2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_SAMPLING_DOWN_FACTOR (1)
34 #define MAX_SAMPLING_DOWN_FACTOR (100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
51 #define MIN_SAMPLING_RATE_RATIO (2)
53 static unsigned int min_sampling_rate
;
55 #define LATENCY_MULTIPLIER (1000)
56 #define MIN_LATENCY_MULTIPLIER (100)
57 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
59 static void do_dbs_timer(struct work_struct
*work
);
60 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
66 struct cpufreq_governor cpufreq_gov_ondemand
= {
68 .governor
= cpufreq_governor_dbs
,
69 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
74 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
76 struct cpu_dbs_info_s
{
77 cputime64_t prev_cpu_idle
;
78 cputime64_t prev_cpu_iowait
;
79 cputime64_t prev_cpu_wall
;
80 cputime64_t prev_cpu_nice
;
81 struct cpufreq_policy
*cur_policy
;
82 struct delayed_work work
;
83 struct cpufreq_frequency_table
*freq_table
;
85 unsigned int freq_lo_jiffies
;
86 unsigned int freq_hi_jiffies
;
87 unsigned int rate_mult
;
89 unsigned int sample_type
:1;
91 * percpu mutex that serializes governor limit change with
92 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 * when user is changing the governor or limits.
95 struct mutex timer_mutex
;
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, od_cpu_dbs_info
);
99 static unsigned int dbs_enable
; /* number of CPUs using this policy */
102 * dbs_mutex protects dbs_enable in governor start/stop.
104 static DEFINE_MUTEX(dbs_mutex
);
106 static struct dbs_tuners
{
107 unsigned int sampling_rate
;
108 unsigned int up_threshold
;
109 unsigned int down_differential
;
110 unsigned int ignore_nice
;
111 unsigned int sampling_down_factor
;
112 unsigned int powersave_bias
;
113 unsigned int io_is_busy
;
115 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
116 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
117 .down_differential
= DEF_FREQUENCY_DOWN_DIFFERENTIAL
,
122 static inline u64
get_cpu_idle_time_jiffy(unsigned int cpu
, u64
*wall
)
128 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
130 busy_time
= kcpustat_cpu(cpu
).cpustat
[CPUTIME_USER
];
131 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_SYSTEM
];
132 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_IRQ
];
133 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_SOFTIRQ
];
134 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_STEAL
];
135 busy_time
+= kcpustat_cpu(cpu
).cpustat
[CPUTIME_NICE
];
137 idle_time
= cur_wall_time
- busy_time
;
139 *wall
= jiffies_to_usecs(cur_wall_time
);
141 return jiffies_to_usecs(idle_time
);
144 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
146 u64 idle_time
= get_cpu_idle_time_us(cpu
, NULL
);
148 if (idle_time
== -1ULL)
149 return get_cpu_idle_time_jiffy(cpu
, wall
);
151 idle_time
+= get_cpu_iowait_time_us(cpu
, wall
);
156 static inline cputime64_t
get_cpu_iowait_time(unsigned int cpu
, cputime64_t
*wall
)
158 u64 iowait_time
= get_cpu_iowait_time_us(cpu
, wall
);
160 if (iowait_time
== -1ULL)
167 * Find right freq to be set now with powersave_bias on.
