staging: brcm80211: remove brcms_b_dotxstatus wrapper function
[zen-stable.git] / drivers / gpu / drm / i915 / i915_gem.c
bloba546a71fb060abddd9d160abf3df61a90aa4eb33
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
51 static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
53 static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file);
57 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60 struct shrink_control *sc);
62 /* some bookkeeping */
63 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 size_t size)
66 dev_priv->mm.object_count++;
67 dev_priv->mm.object_memory += size;
70 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
71 size_t size)
73 dev_priv->mm.object_count--;
74 dev_priv->mm.object_memory -= size;
77 static int
78 i915_gem_wait_for_error(struct drm_device *dev)
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct completion *x = &dev_priv->error_completion;
82 unsigned long flags;
83 int ret;
85 if (!atomic_read(&dev_priv->mm.wedged))
86 return 0;
88 ret = wait_for_completion_interruptible(x);
89 if (ret)
90 return ret;
92 if (atomic_read(&dev_priv->mm.wedged)) {
93 /* GPU is hung, bump the completion count to account for
94 * the token we just consumed so that we never hit zero and
95 * end up waiting upon a subsequent completion event that
96 * will never happen.
98 spin_lock_irqsave(&x->wait.lock, flags);
99 x->done++;
100 spin_unlock_irqrestore(&x->wait.lock, flags);
102 return 0;
105 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 int ret;
109 ret = i915_gem_wait_for_error(dev);
110 if (ret)
111 return ret;
113 ret = mutex_lock_interruptible(&dev->struct_mutex);
114 if (ret)
115 return ret;
117 WARN_ON(i915_verify_lists(dev));
118 return 0;
121 static inline bool
122 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 return obj->gtt_space && !obj->active && obj->pin_count == 0;
127 void i915_gem_do_init(struct drm_device *dev,
128 unsigned long start,
129 unsigned long mappable_end,
130 unsigned long end)
132 drm_i915_private_t *dev_priv = dev->dev_private;
134 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136 dev_priv->mm.gtt_start = start;
137 dev_priv->mm.gtt_mappable_end = mappable_end;
138 dev_priv->mm.gtt_end = end;
139 dev_priv->mm.gtt_total = end - start;
140 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 /* Take over this portion of the GTT */
143 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
147 i915_gem_init_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
150 struct drm_i915_gem_init *args = data;
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154 return -EINVAL;
156 mutex_lock(&dev->struct_mutex);
157 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
160 return 0;
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
172 if (!(dev->driver->driver_features & DRIVER_GEM))
173 return -ENODEV;
175 pinned = 0;
176 mutex_lock(&dev->struct_mutex);
177 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
178 pinned += obj->gtt_space->size;
179 mutex_unlock(&dev->struct_mutex);
181 args->aper_size = dev_priv->mm.gtt_total;
182 args->aper_available_size = args->aper_size -pinned;
184 return 0;
187 static int
188 i915_gem_create(struct drm_file *file,
189 struct drm_device *dev,
190 uint64_t size,
191 uint32_t *handle_p)
193 struct drm_i915_gem_object *obj;
194 int ret;
195 u32 handle;
197 size = roundup(size, PAGE_SIZE);
199 /* Allocate the new object */
200 obj = i915_gem_alloc_object(dev, size);
201 if (obj == NULL)
202 return -ENOMEM;
204 ret = drm_gem_handle_create(file, &obj->base, &handle);
205 if (ret) {
206 drm_gem_object_release(&obj->base);
207 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208 kfree(obj);
209 return ret;
212 /* drop reference from allocate - handle holds it now */
213 drm_gem_object_unreference(&obj->base);
214 trace_i915_gem_object_create(obj);
216 *handle_p = handle;
217 return 0;
221 i915_gem_dumb_create(struct drm_file *file,
222 struct drm_device *dev,
223 struct drm_mode_create_dumb *args)
225 /* have to work out size/pitch and return them */
226 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 args->size = args->pitch * args->height;
228 return i915_gem_create(file, dev,
229 args->size, &args->handle);
232 int i915_gem_dumb_destroy(struct drm_file *file,
233 struct drm_device *dev,
234 uint32_t handle)
236 return drm_gem_handle_delete(file, handle);
240 * Creates a new mm object and returns a handle to it.
243 i915_gem_create_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
246 struct drm_i915_gem_create *args = data;
247 return i915_gem_create(file, dev,
248 args->size, &args->handle);
251 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256 obj->tiling_mode != I915_TILING_NONE;
259 static inline void
260 slow_shmem_copy(struct page *dst_page,
261 int dst_offset,
262 struct page *src_page,
263 int src_offset,
264 int length)
266 char *dst_vaddr, *src_vaddr;
268 dst_vaddr = kmap(dst_page);
269 src_vaddr = kmap(src_page);
271 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273 kunmap(src_page);
274 kunmap(dst_page);
277 static inline void
278 slow_shmem_bit17_copy(struct page *gpu_page,
279 int gpu_offset,
280 struct page *cpu_page,
281 int cpu_offset,
282 int length,
283 int is_read)
285 char *gpu_vaddr, *cpu_vaddr;
287 /* Use the unswizzled path if this page isn't affected. */
288 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
289 if (is_read)
290 return slow_shmem_copy(cpu_page, cpu_offset,
291 gpu_page, gpu_offset, length);
292 else
293 return slow_shmem_copy(gpu_page, gpu_offset,
294 cpu_page, cpu_offset, length);
297 gpu_vaddr = kmap(gpu_page);
298 cpu_vaddr = kmap(cpu_page);
300 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
301 * XORing with the other bits (A9 for Y, A9 and A10 for X)
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
308 if (is_read) {
309 memcpy(cpu_vaddr + cpu_offset,
310 gpu_vaddr + swizzled_gpu_offset,
311 this_length);
312 } else {
313 memcpy(gpu_vaddr + swizzled_gpu_offset,
314 cpu_vaddr + cpu_offset,
315 this_length);
317 cpu_offset += this_length;
318 gpu_offset += this_length;
319 length -= this_length;
322 kunmap(cpu_page);
323 kunmap(gpu_page);
327 * This is the fast shmem pread path, which attempts to copy_from_user directly
328 * from the backing pages of the object to the user's address space. On a
329 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331 static int
332 i915_gem_shmem_pread_fast(struct drm_device *dev,
333 struct drm_i915_gem_object *obj,
334 struct drm_i915_gem_pread *args,
335 struct drm_file *file)
337 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
338 ssize_t remain;
339 loff_t offset;
340 char __user *user_data;
341 int page_offset, page_length;
343 user_data = (char __user *) (uintptr_t) args->data_ptr;
344 remain = args->size;
346 offset = args->offset;
348 while (remain > 0) {
349 struct page *page;
350 char *vaddr;
351 int ret;
353 /* Operation in this page
355 * page_offset = offset within page
356 * page_length = bytes to copy for this page
358 page_offset = offset_in_page(offset);
359 page_length = remain;
360 if ((page_offset + remain) > PAGE_SIZE)
361 page_length = PAGE_SIZE - page_offset;
363 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
364 if (IS_ERR(page))
365 return PTR_ERR(page);
367 vaddr = kmap_atomic(page);
368 ret = __copy_to_user_inatomic(user_data,
369 vaddr + page_offset,
370 page_length);
371 kunmap_atomic(vaddr);
373 mark_page_accessed(page);
374 page_cache_release(page);
375 if (ret)
376 return -EFAULT;
378 remain -= page_length;
379 user_data += page_length;
380 offset += page_length;
383 return 0;
387 * This is the fallback shmem pread path, which allocates temporary storage
388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
389 * can copy out of the object's backing pages while holding the struct mutex
390 * and not take page faults.
392 static int
393 i915_gem_shmem_pread_slow(struct drm_device *dev,
394 struct drm_i915_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file)
398 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
399 struct mm_struct *mm = current->mm;
400 struct page **user_pages;
401 ssize_t remain;
402 loff_t offset, pinned_pages, i;
403 loff_t first_data_page, last_data_page, num_pages;
404 int shmem_page_offset;
405 int data_page_index, data_page_offset;
406 int page_length;
407 int ret;
408 uint64_t data_ptr = args->data_ptr;
409 int do_bit17_swizzling;
411 remain = args->size;
413 /* Pin the user pages containing the data. We can't fault while
414 * holding the struct mutex, yet we want to hold it while
415 * dereferencing the user data.
