staging: brcm80211: stop using assigned thread priority in fullmac
[zen-stable.git] / security / keys / key.c
blobf7f9d93f08d98df064104630c3f91ce4fb2aaab9
1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include <linux/user_namespace.h>
22 #include "internal.h"
24 static struct kmem_cache *key_jar;
25 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
26 DEFINE_SPINLOCK(key_serial_lock);
28 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
29 DEFINE_SPINLOCK(key_user_lock);
31 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
32 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
33 unsigned int key_quota_maxkeys = 200; /* general key count quota */
34 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
36 static LIST_HEAD(key_types_list);
37 static DECLARE_RWSEM(key_types_sem);
39 static void key_cleanup(struct work_struct *work);
40 static DECLARE_WORK(key_cleanup_task, key_cleanup);
42 /* We serialise key instantiation and link */
43 DEFINE_MUTEX(key_construction_mutex);
45 /* Any key who's type gets unegistered will be re-typed to this */
46 static struct key_type key_type_dead = {
47 .name = "dead",
50 #ifdef KEY_DEBUGGING
51 void __key_check(const struct key *key)
53 printk("__key_check: key %p {%08x} should be {%08x}\n",
54 key, key->magic, KEY_DEBUG_MAGIC);
55 BUG();
57 #endif
60 * Get the key quota record for a user, allocating a new record if one doesn't
61 * already exist.
63 struct key_user *key_user_lookup(uid_t uid, struct user_namespace *user_ns)
65 struct key_user *candidate = NULL, *user;
66 struct rb_node *parent = NULL;
67 struct rb_node **p;
69 try_again:
70 p = &key_user_tree.rb_node;
71 spin_lock(&key_user_lock);
73 /* search the tree for a user record with a matching UID */
74 while (*p) {
75 parent = *p;
76 user = rb_entry(parent, struct key_user, node);
78 if (uid < user->uid)
79 p = &(*p)->rb_left;
80 else if (uid > user->uid)
81 p = &(*p)->rb_right;
82 else if (user_ns < user->user_ns)
83 p = &(*p)->rb_left;
84 else if (user_ns > user->user_ns)
85 p = &(*p)->rb_right;
86 else
87 goto found;
90 /* if we get here, we failed to find a match in the tree */
91 if (!candidate) {
92 /* allocate a candidate user record if we don't already have
93 * one */
94 spin_unlock(&key_user_lock);
96 user = NULL;
97 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
98 if (unlikely(!candidate))
99 goto out;
101 /* the allocation may have scheduled, so we need to repeat the
102 * search lest someone else added the record whilst we were
103 * asleep */
104 goto try_again;
107 /* if we get here, then the user record still hadn't appeared on the
108 * second pass - so we use the candidate record */
109 atomic_set(&candidate->usage, 1);
110 atomic_set(&candidate->nkeys, 0);
111 atomic_set(&candidate->nikeys, 0);
112 candidate->uid = uid;
113 candidate->user_ns = get_user_ns(user_ns);
114 candidate->qnkeys = 0;
115 candidate->qnbytes = 0;
116 spin_lock_init(&candidate->lock);
117 mutex_init(&candidate->cons_lock);
119 rb_link_node(&candidate->node, parent, p);
120 rb_insert_color(&candidate->node, &key_user_tree);
121 spin_unlock(&key_user_lock);
122 user = candidate;
123 goto out;
125 /* okay - we found a user record for this UID */
126 found:
127 atomic_inc(&user->usage);
128 spin_unlock(&key_user_lock);
129 kfree(candidate);
130 out:
131 return user;
135 * Dispose of a user structure
137 void key_user_put(struct key_user *user)
139 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
140 rb_erase(&user->node, &key_user_tree);
141 spin_unlock(&key_user_lock);
142 put_user_ns(user->user_ns);
144 kfree(user);
149 * Allocate a serial number for a key. These are assigned randomly to avoid
150 * security issues through covert channel problems.
