spin_unlock(&ls
->ls_recover_spin
);
950 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
951 spin_unlock(&ls
->ls_recover_spin
);
954 /* dlm calls after recover_prep has been completed on all lockspace members;
955 identifies slot/jid of failed member */
957 static void gdlm_recover_slot(void *arg
, struct dlm_slot
*slot
)
959 struct gfs2_sbd
*sdp
= arg
;
960 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
961 int jid
= slot
->slot
- 1;
963 spin_lock(&ls
->ls_recover_spin
);
964 if (ls
->ls_recover_size
< jid
+ 1) {
965 fs_err(sdp
, "recover_slot jid %d gen %u short size %d",
966 jid
, ls
->ls_recover_block
, ls
->ls_recover_size
);
967 spin_unlock(&ls
->ls_recover_spin
);
971 if (ls
->ls_recover_submit
[jid
]) {
972 fs_info(sdp
, "recover_slot jid %d gen %u prev %u",
973 jid
, ls
->ls_recover_block
, ls
->ls_recover_submit
[jid
]);
975 ls
->ls_recover_submit
[jid
] = ls
->ls_recover_block
;
976 spin_unlock(&ls
->ls_recover_spin
);
979 /* dlm calls after recover_slot and after it completes lock recovery */
981 static void gdlm_recover_done(void *arg
, struct dlm_slot
*slots
, int num_slots
,
982 int our_slot
, uint32_t generation
)
984 struct gfs2_sbd
*sdp
= arg
;
985 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
987 /* ensure the ls jid arrays are large enough */
988 set_recover_size(sdp
, slots
, num_slots
);
990 spin_lock(&ls
->ls_recover_spin
);
991 ls
->ls_recover_start
= generation
;
993 if (!ls
->ls_recover_mount
) {
994 ls
->ls_recover_mount
= generation
;
995 ls
->ls_jid
= our_slot
- 1;
998 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
999 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
, 0);
1001 clear_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1002 smp_mb__after_clear_bit();
1003 wake_up_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
);
1004 spin_unlock(&ls
->ls_recover_spin
);
1007 /* gfs2_recover thread has a journal recovery result */
1009 static void gdlm_recovery_result(struct gfs2_sbd
*sdp
, unsigned int jid
,
1010 unsigned int result
)
1012 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1014 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1017 /* don't care about the recovery of own journal during mount */
1018 if (jid
== ls
->ls_jid
)
1021 spin_lock(&ls
->ls_recover_spin
);
1022 if (test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1023 spin_unlock(&ls
->ls_recover_spin
);
1026 if (ls
->ls_recover_size
< jid
+ 1) {
1027 fs_err(sdp
, "recovery_result jid %d short size %d",
1028 jid
, ls
->ls_recover_size
);
1029 spin_unlock(&ls
->ls_recover_spin
);
1033 fs_info(sdp
, "recover jid %d result %s\n", jid
,
1034 result
== LM_RD_GAVEUP
? "busy" : "success");
1036 ls
->ls_recover_result
[jid
] = result
;
1038 /* GAVEUP means another node is recovering the journal; delay our
1039 next attempt to recover it, to give the other node a chance to
1040 finish before trying again */
1042 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1043 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
,
1044 result
== LM_RD_GAVEUP
? HZ
: 0);
1045 spin_unlock(&ls
->ls_recover_spin
);
1048 const struct dlm_lockspace_ops gdlm_lockspace_ops
= {
1049 .recover_prep
= gdlm_recover_prep
,
1050 .recover_slot
= gdlm_recover_slot
,
1051 .recover_done
= gdlm_recover_done
,
1054 static int gdlm_mount(struct gfs2_sbd
*sdp
, const char *table
)
