2 * Copyright (c) 2007-2011 Nicira Networks.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
44 #include <net/ndisc.h>
46 static struct kmem_cache
*flow_cache
;
48 static int check_header(struct sk_buff
*skb
, int len
)
50 if (unlikely(skb
->len
< len
))
52 if (unlikely(!pskb_may_pull(skb
, len
)))
57 static bool arphdr_ok(struct sk_buff
*skb
)
59 return pskb_may_pull(skb
, skb_network_offset(skb
) +
60 sizeof(struct arp_eth_header
));
63 static int check_iphdr(struct sk_buff
*skb
)
65 unsigned int nh_ofs
= skb_network_offset(skb
);
69 err
= check_header(skb
, nh_ofs
+ sizeof(struct iphdr
));
73 ip_len
= ip_hdrlen(skb
);
74 if (unlikely(ip_len
< sizeof(struct iphdr
) ||
75 skb
->len
< nh_ofs
+ ip_len
))
78 skb_set_transport_header(skb
, nh_ofs
+ ip_len
);
82 static bool tcphdr_ok(struct sk_buff
*skb
)
84 int th_ofs
= skb_transport_offset(skb
);
87 if (unlikely(!pskb_may_pull(skb
, th_ofs
+ sizeof(struct tcphdr
))))
90 tcp_len
= tcp_hdrlen(skb
);
91 if (unlikely(tcp_len
< sizeof(struct tcphdr
) ||
92 skb
->len
< th_ofs
+ tcp_len
))
98 static bool udphdr_ok(struct sk_buff
*skb
)
100 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
101 sizeof(struct udphdr
));
104 static bool icmphdr_ok(struct sk_buff
*skb
)
106 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
107 sizeof(struct icmphdr
));
110 u64
ovs_flow_used_time(unsigned long flow_jiffies
)
112 struct timespec cur_ts
;
115 ktime_get_ts(&cur_ts
);
116 idle_ms
= jiffies_to_msecs(jiffies
- flow_jiffies
);
117 cur_ms
= (u64
)cur_ts
.tv_sec
* MSEC_PER_SEC
+
118 cur_ts
.tv_nsec
/ NSEC_PER_MSEC
;
120 return cur_ms
- idle_ms
;
123 #define SW_FLOW_KEY_OFFSET(field) \
124 (offsetof(struct sw_flow_key, field) + \
125 FIELD_SIZEOF(struct sw_flow_key, field))
127 static int parse_ipv6hdr(struct sk_buff
*skb
, struct sw_flow_key
*key
,
130 unsigned int nh_ofs
= skb_network_offset(skb
);
138 *key_lenp
= SW_FLOW_KEY_OFFSET(ipv6
.label
);
140 err
= check_header(skb
, nh_ofs
+ sizeof(*nh
));
145 nexthdr
= nh
->nexthdr
;
146 payload_ofs
= (u8
*)(nh
+ 1) - skb
->data
;
148 key
->ip
.proto
= NEXTHDR_NONE
;
149 key
->ip
.tos
= ipv6_get_dsfield(nh
);
150 key
->ip
.ttl
= nh
->hop_limit
;
151 key
->ipv6
.label
= *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
152 key
->ipv6
.addr
.src
= nh
->saddr
;
153 key
->ipv6
.addr
.dst
= nh
->daddr
;
155 payload_ofs
= ipv6_skip_exthdr(skb
, payload_ofs
, &nexthdr
, &frag_off
);
156 if (unlikely(payload_ofs
< 0))
160 if (frag_off
& htons(~0x7))
161 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
163 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
166 nh_len
= payload_ofs
- nh_ofs
;
167 skb_set_transport_header(skb
, nh_ofs
+ nh_len
);
168 key
->ip
.proto
= nexthdr
;
172 static bool icmp6hdr_ok(struct sk_buff
*skb
)
174 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
175 sizeof(struct icmp6hdr
));
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
181 void ovs_flow_used(struct sw_flow
*flow
, struct sk_buff
*skb
)
185 if (flow
->key
.eth
.type
== htons(ETH_P_IP
) &&
186 flow
->key
.ip
.proto
== IPPROTO_TCP
) {
187 u8
*tcp
= (u8
*)tcp_hdr(skb
);
188 tcp_flags
= *(tcp
+ TCP_FLAGS_OFFSET
) & TCP_FLAG_MASK
;
191 spin_lock(&flow
->lock
);
192 flow
->used
= jiffies
;
193 flow
->packet_count
++;
194 flow
->byte_count
+= skb
->len
;
195 flow
->tcp_flags
|= tcp_flags
;
196 spin_unlock(&flow
->lock
);
199 struct sw_flow_actions
*ovs_flow_actions_alloc(const struct nlattr
*actions
)
201 int actions_len
= nla_len(actions
);
202 struct sw_flow_actions
*sfa
;
204 /* At least DP_MAX_PORTS actions are required to be able to flood a
205 * packet to every port. Factor of 2 allows for setting VLAN tags,
207 if (actions_len
> 2 * DP_MAX_PORTS
* nla_total_size(4))
208 return ERR_PTR(-EINVAL
);
210 sfa
= kmalloc(sizeof(*sfa
) + actions_len
, GFP_KERNEL
);
212 return ERR_PTR(-ENOMEM
);
214 sfa
->actions_len