152 static inline void key_alloc_serial(struct key *key)
154 struct rb_node *parent, **p;
155 struct key *xkey;
157 /* propose a random serial number and look for a hole for it in the
158 * serial number tree */
159 do {
160 get_random_bytes(&key->serial, sizeof(key->serial));
162 key->serial >>= 1; /* negative numbers are not permitted */
163 } while (key->serial < 3);
165 spin_lock(&key_serial_lock);
167 attempt_insertion:
168 parent = NULL;
169 p = &key_serial_tree.rb_node;
171 while (*p) {
172 parent = *p;
173 xkey = rb_entry(parent, struct key, serial_node);
175 if (key->serial < xkey->serial)
176 p = &(*p)->rb_left;
177 else if (key->serial > xkey->serial)
178 p = &(*p)->rb_right;
179 else
180 goto serial_exists;
183 /* we've found a suitable hole - arrange for this key to occupy it */
184 rb_link_node(&key->serial_node, parent, p);
185 rb_insert_color(&key->serial_node, &key_serial_tree);
187 spin_unlock(&key_serial_lock);
188 return;
190 /* we found a key with the proposed serial number - walk the tree from
191 * that point looking for the next unused serial number */
192 serial_exists:
193 for (;;) {
194 key->serial++;
195 if (key->serial < 3) {
196 key->serial = 3;
197 goto attempt_insertion;
200 parent = rb_next(parent);
201 if (!parent)
202 goto attempt_insertion;
204 xkey = rb_entry(parent, struct key, serial_node);
205 if (key->serial < xkey->serial)
206 goto attempt_insertion;
211 * key_alloc - Allocate a key of the specified type.
212 * @type: The type of key to allocate.
213 * @desc: The key description to allow the key to be searched out.
214 * @uid: The owner of the new key.
215 * @gid: The group ID for the new key's group permissions.
216 * @cred: The credentials specifying UID namespace.
217 * @perm: The permissions mask of the new key.
218 * @flags: Flags specifying quota properties.
220 * Allocate a key of the specified type with the attributes given. The key is
221 * returned in an uninstantiated state and the caller needs to instantiate the
222 * key before returning.
224 * The user's key count quota is updated to reflect the creation of the key and
225 * the user's key data quota has the default for the key type reserved. The
226 * instantiation function should amend this as necessary. If insufficient
227 * quota is available, -EDQUOT will be returned.
229 * The LSM security modules can prevent a key being created, in which case
230 * -EACCES will be returned.
232 * Returns a pointer to the new key if successful and an error code otherwise.
234 * Note that the caller needs to ensure the key type isn't uninstantiated.
235 * Internally this can be done by locking key_types_sem. Externally, this can
236 * be done by either never unregistering the key type, or making sure
237 * key_alloc() calls don't race with module unloading.
239 struct key *key_alloc(struct key_type *type, const char *desc,
240 uid_t uid, gid_t gid, const struct cred *cred,
241 key_perm_t perm, unsigned long flags)
243 struct key_user *user = NULL;
244 struct key *key;
245 size_t desclen, quotalen;
246 int ret;
248 key = ERR_PTR(-EINVAL);
249 if (!desc || !*desc)
250 goto error;
252 if (type->vet_description) {
253 ret = type->vet_description(desc);
254 if (ret < 0) {
255 key = ERR_PTR(ret);
256 goto error;
260 desclen = strlen(desc) + 1;
261 quotalen = desclen + type->def_datalen;
263 /* get hold of the key tracking for this user */
264 user = key_user_lookup(uid, cred->user->user_ns);
265 if (!user)
266 goto no_memory_1;
268 /* check that the user's quota permits allocation of another key and
269 * its description */
270 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
271 unsigned maxkeys = (uid == 0) ?
272 key_quota_root_maxkeys : key_quota_maxkeys;
273 unsigned maxbytes = (uid == 0) ?
