2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * near_copies and far_copies must be at least one, and their product is at most
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
58 * Number of guaranteed r10bios in case of extreme VM load:
60 #define NR_RAID10_BIOS 256
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
66 static int max_queued_requests
= 1024;
68 static void allow_barrier(struct r10conf
*conf
);
69 static void lower_barrier(struct r10conf
*conf
);
71 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
73 struct r10conf
*conf
= data
;
74 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
76 /* allocate a r10bio with room for raid_disks entries in the
78 return kzalloc(size
, gfp_flags
);
81 static void r10bio_pool_free(void *r10_bio
, void *data
)
86 /* Maximum size of each resync request */
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
89 /* amount of memory to reserve for resync requests */
90 #define RESYNC_WINDOW (1024*1024)
91 /* maximum number of concurrent requests, memory permitting */
92 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
95 * When performing a resync, we need to read and compare, so
96 * we need as many pages are there are copies.
97 * When performing a recovery, we need 2 bios, one for read,
98 * one for write (we recover only one drive per r10buf)
101 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
103 struct r10conf
*conf
= data
;
105 struct r10bio
*r10_bio
;
110 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
114 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
))
115 nalloc
= conf
->copies
; /* resync */
117 nalloc
= 2; /* recovery */
122 for (j
= nalloc
; j
-- ; ) {
123 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
126 r10_bio
->devs
[j
].bio
= bio
;
127 if (!conf
->have_replacement
)
129 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
132 r10_bio
->devs
[j
].repl_bio
= bio
;
135 * Allocate RESYNC_PAGES data pages and attach them
138 for (j
= 0 ; j
< nalloc
; j
++) {
139 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
140 bio
= r10_bio
->devs
[j
].bio
;
141 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
142 if (j
== 1 && !test_bit(MD_RECOVERY_SYNC
,
143 &conf
->mddev
->recovery
)) {
144 /* we can share bv_page's during recovery */
145 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
146 page
= rbio
->bi_io_vec
[i
].bv_page
;
149 page
= alloc_page(gfp_flags
);
153 bio
->bi_io_vec
[i
].bv_page
= page
;
155 rbio
->bi_io_vec
[i
].bv_page
= page
;
163 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
165 for (i
= 0; i
< RESYNC_PAGES
; i
++)
166 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
169 while (++j
< nalloc
) {
170 bio_put(r10_bio
->devs
[j
].bio
);
171 if (r10_bio
->devs
[j
].repl_bio
)
172 bio_put(r10_bio
->devs
[j
].repl_bio
);
174 r10bio_pool_free(r10_bio
, conf
);
178 static void r10buf_pool_free(void *__r10_bio
, void *data
)
181 struct r10conf
*conf
= data
;
182 struct r10bio
*r10bio
= __r10_bio
;
185 for (j
=0; j
< conf
->copies
; j
++) {
186 struct bio
*bio
= r10bio
->devs
[j
].bio
;
188 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
189 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
190 bio
->bi_io_vec
[i
].bv_page
= NULL
;
194 bio
= r10bio
->devs
[j
].repl_bio
;
198 r10bio_pool_free(r10bio
, conf
);
201 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
205 for (i
= 0; i
< conf
->copies
; i
++) {
206 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
207 if (!BIO_SPECIAL(*bio
))
210 bio
= &r10_bio
->devs
[i
].repl_bio
;
211 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
217 static void free_r10bio(struct r10bio
*r10_bio
)
219 struct r10conf
*conf
= r10_bio
->mddev
->private;
221 put_all_bios(conf
, r10_bio
);
222 mempool_free(r10_bio
, conf
->r10bio_pool
);
225 static void put_buf(struct r10bio
*r10_bio
)
227 struct r10conf
*conf
= r10_bio
->mddev
->private;
229 mempool_free(r10_bio
, conf
->r10buf_pool
);
234 static void reschedule_retry(struct r10bio
*r10_bio
)
237 struct mddev
*mddev
= r10_bio
->mddev
;
238 struct r10conf
*conf
= mddev
->private;
240 spin_lock_irqsave(&conf
->device_lock
, flags
);
241 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
243 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
245 /* wake up frozen array... */
246 wake_up(&conf
->wait_barrier
);
248 md_wakeup_thread(mddev
->thread
);
252 * raid_end_bio_io() is called when we have finished servicing a mirrored
253 * operation and are ready to return a success/failure code to the buffer
256 static void raid_end_bio_io(struct r10bio
*r10_bio
)
258 struct bio
*bio
= r10_bio
->master_bio
;
260 struct r10conf
*conf
= r10_bio
->mddev
->private;
262 if (bio
->bi_phys_segments
) {
264 spin_lock_irqsave(&conf
->device_lock
, flags
);
265 bio
->bi_phys_segments
--;
266 done
= (bio
->bi_phys_segments
== 0);
267 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
270 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
271 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
275 * Wake up any possible resync thread that waits for the device
280 free_r10bio(r10_bio
);
284 * Update disk head position estimator based on IRQ completion info.
286 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
288 struct r10conf
*conf
= r10_bio
->mddev
->private;
290 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
291 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
295 * Find the disk number which triggered given bio
297 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
298 struct bio
*bio
, int *slotp
, int *replp
)
303 for (slot
= 0; slot
< conf
->copies
; slot
++) {
304 if (r10_bio
->devs
[slot
].bio
== bio
)
306 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
312 BUG_ON(slot
== conf
->copies
);
313 update_head_pos(slot
, r10_bio
);
319 return r10_bio
->devs
[slot
].devnum
;
322 static void raid10_end_read_request(struct bio
*bio
, int error
)
324 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
325 struct r10bio
*r10_bio
= bio
->bi_private
;
327 struct md_rdev
*rdev
;
328 struct r10conf
*conf
= r10_bio
->mddev
->private;
331 slot
= r10_bio
->read_slot
;
332 dev
= r10_bio
->devs
[slot
].devnum
;
333 rdev
= r10_bio
->devs
[slot
].rdev
;
335 * this branch is our 'one mirror IO has finished' event handler:
337 update_head_pos(slot
, r10_bio
);
341 * Set R10BIO_Uptodate in our master bio, so that
342 * we will return a good error code to the higher
343 * levels even if IO on some other mirrored buffer fails.
345 * The 'master' represents the composite IO operation to
346 * user-side. So if something waits for IO, then it will
347 * wait for the 'master' bio.
349 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
350 raid_end_bio_io(r10_bio
);
351 rdev_dec_pending(rdev
, conf
->mddev
);
354 * oops, read error - keep the refcount on the rdev
356 char b
[BDEVNAME_SIZE
];
357 printk_ratelimited(KERN_ERR
358 "md/raid10:%s: %s: rescheduling sector %llu\n",
360 bdevname(rdev
->bdev
, b
),
361 (unsigned long long)r10_bio
->sector
);
362 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
363 reschedule_retry(r10_bio
);
367 static void close_write(struct r10bio
*r10_bio
)
369 /* clear the bitmap if all writes complete successfully */
370 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
372 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
374 md_write_end(r10_bio
->mddev
);
377 static void one_write_done(struct r10bio
*r10_bio
)
379 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
380 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
381 reschedule_retry(r10_bio
);
383 close_write(r10_bio
);
384 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
385 reschedule_retry(r10_bio
);
387 raid_end_bio_io(r10_bio
);
392 static void raid10_end_write_request(struct bio
*bio
, int error
)
394 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
395 struct r10bio
*r10_bio
= bio
->bi_private
;
398 struct r10conf
*conf
= r10_bio
->mddev
->private;
400 struct md_rdev
*rdev
= NULL
;
402 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
405 rdev
= conf
->mirrors
[dev
].replacement
;
409 rdev
= conf
->mirrors
[dev
].rdev
;
412 * this branch is our 'one mirror IO has finished' event handler:
416 /* Never record new bad blocks to replacement,
419 md_error(rdev
->mddev
, rdev
);
421 set_bit(WriteErrorSeen
, &rdev
->flags
);
422 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
423 set_bit(MD_RECOVERY_NEEDED
,
424 &rdev
->mddev
->recovery
);
425 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
430 * Set R10BIO_Uptodate in our master bio, so that
431 * we will return a good error code for to the higher
432 * levels even if IO on some other mirrored buffer fails.
434 * The 'master' represents the composite IO operation to
435 * user-side. So if something waits for IO, then it will
436 * wait for the 'master' bio.
441 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
443 /* Maybe we can clear some bad blocks. */
444 if (is_badblock(rdev
,
445 r10_bio
->devs
[slot
].addr
,
447 &first_bad
, &bad_sectors
)) {
450 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
452 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
454 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
460 * Let's see if all mirrored write operations have finished
463 one_write_done(r10_bio
);
465 rdev_dec_pending(conf
->mirrors
[dev
].rdev
, conf
->mddev
);
469 * RAID10 layout manager
470 * As well as the chunksize and raid_disks count, there are two
471 * parameters: near_copies and far_copies.
472 * near_copies * far_copies must be <= raid_disks.
473 * Normally one of these will be 1.
474 * If both are 1, we get raid0.
475 * If near_copies == raid_disks, we get raid1.
477 * Chunks are laid out in raid0 style with near_copies copies of the
478 * first chunk, followed by near_copies copies of the next chunk and
480 * If far_copies > 1, then after 1/far_copies of the array has been assigned
481 * as described above, we start again with a device offset of near_copies.
482 * So we effectively have another copy of the whole array further down all
483 * the drives, but with blocks on different drives.
484 * With this layout, and block is never stored twice on the one device.
486 * raid10_find_phys finds the sector offset of a given virtual sector
487 * on each device that it is on.
489 * raid10_find_virt does the reverse mapping, from a device and a
490 * sector offset to a virtual address
493 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
503 /* now calculate first sector/dev */
504 chunk
= r10bio
->sector
>> conf
->chunk_shift
;
505 sector
= r10bio
->sector
& conf
->chunk_mask
;
507 chunk
*= conf
->near_copies
;
509 dev
= sector_div(stripe
, conf
->raid_disks
);
510 if (conf
->far_offset
)
511 stripe
*= conf
->far_copies
;
513 sector
+= stripe
<< conf
->chunk_shift
;
515 /* and calculate all the others */
516 for (n
=0; n
< conf
->near_copies
; n
++) {
519 r10bio
->devs
[slot
].addr
= sector
;
520 r10bio
->devs
[slot
].devnum
= d
;
523 for (f
= 1; f
< conf
->far_copies
; f
++) {
524 d
+= conf
->near_copies
;
525 if (d
>= conf
->raid_disks
)
526 d
-= conf
->raid_disks
;
528 r10bio
->devs
[slot
].devnum
= d
;
529 r10bio
->devs
[slot
].addr
= s
;
533 if (dev
>= conf
->raid_disks
) {
535 sector
+= (conf
->chunk_mask
+ 1);
538 BUG_ON(slot
!= conf
->copies
);
541 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
543 sector_t offset
, chunk
, vchunk
;
545 offset
= sector
& conf
->chunk_mask
;
546 if (conf
->far_offset
) {
548 chunk
= sector
>> conf
->chunk_shift
;
549 fc
= sector_div(chunk
, conf
->far_copies
);
550 dev
-= fc
* conf
->near_copies
;
552 dev
+= conf
->raid_disks
;
554 while (sector
>= conf
->stride
) {
555 sector
-= conf
->stride
;
556 if (dev
< conf
->near_copies
)
557 dev
+= conf
->raid_disks
- conf
->near_copies
;
559 dev
-= conf
->near_copies
;
561 chunk
= sector
>> conf
->chunk_shift
;
563 vchunk
= chunk
* conf
->raid_disks
+ dev
;
564 sector_div(vchunk
, conf
->near_copies
);
565 return (vchunk
<< conf
->chunk_shift
) + offset
;
569 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
571 * @bvm: properties of new bio
572 * @biovec: the request that could be merged to it.
