usb: otg: mv_otg: Add dependence
[zen-stable.git] / drivers / firewire / sbp2.c
blob80e95aa3bf14ea96ade61193783f490d35f08329
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
63 * So far only bridges from Oxford Semiconductor are known to support
64 * concurrent logins. Depending on firmware, four or two concurrent logins
65 * are possible on OXFW911 and newer Oxsemi bridges.
67 * Concurrent logins are useful together with cluster filesystems.
69 static bool sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 "(default = Y, use N for concurrent initiators)");
75 * Flags for firmware oddities
77 * - 128kB max transfer
78 * Limit transfer size. Necessary for some old bridges.
80 * - 36 byte inquiry
81 * When scsi_mod probes the device, let the inquiry command look like that
82 * from MS Windows.
84 * - skip mode page 8
85 * Suppress sending of mode_sense for mode page 8 if the device pretends to
86 * support the SCSI Primary Block commands instead of Reduced Block Commands.
88 * - fix capacity
89 * Tell sd_mod to correct the last sector number reported by read_capacity.
90 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
91 * Don't use this with devices which don't have this bug.
93 * - delay inquiry
94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
96 * - power condition
97 * Set the power condition field in the START STOP UNIT commands sent by
98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99 * Some disks need this to spin down or to resume properly.
101 * - override internal blacklist
102 * Instead of adding to the built-in blacklist, use only the workarounds
103 * specified in the module load parameter.
104 * Useful if a blacklist entry interfered with a non-broken device.
106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
107 #define SBP2_WORKAROUND_INQUIRY_36 0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
111 #define SBP2_INQUIRY_DELAY 12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE 0x100
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 ", set power condition in start stop unit = "
124 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 ", or a combination)");
128 static const char sbp2_driver_name[] = "sbp2";
131 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
132 * and one struct scsi_device per sbp2_logical_unit.
134 struct sbp2_logical_unit {
135 struct sbp2_target *tgt;
136 struct list_head link;
137 struct fw_address_handler address_handler;
138 struct list_head orb_list;
140 u64 command_block_agent_address;
141 u16 lun;
142 int login_id;
145 * The generation is updated once we've logged in or reconnected
146 * to the logical unit. Thus, I/O to the device will automatically
147 * fail and get retried if it happens in a window where the device
148 * is not ready, e.g. after a bus reset but before we reconnect.
150 int generation;
151 int retries;
152 struct delayed_work work;
153 bool has_sdev;
154 bool blocked;
157 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
159 queue_delayed_work(fw_workqueue, &lu->work, delay);
163 * We create one struct sbp2_target per IEEE 1212 Unit Directory
164 * and one struct Scsi_Host per sbp2_target.
166 struct sbp2_target {
167 struct fw_unit *unit;
168 const char *bus_id;
169 struct list_head lu_list;
171 u64 management_agent_address;
172 u64 guid;
173 int directory_id;
174 int node_id;
175 int address_high;
176 unsigned int workarounds;
177 unsigned int mgt_orb_timeout;
178 unsigned int max_payload;
180 int dont_block; /* counter for each logical unit */
181 int blocked; /* ditto */
184 static struct fw_device *target_device(struct sbp2_target *tgt)
186 return fw_parent_device(tgt->unit);
189 /* Impossible login_id, to detect logout attempt before successful login */
190 #define INVALID_LOGIN_ID 0x10000
192 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
193 #define SBP2_ORB_NULL 0x80000000
194 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
195 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
198 * There is no transport protocol limit to the CDB length, but we implement
199 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
201 #define SBP2_MAX_CDB_SIZE 16
204 * The default maximum s/g segment size of a FireWire controller is
205 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
206 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
208 #define SBP2_MAX_SEG_SIZE 0xfffc
210 /* Unit directory keys */
211 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
212 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
213 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
214 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
216 /* Management orb opcodes */
217 #define SBP2_LOGIN_REQUEST 0x0
218 #define SBP2_QUERY_LOGINS_REQUEST 0x1
219 #define SBP2_RECONNECT_REQUEST 0x3
220 #define SBP2_SET_PASSWORD_REQUEST 0x4
221 #define SBP2_LOGOUT_REQUEST 0x7
222 #define SBP2_ABORT_TASK_REQUEST 0xb
223 #define SBP2_ABORT_TASK_SET 0xc
224 #define SBP2_LOGICAL_UNIT_RESET 0xe
225 #define SBP2_TARGET_RESET_REQUEST 0xf
227 /* Offsets for command block agent registers */
228 #define SBP2_AGENT_STATE 0x00
229 #define SBP2_AGENT_RESET 0x04
230 #define SBP2_ORB_POINTER 0x08
231 #define SBP2_DOORBELL 0x10
232 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
234 /* Status write response codes */
235 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
236 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
237 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
238 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
240 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
241 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
242 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
243 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
244 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
245 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
246 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
247 #define STATUS_GET_DATA(v) ((v).data)
249 struct sbp2_status {
250 u32 status;
251 u32 orb_low;
252 u8 data[24];
255 struct sbp2_pointer {
256 __be32 high;
257 __be32 low;
260 struct sbp2_orb {
261 struct fw_transaction t;
262 struct kref kref;
263 dma_addr_t request_bus;
264 int rcode;
265 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
266 struct list_head link;
269 #define MANAGEMENT_ORB_LUN(v) ((v))
270 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
271 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
272 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
274 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
279 struct sbp2_management_orb {
280 struct sbp2_orb base;
281 struct {
282 struct sbp2_pointer password;
283 struct sbp2_pointer response;
284 __be32 misc;
285 __be32 length;
286 struct sbp2_pointer status_fifo;
287 } request;
288 __be32 response[4];
289 dma_addr_t response_bus;
290 struct completion done;
291 struct sbp2_status status;
294 struct sbp2_login_response {
295 __be32 misc;
296 struct sbp2_pointer command_block_agent;
297 __be32 reconnect_hold;
299 #define COMMAND_ORB_DATA_SIZE(v) ((v))
300 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
301 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
302 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
303 #define COMMAND_ORB_SPEED(v) ((v) << 24)
304 #define COMMAND_ORB_DIRECTION ((1) << 27)
305 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
306 #define COMMAND_ORB_NOTIFY ((1) << 31)
308 struct sbp2_command_orb {
309 struct sbp2_orb base;
310 struct {
311 struct sbp2_pointer next;
312 struct sbp2_pointer data_descriptor;
313 __be32 misc;
314 u8 command_block[SBP2_MAX_CDB_SIZE];
315 } request;
316 struct scsi_cmnd *cmd;
317 struct sbp2_logical_unit *lu;
319 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
320 dma_addr_t page_table_bus;
323 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
324 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
327 * List of devices with known bugs.