274 key_quota_root_maxbytes : key_quota_maxbytes;
276 spin_lock(&user->lock);
277 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
278 if (user->qnkeys + 1 >= maxkeys ||
279 user->qnbytes + quotalen >= maxbytes ||
280 user->qnbytes + quotalen < user->qnbytes)
281 goto no_quota;
284 user->qnkeys++;
285 user->qnbytes += quotalen;
286 spin_unlock(&user->lock);
289 /* allocate and initialise the key and its description */
290 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
291 if (!key)
292 goto no_memory_2;
294 if (desc) {
295 key->description = kmemdup(desc, desclen, GFP_KERNEL);
296 if (!key->description)
297 goto no_memory_3;
300 atomic_set(&key->usage, 1);
301 init_rwsem(&key->sem);
302 key->type = type;
303 key->user = user;
304 key->quotalen = quotalen;
305 key->datalen = type->def_datalen;
306 key->uid = uid;
307 key->gid = gid;
308 key->perm = perm;
309 key->flags = 0;
310 key->expiry = 0;
311 key->payload.data = NULL;
312 key->security = NULL;
314 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
315 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
317 memset(&key->type_data, 0, sizeof(key->type_data));
319 #ifdef KEY_DEBUGGING
320 key->magic = KEY_DEBUG_MAGIC;
321 #endif
323 /* let the security module know about the key */
324 ret = security_key_alloc(key, cred, flags);
325 if (ret < 0)
326 goto security_error;
328 /* publish the key by giving it a serial number */
329 atomic_inc(&user->nkeys);
330 key_alloc_serial(key);
332 error:
333 return key;
335 security_error:
336 kfree(key->description);
337 kmem_cache_free(key_jar, key);
338 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
339 spin_lock(&user->lock);
340 user->qnkeys--;
341 user->qnbytes -= quotalen;
342 spin_unlock(&user->lock);
344 key_user_put(user);
345 key = ERR_PTR(ret);
346 goto error;
348 no_memory_3:
349 kmem_cache_free(key_jar, key);
350 no_memory_2:
351 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
352 spin_lock(&user->lock);
353 user->qnkeys--;
354 user->qnbytes -= quotalen;
355 spin_unlock(&user->lock);
357 key_user_put(user);
358 no_memory_1:
359 key = ERR_PTR(-ENOMEM);
360 goto error;
362 no_quota:
363 spin_unlock(&user->lock);
364 key_user_put(user);
365 key = ERR_PTR(-EDQUOT);
366 goto error;
368 EXPORT_SYMBOL(key_alloc);
371 * key_payload_reserve - Adjust data quota reservation for the key's payload
372 * @key: The key to make the reservation for.
373 * @datalen: The amount of data payload the caller now wants.
375 * Adjust the amount of the owning user's key data quota that a key reserves.
376 * If the amount is increased, then -EDQUOT may be returned if there isn't
377 * enough free quota available.
379 * If successful, 0 is returned.
381 int key_payload_reserve(struct key *key, size_t datalen)
383 int delta = (int)datalen - key->datalen;
384 int ret = 0;
386 key_check(key);
388 /* contemplate the quota adjustment */
389 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
390 unsigned maxbytes = (key->user->uid == 0) ?
391 key_quota_root_maxbytes : key_quota_maxbytes;
393 spin_lock(&key->user->lock);
395 if (delta > 0 &&
396 (key->user->qnbytes + delta >= maxbytes ||
397 key->user->qnbytes + delta < key->user->qnbytes)) {
398 ret = -EDQUOT;
400 else {
401 key->user->qnbytes += delta;
402 key->quotalen += delta;
404 spin_unlock(&key->user->lock);
407 /* change the recorded data length if that didn't generate an error */
408 if (ret == 0)
409 key->datalen = datalen;
411 return ret;
413 EXPORT_SYMBOL(key_payload_reserve);
416 * Instantiate a key and link it into the target keyring atomically. Must be
417 * called with the target keyring's semaphore writelocked. The target key's
418 * semaphore need not be locked as instantiation is serialised by
419 * key_construction_mutex.
421 static int __key_instantiate_and_link(struct key *key,
422 const void *data,
423 size_t datalen,
424 struct key *keyring,
425 struct key *authkey,
426 unsigned long *_prealloc)
428 int ret, awaken;
430 key_check(key);
431 key_check(keyring);
433 awaken = 0;
434 ret = -EBUSY;
436 mutex_lock(&key_construction_mutex);
438 /* can't instantiate twice */
439 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
440 /* instantiate the key */
441 ret = key->type->instantiate(key, data, datalen);
443 if (ret == 0) {
444 /* mark the key as being instantiated */
445 atomic_inc(&key->user->nikeys);
446 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
448 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
449 awaken = 1;
451 /* and link it into the destination keyring */
452 if (keyring)
453 __key_link(keyring, key, _prealloc);
455 /* disable the authorisation key */
456 if (authkey)
457 key_revoke(authkey);
461 mutex_unlock(&key_construction_mutex);
463 /* wake up anyone waiting for a key to be constructed */
464 if (awaken)
465 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
467 return ret;
471 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
472 * @key: The key to instantiate.