417 first_data_page = data_ptr / PAGE_SIZE;
418 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
419 num_pages = last_data_page - first_data_page + 1;
421 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
422 if (user_pages == NULL)
423 return -ENOMEM;
425 mutex_unlock(&dev->struct_mutex);
426 down_read(&mm->mmap_sem);
427 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
428 num_pages, 1, 0, user_pages, NULL);
429 up_read(&mm->mmap_sem);
430 mutex_lock(&dev->struct_mutex);
431 if (pinned_pages < num_pages) {
432 ret = -EFAULT;
433 goto out;
436 ret = i915_gem_object_set_cpu_read_domain_range(obj,
437 args->offset,
438 args->size);
439 if (ret)
440 goto out;
442 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
444 offset = args->offset;
446 while (remain > 0) {
447 struct page *page;
449 /* Operation in this page
451 * shmem_page_offset = offset within page in shmem file
452 * data_page_index = page number in get_user_pages return
453 * data_page_offset = offset with data_page_index page.
454 * page_length = bytes to copy for this page
456 shmem_page_offset = offset_in_page(offset);
457 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
458 data_page_offset = offset_in_page(data_ptr);
460 page_length = remain;
461 if ((shmem_page_offset + page_length) > PAGE_SIZE)
462 page_length = PAGE_SIZE - shmem_page_offset;
463 if ((data_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - data_page_offset;
466 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
467 if (IS_ERR(page)) {
468 ret = PTR_ERR(page);
469 goto out;
472 if (do_bit17_swizzling) {
473 slow_shmem_bit17_copy(page,
474 shmem_page_offset,
475 user_pages[data_page_index],
476 data_page_offset,
477 page_length,
479 } else {
480 slow_shmem_copy(user_pages[data_page_index],
481 data_page_offset,
482 page,
483 shmem_page_offset,
484 page_length);
487 mark_page_accessed(page);
488 page_cache_release(page);
490 remain -= page_length;
491 data_ptr += page_length;
492 offset += page_length;
495 out:
496 for (i = 0; i < pinned_pages; i++) {
497 SetPageDirty(user_pages[i]);
498 mark_page_accessed(user_pages[i]);
499 page_cache_release(user_pages[i]);
501 drm_free_large(user_pages);
503 return ret;
507 * Reads data from the object referenced by handle.
509 * On error, the contents of *data are undefined.
512 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
513 struct drm_file *file)
515 struct drm_i915_gem_pread *args = data;
516 struct drm_i915_gem_object *obj;
517 int ret = 0;
519 if (args->size == 0)
520 return 0;
522 if (!access_ok(VERIFY_WRITE,
523 (char __user *)(uintptr_t)args->data_ptr,
524 args->size))
525 return -EFAULT;
527 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
528 args->size);
529 if (ret)
530 return -EFAULT;
532 ret = i915_mutex_lock_interruptible(dev);
533 if (ret)
534 return ret;
536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
537 if (&obj->base == NULL) {
538 ret = -ENOENT;
539 goto unlock;
542 /* Bounds check source. */
543 if (args->offset > obj->base.size ||
544 args->size > obj->base.size - args->offset) {
545 ret = -EINVAL;
546 goto out;
549 trace_i915_gem_object_pread(obj, args->offset, args->size);
551 ret = i915_gem_object_set_cpu_read_domain_range(obj,
552 args->offset,
553 args->size);
554 if (ret)
555 goto out;
557 ret = -EFAULT;
558 if (!i915_gem_object_needs_bit17_swizzle(obj))
559 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
560 if (ret == -EFAULT)
561 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
563 out:
564 drm_gem_object_unreference(&obj->base);
565 unlock:
566 mutex_unlock(&dev->struct_mutex);
567 return ret;
570 /* This is the fast write path which cannot handle
571 * page faults in the source data
574 static inline int
575 fast_user_write(struct io_mapping *mapping,
576 loff_t page_base, int page_offset,
577 char __user *user_data,
578 int length)
580 char *vaddr_atomic;
581 unsigned long unwritten;
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
585 user_data, length);
586 io_mapping_unmap_atomic(vaddr_atomic);
587 return unwritten;
590 /* Here's the write path which can sleep for
591 * page faults
594 static inline void
595 slow_kernel_write(struct io_mapping *mapping,
596 loff_t gtt_base, int gtt_offset,
597 struct page *user_page, int user_offset,
598 int length)
600 char __iomem *dst_vaddr;
601 char *src_vaddr;
603 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
604 src_vaddr = kmap(user_page);
606 memcpy_toio(dst_vaddr + gtt_offset,
607 src_vaddr + user_offset,
608 length);
610 kunmap(user_page);
611 io_mapping_unmap(dst_vaddr);
615 * This is the fast pwrite path, where we copy the data directly from the
616 * user into the GTT, uncached.
618 static int
619 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
620 struct drm_i915_gem_object *obj,
621 struct drm_i915_gem_pwrite *args,
622 struct drm_file *file)
624 drm_i915_private_t *dev_priv = dev->dev_private;
625 ssize_t remain;
626 loff_t offset, page_base;
627 char __user *user_data;
628 int page_offset, page_length;
630 user_data = (char __user *) (uintptr_t) args->data_ptr;
631 remain = args->size;
633 offset = obj->gtt_offset + args->offset;
635 while (remain > 0) {
636 /* Operation in this page
638 * page_base = page offset within aperture
639 * page_offset = offset within page
640 * page_length = bytes to copy for this page
642 page_base = offset & PAGE_MASK;
643 page_offset = offset_in_page(offset);
644 page_length = remain;
645 if ((page_offset + remain) > PAGE_SIZE)
646 page_length = PAGE_SIZE - page_offset;
648 /* If we get a fault while copying data, then (presumably) our
649 * source page isn't available. Return the error and we'll
650 * retry in the slow path.
652 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
653 page_offset, user_data, page_length))
654 return -EFAULT;
656 remain -= page_length;
657 user_data += page_length;
658 offset += page_length;
661 return 0;
665 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
666 * the memory and maps it using kmap_atomic for copying.
668 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
669 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
671 static int
672 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
673 struct drm_i915_gem_object *obj,
674 struct drm_i915_gem_pwrite *args,
675 struct drm_file *file)
677 drm_i915_private_t *dev_priv = dev->dev_private;
678 ssize_t remain;
679 loff_t gtt_page_base, offset;
680 loff_t first_data_page, last_data_page, num_pages;
681 loff_t pinned_pages, i;
682 struct page **user_pages;
683 struct mm_struct *mm = current->mm;
684 int gtt_page_offset, data_page_offset, data_page_index, page_length;
685 int ret;
686 uint64_t data_ptr = args->data_ptr;
688 remain = args->size;
690 /* Pin the user pages containing the data. We can't fault while
691 * holding the struct mutex, and all of the pwrite implementations
692 * want to hold it while dereferencing the user data.
694 first_data_page = data_ptr / PAGE_SIZE;
695 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
696 num_pages = last_data_page - first_data_page + 1;
698 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
699 if (user_pages == NULL)
700 return -ENOMEM;
702 mutex_unlock(&dev->struct_mutex);
703 down_read(&mm->mmap_sem);
704 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
705 num_pages, 0, 0, user_pages, NULL);
706 up_read(&mm->mmap_sem);
707 mutex_lock(&dev->struct_mutex);
708 if (pinned_pages < num_pages) {
709 ret = -EFAULT;
710 goto out_unpin_pages;
713 ret = i915_gem_object_set_to_gtt_domain(obj, true);
714 if (ret)
715 goto out_unpin_pages;
717 ret = i915_gem_object_put_fence(obj);
718 if (ret)
719 goto out_unpin_pages;
721 offset = obj->gtt_offset + args->offset;
723 while (remain > 0) {
724 /* Operation in this page
726 * gtt_page_base = page offset within aperture
727 * gtt_page_offset = offset within page in aperture
728 * data_page_index = page number in get_user_pages return
729 * data_page_offset = offset with data_page_index page.
