2 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
4 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * This code is more or less generated from another driver, please
23 * excuse some codingstyle oddities.
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/mutex.h>
32 #include "dvb_frontend.h"
35 #include "dibx000_common.h"
38 module_param(debug
, int, 0644);
39 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
41 #define dprintk(args...) do { \
43 printk(KERN_DEBUG "DiB0090: "); \
49 #define CONFIG_SYS_DVBT
50 #define CONFIG_SYS_ISDBT
51 #define CONFIG_BAND_CBAND
52 #define CONFIG_BAND_VHF
53 #define CONFIG_BAND_UHF
54 #define CONFIG_DIB0090_USE_PWM_AGC
56 #define EN_LNA0 0x8000
57 #define EN_LNA1 0x4000
58 #define EN_LNA2 0x2000
59 #define EN_LNA3 0x1000
60 #define EN_MIX0 0x0800
61 #define EN_MIX1 0x0400
62 #define EN_MIX2 0x0200
63 #define EN_MIX3 0x0100
64 #define EN_IQADC 0x0040
69 #define EN_BIAS 0x0001
71 #define EN_IQANA 0x0002
72 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
73 #define EN_CRYSTAL 0x0002
81 /* Calibration defines */
85 #define CAPTRIM_CAL 0x8
87 #define KROSUS_PLL_LOCKED 0x800
90 /* Use those defines to identify SOC version */
92 #define SOC_7090_P1G_11R1 0x82
93 #define SOC_7090_P1G_21R1 0x8a
94 #define SOC_8090_P1G_11R1 0x86
95 #define SOC_8090_P1G_21R1 0x8e
97 /* else use thos ones to check */
104 #define MP001 0x1 /* Single 9090/8096 */
105 #define MP005 0x4 /* Single Sband */
106 #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
107 #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
109 #define pgm_read_word(w) (*w)
111 struct dc_calibration
;
113 struct dib0090_tuning
{
114 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
125 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
132 struct dib0090_identity
{
139 struct dib0090_state
{
140 struct i2c_adapter
*i2c
;
141 struct dvb_frontend
*fe
;
142 const struct dib0090_config
*config
;
145 enum frontend_tune_state tune_state
;
149 s16 wbd_target
; /* in dB */
151 s16 rf_gain_limit
; /* take-over-point: where to split between bb and rf gain */
152 s16 current_gain
; /* keeps the currently programmed gain */
153 u8 agc_step
; /* new binary search */
155 u16 gain
[2]; /* for channel monitoring */
160 /* for the software AGC ramps */
165 /* for the captrim/dc-offset search */
173 const struct dc_calibration
*dc
;
176 const struct dib0090_tuning
*current_tune_table_index
;
177 const struct dib0090_pll
*current_pll_table_index
;
182 struct dib0090_identity identity
;
192 u8 wbd_calibration_gain
;
193 const struct dib0090_wbd_slope
*current_wbd_table
;
196 /* for the I2C transfer */
197 struct i2c_msg msg
[2];
198 u8 i2c_write_buffer
[3];
199 u8 i2c_read_buffer
[2];
200 struct mutex i2c_buffer_lock
;
203 struct dib0090_fw_state
{
204 struct i2c_adapter
*i2c
;
205 struct dvb_frontend
*fe
;
206 struct dib0090_identity identity
;
207 const struct dib0090_config
*config
;
209 /* for the I2C transfer */
211 u8 i2c_write_buffer
[2];
212 u8 i2c_read_buffer
[2];
213 struct mutex i2c_buffer_lock
;
216 static u16
dib0090_read_reg(struct dib0090_state
*state
, u8 reg
)
220 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
221 dprintk("could not acquire lock");
225 state
->i2c_write_buffer
[0] = reg
;
227 memset(state
->msg
, 0, 2 * sizeof(struct i2c_msg
));
228 state
->msg
[0].addr
= state
->config
->i2c_address
;
229 state
->msg
[0].flags
= 0;
230 state
->msg
[0].buf
= state
->i2c_write_buffer
;
231 state
->msg
[0].len
= 1;
232 state
->msg
[1].addr
= state
->config
->i2c_address
;
233 state
->msg
[1].flags
= I2C_M_RD
;
234 state
->msg
[1].buf
= state
->i2c_read_buffer
;
235 state
->msg
[1].len
= 2;
237 if (i2c_transfer(state
->i2c
, state
->msg
, 2) != 2) {
238 printk(KERN_WARNING
"DiB0090 I2C read failed\n");
241 ret
= (state
->i2c_read_buffer
[0] << 8)
242 | state
->i2c_read_buffer
[1];
244 mutex_unlock(&state
->i2c_buffer_lock
);
248 static int dib0090_write_reg(struct dib0090_state
*state
, u32 reg
, u16 val
)
252 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
253 dprintk("could not acquire lock");
257 state
->i2c_write_buffer
[0] = reg
& 0xff;
258 state
->i2c_write_buffer
[1] = val
>> 8;
259 state
->i2c_write_buffer
[2] = val
& 0xff;
261 memset(state
->msg
, 0, sizeof(struct i2c_msg
));
262 state
->msg
[0].addr
= state
->config
->i2c_address
;
263 state
->msg
[0].flags
= 0;
264 state
->msg
[0].buf
= state
->i2c_write_buffer
;
265 state
->msg
[0].len
= 3;
267 if (i2c_transfer(state
->i2c
, state
->msg
, 1) != 1) {
268 printk(KERN_WARNING
"DiB0090 I2C write failed\n");
273 mutex_unlock(&state
->i2c_buffer_lock
);
277 static u16
dib0090_fw_read_reg(struct dib0090_fw_state
*state
, u8 reg
)
281 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
282 dprintk("could not acquire lock");
286 state
->i2c_write_buffer
[0] = reg
;
288 memset(&state
->msg
, 0, sizeof(struct i2c_msg
));
289 state
->msg
.addr
= reg
;
290 state
->msg
.flags
= I2C_M_RD
;
291 state
->msg
.buf
= state
->i2c_read_buffer
;
293 if (i2c_transfer(state
->i2c
, &state
->msg
, 1) != 1) {
294 printk(KERN_WARNING
"DiB0090 I2C read failed\n");
297 ret
= (state
->i2c_read_buffer
[0] << 8)
298 | state
->i2c_read_buffer
[1];
300 mutex_unlock(&state
->i2c_buffer_lock
);
304 static int dib0090_fw_write_reg(struct dib0090_fw_state
*state
, u8 reg
, u16 val
)
308 if (mutex_lock_interruptible(&state
->i2c_buffer_lock
) < 0) {
309 dprintk("could not acquire lock");
313 state
->i2c_write_buffer
[0] = val
>> 8;
314 state
->i2c_write_buffer
[1] = val
& 0xff;
316 memset(&state
->msg
, 0, sizeof(struct i2c_msg
));
317 state
->msg
.addr
= reg
;
318 state
->msg
.flags
= 0;
319 state
->msg
.buf
= state
->i2c_write_buffer
;
321 if (i2c_transfer(state
->i2c
, &state
->msg
, 1) != 1) {
322 printk(KERN_WARNING
"DiB0090 I2C write failed\n");
327 mutex_unlock(&state
->i2c_buffer_lock
);
331 #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
332 #define ADC_TARGET -220
336 static void dib0090_write_regs(struct dib0090_state
*state
, u8 r
, const u16
* b
, u8 c
)
339 dib0090_write_reg(state
, r
++, *b
++);
343 static int dib0090_identify(struct dvb_frontend
*fe
)
345 struct dib0090_state
*state
= fe
->tuner_priv
;
347 struct dib0090_identity
*identity
= &state
->identity
;
349 v
= dib0090_read_reg(state
, 0x1a);
352 identity
->in_soc
= 0;
354 dprintk("Tuner identification (Version = 0x%04x)", v
);
356 /* without PLL lock info */
357 v
&= ~KROSUS_PLL_LOCKED
;
359 identity
->version
= v
& 0xff;
360 identity
->product
= (v
>> 8) & 0xf;
362 if (identity
->product
!= KROSUS
)
363 goto identification_error
;
365 if ((identity
->version
& 0x3) == SOC
) {
366 identity
->in_soc
= 1;
367 switch (identity
->version
) {
368 case SOC_8090_P1G_11R1
:
369 dprintk("SOC 8090 P1-G11R1 Has been detected");
372 case SOC_8090_P1G_21R1
:
373 dprintk("SOC 8090 P1-G21R1 Has been detected");
376 case SOC_7090_P1G_11R1
:
377 dprintk("SOC 7090 P1-G11R1 Has been detected");
380 case SOC_7090_P1G_21R1
:
381 dprintk("SOC 7090 P1-G21R1 Has been detected");
385 goto identification_error
;
388 switch ((identity
->version
>> 5) & 0x7) {
390 dprintk("MP001 : 9090/8096");
393 dprintk("MP005 : Single Sband");
396 dprintk("MP008 : diversity VHF-UHF-LBAND");
399 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
402 goto identification_error
;
405 switch (identity
->version
& 0x1f) {
407 dprintk("P1G_21R2 detected");
411 dprintk("P1G detected");
415 dprintk("P1D/E/F detected");
418 dprintk("P1C detected");
421 dprintk("P1-A/B detected: driver is deactivated - not available");
422 goto identification_error
;
425 goto identification_error
;
431 identification_error
:
435 static int dib0090_fw_identify(struct dvb_frontend