= actions_len
;
215 memcpy(sfa
->actions
, nla_data(actions
), actions_len
);
219 struct sw_flow
*ovs_flow_alloc(void)
221 struct sw_flow
*flow
;
223 flow
= kmem_cache_alloc(flow_cache
, GFP_KERNEL
);
225 return ERR_PTR(-ENOMEM
);
227 spin_lock_init(&flow
->lock
);
228 flow
->sf_acts
= NULL
;
233 static struct hlist_head
*find_bucket(struct flow_table
*table
, u32 hash
)
235 hash
= jhash_1word(hash
, table
->hash_seed
);
236 return flex_array_get(table
->buckets
,
237 (hash
& (table
->n_buckets
- 1)));
240 static struct flex_array
*alloc_buckets(unsigned int n_buckets
)
242 struct flex_array
*buckets
;
245 buckets
= flex_array_alloc(sizeof(struct hlist_head
*),
246 n_buckets
, GFP_KERNEL
);
250 err
= flex_array_prealloc(buckets
, 0, n_buckets
, GFP_KERNEL
);
252 flex_array_free(buckets
);
256 for (i
= 0; i
< n_buckets
; i
++)
257 INIT_HLIST_HEAD((struct hlist_head
*)
258 flex_array_get(buckets
, i
));
263 static void free_buckets(struct flex_array
*buckets
)
265 flex_array_free(buckets
);
268 struct flow_table
*ovs_flow_tbl_alloc(int new_size
)
270 struct flow_table
*table
= kmalloc(sizeof(*table
), GFP_KERNEL
);
275 table
->buckets
= alloc_buckets(new_size
);
277 if (!table
->buckets
) {
281 table
->n_buckets
= new_size
;
284 table
->keep_flows
= false;
285 get_random_bytes(&table
->hash_seed
, sizeof(u32
));
290 void ovs_flow_tbl_destroy(struct flow_table
*table
)
297 if (table
->keep_flows
)
300 for (i
= 0; i
< table
->n_buckets
; i
++) {
301 struct sw_flow
*flow
;
302 struct hlist_head
*head
= flex_array_get(table
->buckets
, i
);
303 struct hlist_node
*node
, *n
;
304 int ver
= table
->node_ver
;
306 hlist_for_each_entry_safe(flow
, node
, n
, head
, hash_node
[ver
]) {
307 hlist_del_rcu(&flow
->hash_node
[ver
]);
313 free_buckets(table
->buckets
);
317 static void flow_tbl_destroy_rcu_cb(struct rcu_head
*rcu
)
319 struct flow_table
*table
= container_of(rcu
, struct flow_table
, rcu
);
321 ovs_flow_tbl_destroy(table
);
324 void ovs_flow_tbl_deferred_destroy(struct flow_table
*table
)
329 call_rcu(&table
->rcu
, flow_tbl_destroy_rcu_cb
);
332 struct sw_flow
*ovs_flow_tbl_next(struct flow_table
*table
, u32
*bucket
, u32
*last
)
334 struct sw_flow
*flow
;
335 struct hlist_head
*head
;
336 struct hlist_node
*n
;
340 ver
= table
->node_ver
;
341 while (*bucket
< table
->n_buckets
) {
343 head
= flex_array_get(table
->buckets
, *bucket
);
344 hlist_for_each_entry_rcu(flow
, n
, head
, hash_node
[ver
]) {
359 static void flow_table_copy_flows(struct flow_table
*old
, struct flow_table
*new)
364 old_ver
= old
->node_ver
;
365 new->node_ver
= !old_ver
;
367 /* Insert in new table. */
368 for (i
= 0; i
< old
->n_buckets
; i
++) {
369 struct sw_flow
*flow
;
370 struct hlist_head
*head
;
371 struct hlist_node
*n
;
373 head
= flex_array_get(old
->buckets
, i
);
375 hlist_for_each_entry(flow
, n
, head
, hash_node
[old_ver
])
376 ovs_flow_tbl_insert(new, flow
);
378 old
->keep_flows
= true;
381 static struct flow_table
*__flow_tbl_rehash(struct flow_table
*table
, int n_buckets
)
383 struct flow_table
*new_table
;
385 new_table
= ovs_flow_tbl_alloc(n_buckets
);
387 return ERR_PTR(-ENOMEM
);
389 flow_table_copy_flows(table
, new_table
);
394 struct flow_table
*ovs_flow_tbl_rehash(struct flow_table
*table
)
396 return __flow_tbl_rehash(table
, table
->n_buckets
);
399 struct flow_table
*ovs_flow_tbl_expand(struct flow_table
*table
)
401 return __flow_tbl_rehash(table
, table
->n_buckets
* 2);
404 void ovs_flow_free(struct sw_flow
*flow
)
409 kfree((struct sf_flow_acts __force
*)flow
->sf_acts
);
410 kmem_cache_free(flow_cache
, flow
);
413 /* RCU callback used by ovs_flow_deferred_free. */
414 static void rcu_free_flow_callback(struct rcu_head
*rcu
)
416 struct sw_flow
*flow
= container_of(rcu
, struct sw_flow
, rcu
);
421 /* Schedules 'flow' to be freed after the next RCU grace period.