574 * Return amount of bytes we can accept at this offset
575 * If near_copies == raid_disk, there are no striping issues,
576 * but in that case, the function isn't called at all.
578 static int raid10_mergeable_bvec(struct request_queue
*q
,
579 struct bvec_merge_data
*bvm
,
580 struct bio_vec
*biovec
)
582 struct mddev
*mddev
= q
->queuedata
;
583 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
585 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
586 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
588 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
589 if (max
< 0) max
= 0; /* bio_add cannot handle a negative return */
590 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
591 return biovec
->bv_len
;
597 * This routine returns the disk from which the requested read should
598 * be done. There is a per-array 'next expected sequential IO' sector
599 * number - if this matches on the next IO then we use the last disk.
600 * There is also a per-disk 'last know head position' sector that is
601 * maintained from IRQ contexts, both the normal and the resync IO
602 * completion handlers update this position correctly. If there is no
603 * perfect sequential match then we pick the disk whose head is closest.
605 * If there are 2 mirrors in the same 2 devices, performance degrades
606 * because position is mirror, not device based.
608 * The rdev for the device selected will have nr_pending incremented.
612 * FIXME: possibly should rethink readbalancing and do it differently
613 * depending on near_copies / far_copies geometry.
615 static struct md_rdev
*read_balance(struct r10conf
*conf
,
616 struct r10bio
*r10_bio
,
619 const sector_t this_sector
= r10_bio
->sector
;
621 int sectors
= r10_bio
->sectors
;
622 int best_good_sectors
;
623 sector_t new_distance
, best_dist
;
624 struct md_rdev
*rdev
, *best_rdev
;
628 raid10_find_phys(conf
, r10_bio
);
631 sectors
= r10_bio
->sectors
;
634 best_dist
= MaxSector
;
635 best_good_sectors
= 0;
638 * Check if we can balance. We can balance on the whole
639 * device if no resync is going on (recovery is ok), or below
640 * the resync window. We take the first readable disk when
641 * above the resync window.
643 if (conf
->mddev
->recovery_cp
< MaxSector
644 && (this_sector
+ sectors
>= conf
->next_resync
))
647 for (slot
= 0; slot
< conf
->copies
; slot
++) {
652 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
654 disk
= r10_bio
->devs
[slot
].devnum
;
655 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
656 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
657 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
658 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
661 if (test_bit(Faulty
, &rdev
->flags
))
663 if (!test_bit(In_sync
, &rdev
->flags
) &&
664 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
667 dev_sector
= r10_bio
->devs
[slot
].addr
;
668 if (is_badblock(rdev
, dev_sector
, sectors
,
669 &first_bad
, &bad_sectors
)) {
670 if (best_dist
< MaxSector
)
671 /* Already have a better slot */
673 if (first_bad
<= dev_sector
) {
674 /* Cannot read here. If this is the
675 * 'primary' device, then we must not read
676 * beyond 'bad_sectors' from another device.
678 bad_sectors
-= (dev_sector
- first_bad
);
679 if (!do_balance
&& sectors
> bad_sectors
)
680 sectors
= bad_sectors
;
681 if (best_good_sectors
> sectors
)
682 best_good_sectors
= sectors
;
684 sector_t good_sectors
=
685 first_bad
- dev_sector
;
686 if (good_sectors
> best_good_sectors
) {
687 best_good_sectors
= good_sectors
;
692 /* Must read from here */
697 best_good_sectors
= sectors
;
702 /* This optimisation is debatable, and completely destroys
703 * sequential read speed for 'far copies' arrays. So only
704 * keep it for 'near' arrays, and review those later.
706 if (conf
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
709 /* for far > 1 always use the lowest address */
710 if (conf
->far_copies
> 1)
711 new_distance
= r10_bio
->devs
[slot
].addr
;
713 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
714 conf
->mirrors
[disk
].head_position
);
715 if (new_distance
< best_dist
) {
716 best_dist
= new_distance
;
721 if (slot
>= conf
->copies
) {
727 atomic_inc(&rdev
->nr_pending
);
728 if (test_bit(Faulty
, &rdev
->flags
)) {
729 /* Cannot risk returning a device that failed
730 * before we inc'ed nr_pending
732 rdev_dec_pending(rdev
, conf
->mddev
);
735 r10_bio
->read_slot
= slot
;
739 *max_sectors
= best_good_sectors
;
744 static int raid10_congested(void *data
, int bits
)
746 struct mddev
*mddev
= data
;
747 struct r10conf
*conf
= mddev
->private;
750 if ((bits
& (1 << BDI_async_congested
)) &&
751 conf
->pending_count
>= max_queued_requests
)
754 if (mddev_congested(mddev
, bits
))
757 for (i
= 0; i
< conf
->raid_disks
&& ret
== 0; i
++) {
758 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
759 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
760 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
762 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
769 static void flush_pending_writes(struct r10conf
*conf
)
771 /* Any writes that have been queued but are awaiting
772 * bitmap updates get flushed here.
774 spin_lock_irq(&conf
->device_lock
);
776 if (conf
->pending_bio_list
.head
) {
778 bio
= bio_list_get(&conf
->pending_bio_list
);
779 conf
->pending_count
= 0;
780 spin_unlock_irq(&conf
->device_lock
);
781 /* flush any pending bitmap writes to disk
782 * before proceeding w/ I/O */
783 bitmap_unplug(conf
->mddev
->bitmap
);
784 wake_up(&conf
->wait_barrier
);
786 while (bio
) { /* submit pending writes */
787 struct bio
*next
= bio
->bi_next
;
789 generic_make_request(bio
);
793 spin_unlock_irq(&conf
->device_lock
);
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
818 static void raise_barrier(struct r10conf
*conf
, int force
)
820 BUG_ON(force
&& !conf
->barrier
);
821 spin_lock_irq(&conf
->resync_lock
);
823 /* Wait until no block IO is waiting (unless 'force') */
824 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
825 conf
->resync_lock
, );
827 /* block any new IO from starting */
830 /* Now wait for all pending IO to complete */
831 wait_event_lock_irq(conf
->wait_barrier
,
832 !conf
->nr_pending
&& conf
->barrier
< RESYNC_DEPTH
,
833 conf
->resync_lock
, );
835 spin_unlock_irq(&conf
->resync_lock
);
838 static void lower_barrier(struct r10conf
*conf
)
841 spin_lock_irqsave(&conf
->resync_lock
, flags
);
843 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
844 wake_up(&conf
->wait_barrier
);
847 static void wait_barrier(struct r10conf
*conf
)
849 spin_lock_irq(&conf
->resync_lock
);
852 wait_event_lock_irq(conf
->wait_barrier
, !conf
->barrier
,
858 spin_unlock_irq(&conf
->resync_lock
);
861 static void allow_barrier(struct r10conf
*conf
)
864 spin_lock_irqsave(&conf
->resync_lock
, flags
);
866 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
867 wake_up(&conf
->wait_barrier
);
870 static void freeze_array(struct r10conf
*conf
)
872 /* stop syncio and normal IO and wait for everything to
874 * We increment barrier and nr_waiting, and then
875 * wait until nr_pending match nr_queued+1
876 * This is called in the context of one normal IO request
877 * that has failed. Thus any sync request that might be pending
878 * will be blocked by nr_pending, and we need to wait for
879 * pending IO requests to complete or be queued for re-try.
880 * Thus the number queued (nr_queued) plus this request (1)
881 * must match the number of pending IOs (nr_pending) before
884 spin_lock_irq(&conf
->resync_lock
);
887 wait_event_lock_irq(conf
->wait_barrier
,
888 conf
->nr_pending
== conf
->nr_queued
+1,
890 flush_pending_writes(conf
));
892 spin_unlock_irq(&conf
->resync_lock
);
895 static void unfreeze_array(struct r10conf
*conf
)
897 /* reverse the effect of the freeze */
898 spin_lock_irq(&conf
->resync_lock
);
901 wake_up(&conf
->wait_barrier
);
902 spin_unlock_irq(&conf
->resync_lock
);
905 static void make_request(struct mddev
*mddev
, struct bio
* bio
)
907 struct r10conf
*conf
= mddev
->private;
908 struct r10bio
*r10_bio
;
909 struct bio
*read_bio
;
911 int chunk_sects
= conf
->chunk_mask
+ 1;
912 const int rw
= bio_data_dir(bio
);
913 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
914 const unsigned long do_fua
= (bio
->bi_rw
& REQ_FUA
);
916 struct md_rdev
*blocked_rdev
;
921 if (unlikely(bio
->bi_rw
& REQ_FLUSH
)) {
922 md_flush_request(mddev
, bio
);
926 /* If this request crosses a chunk boundary, we need to
927 * split it. This will only happen for 1 PAGE (or less) requests.
929 if (unlikely( (bio
->bi_sector
& conf
->chunk_mask
) + (bio
->bi_size
>> 9)
931 conf
->near_copies
< conf
->raid_disks
)) {
933 /* Sanity check -- queue functions should prevent this happening */
934 if (bio
->bi_vcnt
!= 1 ||
937 /* This is a one page bio that upper layers
938 * refuse to split for us, so we need to split it.
941 chunk_sects
- (bio
->bi_sector
& (chunk_sects
- 1)) );
943 /* Each of these 'make_request' calls will call 'wait_barrier'.
944 * If the first succeeds but the second blocks due to the resync
945 * thread raising the barrier, we will deadlock because the
946 * IO to the underlying device will be queued in generic_make_request
947 * and will never complete, so will never reduce nr_pending.
948 * So increment nr_waiting here so no new raise_barriers will
949 * succeed, and so the second wait_barrier cannot block.
951 spin_lock_irq(&conf
->resync_lock
);
953 spin_unlock_irq(&conf
->resync_lock
);
955 make_request(mddev
, &bp
->bio1
);
956 make_request(mddev
, &bp
->bio2
);
958 spin_lock_irq(&conf
->resync_lock
);
960 wake_up(&conf
->wait_barrier
);
961 spin_unlock_irq(&conf
->resync_lock
);
963 bio_pair_release(bp
);
966 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
967 " or bigger than %dk %llu %d\n", mdname(mddev
), chunk_sects
/2,
968 (unsigned long long)bio
->bi_sector
, bio
->bi_size
>> 10);
974 md_write_start(mddev
, bio
);
977 * Register the new request and wait if the reconstruction
978 * thread has put up a bar for new requests.
979 * Continue immediately if no resync is active currently.
983 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
985 r10_bio
->master_bio
= bio
;
986 r10_bio
->sectors
= bio
->bi_size
>> 9;
988 r10_bio
->mddev
= mddev
;
989 r10_bio
->sector
= bio
->bi_sector
;
992 /* We might need to issue multiple reads to different
993 * devices if there are bad blocks around, so we keep
994 * track of the number of reads in bio->bi_phys_segments.
995 * If this is 0, there is only one r10_bio and no locking
996 * will be needed when the request completes. If it is
997 * non-zero, then it is the number of not-completed requests.