730 * page_length = bytes to copy for this page
732 gtt_page_base = offset & PAGE_MASK;
733 gtt_page_offset = offset_in_page(offset);
734 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
735 data_page_offset = offset_in_page(data_ptr);
737 page_length = remain;
738 if ((gtt_page_offset + page_length) > PAGE_SIZE)
739 page_length = PAGE_SIZE - gtt_page_offset;
740 if ((data_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - data_page_offset;
743 slow_kernel_write(dev_priv->mm.gtt_mapping,
744 gtt_page_base, gtt_page_offset,
745 user_pages[data_page_index],
746 data_page_offset,
747 page_length);
749 remain -= page_length;
750 offset += page_length;
751 data_ptr += page_length;
754 out_unpin_pages:
755 for (i = 0; i < pinned_pages; i++)
756 page_cache_release(user_pages[i]);
757 drm_free_large(user_pages);
759 return ret;
763 * This is the fast shmem pwrite path, which attempts to directly
764 * copy_from_user into the kmapped pages backing the object.
766 static int
767 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
768 struct drm_i915_gem_object *obj,
769 struct drm_i915_gem_pwrite *args,
770 struct drm_file *file)
772 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
773 ssize_t remain;
774 loff_t offset;
775 char __user *user_data;
776 int page_offset, page_length;
778 user_data = (char __user *) (uintptr_t) args->data_ptr;
779 remain = args->size;
781 offset = args->offset;
782 obj->dirty = 1;
784 while (remain > 0) {
785 struct page *page;
786 char *vaddr;
787 int ret;
789 /* Operation in this page
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
794 page_offset = offset_in_page(offset);
795 page_length = remain;
796 if ((page_offset + remain) > PAGE_SIZE)
797 page_length = PAGE_SIZE - page_offset;
799 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
800 if (IS_ERR(page))
801 return PTR_ERR(page);
803 vaddr = kmap_atomic(page, KM_USER0);
804 ret = __copy_from_user_inatomic(vaddr + page_offset,
805 user_data,
806 page_length);
807 kunmap_atomic(vaddr, KM_USER0);
809 set_page_dirty(page);
810 mark_page_accessed(page);
811 page_cache_release(page);
813 /* If we get a fault while copying data, then (presumably) our
814 * source page isn't available. Return the error and we'll
815 * retry in the slow path.
817 if (ret)
818 return -EFAULT;
820 remain -= page_length;
821 user_data += page_length;
822 offset += page_length;
825 return 0;
829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
830 * the memory and maps it using kmap_atomic for copying.
832 * This avoids taking mmap_sem for faulting on the user's address while the
833 * struct_mutex is held.
835 static int
836 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
837 struct drm_i915_gem_object *obj,
838 struct drm_i915_gem_pwrite *args,
839 struct drm_file *file)
841 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
842 struct mm_struct *mm = current->mm;
843 struct page **user_pages;
844 ssize_t remain;
845 loff_t offset, pinned_pages, i;
846 loff_t first_data_page, last_data_page, num_pages;
847 int shmem_page_offset;
848 int data_page_index, data_page_offset;
849 int page_length;
850 int ret;
851 uint64_t data_ptr = args->data_ptr;
852 int do_bit17_swizzling;
854 remain = args->size;
856 /* Pin the user pages containing the data. We can't fault while
857 * holding the struct mutex, and all of the pwrite implementations
858 * want to hold it while dereferencing the user data.
860 first_data_page = data_ptr / PAGE_SIZE;
861 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
862 num_pages = last_data_page - first_data_page + 1;
864 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
865 if (user_pages == NULL)
866 return -ENOMEM;
868 mutex_unlock(&dev->struct_mutex);
869 down_read(&mm->mmap_sem);
870 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
871 num_pages, 0, 0, user_pages, NULL);
872 up_read(&mm->mmap_sem);
873 mutex_lock(&dev->struct_mutex);
874 if (pinned_pages < num_pages) {
875 ret = -EFAULT;
876 goto out;
879 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
880 if (ret)
881 goto out;
883 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
885 offset = args->offset;
886 obj->dirty = 1;
888 while (remain > 0) {
889 struct page *page;
891 /* Operation in this page
893 * shmem_page_offset = offset within page in shmem file
894 * data_page_index = page number in get_user_pages return
895 * data_page_offset = offset with data_page_index page.
896 * page_length = bytes to copy for this page
898 shmem_page_offset = offset_in_page(offset);
899 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
900 data_page_offset = offset_in_page(data_ptr);
902 page_length = remain;
903 if ((shmem_page_offset + page_length) > PAGE_SIZE)
904 page_length = PAGE_SIZE - shmem_page_offset;
905 if ((data_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - data_page_offset;
908 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
909 if (IS_ERR(page)) {
910 ret = PTR_ERR(page);
911 goto out;
914 if (do_bit17_swizzling) {
915 slow_shmem_bit17_copy(page,
916 shmem_page_offset,
917 user_pages[data_page_index],
918 data_page_offset,
919 page_length,
921 } else {
922 slow_shmem_copy(page,
923 shmem_page_offset,
924 user_pages[data_page_index],
925 data_page_offset,
926 page_length);
929 set_page_dirty(page);
930 mark_page_accessed(page);
931 page_cache_release(page);
933 remain -= page_length;
934 data_ptr += page_length;
935 offset += page_length;
938 out:
939 for (i = 0; i < pinned_pages; i++)
940 page_cache_release(user_pages[i]);
941 drm_free_large(user_pages);
943 return ret;
947 * Writes data to the object referenced by handle.
949 * On error, the contents of the buffer that were to be modified are undefined.
952 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
953 struct drm_file *file)
955 struct drm_i915_gem_pwrite *args = data;
956 struct drm_i915_gem_object *obj;
957 int ret;
959 if (args->size == 0)
960 return 0;
962 if (!access_ok(VERIFY_READ,
963 (char __user *)(uintptr_t)args->data_ptr,
964 args->size))
965 return -EFAULT;
967 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
968 args->size);
969 if (ret)
970 return -EFAULT;
972 ret = i915_mutex_lock_interruptible(dev);
973 if (ret)
974 return ret;
976 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
977 if (&obj->base == NULL) {
978 ret = -ENOENT;
979 goto unlock;
982 /* Bounds check destination. */
983 if (args->offset > obj->base.size ||
984 args->size > obj->base.size - args->offset) {
985 ret = -EINVAL;
986 goto out;
989 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
991 /* We can only do the GTT pwrite on untiled buffers, as otherwise
992 * it would end up going through the fenced access, and we'll get
993 * different detiling behavior between reading and writing.
994 * pread/pwrite currently are reading and writing from the CPU
995 * perspective, requiring manual detiling by the client.
997 if (obj->phys_obj)
998 ret = i915_gem_phys_pwrite(dev, obj, args, file);
999 else if (obj->gtt_space &&
1000 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001 ret = i915_gem_object_pin(obj, 0, true);
1002 if (ret)
1003 goto out;
1005 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1006 if (ret)
1007 goto out_unpin;
1009 ret = i915_gem_object_put_fence(obj);
1010 if (ret)
1011 goto out_unpin;
1013 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1014 if (ret == -EFAULT)
1015 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1017 out_unpin:
1018 i915_gem_object_unpin(obj);
1019 } else {
1020 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1021 if (ret)
1022 goto out;
1024 ret = -EFAULT;
1025 if (!i915_gem_object_needs_bit17_swizzle(obj))
1026 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1027 if (ret == -EFAULT)
1028 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1031 out:
1032 drm_gem_object_unreference(&obj->base);
1033 unlock:
1034 mutex_unlock(&dev->struct_mutex);
1035 return ret;
1039 * Called when user space prepares to use an object with the CPU, either
1040 * through the mmap ioctl's mapping or a GTT mapping.
1043 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044 struct drm_file *file)
1046 struct drm_i915_gem_set_domain *args = data;
1047 struct drm_i915_gem_object *obj;
1048 uint32_t read_domains = args->read_domains;
1049 uint32_t write_domain = args->write_domain;
1050 int ret;
1052 if (!(dev->driver->driver_features & DRIVER_GEM))
1053 return -ENODEV;
1055 /* Only handle setting domains to types used by the CPU. */
1056 if (write_domain & I915_GEM_GPU_DOMAINS)
1057 return -EINVAL;
1059 if (read_domains & I915_GEM_GPU_DOMAINS)
1060 return -EINVAL;
1062 /* Having something in the write domain implies it's in the read
1063 * domain, and only that read domain. Enforce that in the request.
1065 if (write_domain != 0 && read_domains != write_domain)
1066 return -EINVAL;
1068 ret = i915_mutex_lock_interruptible(dev);
1069 if (ret)
1070 return ret;
1072 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073 if (&obj->base == NULL) {
1074 ret = -ENOENT;
1075 goto unlock;
1078 if (read_domains & I915_GEM_DOMAIN_GTT) {
1079 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1081 /* Silently promote "you're not bound, there was nothing to do"
1082 * to success, since the client was just asking us to
1083 * make sure everything was done.