329 * The firmware_revision field, masked with 0xffff00, is the best
330 * indicator for the type of bridge chip of a device. It yields a few
331 * false positives but this did not break correctly behaving devices
332 * so far.
334 static const struct {
335 u32 firmware_revision;
336 u32 model;
337 unsigned int workarounds;
338 } sbp2_workarounds_table[] = {
339 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
340 .firmware_revision = 0x002800,
341 .model = 0x001010,
342 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
343 SBP2_WORKAROUND_MODE_SENSE_8 |
344 SBP2_WORKAROUND_POWER_CONDITION,
346 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
347 .firmware_revision = 0x002800,
348 .model = 0x000000,
349 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
351 /* Initio bridges, actually only needed for some older ones */ {
352 .firmware_revision = 0x000200,
353 .model = SBP2_ROM_VALUE_WILDCARD,
354 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
356 /* PL-3507 bridge with Prolific firmware */ {
357 .firmware_revision = 0x012800,
358 .model = SBP2_ROM_VALUE_WILDCARD,
359 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
361 /* Symbios bridge */ {
362 .firmware_revision = 0xa0b800,
363 .model = SBP2_ROM_VALUE_WILDCARD,
364 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
366 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
367 .firmware_revision = 0x002600,
368 .model = SBP2_ROM_VALUE_WILDCARD,
369 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
372 * iPod 2nd generation: needs 128k max transfer size workaround
373 * iPod 3rd generation: needs fix capacity workaround
376 .firmware_revision = 0x0a2700,
377 .model = 0x000000,
378 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
379 SBP2_WORKAROUND_FIX_CAPACITY,
381 /* iPod 4th generation */ {
382 .firmware_revision = 0x0a2700,
383 .model = 0x000021,
384 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
386 /* iPod mini */ {
387 .firmware_revision = 0x0a2700,
388 .model = 0x000022,
389 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
391 /* iPod mini */ {
392 .firmware_revision = 0x0a2700,
393 .model = 0x000023,
394 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
396 /* iPod Photo */ {
397 .firmware_revision = 0x0a2700,
398 .model = 0x00007e,
399 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
403 static void free_orb(struct kref *kref)
405 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
407 kfree(orb);
410 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
411 int tcode, int destination, int source,
412 int generation, unsigned long long offset,
413 void *payload, size_t length, void *callback_data)
415 struct sbp2_logical_unit *lu = callback_data;
416 struct sbp2_orb *orb;
417 struct sbp2_status status;
418 unsigned long flags;
420 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
421 length < 8 || length > sizeof(status)) {
422 fw_send_response(card, request, RCODE_TYPE_ERROR);
423 return;
426 status.status = be32_to_cpup(payload);
427 status.orb_low = be32_to_cpup(payload + 4);
428 memset(status.data, 0, sizeof(status.data));
429 if (length > 8)
430 memcpy(status.data, payload + 8, length - 8);
432 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
433 fw_notify("non-orb related status write, not handled\n");
434 fw_send_response(card, request, RCODE_COMPLETE);
435 return;
438 /* Lookup the orb corresponding to this status write. */
439 spin_lock_irqsave(&card->lock, flags);
440 list_for_each_entry(orb, &lu->orb_list, link) {
441 if (STATUS_GET_ORB_HIGH(status) == 0 &&
442 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
443 orb->rcode = RCODE_COMPLETE;
444 list_del(&orb->link);
445 break;
448 spin_unlock_irqrestore(&card->lock, flags);
450 if (&orb->link != &lu->orb_list) {
451 orb->callback(orb, &status);
452 kref_put(&orb->kref, free_orb); /* orb callback reference */
453 } else {
454 fw_error("status write for unknown orb\n");
457 fw_send_response(card, request, RCODE_COMPLETE);
460 static void complete_transaction(struct fw_card *card, int rcode,
461 void *payload, size_t length, void *data)
463 struct sbp2_orb *orb = data;
464 unsigned long flags;
467 * This is a little tricky. We can get the status write for
468 * the orb before we get this callback. The status write
469 * handler above will assume the orb pointer transaction was
470 * successful and set the rcode to RCODE_COMPLETE for the orb.
471 * So this callback only sets the rcode if it hasn't already
472 * been set and only does the cleanup if the transaction
473 * failed and we didn't already get a status write.