168 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
169 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
171 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
172 unsigned int freq_next
,
173 unsigned int relation
)
175 unsigned int freq_req
, freq_reduc
, freq_avg
;
176 unsigned int freq_hi
, freq_lo
;
177 unsigned int index
= 0;
178 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
179 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
,
182 if (!dbs_info
->freq_table
) {
183 dbs_info
->freq_lo
= 0;
184 dbs_info
->freq_lo_jiffies
= 0;
188 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
190 freq_req
= dbs_info
->freq_table
[index
].frequency
;
191 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
192 freq_avg
= freq_req
- freq_reduc
;
194 /* Find freq bounds for freq_avg in freq_table */
196 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
197 CPUFREQ_RELATION_H
, &index
);
198 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
200 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
201 CPUFREQ_RELATION_L
, &index
);
202 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
204 /* Find out how long we have to be in hi and lo freqs */
205 if (freq_hi
== freq_lo
) {
206 dbs_info
->freq_lo
= 0;
207 dbs_info
->freq_lo_jiffies
= 0;
210 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
211 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
212 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
213 jiffies_hi
/= (freq_hi
- freq_lo
);
214 jiffies_lo
= jiffies_total
- jiffies_hi
;
215 dbs_info
->freq_lo
= freq_lo
;
216 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
217 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
221 static void ondemand_powersave_bias_init_cpu(int cpu
)
223 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
224 dbs_info
->freq_table
= cpufreq_frequency_get_table(cpu
);
225 dbs_info
->freq_lo
= 0;
228 static void ondemand_powersave_bias_init(void)
231 for_each_online_cpu(i
) {
232 ondemand_powersave_bias_init_cpu(i
);
236 /************************** sysfs interface ************************/
238 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
239 struct attribute
*attr
, char *buf
)
241 return sprintf(buf
, "%u\n", min_sampling_rate
);
244 define_one_global_ro(sampling_rate_min
);
246 /* cpufreq_ondemand Governor Tunables */
247 #define show_one(file_name, object) \
248 static ssize_t show_##file_name \
249 (struct kobject *kobj, struct attribute *attr, char *buf) \
251 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
253 show_one(sampling_rate
, sampling_rate
);
254 show_one(io_is_busy
, io_is_busy
);
255 show_one(up_threshold
, up_threshold
);
256 show_one(sampling_down_factor
, sampling_down_factor
);
257 show_one(ignore_nice_load
, ignore_nice
);
258 show_one(powersave_bias
, powersave_bias
);
260 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
261 const char *buf
, size_t count
)
265 ret
= sscanf(buf
, "%u", &input
);
268 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
272 static ssize_t
store_io_is_busy(struct kobject
*a
, struct attribute
*b
,
273 const char *buf
, size_t count
)
278 ret
= sscanf(buf
, "%u", &input
);
281 dbs_tuners_ins
.io_is_busy
= !!input
;
285 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
286 const char *buf
, size_t count
)
290 ret
= sscanf(buf
, "%u", &input
);
292 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
293 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
296 dbs_tuners_ins
.up_threshold
= input
;
300 static ssize_t
store_sampling_down_factor(struct kobject
*a
,
301 struct attribute
*b
, const char *buf
, size_t count
)
303 unsigned int input
, j
;
305 ret
= sscanf(buf
, "%u", &input
);
307 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
309 dbs_tuners_ins
.sampling_down_factor
= input
;
311 /* Reset down sampling multiplier in case it was active */
312 for_each_online_cpu(j
) {
313 struct cpu_dbs_info_s
*dbs_info
;
314 dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
315 dbs_info
->rate_mult
= 1;
320 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
321 const char *buf
, size_t count
)
328 ret
= sscanf(buf
, "%u", &input
);
335 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
338 dbs_tuners_ins
.ignore_nice
= input
;
340 /* we need to re-evaluate prev_cpu_idle */
341 for_each_online_cpu(j
) {
342 struct cpu_dbs_info_s
*dbs_info
;
343 dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
344 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
345 &dbs_info
->prev_cpu_wall
);
346 if (dbs_tuners_ins
.ignore_nice
)
347 dbs_info
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
353 static ssize_t
store_powersave_bias(struct kobject
*a
, struct attribute
*b
,
354 const char *buf
, size_t count
)
358 ret
= sscanf(buf
, "%u", &input
);
366 dbs_tuners_ins
.powersave_bias
= input
;
367 ondemand_powersave_bias_init();
371 define_one_global_rw(sampling_rate
);
372 define_one_global_rw(io_is_busy
);
373 define_one_global_rw(up_threshold
);
374 define_one_global_rw(sampling_down_factor
);
375 define_one_global_rw(ignore_nice_load
);
376 define_one_global_rw(powersave_bias
);
378 static struct attribute
*dbs_attributes
[] = {
379 &sampling_rate_min
.attr
,
382 &sampling_down_factor
.attr
,
383 &ignore_nice_load
.attr
,
384 &powersave_bias
.attr
,
389 static struct attribute_group dbs_attr_group
= {
390 .attrs
= dbs_attributes
,
394 /************************** sysfs end ************************/
396 static void dbs_freq_increase(struct cpufreq_policy
*p
, unsigned int freq
)
398 if (dbs_tuners_ins
.powersave_bias
)
399 freq
= powersave_bias_target(p
, freq
, CPUFREQ_RELATION_H
);
400 else if (p
->cur
== p
->max
)
403 __cpufreq_driver_target(p
, freq
, dbs_tuners_ins
.powersave_bias
?