999 bio
->bi_phys_segments
= 0;
1000 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
1004 * read balancing logic:
1006 struct md_rdev
*rdev
;
1010 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1012 raid_end_bio_io(r10_bio
);
1015 slot
= r10_bio
->read_slot
;
1017 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1018 md_trim_bio(read_bio
, r10_bio
->sector
- bio
->bi_sector
,
1021 r10_bio
->devs
[slot
].bio
= read_bio
;
1022 r10_bio
->devs
[slot
].rdev
= rdev
;
1024 read_bio
->bi_sector
= r10_bio
->devs
[slot
].addr
+
1026 read_bio
->bi_bdev
= rdev
->bdev
;
1027 read_bio
->bi_end_io
= raid10_end_read_request
;
1028 read_bio
->bi_rw
= READ
| do_sync
;
1029 read_bio
->bi_private
= r10_bio
;
1031 if (max_sectors
< r10_bio
->sectors
) {
1032 /* Could not read all from this device, so we will
1033 * need another r10_bio.
1035 sectors_handled
= (r10_bio
->sectors
+ max_sectors
1037 r10_bio
->sectors
= max_sectors
;
1038 spin_lock_irq(&conf
->device_lock
);
1039 if (bio
->bi_phys_segments
== 0)
1040 bio
->bi_phys_segments
= 2;
1042 bio
->bi_phys_segments
++;
1043 spin_unlock(&conf
->device_lock
);
1044 /* Cannot call generic_make_request directly
1045 * as that will be queued in __generic_make_request
1046 * and subsequent mempool_alloc might block
1047 * waiting for it. so hand bio over to raid10d.
1049 reschedule_retry(r10_bio
);
1051 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1053 r10_bio
->master_bio
= bio
;
1054 r10_bio
->sectors
= ((bio
->bi_size
>> 9)
1057 r10_bio
->mddev
= mddev
;
1058 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1061 generic_make_request(read_bio
);
1068 if (conf
->pending_count
>= max_queued_requests
) {
1069 md_wakeup_thread(mddev
->thread
);
1070 wait_event(conf
->wait_barrier
,
1071 conf
->pending_count
< max_queued_requests
);
1073 /* first select target devices under rcu_lock and
1074 * inc refcount on their rdev. Record them by setting
1076 * If there are known/acknowledged bad blocks on any device
1077 * on which we have seen a write error, we want to avoid
1078 * writing to those blocks. This potentially requires several
1079 * writes to write around the bad blocks. Each set of writes
1080 * gets its own r10_bio with a set of bios attached. The number
1081 * of r10_bios is recored in bio->bi_phys_segments just as with
1084 plugged
= mddev_check_plugged(mddev
);
1086 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1087 raid10_find_phys(conf
, r10_bio
);
1089 blocked_rdev
= NULL
;
1091 max_sectors
= r10_bio
->sectors
;
1093 for (i
= 0; i
< conf
->copies
; i
++) {
1094 int d
= r10_bio
->devs
[i
].devnum
;
1095 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1096 struct md_rdev
*rrdev
= rcu_dereference(
1097 conf
->mirrors
[d
].replacement
);
1100 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1101 atomic_inc(&rdev
->nr_pending
);
1102 blocked_rdev
= rdev
;
1105 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1106 atomic_inc(&rrdev
->nr_pending
);
1107 blocked_rdev
= rrdev
;
1110 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
1113 r10_bio
->devs
[i
].bio
= NULL
;
1114 r10_bio
->devs
[i
].repl_bio
= NULL
;
1115 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1116 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1119 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1121 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1125 is_bad
= is_badblock(rdev
, dev_sector
,
1127 &first_bad
, &bad_sectors
);
1129 /* Mustn't write here until the bad block
1132 atomic_inc(&rdev
->nr_pending
);
1133 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1134 blocked_rdev
= rdev
;
1137 if (is_bad
&& first_bad
<= dev_sector
) {
1138 /* Cannot write here at all */
1139 bad_sectors
-= (dev_sector
- first_bad
);
1140 if (bad_sectors
< max_sectors
)
1141 /* Mustn't write more than bad_sectors
1142 * to other devices yet
1144 max_sectors
= bad_sectors
;
1145 /* We don't set R10BIO_Degraded as that
1146 * only applies if the disk is missing,
1147 * so it might be re-added, and we want to
1148 * know to recover this chunk.
1149 * In this case the device is here, and the
1150 * fact that this chunk is not in-sync is
1151 * recorded in the bad block log.
1156 int good_sectors
= first_bad
- dev_sector
;
1157 if (good_sectors
< max_sectors
)
1158 max_sectors
= good_sectors
;
1161 r10_bio
->devs
[i
].bio
= bio
;
1162 atomic_inc(&rdev
->nr_pending
);
1164 r10_bio
->devs
[i
].repl_bio
= bio
;
1165 atomic_inc(&rrdev
->nr_pending
);
1170 if (unlikely(blocked_rdev
)) {
1171 /* Have to wait for this device to get unblocked, then retry */
1175 for (j
= 0; j
< i
; j
++) {
1176 if (r10_bio
->devs
[j
].bio
) {
1177 d
= r10_bio
->devs
[j
].devnum
;
1178 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1180 if (r10_bio
->devs
[j
].repl_bio
) {
1181 struct md_rdev
*rdev
;
1182 d
= r10_bio
->devs
[j
].devnum
;
1183 rdev
= conf
->mirrors
[d
].replacement
;
1185 /* Race with remove_disk */
1187 rdev
= conf
->mirrors
[d
].rdev
;
1189 rdev_dec_pending(rdev
, mddev
);
1192 allow_barrier(conf
);
1193 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1198 if (max_sectors
< r10_bio
->sectors
) {
1199 /* We are splitting this into multiple parts, so
1200 * we need to prepare for allocating another r10_bio.
1202 r10_bio
->sectors
= max_sectors
;
1203 spin_lock_irq(&conf
->device_lock
);
1204 if (bio
->bi_phys_segments
== 0)
1205 bio
->bi_phys_segments
= 2;
1207 bio
->bi_phys_segments
++;
1208 spin_unlock_irq(&conf
->device_lock
);
1210 sectors_handled
= r10_bio
->sector
+ max_sectors
- bio
->bi_sector
;
1212 atomic_set(&r10_bio
->remaining
, 1);
1213 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1215 for (i
= 0; i
< conf
->copies
; i
++) {
1217 int d
= r10_bio
->devs
[i
].devnum
;
1218 if (!r10_bio
->devs
[i
].bio
)
1221 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1222 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1224 r10_bio
->devs
[i
].bio
= mbio
;
1226 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1227 conf
->mirrors
[d
].rdev
->data_offset
);
1228 mbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1229 mbio
->bi_end_io
= raid10_end_write_request
;
1230 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1231 mbio
->bi_private
= r10_bio
;
1233 atomic_inc(&r10_bio
->remaining
);
1234 spin_lock_irqsave(&conf
->device_lock
, flags
);
1235 bio_list_add(&conf
->pending_bio_list
, mbio
);
1236 conf
->pending_count
++;
1237 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1239 if (!r10_bio
->devs
[i
].repl_bio
)
1242 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1243 md_trim_bio(mbio
, r10_bio
->sector
- bio
->bi_sector
,
1245 r10_bio
->devs
[i
].repl_bio
= mbio
;
1247 /* We are actively writing to the original device
1248 * so it cannot disappear, so the replacement cannot
1251 mbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
1252 conf
->mirrors
[d
].replacement
->data_offset
);
1253 mbio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
1254 mbio
->bi_end_io
= raid10_end_write_request
;
1255 mbio
->bi_rw
= WRITE
| do_sync
| do_fua
;
1256 mbio
->bi_private
= r10_bio
;
1258 atomic_inc(&r10_bio
->remaining
);
1259 spin_lock_irqsave(&conf
->device_lock
, flags
);
1260 bio_list_add(&conf
->pending_bio_list
, mbio
);
1261 conf
->pending_count
++;
1262 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1265 /* Don't remove the bias on 'remaining' (one_write_done) until
1266 * after checking if we need to go around again.
1269 if (sectors_handled
< (bio
->bi_size
>> 9)) {
1270 one_write_done(r10_bio
);
1271 /* We need another r10_bio. It has already been counted
1272 * in bio->bi_phys_segments.
1274 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1276 r10_bio
->master_bio
= bio
;
1277 r10_bio
->sectors
= (bio
->bi_size
>> 9) - sectors_handled
;
1279 r10_bio
->mddev
= mddev
;
1280 r10_bio
->sector
= bio
->bi_sector
+ sectors_handled
;
1284 one_write_done(r10_bio
);
1286 /* In case raid10d snuck in to freeze_array */
1287 wake_up(&conf
->wait_barrier
);
1289 if (do_sync
|| !mddev
->bitmap
|| !plugged
)
1290 md_wakeup_thread(mddev
->thread
);
1293 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
1295 struct r10conf
*conf
= mddev
->private;
1298 if (conf
->near_copies
< conf
->raid_disks
)
1299 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1300 if (conf
->near_copies
> 1)
1301 seq_printf(seq
, " %d near-copies", conf
->near_copies
);
1302 if (conf
->far_copies
> 1) {
1303 if (conf
->far_offset
)
1304 seq_printf(seq
, " %d offset-copies", conf
->far_copies
);
1306 seq_printf(seq
, " %d far-copies", conf
->far_copies
);
1308 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1309 conf
->raid_disks
- mddev
->degraded
);
1310 for (i
= 0; i
< conf
->raid_disks
; i
++)
1311 seq_printf(seq
, "%s",
1312 conf
->mirrors
[i
].rdev
&&
1313 test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ? "U" : "_");
1314 seq_printf(seq
, "]");
1317 /* check if there are enough drives for
1318 * every block to appear on atleast one.
1319 * Don't consider the device numbered 'ignore'
1320 * as we might be about to remove it.
1322 static int enough(struct r10conf
*conf
, int ignore
)
1327 int n
= conf
->copies
;
1330 if (conf
->mirrors
[first
].rdev
&&
1333 first
= (first
+1) % conf
->raid_disks
;
1337 } while (first
!= 0);
1341 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1343 char b
[BDEVNAME_SIZE
];
1344 struct r10conf
*conf
= mddev
->private;
1347 * If it is not operational, then we have already marked it as dead
1348 * else if it is the last working disks, ignore the error, let the
1349 * next level up know.
1350 * else mark the drive as failed
1352 if (test_bit(In_sync
, &rdev
->flags
)
1353 && !enough(conf
, rdev
->raid_disk
))
1355 * Don't fail the drive, just return an IO error.
1358 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1359 unsigned long flags
;
1360 spin_lock_irqsave(&conf
->device_lock
, flags
);
1362 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1364 * if recovery is running, make sure it aborts.