*fe
)
437 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
438 struct dib0090_identity
*identity
= &state
->identity
;
440 u16 v
= dib0090_fw_read_reg(state
, 0x1a);
442 identity
->in_soc
= 0;
444 dprintk("FE: Tuner identification (Version = 0x%04x)", v
);
446 /* without PLL lock info */
447 v
&= ~KROSUS_PLL_LOCKED
;
449 identity
->version
= v
& 0xff;
450 identity
->product
= (v
>> 8) & 0xf;
452 if (identity
->product
!= KROSUS
)
453 goto identification_error
;
455 if ((identity
->version
& 0x3) == SOC
) {
456 identity
->in_soc
= 1;
457 switch (identity
->version
) {
458 case SOC_8090_P1G_11R1
:
459 dprintk("SOC 8090 P1-G11R1 Has been detected");
462 case SOC_8090_P1G_21R1
:
463 dprintk("SOC 8090 P1-G21R1 Has been detected");
466 case SOC_7090_P1G_11R1
:
467 dprintk("SOC 7090 P1-G11R1 Has been detected");
470 case SOC_7090_P1G_21R1
:
471 dprintk("SOC 7090 P1-G21R1 Has been detected");
475 goto identification_error
;
478 switch ((identity
->version
>> 5) & 0x7) {
480 dprintk("MP001 : 9090/8096");
483 dprintk("MP005 : Single Sband");
486 dprintk("MP008 : diversity VHF-UHF-LBAND");
489 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
492 goto identification_error
;
495 switch (identity
->version
& 0x1f) {
497 dprintk("P1G_21R2 detected");
501 dprintk("P1G detected");
505 dprintk("P1D/E/F detected");
508 dprintk("P1C detected");
511 dprintk("P1-A/B detected: driver is deactivated - not available");
512 goto identification_error
;
515 goto identification_error
;
521 identification_error
:
525 static void dib0090_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
527 struct dib0090_state
*state
= fe
->tuner_priv
;
532 dib0090_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
533 dib0090_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
536 /* adcClkOutRatio=8->7, release reset */
537 dib0090_write_reg(state
, 0x20, ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
538 if (cfg
->clkoutdrive
!= 0)
539 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
540 | (cfg
->clkoutdrive
<< 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
542 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
543 | (7 << 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
546 /* Read Pll current config * */
547 PllCfg
= dib0090_read_reg(state
, 0x21);
549 /** Reconfigure PLL if current setting is different from default setting **/
550 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && (!cfg
->in_soc
)
551 && !cfg
->io
.pll_bypass
) {
553 /* Set Bypass mode */
555 dib0090_write_reg(state
, 0x21, PllCfg
);
558 PllCfg
&= ~(1 << 13);
559 dib0090_write_reg(state
, 0x21, PllCfg
);
561 /*** Set new Pll configuration in bypass and reset state ***/
562 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
563 dib0090_write_reg(state
, 0x21, PllCfg
);
565 /* Remove Reset Pll */
567 dib0090_write_reg(state
, 0x21, PllCfg
);
569 /*** Wait for PLL lock ***/
572 v
= !!(dib0090_read_reg(state
, 0x1a) & 0x800);
578 dprintk("Pll: Unable to lock Pll");
582 /* Finally Remove Bypass mode */
583 PllCfg
&= ~(1 << 15);
584 dib0090_write_reg(state
, 0x21, PllCfg
);
587 if (cfg
->io
.pll_bypass
) {
588 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
589 dib0090_write_reg(state
, 0x21, PllCfg
);
593 static int dib0090_fw_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
595 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
600 dprintk("fw reset digital");
603 dib0090_fw_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
604 dib0090_fw_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
606 dib0090_fw_write_reg(state
, 0x20,
607 ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg
->data_tx_drv
<< 4) | cfg
->ls_cfg_pad_drv
);
609 v
= (0 << 15) | ((!cfg
->analog_output
) << 14) | (1 << 9) | (0 << 8) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0);
610 if (cfg
->clkoutdrive
!= 0)
611 v
|= cfg
->clkoutdrive
<< 5;
616 dib0090_fw_write_reg(state
, 0x23, v
);
618 /* Read Pll current config * */
619 PllCfg
= dib0090_fw_read_reg(state
, 0x21);
621 /** Reconfigure PLL if current setting is different from default setting **/
622 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && !cfg
->io
.pll_bypass
) {
624 /* Set Bypass mode */
626 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
629 PllCfg
&= ~(1 << 13);
630 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
632 /*** Set new Pll configuration in bypass and reset state ***/
633 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
634 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
636 /* Remove Reset Pll */
638 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
640 /*** Wait for PLL lock ***/
643 v
= !!(dib0090_fw_read_reg(state
, 0x1a) & 0x800);
649 dprintk("Pll: Unable to lock Pll");
653 /* Finally Remove Bypass mode */
654 PllCfg
&= ~(1 << 15);
655 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
658 if (cfg
->io
.pll_bypass
) {
659 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
660 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
663 return dib0090_fw_identify(fe
);
666 static int dib0090_wakeup(struct dvb_frontend
*fe
)
668 struct dib0090_state
*state
= fe
->tuner_priv
;
669 if (state
->config
->sleep
)
670 state
->config
->sleep(fe
, 0);
672 /* enable dataTX in case we have been restarted in the wrong moment */
673 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
677 static int dib0090_sleep(struct dvb_frontend
*fe
)
679 struct dib0090_state
*state
= fe
->tuner_priv
;
680 if (state
->config
->sleep
)
681 state
->config
->sleep(fe
, 1);
685 void dib0090_dcc_freq(struct dvb_frontend
*fe
, u8 fast
)
687 struct dib0090_state
*state
= fe
->tuner_priv
;
689 dib0090_write_reg(state
, 0x04, 0);
691 dib0090_write_reg(state
, 0x04, 1);
694 EXPORT_SYMBOL(dib0090_dcc_freq
);
696 static const u16 bb_ramp_pwm_normal_socs
[] = {
697 550, /* max BB gain in 10th of dB */
698 (1 << 9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
700 (4 << 9) | 0, /* BB_RAMP3 = 26dB */
701 (0 << 9) | 208, /* BB_RAMP4 */
702 (4 << 9) | 208, /* BB_RAMP5 = 29dB */
703 (0 << 9) | 440, /* BB_RAMP6 */
706 static const u16 rf_ramp_pwm_cband_7090
[] = {
707 280, /* max RF gain in 10th of dB */
708 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
709 504, /* ramp_max = maximum X used on the ramp */
710 (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
711 (0 << 10) | 504, /* RF_RAMP6, LNA 1 */
712 (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
713 (0 << 10) | 364, /* RF_RAMP8, LNA 2 */
714 (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
715 (0 << 10) | 228, /* GAIN_4_2, LNA 3 */
716 (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
717 (0 << 10) | 109, /* RF_RAMP4, LNA 4 */
720 static const u16 rf_ramp_pwm_cband_8090
[] = {
721 345, /* max RF gain in 10th of dB */
722 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
723 1000, /* ramp_max = maximum X used on the ramp */
724 (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
725 (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
726 (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
727 (0 << 10) | 772, /* RF_RAMP6, LNA 2 */
728 (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
729 (0 << 10) | 496, /* RF_RAMP8, LNA 3 */
730 (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
731 (0 << 10) | 200, /* GAIN_4_2, LNA 4 */
734 static const u16 rf_ramp_pwm_uhf_7090
[] = {
735 407, /* max RF gain in 10th of dB */
736 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
737 529, /* ramp_max = maximum X used on the ramp */
738 (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
739 (0 << 10) | 176, /* RF_RAMP4, LNA 1 */
740 (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