404 CPUFREQ_RELATION_L
: CPUFREQ_RELATION_H
);
407 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
409 unsigned int max_load_freq
;
411 struct cpufreq_policy
*policy
;
414 this_dbs_info
->freq_lo
= 0;
415 policy
= this_dbs_info
->cur_policy
;
418 * Every sampling_rate, we check, if current idle time is less
419 * than 20% (default), then we try to increase frequency
420 * Every sampling_rate, we look for a the lowest
421 * frequency which can sustain the load while keeping idle time over
422 * 30%. If such a frequency exist, we try to decrease to this frequency.
424 * Any frequency increase takes it to the maximum frequency.
425 * Frequency reduction happens at minimum steps of
426 * 5% (default) of current frequency
429 /* Get Absolute Load - in terms of freq */
432 for_each_cpu(j
, policy
->cpus
) {
433 struct cpu_dbs_info_s
*j_dbs_info
;
434 cputime64_t cur_wall_time
, cur_idle_time
, cur_iowait_time
;
435 unsigned int idle_time
, wall_time
, iowait_time
;
436 unsigned int load
, load_freq
;
439 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
441 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
442 cur_iowait_time
= get_cpu_iowait_time(j
, &cur_wall_time
);
444 wall_time
= (unsigned int)
445 (cur_wall_time
- j_dbs_info
->prev_cpu_wall
);
446 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
448 idle_time
= (unsigned int)
449 (cur_idle_time
- j_dbs_info
->prev_cpu_idle
);
450 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
452 iowait_time
= (unsigned int)
453 (cur_iowait_time
- j_dbs_info
->prev_cpu_iowait
);
454 j_dbs_info
->prev_cpu_iowait
= cur_iowait_time
;
456 if (dbs_tuners_ins
.ignore_nice
) {
458 unsigned long cur_nice_jiffies
;
460 cur_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
] -
461 j_dbs_info
->prev_cpu_nice
;
463 * Assumption: nice time between sampling periods will
464 * be less than 2^32 jiffies for 32 bit sys
466 cur_nice_jiffies
= (unsigned long)
467 cputime64_to_jiffies64(cur_nice
);
469 j_dbs_info
->prev_cpu_nice
= kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
470 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
474 * For the purpose of ondemand, waiting for disk IO is an
475 * indication that you're performance critical, and not that
476 * the system is actually idle. So subtract the iowait time
477 * from the cpu idle time.
