USB: convert drivers/media/* to use module_usb_driver()
[zen-stable.git] / arch / powerpc / mm / hugetlbpage.c
blob5964371303ac4a5941eb2a0ccceca27cf6330354
1 /*
2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/of_fdt.h>
16 #include <linux/memblock.h>
17 #include <linux/bootmem.h>
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlb.h>
21 #include <asm/setup.h>
23 #define PAGE_SHIFT_64K 16
24 #define PAGE_SHIFT_16M 24
25 #define PAGE_SHIFT_16G 34
27 unsigned int HPAGE_SHIFT;
30 * Tracks gpages after the device tree is scanned and before the
31 * huge_boot_pages list is ready. On 64-bit implementations, this is
32 * just used to track 16G pages and so is a single array. 32-bit
33 * implementations may have more than one gpage size due to limitations
34 * of the memory allocators, so we need multiple arrays
36 #ifdef CONFIG_PPC64
37 #define MAX_NUMBER_GPAGES 1024
38 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
39 static unsigned nr_gpages;
40 #else
41 #define MAX_NUMBER_GPAGES 128
42 struct psize_gpages {
43 u64 gpage_list[MAX_NUMBER_GPAGES];
44 unsigned int nr_gpages;
46 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
47 #endif
49 static inline int shift_to_mmu_psize(unsigned int shift)
51 int psize;
53 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
54 if (mmu_psize_defs[psize].shift == shift)
55 return psize;
56 return -1;
59 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
61 if (mmu_psize_defs[mmu_psize].shift)
62 return mmu_psize_defs[mmu_psize].shift;
63 BUG();
66 #define hugepd_none(hpd) ((hpd).pd == 0)
68 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
70 pgd_t *pg;
71 pud_t *pu;
72 pmd_t *pm;
73 hugepd_t *hpdp = NULL;
74 unsigned pdshift = PGDIR_SHIFT;
76 if (shift)
77 *shift = 0;
79 pg = pgdir + pgd_index(ea);
80 if (is_hugepd(pg)) {
81 hpdp = (hugepd_t *)pg;
82 } else if (!pgd_none(*pg)) {
83 pdshift = PUD_SHIFT;
84 pu = pud_offset(pg, ea);
85 if (is_hugepd(pu))
86 hpdp = (hugepd_t *)pu;
87 else if (!pud_none(*pu)) {
88 pdshift = PMD_SHIFT;
89 pm = pmd_offset(pu, ea);
90 if (is_hugepd(pm))
91 hpdp = (hugepd_t *)pm;
92 else if (!pmd_none(*pm)) {
93 return pte_offset_kernel(pm, ea);
98 if (!hpdp)
99 return NULL;
101 if (shift)
102 *shift = hugepd_shift(*hpdp);
103 return hugepte_offset(hpdp, ea, pdshift);
106 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
108 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
111 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
112 unsigned long address, unsigned pdshift, unsigned pshift)
114 struct kmem_cache *cachep;
115 pte_t *new;
117 #ifdef CONFIG_PPC64
118 cachep = PGT_CACHE(pdshift - pshift);
119 #else
120 int i;
121 int num_hugepd = 1 << (pshift - pdshift);
122 cachep = hugepte_cache;
123 #endif
125 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
127 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
128 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
130 if (! new)
131 return -ENOMEM;
133 spin_lock(&mm->page_table_lock);
134 #ifdef CONFIG_PPC64
135 if (!hugepd_none(*hpdp))
136 kmem_cache_free(cachep, new);
137 else
138 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
139 #else
141 * We have multiple higher-level entries that point to the same
142 * actual pte location. Fill in each as we go and backtrack on error.
143 * We need all of these so the DTLB pgtable walk code can find the
144 * right higher-level entry without knowing if it's a hugepage or not.