422 * The caller must hold rcu_read_lock for this to be sensible. */
423 void ovs_flow_deferred_free(struct sw_flow
*flow
)
425 call_rcu(&flow
->rcu
, rcu_free_flow_callback
);
428 /* RCU callback used by ovs_flow_deferred_free_acts. */
429 static void rcu_free_acts_callback(struct rcu_head
*rcu
)
431 struct sw_flow_actions
*sf_acts
= container_of(rcu
,
432 struct sw_flow_actions
, rcu
);
436 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
437 * The caller must hold rcu_read_lock for this to be sensible. */
438 void ovs_flow_deferred_free_acts(struct sw_flow_actions
*sf_acts
)
440 call_rcu(&sf_acts
->rcu
, rcu_free_acts_callback
);
443 static int parse_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
446 __be16 eth_type
; /* ETH_P_8021Q */
449 struct qtag_prefix
*qp
;
451 if (unlikely(skb
->len
< sizeof(struct qtag_prefix
) + sizeof(__be16
)))
454 if (unlikely(!pskb_may_pull(skb
, sizeof(struct qtag_prefix
) +
458 qp
= (struct qtag_prefix
*) skb
->data
;
459 key
->eth
.tci
= qp
->tci
| htons(VLAN_TAG_PRESENT
);
460 __skb_pull(skb
, sizeof(struct qtag_prefix
));
465 static __be16
parse_ethertype(struct sk_buff
*skb
)
467 struct llc_snap_hdr
{
468 u8 dsap
; /* Always 0xAA */
469 u8 ssap
; /* Always 0xAA */
474 struct llc_snap_hdr
*llc
;
477 proto
= *(__be16
*) skb
->data
;
478 __skb_pull(skb
, sizeof(__be16
));
480 if (ntohs(proto
) >= 1536)
483 if (skb
->len
< sizeof(struct llc_snap_hdr
))
484 return htons(ETH_P_802_2
);
486 if (unlikely(!pskb_may_pull(skb
, sizeof(struct llc_snap_hdr
))))
489 llc
= (struct llc_snap_hdr
*) skb
->data
;
490 if (llc
->dsap
!= LLC_SAP_SNAP
||
491 llc
->ssap
!= LLC_SAP_SNAP
||
492 (llc
->oui
[0] | llc
->oui
[1] | llc
->oui
[2]) != 0)
493 return htons(ETH_P_802_2
);
495 __skb_pull(skb
, sizeof(struct llc_snap_hdr
));
496 return llc
->ethertype
;
499 static int parse_icmpv6(struct sk_buff
*skb
, struct sw_flow_key
*key
,
500 int *key_lenp
, int nh_len
)
502 struct icmp6hdr
*icmp
= icmp6_hdr(skb
);
506 /* The ICMPv6 type and code fields use the 16-bit transport port
507 * fields, so we need to store them in 16-bit network byte order.
509 key
->ipv6
.tp
.src
= htons(icmp
->icmp6_type
);
510 key
->ipv6
.tp
.dst
= htons(icmp
->icmp6_code
);
511 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
513 if (icmp
->icmp6_code
== 0 &&
514 (icmp
->icmp6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
515 icmp
->icmp6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
516 int icmp_len
= skb
->len
- skb_transport_offset(skb
);
520 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
522 /* In order to process neighbor discovery options, we need the
525 if (unlikely(icmp_len
< sizeof(*nd
)))
527 if (unlikely(skb_linearize(skb
))) {
532 nd
= (struct nd_msg
*)skb_transport_header(skb
);
533 key
->ipv6
.nd
.target
= nd
->target
;
534 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
536 icmp_len
-= sizeof(*nd
);
538 while (icmp_len
>= 8) {
539 struct nd_opt_hdr
*nd_opt
=
540 (struct nd_opt_hdr
*)(nd
->opt
+ offset
);
541 int opt_len
= nd_opt
->nd_opt_len
* 8;
543 if (unlikely(!opt_len
|| opt_len
> icmp_len
))
546 /* Store the link layer address if the appropriate
547 * option is provided. It is considered an error if
548 * the same link layer option is specified twice.
550 if (nd_opt
->nd_opt_type
== ND_OPT_SOURCE_LL_ADDR
552 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.sll
)))
554 memcpy(key
->ipv6
.nd
.sll
,
555 &nd
->opt
[offset
+sizeof(*nd_opt
)], ETH_ALEN
);
556 } else if (nd_opt
->nd_opt_type
== ND_OPT_TARGET_LL_ADDR
558 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.tll
)))
560 memcpy(key
->ipv6
.nd
.tll
,
561 &nd
->opt
[offset
+sizeof(*nd_opt
)], ETH_ALEN
);
572 memset(&key
->ipv6
.nd
.target
, 0, sizeof(key
->ipv6
.nd
.target
));
573 memset(key
->ipv6
.nd
.sll
, 0, sizeof(key
->ipv6
.nd
.sll
));
574 memset(key
->ipv6
.nd
.tll
, 0, sizeof(key
->ipv6
.nd
.tll
));
582 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
583 * @skb: sk_buff that contains the frame, with skb->data pointing to the
585 * @in_port: port number on which @skb was received.
586 * @key: output flow key
587 * @key_lenp: length of output flow key
589 * The caller must ensure that skb->len >= ETH_HLEN.
591 * Returns 0 if successful, otherwise a negative errno value.
593 * Initializes @skb header pointers as follows:
595 * - skb->mac_header: the Ethernet header.
597 * - skb->network_header: just past the Ethernet header, or just past the
598 * VLAN header, to the first byte of the Ethernet payload.
600 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
601 * on output, then just past the IP header, if one is present and
602 * of a correct length, otherwise the same as skb->network_header.
603 * For other key->dl_type values it is left untouched.
605 int ovs_flow_extract(struct sk_buff
*skb
, u16 in_port
, struct sw_flow_key
*key
,
609 int key_len
= SW_FLOW_KEY_OFFSET(eth
);
612 memset(key
, 0, sizeof(*key
));
614 key
->phy
.priority
= skb
->priority
;
615 key
->phy
.in_port
= in_port
;
617 skb_reset_mac_header(skb
);
619 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
620 * header in the linear data area.