1085 if (ret == -EINVAL)
1086 ret = 0;
1087 } else {
1088 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1091 drm_gem_object_unreference(&obj->base);
1092 unlock:
1093 mutex_unlock(&dev->struct_mutex);
1094 return ret;
1098 * Called when user space has done writes to this buffer
1101 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102 struct drm_file *file)
1104 struct drm_i915_gem_sw_finish *args = data;
1105 struct drm_i915_gem_object *obj;
1106 int ret = 0;
1108 if (!(dev->driver->driver_features & DRIVER_GEM))
1109 return -ENODEV;
1111 ret = i915_mutex_lock_interruptible(dev);
1112 if (ret)
1113 return ret;
1115 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116 if (&obj->base == NULL) {
1117 ret = -ENOENT;
1118 goto unlock;
1121 /* Pinned buffers may be scanout, so flush the cache */
1122 if (obj->pin_count)
1123 i915_gem_object_flush_cpu_write_domain(obj);
1125 drm_gem_object_unreference(&obj->base);
1126 unlock:
1127 mutex_unlock(&dev->struct_mutex);
1128 return ret;
1132 * Maps the contents of an object, returning the address it is mapped
1133 * into.
1135 * While the mapping holds a reference on the contents of the object, it doesn't
1136 * imply a ref on the object itself.
1139 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140 struct drm_file *file)
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 struct drm_i915_gem_mmap *args = data;
1144 struct drm_gem_object *obj;
1145 unsigned long addr;
1147 if (!(dev->driver->driver_features & DRIVER_GEM))
1148 return -ENODEV;
1150 obj = drm_gem_object_lookup(dev, file, args->handle);
1151 if (obj == NULL)
1152 return -ENOENT;
1154 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1155 drm_gem_object_unreference_unlocked(obj);
1156 return -E2BIG;
1159 down_write(&current->mm->mmap_sem);
1160 addr = do_mmap(obj->filp, 0, args->size,
1161 PROT_READ | PROT_WRITE, MAP_SHARED,
1162 args->offset);
1163 up_write(&current->mm->mmap_sem);
1164 drm_gem_object_unreference_unlocked(obj);
1165 if (IS_ERR((void *)addr))
1166 return addr;
1168 args->addr_ptr = (uint64_t) addr;
1170 return 0;
1174 * i915_gem_fault - fault a page into the GTT
1175 * vma: VMA in question
1176 * vmf: fault info
1178 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1179 * from userspace. The fault handler takes care of binding the object to
1180 * the GTT (if needed), allocating and programming a fence register (again,
1181 * only if needed based on whether the old reg is still valid or the object
1182 * is tiled) and inserting a new PTE into the faulting process.
1184 * Note that the faulting process may involve evicting existing objects
1185 * from the GTT and/or fence registers to make room. So performance may
1186 * suffer if the GTT working set is large or there are few fence registers
1187 * left.
1189 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1191 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1192 struct drm_device *dev = obj->base.dev;
1193 drm_i915_private_t *dev_priv = dev->dev_private;
1194 pgoff_t page_offset;
1195 unsigned long pfn;
1196 int ret = 0;
1197 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1199 /* We don't use vmf->pgoff since that has the fake offset */
1200 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1201 PAGE_SHIFT;
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 goto out;
1207 trace_i915_gem_object_fault(obj, page_offset, true, write);
1209 /* Now bind it into the GTT if needed */
1210 if (!obj->map_and_fenceable) {
1211 ret = i915_gem_object_unbind(obj);
1212 if (ret)
1213 goto unlock;
1215 if (!obj->gtt_space) {
1216 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217 if (ret)
1218 goto unlock;
1220 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1221 if (ret)
1222 goto unlock;
1225 if (obj->tiling_mode == I915_TILING_NONE)
1226 ret = i915_gem_object_put_fence(obj);
1227 else
1228 ret = i915_gem_object_get_fence(obj, NULL);
1229 if (ret)
1230 goto unlock;
1232 if (i915_gem_object_is_inactive(obj))
1233 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1235 obj->fault_mappable = true;
1237 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238 page_offset;
1240 /* Finally, remap it using the new GTT offset */
1241 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1242 unlock:
1243 mutex_unlock(&dev->struct_mutex);
1244 out:
1245 switch (ret) {
1246 case -EIO:
1247 case -EAGAIN:
1248 /* Give the error handler a chance to run and move the
1249 * objects off the GPU active list. Next time we service the
1250 * fault, we should be able to transition the page into the
1251 * GTT without touching the GPU (and so avoid further
1252 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1253 * with coherency, just lost writes.
1255 set_need_resched();
1256 case 0:
1257 case -ERESTARTSYS:
1258 case -EINTR:
1259 return VM_FAULT_NOPAGE;
1260 case -ENOMEM:
1261 return VM_FAULT_OOM;
1262 default:
1263 return VM_FAULT_SIGBUS;
1268 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1269 * @obj: obj in question
1271 * GEM memory mapping works by handing back to userspace a fake mmap offset
1272 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1273 * up the object based on the offset and sets up the various memory mapping
1274 * structures.
1276 * This routine allocates and attaches a fake offset for @obj.
1278 static int
1279 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1281 struct drm_device *dev = obj->base.dev;
1282 struct drm_gem_mm *mm = dev->mm_private;
1283 struct drm_map_list *list;
1284 struct drm_local_map *map;
1285 int ret = 0;
1287 /* Set the object up for mmap'ing */
1288 list = &obj->base.map_list;
1289 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1290 if (!list->map)
1291 return -ENOMEM;
1293 map = list->map;
1294 map->type = _DRM_GEM;
1295 map->size = obj->base.size;
1296 map->handle = obj;
1298 /* Get a DRM GEM mmap offset allocated... */
1299 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1300 obj->base.size / PAGE_SIZE,
1301 0, 0);
1302 if (!list->file_offset_node) {
1303 DRM_ERROR("failed to allocate offset for bo %d\n",
1304 obj->base.name);
1305 ret = -ENOSPC;
1306 goto out_free_list;
1309 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1310 obj->base.size / PAGE_SIZE,
1312 if (!list->file_offset_node) {
1313 ret = -ENOMEM;
1314 goto out_free_list;
1317 list->hash.key = list->file_offset_node->start;
1318 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1319 if (ret) {
1320 DRM_ERROR("failed to add to map hash\n");
1321 goto out_free_mm;
1324 return 0;
1326 out_free_mm:
1327 drm_mm_put_block(list->file_offset_node);
1328 out_free_list:
1329 kfree(list->map);
1330 list->map = NULL;
1332 return ret;
1336 * i915_gem_release_mmap - remove physical page mappings
1337 * @obj: obj in question
1339 * Preserve the reservation of the mmapping with the DRM core code, but
1340 * relinquish ownership of the pages back to the system.
1342 * It is vital that we remove the page mapping if we have mapped a tiled
1343 * object through the GTT and then lose the fence register due to
1344 * resource pressure. Similarly if the object has been moved out of the
1345 * aperture, than pages mapped into userspace must be revoked. Removing the
1346 * mapping will then trigger a page fault on the next user access, allowing
1347 * fixup by i915_gem_fault().
1349 void
1350 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1352 if (!obj->fault_mappable)
1353 return;
1355 if (obj->base.dev->dev_mapping)
1356 unmap_mapping_range(obj->base.dev->dev_mapping,
1357 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1358 obj->base.size, 1);
1360 obj->fault_mappable = false;
1363 static void
1364 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1366 struct drm_device *dev = obj->base.dev;
1367 struct drm_gem_mm *mm = dev->mm_private;
1368 struct drm_map_list *list = &obj->base.map_list;
1370 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1371 drm_mm_put_block(list->file_offset_node);
1372 kfree(list->map);
1373 list->map = NULL;
1376 static uint32_t
1377 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1379 uint32_t gtt_size;
1381 if (INTEL_INFO(dev)->gen >= 4 ||
1382 tiling_mode == I915_TILING_NONE)
1383 return size;
1385 /* Previous chips need a power-of-two fence region when tiling */
1386 if (INTEL_INFO(dev)->gen == 3)
1387 gtt_size = 1024*1024;
1388 else
1389 gtt_size = 512*1024;
1391 while (gtt_size < size)
1392 gtt_size <<= 1;
1394 return gtt_size;
1398 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1399 * @obj: object to check
1401 * Return the required GTT alignment for an object, taking into account
1402 * potential fence register mapping.