146 for (i = 0; i < num_hugepd; i++, hpdp++) {
147 if (unlikely(!hugepd_none(*hpdp)))
148 break;
149 else
150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
152 /* If we bailed from the for loop early, an error occurred, clean up */
153 if (i < num_hugepd) {
154 for (i = i - 1 ; i >= 0; i--, hpdp--)
155 hpdp->pd = 0;
156 kmem_cache_free(cachep, new);
158 #endif
159 spin_unlock(&mm->page_table_lock);
160 return 0;
163 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
165 pgd_t *pg;
166 pud_t *pu;
167 pmd_t *pm;
168 hugepd_t *hpdp = NULL;
169 unsigned pshift = __ffs(sz);
170 unsigned pdshift = PGDIR_SHIFT;
172 addr &= ~(sz-1);
174 pg = pgd_offset(mm, addr);
175 if (pshift >= PUD_SHIFT) {
176 hpdp = (hugepd_t *)pg;
177 } else {
178 pdshift = PUD_SHIFT;
179 pu = pud_alloc(mm, pg, addr);
180 if (pshift >= PMD_SHIFT) {
181 hpdp = (hugepd_t *)pu;
182 } else {
183 pdshift = PMD_SHIFT;
184 pm = pmd_alloc(mm, pu, addr);
185 hpdp = (hugepd_t *)pm;
189 if (!hpdp)
190 return NULL;
192 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
194 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
195 return NULL;
197 return hugepte_offset(hpdp, addr, pdshift);
200 #ifdef CONFIG_PPC32
201 /* Build list of addresses of gigantic pages. This function is used in early
202 * boot before the buddy or bootmem allocator is setup.
204 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
206 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
207 int i;
209 if (addr == 0)
210 return;
212 gpage_freearray[idx].nr_gpages = number_of_pages;
214 for (i = 0; i < number_of_pages; i++) {
215 gpage_freearray[idx].gpage_list[i] = addr;
216 addr += page_size;
221 * Moves the gigantic page addresses from the temporary list to the
222 * huge_boot_pages list.
224 int alloc_bootmem_huge_page(struct hstate *hstate)
226 struct huge_bootmem_page *m;
227 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
228 int nr_gpages = gpage_freearray[idx].nr_gpages;
230 if (nr_gpages == 0)
231 return 0;
233 #ifdef CONFIG_HIGHMEM
235 * If gpages can be in highmem we can't use the trick of storing the
236 * data structure in the page; allocate space for this
238 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
239 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
240 #else
241 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
242 #endif
244 list_add(&m->list, &huge_boot_pages);
245 gpage_freearray[idx].nr_gpages = nr_gpages;
246 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
247 m->hstate = hstate;
249 return 1;
252 * Scan the command line hugepagesz= options for gigantic pages; store those in
253 * a list that we use to allocate the memory once all options are parsed.
256 unsigned long gpage_npages[MMU_PAGE_COUNT];
258 static int __init do_gpage_early_setup(char *param, char *val)
260 static phys_addr_t size;
261 unsigned long npages;
264 * The hugepagesz and hugepages cmdline options are interleaved. We
265 * use the size variable to keep track of whether or not this was done
266 * properly and skip over instances where it is incorrect. Other
267 * command-line parsing code will issue warnings, so we don't need to.
270 if ((strcmp(param, "default_hugepagesz") == 0) ||
271 (strcmp(param, "hugepagesz") == 0)) {
272 size = memparse(val, NULL);
273 } else if (strcmp(param, "hugepages") == 0) {
274 if (size != 0) {
275 if (sscanf(val, "%lu", &npages) <= 0)
276 npages = 0;
277 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
278 size = 0;
281 return 0;
286 * This function allocates physical space for pages that are larger than the
287 * buddy allocator can handle. We want to allocate these in highmem because
288 * the amount of lowmem is limited. This means that this function MUST be
289 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
290 * allocate to grab highmem.
292 void __init reserve_hugetlb_gpages(void)
294 static __initdata char cmdline[COMMAND_LINE_SIZE];
295 phys_addr_t size, base;
296 int i;
298 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
299 parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);
302 * Walk gpage list in reverse, allocating larger page sizes first.
303 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
304 * When we reach the point in the list where pages are no longer
305 * considered gpages, we're done.
307 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
308 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
309 continue;
310 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
311 break;
313 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
314 base = memblock_alloc_base(size * gpage_npages[i], size,
315 MEMBLOCK_ALLOC_ANYWHERE);
316 add_gpage(base, size, gpage_npages[i]);
320 #else /* PPC64 */
322 /* Build list of addresses of gigantic pages. This function is used in early
323 * boot before the buddy or bootmem allocator is setup.
325 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
327 if (!addr)
328 return;
329 while (number_of_pages > 0) {
330 gpage_freearray[nr_gpages] = addr;
331 nr_gpages++;
332 number_of_pages--;
333 addr += page_size;
337 /* Moves the gigantic page addresses from the temporary list to the
338 * huge_boot_pages list.