741 (0 << 10) | 529, /* RF_RAMP6, LNA 2 */
742 (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
743 (0 << 10) | 400, /* RF_RAMP8, LNA 3 */
744 (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
745 (0 << 10) | 316, /* GAIN_4_2, LNA 4 */
748 static const u16 rf_ramp_pwm_uhf_8090
[] = {
749 388, /* max RF gain in 10th of dB */
750 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
751 1008, /* ramp_max = maximum X used on the ramp */
752 (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
753 (0 << 10) | 369, /* RF_RAMP4, LNA 1 */
754 (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
755 (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
756 (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
757 (0 << 10) | 809, /* RF_RAMP8, LNA 3 */
758 (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
759 (0 << 10) | 659, /* GAIN_4_2, LNA 4 */
762 static const u16 rf_ramp_pwm_cband
[] = {
763 0, /* max RF gain in 10th of dB */
764 0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
765 0, /* ramp_max = maximum X used on the ramp */
766 (0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */
767 (0 << 10) | 0, /* 0x2d, LNA 1 */
768 (0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */
769 (0 << 10) | 0, /* 0x2f, LNA 2 */
770 (0 << 10) | 0, /* 0x30, LNA 3 = 0dB */
771 (0 << 10) | 0, /* 0x31, LNA 3 */
772 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
773 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
776 static const u16 rf_ramp_vhf
[] = {
777 412, /* max RF gain in 10th of dB */
778 132, 307, 127, /* LNA1, 13.2dB */
779 105, 412, 255, /* LNA2, 10.5dB */
780 50, 50, 127, /* LNA3, 5dB */
781 125, 175, 127, /* LNA4, 12.5dB */
782 0, 0, 127, /* CBAND, 0dB */
785 static const u16 rf_ramp_uhf
[] = {
786 412, /* max RF gain in 10th of dB */
787 132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */
788 105, 412, 255, /* LNA2 : 10.5 dB */
789 50, 50, 127, /* LNA3 : 5.0 dB */
790 125, 175, 127, /* LNA4 : 12.5 dB */
791 0, 0, 127, /* CBAND : 0.0 dB */
794 static const u16 rf_ramp_cband_broadmatching
[] = /* for p1G only */
796 314, /* Calibrated at 200MHz order has been changed g4-g3-g2-g1 */
797 84, 314, 127, /* LNA1 */
798 80, 230, 255, /* LNA2 */
799 80, 150, 127, /* LNA3 It was measured 12dB, do not lock if 120 */
800 70, 70, 127, /* LNA4 */
801 0, 0, 127, /* CBAND */
804 static const u16 rf_ramp_cband
[] = {
805 332, /* max RF gain in 10th of dB */
806 132, 252, 127, /* LNA1, dB */
807 80, 332, 255, /* LNA2, dB */
808 0, 0, 127, /* LNA3, dB */
809 0, 0, 127, /* LNA4, dB */
810 120, 120, 127, /* LT1 CBAND */
813 static const u16 rf_ramp_pwm_vhf
[] = {
814 404, /* max RF gain in 10th of dB */
815 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
816 1011, /* ramp_max = maximum X used on the ramp */
817 (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
818 (0 << 10) | 756, /* 0x2d, LNA 1 */
819 (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
820 (0 << 10) | 1011, /* 0x2f, LNA 2 */
821 (16 << 10) | 290, /* 0x30, LNA 3 = 5dB */
822 (0 << 10) | 417, /* 0x31, LNA 3 */
823 (7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */
824 (0 << 10) | 290, /* GAIN_4_2, LNA 4 */
827 static const u16 rf_ramp_pwm_uhf
[] = {
828 404, /* max RF gain in 10th of dB */
829 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
830 1011, /* ramp_max = maximum X used on the ramp */
831 (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
832 (0 << 10) | 756, /* 0x2d, LNA 1 */
833 (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
834 (0 << 10) | 1011, /* 0x2f, LNA 2 */
835 (16 << 10) | 0, /* 0x30, LNA 3 = 5dB */
836 (0 << 10) | 127, /* 0x31, LNA 3 */
837 (7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */
838 (0 << 10) | 417, /* GAIN_4_2, LNA 4 */
841 static const u16 bb_ramp_boost
[] = {
842 550, /* max BB gain in 10th of dB */
843 260, 260, 26, /* BB1, 26dB */
844 290, 550, 29, /* BB2, 29dB */
847 static const u16 bb_ramp_pwm_normal
[] = {
848 500, /* max RF gain in 10th of dB */
849 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */
851 (2 << 9) | 0, /* 0x35 = 21dB */
852 (0 << 9) | 168, /* 0x36 */
853 (2 << 9) | 168, /* 0x37 = 29dB */
854 (0 << 9) | 400, /* 0x38 */
861 static u16
slopes_to_scale(const struct slope
*slopes
, u8 num
, s16 val
)
866 for (i
= 0; i
< num
; i
++) {
867 if (val
> slopes
[i
].range
)
868 rest
= slopes
[i
].range
;
871 ret
+= (rest
* slopes
[i
].slope
) / slopes
[i
].range
;
877 static const struct slope dib0090_wbd_slopes
[3] = {
878 {66, 120}, /* -64,-52: offset - 65 */
879 {600, 170}, /* -52,-35: 65 - 665 */
880 {170, 250}, /* -45,-10: 665 - 835 */
883 static s16
dib0090_wbd_to_db(struct dib0090_state
*state
, u16 wbd
)
886 if (wbd
< state
->wbd_offset
)
889 wbd
-= state
->wbd_offset
;
890 /* -64dB is the floor */
891 return -640 + (s16
) slopes_to_scale(dib0090_wbd_slopes
, ARRAY_SIZE(dib0090_wbd_slopes
), wbd
);
894 static void dib0090_wbd_target(struct dib0090_state
*state
, u32 rf
)
898 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
900 if (state
->current_band
== BAND_VHF
)
902 #ifndef FIRMWARE_FIREFLY
903 if (state
->current_band
== BAND_VHF
)
904 offset
= state
->config
->wbd_vhf_offset
;
905 if (state
->current_band
== BAND_CBAND
)
906 offset
= state
->config
->wbd_cband_offset
;
909 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ offset
);
910 dprintk("wbd-target: %d dB", (u32
) state
->wbd_target
);
913 static const int gain_reg_addr
[4] = {
914 0x08, 0x0a, 0x0f, 0x01
917 static void dib0090_gain_apply(struct dib0090_state
*state
, s16 gain_delta
, s16 top_delta
, u8 force
)
920 u16 i
, v
, gain_reg
[4] = { 0 }, gain
;
923 if (top_delta
< -511)
929 top_delta
*= (1 << WBD_ALPHA
);
930 gain_delta
*= (1 << GAIN_ALPHA
);
933 if (top_delta
>= ((s16
) (state
->rf_ramp
[0] << WBD_ALPHA
) - state
->rf_gain_limit
)) /* overflow */
934 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
936 state
->rf_gain_limit
+= top_delta
;
938 if (state
->rf_gain_limit
< 0) /*underflow */
939 state
->rf_gain_limit
= 0;
941 /* use gain as a temporary variable and correct current_gain */
942 gain
= ((state
->rf_gain_limit
>> WBD_ALPHA
) + state
->bb_ramp
[0]) << GAIN_ALPHA
;
943 if (gain_delta
>= ((s16
) gain
- state
->current_gain
)) /* overflow */
944 state
->current_gain
= gain
;
946 state
->current_gain
+= gain_delta
;
947 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
948 if (state
->current_gain
< 0)
949 state
->current_gain
= 0;
951 /* now split total gain to rf and bb gain */
952 gain
= state
->current_gain
>> GAIN_ALPHA
;
954 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
955 if (gain
> (state
->rf_gain_limit
>> WBD_ALPHA
)) {
956 rf
= state
->rf_gain_limit
>> WBD_ALPHA
;
958 if (bb
> state
->bb_ramp
[0])
959 bb
= state
->bb_ramp
[0];
960 } else { /* high signal level -> all gains put on RF */
969 /* Start with RF gains */
970 g
= state
->rf_ramp
+ 1; /* point on RF LNA1 max gain */
972 for (i
= 0; i
< 7; i
++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
973 if (g
[0] == 0 || ref
< (g
[1] - g
[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
974 v
= 0; /* force the gain to write for the current amp to be null */
975 else if (ref
>= g
[1]) /* Gain to set is higher than the high working point of this amp */
976 v
= g
[2]; /* force this amp to be full gain */
977 else /* compute the value to set to this amp because we are somewhere in his range */
978 v
= ((ref
- (g
[1] - g
[0])) * g
[2]) / g
[0];
980 if (i
== 0) /* LNA 1 reg mapping */
982 else if (i
== 1) /* LNA 2 reg mapping */
983 gain_reg
[0] |= v
<< 7;
984 else if (i
== 2) /* LNA 3 reg mapping */
986 else if (i
== 3) /* LNA 4 reg mapping */
987 gain_reg
[1] |= v