1056 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1057 char cluster
[GFS2_LOCKNAME_LEN
];
1060 int error
, ops_result
;
1063 * initialize everything
1066 INIT_DELAYED_WORK(&sdp
->sd_control_work
, gfs2_control_func
);
1067 spin_lock_init(&ls
->ls_recover_spin
);
1068 ls
->ls_recover_flags
= 0;
1069 ls
->ls_recover_mount
= 0;
1070 ls
->ls_recover_start
= 0;
1071 ls
->ls_recover_block
= 0;
1072 ls
->ls_recover_size
= 0;
1073 ls
->ls_recover_submit
= NULL
;
1074 ls
->ls_recover_result
= NULL
;
1076 error
= set_recover_size(sdp
, NULL
, 0);
1081 * prepare dlm_new_lockspace args
1084 fsname
= strchr(table
, ':');
1086 fs_info(sdp
, "no fsname found\n");
1090 memset(cluster
, 0, sizeof(cluster
));
1091 memcpy(cluster
, table
, strlen(table
) - strlen(fsname
));
1094 flags
= DLM_LSFL_FS
| DLM_LSFL_NEWEXCL
;
1096 flags
|= DLM_LSFL_NODIR
;
1099 * create/join lockspace
1102 error
= dlm_new_lockspace(fsname
, cluster
, flags
, GDLM_LVB_SIZE
,
1103 &gdlm_lockspace_ops
, sdp
, &ops_result
,
1106 fs_err(sdp
, "dlm_new_lockspace error %d\n", error
);
1110 if (ops_result
< 0) {
1112 * dlm does not support ops callbacks,
1113 * old dlm_controld/gfs_controld are used, try without ops.
1115 fs_info(sdp
, "dlm lockspace ops not used\n");
1116 free_recover_size(ls
);
1117 set_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
);
1121 if (!test_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
)) {
1122 fs_err(sdp
, "dlm lockspace ops disallow jid preset\n");
1128 * control_mount() uses control_lock to determine first mounter,
1129 * and for later mounts, waits for any recoveries to be cleared.
1132 error
= control_mount(sdp
);
1134 fs_err(sdp
, "mount control error %d\n", error
);
1138 ls
->ls_first
= !!test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1139 clear_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
);
1140 smp_mb__after_clear_bit();
1141 wake_up_bit(&sdp
->sd_flags
, SDF_NOJOURNALID
);
1145 dlm_release_lockspace(ls
->ls_dlm
, 2);
1147 free_recover_size(ls
);
1152 static void gdlm_first_done(struct gfs2_sbd
*sdp
)
1154 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1157 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1160 error
= control_first_done(sdp
);
1162 fs_err(sdp
, "mount first_done error %d\n", error
);
1165 static void gdlm_unmount(struct gfs2_sbd
*sdp
)
1167 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1169 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1172 /* wait for gfs2_control_wq to be done with this mount */
1174 spin_lock(&ls
->ls_recover_spin
);
1175 set_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
);
1176 spin_unlock(&ls
->ls_recover_spin
);
1177 flush_delayed_work_sync(&sdp
->sd_control_work
);
1179 /* mounted_lock and control_lock will be purged in dlm recovery */
1182 dlm_release_lockspace(ls
->ls_dlm
, 2);
1186 free_recover_size(ls
);
1189 static const match_table_t dlm_tokens
= {
1190 { Opt_jid
, "jid=%d"},
1192 { Opt_first
, "first=%d"},
1193 { Opt_nodir
, "nodir=%d"},
1197 const struct lm_lockops gfs2_dlm_ops
= {
1198 .lm_proto_name
= "lock_dlm",
1199 .lm_mount
= gdlm_mount
,
1200 .lm_first_done
= gdlm_first_done
,
1201 .lm_recovery_result
= gdlm_recovery_result
,
1202 .lm_unmount
= gdlm_unmount
,
1203 .lm_put_lock
= gdlm_put_lock
,
1204 .lm_lock
= gdlm_lock
,
1205 .lm_cancel
= gdlm_cancel
,
1206 .lm_tokens
= &dlm_tokens
,