623 memcpy(key
->eth
.src
, eth
->h_source
, ETH_ALEN
);
624 memcpy(key
->eth
.dst
, eth
->h_dest
, ETH_ALEN
);
626 __skb_pull(skb
, 2 * ETH_ALEN
);
628 if (vlan_tx_tag_present(skb
))
629 key
->eth
.tci
= htons(skb
->vlan_tci
);
630 else if (eth
->h_proto
== htons(ETH_P_8021Q
))
631 if (unlikely(parse_vlan(skb
, key
)))
634 key
->eth
.type
= parse_ethertype(skb
);
635 if (unlikely(key
->eth
.type
== htons(0)))
638 skb_reset_network_header(skb
);
639 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
642 if (key
->eth
.type
== htons(ETH_P_IP
)) {
646 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.addr
);
648 error
= check_iphdr(skb
);
649 if (unlikely(error
)) {
650 if (error
== -EINVAL
) {
651 skb
->transport_header
= skb
->network_header
;
658 key
->ipv4
.addr
.src
= nh
->saddr
;
659 key
->ipv4
.addr
.dst
= nh
->daddr
;
661 key
->ip
.proto
= nh
->protocol
;
662 key
->ip
.tos
= nh
->tos
;
663 key
->ip
.ttl
= nh
->ttl
;
665 offset
= nh
->frag_off
& htons(IP_OFFSET
);
667 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
670 if (nh
->frag_off
& htons(IP_MF
) ||
671 skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
672 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
674 /* Transport layer. */
675 if (key
->ip
.proto
== IPPROTO_TCP
) {
676 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
677 if (tcphdr_ok(skb
)) {
678 struct tcphdr
*tcp
= tcp_hdr(skb
);
679 key
->ipv4
.tp
.src
= tcp
->source
;
680 key
->ipv4
.tp
.dst
= tcp
->dest
;
682 } else if (key
->ip
.proto
== IPPROTO_UDP
) {
683 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
684 if (udphdr_ok(skb
)) {
685 struct udphdr
*udp
= udp_hdr(skb
);
686 key
->ipv4
.tp
.src
= udp
->source
;
687 key
->ipv4
.tp
.dst
= udp
->dest
;
689 } else if (key
->ip
.proto
== IPPROTO_ICMP
) {
690 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
691 if (icmphdr_ok(skb
)) {
692 struct icmphdr
*icmp
= icmp_hdr(skb
);
693 /* The ICMP type and code fields use the 16-bit
694 * transport port fields, so we need to store
695 * them in 16-bit network byte order. */
696 key
->ipv4
.tp
.src
= htons(icmp
->type
);
697 key
->ipv4
.tp
.dst
= htons(icmp
->code
);
701 } else if (key
->eth
.type
== htons(ETH_P_ARP
) && arphdr_ok(skb
)) {
702 struct arp_eth_header
*arp
;
704 arp
= (struct arp_eth_header
*)skb_network_header(skb
);
706 if (arp
->ar_hrd
== htons(ARPHRD_ETHER
)
707 && arp
->ar_pro
== htons(ETH_P_IP
)
708 && arp
->ar_hln
== ETH_ALEN
709 && arp
->ar_pln
== 4) {
711 /* We only match on the lower 8 bits of the opcode. */
712 if (ntohs(arp
->ar_op
) <= 0xff)
713 key
->ip
.proto
= ntohs(arp
->ar_op
);
715 if (key
->ip
.proto
== ARPOP_REQUEST
716 || key
->ip
.proto
== ARPOP_REPLY
) {
717 memcpy(&key
->ipv4
.addr
.src
, arp
->ar_sip
, sizeof(key
->ipv4
.addr
.src
));
718 memcpy(&key
->ipv4
.addr
.dst
, arp
->ar_tip
, sizeof(key
->ipv4
.addr
.dst
));
719 memcpy(key
->ipv4
.arp
.sha
, arp
->ar_sha
, ETH_ALEN
);
720 memcpy(key
->ipv4
.arp
.tha
, arp
->ar_tha
, ETH_ALEN
);
721 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.arp
);
724 } else if (key
->eth
.type
== htons(ETH_P_IPV6
)) {
725 int nh_len
; /* IPv6 Header + Extensions */
727 nh_len
= parse_ipv6hdr(skb
, key
, &key_len
);
728 if (unlikely(nh_len
< 0)) {
729 if (nh_len
== -EINVAL
)
730 skb
->transport_header
= skb
->network_header
;
736 if (key
->ip
.frag
== OVS_FRAG_TYPE_LATER
)
738 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
739 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
741 /* Transport layer. */
742 if (key
->ip
.proto
== NEXTHDR_TCP
) {
743 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
744 if (tcphdr_ok(skb
)) {
745 struct tcphdr
*tcp
= tcp_hdr(skb
);
746 key
->ipv6
.tp
.src
= tcp
->source
;
747 key
->ipv6
.tp
.dst
= tcp
->dest
;
749 } else if (key
->ip
.proto
== NEXTHDR_UDP
) {
750 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
751 if (udphdr_ok(skb
)) {
752 struct udphdr
*udp
= udp_hdr(skb
);
753 key
->ipv6
.tp
.src
= udp
->source
;
754 key
->ipv6
.tp
.dst
= udp
->dest
;
756 } else if (key
->ip
.proto
== NEXTHDR_ICMP
) {
757 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
758 if (icmp6hdr_ok(skb
)) {
759 error
= parse_icmpv6(skb
, key
, &key_len
, nh_len
);
771 u32
ovs_flow_hash(const struct sw_flow_key
*key
, int key_len
)
773 return jhash2((u32
*)key
, DIV_ROUND_UP(key_len
, sizeof(u32
)), 0);
776 struct sw_flow
*ovs_flow_tbl_lookup(struct flow_table
*table
,
777 struct sw_flow_key
*key
, int key_len
)
779 struct sw_flow
*flow
;
780 struct hlist_node
*n
;
781 struct hlist_head
*head
;
784 hash
= ovs_flow_hash(key
, key_len
);
786 head
= find_bucket(table
, hash
);
787 hlist_for_each_entry_rcu(flow
, n
, head
, hash_node
[table
->node_ver
]) {
789 if (flow
->hash
== hash
&&
