USB: convert drivers/media/* to use module_usb_driver()
[zen-stable.git] / arch / powerpc / kvm / book3s_hv.c
blob0cdbc07cec14e1cd9900a5b1eddc62e476dcdf98
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
34 #include <asm/reg.h>
35 #include <asm/cputable.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlbflush.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/kvm_ppc.h>
41 #include <asm/kvm_book3s.h>
42 #include <asm/mmu_context.h>
43 #include <asm/lppaca.h>
44 #include <asm/processor.h>
45 #include <asm/cputhreads.h>
46 #include <asm/page.h>
47 #include <linux/gfp.h>
48 #include <linux/sched.h>
49 #include <linux/vmalloc.h>
50 #include <linux/highmem.h>
53 * For now, limit memory to 64GB and require it to be large pages.
54 * This value is chosen because it makes the ram_pginfo array be
55 * 64kB in size, which is about as large as we want to be trying
56 * to allocate with kmalloc.
58 #define MAX_MEM_ORDER 36
60 #define LARGE_PAGE_ORDER 24 /* 16MB pages */
62 /* #define EXIT_DEBUG */
63 /* #define EXIT_DEBUG_SIMPLE */
64 /* #define EXIT_DEBUG_INT */
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
68 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
70 local_paca->kvm_hstate.kvm_vcpu = vcpu;
71 local_paca->kvm_hstate.kvm_vcore = vcpu->arch.vcore;
74 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
78 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
80 vcpu->arch.shregs.msr = msr;
81 kvmppc_end_cede(vcpu);
84 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
86 vcpu->arch.pvr = pvr;
89 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
91 int r;
93 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
94 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
95 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
96 for (r = 0; r < 16; ++r)
97 pr_err("r%2d = %.16lx r%d = %.16lx\n",
98 r, kvmppc_get_gpr(vcpu, r),
99 r+16, kvmppc_get_gpr(vcpu, r+16));
100 pr_err("ctr = %.16lx lr = %.16lx\n",
101 vcpu->arch.ctr, vcpu->arch.lr);
102 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
103 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
104 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
105 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
106 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
107 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
108 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
109 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
110 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
111 pr_err("fault dar = %.16lx dsisr = %.8x\n",
112 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
113 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
114 for (r = 0; r < vcpu->arch.slb_max; ++r)
115 pr_err(" ESID = %.16llx VSID = %.16llx\n",
116 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
117 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
118 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
119 vcpu->arch.last_inst);
122 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
124 int r;
125 struct kvm_vcpu *v, *ret = NULL;
127 mutex_lock(&kvm->lock);
128 kvm_for_each_vcpu(r, v, kvm) {
129 if (v->vcpu_id == id) {
130 ret = v;
131 break;
134 mutex_unlock(&kvm->lock);
135 return ret;
138 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
140 vpa->shared_proc = 1;
141 vpa->yield_count = 1;
144 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
145 unsigned long flags,
146 unsigned long vcpuid, unsigned long vpa)
148 struct kvm *kvm = vcpu->kvm;
149 unsigned long pg_index, ra, len;
150 unsigned long pg_offset;
151 void *va;
152 struct kvm_vcpu *tvcpu;
154 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
155 if (!tvcpu)
156 return H_PARAMETER;
158 flags >>= 63 - 18;
159 flags &= 7;
160 if (flags == 0 || flags == 4)
161 return H_PARAMETER;
162 if (flags < 4) {
163 if (vpa & 0x7f)
164 return H_PARAMETER;
165 /* registering new area; convert logical addr to real */
166 pg_index = vpa >> kvm->arch.ram_porder;
167 pg_offset = vpa & (kvm->arch.ram_psize - 1);
168 if (pg_index >= kvm->arch.ram_npages)
169 return H_PARAMETER;
170 if (kvm->arch.ram_pginfo[pg_index].pfn == 0)
171 return H_PARAMETER;
172 ra = kvm->arch.ram_pginfo[pg_index].pfn << PAGE_SHIFT;
173 ra |= pg_offset;
174 va = __va(ra);