1366 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1368 set_bit(Blocked
, &rdev
->flags
);
1369 set_bit(Faulty
, &rdev
->flags
);
1370 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1372 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1373 "md/raid10:%s: Operation continuing on %d devices.\n",
1374 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1375 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1378 static void print_conf(struct r10conf
*conf
)
1381 struct mirror_info
*tmp
;
1383 printk(KERN_DEBUG
"RAID10 conf printout:\n");
1385 printk(KERN_DEBUG
"(!conf)\n");
1388 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1391 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1392 char b
[BDEVNAME_SIZE
];
1393 tmp
= conf
->mirrors
+ i
;
1395 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1396 i
, !test_bit(In_sync
, &tmp
->rdev
->flags
),
1397 !test_bit(Faulty
, &tmp
->rdev
->flags
),
1398 bdevname(tmp
->rdev
->bdev
,b
));
1402 static void close_sync(struct r10conf
*conf
)
1405 allow_barrier(conf
);
1407 mempool_destroy(conf
->r10buf_pool
);
1408 conf
->r10buf_pool
= NULL
;
1411 static int raid10_spare_active(struct mddev
*mddev
)
1414 struct r10conf
*conf
= mddev
->private;
1415 struct mirror_info
*tmp
;
1417 unsigned long flags
;
1420 * Find all non-in_sync disks within the RAID10 configuration
1421 * and mark them in_sync
1423 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1424 tmp
= conf
->mirrors
+ i
;
1425 if (tmp
->replacement
1426 && tmp
->replacement
->recovery_offset
== MaxSector
1427 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1428 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1429 /* Replacement has just become active */
1431 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1434 /* Replaced device not technically faulty,
1435 * but we need to be sure it gets removed
1436 * and never re-added.
1438 set_bit(Faulty
, &tmp
->rdev
->flags
);
1439 sysfs_notify_dirent_safe(
1440 tmp
->rdev
->sysfs_state
);
1442 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1443 } else if (tmp
->rdev
1444 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1445 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1447 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
1450 spin_lock_irqsave(&conf
->device_lock
, flags
);
1451 mddev
->degraded
-= count
;
1452 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1459 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1461 struct r10conf
*conf
= mddev
->private;
1465 int last
= conf
->raid_disks
- 1;
1467 if (mddev
->recovery_cp
< MaxSector
)
1468 /* only hot-add to in-sync arrays, as recovery is
1469 * very different from resync
1472 if (!enough(conf
, -1))
1475 if (rdev
->raid_disk
>= 0)
1476 first
= last
= rdev
->raid_disk
;
1478 if (rdev
->saved_raid_disk
>= first
&&
1479 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1480 mirror
= rdev
->saved_raid_disk
;
1483 for ( ; mirror
<= last
; mirror
++) {
1484 struct mirror_info
*p
= &conf
->mirrors
[mirror
];
1485 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1488 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1489 p
->replacement
!= NULL
)
1491 clear_bit(In_sync
, &rdev
->flags
);
1492 set_bit(Replacement
, &rdev
->flags
);
1493 rdev
->raid_disk
= mirror
;
1495 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1496 rdev
->data_offset
<< 9);
1497 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1498 blk_queue_max_segments(mddev
->queue
, 1);
1499 blk_queue_segment_boundary(mddev
->queue
,
1500 PAGE_CACHE_SIZE
- 1);
1503 rcu_assign_pointer(p
->replacement
, rdev
);
1507 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1508 rdev
->data_offset
<< 9);
1509 /* as we don't honour merge_bvec_fn, we must
1510 * never risk violating it, so limit
1511 * ->max_segments to one lying with a single
1512 * page, as a one page request is never in
1515 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
1516 blk_queue_max_segments(mddev
->queue
, 1);
1517 blk_queue_segment_boundary(mddev
->queue
,
1518 PAGE_CACHE_SIZE
- 1);
1521 p
->head_position
= 0;
1522 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1523 rdev
->raid_disk
= mirror
;
1525 if (rdev
->saved_raid_disk
!= mirror
)
1527 rcu_assign_pointer(p
->rdev
, rdev
);
1531 md_integrity_add_rdev(rdev
, mddev
);
1536 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1538 struct r10conf
*conf
= mddev
->private;
1540 int number
= rdev
->raid_disk
;
1541 struct md_rdev
**rdevp
;
1542 struct mirror_info
*p
= conf
->mirrors
+ number
;
1545 if (rdev
== p
->rdev
)
1547 else if (rdev
== p
->replacement
)
1548 rdevp
= &p
->replacement
;
1552 if (test_bit(In_sync
, &rdev
->flags
) ||
1553 atomic_read(&rdev
->nr_pending
)) {
1557 /* Only remove faulty devices if recovery
1560 if (!test_bit(Faulty
, &rdev
->flags
) &&
1561 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1562 (!p
->replacement
|| p
->replacement
== rdev
) &&
1569 if (atomic_read(&rdev
->nr_pending
)) {
1570 /* lost the race, try later */
1574 } else if (p
->replacement
) {
1575 /* We must have just cleared 'rdev' */
1576 p
->rdev
= p
->replacement
;
1577 clear_bit(Replacement
, &p
->replacement
->flags
);
1578 smp_mb(); /* Make sure other CPUs may see both as identical
1579 * but will never see neither -- if they are careful.
1581 p
->replacement
= NULL
;
1582 clear_bit(WantReplacement
, &rdev
->flags
);
1584 /* We might have just remove the Replacement as faulty
1585 * Clear the flag just in case
1587 clear_bit(WantReplacement
, &rdev
->flags
);
1589 err
= md_integrity_register(mddev
);
1598 static void end_sync_read(struct bio
*bio
, int error
)
1600 struct r10bio
*r10_bio
= bio
->bi_private
;
1601 struct r10conf
*conf
= r10_bio
->mddev
->private;
1604 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1606 if (test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1607 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1609 /* The write handler will notice the lack of
1610 * R10BIO_Uptodate and record any errors etc
1612 atomic_add(r10_bio
->sectors
,
1613 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1615 /* for reconstruct, we always reschedule after a read.
1616 * for resync, only after all reads
1618 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1619 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1620 atomic_dec_and_test(&r10_bio
->remaining
)) {
1621 /* we have read all the blocks,
1622 * do the comparison in process context in raid10d
1624 reschedule_retry(r10_bio
);
1628 static void end_sync_request(struct r10bio
*r10_bio
)
1630 struct mddev
*mddev
= r10_bio
->mddev
;
1632 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1633 if (r10_bio
->master_bio
== NULL
) {
1634 /* the primary of several recovery bios */
1635 sector_t s
= r10_bio
->sectors
;
1636 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1637 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1638 reschedule_retry(r10_bio
);
1641 md_done_sync(mddev
, s
, 1);
1644 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1645 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1646 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1647 reschedule_retry(r10_bio
);
1655 static void end_sync_write(struct bio
*bio
, int error
)
1657 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1658 struct r10bio
*r10_bio
= bio
->bi_private
;
1659 struct mddev
*mddev
= r10_bio
->mddev
;
1660 struct r10conf
*conf
= mddev
->private;
1666 struct md_rdev
*rdev
= NULL
;
1668 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1670 rdev
= conf
->mirrors
[d
].replacement
;
1673 rdev
= conf
->mirrors
[d
].rdev
;
1678 md_error(mddev
, rdev
);
1680 set_bit(WriteErrorSeen
, &rdev
->flags
);
1681 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1682 set_bit(MD_RECOVERY_NEEDED
,
1683 &rdev
->mddev
->recovery
);
1684 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1686 } else if (is_badblock(rdev
,
1687 r10_bio
->devs
[slot
].addr
,
1689 &first_bad
, &bad_sectors
))
1690 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1692 rdev_dec_pending(rdev
, mddev
);
1694 end_sync_request(r10_bio
);
1698 * Note: sync and recover and handled very differently for raid10
1699 * This code is for resync.
1700 * For resync, we read through virtual addresses and read all blocks.
1701 * If there is any error, we schedule a write. The lowest numbered
1702 * drive is authoritative.
1703 * However requests come for physical address, so we need to map.
1704 * For every physical address there are raid_disks/copies virtual addresses,
1705 * which is always are least one, but is not necessarly an integer.
1706 * This means that a physical address can span multiple chunks, so we may
1707 * have to submit multiple io requests for a single sync request.
1710 * We check if all blocks are in-sync and only write to blocks that
1713 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1715 struct r10conf
*conf
= mddev
->private;
1717 struct bio
*tbio
, *fbio
;
1719 atomic_set(&r10_bio
->remaining
, 1);
1721 /* find the first device with a block */
1722 for (i
=0; i
<conf
->copies
; i
++)
1723 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
))
1726 if (i
== conf
->copies
)
1730 fbio
= r10_bio
->devs
[i
].bio
;
1732 /* now find blocks with errors */
1733 for (i
=0 ; i
< conf
->copies
; i
++) {
1735 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1737 tbio
= r10_bio
->devs
[i
].bio
;
1739 if (tbio
->bi_end_io
!= end_sync_read
)
1743 if (test_bit(BIO_UPTODATE
, &r10_bio
->devs
[i
].bio
->bi_flags
)) {
1744 /* We know that the bi_io_vec layout is the same for
1745 * both 'first' and 'i', so we just compare them.
1746 * All vec entries are PAGE_SIZE;
1748 for (j
= 0; j
< vcnt
; j
++)
1749 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
1750 page_address(tbio
->bi_io_vec
[j
].bv_page
),
1755 mddev
->resync_mismatches
+= r10_bio
->sectors
;
1756 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
1757 /* Don't fix anything. */
1760 /* Ok, we need to write this bio, either to correct an
1761 * inconsistency or to correct an unreadable block.
1762 * First we need to fixup bv_offset, bv_len and
1763 * bi_vecs, as the read request might have corrupted these
1765 tbio
->bi_vcnt
= vcnt
;
1766 tbio
->bi_size
= r10_bio
->sectors
<< 9;
1768 tbio
->bi_phys_segments
= 0;
1769 tbio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
1770 tbio
->bi_flags
|= 1 << BIO_UPTODATE
;
1771 tbio
->bi_next
= NULL
;
1772 tbio
->bi_rw
= WRITE
;
1773 tbio
->bi_private
= r10_bio
;
1774 tbio
->bi_sector
= r10_bio
->devs
[i
].addr
;
1776 for (j
=0; j
< vcnt
; j
++) {
1777 tbio
->bi_io_vec
[j
].bv_offset
= 0;
1778 tbio
->bi_io_vec
[j
].bv_len
= PAGE_SIZE
;
1780 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1781 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1784 tbio
->bi_end_io
= end_sync_write
;
1786 d
= r10_bio
->devs
[i
].devnum
;
1787 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1788 atomic_inc(&r10_bio
->remaining
);
1789 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, tbio
->bi_size
>> 9);
1791 tbio
->bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
1792 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
1793 generic_make_request(tbio
);
1796 /* Now write out to any replacement devices
1799 for (i
= 0; i
< conf
->copies
; i
++) {
1801 int vcnt
= r10_bio
->sectors
>> (PAGE_SHIFT
-9);
1803 tbio
= r10_bio
->devs
[i
].repl_bio
;
1804 if (!tbio
|| !tbio
->bi_end_io
)
1806 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
1807 && r10_bio
->devs
[i
].bio
!= fbio
)
1808 for (j
= 0; j
< vcnt
; j
++)
1809 memcpy(page_address(tbio
->bi_io_vec
[j
].bv_page
),
1810 page_address(fbio
->bi_io_vec
[j
].bv_page
),
1812 d
= r10_bio
->devs
[i
].devnum
;
1813 atomic_inc(&r10_bio
->remaining
);
1814 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
1815 tbio
->bi_size
>> 9);
1816 generic_make_request(tbio
);
1820 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
1821 md_done_sync(mddev
, r10_bio
->sectors
, 1);
1827 * Now for the recovery code.