790 !memcmp(&flow
->key
, key
, key_len
)) {
797 void ovs_flow_tbl_insert(struct flow_table
*table
, struct sw_flow
*flow
)
799 struct hlist_head
*head
;
801 head
= find_bucket(table
, flow
->hash
);
802 hlist_add_head_rcu(&flow
->hash_node
[table
->node_ver
], head
);
806 void ovs_flow_tbl_remove(struct flow_table
*table
, struct sw_flow
*flow
)
808 hlist_del_rcu(&flow
->hash_node
[table
->node_ver
]);
810 BUG_ON(table
->count
< 0);
813 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
814 const int ovs_key_lens
[OVS_KEY_ATTR_MAX
+ 1] = {
815 [OVS_KEY_ATTR_ENCAP
] = -1,
816 [OVS_KEY_ATTR_PRIORITY
] = sizeof(u32
),
817 [OVS_KEY_ATTR_IN_PORT
] = sizeof(u32
),
818 [OVS_KEY_ATTR_ETHERNET
] = sizeof(struct ovs_key_ethernet
),
819 [OVS_KEY_ATTR_VLAN
] = sizeof(__be16
),
820 [OVS_KEY_ATTR_ETHERTYPE
] = sizeof(__be16
),
821 [OVS_KEY_ATTR_IPV4
] = sizeof(struct ovs_key_ipv4
),
822 [OVS_KEY_ATTR_IPV6
] = sizeof(struct ovs_key_ipv6
),
823 [OVS_KEY_ATTR_TCP
] = sizeof(struct ovs_key_tcp
),
824 [OVS_KEY_ATTR_UDP
] = sizeof(struct ovs_key_udp
),
825 [OVS_KEY_ATTR_ICMP
] = sizeof(struct ovs_key_icmp
),
826 [OVS_KEY_ATTR_ICMPV6
] = sizeof(struct ovs_key_icmpv6
),
827 [OVS_KEY_ATTR_ARP
] = sizeof(struct ovs_key_arp
),
828 [OVS_KEY_ATTR_ND
] = sizeof(struct ovs_key_nd
),
831 static int ipv4_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_len
,
832 const struct nlattr
*a
[], u32
*attrs
)
834 const struct ovs_key_icmp
*icmp_key
;
835 const struct ovs_key_tcp
*tcp_key
;
836 const struct ovs_key_udp
*udp_key
;
838 switch (swkey
->ip
.proto
) {
840 if (!(*attrs
& (1 << OVS_KEY_ATTR_TCP
)))
842 *attrs
&= ~(1 << OVS_KEY_ATTR_TCP
);
844 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
845 tcp_key
= nla_data(a
[OVS_KEY_ATTR_TCP
]);
846 swkey
->ipv4
.tp
.src
= tcp_key
->tcp_src
;
847 swkey
->ipv4
.tp
.dst
= tcp_key
->tcp_dst
;
851 if (!(*attrs
& (1 << OVS_KEY_ATTR_UDP
)))
853 *attrs
&= ~(1 << OVS_KEY_ATTR_UDP
);
855 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
856 udp_key
= nla_data(a
[OVS_KEY_ATTR_UDP
]);
857 swkey
->ipv4
.tp
.src
= udp_key
->udp_src
;
858 swkey
->ipv4
.tp
.dst
= udp_key
->udp_dst
;
862 if (!(*attrs
& (1 << OVS_KEY_ATTR_ICMP
)))
864 *attrs
&= ~(1 << OVS_KEY_ATTR_ICMP
);
866 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
867 icmp_key
= nla_data(a
[OVS_KEY_ATTR_ICMP
]);
868 swkey
->ipv4
.tp
.src
= htons(icmp_key
->icmp_type
);
869 swkey
->ipv4
.tp
.dst
= htons(icmp_key
->icmp_code
);
876 static int ipv6_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_len
,
877 const struct nlattr
*a
[], u32
*attrs
)
879 const struct ovs_key_icmpv6
*icmpv6_key
;
880 const struct ovs_key_tcp
*tcp_key
;
881 const struct ovs_key_udp
*udp_key
;
883 switch (swkey
->ip
.proto
) {
885 if (!(*attrs
& (1 << OVS_KEY_ATTR_TCP
)))
887 *attrs
&= ~(1 << OVS_KEY_ATTR_TCP
);
889 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
890 tcp_key
= nla_data(a
[OVS_KEY_ATTR_TCP
]);
891 swkey
->ipv6
.tp
.src
= tcp_key
->tcp_src
;
892 swkey
->ipv6
.tp
.dst
= tcp_key
->tcp_dst
;
896 if (!(*attrs
& (1 << OVS_KEY_ATTR_UDP
)))
898 *attrs
&= ~(1 << OVS_KEY_ATTR_UDP
);
900 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
901 udp_key
= nla_data(a
[OVS_KEY_ATTR_UDP
]);
902 swkey
->ipv6
.tp
.src
= udp_key
->udp_src
;
903 swkey
->ipv6
.tp
.dst
= udp_key
->udp_dst
;
907 if (!(*attrs
& (1 << OVS_KEY_ATTR_ICMPV6
)))
909 *attrs
&= ~(1 << OVS_KEY_ATTR_ICMPV6
);
911 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
912 icmpv6_key
= nla_data(a
[OVS_KEY_ATTR_ICMPV6
]);
913 swkey
->ipv6
.tp
.src
= htons(icmpv6_key
->icmpv6_type
);
914 swkey
->ipv6
.tp
.dst
= htons(icmpv6_key
->icmpv6_code
);
916 if (swkey
->ipv6
.tp
.src
== htons(NDISC_NEIGHBOUR_SOLICITATION
) ||
917 swkey
->ipv6
.tp
.src
== htons(NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
918 const struct ovs_key_nd
*nd_key
;
920 if (!(*attrs
& (1 << OVS_KEY_ATTR_ND
)))
922 *attrs
&= ~(1 << OVS_KEY_ATTR_ND
);
924 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
925 nd_key
= nla_data(a
[OVS_KEY_ATTR_ND
]);
926 memcpy(&swkey
->ipv6
.nd
.target
, nd_key
->nd_target
,
927 sizeof(swkey
->ipv6
.nd
.target
));
928 memcpy(swkey
->ipv6
.nd
.sll
, nd_key
->nd_sll
, ETH_ALEN
);
929 memcpy(swkey
->ipv6
.nd
.tll
, nd_key
->nd_tll
, ETH_ALEN
);
937 static int parse_flow_nlattrs(const struct nlattr
*attr
,
938 const struct nlattr
*a
[], u32
*attrsp
)
940 const struct nlattr
*nla
;
945 nla_for_each_nested(nla
, attr
, rem
) {
946 u16 type
= nla_type(nla
);
949 if (type
> OVS_KEY_ATTR_MAX
|| attrs
& (1 << type
))
952 expected_len
= ovs_key_lens
[type
];
953 if (nla_len(nla
) != expected_len
&& expected_len
!= -1)
967 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
968 * @swkey: receives the extracted flow key.