175 if (flags <= 1)
176 len = *(unsigned short *)(va + 4);
177 else
178 len = *(unsigned int *)(va + 4);
179 if (pg_offset + len > kvm->arch.ram_psize)
180 return H_PARAMETER;
181 switch (flags) {
182 case 1: /* register VPA */
183 if (len < 640)
184 return H_PARAMETER;
185 tvcpu->arch.vpa = va;
186 init_vpa(vcpu, va);
187 break;
188 case 2: /* register DTL */
189 if (len < 48)
190 return H_PARAMETER;
191 if (!tvcpu->arch.vpa)
192 return H_RESOURCE;
193 len -= len % 48;
194 tvcpu->arch.dtl = va;
195 tvcpu->arch.dtl_end = va + len;
196 break;
197 case 3: /* register SLB shadow buffer */
198 if (len < 8)
199 return H_PARAMETER;
200 if (!tvcpu->arch.vpa)
201 return H_RESOURCE;
202 tvcpu->arch.slb_shadow = va;
203 len = (len - 16) / 16;
204 tvcpu->arch.slb_shadow = va;
205 break;
207 } else {
208 switch (flags) {
209 case 5: /* unregister VPA */
210 if (tvcpu->arch.slb_shadow || tvcpu->arch.dtl)
211 return H_RESOURCE;
212 tvcpu->arch.vpa = NULL;
213 break;
214 case 6: /* unregister DTL */
215 tvcpu->arch.dtl = NULL;
216 break;
217 case 7: /* unregister SLB shadow buffer */
218 tvcpu->arch.slb_shadow = NULL;
219 break;
222 return H_SUCCESS;
225 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
227 unsigned long req = kvmppc_get_gpr(vcpu, 3);
228 unsigned long target, ret = H_SUCCESS;
229 struct kvm_vcpu *tvcpu;
231 switch (req) {
232 case H_CEDE:
233 break;
234 case H_PROD:
235 target = kvmppc_get_gpr(vcpu, 4);
236 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
237 if (!tvcpu) {
238 ret = H_PARAMETER;
239 break;
241 tvcpu->arch.prodded = 1;
242 smp_mb();
243 if (vcpu->arch.ceded) {
244 if (waitqueue_active(&vcpu->wq)) {
245 wake_up_interruptible(&vcpu->wq);
246 vcpu->stat.halt_wakeup++;
249 break;
250 case H_CONFER:
251 break;
252 case H_REGISTER_VPA:
253 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
254 kvmppc_get_gpr(vcpu, 5),
255 kvmppc_get_gpr(vcpu, 6));
256 break;
257 default:
258 return RESUME_HOST;
260 kvmppc_set_gpr(vcpu, 3, ret);
261 vcpu->arch.hcall_needed = 0;
262 return RESUME_GUEST;
265 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
266 struct task_struct *tsk)
268 int r = RESUME_HOST;
270 vcpu->stat.sum_exits++;
272 run->exit_reason = KVM_EXIT_UNKNOWN;
273 run->ready_for_interrupt_injection = 1;
274 switch (vcpu->arch.trap) {
275 /* We're good on these - the host merely wanted to get our attention */
276 case BOOK3S_INTERRUPT_HV_DECREMENTER:
277 vcpu->stat.dec_exits++;
278 r = RESUME_GUEST;
279 break;
280 case BOOK3S_INTERRUPT_EXTERNAL:
281 vcpu->stat.ext_intr_exits++;
282 r = RESUME_GUEST;
283 break;
284 case BOOK3S_INTERRUPT_PERFMON:
285 r = RESUME_GUEST;
286 break;
287 case BOOK3S_INTERRUPT_PROGRAM:
289 ulong flags;
291 * Normally program interrupts are delivered directly
292 * to the guest by the hardware, but we can get here
293 * as a result of a hypervisor emulation interrupt
294 * (e40) getting turned into a 700 by BML RTAS.
296 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
297 kvmppc_core_queue_program(vcpu, flags);
298 r = RESUME_GUEST;
299 break;
301 case BOOK3S_INTERRUPT_SYSCALL:
303 /* hcall - punt to userspace */
304 int i;
306 if (vcpu->arch.shregs.msr & MSR_PR) {
307 /* sc 1 from userspace - reflect to guest syscall */
308 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
309 r = RESUME_GUEST;
310 break;
312 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
313 for (i = 0; i < 9; ++i)
314 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
315 run->exit_reason = KVM_EXIT_PAPR_HCALL;
316 vcpu->arch.hcall_needed = 1;
317 r = RESUME_HOST;
318 break;
321 * We get these next two if the guest does a bad real-mode access,
322 * as we have enabled VRMA (virtualized real mode area) mode in the
323 * LPCR. We just generate an appropriate DSI/ISI to the guest.
325 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
326 vcpu->arch.shregs.dsisr = vcpu->arch.fault_dsisr;
327 vcpu->arch.shregs.dar = vcpu->arch.fault_dar;
328 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE, 0);
329 r = RESUME_GUEST;
330 break;
331 case BOOK3S_INTERRUPT_H_INST_STORAGE:
332 kvmppc_inject_interrupt(vcpu, BOOK3S_INTERRUPT_INST_STORAGE,
333 0x08000000);
334 r = RESUME_GUEST;
335 break;
337 * This occurs if the guest executes an illegal instruction.