1404 static uint32_t
1405 i915_gem_get_gtt_alignment(struct drm_device *dev,
1406 uint32_t size,
1407 int tiling_mode)
1410 * Minimum alignment is 4k (GTT page size), but might be greater
1411 * if a fence register is needed for the object.
1413 if (INTEL_INFO(dev)->gen >= 4 ||
1414 tiling_mode == I915_TILING_NONE)
1415 return 4096;
1418 * Previous chips need to be aligned to the size of the smallest
1419 * fence register that can contain the object.
1421 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1425 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1426 * unfenced object
1427 * @dev: the device
1428 * @size: size of the object
1429 * @tiling_mode: tiling mode of the object
1431 * Return the required GTT alignment for an object, only taking into account
1432 * unfenced tiled surface requirements.
1434 uint32_t
1435 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1436 uint32_t size,
1437 int tiling_mode)
1440 * Minimum alignment is 4k (GTT page size) for sane hw.
1442 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1443 tiling_mode == I915_TILING_NONE)
1444 return 4096;
1446 /* Previous hardware however needs to be aligned to a power-of-two
1447 * tile height. The simplest method for determining this is to reuse
1448 * the power-of-tile object size.
1450 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1454 i915_gem_mmap_gtt(struct drm_file *file,
1455 struct drm_device *dev,
1456 uint32_t handle,
1457 uint64_t *offset)
1459 struct drm_i915_private *dev_priv = dev->dev_private;
1460 struct drm_i915_gem_object *obj;
1461 int ret;
1463 if (!(dev->driver->driver_features & DRIVER_GEM))
1464 return -ENODEV;
1466 ret = i915_mutex_lock_interruptible(dev);
1467 if (ret)
1468 return ret;
1470 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1471 if (&obj->base == NULL) {
1472 ret = -ENOENT;
1473 goto unlock;
1476 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1477 ret = -E2BIG;
1478 goto unlock;
1481 if (obj->madv != I915_MADV_WILLNEED) {
1482 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1483 ret = -EINVAL;
1484 goto out;
1487 if (!obj->base.map_list.map) {
1488 ret = i915_gem_create_mmap_offset(obj);
1489 if (ret)
1490 goto out;
1493 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1495 out:
1496 drm_gem_object_unreference(&obj->base);
1497 unlock:
1498 mutex_unlock(&dev->struct_mutex);
1499 return ret;
1503 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1504 * @dev: DRM device
1505 * @data: GTT mapping ioctl data
1506 * @file: GEM object info
1508 * Simply returns the fake offset to userspace so it can mmap it.
1509 * The mmap call will end up in drm_gem_mmap(), which will set things
1510 * up so we can get faults in the handler above.
1512 * The fault handler will take care of binding the object into the GTT
1513 * (since it may have been evicted to make room for something), allocating
1514 * a fence register, and mapping the appropriate aperture address into
1515 * userspace.
1518 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1519 struct drm_file *file)
1521 struct drm_i915_gem_mmap_gtt *args = data;
1523 if (!(dev->driver->driver_features & DRIVER_GEM))
1524 return -ENODEV;
1526 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1530 static int
1531 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1532 gfp_t gfpmask)
1534 int page_count, i;
1535 struct address_space *mapping;
1536 struct inode *inode;
1537 struct page *page;
1539 /* Get the list of pages out of our struct file. They'll be pinned
1540 * at this point until we release them.
1542 page_count = obj->base.size / PAGE_SIZE;
1543 BUG_ON(obj->pages != NULL);
1544 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1545 if (obj->pages == NULL)
1546 return -ENOMEM;
1548 inode = obj->base.filp->f_path.dentry->d_inode;
1549 mapping = inode->i_mapping;
1550 gfpmask |= mapping_gfp_mask(mapping);
1552 for (i = 0; i < page_count; i++) {
1553 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1554 if (IS_ERR(page))
1555 goto err_pages;
1557 obj->pages[i] = page;
1560 if (obj->tiling_mode != I915_TILING_NONE)
1561 i915_gem_object_do_bit_17_swizzle(obj);
1563 return 0;
1565 err_pages:
1566 while (i--)
1567 page_cache_release(obj->pages[i]);
1569 drm_free_large(obj->pages);
1570 obj->pages = NULL;
1571 return PTR_ERR(page);
1574 static void
1575 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1577 int page_count = obj->base.size / PAGE_SIZE;
1578 int i;
1580 BUG_ON(obj->madv == __I915_MADV_PURGED);
1582 if (obj->tiling_mode != I915_TILING_NONE)
1583 i915_gem_object_save_bit_17_swizzle(obj);
1585 if (obj->madv == I915_MADV_DONTNEED)
1586 obj->dirty = 0;
1588 for (i = 0; i < page_count; i++) {
1589 if (obj->dirty)
1590 set_page_dirty(obj->pages[i]);
1592 if (obj->madv == I915_MADV_WILLNEED)
1593 mark_page_accessed(obj->pages[i]);
1595 page_cache_release(obj->pages[i]);
1597 obj->dirty = 0;
1599 drm_free_large(obj->pages);
1600 obj->pages = NULL;
1603 void
1604 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1605 struct intel_ring_buffer *ring,
1606 u32 seqno)
1608 struct drm_device *dev = obj->base.dev;
1609 struct drm_i915_private *dev_priv = dev->dev_private;
1611 BUG_ON(ring == NULL);
1612 obj->ring = ring;
1614 /* Add a reference if we're newly entering the active list. */
1615 if (!obj->active) {
1616 drm_gem_object_reference(&obj->base);
1617 obj->active = 1;
1620 /* Move from whatever list we were on to the tail of execution. */
1621 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1622 list_move_tail(&obj->ring_list, &ring->active_list);
1624 obj->last_rendering_seqno = seqno;
1625 if (obj->fenced_gpu_access) {
1626 struct drm_i915_fence_reg *reg;
1628 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1630 obj->last_fenced_seqno = seqno;
1631 obj->last_fenced_ring = ring;
1633 reg = &dev_priv->fence_regs[obj->fence_reg];
1634 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1638 static void
1639 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1641 list_del_init(&obj->ring_list);
1642 obj->last_rendering_seqno = 0;
1645 static void
1646 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1648 struct drm_device *dev = obj->base.dev;
1649 drm_i915_private_t *dev_priv = dev->dev_private;
1651 BUG_ON(!obj->active);
1652 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1654 i915_gem_object_move_off_active(obj);
1657 static void
1658 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1660 struct drm_device *dev = obj->base.dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1663 if (obj->pin_count != 0)
1664 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1665 else
1666 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1668 BUG_ON(!list_empty(&obj->gpu_write_list));
1669 BUG_ON(!obj->active);
1670 obj->ring = NULL;
1672 i915_gem_object_move_off_active(obj);
1673 obj->fenced_gpu_access = false;
1675 obj->active = 0;
1676 obj->pending_gpu_write = false;
1677 drm_gem_object_unreference(&obj->base);
1679 WARN_ON(i915_verify_lists(dev));
1682 /* Immediately discard the backing storage */
1683 static void
1684 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1686 struct inode *inode;
1688 /* Our goal here is to return as much of the memory as
1689 * is possible back to the system as we are called from OOM.
1690 * To do this we must instruct the shmfs to drop all of its
1691 * backing pages, *now*.