340 int alloc_bootmem_huge_page(struct hstate *hstate)
342 struct huge_bootmem_page *m;
343 if (nr_gpages == 0)
344 return 0;
345 m = phys_to_virt(gpage_freearray[--nr_gpages]);
346 gpage_freearray[nr_gpages] = 0;
347 list_add(&m->list, &huge_boot_pages);
348 m->hstate = hstate;
349 return 1;
351 #endif
353 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
355 return 0;
358 #ifdef CONFIG_PPC32
359 #define HUGEPD_FREELIST_SIZE \
360 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
362 struct hugepd_freelist {
363 struct rcu_head rcu;
364 unsigned int index;
365 void *ptes[0];
368 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
370 static void hugepd_free_rcu_callback(struct rcu_head *head)
372 struct hugepd_freelist *batch =
373 container_of(head, struct hugepd_freelist, rcu);
374 unsigned int i;
376 for (i = 0; i < batch->index; i++)
377 kmem_cache_free(hugepte_cache, batch->ptes[i]);
379 free_page((unsigned long)batch);
382 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
384 struct hugepd_freelist **batchp;
386 batchp = &__get_cpu_var(hugepd_freelist_cur);
388 if (atomic_read(&tlb->mm->mm_users) < 2 ||
389 cpumask_equal(mm_cpumask(tlb->mm),
390 cpumask_of(smp_processor_id()))) {
391 kmem_cache_free(hugepte_cache, hugepte);
392 return;
395 if (*batchp == NULL) {
396 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
397 (*batchp)->index = 0;
400 (*batchp)->ptes[(*batchp)->index++] = hugepte;
401 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
402 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
403 *batchp = NULL;
406 #endif
408 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
409 unsigned long start, unsigned long end,
410 unsigned long floor, unsigned long ceiling)
412 pte_t *hugepte = hugepd_page(*hpdp);
413 int i;
415 unsigned long pdmask = ~((1UL << pdshift) - 1);
416 unsigned int num_hugepd = 1;
418 #ifdef CONFIG_PPC64
419 unsigned int shift = hugepd_shift(*hpdp);
420 #else
421 /* Note: On 32-bit the hpdp may be the first of several */
422 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
423 #endif
425 start &= pdmask;
426 if (start < floor)
427 return;
428 if (ceiling) {
429 ceiling &= pdmask;
430 if (! ceiling)
431 return;
433 if (end - 1 > ceiling - 1)
434 return;
436 for (i = 0; i < num_hugepd; i++, hpdp++)
437 hpdp->pd = 0;
439 tlb->need_flush = 1;
440 #ifdef CONFIG_PPC64
441 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
442 #else
443 hugepd_free(tlb, hugepte);
444 #endif
447 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
448 unsigned long addr, unsigned long end,
449 unsigned long floor, unsigned long ceiling)
451 pmd_t *pmd;
452 unsigned long next;
453 unsigned long start;
455 start = addr;
456 pmd = pmd_offset(pud, addr);
457 do {
458 next = pmd_addr_end(addr, end);
459 if (pmd_none(*pmd))
460 continue;
461 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
462 addr, next, floor, ceiling);
463 } while (pmd++, addr = next, addr != end);
465 start &= PUD_MASK;
466 if (start < floor)
467 return;
468 if (ceiling) {
469 ceiling &= PUD_MASK;
470 if (!ceiling)
471 return;
473 if (end - 1 > ceiling - 1)
474 return;
476 pmd = pmd_offset(pud, start);
477 pud_clear(pud);
478 pmd_free_tlb(tlb, pmd, start);
481 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
482 unsigned long addr, unsigned long end,
483 unsigned long floor, unsigned long ceiling)
485 pud_t *pud;
486 unsigned long next;
487 unsigned long start;
489 start = addr;
490 pud = pud_offset(pgd, addr);
491 do {
492 next = pud_addr_end(addr, end);
493 if (!is_hugepd(pud)) {
494 if (pud_none_or_clear_bad(pud))
495 continue;
496 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
497 ceiling);
498 } else {
499 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
500 addr, next, floor, ceiling);
502 } while (pud++, addr = next, addr != end);
504 start &= PGDIR_MASK;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= PGDIR_MASK;
509 if (!ceiling)
510 return;
512 if (end - 1 > ceiling - 1)
513 return;
515 pud = pud_offset(pgd, start);
516 pgd_clear(pgd);
517 pud_free_tlb(tlb, pud, start);
521 * This function frees user-level page tables of a process.
523 * Must be called with pagetable lock held.