969 * @key_lenp: number of bytes used in @swkey.
970 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
973 int ovs_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_lenp
,
974 const struct nlattr
*attr
)
976 const struct nlattr
*a
[OVS_KEY_ATTR_MAX
+ 1];
977 const struct ovs_key_ethernet
*eth_key
;
982 memset(swkey
, 0, sizeof(struct sw_flow_key
));
983 key_len
= SW_FLOW_KEY_OFFSET(eth
);
985 err
= parse_flow_nlattrs(attr
, a
, &attrs
);
989 /* Metadata attributes. */
990 if (attrs
& (1 << OVS_KEY_ATTR_PRIORITY
)) {
991 swkey
->phy
.priority
= nla_get_u32(a
[OVS_KEY_ATTR_PRIORITY
]);
992 attrs
&= ~(1 << OVS_KEY_ATTR_PRIORITY
);
994 if (attrs
& (1 << OVS_KEY_ATTR_IN_PORT
)) {
995 u32 in_port
= nla_get_u32(a
[OVS_KEY_ATTR_IN_PORT
]);
996 if (in_port
>= DP_MAX_PORTS
)
998 swkey
->phy
.in_port
= in_port
;
999 attrs
&= ~(1 << OVS_KEY_ATTR_IN_PORT
);
1001 swkey
->phy
.in_port
= USHRT_MAX
;
1004 /* Data attributes. */
1005 if (!(attrs
& (1 << OVS_KEY_ATTR_ETHERNET
)))
1007 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERNET
);
1009 eth_key
= nla_data(a
[OVS_KEY_ATTR_ETHERNET
]);
1010 memcpy(swkey
->eth
.src
, eth_key
->eth_src
, ETH_ALEN
);
1011 memcpy(swkey
->eth
.dst
, eth_key
->eth_dst
, ETH_ALEN
);
1013 if (attrs
& (1u << OVS_KEY_ATTR_ETHERTYPE
) &&
1014 nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]) == htons(ETH_P_8021Q
)) {
1015 const struct nlattr
*encap
;
1018 if (attrs
!= ((1 << OVS_KEY_ATTR_VLAN
) |
1019 (1 << OVS_KEY_ATTR_ETHERTYPE
) |
1020 (1 << OVS_KEY_ATTR_ENCAP
)))
1023 encap
= a
[OVS_KEY_ATTR_ENCAP
];
1024 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
1025 if (tci
& htons(VLAN_TAG_PRESENT
)) {
1026 swkey
->eth
.tci
= tci
;
1028 err
= parse_flow_nlattrs(encap
, a
, &attrs
);
1032 /* Corner case for truncated 802.1Q header. */
1036 swkey
->eth
.type
= htons(ETH_P_8021Q
);
1037 *key_lenp
= key_len
;
1044 if (attrs
& (1 << OVS_KEY_ATTR_ETHERTYPE
)) {
1045 swkey
->eth
.type
= nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]);
1046 if (ntohs(swkey
->eth
.type
) < 1536)
1048 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
1050 swkey
->eth
.type
= htons(ETH_P_802_2
);
1053 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1054 const struct ovs_key_ipv4
*ipv4_key
;
1056 if (!(attrs
& (1 << OVS_KEY_ATTR_IPV4
)))
1058 attrs
&= ~(1 << OVS_KEY_ATTR_IPV4
);
1060 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.addr
);
1061 ipv4_key
= nla_data(a
[OVS_KEY_ATTR_IPV4
]);
1062 if (ipv4_key
->ipv4_frag
> OVS_FRAG_TYPE_MAX
)
1064 swkey
->ip
.proto
= ipv4_key
->ipv4_proto
;
1065 swkey
->ip
.tos
= ipv4_key
->ipv4_tos
;
1066 swkey
->ip
.ttl
= ipv4_key
->ipv4_ttl
;
1067 swkey
->ip
.frag
= ipv4_key
->ipv4_frag
;
1068 swkey
->ipv4
.addr
.src
= ipv4_key
->ipv4_src
;
1069 swkey
->ipv4
.addr
.dst
= ipv4_key
->ipv4_dst
;
1071 if (swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1072 err
= ipv4_flow_from_nlattrs(swkey
, &key_len
, a
, &attrs
);
1076 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1077 const struct ovs_key_ipv6
*ipv6_key
;
1079 if (!(attrs
& (1 << OVS_KEY_ATTR_IPV6
)))
1081 attrs
&= ~(1 << OVS_KEY_ATTR_IPV6
);
1083 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.label
);
1084 ipv6_key
= nla_data(a
[OVS_KEY_ATTR_IPV6
]);
1085 if (ipv6_key
->ipv6_frag
> OVS_FRAG_TYPE_MAX
)
1087 swkey
->ipv6
.label
= ipv6_key
->ipv6_label
;
1088 swkey
->ip
.proto
= ipv6_key
->ipv6_proto
;
1089 swkey
->ip
.tos
= ipv6_key
->ipv6_tclass
;
1090 swkey
->ip
.ttl
= ipv6_key
->ipv6_hlimit
;
1091 swkey
->ip
.frag
= ipv6_key
->ipv6_frag
;
1092 memcpy(&swkey
->ipv6
.addr
.src
, ipv6_key
->ipv6_src
,
1093 sizeof(swkey
->ipv6
.addr
.src
));
1094 memcpy(&swkey
->ipv6
.addr
.dst
, ipv6_key
->ipv6_dst
,
1095 sizeof(swkey
->ipv6
.addr
.dst
));