1693 inode = obj->base.filp->f_path.dentry->d_inode;
1694 shmem_truncate_range(inode, 0, (loff_t)-1);
1696 obj->madv = __I915_MADV_PURGED;
1699 static inline int
1700 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1702 return obj->madv == I915_MADV_DONTNEED;
1705 static void
1706 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1707 uint32_t flush_domains)
1709 struct drm_i915_gem_object *obj, *next;
1711 list_for_each_entry_safe(obj, next,
1712 &ring->gpu_write_list,
1713 gpu_write_list) {
1714 if (obj->base.write_domain & flush_domains) {
1715 uint32_t old_write_domain = obj->base.write_domain;
1717 obj->base.write_domain = 0;
1718 list_del_init(&obj->gpu_write_list);
1719 i915_gem_object_move_to_active(obj, ring,
1720 i915_gem_next_request_seqno(ring));
1722 trace_i915_gem_object_change_domain(obj,
1723 obj->base.read_domains,
1724 old_write_domain);
1730 i915_add_request(struct intel_ring_buffer *ring,
1731 struct drm_file *file,
1732 struct drm_i915_gem_request *request)
1734 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1735 uint32_t seqno;
1736 int was_empty;
1737 int ret;
1739 BUG_ON(request == NULL);
1741 ret = ring->add_request(ring, &seqno);
1742 if (ret)
1743 return ret;
1745 trace_i915_gem_request_add(ring, seqno);
1747 request->seqno = seqno;
1748 request->ring = ring;
1749 request->emitted_jiffies = jiffies;
1750 was_empty = list_empty(&ring->request_list);
1751 list_add_tail(&request->list, &ring->request_list);
1753 if (file) {
1754 struct drm_i915_file_private *file_priv = file->driver_priv;
1756 spin_lock(&file_priv->mm.lock);
1757 request->file_priv = file_priv;
1758 list_add_tail(&request->client_list,
1759 &file_priv->mm.request_list);
1760 spin_unlock(&file_priv->mm.lock);
1763 ring->outstanding_lazy_request = false;
1765 if (!dev_priv->mm.suspended) {
1766 if (i915_enable_hangcheck) {
1767 mod_timer(&dev_priv->hangcheck_timer,
1768 jiffies +
1769 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1771 if (was_empty)
1772 queue_delayed_work(dev_priv->wq,
1773 &dev_priv->mm.retire_work, HZ);
1775 return 0;
1778 static inline void
1779 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1781 struct drm_i915_file_private *file_priv = request->file_priv;
1783 if (!file_priv)
1784 return;
1786 spin_lock(&file_priv->mm.lock);
1787 if (request->file_priv) {
1788 list_del(&request->client_list);
1789 request->file_priv = NULL;
1791 spin_unlock(&file_priv->mm.lock);
1794 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1795 struct intel_ring_buffer *ring)
1797 while (!list_empty(&ring->request_list)) {
1798 struct drm_i915_gem_request *request;
1800 request = list_first_entry(&ring->request_list,
1801 struct drm_i915_gem_request,
1802 list);
1804 list_del(&request->list);
1805 i915_gem_request_remove_from_client(request);
1806 kfree(request);
1809 while (!list_empty(&ring->active_list)) {
1810 struct drm_i915_gem_object *obj;
1812 obj = list_first_entry(&ring->active_list,
1813 struct drm_i915_gem_object,
1814 ring_list);
1816 obj->base.write_domain = 0;
1817 list_del_init(&obj->gpu_write_list);
1818 i915_gem_object_move_to_inactive(obj);
1822 static void i915_gem_reset_fences(struct drm_device *dev)
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 int i;
1827 for (i = 0; i < 16; i++) {
1828 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1829 struct drm_i915_gem_object *obj = reg->obj;
1831 if (!obj)
1832 continue;
1834 if (obj->tiling_mode)
1835 i915_gem_release_mmap(obj);
1837 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1838 reg->obj->fenced_gpu_access = false;
1839 reg->obj->last_fenced_seqno = 0;
1840 reg->obj->last_fenced_ring = NULL;
1841 i915_gem_clear_fence_reg(dev, reg);
1845 void i915_gem_reset(struct drm_device *dev)
1847 struct drm_i915_private *dev_priv = dev->dev_private;
1848 struct drm_i915_gem_object *obj;
1849 int i;
1851 for (i = 0; i < I915_NUM_RINGS; i++)
1852 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1854 /* Remove anything from the flushing lists. The GPU cache is likely
1855 * to be lost on reset along with the data, so simply move the
1856 * lost bo to the inactive list.
1858 while (!list_empty(&dev_priv->mm.flushing_list)) {
1859 obj= list_first_entry(&dev_priv->mm.flushing_list,
1860 struct drm_i915_gem_object,
1861 mm_list);
1863 obj->base.write_domain = 0;
1864 list_del_init(&obj->gpu_write_list);
1865 i915_gem_object_move_to_inactive(obj);
1868 /* Move everything out of the GPU domains to ensure we do any
1869 * necessary invalidation upon reuse.
1871 list_for_each_entry(obj,
1872 &dev_priv->mm.inactive_list,
1873 mm_list)
1875 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1878 /* The fence registers are invalidated so clear them out */
1879 i915_gem_reset_fences(dev);
1883 * This function clears the request list as sequence numbers are passed.
1885 static void
1886 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1888 uint32_t seqno;
1889 int i;
1891 if (list_empty(&ring->request_list))
1892 return;
1894 WARN_ON(i915_verify_lists(ring->dev));
1896 seqno = ring->get_seqno(ring);
1898 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1899 if (seqno >= ring->sync_seqno[i])
1900 ring->sync_seqno[i] = 0;
1902 while (!list_empty(&ring->request_list)) {
1903 struct drm_i915_gem_request *request;
1905 request = list_first_entry(&ring->request_list,
1906 struct drm_i915_gem_request,
1907 list);
1909 if (!i915_seqno_passed(seqno, request->seqno))
1910 break;
1912 trace_i915_gem_request_retire(ring, request->seqno);
1914 list_del(&request->list);
1915 i915_gem_request_remove_from_client(request);
1916 kfree(request);
1919 /* Move any buffers on the active list that are no longer referenced
1920 * by the ringbuffer to the flushing/inactive lists as appropriate.
1922 while (!list_empty(&ring->active_list)) {
1923 struct drm_i915_gem_object *obj;
1925 obj= list_first_entry(&ring->active_list,
1926 struct drm_i915_gem_object,
1927 ring_list);
1929 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1930 break;
1932 if (obj->base.write_domain != 0)
1933 i915_gem_object_move_to_flushing(obj);
1934 else
1935 i915_gem_object_move_to_inactive(obj);
1938 if (unlikely(ring->trace_irq_seqno &&
1939 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1940 ring->irq_put(ring);
1941 ring->trace_irq_seqno = 0;
1944 WARN_ON(i915_verify_lists(ring->dev));
1947 void
1948 i915_gem_retire_requests(struct drm_device *dev)
1950 drm_i915_private_t *dev_priv = dev->dev_private;
1951 int i;
1953 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1954 struct drm_i915_gem_object *obj, *next;
1956 /* We must be careful that during unbind() we do not
1957 * accidentally infinitely recurse into retire requests.
1958 * Currently:
1959 * retire -> free -> unbind -> wait -> retire_ring
1961 list_for_each_entry_safe(obj, next,
1962 &dev_priv->mm.deferred_free_list,
1963 mm_list)
1964 i915_gem_free_object_tail(obj);
1967 for (i = 0; i < I915_NUM_RINGS; i++)
1968 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1971 static void
1972 i915_gem_retire_work_handler(struct work_struct *work)
1974 drm_i915_private_t *dev_priv;
1975 struct drm_device *dev;
1976 bool idle;
1977 int i;
1979 dev_priv = container_of(work, drm_i915_private_t,
1980 mm.retire_work.work);
1981 dev = dev_priv->dev;
1983 /* Come back later if the device is busy... */
1984 if (!mutex_trylock(&dev->struct_mutex)) {
1985 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1986 return;
1989 i915_gem_retire_requests(dev);
1991 /* Send a periodic flush down the ring so we don't hold onto GEM
1992 * objects indefinitely.