<< 7;
988 else if (i
== 4) /* CBAND LNA reg mapping */
989 gain_reg
[2] = v
| state
->rf_lt_def
;
990 else if (i
== 5) /* BB gain 1 reg mapping */
991 gain_reg
[3] = v
<< 3;
992 else if (i
== 6) /* BB gain 2 reg mapping */
993 gain_reg
[3] |= v
<< 8;
995 g
+= 3; /* go to next gain bloc */
997 /* When RF is finished, start with BB */
999 g
= state
->bb_ramp
+ 1; /* point on BB gain 1 max gain */
1003 gain_reg
[3] |= state
->bb_1_def
;
1004 gain_reg
[3] |= ((bb
% 10) * 100) / 125;
1007 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf
, bb
, rf
+ bb
,
1008 gain_reg
[0], gain_reg
[1], gain_reg
[2], gain_reg
[3]);
1011 /* Write the amplifier regs */
1012 for (i
= 0; i
< 4; i
++) {
1014 if (force
|| state
->gain_reg
[i
] != v
) {
1015 state
->gain_reg
[i
] = v
;
1016 dib0090_write_reg(state
, gain_reg_addr
[i
], v
);
1021 static void dib0090_set_boost(struct dib0090_state
*state
, int onoff
)
1023 state
->bb_1_def
&= 0xdfff;
1024 state
->bb_1_def
|= onoff
<< 13;
1027 static void dib0090_set_rframp(struct dib0090_state
*state
, const u16
* cfg
)
1029 state
->rf_ramp
= cfg
;
1032 static void dib0090_set_rframp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
1034 state
->rf_ramp
= cfg
;
1036 dib0090_write_reg(state
, 0x2a, 0xffff);
1038 dprintk("total RF gain: %ddB, step: %d", (u32
) cfg
[0], dib0090_read_reg(state
, 0x2a));
1040 dib0090_write_regs(state
, 0x2c, cfg
+ 3, 6);
1041 dib0090_write_regs(state
, 0x3e, cfg
+ 9, 2);
1044 static void dib0090_set_bbramp(struct dib0090_state
*state
, const u16
* cfg
)
1046 state
->bb_ramp
= cfg
;
1047 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
1050 static void dib0090_set_bbramp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
1052 state
->bb_ramp
= cfg
;
1054 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
1056 dib0090_write_reg(state
, 0x33, 0xffff);
1057 dprintk("total BB gain: %ddB, step: %d", (u32
) cfg
[0], dib0090_read_reg(state
, 0x33));
1058 dib0090_write_regs(state
, 0x35, cfg
+ 3, 4);
1061 void dib0090_pwm_gain_reset(struct dvb_frontend
*fe
)
1063 struct dib0090_state
*state
= fe
->tuner_priv
;
1066 if (state
->config
->use_pwm_agc
) {
1067 #ifdef CONFIG_BAND_SBAND
1068 if (state
->current_band
== BAND_SBAND
) {
1069 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_sband
);
1070 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_boost
);
1073 #ifdef CONFIG_BAND_CBAND
1074 if (state
->current_band
== BAND_CBAND
) {
1075 if (state
->identity
.in_soc
) {
1076 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
1077 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1078 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband_8090
);
1079 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1080 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband_7090
);
1082 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband
);
1083 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1087 #ifdef CONFIG_BAND_VHF
1088 if (state
->current_band
== BAND_VHF
) {
1089 if (state
->identity
.in_soc
) {
1090 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
1092 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_vhf
);
1093 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1098 if (state
->identity
.in_soc
) {
1099 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1100 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf_8090
);
1101 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1102 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf_7090
);
1103 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
1105 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf
);
1106 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1110 if (state
->rf_ramp
[0] != 0)
1111 dib0090_write_reg(state
, 0x32, (3 << 11));
1113 dib0090_write_reg(state
, 0x32, (0 << 11));
1115 dib0090_write_reg(state
, 0x04, 0x01);
1116 dib0090_write_reg(state
, 0x39, (1 << 10));
1120 EXPORT_SYMBOL(dib0090_pwm_gain_reset
);
1122 static u32
dib0090_get_slow_adc_val(struct dib0090_state
*state
)
1124 u16 adc_val
= dib0090_read_reg(state
, 0x1d);
1125 if (state
->identity
.in_soc
)
1130 int dib0090_gain_control(struct dvb_frontend
*fe
)
1132 struct dib0090_state
*state
= fe
->tuner_priv
;
1133 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
1137 u8 apply_gain_immediatly
= 1;
1138 s16 wbd_error
= 0, adc_error
= 0;
1140 if (*tune_state
== CT_AGC_START
) {
1141 state
->agc_freeze
= 0;
1142 dib0090_write_reg(state
, 0x04, 0x0);
1144 #ifdef CONFIG_BAND_SBAND
1145 if (state
->current_band
== BAND_SBAND
) {
1146 dib0090_set_rframp(state
, rf_ramp_sband
);
1147 dib0090_set_bbramp(state
, bb_ramp_boost
);
1150 #ifdef CONFIG_BAND_VHF
1151 if (state
->current_band
== BAND_VHF
&& !state
->identity
.p1g
) {
1152 dib0090_set_rframp(state
, rf_ramp_vhf
);
1153 dib0090_set_bbramp(state
, bb_ramp_boost
);
1156 #ifdef CONFIG_BAND_CBAND
1157 if (state
->current_band
== BAND_CBAND
&& !state
->identity
.p1g
) {
1158 dib0090_set_rframp(state
, rf_ramp_cband
);
1159 dib0090_set_bbramp(state
, bb_ramp_boost
);
1162 if ((state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) && state
->identity
.p1g
) {
1163 dib0090_set_rframp(state
, rf_ramp_cband_broadmatching
);
1164 dib0090_set_bbramp(state
, bb_ramp_boost
);
1166 dib0090_set_rframp(state
, rf_ramp_uhf
);
1167 dib0090_set_bbramp(state
, bb_ramp_boost
);
1170 dib0090_write_reg(state
, 0x32, 0);
1171 dib0090_write_reg(state
, 0x39, 0);
1173 dib0090_wbd_target(state
, state
->current_rf
);
1175 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
1176 state
->current_gain
= ((state
->rf_ramp
[0] + state
->bb_ramp
[0]) / 2) << GAIN_ALPHA
;
1178 *tune_state
= CT_AGC_STEP_0
;
1179 } else if (!state
->agc_freeze
) {
1180 s16 wbd
= 0, i
, cnt
;
1183 wbd_val
= dib0090_get_slow_adc_val(state
);
1185 if (*tune_state
== CT_AGC_STEP_0
)
1190 for (i
= 0; i
< cnt
; i
++) {
1191 wbd_val
= dib0090_get_slow_adc_val(state
);
1192 wbd
+= dib0090_wbd_to_db(state
, wbd_val
);
1195 wbd_error
= state
->wbd_target
- wbd
;
1197 if (*tune_state
== CT_AGC_STEP_0
) {
1198 if (wbd_error
< 0 && state
->rf_gain_limit
> 0 && !state
->identity
.p1g
) {
1199 #ifdef CONFIG_BAND_CBAND
1200 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1201 u8 ltg2
= (state
->rf_lt_def
>> 10) & 0x7;
1202 if (state
->current_band
== BAND_CBAND
&& ltg2
) {
1204 state
->rf_lt_def
&= ltg2
<< 10; /* reduce in 3 steps from 7 to 0 */
1208 state
->agc_step
= 0;
1209 *tune_state
= CT_AGC_STEP_1
;
1212 /* calc the adc power */
1213 adc
= state
->config
->get_adc_power(fe
);
1214 adc
= (adc
* ((s32
) 355774) + (((s32
) 1) << 20)) >> 21; /* included in [0:-700] */
1216 adc_error
= (s16
) (((s32
) ADC_TARGET
) - adc
);
1217 #ifdef CONFIG_STANDARD_DAB
1218 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
)
1221 #ifdef CONFIG_STANDARD_DVBT
1222 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DVBT
&&
1223 (state
->fe
->dtv_property_cache
.modulation
== QAM_64
|| state
->fe
->dtv_property_cache
.modulation
== QAM_16
))
1226 #ifdef CONFIG_SYS_ISDBT
1227 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
) && (((state
->fe
->dtv_property_cache
.layer
[0].segment_count
>
1230 ((state
->fe
->dtv_property_cache
.layer
[0].modulation
==
1232 || (state
->fe
->dtv_property_cache
.
1233 layer
[0].modulation
== QAM_16
)))
1235 ((state
->fe
->dtv_property_cache
.layer
[1].segment_count
>
1238 ((state
->fe
->dtv_property_cache
.layer
[1].modulation
==
1240 || (state
->fe
->dtv_property_cache
.
1241 layer
[1].modulation
== QAM_16
)))
1243 ((state
->fe
->dtv_property_cache
.layer
[2].segment_count
>
1246 ((state
->fe
->dtv_property_cache
.layer
[2].modulation
==
1248 || (state
->fe
->dtv_property_cache
.