1828 * Recovery happens across physical sectors.
1829 * We recover all non-is_sync drives by finding the virtual address of
1830 * each, and then choose a working drive that also has that virt address.
1831 * There is a separate r10_bio for each non-in_sync drive.
1832 * Only the first two slots are in use. The first for reading,
1833 * The second for writing.
1836 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
1838 /* We got a read error during recovery.
1839 * We repeat the read in smaller page-sized sections.
1840 * If a read succeeds, write it to the new device or record
1841 * a bad block if we cannot.
1842 * If a read fails, record a bad block on both old and
1845 struct mddev
*mddev
= r10_bio
->mddev
;
1846 struct r10conf
*conf
= mddev
->private;
1847 struct bio
*bio
= r10_bio
->devs
[0].bio
;
1849 int sectors
= r10_bio
->sectors
;
1851 int dr
= r10_bio
->devs
[0].devnum
;
1852 int dw
= r10_bio
->devs
[1].devnum
;
1856 struct md_rdev
*rdev
;
1860 if (s
> (PAGE_SIZE
>>9))
1863 rdev
= conf
->mirrors
[dr
].rdev
;
1864 addr
= r10_bio
->devs
[0].addr
+ sect
,
1865 ok
= sync_page_io(rdev
,
1868 bio
->bi_io_vec
[idx
].bv_page
,
1871 rdev
= conf
->mirrors
[dw
].rdev
;
1872 addr
= r10_bio
->devs
[1].addr
+ sect
;
1873 ok
= sync_page_io(rdev
,
1876 bio
->bi_io_vec
[idx
].bv_page
,
1879 set_bit(WriteErrorSeen
, &rdev
->flags
);
1880 if (!test_and_set_bit(WantReplacement
,
1882 set_bit(MD_RECOVERY_NEEDED
,
1883 &rdev
->mddev
->recovery
);
1887 /* We don't worry if we cannot set a bad block -
1888 * it really is bad so there is no loss in not
1891 rdev_set_badblocks(rdev
, addr
, s
, 0);
1893 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
1894 /* need bad block on destination too */
1895 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
1896 addr
= r10_bio
->devs
[1].addr
+ sect
;
1897 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
1899 /* just abort the recovery */
1901 "md/raid10:%s: recovery aborted"
1902 " due to read error\n",
1905 conf
->mirrors
[dw
].recovery_disabled
1906 = mddev
->recovery_disabled
;
1907 set_bit(MD_RECOVERY_INTR
,
1920 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1922 struct r10conf
*conf
= mddev
->private;
1924 struct bio
*wbio
, *wbio2
;
1926 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
1927 fix_recovery_read_error(r10_bio
);
1928 end_sync_request(r10_bio
);
1933 * share the pages with the first bio
1934 * and submit the write request
1936 d
= r10_bio
->devs
[1].devnum
;
1937 wbio
= r10_bio
->devs
[1].bio
;
1938 wbio2
= r10_bio
->devs
[1].repl_bio
;
1939 if (wbio
->bi_end_io
) {
1940 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
1941 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, wbio
->bi_size
>> 9);
1942 generic_make_request(wbio
);
1944 if (wbio2
&& wbio2
->bi_end_io
) {
1945 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
1946 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
1947 wbio2
->bi_size
>> 9);
1948 generic_make_request(wbio2
);
1954 * Used by fix_read_error() to decay the per rdev read_errors.
1955 * We halve the read error count for every hour that has elapsed
1956 * since the last recorded read error.
1959 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
1961 struct timespec cur_time_mon
;
1962 unsigned long hours_since_last
;
1963 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
1965 ktime_get_ts(&cur_time_mon
);
1967 if (rdev
->last_read_error
.tv_sec
== 0 &&
1968 rdev
->last_read_error
.tv_nsec
== 0) {
1969 /* first time we've seen a read error */
1970 rdev
->last_read_error
= cur_time_mon
;
1974 hours_since_last
= (cur_time_mon
.tv_sec
-
1975 rdev
->last_read_error
.tv_sec
) / 3600;
1977 rdev
->last_read_error
= cur_time_mon
;
1980 * if hours_since_last is > the number of bits in read_errors
1981 * just set read errors to 0. We do this to avoid
1982 * overflowing the shift of read_errors by hours_since_last.
1984 if (hours_since_last
>= 8 * sizeof(read_errors
))
1985 atomic_set(&rdev
->read_errors
, 0);
1987 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
1990 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1991 int sectors
, struct page
*page
, int rw
)
1996 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
1997 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
1999 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
2003 set_bit(WriteErrorSeen
, &rdev
->flags
);
2004 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2005 set_bit(MD_RECOVERY_NEEDED
,
2006 &rdev
->mddev
->recovery
);
2008 /* need to record an error - either for the block or the device */
2009 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2010 md_error(rdev
->mddev
, rdev
);
2015 * This is a kernel thread which:
2017 * 1. Retries failed read operations on working mirrors.
2018 * 2. Updates the raid superblock when problems encounter.
2019 * 3. Performs writes following reads for array synchronising.
2022 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2024 int sect
= 0; /* Offset from r10_bio->sector */
2025 int sectors
= r10_bio
->sectors
;
2026 struct md_rdev
*rdev
;
2027 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2028 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2030 /* still own a reference to this rdev, so it cannot
2031 * have been cleared recently.
2033 rdev
= conf
->mirrors
[d
].rdev
;
2035 if (test_bit(Faulty
, &rdev
->flags
))
2036 /* drive has already been failed, just ignore any
2037 more fix_read_error() attempts */
2040 check_decay_read_errors(mddev
, rdev
);
2041 atomic_inc(&rdev
->read_errors
);
2042 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2043 char b
[BDEVNAME_SIZE
];
2044 bdevname(rdev
->bdev
, b
);
2047 "md/raid10:%s: %s: Raid device exceeded "
2048 "read_error threshold [cur %d:max %d]\n",
2050 atomic_read(&rdev
->read_errors
), max_read_errors
);
2052 "md/raid10:%s: %s: Failing raid device\n",
2054 md_error(mddev
, conf
->mirrors
[d
].rdev
);
2060 int sl
= r10_bio
->read_slot
;
2064 if (s
> (PAGE_SIZE
>>9))
2072 d
= r10_bio
->devs
[sl
].devnum
;
2073 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2075 test_bit(In_sync
, &rdev
->flags
) &&
2076 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2077 &first_bad
, &bad_sectors
) == 0) {
2078 atomic_inc(&rdev
->nr_pending
);
2080 success
= sync_page_io(rdev
,
2081 r10_bio
->devs
[sl
].addr
+
2084 conf
->tmppage
, READ
, false);
2085 rdev_dec_pending(rdev
, mddev
);
2091 if (sl
== conf
->copies
)
2093 } while (!success
&& sl
!= r10_bio
->read_slot
);
2097 /* Cannot read from anywhere, just mark the block
2098 * as bad on the first device to discourage future
2101 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2102 rdev
= conf
->mirrors
[dn
].rdev
;
2104 if (!rdev_set_badblocks(
2106 r10_bio
->devs
[r10_bio
->read_slot
].addr
2109 md_error(mddev
, rdev
);
2114 /* write it back and re-read */
2116 while (sl
!= r10_bio
->read_slot
) {
2117 char b
[BDEVNAME_SIZE
];
2122 d
= r10_bio
->devs
[sl
].devnum
;
2123 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2125 !test_bit(In_sync
, &rdev
->flags
))
2128 atomic_inc(&rdev
->nr_pending
);
2130 if (r10_sync_page_io(rdev
,
2131 r10_bio
->devs
[sl
].addr
+
2133 s
<<9, conf
->tmppage
, WRITE
)
2135 /* Well, this device is dead */
2137 "md/raid10:%s: read correction "
2139 " (%d sectors at %llu on %s)\n",
2141 (unsigned long long)(
2142 sect
+ rdev
->data_offset
),
2143 bdevname(rdev
->bdev
, b
));
2144 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2147 bdevname(rdev
->bdev
, b
));
2149 rdev_dec_pending(rdev
, mddev
);
2153 while (sl
!= r10_bio
->read_slot
) {
2154 char b
[BDEVNAME_SIZE
];
2159 d
= r10_bio
->devs
[sl
].devnum
;
2160 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2162 !test_bit(In_sync
, &rdev
->flags
))
2165 atomic_inc(&rdev
->nr_pending
);
2167 switch (r10_sync_page_io(rdev
,
2168 r10_bio
->devs
[sl
].addr
+
2170 s
<<9, conf
->tmppage
,
2173 /* Well, this device is dead */
2175 "md/raid10:%s: unable to read back "
2177 " (%d sectors at %llu on %s)\n",
2179 (unsigned long long)(
2180 sect
+ rdev
->data_offset
),
2181 bdevname(rdev
->bdev
, b
));
2182 printk(KERN_NOTICE
"md/raid10:%s: %s: failing "
2185 bdevname(rdev
->bdev
, b
));
2189 "md/raid10:%s: read error corrected"
2190 " (%d sectors at %llu on %s)\n",
2192 (unsigned long long)(
2193 sect
+ rdev
->data_offset
),
2194 bdevname(rdev
->bdev
, b
));
2195 atomic_add(s
, &rdev
->corrected_errors
);
2198 rdev_dec_pending(rdev
, mddev
);
2208 static void bi_complete(struct bio
*bio
, int error
)
2210 complete((struct completion
*)bio
->bi_private
);
2213 static int submit_bio_wait(int rw
, struct bio
*bio
)
2215 struct completion event
;
2218 init_completion(&event
);
2219 bio
->bi_private
= &event
;
2220 bio
->bi_end_io
= bi_complete
;
2221 submit_bio(rw
, bio
);
2222 wait_for_completion(&event
);
2224 return test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2227 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2229 struct bio
*bio
= r10_bio
->master_bio
;
2230 struct mddev
*mddev
= r10_bio
->mddev
;
2231 struct r10conf
*conf
= mddev
->private;
2232 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2233 /* bio has the data to be written to slot 'i' where
2234 * we just recently had a write error.
2235 * We repeatedly clone the bio and trim down to one block,
2236 * then try the write. Where the write fails we record
2238 * It is conceivable that the bio doesn't exactly align with
2239 * blocks. We must handle this.
2241 * We currently own a reference to the rdev.
2247 int sect_to_write
= r10_bio
->sectors
;
2250 if (rdev
->badblocks
.shift
< 0)
2253 block_sectors
= 1 << rdev
->badblocks
.shift
;
2254 sector
= r10_bio
->sector
;
2255 sectors
= ((r10_bio
->sector
+ block_sectors
)
2256 & ~(sector_t
)(block_sectors
- 1))
2259 while (sect_to_write
) {
2261 if (sectors
> sect_to_write
)
2262 sectors
= sect_to_write
;
2263 /* Write at 'sector' for 'sectors' */
2264 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2265 md_trim_bio(wbio
, sector
- bio
->bi_sector
, sectors
);
2266 wbio
->bi_sector
= (r10_bio
->devs
[i
].addr
+
2268 (sector
- r10_bio
->sector
));
2269 wbio
->bi_bdev
= rdev
->bdev
;
2270 if (submit_bio_wait(WRITE
, wbio
) == 0)
2272 ok
= rdev_set_badblocks(rdev
, sector
,
2277 sect_to_write
-= sectors
;
2279 sectors
= block_sectors
;
2284 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2286 int slot
= r10_bio
->read_slot
;
2288 struct r10conf
*conf
= mddev
->private;
2289 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2290 char b
[BDEVNAME_SIZE
];
2291 unsigned long do_sync
;
2294 /* we got a read error. Maybe the drive is bad. Maybe just
2295 * the block and we can fix it.