1994 idle = true;
1995 for (i = 0; i < I915_NUM_RINGS; i++) {
1996 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1998 if (!list_empty(&ring->gpu_write_list)) {
1999 struct drm_i915_gem_request *request;
2000 int ret;
2002 ret = i915_gem_flush_ring(ring,
2003 0, I915_GEM_GPU_DOMAINS);
2004 request = kzalloc(sizeof(*request), GFP_KERNEL);
2005 if (ret || request == NULL ||
2006 i915_add_request(ring, NULL, request))
2007 kfree(request);
2010 idle &= list_empty(&ring->request_list);
2013 if (!dev_priv->mm.suspended && !idle)
2014 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2016 mutex_unlock(&dev->struct_mutex);
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
2024 i915_wait_request(struct intel_ring_buffer *ring,
2025 uint32_t seqno)
2027 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2028 u32 ier;
2029 int ret = 0;
2031 BUG_ON(seqno == 0);
2033 if (atomic_read(&dev_priv->mm.wedged)) {
2034 struct completion *x = &dev_priv->error_completion;
2035 bool recovery_complete;
2036 unsigned long flags;
2038 /* Give the error handler a chance to run. */
2039 spin_lock_irqsave(&x->wait.lock, flags);
2040 recovery_complete = x->done > 0;
2041 spin_unlock_irqrestore(&x->wait.lock, flags);
2043 return recovery_complete ? -EIO : -EAGAIN;
2046 if (seqno == ring->outstanding_lazy_request) {
2047 struct drm_i915_gem_request *request;
2049 request = kzalloc(sizeof(*request), GFP_KERNEL);
2050 if (request == NULL)
2051 return -ENOMEM;
2053 ret = i915_add_request(ring, NULL, request);
2054 if (ret) {
2055 kfree(request);
2056 return ret;
2059 seqno = request->seqno;
2062 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2063 if (HAS_PCH_SPLIT(ring->dev))
2064 ier = I915_READ(DEIER) | I915_READ(GTIER);
2065 else
2066 ier = I915_READ(IER);
2067 if (!ier) {
2068 DRM_ERROR("something (likely vbetool) disabled "
2069 "interrupts, re-enabling\n");
2070 ring->dev->driver->irq_preinstall(ring->dev);
2071 ring->dev->driver->irq_postinstall(ring->dev);
2074 trace_i915_gem_request_wait_begin(ring, seqno);
2076 ring->waiting_seqno = seqno;
2077 if (ring->irq_get(ring)) {
2078 if (dev_priv->mm.interruptible)
2079 ret = wait_event_interruptible(ring->irq_queue,
2080 i915_seqno_passed(ring->get_seqno(ring), seqno)
2081 || atomic_read(&dev_priv->mm.wedged));
2082 else
2083 wait_event(ring->irq_queue,
2084 i915_seqno_passed(ring->get_seqno(ring), seqno)
2085 || atomic_read(&dev_priv->mm.wedged));
2087 ring->irq_put(ring);
2088 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2089 seqno) ||
2090 atomic_read(&dev_priv->mm.wedged), 3000))
2091 ret = -EBUSY;
2092 ring->waiting_seqno = 0;
2094 trace_i915_gem_request_wait_end(ring, seqno);
2096 if (atomic_read(&dev_priv->mm.wedged))
2097 ret = -EAGAIN;
2099 if (ret && ret != -ERESTARTSYS)
2100 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2101 __func__, ret, seqno, ring->get_seqno(ring),
2102 dev_priv->next_seqno);
2104 /* Directly dispatch request retiring. While we have the work queue
2105 * to handle this, the waiter on a request often wants an associated
2106 * buffer to have made it to the inactive list, and we would need
2107 * a separate wait queue to handle that.
2109 if (ret == 0)
2110 i915_gem_retire_requests_ring(ring);
2112 return ret;
2116 * Ensures that all rendering to the object has completed and the object is
2117 * safe to unbind from the GTT or access from the CPU.
2120 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2122 int ret;
2124 /* This function only exists to support waiting for existing rendering,
2125 * not for emitting required flushes.
2127 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2129 /* If there is rendering queued on the buffer being evicted, wait for
2130 * it.
2132 if (obj->active) {
2133 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2134 if (ret)
2135 return ret;
2138 return 0;
2141 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2143 u32 old_write_domain, old_read_domains;
2145 /* Act a barrier for all accesses through the GTT */
2146 mb();
2148 /* Force a pagefault for domain tracking on next user access */
2149 i915_gem_release_mmap(obj);
2151 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2152 return;
2154 old_read_domains = obj->base.read_domains;
2155 old_write_domain = obj->base.write_domain;
2157 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2158 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2160 trace_i915_gem_object_change_domain(obj,
2161 old_read_domains,
2162 old_write_domain);
2166 * Unbinds an object from the GTT aperture.
2169 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2171 int ret = 0;
2173 if (obj->gtt_space == NULL)
2174 return 0;
2176 if (obj->pin_count != 0) {
2177 DRM_ERROR("Attempting to unbind pinned buffer\n");
2178 return -EINVAL;
2181 ret = i915_gem_object_finish_gpu(obj);
2182 if (ret == -ERESTARTSYS)
2183 return ret;
2184 /* Continue on if we fail due to EIO, the GPU is hung so we
2185 * should be safe and we need to cleanup or else we might
2186 * cause memory corruption through use-after-free.
2189 i915_gem_object_finish_gtt(obj);
2191 /* Move the object to the CPU domain to ensure that
2192 * any possible CPU writes while it's not in the GTT
2193 * are flushed when we go to remap it.
2195 if (ret == 0)
2196 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2197 if (ret == -ERESTARTSYS)
2198 return ret;
2199 if (ret) {
2200 /* In the event of a disaster, abandon all caches and
2201 * hope for the best.
2203 i915_gem_clflush_object(obj);
2204 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2207 /* release the fence reg _after_ flushing */
2208 ret = i915_gem_object_put_fence(obj);
2209 if (ret == -ERESTARTSYS)
2210 return ret;
2212 trace_i915_gem_object_unbind(obj);
2214 i915_gem_gtt_unbind_object(obj);
2215 i915_gem_object_put_pages_gtt(obj);
2217 list_del_init(&obj->gtt_list);
2218 list_del_init(&obj->mm_list);
2219 /* Avoid an unnecessary call to unbind on rebind. */
2220 obj->map_and_fenceable = true;
2222 drm_mm_put_block(obj->gtt_space);
2223 obj->gtt_space = NULL;
2224 obj->gtt_offset = 0;
2226 if (i915_gem_object_is_purgeable(obj))
2227 i915_gem_object_truncate(obj);
2229 return ret;
2233 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2234 uint32_t invalidate_domains,
2235 uint32_t flush_domains)
2237 int ret;
2239 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2240 return 0;
2242 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2244 ret = ring->flush(ring, invalidate_domains, flush_domains);
2245 if (ret)
2246 return ret;
2248 if (flush_domains & I915_GEM_GPU_DOMAINS)
2249 i915_gem_process_flushing_list(ring, flush_domains);
2251 return 0;
2254 static int i915_ring_idle(struct intel_ring_buffer *ring)
2256 int ret;
2258 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2259 return 0;
2261 if (!list_empty(&ring->gpu_write_list)) {
2262 ret = i915_gem_flush_ring(ring,
2263 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2264 if (ret)
2265 return ret;
2268 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2272 i915_gpu_idle(struct drm_device *dev)
2274 drm_i915_private_t *dev_priv = dev->dev_private;
2275 bool lists_empty;
2276 int ret, i;
2278 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2279 list_empty(&dev_priv->mm.active_list));
2280 if (lists_empty)
2281 return 0;
2283 /* Flush everything onto the inactive list. */
2284 for (i = 0; i < I915_NUM_RINGS; i++) {
2285 ret = i915_ring_idle(&dev_priv->ring[i]);
2286 if (ret)
2287 return ret;
2290 return 0;
2293 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2294 struct intel_ring_buffer *pipelined)
2296 struct drm_device *dev = obj->base.dev;
2297 drm_i915_private_t *dev_priv = dev->dev_private;
2298 u32 size = obj->gtt_space->size;
2299 int regnum = obj->fence_reg;
2300 uint64_t val;
2302 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2303 0xfffff000) << 32;
2304 val |= obj->gtt_offset & 0xfffff000;
2305 val |= (uint64_t)((obj->stride / 128) - 1) <<
2306 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2308 if (obj->tiling_mode == I915_TILING_Y)
2309 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2310 val |= I965_FENCE_REG_VALID;
2312 if (pipelined) {
2313 int ret = intel_ring_begin(pipelined, 6);
2314 if (ret)
2315 return ret;
2317 intel_ring_emit(pipelined, MI_NOOP);
2318 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2319 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2320 intel_ring_emit(pipelined, (u32)val);
2321 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2322 intel_ring_emit(pipelined, (u32)(val >> 32));
2323 intel_ring_advance(pipelined);
2324 } else
2325 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2327 return 0;
2330 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2331 struct intel_ring_buffer *pipelined)
2333 struct drm_device *dev = obj->base.dev;