1249 layer
[2].modulation
== QAM_16
)))
1255 if (*tune_state
== CT_AGC_STEP_1
) { /* quickly go to the correct range of the ADC power */
1256 if (ABS(adc_error
) < 50 || state
->agc_step
++ > 5) {
1258 #ifdef CONFIG_STANDARD_DAB
1259 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
) {
1260 dib0090_write_reg(state
, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1261 dib0090_write_reg(state
, 0x04, 0x0);
1265 dib0090_write_reg(state
, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1266 dib0090_write_reg(state
, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1269 *tune_state
= CT_AGC_STOP
;
1272 /* everything higher than or equal to CT_AGC_STOP means tracking */
1273 ret
= 100; /* 10ms interval */
1274 apply_gain_immediatly
= 0;
1279 ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1280 (u32
) *tune_state
, (u32
) adc
, (u32
) adc_error
, (u32
) wbd
, (u32
) wbd_error
, (u32
) wbd_val
,
1281 (u32
) state
->rf_gain_limit
>> WBD_ALPHA
, (s32
) 200 + adc
- (state
->current_gain
>> GAIN_ALPHA
));
1286 if (!state
->agc_freeze
)
1287 dib0090_gain_apply(state
, adc_error
, wbd_error
, apply_gain_immediatly
);
1291 EXPORT_SYMBOL(dib0090_gain_control
);
1293 void dib0090_get_current_gain(struct dvb_frontend
*fe
, u16
* rf
, u16
* bb
, u16
* rf_gain_limit
, u16
* rflt
)
1295 struct dib0090_state
*state
= fe
->tuner_priv
;
1297 *rf
= state
->gain
[0];
1299 *bb
= state
->gain
[1];
1301 *rf_gain_limit
= state
->rf_gain_limit
;
1303 *rflt
= (state
->rf_lt_def
>> 10) & 0x7;
1306 EXPORT_SYMBOL(dib0090_get_current_gain
);
1308 u16
dib0090_get_wbd_offset(struct dvb_frontend
*fe
)
1310 struct dib0090_state
*state
= fe
->tuner_priv
;
1311 u32 f_MHz
= state
->fe
->dtv_property_cache
.frequency
/ 1000000;
1312 s32 current_temp
= state
->temperature
;
1313 s32 wbd_thot
, wbd_tcold
;
1314 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1316 while (f_MHz
> wbd
->max_freq
)
1319 dprintk("using wbd-table-entry with max freq %d", wbd
->max_freq
);
1321 if (current_temp
< 0)
1323 if (current_temp
> 128)
1326 state
->wbdmux
&= ~(7 << 13);
1327 if (wbd
->wbd_gain
!= 0)
1328 state
->wbdmux
|= (wbd
->wbd_gain
<< 13);
1330 state
->wbdmux
|= (4 << 13);
1332 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
1334 wbd_thot
= wbd
->offset_hot
- (((u32
) wbd
->slope_hot
* f_MHz
) >> 6);
1335 wbd_tcold
= wbd
->offset_cold
- (((u32
) wbd
->slope_cold
* f_MHz
) >> 6);
1337 wbd_tcold
+= ((wbd_thot
- wbd_tcold
) * current_temp
) >> 7;
1339 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ wbd_tcold
);
1340 dprintk("wbd-target: %d dB", (u32
) state
->wbd_target
);
1341 dprintk("wbd offset applied is %d", wbd_tcold
);
1343 return state
->wbd_offset
+ wbd_tcold
;
1346 EXPORT_SYMBOL(dib0090_get_wbd_offset
);
1348 static const u16 dib0090_defaults
[] = {
1388 EN_UHF
| EN_CRYSTAL
,
1396 static const u16 dib0090_p1g_additionnal_defaults
[] = {
1411 static void dib0090_set_default_config(struct dib0090_state
*state
, const u16
* n
)
1415 l
= pgm_read_word(n
++);
1417 r
= pgm_read_word(n
++);
1419 dib0090_write_reg(state
, r
, pgm_read_word(n
++));
1422 l
= pgm_read_word(n
++);
1426 #define CAP_VALUE_MIN (u8) 9
1427 #define CAP_VALUE_MAX (u8) 40
1428 #define HR_MIN (u8) 25
1429 #define HR_MAX (u8) 40
1430 #define POLY_MIN (u8) 0
1431 #define POLY_MAX (u8) 8
1433 void dib0090_set_EFUSE(struct dib0090_state
*state
)
1439 e2
= dib0090_read_reg(state
, 0x26);
1440 e4
= dib0090_read_reg(state
, 0x28);
1442 if ((state
->identity
.version
== P1D_E_F
) ||
1443 (state
->identity
.version
== P1G
) || (e2
== 0xffff)) {
1445 dib0090_write_reg(state
, 0x22, 0x10);
1446 cal
= (dib0090_read_reg(state
, 0x22) >> 6) & 0x3ff;
1448 if ((cal
< 670) || (cal
== 1023))
1450 n
= 165 - ((cal
* 10)>>6) ;
1451 e2
= e4
= (3<<12) | (34<<6) | (n
);
1455 e2
&= e4
; /* Remove the redundancy */
1459 n
= (e2
>> 12) & 0xf;
1460 h
= (e2
>> 6) & 0x3f;
1462 if ((c
>= CAP_VALUE_MAX
) || (c
<= CAP_VALUE_MIN
))
1464 if ((h
>= HR_MAX
) || (h
<= HR_MIN
))
1466 if ((n
>= POLY_MAX
) || (n
<= POLY_MIN
))
1469 dib0090_write_reg(state
, 0x13, (h
<< 10)) ;
1470 e2
= (n
<<11) | ((h
>>2)<<6) | (c
);
1471 dib0090_write_reg(state
, 0x2, e2
) ; /* Load the BB_2 */
1475 static int dib0090_reset(struct dvb_frontend
*fe
)
1477 struct dib0090_state
*state
= fe
->tuner_priv
;
1479 dib0090_reset_digital(fe
, state
->config
);
1480 if (dib0090_identify(fe
) < 0)
1483 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1484 if (!(state
->identity
.version
& 0x1)) /* it is P1B - reset is already done */
1488 if (!state
->identity
.in_soc
) {
1489 if ((dib0090_read_reg(state
, 0x1a) >> 5) & 0x2)
1490 dib0090_write_reg(state
, 0x1b, (EN_IQADC
| EN_BB
| EN_BIAS
| EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1492 dib0090_write_reg(state
, 0x1b, (EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1495 dib0090_set_default_config(state
, dib0090_defaults
);
1497 if (state
->identity
.in_soc
)
1498 dib0090_write_reg(state
, 0x18, 0x2910); /* charge pump current = 0 */
1500 if (state
->identity
.p1g
)
1501 dib0090_set_default_config(state
, dib0090_p1g_additionnal_defaults
);
1503 /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
1504 if (((state
->identity
.version
& 0x1f) >= P1D_E_F
) || (state
->identity
.in_soc
))
1505 dib0090_set_EFUSE(state
);
1507 /* Congigure in function of the crystal */
1508 if (state
->config
->io
.clock_khz
>= 24000)
1509 dib0090_write_reg(state
, 0x14, 1);
1511 dib0090_write_reg(state
, 0x14, 2);
1512 dprintk("Pll lock : %d", (dib0090_read_reg(state
, 0x1a) >> 11) & 0x1);
1514 state
->calibrate
= DC_CAL
| WBD_CAL
| TEMP_CAL
; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
1519 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1520 #define INTERN_WAIT 10
1521 static int dib0090_get_offset(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1523 int ret
= INTERN_WAIT
* 10;
1525 switch (*tune_state
) {
1526 case CT_TUNER_STEP_2
:
1527 /* Turns to positive */
1528 dib0090_write_reg(state
, 0x1f, 0x7);
1529 *tune_state
= CT_TUNER_STEP_3
;
1532 case CT_TUNER_STEP_3
:
1533 state
->adc_diff
= dib0090_read_reg(state
, 0x1d);
1535 /* Turns to negative */
1536 dib0090_write_reg(state
, 0x1f, 0x4);
1537 *tune_state
= CT_TUNER_STEP_4
;
1540 case CT_TUNER_STEP_4
:
1541 state
->adc_diff
-= dib0090_read_reg(state
, 0x1d);
1542 *tune_state
= CT_TUNER_STEP_5
;
1553 struct dc_calibration
{
1561 static const struct dc_calibration dc_table
[] = {
1562 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1563 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1564 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1565 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1566 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1567 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1571 static const struct dc_calibration dc_p1g_table
[] = {
1572 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1573 /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1574 {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1575 {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
1576 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1577 {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1578 {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
1582 static void dib0090_set_trim(struct dib0090_state
*state
)
1586 if (state
->dc
->addr
== 0x07)
1591 *val
&= ~(0x1f << state
->dc
->offset
);
1592 *val
|= state
->step
<< state
->dc
->offset
;
1594 dib0090_write_reg(state
, state
->dc
->addr
, *val
);
1597 static int dib0090_dc_offset_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1602 switch (*tune_state
) {
1603 case CT_TUNER_START
:
1604 dprintk("Start DC offset calibration");
1606 /* force vcm2 = 0.8V */
1608 state
->bb7
= 0x040d;
1610 /* the LNA AND LO are off */
1611 reg
= dib0090_read_reg(state
, 0x24) & 0x0ffb; /* shutdown lna and lo */
1612 dib0090_write_reg(state
, 0x24, reg
);
1614 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
1615 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x7 << 3) | 0x3);
1616 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
1618 state
->dc
= dc_table
;
1620 if (state
->identity
.p1g
)
1621 state
->dc
= dc_p1g_table
;
1622 *tune_state
= CT_TUNER_STEP_0
;
1626 case CT_TUNER_STEP_0
:
1627 dprintk("Sart/continue DC calibration for %s path", (state
->dc
->i
== 1) ? "I" : "Q");
1628 dib0090_write_reg(state
, 0x01, state
->dc
->bb1
);
1629 dib0090_write_reg(state
, 0x07, state
->bb7
| (state
->dc
->i
<< 7));
1632 state
->min_adc_diff
= 1023;
1633 *tune_state
= CT_TUNER_STEP_1
;
1637 case CT_TUNER_STEP_1
:
1638 dib0090_set_trim(state
);
1639 *tune_state
= CT_TUNER_STEP_2
;
1642 case CT_TUNER_STEP_2
:
1643 case CT_TUNER_STEP_3
:
1644 case CT_TUNER_STEP_4
:
1645 ret