473 * @data: The data to use to instantiate the keyring.
474 * @datalen: The length of @data.
475 * @keyring: Keyring to create a link in on success (or NULL).
476 * @authkey: The authorisation token permitting instantiation.
478 * Instantiate a key that's in the uninstantiated state using the provided data
479 * and, if successful, link it in to the destination keyring if one is
480 * supplied.
482 * If successful, 0 is returned, the authorisation token is revoked and anyone
483 * waiting for the key is woken up. If the key was already instantiated,
484 * -EBUSY will be returned.
486 int key_instantiate_and_link(struct key *key,
487 const void *data,
488 size_t datalen,
489 struct key *keyring,
490 struct key *authkey)
492 unsigned long prealloc;
493 int ret;
495 if (keyring) {
496 ret = __key_link_begin(keyring, key->type, key->description,
497 &prealloc);
498 if (ret < 0)
499 return ret;
502 ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
503 &prealloc);
505 if (keyring)
506 __key_link_end(keyring, key->type, prealloc);
508 return ret;
511 EXPORT_SYMBOL(key_instantiate_and_link);
514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
515 * @key: The key to instantiate.
516 * @timeout: The timeout on the negative key.
517 * @error: The error to return when the key is hit.
518 * @keyring: Keyring to create a link in on success (or NULL).
519 * @authkey: The authorisation token permitting instantiation.
521 * Negatively instantiate a key that's in the uninstantiated state and, if
522 * successful, set its timeout and stored error and link it in to the
523 * destination keyring if one is supplied. The key and any links to the key
524 * will be automatically garbage collected after the timeout expires.
526 * Negative keys are used to rate limit repeated request_key() calls by causing
527 * them to return the stored error code (typically ENOKEY) until the negative
528 * key expires.
530 * If successful, 0 is returned, the authorisation token is revoked and anyone
531 * waiting for the key is woken up. If the key was already instantiated,
532 * -EBUSY will be returned.
534 int key_reject_and_link(struct key *key,
535 unsigned timeout,
536 unsigned error,
537 struct key *keyring,
538 struct key *authkey)
540 unsigned long prealloc;
541 struct timespec now;
542 int ret, awaken, link_ret = 0;
544 key_check(key);
545 key_check(keyring);
547 awaken = 0;
548 ret = -EBUSY;
550 if (keyring)
551 link_ret = __key_link_begin(keyring, key->type,
552 key->description, &prealloc);
554 mutex_lock(&key_construction_mutex);
556 /* can't instantiate twice */
557 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
558 /* mark the key as being negatively instantiated */
559 atomic_inc(&key->user->nikeys);
560 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
561 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
562 key->type_data.reject_error = -error;
563 now = current_kernel_time();
564 key->expiry = now.tv_sec + timeout;
565 key_schedule_gc(key->expiry + key_gc_delay);
567 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
568 awaken = 1;
570 ret = 0;
572 /* and link it into the destination keyring */
573 if (keyring && link_ret == 0)
574 __key_link(keyring, key, &prealloc);
576 /* disable the authorisation key */
577 if (authkey)
578 key_revoke(authkey);
581 mutex_unlock(&key_construction_mutex);
583 if (keyring)
584 __key_link_end(keyring, key->type, prealloc);
586 /* wake up anyone waiting for a key to be constructed */
587 if (awaken)
588 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
590 return ret == 0 ? link_ret : ret;
592 EXPORT_SYMBOL(key_reject_and_link);
595 * Garbage collect keys in process context so that we don't have to disable
596 * interrupts all over the place.
598 * key_put() schedules this rather than trying to do the cleanup itself, which
599 * means key_put() doesn't have to sleep.