1097 if (swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1098 err
= ipv6_flow_from_nlattrs(swkey
, &key_len
, a
, &attrs
);
1102 } else if (swkey
->eth
.type
== htons(ETH_P_ARP
)) {
1103 const struct ovs_key_arp
*arp_key
;
1105 if (!(attrs
& (1 << OVS_KEY_ATTR_ARP
)))
1107 attrs
&= ~(1 << OVS_KEY_ATTR_ARP
);
1109 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.arp
);
1110 arp_key
= nla_data(a
[OVS_KEY_ATTR_ARP
]);
1111 swkey
->ipv4
.addr
.src
= arp_key
->arp_sip
;
1112 swkey
->ipv4
.addr
.dst
= arp_key
->arp_tip
;
1113 if (arp_key
->arp_op
& htons(0xff00))
1115 swkey
->ip
.proto
= ntohs(arp_key
->arp_op
);
1116 memcpy(swkey
->ipv4
.arp
.sha
, arp_key
->arp_sha
, ETH_ALEN
);
1117 memcpy(swkey
->ipv4
.arp
.tha
, arp_key
->arp_tha
, ETH_ALEN
);
1122 *key_lenp
= key_len
;
1128 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1129 * @in_port: receives the extracted input port.
1130 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1133 * This parses a series of Netlink attributes that form a flow key, which must
1134 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1135 * get the metadata, that is, the parts of the flow key that cannot be
1136 * extracted from the packet itself.
1138 int ovs_flow_metadata_from_nlattrs(u32
*priority
, u16
*in_port
,
1139 const struct nlattr
*attr
)
1141 const struct nlattr
*nla
;
1144 *in_port
= USHRT_MAX
;
1147 nla_for_each_nested(nla
, attr
, rem
) {
1148 int type
= nla_type(nla
);
1150 if (type
<= OVS_KEY_ATTR_MAX
&& ovs_key_lens
[type
] > 0) {
1151 if (nla_len(nla
) != ovs_key_lens
[type
])
1155 case OVS_KEY_ATTR_PRIORITY
:
1156 *priority
= nla_get_u32(nla
);
1159 case OVS_KEY_ATTR_IN_PORT
:
1160 if (nla_get_u32(nla
) >= DP_MAX_PORTS
)
1162 *in_port
= nla_get_u32(nla
);
1172 int ovs_flow_to_nlattrs(const struct sw_flow_key
*swkey
, struct sk_buff
*skb
)
1174 struct ovs_key_ethernet
*eth_key
;
1175 struct nlattr
*nla
, *encap
;
1177 if (swkey
->phy
.priority
)
1178 NLA_PUT_U32(skb
, OVS_KEY_ATTR_PRIORITY
, swkey
->phy
.priority
);
1180 if (swkey
->phy
.in_port
!= USHRT_MAX
)
1181 NLA_PUT_U32(skb
, OVS_KEY_ATTR_IN_PORT
, swkey
->phy
.in_port
);
1183 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ETHERNET
, sizeof(*eth_key
));
1185 goto nla_put_failure
;
1186 eth_key
= nla_data(nla
);
1187 memcpy(eth_key
->eth_src
, swkey
->eth
.src
, ETH_ALEN
);
1188 memcpy(eth_key
->eth_dst
, swkey
->eth
.dst
, ETH_ALEN
);
1190 if (swkey
->eth
.tci
|| swkey
->eth
.type
== htons(ETH_P_8021Q
)) {
1191 NLA_PUT_BE16(skb
, OVS_KEY_ATTR_ETHERTYPE
, htons(ETH_P_8021Q
));
1192 NLA_PUT_BE16(skb
, OVS_KEY_ATTR_VLAN
, swkey
->eth
.tci
);
1193 encap
= nla_nest_start(skb
, OVS_KEY_ATTR_ENCAP
);
1194 if (!swkey
->eth
.tci
)
1200 if (swkey
->eth
.type
== htons(ETH_P_802_2
))
1203 NLA_PUT_BE16(skb
, OVS_KEY_ATTR_ETHERTYPE
, swkey
->eth
.type
);
1205 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1206 struct ovs_key_ipv4
*ipv4_key
;
1208 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV4
, sizeof(*ipv4_key
));
1210 goto nla_put_failure
;
1211 ipv4_key
= nla_data(nla
);
1212 ipv4_key
->ipv4_src
= swkey
->ipv4
.addr
.src
;
1213 ipv4_key
->ipv4_dst
= swkey
->ipv4
.addr
.dst
;
1214 ipv4_key
->ipv4_proto
= swkey
->ip
.proto
;
1215 ipv4_key
->ipv4_tos
= swkey
->ip
.tos
;
1216 ipv4_key
->ipv4_ttl
= swkey
->ip
.ttl
;
1217 ipv4_key
->ipv4_frag
= swkey
->ip
.frag
;
1218 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1219 struct ovs_key_ipv6
*ipv6_key
;
1221 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV6
, sizeof(*ipv6_key
));
1223 goto nla_put_failure
;
1224 ipv6_key
= nla_data(nla
);
1225 memcpy(ipv6_key
->ipv6_src
, &swkey
->ipv6
.addr
.src
,
1226 sizeof(ipv6_key
->ipv6_src
));
1227 memcpy(ipv6_key
->ipv6_dst
, &swkey
->ipv6
.addr
.dst
,
1228 sizeof(ipv6_key
->ipv6_dst
));