= dib0090_get_offset(state
, tune_state
);
1648 case CT_TUNER_STEP_5
: /* found an offset */
1649 dprintk("adc_diff = %d, current step= %d", (u32
) state
->adc_diff
, state
->step
);
1650 if (state
->step
== 0 && state
->adc_diff
< 0) {
1651 state
->min_adc_diff
= -1023;
1652 dprintk("Change of sign of the minimum adc diff");
1655 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state
->adc_diff
, state
->min_adc_diff
, state
->step
);
1657 /* first turn for this frequency */
1658 if (state
->step
== 0) {
1659 if (state
->dc
->pga
&& state
->adc_diff
< 0)
1661 if (state
->dc
->pga
== 0 && state
->adc_diff
> 0)
1665 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1666 if ((state
->adc_diff
& 0x8000) == (state
->min_adc_diff
& 0x8000) && steps(state
->step
) < 15) {
1667 /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1669 state
->min_adc_diff
= state
->adc_diff
;
1670 *tune_state
= CT_TUNER_STEP_1
;
1672 /* the minimum was what we have seen in the step before */
1673 if (ABS(state
->adc_diff
) > ABS(state
->min_adc_diff
)) {
1674 dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step", state
->adc_diff
, state
->min_adc_diff
);
1678 dib0090_set_trim(state
);
1679 dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state
->dc
->addr
, state
->adc_diff
, state
->step
);
1682 if (state
->dc
->addr
== 0) /* done */
1683 *tune_state
= CT_TUNER_STEP_6
;
1685 *tune_state
= CT_TUNER_STEP_0
;
1690 case CT_TUNER_STEP_6
:
1691 dib0090_write_reg(state
, 0x07, state
->bb7
& ~0x0008);
1692 dib0090_write_reg(state
, 0x1f, 0x7);
1693 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1694 state
->calibrate
&= ~DC_CAL
;
1701 static int dib0090_wbd_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1704 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1706 switch (*tune_state
) {
1707 case CT_TUNER_START
:
1708 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
1710 if (wbd
->wbd_gain
!= 0)
1711 wbd_gain
= wbd
->wbd_gain
;
1714 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1715 if ((state
->current_band
== BAND_LBAND
) || (state
->current_band
== BAND_SBAND
))
1720 if (wbd_gain
== state
->wbd_calibration_gain
) { /* the WBD calibration has already been done */
1721 *tune_state
= CT_TUNER_START
;
1722 state
->calibrate
&= ~WBD_CAL
;
1726 dib0090_write_reg(state
, 0x10, 0x1b81 | (1 << 10) | (wbd_gain
<< 13) | (1 << 3));
1728 dib0090_write_reg(state
, 0x24, ((EN_UHF
& 0x0fff) | (1 << 1)));
1729 *tune_state
= CT_TUNER_STEP_0
;
1730 state
->wbd_calibration_gain
= wbd_gain
;
1731 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
1733 case CT_TUNER_STEP_0
:
1734 state
->wbd_offset
= dib0090_get_slow_adc_val(state
);
1735 dprintk("WBD calibration offset = %d", state
->wbd_offset
);
1736 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1737 state
->calibrate
&= ~WBD_CAL
;
1746 static void dib0090_set_bandwidth(struct dib0090_state
*state
)
1750 if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 5000)
1752 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 6000)
1754 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 7000)
1759 state
->bb_1_def
&= 0x3fff;
1760 state
->bb_1_def
|= tmp
;
1762 dib0090_write_reg(state
, 0x01, state
->bb_1_def
); /* be sure that we have the right bb-filter */
1764 dib0090_write_reg(state
, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1765 dib0090_write_reg(state
, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1766 if (state
->identity
.in_soc
) {
1767 dib0090_write_reg(state
, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1769 dib0090_write_reg(state
, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
1770 dib0090_write_reg(state
, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1774 static const struct dib0090_pll dib0090_pll_table
[] = {
1775 #ifdef CONFIG_BAND_CBAND
1776 {56000, 0, 9, 48, 6},
1777 {70000, 1, 9, 48, 6},
1778 {87000, 0, 8, 32, 4},
1779 {105000, 1, 8, 32, 4},
1780 {115000, 0, 7, 24, 6},
1781 {140000, 1, 7, 24, 6},
1782 {170000, 0, 6, 16, 4},
1784 #ifdef CONFIG_BAND_VHF
1785 {200000, 1, 6, 16, 4},
1786 {230000, 0, 5, 12, 6},
1787 {280000, 1, 5, 12, 6},
1788 {340000, 0, 4, 8, 4},
1789 {380000, 1, 4, 8, 4},
1790 {450000, 0, 3, 6, 6},
1792 #ifdef CONFIG_BAND_UHF
1793 {580000, 1, 3, 6, 6},
1794 {700000, 0, 2, 4, 4},
1795 {860000, 1, 2, 4, 4},
1797 #ifdef CONFIG_BAND_LBAND
1798 {1800000, 1, 0, 2, 4},
1800 #ifdef CONFIG_BAND_SBAND
1801 {2900000, 0, 14, 1, 4},
1805 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband
[] = {
1807 #ifdef CONFIG_BAND_CBAND
1808 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1809 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1810 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1812 #ifdef CONFIG_BAND_UHF
1813 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1814 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1815 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1816 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1817 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1818 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1820 #ifdef CONFIG_BAND_LBAND
1821 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1822 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1823 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1825 #ifdef CONFIG_BAND_SBAND
1826 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1827 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1831 static const struct dib0090_tuning dib0090_tuning_table
[] = {
1833 #ifdef CONFIG_BAND_CBAND
1834 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1836 #ifdef CONFIG_BAND_VHF
1837 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1838 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1839 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1841 #ifdef CONFIG_BAND_UHF
1842 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1843 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1844 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1845 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1846 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1847 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1849 #ifdef CONFIG_BAND_LBAND
1850 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1851 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1852 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1854 #ifdef CONFIG_BAND_SBAND
1855 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1856 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1860 static const struct dib0090_tuning dib0090_p1g_tuning_table
[] = {
1861 #ifdef CONFIG_BAND_CBAND
1862 {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB
},
1864 #ifdef CONFIG_BAND_VHF
1865 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1866 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1867 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1869 #ifdef CONFIG_BAND_UHF
1870 {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1871 {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1872 {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1873 {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1874 {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1875 {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1876 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1878 #ifdef CONFIG_BAND_LBAND
1879 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1880 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1881 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1883 #ifdef CONFIG_BAND_SBAND
1884 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1885 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1889 static const struct dib0090_pll dib0090_p1g_pll_table
[] = {
1890 #ifdef CONFIG_BAND_CBAND
1891 {57000, 0, 11, 48, 6},
1892 {70000, 1, 11, 48, 6},
1893 {86000, 0, 10, 32, 4},
1894 {105000, 1, 10, 32, 4},
1895 {115000, 0, 9, 24, 6},
1896 {140000, 1, 9, 24, 6},
1897 {170000, 0, 8, 16, 4},
1899 #ifdef CONFIG_BAND_VHF
1900 {200000, 1, 8, 16, 4},
1901 {230000, 0, 7, 12, 6},
1902 {280000, 1, 7, 12, 6},
1903 {340000, 0, 6, 8, 4},
1904 {380000, 1, 6, 8, 4},
1905 {455000, 0, 5, 6, 6},
1907 #ifdef CONFIG_BAND_UHF
1908 {580000, 1, 5, 6, 6},
1909 {680000, 0, 4, 4, 4},
1910 {860000, 1, 4, 4, 4},
1912 #ifdef CONFIG_BAND_LBAND
1913 {1800000, 1, 2, 2, 4},
1915 #ifdef CONFIG_BAND_SBAND
1916 {2900000, 0, 1, 1, 6},
1920 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband
[] = {
1921 #ifdef CONFIG_BAND_CBAND
1922 {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1923 {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1924 {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1926 #ifdef CONFIG_BAND_UHF