475 spin_lock_irqsave(&card->lock, flags);
477 if (orb->rcode == -1)
478 orb->rcode = rcode;
479 if (orb->rcode != RCODE_COMPLETE) {
480 list_del(&orb->link);
481 spin_unlock_irqrestore(&card->lock, flags);
483 orb->callback(orb, NULL);
484 kref_put(&orb->kref, free_orb); /* orb callback reference */
485 } else {
486 spin_unlock_irqrestore(&card->lock, flags);
489 kref_put(&orb->kref, free_orb); /* transaction callback reference */
492 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
493 int node_id, int generation, u64 offset)
495 struct fw_device *device = target_device(lu->tgt);
496 struct sbp2_pointer orb_pointer;
497 unsigned long flags;
499 orb_pointer.high = 0;
500 orb_pointer.low = cpu_to_be32(orb->request_bus);
502 spin_lock_irqsave(&device->card->lock, flags);
503 list_add_tail(&orb->link, &lu->orb_list);
504 spin_unlock_irqrestore(&device->card->lock, flags);
506 kref_get(&orb->kref); /* transaction callback reference */
507 kref_get(&orb->kref); /* orb callback reference */
509 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
510 node_id, generation, device->max_speed, offset,
511 &orb_pointer, 8, complete_transaction, orb);
514 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
516 struct fw_device *device = target_device(lu->tgt);
517 struct sbp2_orb *orb, *next;
518 struct list_head list;
519 unsigned long flags;
520 int retval = -ENOENT;
522 INIT_LIST_HEAD(&list);
523 spin_lock_irqsave(&device->card->lock, flags);
524 list_splice_init(&lu->orb_list, &list);
525 spin_unlock_irqrestore(&device->card->lock, flags);
527 list_for_each_entry_safe(orb, next, &list, link) {
528 retval = 0;
529 if (fw_cancel_transaction(device->card, &orb->t) == 0)
530 continue;
532 orb->rcode = RCODE_CANCELLED;
533 orb->callback(orb, NULL);
534 kref_put(&orb->kref, free_orb); /* orb callback reference */
537 return retval;
540 static void complete_management_orb(struct sbp2_orb *base_orb,
541 struct sbp2_status *status)
543 struct sbp2_management_orb *orb =
544 container_of(base_orb, struct sbp2_management_orb, base);
546 if (status)
547 memcpy(&orb->status, status, sizeof(*status));
548 complete(&orb->done);
551 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
552 int generation, int function,
553 int lun_or_login_id, void *response)
555 struct fw_device *device = target_device(lu->tgt);
556 struct sbp2_management_orb *orb;
557 unsigned int timeout;
558 int retval = -ENOMEM;
560 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
561 return 0;
563 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
564 if (orb == NULL)
565 return -ENOMEM;
567 kref_init(&orb->base.kref);
568 orb->response_bus =
569 dma_map_single(device->card->device, &orb->response,
570 sizeof(orb->response), DMA_FROM_DEVICE);
571 if (dma_mapping_error(device->card->device, orb->response_bus))
572 goto fail_mapping_response;
574 orb->request.response.high = 0;
575 orb->request.response.low = cpu_to_be32(orb->response_bus);
577 orb->request.misc = cpu_to_be32(
578 MANAGEMENT_ORB_NOTIFY |
579 MANAGEMENT_ORB_FUNCTION(function) |
580 MANAGEMENT_ORB_LUN(lun_or_login_id));
581 orb->request.length = cpu_to_be32(
582 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
584 orb->request.status_fifo.high =
585 cpu_to_be32(lu->address_handler.offset >> 32);
586 orb->request.status_fifo.low =
587 cpu_to_be32(lu->address_handler.offset);
589 if (function == SBP2_LOGIN_REQUEST) {
590 /* Ask for 2^2 == 4 seconds reconnect grace period */
591 orb->request.misc |= cpu_to_be32(
592 MANAGEMENT_ORB_RECONNECT(2) |
593 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
594 timeout = lu->tgt->mgt_orb_timeout;
595 } else {
596 timeout = SBP2_ORB_TIMEOUT;
599 init_completion(&orb->done);
600 orb->base.callback = complete_management_orb;
602 orb->base.request_bus =
603 dma_map_single(device->card->device, &orb->request,
604 sizeof(orb->request), DMA_TO_DEVICE);
605 if (dma_mapping_error(device->card->device, orb->base.request_bus))
606 goto fail_mapping_request;
608 sbp2_send_orb(&orb->base, lu, node_id, generation,
609 lu->tgt->management_agent_address);
611 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
613 retval = -EIO;
614 if (sbp2_cancel_orbs(lu) == 0) {
615 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
616 lu->tgt->bus_id, orb->base.rcode);
617 goto out;
620 if (orb->base.rcode != RCODE_COMPLETE) {
621 fw_error("%s: management write failed, rcode 0x%02x\n",
622 lu->tgt->bus_id, orb->base.rcode);
623 goto out;
626 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
627 STATUS_GET_SBP_STATUS(orb->status) != 0) {
628 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
629 STATUS_GET_RESPONSE(orb->status),
630 STATUS_GET_SBP_STATUS(orb->status));
631 goto out;
634 retval = 0;
635 out:
636 dma_unmap_single(device->card->device, orb->base.request_bus,
637 sizeof(orb->request), DMA_TO_DEVICE);
638 fail_mapping_request:
639 dma_unmap_single(device->card->device, orb->response_bus,
640 sizeof(orb->response), DMA_FROM_DEVICE);
641 fail_mapping_response:
642 if (response)
643 memcpy(response, orb->response, sizeof(orb->response));
644 kref_put(&orb->base.kref, free_orb);
646 return retval;
649 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
651 struct fw_device *device = target_device(lu->tgt);
652 __be32 d = 0;
654 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
655 lu->tgt->node_id, lu->generation, device->max_speed,
656 lu->command_block_agent_address + SBP2_AGENT_RESET,
657 &d, 4);
660 static void complete_agent_reset_write_no_wait(struct fw_card *card,
661 int rcode, void *payload, size_t length, void *data)
663 kfree(data);
666 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
668 struct fw_device *device = target_device(lu->tgt);
669 struct fw_transaction *t;
670 static __be32 d;
672 t = kmalloc(sizeof(*t), GFP_ATOMIC);
673 if (t == NULL)
674 return;
676 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
677 lu->tgt->node_id, lu->generation, device->max_speed,
678 lu->command_block_agent_address + SBP2_AGENT_RESET,
679 &d, 4, complete_agent_reset_write_no_wait, t);
682 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
685 * We may access dont_block without taking card->lock here:
686 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
687 * are currently serialized against each other.