1229 ipv6_key
->ipv6_label
= swkey
->ipv6
.label
;
1230 ipv6_key
->ipv6_proto
= swkey
->ip
.proto
;
1231 ipv6_key
->ipv6_tclass
= swkey
->ip
.tos
;
1232 ipv6_key
->ipv6_hlimit
= swkey
->ip
.ttl
;
1233 ipv6_key
->ipv6_frag
= swkey
->ip
.frag
;
1234 } else if (swkey
->eth
.type
== htons(ETH_P_ARP
)) {
1235 struct ovs_key_arp
*arp_key
;
1237 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ARP
, sizeof(*arp_key
));
1239 goto nla_put_failure
;
1240 arp_key
= nla_data(nla
);
1241 memset(arp_key
, 0, sizeof(struct ovs_key_arp
));
1242 arp_key
->arp_sip
= swkey
->ipv4
.addr
.src
;
1243 arp_key
->arp_tip
= swkey
->ipv4
.addr
.dst
;
1244 arp_key
->arp_op
= htons(swkey
->ip
.proto
);
1245 memcpy(arp_key
->arp_sha
, swkey
->ipv4
.arp
.sha
, ETH_ALEN
);
1246 memcpy(arp_key
->arp_tha
, swkey
->ipv4
.arp
.tha
, ETH_ALEN
);
1249 if ((swkey
->eth
.type
== htons(ETH_P_IP
) ||
1250 swkey
->eth
.type
== htons(ETH_P_IPV6
)) &&
1251 swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1253 if (swkey
->ip
.proto
== IPPROTO_TCP
) {
1254 struct ovs_key_tcp
*tcp_key
;
1256 nla
= nla_reserve(skb
, OVS_KEY_ATTR_TCP
, sizeof(*tcp_key
));
1258 goto nla_put_failure
;
1259 tcp_key
= nla_data(nla
);
1260 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1261 tcp_key
->tcp_src
= swkey
->ipv4
.tp
.src
;
1262 tcp_key
->tcp_dst
= swkey
->ipv4
.tp
.dst
;
1263 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1264 tcp_key
->tcp_src
= swkey
->ipv6
.tp
.src
;
1265 tcp_key
->tcp_dst
= swkey
->ipv6
.tp
.dst
;
1267 } else if (swkey
->ip
.proto
== IPPROTO_UDP
) {
1268 struct ovs_key_udp
*udp_key
;
1270 nla
= nla_reserve(skb
, OVS_KEY_ATTR_UDP
, sizeof(*udp_key
));
1272 goto nla_put_failure
;
1273 udp_key
= nla_data(nla
);
1274 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1275 udp_key
->udp_src
= swkey
->ipv4
.tp
.src
;
1276 udp_key
->udp_dst
= swkey
->ipv4
.tp
.dst
;
1277 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1278 udp_key
->udp_src
= swkey
->ipv6
.tp
.src
;
1279 udp_key
->udp_dst
= swkey
->ipv6
.tp
.dst
;
1281 } else if (swkey
->eth
.type
== htons(ETH_P_IP
) &&
1282 swkey
->ip
.proto
== IPPROTO_ICMP
) {
1283 struct ovs_key_icmp
*icmp_key
;
1285 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMP
, sizeof(*icmp_key
));
1287 goto nla_put_failure
;
1288 icmp_key
= nla_data(nla
);
1289 icmp_key
->icmp_type
= ntohs(swkey
->ipv4
.tp
.src
);
1290 icmp_key
->icmp_code
= ntohs(swkey
->ipv4
.tp
.dst
);
1291 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
) &&
1292 swkey
->ip
.proto
== IPPROTO_ICMPV6
) {
1293 struct ovs_key_icmpv6
*icmpv6_key
;
1295 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMPV6
,
1296 sizeof(*icmpv6_key
));
1298 goto nla_put_failure
;
1299 icmpv6_key
= nla_data(nla
);
1300 icmpv6_key
->icmpv6_type
= ntohs(swkey
->ipv6
.tp
.src
);
1301 icmpv6_key
->icmpv6_code
= ntohs(swkey
->ipv6
.tp
.dst
);
1303 if (icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
1304 icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
) {
1305 struct ovs_key_nd
*nd_key
;
1307 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ND
, sizeof(*nd_key
));
1309 goto nla_put_failure
;
1310 nd_key
= nla_data(nla
);
1311 memcpy(nd_key
->nd_target
, &swkey
->ipv6
.nd
.target
,
1312 sizeof(nd_key
->nd_target
));
1313 memcpy(nd_key
->nd_sll
, swkey
->ipv6
.nd
.sll
, ETH_ALEN
);
1314 memcpy(nd_key
->nd_tll
, swkey
->ipv6
.nd
.tll
, ETH_ALEN
);
1321 nla_nest_end(skb
, encap
);
1329 /* Initializes the flow module.
1330 * Returns zero if successful or a negative error code. */
1331 int ovs_flow_init(void)
1333 flow_cache
= kmem_cache_create("sw_flow", sizeof(struct sw_flow
), 0,
1335 if (flow_cache
== NULL
)
1341 /* Uninitializes the flow module. */
1342 void ovs_flow_exit(void)
1344 kmem_cache_destroy(flow_cache
);