2296 * We freeze all other IO, and try reading the block from
2297 * other devices. When we find one, we re-write
2298 * and check it that fixes the read error.
2299 * This is all done synchronously while the array is
2302 if (mddev
->ro
== 0) {
2304 fix_read_error(conf
, mddev
, r10_bio
);
2305 unfreeze_array(conf
);
2307 rdev_dec_pending(rdev
, mddev
);
2309 bio
= r10_bio
->devs
[slot
].bio
;
2310 bdevname(bio
->bi_bdev
, b
);
2311 r10_bio
->devs
[slot
].bio
=
2312 mddev
->ro
? IO_BLOCKED
: NULL
;
2314 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2316 printk(KERN_ALERT
"md/raid10:%s: %s: unrecoverable I/O"
2317 " read error for block %llu\n",
2319 (unsigned long long)r10_bio
->sector
);
2320 raid_end_bio_io(r10_bio
);
2325 do_sync
= (r10_bio
->master_bio
->bi_rw
& REQ_SYNC
);
2328 slot
= r10_bio
->read_slot
;
2331 "md/raid10:%s: %s: redirecting"
2332 "sector %llu to another mirror\n",
2334 bdevname(rdev
->bdev
, b
),
2335 (unsigned long long)r10_bio
->sector
);
2336 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2339 r10_bio
->sector
- bio
->bi_sector
,
2341 r10_bio
->devs
[slot
].bio
= bio
;
2342 r10_bio
->devs
[slot
].rdev
= rdev
;
2343 bio
->bi_sector
= r10_bio
->devs
[slot
].addr
2344 + rdev
->data_offset
;
2345 bio
->bi_bdev
= rdev
->bdev
;
2346 bio
->bi_rw
= READ
| do_sync
;
2347 bio
->bi_private
= r10_bio
;
2348 bio
->bi_end_io
= raid10_end_read_request
;
2349 if (max_sectors
< r10_bio
->sectors
) {
2350 /* Drat - have to split this up more */
2351 struct bio
*mbio
= r10_bio
->master_bio
;
2352 int sectors_handled
=
2353 r10_bio
->sector
+ max_sectors
2355 r10_bio
->sectors
= max_sectors
;
2356 spin_lock_irq(&conf
->device_lock
);
2357 if (mbio
->bi_phys_segments
== 0)
2358 mbio
->bi_phys_segments
= 2;
2360 mbio
->bi_phys_segments
++;
2361 spin_unlock_irq(&conf
->device_lock
);
2362 generic_make_request(bio
);
2365 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2367 r10_bio
->master_bio
= mbio
;
2368 r10_bio
->sectors
= (mbio
->bi_size
>> 9)
2371 set_bit(R10BIO_ReadError
,
2373 r10_bio
->mddev
= mddev
;
2374 r10_bio
->sector
= mbio
->bi_sector
2379 generic_make_request(bio
);
2382 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2384 /* Some sort of write request has finished and it
2385 * succeeded in writing where we thought there was a
2386 * bad block. So forget the bad block.
2387 * Or possibly if failed and we need to record
2391 struct md_rdev
*rdev
;
2393 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2394 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2395 for (m
= 0; m
< conf
->copies
; m
++) {
2396 int dev
= r10_bio
->devs
[m
].devnum
;
2397 rdev
= conf
->mirrors
[dev
].rdev
;
2398 if (r10_bio
->devs
[m
].bio
== NULL
)
2400 if (test_bit(BIO_UPTODATE
,
2401 &r10_bio
->devs
[m
].bio
->bi_flags
)) {
2402 rdev_clear_badblocks(
2404 r10_bio
->devs
[m
].addr
,
2407 if (!rdev_set_badblocks(
2409 r10_bio
->devs
[m
].addr
,
2410 r10_bio
->sectors
, 0))
2411 md_error(conf
->mddev
, rdev
);
2413 rdev
= conf
->mirrors
[dev
].replacement
;
2414 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2416 if (test_bit(BIO_UPTODATE
,
2417 &r10_bio
->devs
[m
].repl_bio
->bi_flags
)) {
2418 rdev_clear_badblocks(
2420 r10_bio
->devs
[m
].addr
,
2423 if (!rdev_set_badblocks(
2425 r10_bio
->devs
[m
].addr
,
2426 r10_bio
->sectors
, 0))
2427 md_error(conf
->mddev
, rdev
);
2432 for (m
= 0; m
< conf
->copies
; m
++) {
2433 int dev
= r10_bio
->devs
[m
].devnum
;
2434 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2435 rdev
= conf
->mirrors
[dev
].rdev
;
2436 if (bio
== IO_MADE_GOOD
) {
2437 rdev_clear_badblocks(
2439 r10_bio
->devs
[m
].addr
,
2441 rdev_dec_pending(rdev
, conf
->mddev
);
2442 } else if (bio
!= NULL
&&
2443 !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
2444 if (!narrow_write_error(r10_bio
, m
)) {
2445 md_error(conf
->mddev
, rdev
);
2446 set_bit(R10BIO_Degraded
,
2449 rdev_dec_pending(rdev
, conf
->mddev
);
2451 bio
= r10_bio
->devs
[m
].repl_bio
;
2452 rdev
= conf
->mirrors
[dev
].replacement
;
2453 if (rdev
&& bio
== IO_MADE_GOOD
) {
2454 rdev_clear_badblocks(
2456 r10_bio
->devs
[m
].addr
,
2458 rdev_dec_pending(rdev
, conf
->mddev
);
2461 if (test_bit(R10BIO_WriteError
,
2463 close_write(r10_bio
);
2464 raid_end_bio_io(r10_bio
);
2468 static void raid10d(struct mddev
*mddev
)
2470 struct r10bio
*r10_bio
;
2471 unsigned long flags
;
2472 struct r10conf
*conf
= mddev
->private;
2473 struct list_head
*head
= &conf
->retry_list
;
2474 struct blk_plug plug
;
2476 md_check_recovery(mddev
);
2478 blk_start_plug(&plug
);
2481 flush_pending_writes(conf
);
2483 spin_lock_irqsave(&conf
->device_lock
, flags
);
2484 if (list_empty(head
)) {
2485 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2488 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2489 list_del(head
->prev
);
2491 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2493 mddev
= r10_bio
->mddev
;
2494 conf
= mddev
->private;
2495 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2496 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2497 handle_write_completed(conf
, r10_bio
);
2498 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2499 sync_request_write(mddev
, r10_bio
);
2500 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2501 recovery_request_write(mddev
, r10_bio
);
2502 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2503 handle_read_error(mddev
, r10_bio
);
2505 /* just a partial read to be scheduled from a
2508 int slot
= r10_bio
->read_slot
;
2509 generic_make_request(r10_bio
->devs
[slot
].bio
);
2513 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2514 md_check_recovery(mddev
);
2516 blk_finish_plug(&plug
);
2520 static int init_resync(struct r10conf
*conf
)
2525 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2526 BUG_ON(conf
->r10buf_pool
);
2527 conf
->have_replacement
= 0;
2528 for (i
= 0; i
< conf
->raid_disks
; i
++)
2529 if (conf
->mirrors
[i
].replacement
)
2530 conf
->have_replacement
= 1;
2531 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2532 if (!conf
->r10buf_pool
)
2534 conf
->next_resync
= 0;
2539 * perform a "sync" on one "block"
2541 * We need to make sure that no normal I/O request - particularly write
2542 * requests - conflict with active sync requests.
2544 * This is achieved by tracking pending requests and a 'barrier' concept
2545 * that can be installed to exclude normal IO requests.
2547 * Resync and recovery are handled very differently.
2548 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2550 * For resync, we iterate over virtual addresses, read all copies,
2551 * and update if there are differences. If only one copy is live,
2553 * For recovery, we iterate over physical addresses, read a good
2554 * value for each non-in_sync drive, and over-write.
2556 * So, for recovery we may have several outstanding complex requests for a
2557 * given address, one for each out-of-sync device. We model this by allocating
2558 * a number of r10_bio structures, one for each out-of-sync device.
2559 * As we setup these structures, we collect all bio's together into a list
2560 * which we then process collectively to add pages, and then process again
2561 * to pass to generic_make_request.
2563 * The r10_bio structures are linked using a borrowed master_bio pointer.
2564 * This link is counted in ->remaining. When the r10_bio that points to NULL
2565 * has its remaining count decremented to 0, the whole complex operation
2570 static sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2571 int *skipped
, int go_faster
)
2573 struct r10conf
*conf
= mddev
->private;
2574 struct r10bio
*r10_bio
;
2575 struct bio
*biolist
= NULL
, *bio
;
2576 sector_t max_sector
, nr_sectors
;
2579 sector_t sync_blocks
;
2580 sector_t sectors_skipped
= 0;
2581 int chunks_skipped
= 0;
2583 if (!conf
->r10buf_pool
)
2584 if (init_resync(conf
))
2588 max_sector
= mddev
->dev_sectors
;
2589 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2590 max_sector
= mddev
->resync_max_sectors
;
2591 if (sector_nr
>= max_sector
) {
2592 /* If we aborted, we need to abort the
2593 * sync on the 'current' bitmap chucks (there can
2594 * be several when recovering multiple devices).
2595 * as we may have started syncing it but not finished.
2596 * We can find the current address in
2597 * mddev->curr_resync, but for recovery,
2598 * we need to convert that to several
2599 * virtual addresses.
2601 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2602 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2603 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2605 else for (i
=0; i
<conf
->raid_disks
; i
++) {
2607 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2608 bitmap_end_sync(mddev
->bitmap
, sect
,
2612 /* completed sync */
2613 if ((!mddev
->bitmap
|| conf
->fullsync
)
2614 && conf
->have_replacement
2615 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2616 /* Completed a full sync so the replacements
2617 * are now fully recovered.
2619 for (i
= 0; i
< conf
->raid_disks
; i
++)
2620 if (conf
->mirrors
[i
].replacement
)
2621 conf
->mirrors
[i
].replacement
2627 bitmap_close_sync(mddev
->bitmap
);
2630 return sectors_skipped
;
2632 if (chunks_skipped
>= conf
->raid_disks
) {
2633 /* if there has been nothing to do on any drive,
2634 * then there is nothing to do at all..
2637 return (max_sector
- sector_nr
) + sectors_skipped
;
2640 if (max_sector
> mddev
->resync_max
)
2641 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2643 /* make sure whole request will fit in a chunk - if chunks
2646 if (conf
->near_copies
< conf
->raid_disks
&&
2647 max_sector
> (sector_nr
| conf
->chunk_mask
))
2648 max_sector
= (sector_nr
| conf
->chunk_mask
) + 1;
2650 * If there is non-resync activity waiting for us then
2651 * put in a delay to throttle resync.
2653 if (!go_faster
&& conf
->nr_waiting
)
2654 msleep_interruptible(1000);
2656 /* Again, very different code for resync and recovery.
2657 * Both must result in an r10bio with a list of bios that
2658 * have bi_end_io, bi_sector, bi_bdev set,
2659 * and bi_private set to the r10bio.