688 * And a wrong result in sbp2_conditionally_block()'s access of
689 * dont_block is rather harmless, it simply misses its first chance.
691 --lu->tgt->dont_block;
695 * Blocks lu->tgt if all of the following conditions are met:
696 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
697 * logical units have been finished (indicated by dont_block == 0).
698 * - lu->generation is stale.
700 * Note, scsi_block_requests() must be called while holding card->lock,
701 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
702 * unblock the target.
704 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
706 struct sbp2_target *tgt = lu->tgt;
707 struct fw_card *card = target_device(tgt)->card;
708 struct Scsi_Host *shost =
709 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
710 unsigned long flags;
712 spin_lock_irqsave(&card->lock, flags);
713 if (!tgt->dont_block && !lu->blocked &&
714 lu->generation != card->generation) {
715 lu->blocked = true;
716 if (++tgt->blocked == 1)
717 scsi_block_requests(shost);
719 spin_unlock_irqrestore(&card->lock, flags);
723 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
724 * Note, it is harmless to run scsi_unblock_requests() outside the
725 * card->lock protected section. On the other hand, running it inside
726 * the section might clash with shost->host_lock.
728 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
730 struct sbp2_target *tgt = lu->tgt;
731 struct fw_card *card = target_device(tgt)->card;
732 struct Scsi_Host *shost =
733 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
734 unsigned long flags;
735 bool unblock = false;
737 spin_lock_irqsave(&card->lock, flags);
738 if (lu->blocked && lu->generation == card->generation) {
739 lu->blocked = false;
740 unblock = --tgt->blocked == 0;
742 spin_unlock_irqrestore(&card->lock, flags);
744 if (unblock)
745 scsi_unblock_requests(shost);
749 * Prevents future blocking of tgt and unblocks it.
750 * Note, it is harmless to run scsi_unblock_requests() outside the
751 * card->lock protected section. On the other hand, running it inside
752 * the section might clash with shost->host_lock.
754 static void sbp2_unblock(struct sbp2_target *tgt)
756 struct fw_card *card = target_device(tgt)->card;
757 struct Scsi_Host *shost =
758 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
759 unsigned long flags;
761 spin_lock_irqsave(&card->lock, flags);
762 ++tgt->dont_block;
763 spin_unlock_irqrestore(&card->lock, flags);
765 scsi_unblock_requests(shost);
768 static int sbp2_lun2int(u16 lun)
770 struct scsi_lun eight_bytes_lun;
772 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
773 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
774 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
776 return scsilun_to_int(&eight_bytes_lun);
780 * Write retransmit retry values into the BUSY_TIMEOUT register.
781 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
782 * default retry_limit value is 0 (i.e. never retry transmission). We write a
783 * saner value after logging into the device.
784 * - The dual-phase retry protocol is optional to implement, and if not
785 * supported, writes to the dual-phase portion of the register will be
786 * ignored. We try to write the original 1394-1995 default here.
787 * - In the case of devices that are also SBP-3-compliant, all writes are
788 * ignored, as the register is read-only, but contains single-phase retry of
789 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
790 * write attempt is safe and yields more consistent behavior for all devices.
792 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
793 * and section 6.4 of the SBP-3 spec for further details.
795 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
797 struct fw_device *device = target_device(lu->tgt);
798 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
800 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
801 lu->tgt->node_id, lu->generation, device->max_speed,
802 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
805 static void sbp2_reconnect(struct work_struct *work);
807 static void sbp2_login(struct work_struct *work)
809 struct sbp2_logical_unit *lu =
810 container_of(work, struct sbp2_logical_unit, work.work);
811 struct sbp2_target *tgt = lu->tgt;
812 struct fw_device *device = target_device(tgt);
813 struct Scsi_Host *shost;
814 struct scsi_device *sdev;
815 struct sbp2_login_response response;
816 int generation, node_id, local_node_id;
818 if (fw_device_is_shutdown(device))
819 return;
821 generation = device->generation;
822 smp_rmb(); /* node IDs must not be older than generation */
823 node_id = device->node_id;
824 local_node_id = device->card->node_id;
826 /* If this is a re-login attempt, log out, or we might be rejected. */
827 if (lu->has_sdev)
828 sbp2_send_management_orb(lu, device->node_id, generation,
829 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
831 if (sbp2_send_management_orb(lu, node_id, generation,
832 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
833 if (lu->retries++ < 5) {
834 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
835 } else {
836 fw_error("%s: failed to login to LUN %04x\n",
837 tgt->bus_id, lu->lun);
838 /* Let any waiting I/O fail from now on. */
839 sbp2_unblock(lu->tgt);
841 return;
844 tgt->node_id = node_id;
845 tgt->address_high = local_node_id << 16;
846 smp_wmb(); /* node IDs must not be older than generation */
847 lu->generation = generation;
849 lu->command_block_agent_address =
850 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
851 << 32) | be32_to_cpu(response.command_block_agent.low);
852 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
854 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
855 tgt->bus_id, lu->lun, lu->retries);
857 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
858 sbp2_set_busy_timeout(lu);
860 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
861 sbp2_agent_reset(lu);
863 /* This was a re-login. */
864 if (lu->has_sdev) {
865 sbp2_cancel_orbs(lu);
866 sbp2_conditionally_unblock(lu);
868 return;
871 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
872 ssleep(SBP2_INQUIRY_DELAY);
874 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
875 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
877 * FIXME: We are unable to perform reconnects while in sbp2_login().