338 * We just generate a program interrupt to the guest, since
339 * we don't emulate any guest instructions at this stage.
341 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
342 kvmppc_core_queue_program(vcpu, 0x80000);
343 r = RESUME_GUEST;
344 break;
345 default:
346 kvmppc_dump_regs(vcpu);
347 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
348 vcpu->arch.trap, kvmppc_get_pc(vcpu),
349 vcpu->arch.shregs.msr);
350 r = RESUME_HOST;
351 BUG();
352 break;
355 return r;
358 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
359 struct kvm_sregs *sregs)
361 int i;
363 sregs->pvr = vcpu->arch.pvr;
365 memset(sregs, 0, sizeof(struct kvm_sregs));
366 for (i = 0; i < vcpu->arch.slb_max; i++) {
367 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
368 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
371 return 0;
374 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
375 struct kvm_sregs *sregs)
377 int i, j;
379 kvmppc_set_pvr(vcpu, sregs->pvr);
381 j = 0;
382 for (i = 0; i < vcpu->arch.slb_nr; i++) {
383 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
384 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
385 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
386 ++j;
389 vcpu->arch.slb_max = j;
391 return 0;
394 int kvmppc_core_check_processor_compat(void)
396 if (cpu_has_feature(CPU_FTR_HVMODE))
397 return 0;
398 return -EIO;
401 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
403 struct kvm_vcpu *vcpu;
404 int err = -EINVAL;
405 int core;
406 struct kvmppc_vcore *vcore;
408 core = id / threads_per_core;
409 if (core >= KVM_MAX_VCORES)
410 goto out;
412 err = -ENOMEM;
413 vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
414 if (!vcpu)
415 goto out;
417 err = kvm_vcpu_init(vcpu, kvm, id);
418 if (err)
419 goto free_vcpu;
421 vcpu->arch.shared = &vcpu->arch.shregs;
422 vcpu->arch.last_cpu = -1;
423 vcpu->arch.mmcr[0] = MMCR0_FC;
424 vcpu->arch.ctrl = CTRL_RUNLATCH;
425 /* default to host PVR, since we can't spoof it */
426 vcpu->arch.pvr = mfspr(SPRN_PVR);
427 kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
429 kvmppc_mmu_book3s_hv_init(vcpu);
432 * We consider the vcpu stopped until we see the first run ioctl for it.
434 vcpu->arch.state = KVMPPC_VCPU_STOPPED;
436 init_waitqueue_head(&vcpu->arch.cpu_run);
438 mutex_lock(&kvm->lock);
439 vcore = kvm->arch.vcores[core];
440 if (!vcore) {
441 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
442 if (vcore) {
443 INIT_LIST_HEAD(&vcore->runnable_threads);
444 spin_lock_init(&vcore->lock);
445 init_waitqueue_head(&vcore->wq);
447 kvm->arch.vcores[core] = vcore;
449 mutex_unlock(&kvm->lock);
451 if (!vcore)
452 goto free_vcpu;
454 spin_lock(&vcore->lock);
455 ++vcore->num_threads;
456 spin_unlock(&vcore->lock);
457 vcpu->arch.vcore = vcore;
459 vcpu->arch.cpu_type = KVM_CPU_3S_64;
460 kvmppc_sanity_check(vcpu);
462 return vcpu;
464 free_vcpu:
465 kfree(vcpu);
466 out:
467 return ERR_PTR(err);
470 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
472 kvm_vcpu_uninit(vcpu);
473 kfree(vcpu);
476 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
478 unsigned long dec_nsec, now;
480 now = get_tb();
481 if (now > vcpu->arch.dec_expires) {
482 /* decrementer has already gone negative */
483 kvmppc_core_queue_dec(vcpu);
484 kvmppc_core_deliver_interrupts(vcpu);
485 return;
487 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
488 / tb_ticks_per_sec;
489 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
490 HRTIMER_MODE_REL);
491 vcpu->arch.timer_running = 1;
494 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
496 vcpu->arch.ceded = 0;
497 if (vcpu->arch.timer_running) {
498 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
499 vcpu->arch.timer_running = 0;
503 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
504 extern void xics_wake_cpu(int cpu);
506 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
507 struct kvm_vcpu *vcpu)
509 struct kvm_vcpu *v;
511 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
512 return;
513 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
514 --vc->n_runnable;
515 ++vc->n_busy;
516 /* decrement the physical thread id of each following vcpu */
517 v = vcpu;
518 list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list)
519 --v->arch.ptid;
520 list_del(&vcpu->arch.run_list);
523 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
525 int cpu;
526 struct paca_struct *tpaca;
527 struct kvmppc_vcore *vc = vcpu->arch.vcore;
529 if (vcpu->arch.timer_running) {
530 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
531 vcpu->arch.timer_running = 0;
533 cpu = vc->pcpu + vcpu->arch.ptid;
534 tpaca = &paca[cpu];
535 tpaca->kvm_hstate.kvm_vcpu = vcpu;
536 tpaca->kvm_hstate.kvm_vcore = vc;
537 tpaca->kvm_hstate.napping = 0;
538 vcpu->cpu = vc->pcpu;
539 smp_wmb();
540 #ifdef CONFIG_PPC_ICP_NATIVE
541 if (vcpu->arch.ptid) {
542 tpaca->cpu_start = 0x80;
543 wmb();
544 xics_wake_cpu(cpu);
545 ++vc->n_woken;
547 #endif
550 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
552 int i;
554 HMT_low();
555 i = 0;
556 while (vc->nap_count < vc->n_woken) {
557 if (++i >= 1000000) {
558 pr_err("kvmppc_wait_for_nap timeout %d %d\n",
559 vc->nap_count, vc->n_woken);
560 break;
562 cpu_relax();
564 HMT_medium();
568 * Check that we are on thread 0 and that any other threads in
569 * this core are off-line.