525 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
526 unsigned long addr, unsigned long end,
527 unsigned long floor, unsigned long ceiling)
529 pgd_t *pgd;
530 unsigned long next;
533 * Because there are a number of different possible pagetable
534 * layouts for hugepage ranges, we limit knowledge of how
535 * things should be laid out to the allocation path
536 * (huge_pte_alloc(), above). Everything else works out the
537 * structure as it goes from information in the hugepd
538 * pointers. That means that we can't here use the
539 * optimization used in the normal page free_pgd_range(), of
540 * checking whether we're actually covering a large enough
541 * range to have to do anything at the top level of the walk
542 * instead of at the bottom.
544 * To make sense of this, you should probably go read the big
545 * block comment at the top of the normal free_pgd_range(),
546 * too.
549 do {
550 next = pgd_addr_end(addr, end);
551 pgd = pgd_offset(tlb->mm, addr);
552 if (!is_hugepd(pgd)) {
553 if (pgd_none_or_clear_bad(pgd))
554 continue;
555 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
556 } else {
557 #ifdef CONFIG_PPC32
559 * Increment next by the size of the huge mapping since
560 * on 32-bit there may be more than one entry at the pgd
561 * level for a single hugepage, but all of them point to
562 * the same kmem cache that holds the hugepte.
564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
565 #endif
566 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
567 addr, next, floor, ceiling);
569 } while (addr = next, addr != end);
572 struct page *
573 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
575 pte_t *ptep;
576 struct page *page;
577 unsigned shift;
578 unsigned long mask;
580 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
582 /* Verify it is a huge page else bail. */
583 if (!ptep || !shift)
584 return ERR_PTR(-EINVAL);
586 mask = (1UL << shift) - 1;
587 page = pte_page(*ptep);
588 if (page)
589 page += (address & mask) / PAGE_SIZE;
591 return page;
594 int pmd_huge(pmd_t pmd)
596 return 0;
599 int pud_huge(pud_t pud)
601 return 0;
604 struct page *
605 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
606 pmd_t *pmd, int write)
608 BUG();
609 return NULL;
612 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
613 unsigned long end, int write, struct page **pages, int *nr)
615 unsigned long mask;
616 unsigned long pte_end;
617 struct page *head, *page, *tail;
618 pte_t pte;
619 int refs;
621 pte_end = (addr + sz) & ~(sz-1);
622 if (pte_end < end)
623 end = pte_end;
625 pte = *ptep;
626 mask = _PAGE_PRESENT | _PAGE_USER;
627 if (write)
628 mask |= _PAGE_RW;
630 if ((pte_val(pte) & mask) != mask)
631 return 0;
633 /* hugepages are never "special" */
634 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
636 refs = 0;
637 head = pte_page(pte);
639 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
640 tail = page;
641 do {
642 VM_BUG_ON(compound_head(page) != head);
643 pages[*nr] = page;
644 (*nr)++;
645 page++;
646 refs++;
647 } while (addr += PAGE_SIZE, addr != end);
649 if (!page_cache_add_speculative(head, refs)) {
650 *nr -= refs;
651 return 0;
654 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
655 /* Could be optimized better */
656 *nr -= refs;
657 while (refs--)
658 put_page(head);
659 return 0;
663 * Any tail page need their mapcount reference taken before we
664 * return.
666 while (refs--) {
667 if (PageTail(tail))
668 get_huge_page_tail(tail);
669 tail++;
672 return 1;
675 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
676 unsigned long sz)
678 unsigned long __boundary = (addr + sz) & ~(sz-1);
679 return (__boundary - 1 < end - 1) ? __boundary : end;
682 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
683 unsigned long addr, unsigned long end,
684 int write, struct page **pages, int *nr)
686 pte_t *ptep;
687 unsigned long sz = 1UL << hugepd_shift(*hugepd);
688 unsigned long next;
690 ptep = hugepte_offset(hugepd, addr, pdshift);
691 do {
692 next = hugepte_addr_end(addr, end, sz);
693 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
694 return 0;
695 } while (ptep++, addr = next, addr != end);
697 return 1;
700 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
701 unsigned long len, unsigned long pgoff,
702 unsigned long flags)
704 #ifdef CONFIG_PPC_MM_SLICES
705 struct hstate *hstate = hstate_file(file);
706 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
708 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
709 #else
710 return get_unmapped_area(file, addr, len, pgoff, flags);
711 #endif
714 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
716 #ifdef CONFIG_PPC_MM_SLICES
717 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
719 return 1UL << mmu_psize_to_shift(psize);
720 #else
721 if (!is_vm_hugetlb_page(vma))
722 return PAGE_SIZE;
724 return huge_page_size(hstate_vma(vma));
725 #endif
728 static inline bool is_power_of_4(unsigned long x)
730 if (is_power_of_2(x))
731 return (__ilog2(x) % 2) ? false : true;
732 return false;
735 static int __init add_huge_page_size(unsigned long long size)
737 int shift = __ffs(size);
738 int mmu_psize;
740 /* Check that it is a page size supported by the hardware and
741 * that it fits within pagetable and slice limits. */
742 #ifdef CONFIG_PPC_FSL_BOOK3E
743 if ((size < PAGE_SIZE) || !is_power_of_4(size))
744 return -EINVAL;
745 #else
746 if (!is_power_of_2(size)
747 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
748 return -EINVAL;
749 #endif
751 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
752 return -EINVAL;
754 #ifdef CONFIG_SPU_FS_64K_LS
755 /* Disable support for 64K huge pages when 64K SPU local store
756 * support is enabled as the current implementation conflicts.