878 * Therefore __scsi_add_device() will get into trouble if a bus reset
879 * happens in parallel. It will either fail or leave us with an
880 * unusable sdev. As a workaround we check for this and retry the
881 * whole login and SCSI probing.
884 /* Reported error during __scsi_add_device() */
885 if (IS_ERR(sdev))
886 goto out_logout_login;
888 /* Unreported error during __scsi_add_device() */
889 smp_rmb(); /* get current card generation */
890 if (generation != device->card->generation) {
891 scsi_remove_device(sdev);
892 scsi_device_put(sdev);
893 goto out_logout_login;
896 /* No error during __scsi_add_device() */
897 lu->has_sdev = true;
898 scsi_device_put(sdev);
899 sbp2_allow_block(lu);
901 return;
903 out_logout_login:
904 smp_rmb(); /* generation may have changed */
905 generation = device->generation;
906 smp_rmb(); /* node_id must not be older than generation */
908 sbp2_send_management_orb(lu, device->node_id, generation,
909 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
911 * If a bus reset happened, sbp2_update will have requeued
912 * lu->work already. Reset the work from reconnect to login.
914 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
917 static void sbp2_reconnect(struct work_struct *work)
919 struct sbp2_logical_unit *lu =
920 container_of(work, struct sbp2_logical_unit, work.work);
921 struct sbp2_target *tgt = lu->tgt;
922 struct fw_device *device = target_device(tgt);
923 int generation, node_id, local_node_id;
925 if (fw_device_is_shutdown(device))
926 return;
928 generation = device->generation;
929 smp_rmb(); /* node IDs must not be older than generation */
930 node_id = device->node_id;
931 local_node_id = device->card->node_id;
933 if (sbp2_send_management_orb(lu, node_id, generation,
934 SBP2_RECONNECT_REQUEST,
935 lu->login_id, NULL) < 0) {
937 * If reconnect was impossible even though we are in the
938 * current generation, fall back and try to log in again.
940 * We could check for "Function rejected" status, but
941 * looking at the bus generation as simpler and more general.
943 smp_rmb(); /* get current card generation */
944 if (generation == device->card->generation ||
945 lu->retries++ >= 5) {
946 fw_error("%s: failed to reconnect\n", tgt->bus_id);
947 lu->retries = 0;
948 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
950 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
952 return;
955 tgt->node_id = node_id;
956 tgt->address_high = local_node_id << 16;
957 smp_wmb(); /* node IDs must not be older than generation */
958 lu->generation = generation;
960 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
961 tgt->bus_id, lu->lun, lu->retries);
963 sbp2_agent_reset(lu);
964 sbp2_cancel_orbs(lu);
965 sbp2_conditionally_unblock(lu);
968 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
970 struct sbp2_logical_unit *lu;
972 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
973 if (!lu)
974 return -ENOMEM;
976 lu->address_handler.length = 0x100;
977 lu->address_handler.address_callback = sbp2_status_write;
978 lu->address_handler.callback_data = lu;
980 if (fw_core_add_address_handler(&lu->address_handler,
981 &fw_high_memory_region) < 0) {
982 kfree(lu);
983 return -ENOMEM;
986 lu->tgt = tgt;
987 lu->lun = lun_entry & 0xffff;
988 lu->login_id = INVALID_LOGIN_ID;
989 lu->retries = 0;
990 lu->has_sdev = false;
991 lu->blocked = false;
992 ++tgt->dont_block;
993 INIT_LIST_HEAD(&lu->orb_list);
994 INIT_DELAYED_WORK(&lu->work, sbp2_login);
996 list_add_tail(&lu->link, &tgt->lu_list);
997 return 0;
1000 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1001 const u32 *directory)
1003 struct fw_csr_iterator ci;
1004 int key, value;
1006 fw_csr_iterator_init(&ci, directory);
1007 while (fw_csr_iterator_next(&ci, &key, &value))
1008 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1009 sbp2_add_logical_unit(tgt, value) < 0)
1010 return -ENOMEM;
1011 return 0;
1014 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1015 u32 *model, u32 *firmware_revision)
1017 struct fw_csr_iterator ci;
1018 int key, value;
1020 fw_csr_iterator_init(&ci, directory);
1021 while (fw_csr_iterator_next(&ci, &key, &value)) {
1022 switch (key) {
1024 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1025 tgt->management_agent_address =
1026 CSR_REGISTER_BASE + 4 * value;
1027 break;
1029 case CSR_DIRECTORY_ID:
1030 tgt->directory_id = value;
1031 break;
1033 case CSR_MODEL:
1034 *model = value;
1035 break;
1037 case SBP2_CSR_FIRMWARE_REVISION:
1038 *firmware_revision = value;
1039 break;
1041 case SBP2_CSR_UNIT_CHARACTERISTICS:
1042 /* the timeout value is stored in 500ms units */
1043 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1044 break;
1046 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1047 if (sbp2_add_logical_unit(tgt, value) < 0)
1048 return -ENOMEM;
1049 break;
1051 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1052 /* Adjust for the increment in the iterator */
1053 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1054 return -ENOMEM;
1055 break;
1058 return 0;
1062 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1063 * provided in the config rom. Most devices do provide a value, which
1064 * we'll use for login management orbs, but with some sane limits.