571 static int on_primary_thread(void)
573 int cpu = smp_processor_id();
574 int thr = cpu_thread_in_core(cpu);
576 if (thr)
577 return 0;
578 while (++thr < threads_per_core)
579 if (cpu_online(cpu + thr))
580 return 0;
581 return 1;
585 * Run a set of guest threads on a physical core.
586 * Called with vc->lock held.
588 static int kvmppc_run_core(struct kvmppc_vcore *vc)
590 struct kvm_vcpu *vcpu, *vcpu0, *vnext;
591 long ret;
592 u64 now;
593 int ptid;
595 /* don't start if any threads have a signal pending */
596 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
597 if (signal_pending(vcpu->arch.run_task))
598 return 0;
601 * Make sure we are running on thread 0, and that
602 * secondary threads are offline.
603 * XXX we should also block attempts to bring any
604 * secondary threads online.
606 if (threads_per_core > 1 && !on_primary_thread()) {
607 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
608 vcpu->arch.ret = -EBUSY;
609 goto out;
613 * Assign physical thread IDs, first to non-ceded vcpus
614 * and then to ceded ones.
616 ptid = 0;
617 vcpu0 = NULL;
618 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
619 if (!vcpu->arch.ceded) {
620 if (!ptid)
621 vcpu0 = vcpu;
622 vcpu->arch.ptid = ptid++;
625 if (!vcpu0)
626 return 0; /* nothing to run */
627 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
628 if (vcpu->arch.ceded)
629 vcpu->arch.ptid = ptid++;
631 vc->n_woken = 0;
632 vc->nap_count = 0;
633 vc->entry_exit_count = 0;
634 vc->vcore_state = VCORE_RUNNING;
635 vc->in_guest = 0;
636 vc->pcpu = smp_processor_id();
637 vc->napping_threads = 0;
638 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
639 kvmppc_start_thread(vcpu);
641 preempt_disable();
642 spin_unlock(&vc->lock);
644 kvm_guest_enter();
645 __kvmppc_vcore_entry(NULL, vcpu0);
647 spin_lock(&vc->lock);
648 /* disable sending of IPIs on virtual external irqs */
649 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
650 vcpu->cpu = -1;
651 /* wait for secondary threads to finish writing their state to memory */
652 if (vc->nap_count < vc->n_woken)
653 kvmppc_wait_for_nap(vc);
654 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
655 vc->vcore_state = VCORE_EXITING;
656 spin_unlock(&vc->lock);
658 /* make sure updates to secondary vcpu structs are visible now */
659 smp_mb();
660 kvm_guest_exit();
662 preempt_enable();
663 kvm_resched(vcpu);
665 now = get_tb();
666 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
667 /* cancel pending dec exception if dec is positive */
668 if (now < vcpu->arch.dec_expires &&
669 kvmppc_core_pending_dec(vcpu))
670 kvmppc_core_dequeue_dec(vcpu);
672 ret = RESUME_GUEST;
673 if (vcpu->arch.trap)
674 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
675 vcpu->arch.run_task);
677 vcpu->arch.ret = ret;
678 vcpu->arch.trap = 0;
680 if (vcpu->arch.ceded) {
681 if (ret != RESUME_GUEST)
682 kvmppc_end_cede(vcpu);
683 else
684 kvmppc_set_timer(vcpu);
688 spin_lock(&vc->lock);
689 out:
690 vc->vcore_state = VCORE_INACTIVE;
691 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
692 arch.run_list) {
693 if (vcpu->arch.ret != RESUME_GUEST) {
694 kvmppc_remove_runnable(vc, vcpu);
695 wake_up(&vcpu->arch.cpu_run);
699 return 1;
703 * Wait for some other vcpu thread to execute us, and
704 * wake us up when we need to handle something in the host.