2660 * For recovery, we may actually create several r10bios
2661 * with 2 bios in each, that correspond to the bios in the main one.
2662 * In this case, the subordinate r10bios link back through a
2663 * borrowed master_bio pointer, and the counter in the master
2664 * includes a ref from each subordinate.
2666 /* First, we decide what to do and set ->bi_end_io
2667 * To end_sync_read if we want to read, and
2668 * end_sync_write if we will want to write.
2671 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
2672 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2673 /* recovery... the complicated one */
2677 for (i
=0 ; i
<conf
->raid_disks
; i
++) {
2683 struct mirror_info
*mirror
= &conf
->mirrors
[i
];
2685 if ((mirror
->rdev
== NULL
||
2686 test_bit(In_sync
, &mirror
->rdev
->flags
))
2688 (mirror
->replacement
== NULL
||
2690 &mirror
->replacement
->flags
)))
2694 /* want to reconstruct this device */
2696 sect
= raid10_find_virt(conf
, sector_nr
, i
);
2697 /* Unless we are doing a full sync, or a replacement
2698 * we only need to recover the block if it is set in
2701 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2703 if (sync_blocks
< max_sync
)
2704 max_sync
= sync_blocks
;
2706 mirror
->replacement
== NULL
&&
2708 /* yep, skip the sync_blocks here, but don't assume
2709 * that there will never be anything to do here
2711 chunks_skipped
= -1;
2715 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2716 raise_barrier(conf
, rb2
!= NULL
);
2717 atomic_set(&r10_bio
->remaining
, 0);
2719 r10_bio
->master_bio
= (struct bio
*)rb2
;
2721 atomic_inc(&rb2
->remaining
);
2722 r10_bio
->mddev
= mddev
;
2723 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
2724 r10_bio
->sector
= sect
;
2726 raid10_find_phys(conf
, r10_bio
);
2728 /* Need to check if the array will still be
2731 for (j
=0; j
<conf
->raid_disks
; j
++)
2732 if (conf
->mirrors
[j
].rdev
== NULL
||
2733 test_bit(Faulty
, &conf
->mirrors
[j
].rdev
->flags
)) {
2738 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
2739 &sync_blocks
, still_degraded
);
2742 for (j
=0; j
<conf
->copies
;j
++) {
2744 int d
= r10_bio
->devs
[j
].devnum
;
2745 sector_t from_addr
, to_addr
;
2746 struct md_rdev
*rdev
;
2747 sector_t sector
, first_bad
;
2749 if (!conf
->mirrors
[d
].rdev
||
2750 !test_bit(In_sync
, &conf
->mirrors
[d
].rdev
->flags
))
2752 /* This is where we read from */
2754 rdev
= conf
->mirrors
[d
].rdev
;
2755 sector
= r10_bio
->devs
[j
].addr
;
2757 if (is_badblock(rdev
, sector
, max_sync
,
2758 &first_bad
, &bad_sectors
)) {
2759 if (first_bad
> sector
)
2760 max_sync
= first_bad
- sector
;
2762 bad_sectors
-= (sector
2764 if (max_sync
> bad_sectors
)
2765 max_sync
= bad_sectors
;
2769 bio
= r10_bio
->devs
[0].bio
;
2770 bio
->bi_next
= biolist
;
2772 bio
->bi_private
= r10_bio
;
2773 bio
->bi_end_io
= end_sync_read
;
2775 from_addr
= r10_bio
->devs
[j
].addr
;
2776 bio
->bi_sector
= from_addr
+ rdev
->data_offset
;
2777 bio
->bi_bdev
= rdev
->bdev
;
2778 atomic_inc(&rdev
->nr_pending
);
2779 /* and we write to 'i' (if not in_sync) */
2781 for (k
=0; k
<conf
->copies
; k
++)
2782 if (r10_bio
->devs
[k
].devnum
== i
)
2784 BUG_ON(k
== conf
->copies
);
2785 to_addr
= r10_bio
->devs
[k
].addr
;
2786 r10_bio
->devs
[0].devnum
= d
;
2787 r10_bio
->devs
[0].addr
= from_addr
;
2788 r10_bio
->devs
[1].devnum
= i
;
2789 r10_bio
->devs
[1].addr
= to_addr
;
2791 rdev
= mirror
->rdev
;
2792 if (!test_bit(In_sync
, &rdev
->flags
)) {
2793 bio
= r10_bio
->devs
[1].bio
;
2794 bio
->bi_next
= biolist
;
2796 bio
->bi_private
= r10_bio
;
2797 bio
->bi_end_io
= end_sync_write
;
2799 bio
->bi_sector
= to_addr
2800 + rdev
->data_offset
;
2801 bio
->bi_bdev
= rdev
->bdev
;
2802 atomic_inc(&r10_bio
->remaining
);
2804 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
2806 /* and maybe write to replacement */
2807 bio
= r10_bio
->devs
[1].repl_bio
;
2809 bio
->bi_end_io
= NULL
;
2810 rdev
= mirror
->replacement
;
2811 /* Note: if rdev != NULL, then bio
2812 * cannot be NULL as r10buf_pool_alloc will
2813 * have allocated it.
2814 * So the second test here is pointless.
2815 * But it keeps semantic-checkers happy, and
2816 * this comment keeps human reviewers
2819 if (rdev
== NULL
|| bio
== NULL
||
2820 test_bit(Faulty
, &rdev
->flags
))
2822 bio
->bi_next
= biolist
;
2824 bio
->bi_private
= r10_bio
;
2825 bio
->bi_end_io
= end_sync_write
;
2827 bio
->bi_sector
= to_addr
+ rdev
->data_offset
;
2828 bio
->bi_bdev
= rdev
->bdev
;
2829 atomic_inc(&r10_bio
->remaining
);
2832 if (j
== conf
->copies
) {
2833 /* Cannot recover, so abort the recovery or
2834 * record a bad block */
2837 atomic_dec(&rb2
->remaining
);
2840 /* problem is that there are bad blocks
2841 * on other device(s)
2844 for (k
= 0; k
< conf
->copies
; k
++)
2845 if (r10_bio
->devs
[k
].devnum
== i
)
2847 if (!test_bit(In_sync
,
2848 &mirror
->rdev
->flags
)
2849 && !rdev_set_badblocks(
2851 r10_bio
->devs
[k
].addr
,
2854 if (mirror
->replacement
&&
2855 !rdev_set_badblocks(
2856 mirror
->replacement
,
2857 r10_bio
->devs
[k
].addr
,
2862 if (!test_and_set_bit(MD_RECOVERY_INTR
,
2864 printk(KERN_INFO
"md/raid10:%s: insufficient "
2865 "working devices for recovery.\n",
2867 mirror
->recovery_disabled
2868 = mddev
->recovery_disabled
;
2873 if (biolist
== NULL
) {
2875 struct r10bio
*rb2
= r10_bio
;
2876 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
2877 rb2
->master_bio
= NULL
;
2883 /* resync. Schedule a read for every block at this virt offset */
2886 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
2888 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2889 &sync_blocks
, mddev
->degraded
) &&
2890 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
2891 &mddev
->recovery
)) {
2892 /* We can skip this block */
2894 return sync_blocks
+ sectors_skipped
;
2896 if (sync_blocks
< max_sync
)
2897 max_sync
= sync_blocks
;
2898 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2900 r10_bio
->mddev
= mddev
;
2901 atomic_set(&r10_bio
->remaining
, 0);
2902 raise_barrier(conf
, 0);
2903 conf
->next_resync
= sector_nr
;
2905 r10_bio
->master_bio
= NULL
;
2906 r10_bio
->sector
= sector_nr
;
2907 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
2908 raid10_find_phys(conf
, r10_bio
);
2909 r10_bio
->sectors
= (sector_nr
| conf
->chunk_mask
) - sector_nr
+1;
2911 for (i
=0; i
<conf
->copies
; i
++) {
2912 int d
= r10_bio
->devs
[i
].devnum
;
2913 sector_t first_bad
, sector
;
2916 if (r10_bio
->devs
[i
].repl_bio
)
2917 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
2919 bio
= r10_bio
->devs
[i
].bio
;
2920 bio
->bi_end_io
= NULL
;
2921 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2922 if (conf
->mirrors
[d
].rdev
== NULL
||
2923 test_bit(Faulty
, &conf
->mirrors
[d
].rdev
->flags
))
2925 sector
= r10_bio
->devs
[i
].addr
;
2926 if (is_badblock(conf
->mirrors
[d
].rdev
,
2928 &first_bad
, &bad_sectors
)) {
2929 if (first_bad
> sector
)
2930 max_sync
= first_bad
- sector
;
2932 bad_sectors
-= (sector
- first_bad
);
2933 if (max_sync
> bad_sectors
)
2934 max_sync
= max_sync
;
2938 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2939 atomic_inc(&r10_bio
->remaining
);
2940 bio
->bi_next
= biolist
;
2942 bio
->bi_private
= r10_bio
;
2943 bio
->bi_end_io
= end_sync_read
;
2945 bio
->bi_sector
= sector
+
2946 conf
->mirrors
[d
].rdev
->data_offset
;
2947 bio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2950 if (conf
->mirrors
[d
].replacement
== NULL
||
2952 &conf
->mirrors
[d
].replacement
->flags
))
2955 /* Need to set up for writing to the replacement */
2956 bio
= r10_bio
->devs
[i
].repl_bio
;
2957 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2959 sector
= r10_bio
->devs
[i
].addr
;
2960 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2961 bio
->bi_next
= biolist
;
2963 bio
->bi_private
= r10_bio
;
2964 bio
->bi_end_io
= end_sync_write
;
2966 bio
->bi_sector
= sector
+
2967 conf
->mirrors
[d
].replacement
->data_offset
;
2968 bio
->bi_bdev
= conf
->mirrors
[d
].replacement
->bdev
;
2973 for (i
=0; i
<conf
->copies
; i
++) {
2974 int d
= r10_bio
->devs
[i
].devnum
;
2975 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
2976 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
2978 if (r10_bio
->devs
[i
].repl_bio
&&
2979 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
2981 conf
->mirrors
[d
].replacement
,
2990 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
2992 bio
->bi_flags
&= ~(BIO_POOL_MASK
- 1);
2994 bio
->bi_flags
|= 1 << BIO_UPTODATE
;
2997 bio
->bi_phys_segments
= 0;
3002 if (sector_nr
+ max_sync
< max_sector
)
3003 max_sector
= sector_nr
+ max_sync
;
3006 int len
= PAGE_SIZE
;
3007 if (sector_nr
+ (len
>>9) > max_sector
)
3008 len
= (max_sector
- sector_nr
) << 9;
3011 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3013 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3014 if (bio_add_page(bio
, page
, len
, 0))
3018 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3019 for (bio2
= biolist
;
3020 bio2
&& bio2
!= bio
;
3021 bio2
= bio2
->bi_next
) {
3022 /* remove last page from this bio */
3024 bio2
->bi_size
-= len
;
3025 bio2
->bi_flags
&= ~(1<< BIO_SEG_VALID
);
3029 nr_sectors
+= len
>>9;
3030 sector_nr
+= len
>>9;
3031 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3033 r10_bio
->sectors
= nr_sectors
;
3037 biolist
= biolist
->bi_next
;
3039 bio
->bi_next
= NULL
;
3040 r10_bio
= bio
->bi_private
;
3041 r10_bio
->sectors
= nr_sectors
;
3043 if (bio
->bi_end_io
== end_sync_read
) {
3044 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3045 generic_make_request(bio
);
3049 if (sectors_skipped
)
3050 /* pretend they weren't skipped, it makes
3051 * no important difference in this case
3053 md_done_sync(mddev
, sectors_skipped
, 1);
3055 return sectors_skipped
+ nr_sectors
;
3057 /* There is nowhere to write, so all non-sync
3058 * drives must be failed or in resync, all drives
3059 * have a bad block, so try the next chunk...