1066 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1068 unsigned int timeout = tgt->mgt_orb_timeout;
1070 if (timeout > 40000)
1071 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1072 tgt->bus_id, timeout / 1000);
1074 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1077 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1078 u32 firmware_revision)
1080 int i;
1081 unsigned int w = sbp2_param_workarounds;
1083 if (w)
1084 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1085 "if you need the workarounds parameter for %s\n",
1086 tgt->bus_id);
1088 if (w & SBP2_WORKAROUND_OVERRIDE)
1089 goto out;
1091 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1093 if (sbp2_workarounds_table[i].firmware_revision !=
1094 (firmware_revision & 0xffffff00))
1095 continue;
1097 if (sbp2_workarounds_table[i].model != model &&
1098 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1099 continue;
1101 w |= sbp2_workarounds_table[i].workarounds;
1102 break;
1104 out:
1105 if (w)
1106 fw_notify("Workarounds for %s: 0x%x "
1107 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1108 tgt->bus_id, w, firmware_revision, model);
1109 tgt->workarounds = w;
1112 static struct scsi_host_template scsi_driver_template;
1113 static int sbp2_remove(struct device *dev);
1115 static int sbp2_probe(struct device *dev)
1117 struct fw_unit *unit = fw_unit(dev);
1118 struct fw_device *device = fw_parent_device(unit);
1119 struct sbp2_target *tgt;
1120 struct sbp2_logical_unit *lu;
1121 struct Scsi_Host *shost;
1122 u32 model, firmware_revision;
1124 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1125 BUG_ON(dma_set_max_seg_size(device->card->device,
1126 SBP2_MAX_SEG_SIZE));
1128 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1129 if (shost == NULL)
1130 return -ENOMEM;
1132 tgt = (struct sbp2_target *)shost->hostdata;
1133 dev_set_drvdata(&unit->device, tgt);
1134 tgt->unit = unit;
1135 INIT_LIST_HEAD(&tgt->lu_list);
1136 tgt->bus_id = dev_name(&unit->device);
1137 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1139 if (fw_device_enable_phys_dma(device) < 0)
1140 goto fail_shost_put;
1142 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1144 if (scsi_add_host(shost, &unit->device) < 0)
1145 goto fail_shost_put;
1147 /* implicit directory ID */
1148 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1149 + CSR_CONFIG_ROM) & 0xffffff;
1151 firmware_revision = SBP2_ROM_VALUE_MISSING;
1152 model = SBP2_ROM_VALUE_MISSING;
1154 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1155 &firmware_revision) < 0)
1156 goto fail_remove;
1158 sbp2_clamp_management_orb_timeout(tgt);
1159 sbp2_init_workarounds(tgt, model, firmware_revision);
1162 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1163 * and so on up to 4096 bytes. The SBP-2 max_payload field
1164 * specifies the max payload size as 2 ^ (max_payload + 2), so
1165 * if we set this to max_speed + 7, we get the right value.
1167 tgt->max_payload = min3(device->max_speed + 7, 10U,
1168 device->card->max_receive - 1);
1170 /* Do the login in a workqueue so we can easily reschedule retries. */
1171 list_for_each_entry(lu, &tgt->lu_list, link)
1172 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1174 return 0;
1176 fail_remove:
1177 sbp2_remove(dev);
1178 return -ENOMEM;
1180 fail_shost_put:
1181 scsi_host_put(shost);
1182 return -ENOMEM;
1185 static void sbp2_update(struct fw_unit *unit)
1187 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1188 struct sbp2_logical_unit *lu;
1190 fw_device_enable_phys_dma(fw_parent_device(unit));
1193 * Fw-core serializes sbp2_update() against sbp2_remove().
1194 * Iteration over tgt->lu_list is therefore safe here.
1196 list_for_each_entry(lu, &tgt->lu_list, link) {
1197 sbp2_conditionally_block(lu);
1198 lu->retries = 0;
1199 sbp2_queue_work(lu, 0);
1203 static int sbp2_remove(struct device *dev)
1205 struct fw_unit *unit = fw_unit(dev);
1206 struct fw_device *device = fw_parent_device(unit);
1207 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1208 struct sbp2_logical_unit *lu, *next;
1209 struct Scsi_Host *shost =
1210 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1211 struct scsi_device *sdev;
1213 /* prevent deadlocks */
1214 sbp2_unblock(tgt);
1216 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1217 cancel_delayed_work_sync(&lu->work);
1218 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1219 if (sdev) {
1220 scsi_remove_device(sdev);
1221 scsi_device_put(sdev);
1223 if (lu->login_id != INVALID_LOGIN_ID) {
1224 int generation, node_id;
1226 * tgt->node_id may be obsolete here if we failed
1227 * during initial login or after a bus reset where
1228 * the topology changed.