706 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
708 DEFINE_WAIT(wait);
710 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
711 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
712 schedule();
713 finish_wait(&vcpu->arch.cpu_run, &wait);
717 * All the vcpus in this vcore are idle, so wait for a decrementer
718 * or external interrupt to one of the vcpus. vc->lock is held.
720 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
722 DEFINE_WAIT(wait);
723 struct kvm_vcpu *v;
724 int all_idle = 1;
726 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
727 vc->vcore_state = VCORE_SLEEPING;
728 spin_unlock(&vc->lock);
729 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
730 if (!v->arch.ceded || v->arch.pending_exceptions) {
731 all_idle = 0;
732 break;
735 if (all_idle)
736 schedule();
737 finish_wait(&vc->wq, &wait);
738 spin_lock(&vc->lock);
739 vc->vcore_state = VCORE_INACTIVE;
742 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
744 int n_ceded;
745 int prev_state;
746 struct kvmppc_vcore *vc;
747 struct kvm_vcpu *v, *vn;
749 kvm_run->exit_reason = 0;
750 vcpu->arch.ret = RESUME_GUEST;
751 vcpu->arch.trap = 0;
754 * Synchronize with other threads in this virtual core
756 vc = vcpu->arch.vcore;
757 spin_lock(&vc->lock);
758 vcpu->arch.ceded = 0;
759 vcpu->arch.run_task = current;
760 vcpu->arch.kvm_run = kvm_run;
761 prev_state = vcpu->arch.state;
762 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
763 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
764 ++vc->n_runnable;
767 * This happens the first time this is called for a vcpu.
768 * If the vcore is already running, we may be able to start
769 * this thread straight away and have it join in.
771 if (prev_state == KVMPPC_VCPU_STOPPED) {
772 if (vc->vcore_state == VCORE_RUNNING &&
773 VCORE_EXIT_COUNT(vc) == 0) {
774 vcpu->arch.ptid = vc->n_runnable - 1;
775 kvmppc_start_thread(vcpu);
778 } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
779 --vc->n_busy;
781 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
782 !signal_pending(current)) {
783 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
784 spin_unlock(&vc->lock);
785 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
786 spin_lock(&vc->lock);
787 continue;
789 n_ceded = 0;
790 list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
791 n_ceded += v->arch.ceded;
792 if (n_ceded == vc->n_runnable)
793 kvmppc_vcore_blocked(vc);
794 else
795 kvmppc_run_core(vc);
797 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
798 arch.run_list) {
799 kvmppc_core_deliver_interrupts(v);
800 if (signal_pending(v->arch.run_task)) {
801 kvmppc_remove_runnable(vc, v);
802 v->stat.signal_exits++;
803 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
804 v->arch.ret = -EINTR;
805 wake_up(&v->arch.cpu_run);
810 if (signal_pending(current)) {
811 if (vc->vcore_state == VCORE_RUNNING ||
812 vc->vcore_state == VCORE_EXITING) {
813 spin_unlock(&vc->lock);
814 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
815 spin_lock(&vc->lock);
817 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
818 kvmppc_remove_runnable(vc, vcpu);
819 vcpu->stat.signal_exits++;
820 kvm_run->exit_reason = KVM_EXIT_INTR;
821 vcpu->arch.ret = -EINTR;
825 spin_unlock(&vc->lock);
826 return vcpu->arch.ret;
829 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
831 int r;
833 if (!vcpu->arch.sane) {
834 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
835 return -EINVAL;
838 /* No need to go into the guest when all we'll do is come back out */
839 if (signal_pending(current)) {
840 run->exit_reason = KVM_EXIT_INTR;
841 return -EINTR;
844 /* On PPC970, check that we have an RMA region */
845 if (!vcpu->kvm->arch.rma && cpu_has_feature(CPU_FTR_ARCH_201))
846 return -EPERM;
848 flush_fp_to_thread(current);
849 flush_altivec_to_thread(current);
850 flush_vsx_to_thread(current);