758 if (shift == PAGE_SHIFT_64K)
759 return -EINVAL;
760 #endif /* CONFIG_SPU_FS_64K_LS */
762 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
764 /* Return if huge page size has already been setup */
765 if (size_to_hstate(size))
766 return 0;
768 hugetlb_add_hstate(shift - PAGE_SHIFT);
770 return 0;
773 static int __init hugepage_setup_sz(char *str)
775 unsigned long long size;
777 size = memparse(str, &str);
779 if (add_huge_page_size(size) != 0)
780 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
782 return 1;
784 __setup("hugepagesz=", hugepage_setup_sz);
786 #ifdef CONFIG_FSL_BOOKE
787 struct kmem_cache *hugepte_cache;
788 static int __init hugetlbpage_init(void)
790 int psize;
792 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
793 unsigned shift;
795 if (!mmu_psize_defs[psize].shift)
796 continue;
798 shift = mmu_psize_to_shift(psize);
800 /* Don't treat normal page sizes as huge... */
801 if (shift != PAGE_SHIFT)
802 if (add_huge_page_size(1ULL << shift) < 0)
803 continue;
807 * Create a kmem cache for hugeptes. The bottom bits in the pte have
808 * size information encoded in them, so align them to allow this
810 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
811 HUGEPD_SHIFT_MASK + 1, 0, NULL);
812 if (hugepte_cache == NULL)
813 panic("%s: Unable to create kmem cache for hugeptes\n",
814 __func__);
816 /* Default hpage size = 4M */
817 if (mmu_psize_defs[MMU_PAGE_4M].shift)
818 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
819 else
820 panic("%s: Unable to set default huge page size\n", __func__);
823 return 0;
825 #else
826 static int __init hugetlbpage_init(void)
828 int psize;
830 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
831 return -ENODEV;
833 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
834 unsigned shift;
835 unsigned pdshift;
837 if (!mmu_psize_defs[psize].shift)
838 continue;
840 shift = mmu_psize_to_shift(psize);
842 if (add_huge_page_size(1ULL << shift) < 0)
843 continue;
845 if (shift < PMD_SHIFT)
846 pdshift = PMD_SHIFT;
847 else if (shift < PUD_SHIFT)
848 pdshift = PUD_SHIFT;
849 else
850 pdshift = PGDIR_SHIFT;
852 pgtable_cache_add(pdshift - shift, NULL);
853 if (!PGT_CACHE(pdshift - shift))
854 panic("hugetlbpage_init(): could not create "
855 "pgtable cache for %d bit pagesize\n", shift);
858 /* Set default large page size. Currently, we pick 16M or 1M
859 * depending on what is available
861 if (mmu_psize_defs[MMU_PAGE_16M].shift)
862 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
863 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
864 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
866 return 0;
868 #endif
869 module_init(hugetlbpage_init);
871 void flush_dcache_icache_hugepage(struct page *page)
873 int i;
874 void *start;
876 BUG_ON(!PageCompound(page));
878 for (i = 0; i < (1UL << compound_order(page)); i++) {
879 if (!PageHighMem(page)) {
880 __flush_dcache_icache(page_address(page+i));
881 } else {
882 start = kmap_atomic(page+i, KM_PPC_SYNC_ICACHE);
883 __flush_dcache_icache(start);
884 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);