1230 generation = device->generation;
1231 smp_rmb(); /* node_id vs. generation */
1232 node_id = device->node_id;
1233 sbp2_send_management_orb(lu, node_id, generation,
1234 SBP2_LOGOUT_REQUEST,
1235 lu->login_id, NULL);
1237 fw_core_remove_address_handler(&lu->address_handler);
1238 list_del(&lu->link);
1239 kfree(lu);
1241 scsi_remove_host(shost);
1242 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
1244 scsi_host_put(shost);
1245 return 0;
1248 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1249 #define SBP2_SW_VERSION_ENTRY 0x00010483
1251 static const struct ieee1394_device_id sbp2_id_table[] = {
1253 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1254 IEEE1394_MATCH_VERSION,
1255 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1256 .version = SBP2_SW_VERSION_ENTRY,
1261 static struct fw_driver sbp2_driver = {
1262 .driver = {
1263 .owner = THIS_MODULE,
1264 .name = sbp2_driver_name,
1265 .bus = &fw_bus_type,
1266 .probe = sbp2_probe,
1267 .remove = sbp2_remove,
1269 .update = sbp2_update,
1270 .id_table = sbp2_id_table,
1273 static void sbp2_unmap_scatterlist(struct device *card_device,
1274 struct sbp2_command_orb *orb)
1276 if (scsi_sg_count(orb->cmd))
1277 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1278 scsi_sg_count(orb->cmd),
1279 orb->cmd->sc_data_direction);
1281 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1282 dma_unmap_single(card_device, orb->page_table_bus,
1283 sizeof(orb->page_table), DMA_TO_DEVICE);
1286 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1288 int sam_status;
1290 sense_data[0] = 0x70;
1291 sense_data[1] = 0x0;
1292 sense_data[2] = sbp2_status[1];
1293 sense_data[3] = sbp2_status[4];
1294 sense_data[4] = sbp2_status[5];
1295 sense_data[5] = sbp2_status[6];
1296 sense_data[6] = sbp2_status[7];
1297 sense_data[7] = 10;
1298 sense_data[8] = sbp2_status[8];
1299 sense_data[9] = sbp2_status[9];
1300 sense_data[10] = sbp2_status[10];
1301 sense_data[11] = sbp2_status[11];
1302 sense_data[12] = sbp2_status[2];
1303 sense_data[13] = sbp2_status[3];
1304 sense_data[14] = sbp2_status[12];
1305 sense_data[15] = sbp2_status[13];
1307 sam_status = sbp2_status[0] & 0x3f;
1309 switch (sam_status) {
1310 case SAM_STAT_GOOD:
1311 case SAM_STAT_CHECK_CONDITION:
1312 case SAM_STAT_CONDITION_MET:
1313 case SAM_STAT_BUSY:
1314 case SAM_STAT_RESERVATION_CONFLICT:
1315 case SAM_STAT_COMMAND_TERMINATED:
1316 return DID_OK << 16 | sam_status;
1318 default:
1319 return DID_ERROR << 16;
1323 static void complete_command_orb(struct sbp2_orb *base_orb,
1324 struct sbp2_status *status)
1326 struct sbp2_command_orb *orb =
1327 container_of(base_orb, struct sbp2_command_orb, base);
1328 struct fw_device *device = target_device(orb->lu->tgt);
1329 int result;
1331 if (status != NULL) {
1332 if (STATUS_GET_DEAD(*status))
1333 sbp2_agent_reset_no_wait(orb->lu);
1335 switch (STATUS_GET_RESPONSE(*status)) {
1336 case SBP2_STATUS_REQUEST_COMPLETE:
1337 result = DID_OK << 16;
1338 break;
1339 case SBP2_STATUS_TRANSPORT_FAILURE:
1340 result = DID_BUS_BUSY << 16;
1341 break;
1342 case SBP2_STATUS_ILLEGAL_REQUEST:
1343 case SBP2_STATUS_VENDOR_DEPENDENT:
1344 default:
1345 result = DID_ERROR << 16;
1346 break;
1349 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1350 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1351 orb->cmd->sense_buffer);
1352 } else {
1354 * If the orb completes with status == NULL, something
1355 * went wrong, typically a bus reset happened mid-orb
1356 * or when sending the write (less likely).
1358 result = DID_BUS_BUSY << 16;
1359 sbp2_conditionally_block(orb->lu);
1362 dma_unmap_single(device->card->device, orb->base.request_bus,
1363 sizeof(orb->request), DMA_TO_DEVICE);
1364 sbp2_unmap_scatterlist(device->card->device, orb);
1366 orb->cmd->result = result;
1367 orb->cmd->scsi_done(orb->cmd);
1370 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1371 struct fw_device *device, struct sbp2_logical_unit *lu)
1373 struct scatterlist *sg = scsi_sglist(orb->cmd);
1374 int i, n;
1376 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1377 orb->cmd->sc_data_direction);
1378 if (n == 0)
1379 goto fail;
1382 * Handle the special case where there is only one element in
1383 * the scatter list by converting it to an immediate block
1384 * request. This is also a workaround for broken devices such
1385 * as the second generation iPod which doesn't support page
1386 * tables.