851 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
853 do {
854 r = kvmppc_run_vcpu(run, vcpu);
856 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
857 !(vcpu->arch.shregs.msr & MSR_PR)) {
858 r = kvmppc_pseries_do_hcall(vcpu);
859 kvmppc_core_deliver_interrupts(vcpu);
861 } while (r == RESUME_GUEST);
862 return r;
865 static long kvmppc_stt_npages(unsigned long window_size)
867 return ALIGN((window_size >> SPAPR_TCE_SHIFT)
868 * sizeof(u64), PAGE_SIZE) / PAGE_SIZE;
871 static void release_spapr_tce_table(struct kvmppc_spapr_tce_table *stt)
873 struct kvm *kvm = stt->kvm;
874 int i;
876 mutex_lock(&kvm->lock);
877 list_del(&stt->list);
878 for (i = 0; i < kvmppc_stt_npages(stt->window_size); i++)
879 __free_page(stt->pages[i]);
880 kfree(stt);
881 mutex_unlock(&kvm->lock);
883 kvm_put_kvm(kvm);
886 static int kvm_spapr_tce_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
888 struct kvmppc_spapr_tce_table *stt = vma->vm_file->private_data;
889 struct page *page;
891 if (vmf->pgoff >= kvmppc_stt_npages(stt->window_size))
892 return VM_FAULT_SIGBUS;
894 page = stt->pages[vmf->pgoff];
895 get_page(page);
896 vmf->page = page;
897 return 0;
900 static const struct vm_operations_struct kvm_spapr_tce_vm_ops = {
901 .fault = kvm_spapr_tce_fault,
904 static int kvm_spapr_tce_mmap(struct file *file, struct vm_area_struct *vma)
906 vma->vm_ops = &kvm_spapr_tce_vm_ops;
907 return 0;
910 static int kvm_spapr_tce_release(struct inode *inode, struct file *filp)
912 struct kvmppc_spapr_tce_table *stt = filp->private_data;
914 release_spapr_tce_table(stt);
915 return 0;
918 static struct file_operations kvm_spapr_tce_fops = {
919 .mmap = kvm_spapr_tce_mmap,
920 .release = kvm_spapr_tce_release,
923 long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
924 struct kvm_create_spapr_tce *args)
926 struct kvmppc_spapr_tce_table *stt = NULL;
927 long npages;
928 int ret = -ENOMEM;
929 int i;
931 /* Check this LIOBN hasn't been previously allocated */
932 list_for_each_entry(stt, &kvm->arch.spapr_tce_tables, list) {
933 if (stt->liobn == args->liobn)
934 return -EBUSY;
937 npages = kvmppc_stt_npages(args->window_size);
939 stt = kzalloc(sizeof(*stt) + npages* sizeof(struct page *),
940 GFP_KERNEL);
941 if (!stt)
942 goto fail;
944 stt->liobn = args->liobn;
945 stt->window_size = args->window_size;
946 stt->kvm = kvm;
948 for (i = 0; i < npages; i++) {
949 stt->pages[i] = alloc_page(GFP_KERNEL | __GFP_ZERO);
950 if (!stt->pages[i])
951 goto fail;
954 kvm_get_kvm(kvm);
956 mutex_lock(&kvm->lock);
957 list_add(&stt->list, &kvm->arch.spapr_tce_tables);
959 mutex_unlock(&kvm->lock);
961 return anon_inode_getfd("kvm-spapr-tce", &kvm_spapr_tce_fops,
962 stt, O_RDWR);
964 fail:
965 if (stt) {
966 for (i = 0; i < npages; i++)
967 if (stt->pages[i])
968 __free_page(stt->pages[i]);
970 kfree(stt);
972 return ret;
975 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
976 Assumes POWER7 or PPC970. */
977 static inline int lpcr_rmls(unsigned long rma_size)
979 switch (rma_size) {
980 case 32ul << 20: /* 32 MB */
981 if (cpu_has_feature(CPU_FTR_ARCH_206))
982 return 8; /* only supported on POWER7 */
983 return -1;
984 case 64ul << 20: /* 64 MB */
985 return 3;
986 case 128ul << 20: /* 128 MB */
987 return 7;
988 case 256ul << 20: /* 256 MB */
989 return 4;
990 case 1ul << 30: /* 1 GB */
991 return 2;
992 case 16ul << 30: /* 16 GB */
993 return 1;
994 case 256ul << 30: /* 256 GB */
995 return 0;
996 default:
997 return -1;
1001 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1003 struct kvmppc_rma_info *ri = vma->vm_file->private_data;
1004 struct page *page;
1006 if (vmf->pgoff >= ri->npages)
1007 return VM_FAULT_SIGBUS;
1009 page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1010 get_page(page);
1011 vmf->page = page;
1012 return 0;
1015 static const struct vm_operations_struct kvm_rma_vm_ops = {
1016 .fault = kvm_rma_fault,