3061 if (sector_nr
+ max_sync
< max_sector
)
3062 max_sector
= sector_nr
+ max_sync
;
3064 sectors_skipped
+= (max_sector
- sector_nr
);
3066 sector_nr
= max_sector
;
3071 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3074 struct r10conf
*conf
= mddev
->private;
3077 raid_disks
= conf
->raid_disks
;
3079 sectors
= conf
->dev_sectors
;
3081 size
= sectors
>> conf
->chunk_shift
;
3082 sector_div(size
, conf
->far_copies
);
3083 size
= size
* raid_disks
;
3084 sector_div(size
, conf
->near_copies
);
3086 return size
<< conf
->chunk_shift
;
3090 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3092 struct r10conf
*conf
= NULL
;
3094 sector_t stride
, size
;
3097 if (mddev
->new_chunk_sectors
< (PAGE_SIZE
>> 9) ||
3098 !is_power_of_2(mddev
->new_chunk_sectors
)) {
3099 printk(KERN_ERR
"md/raid10:%s: chunk size must be "
3100 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3101 mdname(mddev
), PAGE_SIZE
);
3105 nc
= mddev
->new_layout
& 255;
3106 fc
= (mddev
->new_layout
>> 8) & 255;
3107 fo
= mddev
->new_layout
& (1<<16);
3109 if ((nc
*fc
) <2 || (nc
*fc
) > mddev
->raid_disks
||
3110 (mddev
->new_layout
>> 17)) {
3111 printk(KERN_ERR
"md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3112 mdname(mddev
), mddev
->new_layout
);
3117 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3121 conf
->mirrors
= kzalloc(sizeof(struct mirror_info
)*mddev
->raid_disks
,
3126 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3131 conf
->raid_disks
= mddev
->raid_disks
;
3132 conf
->near_copies
= nc
;
3133 conf
->far_copies
= fc
;
3134 conf
->copies
= nc
*fc
;
3135 conf
->far_offset
= fo
;
3136 conf
->chunk_mask
= mddev
->new_chunk_sectors
- 1;
3137 conf
->chunk_shift
= ffz(~mddev
->new_chunk_sectors
);
3139 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3140 r10bio_pool_free
, conf
);
3141 if (!conf
->r10bio_pool
)
3144 size
= mddev
->dev_sectors
>> conf
->chunk_shift
;
3145 sector_div(size
, fc
);
3146 size
= size
* conf
->raid_disks
;
3147 sector_div(size
, nc
);
3148 /* 'size' is now the number of chunks in the array */
3149 /* calculate "used chunks per device" in 'stride' */
3150 stride
= size
* conf
->copies
;
3152 /* We need to round up when dividing by raid_disks to
3153 * get the stride size.
3155 stride
+= conf
->raid_disks
- 1;
3156 sector_div(stride
, conf
->raid_disks
);
3158 conf
->dev_sectors
= stride
<< conf
->chunk_shift
;
3163 sector_div(stride
, fc
);
3164 conf
->stride
= stride
<< conf
->chunk_shift
;
3167 spin_lock_init(&conf
->device_lock
);
3168 INIT_LIST_HEAD(&conf
->retry_list
);
3170 spin_lock_init(&conf
->resync_lock
);
3171 init_waitqueue_head(&conf
->wait_barrier
);
3173 conf
->thread
= md_register_thread(raid10d
, mddev
, NULL
);
3177 conf
->mddev
= mddev
;
3181 printk(KERN_ERR
"md/raid10:%s: couldn't allocate memory.\n",
3184 if (conf
->r10bio_pool
)
3185 mempool_destroy(conf
->r10bio_pool
);
3186 kfree(conf
->mirrors
);
3187 safe_put_page(conf
->tmppage
);
3190 return ERR_PTR(err
);
3193 static int run(struct mddev
*mddev
)
3195 struct r10conf
*conf
;
3196 int i
, disk_idx
, chunk_size
;
3197 struct mirror_info
*disk
;
3198 struct md_rdev
*rdev
;
3202 * copy the already verified devices into our private RAID10
3203 * bookkeeping area. [whatever we allocate in run(),
3204 * should be freed in stop()]
3207 if (mddev
->private == NULL
) {
3208 conf
= setup_conf(mddev
);
3210 return PTR_ERR(conf
);
3211 mddev
->private = conf
;
3213 conf
= mddev
->private;
3217 mddev
->thread
= conf
->thread
;
3218 conf
->thread
= NULL
;
3220 chunk_size
= mddev
->chunk_sectors
<< 9;
3221 blk_queue_io_min(mddev
->queue
, chunk_size
);
3222 if (conf
->raid_disks
% conf
->near_copies
)
3223 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->raid_disks
);
3225 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3226 (conf
->raid_disks
/ conf
->near_copies
));
3228 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
3230 disk_idx
= rdev
->raid_disk
;
3231 if (disk_idx
>= conf
->raid_disks
3234 disk
= conf
->mirrors
+ disk_idx
;
3236 if (test_bit(Replacement
, &rdev
->flags
)) {
3237 if (disk
->replacement
)
3239 disk
->replacement
= rdev
;
3247 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3248 rdev
->data_offset
<< 9);
3249 /* as we don't honour merge_bvec_fn, we must never risk
3250 * violating it, so limit max_segments to 1 lying
3251 * within a single page.
3253 if (rdev
->bdev
->bd_disk
->queue
->merge_bvec_fn
) {
3254 blk_queue_max_segments(mddev
->queue
, 1);
3255 blk_queue_segment_boundary(mddev
->queue
,
3256 PAGE_CACHE_SIZE
- 1);
3259 disk
->head_position
= 0;
3261 /* need to check that every block has at least one working mirror */
3262 if (!enough(conf
, -1)) {
3263 printk(KERN_ERR
"md/raid10:%s: not enough operational mirrors.\n",
3268 mddev
->degraded
= 0;
3269 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3271 disk
= conf
->mirrors
+ i
;
3273 if (!disk
->rdev
&& disk
->replacement
) {
3274 /* The replacement is all we have - use it */
3275 disk
->rdev
= disk
->replacement
;
3276 disk
->replacement
= NULL
;
3277 clear_bit(Replacement
, &disk
->rdev
->flags
);
3281 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3282 disk
->head_position
= 0;
3287 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3290 if (mddev
->recovery_cp
!= MaxSector
)
3291 printk(KERN_NOTICE
"md/raid10:%s: not clean"
3292 " -- starting background reconstruction\n",
3295 "md/raid10:%s: active with %d out of %d devices\n",
3296 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
,
3299 * Ok, everything is just fine now
3301 mddev
->dev_sectors
= conf
->dev_sectors
;
3302 size
= raid10_size(mddev
, 0, 0);
3303 md_set_array_sectors(mddev
, size
);
3304 mddev
->resync_max_sectors
= size
;
3306 mddev
->queue
->backing_dev_info
.congested_fn
= raid10_congested
;
3307 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
3309 /* Calculate max read-ahead size.
3310 * We need to readahead at least twice a whole stripe....
3314 int stripe
= conf
->raid_disks
*
3315 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3316 stripe
/= conf
->near_copies
;
3317 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2* stripe
)
3318 mddev
->queue
->backing_dev_info
.ra_pages
= 2* stripe
;
3321 if (conf
->near_copies
< conf
->raid_disks
)
3322 blk_queue_merge_bvec(mddev
->queue
, raid10_mergeable_bvec
);
3324 if (md_integrity_register(mddev
))
3330 md_unregister_thread(&mddev
->thread
);
3331 if (conf
->r10bio_pool
)
3332 mempool_destroy(conf
->r10bio_pool
);
3333 safe_put_page(conf
->tmppage
);
3334 kfree(conf
->mirrors
);
3336 mddev
->private = NULL
;
3341 static int stop(struct mddev
*mddev
)
3343 struct r10conf
*conf
= mddev
->private;
3345 raise_barrier(conf
, 0);
3346 lower_barrier(conf
);
3348 md_unregister_thread(&mddev
->thread
);
3349 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
3350 if (conf
->r10bio_pool
)
3351 mempool_destroy(conf
->r10bio_pool
);
3352 kfree(conf
->mirrors
);
3354 mddev
->private = NULL
;
3358 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3360 struct r10conf
*conf
= mddev
->private;
3364 raise_barrier(conf
, 0);
3367 lower_barrier(conf
);
3372 static void *raid10_takeover_raid0(struct mddev
*mddev
)
3374 struct md_rdev
*rdev
;
3375 struct r10conf
*conf
;
3377 if (mddev
->degraded
> 0) {
3378 printk(KERN_ERR
"md/raid10:%s: Error: degraded raid0!\n",
3380 return ERR_PTR(-EINVAL
);
3383 /* Set new parameters */
3384 mddev
->new_level
= 10;
3385 /* new layout: far_copies = 1, near_copies = 2 */
3386 mddev
->new_layout
= (1<<8) + 2;
3387 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3388 mddev
->delta_disks
= mddev
->raid_disks
;
3389 mddev
->raid_disks
*= 2;
3390 /* make sure it will be not marked as dirty */
3391 mddev
->recovery_cp
= MaxSector
;
3393 conf
= setup_conf(mddev
);
3394 if (!IS_ERR(conf
)) {
3395 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
3396 if (rdev
->raid_disk
>= 0)
3397 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3404 static void *raid10_takeover(struct mddev
*mddev
)
3406 struct r0conf
*raid0_conf
;
3408 /* raid10 can take over:
3409 * raid0 - providing it has only two drives
3411 if (mddev
->level
== 0) {
3412 /* for raid0 takeover only one zone is supported */
3413 raid0_conf
= mddev
->private;
3414 if (raid0_conf
->nr_strip_zones
> 1) {
3415 printk(KERN_ERR
"md/raid10:%s: cannot takeover raid 0"
3416 " with more than one zone.\n",
3418 return ERR_PTR(-EINVAL
);
3420 return raid10_takeover_raid0(mddev
);
3422 return ERR_PTR(-EINVAL
);
3425 static struct md_personality raid10_personality
=
3429 .owner
= THIS_MODULE
,
3430 .make_request
= make_request
,
3434 .error_handler
= error
,
3435 .hot_add_disk
= raid10_add_disk
,
3436 .hot_remove_disk
= raid10_remove_disk
,
3437 .spare_active
= raid10_spare_active
,
3438 .sync_request
= sync_request
,
3439 .quiesce
= raid10_quiesce
,
3440 .size
= raid10_size
,
3441 .takeover
= raid10_takeover
,
3444 static int __init
raid_init(void)
3446 return register_md_personality(&raid10_personality
);
3449 static void raid_exit(void)
3451 unregister_md_personality(&raid10_personality
);
3454 module_init(raid_init
);
3455 module_exit(raid_exit
);
3456 MODULE_LICENSE("GPL");
3457 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3458 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3459 MODULE_ALIAS("md-raid10");
3460 MODULE_ALIAS("md-level-10");
3462 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);