1388 if (n == 1) {
1389 orb->request.data_descriptor.high =
1390 cpu_to_be32(lu->tgt->address_high);
1391 orb->request.data_descriptor.low =
1392 cpu_to_be32(sg_dma_address(sg));
1393 orb->request.misc |=
1394 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1395 return 0;
1398 for_each_sg(sg, sg, n, i) {
1399 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1400 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1403 orb->page_table_bus =
1404 dma_map_single(device->card->device, orb->page_table,
1405 sizeof(orb->page_table), DMA_TO_DEVICE);
1406 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1407 goto fail_page_table;
1410 * The data_descriptor pointer is the one case where we need
1411 * to fill in the node ID part of the address. All other
1412 * pointers assume that the data referenced reside on the
1413 * initiator (i.e. us), but data_descriptor can refer to data
1414 * on other nodes so we need to put our ID in descriptor.high.
1416 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1417 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1418 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1419 COMMAND_ORB_DATA_SIZE(n));
1421 return 0;
1423 fail_page_table:
1424 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1425 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1426 fail:
1427 return -ENOMEM;
1430 /* SCSI stack integration */
1432 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1433 struct scsi_cmnd *cmd)
1435 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1436 struct fw_device *device = target_device(lu->tgt);
1437 struct sbp2_command_orb *orb;
1438 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1441 * Bidirectional commands are not yet implemented, and unknown
1442 * transfer direction not handled.
1444 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1445 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1446 cmd->result = DID_ERROR << 16;
1447 cmd->scsi_done(cmd);
1448 return 0;
1451 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452 if (orb == NULL) {
1453 fw_notify("failed to alloc orb\n");
1454 return SCSI_MLQUEUE_HOST_BUSY;
1457 /* Initialize rcode to something not RCODE_COMPLETE. */
1458 orb->base.rcode = -1;
1459 kref_init(&orb->base.kref);
1460 orb->lu = lu;
1461 orb->cmd = cmd;
1462 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1463 orb->request.misc = cpu_to_be32(
1464 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1465 COMMAND_ORB_SPEED(device->max_speed) |
1466 COMMAND_ORB_NOTIFY);
1468 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1469 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1471 generation = device->generation;
1472 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1474 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1475 goto out;
1477 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1479 orb->base.callback = complete_command_orb;
1480 orb->base.request_bus =
1481 dma_map_single(device->card->device, &orb->request,
1482 sizeof(orb->request), DMA_TO_DEVICE);
1483 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1484 sbp2_unmap_scatterlist(device->card->device, orb);
1485 goto out;
1488 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1489 lu->command_block_agent_address + SBP2_ORB_POINTER);
1490 retval = 0;
1491 out:
1492 kref_put(&orb->base.kref, free_orb);
1493 return retval;
1496 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1498 struct sbp2_logical_unit *lu = sdev->hostdata;
1500 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1501 if (!lu)
1502 return -ENOSYS;
1504 sdev->allow_restart = 1;
1506 /* SBP-2 requires quadlet alignment of the data buffers. */
1507 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1509 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1510 sdev->inquiry_len = 36;
1512 return 0;
1515 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1517 struct sbp2_logical_unit *lu = sdev->hostdata;
1519 sdev->use_10_for_rw = 1;
1521 if (sbp2_param_exclusive_login)
1522 sdev->manage_start_stop = 1;
1524 if (sdev->type == TYPE_ROM)
1525 sdev->use_10_for_ms = 1;
1527 if (sdev->type == TYPE_DISK &&
1528 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1529 sdev->skip_ms_page_8 = 1;
1531 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1532 sdev->fix_capacity = 1;
1534 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1535 sdev->start_stop_pwr_cond = 1;
1537 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1538 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1540 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1542 return 0;
1546 * Called by scsi stack when something has really gone wrong. Usually
1547 * called when a command has timed-out for some reason.
1549 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1551 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1553 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1554 sbp2_agent_reset(lu);
1555 sbp2_cancel_orbs(lu);
1557 return SUCCESS;
1561 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1562 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1564 * This is the concatenation of target port identifier and logical unit
1565 * identifier as per SAM-2...SAM-4 annex A.
1567 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1568 struct device_attribute *attr, char *buf)
1570 struct scsi_device *sdev = to_scsi_device(dev);
1571 struct sbp2_logical_unit *lu;
1573 if (!sdev)
1574 return 0;
1576 lu = sdev->hostdata;
1578 return sprintf(buf, "%016llx:%06x:%04x\n",
1579 (unsigned long long)lu->tgt->guid,
1580 lu->tgt->directory_id, lu->lun);
1583 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1585 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1586 &dev_attr_ieee1394_id,
1587 NULL
1590 static struct scsi_host_template scsi_driver_template = {
1591 .module = THIS_MODULE,
1592 .name = "SBP-2 IEEE-1394",
1593 .proc_name = sbp2_driver_name,
1594 .queuecommand = sbp2_scsi_queuecommand,
1595 .slave_alloc = sbp2_scsi_slave_alloc,
1596 .slave_configure = sbp2_scsi_slave_configure,
1597 .eh_abort_handler = sbp2_scsi_abort,
1598 .this_id = -1,
1599 .sg_tablesize = SG_ALL,
1600 .use_clustering = ENABLE_CLUSTERING,
1601 .cmd_per_lun = 1,
1602 .can_queue = 1,
1603 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1606 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1607 MODULE_DESCRIPTION("SCSI over IEEE1394");
1608 MODULE_LICENSE("GPL");
1609 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1611 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1612 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1613 MODULE_ALIAS("sbp2");
1614 #endif
1616 static int __init sbp2_init(void)
1618 return driver_register(&sbp2_driver.driver);
1621 static void __exit sbp2_cleanup(void)
1623 driver_unregister(&sbp2_driver.driver);
1626 module_init(sbp2_init);
1627 module_exit(sbp2_cleanup);