1019 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1021 vma->vm_flags |= VM_RESERVED;
1022 vma->vm_ops = &kvm_rma_vm_ops;
1023 return 0;
1026 static int kvm_rma_release(struct inode *inode, struct file *filp)
1028 struct kvmppc_rma_info *ri = filp->private_data;
1030 kvm_release_rma(ri);
1031 return 0;
1034 static struct file_operations kvm_rma_fops = {
1035 .mmap = kvm_rma_mmap,
1036 .release = kvm_rma_release,
1039 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1041 struct kvmppc_rma_info *ri;
1042 long fd;
1044 ri = kvm_alloc_rma();
1045 if (!ri)
1046 return -ENOMEM;
1048 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1049 if (fd < 0)
1050 kvm_release_rma(ri);
1052 ret->rma_size = ri->npages << PAGE_SHIFT;
1053 return fd;
1056 static struct page *hva_to_page(unsigned long addr)
1058 struct page *page[1];
1059 int npages;
1061 might_sleep();
1063 npages = get_user_pages_fast(addr, 1, 1, page);
1065 if (unlikely(npages != 1))
1066 return 0;
1068 return page[0];
1071 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1072 struct kvm_userspace_memory_region *mem)
1074 unsigned long psize, porder;
1075 unsigned long i, npages, totalpages;
1076 unsigned long pg_ix;
1077 struct kvmppc_pginfo *pginfo;
1078 unsigned long hva;
1079 struct kvmppc_rma_info *ri = NULL;
1080 struct page *page;
1082 /* For now, only allow 16MB pages */
1083 porder = LARGE_PAGE_ORDER;
1084 psize = 1ul << porder;
1085 if ((mem->memory_size & (psize - 1)) ||
1086 (mem->guest_phys_addr & (psize - 1))) {
1087 pr_err("bad memory_size=%llx @ %llx\n",
1088 mem->memory_size, mem->guest_phys_addr);
1089 return -EINVAL;
1092 npages = mem->memory_size >> porder;
1093 totalpages = (mem->guest_phys_addr + mem->memory_size) >> porder;
1095 /* More memory than we have space to track? */
1096 if (totalpages > (1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER)))
1097 return -EINVAL;
1099 /* Do we already have an RMA registered? */
1100 if (mem->guest_phys_addr == 0 && kvm->arch.rma)
1101 return -EINVAL;
1103 if (totalpages > kvm->arch.ram_npages)
1104 kvm->arch.ram_npages = totalpages;
1106 /* Is this one of our preallocated RMAs? */
1107 if (mem->guest_phys_addr == 0) {
1108 struct vm_area_struct *vma;
1110 down_read(&current->mm->mmap_sem);
1111 vma = find_vma(current->mm, mem->userspace_addr);
1112 if (vma && vma->vm_file &&
1113 vma->vm_file->f_op == &kvm_rma_fops &&
1114 mem->userspace_addr == vma->vm_start)
1115 ri = vma->vm_file->private_data;
1116 up_read(&current->mm->mmap_sem);
1117 if (!ri && cpu_has_feature(CPU_FTR_ARCH_201)) {
1118 pr_err("CPU requires an RMO\n");
1119 return -EINVAL;
1123 if (ri) {
1124 unsigned long rma_size;
1125 unsigned long lpcr;
1126 long rmls;
1128 rma_size = ri->npages << PAGE_SHIFT;
1129 if (rma_size > mem->memory_size)
1130 rma_size = mem->memory_size;
1131 rmls = lpcr_rmls(rma_size);
1132 if (rmls < 0) {
1133 pr_err("Can't use RMA of 0x%lx bytes\n", rma_size);
1134 return -EINVAL;
1136 atomic_inc(&ri->use_count);
1137 kvm->arch.rma = ri;
1138 kvm->arch.n_rma_pages = rma_size >> porder;
1140 /* Update LPCR and RMOR */
1141 lpcr = kvm->arch.lpcr;
1142 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1143 /* PPC970; insert RMLS value (split field) in HID4 */
1144 lpcr &= ~((1ul << HID4_RMLS0_SH) |
1145 (3ul << HID4_RMLS2_SH));
1146 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1147 ((rmls & 3) << HID4_RMLS2_SH);
1148 /* RMOR is also in HID4 */
1149 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1150 << HID4_RMOR_SH;
1151 } else {
1152 /* POWER7 */
1153 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1154 lpcr |= rmls << LPCR_RMLS_SH;
1155 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1157 kvm->arch.lpcr = lpcr;
1158 pr_info("Using RMO at %lx size %lx (LPCR = %lx)\n",
1159 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1162 pg_ix = mem->guest_phys_addr >> porder;