1927 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1928 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1929 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1930 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1931 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1932 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1934 #ifdef CONFIG_BAND_LBAND
1935 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1936 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1937 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1939 #ifdef CONFIG_BAND_SBAND
1940 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1941 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1945 static const struct dib0090_tuning dib0090_tuning_table_cband_7090
[] = {
1946 #ifdef CONFIG_BAND_CBAND
1947 {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1948 {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1949 {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1950 {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1954 static int dib0090_captrim_search(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1962 u8 force_soft_search
= 0;
1964 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1965 force_soft_search
= 1;
1967 if (*tune_state
== CT_TUNER_START
) {
1968 dprintk("Start Captrim search : %s", (force_soft_search
== 1) ? "FORCE SOFT SEARCH" : "AUTO");
1969 dib0090_write_reg(state
, 0x10, 0x2B1);
1970 dib0090_write_reg(state
, 0x1e, 0x0032);
1972 if (!state
->tuner_is_tuned
) {
1973 /* prepare a complete captrim */
1974 if (!state
->identity
.p1g
|| force_soft_search
)
1975 state
->step
= state
->captrim
= state
->fcaptrim
= 64;
1977 state
->current_rf
= state
->rf_request
;
1978 } else { /* we are already tuned to this frequency - the configuration is correct */
1979 if (!state
->identity
.p1g
|| force_soft_search
) {
1980 /* do a minimal captrim even if the frequency has not changed */
1982 state
->captrim
= state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7f;
1985 state
->adc_diff
= 3000;
1986 *tune_state
= CT_TUNER_STEP_0
;
1988 } else if (*tune_state
== CT_TUNER_STEP_0
) {
1989 if (state
->identity
.p1g
&& !force_soft_search
) {
1992 dib0090_write_reg(state
, 0x40, (3 << 7) | (ratio
<< 2) | (1 << 1) | 1);
1993 dib0090_read_reg(state
, 0x40);
1997 dib0090_write_reg(state
, 0x18, lo4
| state
->captrim
);
1999 if (state
->identity
.in_soc
)
2002 *tune_state
= CT_TUNER_STEP_1
;
2004 } else if (*tune_state
== CT_TUNER_STEP_1
) {
2005 if (state
->identity
.p1g
&& !force_soft_search
) {
2006 dib0090_write_reg(state
, 0x40, 0x18c | (0 << 1) | 0);
2007 dib0090_read_reg(state
, 0x40);
2009 state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7F;
2010 dprintk("***Final Captrim= 0x%x", state
->fcaptrim
);
2011 *tune_state
= CT_TUNER_STEP_3
;
2014 /* MERGE for all krosus before P1G */
2015 adc
= dib0090_get_slow_adc_val(state
);
2016 dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32
) state
->captrim
, (u32
) adc
, (u32
) (adc
) * (u32
) 1800 / (u32
) 1024);
2018 if (state
->rest
== 0 || state
->identity
.in_soc
) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
2023 if (adc
>= adc_target
) {
2027 adc
= adc_target
- adc
;
2031 if (adc
< state
->adc_diff
) {
2032 dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32
) state
->captrim
, (u32
) adc
, (u32
) state
->adc_diff
);
2033 state
->adc_diff
= adc
;
2034 state
->fcaptrim
= state
->captrim
;
2037 state
->captrim
+= step_sign
* state
->step
;
2038 if (state
->step
>= 1)
2039 *tune_state
= CT_TUNER_STEP_0
;
2041 *tune_state
= CT_TUNER_STEP_2
;
2045 } else if (*tune_state
== CT_TUNER_STEP_2
) { /* this step is only used by krosus < P1G */
2046 /*write the final cptrim config */
2047 dib0090_write_reg(state
, 0x18, lo4
| state
->fcaptrim
);
2049 *tune_state
= CT_TUNER_STEP_3
;
2051 } else if (*tune_state
== CT_TUNER_STEP_3
) {
2052 state
->calibrate
&= ~CAPTRIM_CAL
;
2053 *tune_state
= CT_TUNER_STEP_0
;
2059 static int dib0090_get_temperature(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
2064 switch (*tune_state
) {
2065 case CT_TUNER_START
:
2066 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
2067 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x8 << 3));
2069 state
->bias
= dib0090_read_reg(state
, 0x13);
2070 dib0090_write_reg(state
, 0x13, state
->bias
| (0x3 << 8));
2072 *tune_state
= CT_TUNER_STEP_0
;
2073 /* wait for the WBDMUX to switch and for the ADC to sample */
2076 case CT_TUNER_STEP_0
:
2077 state
->adc_diff
= dib0090_get_slow_adc_val(state
);
2078 dib0090_write_reg(state
, 0x13, (state
->bias
& ~(0x3 << 8)) | (0x2 << 8));
2079 *tune_state
= CT_TUNER_STEP_1
;
2082 case CT_TUNER_STEP_1
:
2083 val
= dib0090_get_slow_adc_val(state
);
2084 state
->temperature
= ((s16
) ((val
- state
->adc_diff
) * 180) >> 8) + 55;
2086 dprintk("temperature: %d C", state
->temperature
- 30);
2088 *tune_state
= CT_TUNER_STEP_2
;
2091 case CT_TUNER_STEP_2
:
2092 dib0090_write_reg(state
, 0x13, state
->bias
);
2093 dib0090_write_reg(state
, 0x10, state
->wbdmux
); /* write back original WBDMUX */
2095 *tune_state
= CT_TUNER_START
;
2096 state
->calibrate
&= ~TEMP_CAL
;
2097 if (state
->config
->analog_output
== 0)
2098 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2109 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2110 static int dib0090_tune(struct dvb_frontend
*fe
)
2112 struct dib0090_state
*state
= fe
->tuner_priv
;
2113 const struct dib0090_tuning
*tune
= state
->current_tune_table_index
;
2114 const struct dib0090_pll
*pll
= state
->current_pll_table_index
;
2115 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
2117 u16 lo5
, lo6
, Den
, tmp
;
2118 u32 FBDiv
, Rest
, FREF
, VCOF_kHz
= 0;
2119 int ret
= 10; /* 1ms is the default delay most of the time */
2122 /************************* VCO ***************************/
2123 /* Default values for FG */
2124 /* from these are needed : */
2125 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
2127 /* in any case we first need to do a calibration if needed */
2128 if (*tune_state
== CT_TUNER_START
) {
2129 /* deactivate DataTX before some calibrations */
2130 if (state
->calibrate
& (DC_CAL
| TEMP_CAL
| WBD_CAL
))
2131 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
2133 /* Activate DataTX in case a calibration has been done before */
2134 if (state
->config
->analog_output
== 0)
2135 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2138 if (state
->calibrate
& DC_CAL
)
2139 return dib0090_dc_offset_calibration(state
, tune_state
);
2140 else if (state
->calibrate
& WBD_CAL
) {
2141 if (state
->current_rf
== 0)
2142 state
->current_rf
= state
->fe
->dtv_property_cache
.frequency
/ 1000;
2143 return dib0090_wbd_calibration(state
, tune_state
);
2144 } else if (state
->calibrate
& TEMP_CAL
)
2145 return dib0090_get_temperature(state
, tune_state
);
2146 else if (state
->calibrate
& CAPTRIM_CAL
)
2147 return dib0090_captrim_search(state
, tune_state
);
2149 if (*tune_state
== CT_TUNER_START
) {
2150 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2151 if (state
->config
->use_pwm_agc
&& state
->identity
.in_soc
) {
2152 tmp
= dib0090_read_reg(state
, 0x39);
2153 if ((tmp
>> 10) & 0x1)
2154 dib0090_write_reg(state
, 0x39, tmp
& ~(1 << 10));
2157 state
->current_band
= (u8
) BAND_OF_FREQUENCY(state
->fe
->dtv_property_cache
.frequency
/ 1000);
2159 state
->fe
->dtv_property_cache
.frequency
/ 1000 + (state
->current_band
==
2160 BAND_UHF
? state
->config
->freq_offset_khz_uhf
: state
->config
->
2161 freq_offset_khz_vhf
);
2163 /* in ISDB-T 1seg we shift tuning frequency */
2164 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
&& state
->fe
->dtv_property_cache
.isdbt_sb_mode
== 1
2165 && state
->fe
->dtv_property_cache
.isdbt_partial_reception
== 0)) {
2166 const struct dib0090_low_if_offset_table
*LUT_offset
= state
->config
->low_if
;
2167 u8 found_offset
= 0;
2168 u32 margin_khz
= 100;
2170 if (LUT_offset
!= NULL
) {
2171 while (LUT_offset
->RF_freq
!= 0xffff) {
2172 if (((state
->rf_request
> (LUT_offset
->RF_freq
- margin_khz
))
2173 && (state
->rf_request
< (LUT_offset
->RF_freq
+ margin_khz
)))
2174 && LUT_offset
->std
== state
->fe
->dtv_property_cache
.delivery_system
) {
2175 state
->rf_request
+= LUT_offset
->offset_khz
;
2183 if (found_offset
== 0)
2184 state
->rf_request
+= 400;
2186 if (state
->current_rf
!= state
->rf_request
|| (state
->current_standard
!= state
->fe
->dtv_property_cache
.delivery_system
)) {
2187 state
->tuner_is_tuned
= 0;
2188 state
->current_rf
= 0;
2189 state
->current_standard
= 0;
2191 tune
= dib0090_tuning_table
;
2192 if (state
->identity
.p1g
)
2193 tune
= dib0090_p1g_tuning_table
;
2195 tmp
= (state
->identity
.version
>> 5) & 0x7;
2197 if (state
->identity
.in_soc
) {
2198 if (state