601 static void key_cleanup(struct work_struct *work)
603 struct rb_node *_n;
604 struct key *key;
606 go_again:
607 /* look for a dead key in the tree */
608 spin_lock(&key_serial_lock);
610 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
611 key = rb_entry(_n, struct key, serial_node);
613 if (atomic_read(&key->usage) == 0)
614 goto found_dead_key;
617 spin_unlock(&key_serial_lock);
618 return;
620 found_dead_key:
621 /* we found a dead key - once we've removed it from the tree, we can
622 * drop the lock */
623 rb_erase(&key->serial_node, &key_serial_tree);
624 spin_unlock(&key_serial_lock);
626 key_check(key);
628 security_key_free(key);
630 /* deal with the user's key tracking and quota */
631 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
632 spin_lock(&key->user->lock);
633 key->user->qnkeys--;
634 key->user->qnbytes -= key->quotalen;
635 spin_unlock(&key->user->lock);
638 atomic_dec(&key->user->nkeys);
639 if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
640 atomic_dec(&key->user->nikeys);
642 key_user_put(key->user);
644 /* now throw away the key memory */
645 if (key->type->destroy)
646 key->type->destroy(key);
648 kfree(key->description);
650 #ifdef KEY_DEBUGGING
651 key->magic = KEY_DEBUG_MAGIC_X;
652 #endif
653 kmem_cache_free(key_jar, key);
655 /* there may, of course, be more than one key to destroy */
656 goto go_again;
660 * key_put - Discard a reference to a key.
661 * @key: The key to discard a reference from.
663 * Discard a reference to a key, and when all the references are gone, we
664 * schedule the cleanup task to come and pull it out of the tree in process
665 * context at some later time.
667 void key_put(struct key *key)
669 if (key) {
670 key_check(key);
672 if (atomic_dec_and_test(&key->usage))
673 schedule_work(&key_cleanup_task);
676 EXPORT_SYMBOL(key_put);
679 * Find a key by its serial number.
681 struct key *key_lookup(key_serial_t id)
683 struct rb_node *n;
684 struct key *key;
686 spin_lock(&key_serial_lock);
688 /* search the tree for the specified key */
689 n = key_serial_tree.rb_node;
690 while (n) {
691 key = rb_entry(n, struct key, serial_node);
693 if (id < key->serial)
694 n = n->rb_left;
695 else if (id > key->serial)
696 n = n->rb_right;
697 else
698 goto found;
701 not_found:
702 key = ERR_PTR(-ENOKEY);
703 goto error;
705 found:
706 /* pretend it doesn't exist if it is awaiting deletion */
707 if (atomic_read(&key->usage) == 0)
708 goto not_found;
710 /* this races with key_put(), but that doesn't matter since key_put()
711 * doesn't actually change the key
713 atomic_inc(&key->usage);
715 error:
716 spin_unlock(&key_serial_lock);
717 return key;
721 * Find and lock the specified key type against removal.
723 * We return with the sem read-locked if successful. If the type wasn't
724 * available -ENOKEY is returned instead.
726 struct key_type *key_type_lookup(const char *type)
728 struct key_type *ktype;
730 down_read(&key_types_sem);
732 /* look up the key type to see if it's one of the registered kernel
733 * types */
734 list_for_each_entry(ktype, &key_types_list, link) {
735 if (strcmp(ktype->name, type) == 0)
736 goto found_kernel_type;
739 up_read(&key_types_sem);
740 ktype = ERR_PTR(-ENOKEY);
742 found_kernel_type:
743 return ktype;
747 * Unlock a key type locked by key_type_lookup().
749 void key_type_put(struct key_type *ktype)
751 up_read(&key_types_sem);
755 * Attempt to update an existing key.
757 * The key is given to us with an incremented refcount that we need to discard
758 * if we get an error.
760 static inline key_ref_t __key_update(key_ref_t key_ref,
761 const void *payload, size_t plen)
763 struct key *key = key_ref_to_ptr(key_ref);
764 int ret;
766 /* need write permission on the key to update it */
767 ret = key_permission(key_ref, KEY_WRITE);
768 if (ret < 0)
769 goto error;
771 ret = -EEXIST;
772 if (!key->type->update)
773 goto error;
775 down_write(&key->sem);
777 ret = key->type->update(key, payload, plen);
778 if (ret == 0)
779 /* updating a negative key instantiates it */
780 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
782 up_write(&key->sem);
784 if (ret < 0)
785 goto error;
786 out:
787 return key_ref;
789 error:
790 key_put(key);
791 key_ref = ERR_PTR(ret);
792 goto out;
796 * key_create_or_update - Update or create and instantiate a key.
797 * @keyring_ref: A pointer to the destination keyring with possession flag.
798 * @type: The type of key.
799 * @description: The searchable description for the key.
800 * @payload: The data to use to instantiate or update the key.
801 * @plen: The length of @payload.