1163 pginfo = kvm->arch.ram_pginfo + pg_ix;
1164 for (i = 0; i < npages; ++i, ++pg_ix) {
1165 if (ri && pg_ix < kvm->arch.n_rma_pages) {
1166 pginfo[i].pfn = ri->base_pfn +
1167 (pg_ix << (porder - PAGE_SHIFT));
1168 continue;
1170 hva = mem->userspace_addr + (i << porder);
1171 page = hva_to_page(hva);
1172 if (!page) {
1173 pr_err("oops, no pfn for hva %lx\n", hva);
1174 goto err;
1176 /* Check it's a 16MB page */
1177 if (!PageHead(page) ||
1178 compound_order(page) != (LARGE_PAGE_ORDER - PAGE_SHIFT)) {
1179 pr_err("page at %lx isn't 16MB (o=%d)\n",
1180 hva, compound_order(page));
1181 goto err;
1183 pginfo[i].pfn = page_to_pfn(page);
1186 return 0;
1188 err:
1189 return -EINVAL;
1192 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1193 struct kvm_userspace_memory_region *mem)
1195 if (mem->guest_phys_addr == 0 && mem->memory_size != 0 &&
1196 !kvm->arch.rma)
1197 kvmppc_map_vrma(kvm, mem);
1200 int kvmppc_core_init_vm(struct kvm *kvm)
1202 long r;
1203 unsigned long npages = 1ul << (MAX_MEM_ORDER - LARGE_PAGE_ORDER);
1204 long err = -ENOMEM;
1205 unsigned long lpcr;
1207 /* Allocate hashed page table */
1208 r = kvmppc_alloc_hpt(kvm);
1209 if (r)
1210 return r;
1212 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1214 kvm->arch.ram_pginfo = kzalloc(npages * sizeof(struct kvmppc_pginfo),
1215 GFP_KERNEL);
1216 if (!kvm->arch.ram_pginfo) {
1217 pr_err("kvmppc_core_init_vm: couldn't alloc %lu bytes\n",
1218 npages * sizeof(struct kvmppc_pginfo));
1219 goto out_free;
1222 kvm->arch.ram_npages = 0;
1223 kvm->arch.ram_psize = 1ul << LARGE_PAGE_ORDER;
1224 kvm->arch.ram_porder = LARGE_PAGE_ORDER;
1225 kvm->arch.rma = NULL;
1226 kvm->arch.n_rma_pages = 0;
1228 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1230 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1231 /* PPC970; HID4 is effectively the LPCR */
1232 unsigned long lpid = kvm->arch.lpid;
1233 kvm->arch.host_lpid = 0;
1234 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1235 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1236 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1237 ((lpid & 0xf) << HID4_LPID5_SH);
1238 } else {
1239 /* POWER7; init LPCR for virtual RMA mode */
1240 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1241 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1242 lpcr &= LPCR_PECE | LPCR_LPES;
1243 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1244 LPCR_VPM0 | LPCR_VRMA_L;
1246 kvm->arch.lpcr = lpcr;
1248 return 0;
1250 out_free:
1251 kvmppc_free_hpt(kvm);
1252 return err;
1255 void kvmppc_core_destroy_vm(struct kvm *kvm)
1257 struct kvmppc_pginfo *pginfo;
1258 unsigned long i;
1260 if (kvm->arch.ram_pginfo) {
1261 pginfo = kvm->arch.ram_pginfo;
1262 kvm->arch.ram_pginfo = NULL;
1263 for (i = kvm->arch.n_rma_pages; i < kvm->arch.ram_npages; ++i)
1264 if (pginfo[i].pfn)
1265 put_page(pfn_to_page(pginfo[i].pfn));
1266 kfree(pginfo);
1268 if (kvm->arch.rma) {
1269 kvm_release_rma(kvm->arch.rma);
1270 kvm->arch.rma = NULL;
1273 kvmppc_free_hpt(kvm);
1274 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1277 /* These are stubs for now */
1278 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1282 /* We don't need to emulate any privileged instructions or dcbz */
1283 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284 unsigned int inst, int *advance)
1286 return EMULATE_FAIL;
1289 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
1291 return EMULATE_FAIL;
1294 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
1296 return EMULATE_FAIL;
1299 static int kvmppc_book3s_hv_init(void)
1301 int r;
1303 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1305 if (r)
1306 return r;
1308 r = kvmppc_mmu_hv_init();
1310 return r;
1313 static void kvmppc_book3s_hv_exit(void)
1315 kvm_exit();
1318 module_init(kvmppc_book3s_hv_init);
1319 module_exit(kvmppc_book3s_hv_exit);