480 if (dbs_tuners_ins
.io_is_busy
&& idle_time
>= iowait_time
)
481 idle_time
-= iowait_time
;
483 if (unlikely(!wall_time
|| wall_time
< idle_time
))
486 load
= 100 * (wall_time
- idle_time
) / wall_time
;
488 freq_avg
= __cpufreq_driver_getavg(policy
, j
);
490 freq_avg
= policy
->cur
;
492 load_freq
= load
* freq_avg
;
493 if (load_freq
> max_load_freq
)
494 max_load_freq
= load_freq
;
497 /* Check for frequency increase */
498 if (max_load_freq
> dbs_tuners_ins
.up_threshold
* policy
->cur
) {
499 /* If switching to max speed, apply sampling_down_factor */
500 if (policy
->cur
< policy
->max
)
501 this_dbs_info
->rate_mult
=
502 dbs_tuners_ins
.sampling_down_factor
;
503 dbs_freq_increase(policy
, policy
->max
);
507 /* Check for frequency decrease */
508 /* if we cannot reduce the frequency anymore, break out early */
509 if (policy
->cur
== policy
->min
)
513 * The optimal frequency is the frequency that is the lowest that
514 * can support the current CPU usage without triggering the up
515 * policy. To be safe, we focus 10 points under the threshold.
518 (dbs_tuners_ins
.up_threshold
- dbs_tuners_ins
.down_differential
) *
520 unsigned int freq_next
;
521 freq_next
= max_load_freq
/
522 (dbs_tuners_ins
.up_threshold
-
523 dbs_tuners_ins
.down_differential
);
525 /* No longer fully busy, reset rate_mult */
526 this_dbs_info
->rate_mult
= 1;
528 if (freq_next
< policy
->min
)
529 freq_next
= policy
->min
;
531 if (!dbs_tuners_ins
.powersave_bias
) {
532 __cpufreq_driver_target(policy
, freq_next
,
535 int freq
= powersave_bias_target(policy
, freq_next
,
537 __cpufreq_driver_target(policy
, freq
,
543 static void do_dbs_timer(struct work_struct
*work
)
545 struct cpu_dbs_info_s
*dbs_info
=
546 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
547 unsigned int cpu
= dbs_info
->cpu
;
548 int sample_type
= dbs_info
->sample_type
;
552 mutex_lock(&dbs_info
->timer_mutex
);
554 /* Common NORMAL_SAMPLE setup */
555 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
556 if (!dbs_tuners_ins
.powersave_bias
||
557 sample_type
== DBS_NORMAL_SAMPLE
) {
558 dbs_check_cpu(dbs_info
);
559 if (dbs_info
->freq_lo
) {
560 /* Setup timer for SUB_SAMPLE */
561 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
562 delay
= dbs_info
->freq_hi_jiffies
;
564 /* We want all CPUs to do sampling nearly on
567 delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
568 * dbs_info
->rate_mult
);
570 if (num_online_cpus() > 1)
571 delay
-= jiffies
% delay
;
574 __cpufreq_driver_target(dbs_info
->cur_policy
,
575 dbs_info
->freq_lo
, CPUFREQ_RELATION_H
);
576 delay
= dbs_info
->freq_lo_jiffies
;
578 schedule_delayed_work_on(cpu
, &dbs_info
->work
, delay
);
579 mutex_unlock(&dbs_info
->timer_mutex
);
582 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
584 /* We want all CPUs to do sampling nearly on same jiffy */
585 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
587 if (num_online_cpus() > 1)
588 delay
-= jiffies
% delay
;
590 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
591 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
592 schedule_delayed_work_on(dbs_info
->cpu
, &dbs_info
->work
, delay
);
595 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
597 cancel_delayed_work_sync(&dbs_info
->work
);
601 * Not all CPUs want IO time to be accounted as busy; this dependson how
602 * efficient idling at a higher frequency/voltage is.
603 * Pavel Machek says this is not so for various generations of AMD and old
605 * Mike Chan (androidlcom) calis this is also not true for ARM.
606 * Because of this, whitelist specific known (series) of CPUs by default, and
607 * leave all others up to the user.
609 static int should_io_be_busy(void)
611 #if defined(CONFIG_X86)
613 * For Intel, Core 2 (model 15) andl later have an efficient idle.