->config
->force_cband_input
) { /* Use the CBAND input for all band */
2199 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
2200 || state
->current_band
& BAND_UHF
) {
2201 state
->current_band
= BAND_CBAND
;
2202 tune
= dib0090_tuning_table_cband_7090
;
2204 } else { /* Use the CBAND input for all band under UHF */
2205 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
) {
2206 state
->current_band
= BAND_CBAND
;
2207 tune
= dib0090_tuning_table_cband_7090
;
2211 if (tmp
== 0x4 || tmp
== 0x7) {
2212 /* CBAND tuner version for VHF */
2213 if (state
->current_band
== BAND_FM
|| state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) {
2214 state
->current_band
= BAND_CBAND
; /* Force CBAND */
2216 tune
= dib0090_tuning_table_fm_vhf_on_cband
;
2217 if (state
->identity
.p1g
)
2218 tune
= dib0090_p1g_tuning_table_fm_vhf_on_cband
;
2222 pll
= dib0090_pll_table
;
2223 if (state
->identity
.p1g
)
2224 pll
= dib0090_p1g_pll_table
;
2226 /* Look for the interval */
2227 while (state
->rf_request
> tune
->max_freq
)
2229 while (state
->rf_request
> pll
->max_freq
)
2232 state
->current_tune_table_index
= tune
;
2233 state
->current_pll_table_index
= pll
;
2235 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->switch_trim
));
2237 VCOF_kHz
= (pll
->hfdiv
* state
->rf_request
) * 2;
2239 FREF
= state
->config
->io
.clock_khz
;
2240 if (state
->config
->fref_clock_ratio
!= 0)
2241 FREF
/= state
->config
->fref_clock_ratio
;
2243 FBDiv
= (VCOF_kHz
/ pll
->topresc
/ FREF
);
2244 Rest
= (VCOF_kHz
/ pll
->topresc
) - FBDiv
* FREF
;
2248 else if (Rest
< 2 * LPF
)
2250 else if (Rest
> (FREF
- LPF
)) {
2253 } else if (Rest
> (FREF
- 2 * LPF
))
2254 Rest
= FREF
- 2 * LPF
;
2255 Rest
= (Rest
* 6528) / (FREF
/ 10);
2258 /* external loop filter, otherwise:
2259 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2270 else if (state
->config
->analog_output
)
2276 if (state
->identity
.p1g
) { /* Bias is done automatically in P1G */
2277 if (state
->identity
.in_soc
) {
2278 if (state
->identity
.version
== SOC_8090_P1G_11R1
)
2286 lo5
|= (pll
->hfdiv_code
<< 11) | (pll
->vco_band
<< 7); /* bit 15 is the split to the slave, we do not do it here */
2288 if (!state
->config
->io
.pll_int_loop_filt
) {
2289 if (state
->identity
.in_soc
)
2291 else if (state
->identity
.p1g
|| (Rest
== 0))
2296 lo6
= (state
->config
->io
.pll_int_loop_filt
<< 3);
2301 if (state
->config
->analog_output
)
2302 lo6
|= (1 << 2) | 2;
2304 if (state
->identity
.in_soc
)
2305 lo6
|= (1 << 2) | 2;
2307 lo6
|= (1 << 2) | 2;
2311 dib0090_write_reg(state
, 0x15, (u16
) FBDiv
);
2312 if (state
->config
->fref_clock_ratio
!= 0)
2313 dib0090_write_reg(state
, 0x16, (Den
<< 8) | state
->config
->fref_clock_ratio
);
2315 dib0090_write_reg(state
, 0x16, (Den
<< 8) | 1);
2316 dib0090_write_reg(state
, 0x17, (u16
) Rest
);
2317 dib0090_write_reg(state
, 0x19, lo5
);
2318 dib0090_write_reg(state
, 0x1c, lo6
);
2320 lo6
= tune
->tuner_enable
;
2321 if (state
->config
->analog_output
)
2322 lo6
= (lo6
& 0xff9f) | 0x2;
2324 dib0090_write_reg(state
, 0x24, lo6
| EN_LO
| state
->config
->use_pwm_agc
* EN_CRYSTAL
);
2328 state
->current_rf
= state
->rf_request
;
2329 state
->current_standard
= state
->fe
->dtv_property_cache
.delivery_system
;
2332 state
->calibrate
= CAPTRIM_CAL
; /* captrim serach now */
2335 else if (*tune_state
== CT_TUNER_STEP_0
) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2336 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
2338 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
2341 dib0090_write_reg(state
, 0x1e, 0x07ff);
2342 dprintk("Final Captrim: %d", (u32
) state
->fcaptrim
);
2343 dprintk("HFDIV code: %d", (u32
) pll
->hfdiv_code
);
2344 dprintk("VCO = %d", (u32
) pll
->vco_band
);
2345 dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32
) ((pll
->hfdiv
* state
->rf_request
) * 2), (u32
) pll
->hfdiv
, (u32
) state
->rf_request
);
2346 dprintk("REFDIV: %d, FREF: %d", (u32
) 1, (u32
) state
->config
->io
.clock_khz
);
2347 dprintk("FBDIV: %d, Rest: %d", (u32
) dib0090_read_reg(state
, 0x15), (u32
) dib0090_read_reg(state
, 0x17));
2348 dprintk("Num: %d, Den: %d, SD: %d", (u32
) dib0090_read_reg(state
, 0x17), (u32
) (dib0090_read_reg(state
, 0x16) >> 8),
2349 (u32
) dib0090_read_reg(state
, 0x1c) & 0x3);
2351 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2355 if (wbd
->wbd_gain
!= 0)
2358 state
->wbdmux
= (c
<< 13) | (i
<< 11) | (WBD
| (state
->config
->use_pwm_agc
<< 1));
2359 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
2361 if ((tune
->tuner_enable
== EN_CAB
) && state
->identity
.p1g
) {
2362 dprintk("P1G : The cable band is selected and lna_tune = %d", tune
->lna_tune
);
2363 dib0090_write_reg(state
, 0x09, tune
->lna_bias
);
2364 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->lna_tune
<< 6) | (tune
->switch_trim
));
2366 dib0090_write_reg(state
, 0x09, (tune
->lna_tune
<< 5) | tune
->lna_bias
);
2368 dib0090_write_reg(state
, 0x0c, tune
->v2i
);
2369 dib0090_write_reg(state
, 0x0d, tune
->mix
);
2370 dib0090_write_reg(state
, 0x0e, tune
->load
);
2371 *tune_state
= CT_TUNER_STEP_1
;
2373 } else if (*tune_state
== CT_TUNER_STEP_1
) {
2374 /* initialize the lt gain register */
2375 state
->rf_lt_def
= 0x7c00;
2377 dib0090_set_bandwidth(state
);
2378 state
->tuner_is_tuned
= 1;
2380 state
->calibrate
|= WBD_CAL
;
2381 state
->calibrate
|= TEMP_CAL
;
2382 *tune_state
= CT_TUNER_STOP
;
2384 ret
= FE_CALLBACK_TIME_NEVER
;
2388 static int dib0090_release(struct dvb_frontend
*fe
)
2390 kfree(fe
->tuner_priv
);
2391 fe
->tuner_priv
= NULL
;
2395 enum frontend_tune_state
dib0090_get_tune_state(struct dvb_frontend
*fe
)
2397 struct dib0090_state
*state
= fe
->tuner_priv
;
2399 return state
->tune_state
;
2402 EXPORT_SYMBOL(dib0090_get_tune_state
);
2404 int dib0090_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
2406 struct dib0090_state
*state
= fe
->tuner_priv
;
2408 state
->tune_state
= tune_state
;
2412 EXPORT_SYMBOL(dib0090_set_tune_state
);
2414 static int dib0090_get_frequency(struct dvb_frontend
*fe
, u32
* frequency
)
2416 struct dib0090_state
*state
= fe
->tuner_priv
;
2418 *frequency
= 1000 * state
->current_rf
;
2422 static int dib0090_set_params(struct dvb_frontend
*fe
, struct dvb_frontend_parameters
*p
)
2424 struct dib0090_state
*state
= fe
->tuner_priv
;
2427 state
->tune_state
= CT_TUNER_START
;
2430 ret
= dib0090_tune(fe
);
2431 if (ret
!= FE_CALLBACK_TIME_NEVER
)
2435 } while (state
->tune_state
!= CT_TUNER_STOP
);
2440 static const struct dvb_tuner_ops dib0090_ops
= {
2442 .name
= "DiBcom DiB0090",
2443 .frequency_min
= 45000000,
2444 .frequency_max
= 860000000,
2445 .frequency_step
= 1000,
2447 .release
= dib0090_release
,
2449 .init
= dib0090_wakeup
,
2450 .sleep
= dib0090_sleep
,
2451 .set_params
= dib0090_set_params
,
2452 .get_frequency
= dib0090_get_frequency
,
2455 static const struct dvb_tuner_ops dib0090_fw_ops
= {
2457 .name
= "DiBcom DiB0090",
2458 .frequency_min
= 45000000,
2459 .frequency_max
= 860000000,
2460 .frequency_step
= 1000,
2462 .release
= dib0090_release
,
2467 .get_frequency
= NULL
,
2470 static const struct dib0090_wbd_slope dib0090_wbd_table_default
[] = {
2471 {470, 0, 250, 0, 100, 4},
2472 {860, 51, 866, 21, 375, 4},
2473 {1700, 0, 800, 0, 850, 4},
2474 {2900, 0, 250, 0, 100, 6},
2475 {0xFFFF, 0, 0, 0, 0, 0},
2478 struct dvb_frontend
*dib0090_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2480 struct dib0090_state
*st
= kzalloc(sizeof(struct dib0090_state
), GFP_KERNEL
);
2484 st
->config
= config
;
2487 mutex_init(&st
->i2c_buffer_lock
);
2488 fe
->tuner_priv
= st
;
2490 if (config
->wbd
== NULL
)
2491 st
->current_wbd_table
= dib0090_wbd_table_default
;
2493 st
->current_wbd_table
= config
->wbd
;
2495 if (dib0090_reset(fe
) != 0)
2498 printk(KERN_INFO
"DiB0090: successfully identified\n");
2499 memcpy(&fe
->ops
.tuner_ops
, &dib0090_ops
, sizeof(struct dvb_tuner_ops
));
2504 fe
->tuner_priv
= NULL
;
2508 EXPORT_SYMBOL(dib0090_register
);
2510 struct dvb_frontend
*dib0090_fw_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2512 struct dib0090_fw_state
*st
= kzalloc(sizeof(struct dib0090_fw_state
), GFP_KERNEL
);
2516 st
->config
= config
;
2519 mutex_init(&st
->i2c_buffer_lock
);
2520 fe
->tuner_priv
= st
;
2522 if (dib0090_fw_reset_digital(fe
, st
->config
) != 0)
2525 dprintk("DiB0090 FW: successfully identified");
2526 memcpy(&fe
->ops
.tuner_ops
, &dib0090_fw_ops
, sizeof(struct dvb_tuner_ops
));
2531 fe
->tuner_priv
= NULL
;
2534 EXPORT_SYMBOL(dib0090_fw_register
);
2536 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
2537 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
2538 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2539 MODULE_LICENSE("GPL");