802 * @perm: The permissions mask for a new key.
803 * @flags: The quota flags for a new key.
805 * Search the destination keyring for a key of the same description and if one
806 * is found, update it, otherwise create and instantiate a new one and create a
807 * link to it from that keyring.
809 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
810 * concocted.
812 * Returns a pointer to the new key if successful, -ENODEV if the key type
813 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
814 * caller isn't permitted to modify the keyring or the LSM did not permit
815 * creation of the key.
817 * On success, the possession flag from the keyring ref will be tacked on to
818 * the key ref before it is returned.
820 key_ref_t key_create_or_update(key_ref_t keyring_ref,
821 const char *type,
822 const char *description,
823 const void *payload,
824 size_t plen,
825 key_perm_t perm,
826 unsigned long flags)
828 unsigned long prealloc;
829 const struct cred *cred = current_cred();
830 struct key_type *ktype;
831 struct key *keyring, *key = NULL;
832 key_ref_t key_ref;
833 int ret;
835 /* look up the key type to see if it's one of the registered kernel
836 * types */
837 ktype = key_type_lookup(type);
838 if (IS_ERR(ktype)) {
839 key_ref = ERR_PTR(-ENODEV);
840 goto error;
843 key_ref = ERR_PTR(-EINVAL);
844 if (!ktype->match || !ktype->instantiate)
845 goto error_2;
847 keyring = key_ref_to_ptr(keyring_ref);
849 key_check(keyring);
851 key_ref = ERR_PTR(-ENOTDIR);
852 if (keyring->type != &key_type_keyring)
853 goto error_2;
855 ret = __key_link_begin(keyring, ktype, description, &prealloc);
856 if (ret < 0)
857 goto error_2;
859 /* if we're going to allocate a new key, we're going to have
860 * to modify the keyring */
861 ret = key_permission(keyring_ref, KEY_WRITE);
862 if (ret < 0) {
863 key_ref = ERR_PTR(ret);
864 goto error_3;
867 /* if it's possible to update this type of key, search for an existing
868 * key of the same type and description in the destination keyring and
869 * update that instead if possible
871 if (ktype->update) {
872 key_ref = __keyring_search_one(keyring_ref, ktype, description,
874 if (!IS_ERR(key_ref))
875 goto found_matching_key;
878 /* if the client doesn't provide, decide on the permissions we want */
879 if (perm == KEY_PERM_UNDEF) {
880 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
881 perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
883 if (ktype->read)
884 perm |= KEY_POS_READ | KEY_USR_READ;
886 if (ktype == &key_type_keyring || ktype->update)
887 perm |= KEY_USR_WRITE;
890 /* allocate a new key */
891 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
892 perm, flags);
893 if (IS_ERR(key)) {
894 key_ref = ERR_CAST(key);
895 goto error_3;
898 /* instantiate it and link it into the target keyring */
899 ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
900 &prealloc);
901 if (ret < 0) {
902 key_put(key);
903 key_ref = ERR_PTR(ret);
904 goto error_3;
907 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
909 error_3:
910 __key_link_end(keyring, ktype, prealloc);
911 error_2:
912 key_type_put(ktype);
913 error:
914 return key_ref;
916 found_matching_key:
917 /* we found a matching key, so we're going to try to update it
918 * - we can drop the locks first as we have the key pinned
920 __key_link_end(keyring, ktype, prealloc);
921 key_type_put(ktype);
923 key_ref = __key_update(key_ref, payload, plen);
924 goto error;
926 EXPORT_SYMBOL(key_create_or_update);
929 * key_update - Update a key's contents.
930 * @key_ref: The pointer (plus possession flag) to the key.
931 * @payload: The data to be used to update the key.
932 * @plen: The length of @payload.
934 * Attempt to update the contents of a key with the given payload data. The
935 * caller must be granted Write permission on the key. Negative keys can be
936 * instantiated by this method.
938 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
939 * type does not support updating. The key type may return other errors.
941 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
943 struct key *key = key_ref_to_ptr(key_ref);
944 int ret;
946 key_check(key);
948 /* the key must be writable */
949 ret = key_permission(key_ref, KEY_WRITE);
950 if (ret < 0)
951 goto error;
953 /* attempt to update it if supported */
954 ret = -EOPNOTSUPP;
955 if (key->type->update) {
956 down_write(&key->sem);
958 ret = key->type->update(key, payload, plen);
959 if (ret == 0)
960 /* updating a negative key instantiates it */
961 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
963 up_write(&key->sem);
966 error:
967 return ret;
969 EXPORT_SYMBOL(key_update);
972 * key_revoke - Revoke a key.