615 if (boot_cpu_data
.x86_vendor
== X86_VENDOR_INTEL
&&
616 boot_cpu_data
.x86
== 6 &&
617 boot_cpu_data
.x86_model
>= 15)
623 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
626 unsigned int cpu
= policy
->cpu
;
627 struct cpu_dbs_info_s
*this_dbs_info
;
631 this_dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
634 case CPUFREQ_GOV_START
:
635 if ((!cpu_online(cpu
)) || (!policy
->cur
))
638 mutex_lock(&dbs_mutex
);
641 for_each_cpu(j
, policy
->cpus
) {
642 struct cpu_dbs_info_s
*j_dbs_info
;
643 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
644 j_dbs_info
->cur_policy
= policy
;
646 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
647 &j_dbs_info
->prev_cpu_wall
);
648 if (dbs_tuners_ins
.ignore_nice
)
649 j_dbs_info
->prev_cpu_nice
=
650 kcpustat_cpu(j
).cpustat
[CPUTIME_NICE
];
652 this_dbs_info
->cpu
= cpu
;
653 this_dbs_info
->rate_mult
= 1;
654 ondemand_powersave_bias_init_cpu(cpu
);
656 * Start the timerschedule work, when this governor
657 * is used for first time
659 if (dbs_enable
== 1) {
660 unsigned int latency
;
662 rc
= sysfs_create_group(cpufreq_global_kobject
,
665 mutex_unlock(&dbs_mutex
);
669 /* policy latency is in nS. Convert it to uS first */
670 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
673 /* Bring kernel and HW constraints together */
674 min_sampling_rate
= max(min_sampling_rate
,
675 MIN_LATENCY_MULTIPLIER
* latency
);
676 dbs_tuners_ins
.sampling_rate
=
677 max(min_sampling_rate
,
678 latency
* LATENCY_MULTIPLIER
);
679 dbs_tuners_ins
.io_is_busy
= should_io_be_busy();
681 mutex_unlock(&dbs_mutex
);
683 mutex_init(&this_dbs_info
->timer_mutex
);
684 dbs_timer_init(this_dbs_info
);
687 case CPUFREQ_GOV_STOP
:
688 dbs_timer_exit(this_dbs_info
);
690 mutex_lock(&dbs_mutex
);
691 mutex_destroy(&this_dbs_info
->timer_mutex
);
693 mutex_unlock(&dbs_mutex
);
695 sysfs_remove_group(cpufreq_global_kobject
,
700 case CPUFREQ_GOV_LIMITS
:
701 mutex_lock(&this_dbs_info
->timer_mutex
);
702 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
703 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
704 policy
->max
, CPUFREQ_RELATION_H
);
705 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
706 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
707 policy
->min
, CPUFREQ_RELATION_L
);
708 mutex_unlock(&this_dbs_info
->timer_mutex
);
714 static int __init
cpufreq_gov_dbs_init(void)
719 idle_time
= get_cpu_idle_time_us(cpu
, NULL
);
721 if (idle_time
!= -1ULL) {
722 /* Idle micro accounting is supported. Use finer thresholds */
723 dbs_tuners_ins
.up_threshold
= MICRO_FREQUENCY_UP_THRESHOLD
;
724 dbs_tuners_ins
.down_differential
=
725 MICRO_FREQUENCY_DOWN_DIFFERENTIAL
;
727 * In nohz/micro accounting case we set the minimum frequency
728 * not depending on HZ, but fixed (very low). The deferred
729 * timer might skip some samples if idle/sleeping as needed.
731 min_sampling_rate
= MICRO_FREQUENCY_MIN_SAMPLE_RATE
;
733 /* For correct statistics, we need 10 ticks for each measure */
735 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
738 return cpufreq_register_governor(&cpufreq_gov_ondemand
);
741 static void __exit
cpufreq_gov_dbs_exit(void)
743 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
747 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
748 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
749 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
750 "Low Latency Frequency Transition capable processors");
751 MODULE_LICENSE("GPL");
753 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
754 fs_initcall(cpufreq_gov_dbs_init
);
756 module_init(cpufreq_gov_dbs_init
);
758 module_exit(cpufreq_gov_dbs_exit
);