973 * @key: The key to be revoked.
975 * Mark a key as being revoked and ask the type to free up its resources. The
976 * revocation timeout is set and the key and all its links will be
977 * automatically garbage collected after key_gc_delay amount of time if they
978 * are not manually dealt with first.
980 void key_revoke(struct key *key)
982 struct timespec now;
983 time_t time;
985 key_check(key);
987 /* make sure no one's trying to change or use the key when we mark it
988 * - we tell lockdep that we might nest because we might be revoking an
989 * authorisation key whilst holding the sem on a key we've just
990 * instantiated
992 down_write_nested(&key->sem, 1);
993 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
994 key->type->revoke)
995 key->type->revoke(key);
997 /* set the death time to no more than the expiry time */
998 now = current_kernel_time();
999 time = now.tv_sec;
1000 if (key->revoked_at == 0 || key->revoked_at > time) {
1001 key->revoked_at = time;
1002 key_schedule_gc(key->revoked_at + key_gc_delay);
1005 up_write(&key->sem);
1007 EXPORT_SYMBOL(key_revoke);
1010 * register_key_type - Register a type of key.
1011 * @ktype: The new key type.
1013 * Register a new key type.
1015 * Returns 0 on success or -EEXIST if a type of this name already exists.
1017 int register_key_type(struct key_type *ktype)
1019 struct key_type *p;
1020 int ret;
1022 ret = -EEXIST;
1023 down_write(&key_types_sem);
1025 /* disallow key types with the same name */
1026 list_for_each_entry(p, &key_types_list, link) {
1027 if (strcmp(p->name, ktype->name) == 0)
1028 goto out;
1031 /* store the type */
1032 list_add(&ktype->link, &key_types_list);
1033 ret = 0;
1035 out:
1036 up_write(&key_types_sem);
1037 return ret;
1039 EXPORT_SYMBOL(register_key_type);
1042 * unregister_key_type - Unregister a type of key.
1043 * @ktype: The key type.
1045 * Unregister a key type and mark all the extant keys of this type as dead.
1046 * Those keys of this type are then destroyed to get rid of their payloads and
1047 * they and their links will be garbage collected as soon as possible.
1049 void unregister_key_type(struct key_type *ktype)
1051 struct rb_node *_n;
1052 struct key *key;
1054 down_write(&key_types_sem);
1056 /* withdraw the key type */
1057 list_del_init(&ktype->link);
1059 /* mark all the keys of this type dead */
1060 spin_lock(&key_serial_lock);
1062 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1063 key = rb_entry(_n, struct key, serial_node);
1065 if (key->type == ktype) {
1066 key->type = &key_type_dead;
1067 set_bit(KEY_FLAG_DEAD, &key->flags);
1071 spin_unlock(&key_serial_lock);
1073 /* make sure everyone revalidates their keys */
1074 synchronize_rcu();
1076 /* we should now be able to destroy the payloads of all the keys of
1077 * this type with impunity */
1078 spin_lock(&key_serial_lock);
1080 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
1081 key = rb_entry(_n, struct key, serial_node);
1083 if (key->type == ktype) {
1084 if (ktype->destroy)
1085 ktype->destroy(key);
1086 memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
1090 spin_unlock(&key_serial_lock);
1091 up_write(&key_types_sem);
1093 key_schedule_gc(0);
1095 EXPORT_SYMBOL(unregister_key_type);
1098 * Initialise the key management state.
1100 void __init key_init(void)
1102 /* allocate a slab in which we can store keys */
1103 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1104 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1106 /* add the special key types */
1107 list_add_tail(&key_type_keyring.link, &key_types_list);
1108 list_add_tail(&key_type_dead.link, &key_types_list);
1109 list_add_tail(&key_type_user.link, &key_types_list);
1111 /* record the root user tracking */
1112 rb_link_node(&root_key_user.node,
1113 NULL,
1114 &key_user_tree.rb_node);
1116 rb_insert_color(&root_key_user.node,
1117 &key_user_tree);