2334 drm_i915_private_t *dev_priv = dev->dev_private;
2335 u32 size = obj->gtt_space->size;
2336 int regnum = obj->fence_reg;
2337 uint64_t val;
2339 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2340 0xfffff000) << 32;
2341 val |= obj->gtt_offset & 0xfffff000;
2342 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2343 if (obj->tiling_mode == I915_TILING_Y)
2344 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2345 val |= I965_FENCE_REG_VALID;
2347 if (pipelined) {
2348 int ret = intel_ring_begin(pipelined, 6);
2349 if (ret)
2350 return ret;
2352 intel_ring_emit(pipelined, MI_NOOP);
2353 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2354 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2355 intel_ring_emit(pipelined, (u32)val);
2356 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2357 intel_ring_emit(pipelined, (u32)(val >> 32));
2358 intel_ring_advance(pipelined);
2359 } else
2360 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2362 return 0;
2365 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2366 struct intel_ring_buffer *pipelined)
2368 struct drm_device *dev = obj->base.dev;
2369 drm_i915_private_t *dev_priv = dev->dev_private;
2370 u32 size = obj->gtt_space->size;
2371 u32 fence_reg, val, pitch_val;
2372 int tile_width;
2374 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2375 (size & -size) != size ||
2376 (obj->gtt_offset & (size - 1)),
2377 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2378 obj->gtt_offset, obj->map_and_fenceable, size))
2379 return -EINVAL;
2381 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2382 tile_width = 128;
2383 else
2384 tile_width = 512;
2386 /* Note: pitch better be a power of two tile widths */
2387 pitch_val = obj->stride / tile_width;
2388 pitch_val = ffs(pitch_val) - 1;
2390 val = obj->gtt_offset;
2391 if (obj->tiling_mode == I915_TILING_Y)
2392 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2393 val |= I915_FENCE_SIZE_BITS(size);
2394 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2395 val |= I830_FENCE_REG_VALID;
2397 fence_reg = obj->fence_reg;
2398 if (fence_reg < 8)
2399 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2400 else
2401 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2403 if (pipelined) {
2404 int ret = intel_ring_begin(pipelined, 4);
2405 if (ret)
2406 return ret;
2408 intel_ring_emit(pipelined, MI_NOOP);
2409 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2410 intel_ring_emit(pipelined, fence_reg);
2411 intel_ring_emit(pipelined, val);
2412 intel_ring_advance(pipelined);
2413 } else
2414 I915_WRITE(fence_reg, val);
2416 return 0;
2419 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2420 struct intel_ring_buffer *pipelined)
2422 struct drm_device *dev = obj->base.dev;
2423 drm_i915_private_t *dev_priv = dev->dev_private;
2424 u32 size = obj->gtt_space->size;
2425 int regnum = obj->fence_reg;
2426 uint32_t val;
2427 uint32_t pitch_val;
2429 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2430 (size & -size) != size ||
2431 (obj->gtt_offset & (size - 1)),
2432 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2433 obj->gtt_offset, size))
2434 return -EINVAL;
2436 pitch_val = obj->stride / 128;
2437 pitch_val = ffs(pitch_val) - 1;
2439 val = obj->gtt_offset;
2440 if (obj->tiling_mode == I915_TILING_Y)
2441 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2442 val |= I830_FENCE_SIZE_BITS(size);
2443 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2444 val |= I830_FENCE_REG_VALID;
2446 if (pipelined) {
2447 int ret = intel_ring_begin(pipelined, 4);
2448 if (ret)
2449 return ret;
2451 intel_ring_emit(pipelined, MI_NOOP);
2452 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2453 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2454 intel_ring_emit(pipelined, val);
2455 intel_ring_advance(pipelined);
2456 } else
2457 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2459 return 0;
2462 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2464 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2467 static int
2468 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2469 struct intel_ring_buffer *pipelined)
2471 int ret;
2473 if (obj->fenced_gpu_access) {
2474 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2475 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2476 0, obj->base.write_domain);
2477 if (ret)
2478 return ret;
2481 obj->fenced_gpu_access = false;
2484 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2485 if (!ring_passed_seqno(obj->last_fenced_ring,
2486 obj->last_fenced_seqno)) {
2487 ret = i915_wait_request(obj->last_fenced_ring,
2488 obj->last_fenced_seqno);
2489 if (ret)
2490 return ret;
2493 obj->last_fenced_seqno = 0;
2494 obj->last_fenced_ring = NULL;
2497 /* Ensure that all CPU reads are completed before installing a fence
2498 * and all writes before removing the fence.
2500 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2501 mb();
2503 return 0;
2507 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2509 int ret;
2511 if (obj->tiling_mode)
2512 i915_gem_release_mmap(obj);
2514 ret = i915_gem_object_flush_fence(obj, NULL);
2515 if (ret)
2516 return ret;
2518 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2519 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2520 i915_gem_clear_fence_reg(obj->base.dev,
2521 &dev_priv->fence_regs[obj->fence_reg]);
2523 obj->fence_reg = I915_FENCE_REG_NONE;
2526 return 0;
2529 static struct drm_i915_fence_reg *
2530 i915_find_fence_reg(struct drm_device *dev,
2531 struct intel_ring_buffer *pipelined)
2533 struct drm_i915_private *dev_priv = dev->dev_private;
2534 struct drm_i915_fence_reg *reg, *first, *avail;
2535 int i;
2537 /* First try to find a free reg */
2538 avail = NULL;
2539 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2540 reg = &dev_priv->fence_regs[i];
2541 if (!reg->obj)
2542 return reg;
2544 if (!reg->obj->pin_count)
2545 avail = reg;
2548 if (avail == NULL)
2549 return NULL;
2551 /* None available, try to steal one or wait for a user to finish */
2552 avail = first = NULL;
2553 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2554 if (reg->obj->pin_count)
2555 continue;
2557 if (first == NULL)
2558 first = reg;
2560 if (!pipelined ||
2561 !reg->obj->last_fenced_ring ||
2562 reg->obj->last_fenced_ring == pipelined) {
2563 avail = reg;
2564 break;
2568 if (avail == NULL)
2569 avail = first;
2571 return avail;
2575 * i915_gem_object_get_fence - set up a fence reg for an object
2576 * @obj: object to map through a fence reg
2577 * @pipelined: ring on which to queue the change, or NULL for CPU access
2578 * @interruptible: must we wait uninterruptibly for the register to retire?
2580 * When mapping objects through the GTT, userspace wants to be able to write
2581 * to them without having to worry about swizzling if the object is tiled.
2583 * This function walks the fence regs looking for a free one for @obj,
2584 * stealing one if it can't find any.
2586 * It then sets up the reg based on the object's properties: address, pitch
2587 * and tiling format.
2590 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2591 struct intel_ring_buffer *pipelined)
2593 struct drm_device *dev = obj->base.dev;
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 struct drm_i915_fence_reg *reg;
2596 int ret;
2598 /* XXX disable pipelining. There are bugs. Shocking. */
2599 pipelined = NULL;
2601 /* Just update our place in the LRU if our fence is getting reused. */
2602 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2603 reg = &dev_priv->fence_regs[obj->fence_reg];
2604 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2606 if (obj->tiling_changed) {
2607 ret = i915_gem_object_flush_fence(obj, pipelined);
2608 if (ret)
2609 return ret;
2611 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2612 pipelined = NULL;
2614 if (pipelined) {
2615 reg->setup_seqno =
2616 i915_gem_next_request_seqno(pipelined);
2617 obj->last_fenced_seqno = reg->setup_seqno;
2618 obj->last_fenced_ring = pipelined;
2621 goto update;
2624 if (!pipelined) {
2625 if (reg->setup_seqno) {
2626 if (!ring_passed_seqno(obj->last_fenced_ring,
2627 reg->setup_seqno)) {
2628 ret = i915_wait_request(obj->last_fenced_ring,
2629 reg->setup_seqno);
2630 if (ret)
2631 return ret;
2634 reg->setup_seqno = 0;
2636 } else if (obj->last_fenced_ring &&
2637 obj->last_fenced_ring != pipelined) {
2638 ret = i915_gem_object_flush_fence(obj, pipelined);
2639 if (ret)
2640 return ret;
2643 return 0;
2646 reg = i915_find_fence_reg(dev, pipelined);
2647 if (reg == NULL)
2648 return -ENOSPC;
2650 ret = i915_gem_object_flush_fence(obj, pipelined);
2651 if (ret)
2652 return ret;
2654 if (reg->obj) {
2655 struct drm_i915_gem_object *old = reg->obj;
2657 drm_gem_object_reference(&old->base);
2659 if (old->tiling_mode)
2660 i915_gem_release_mmap(old);
2662 ret = i915_gem_object_flush_fence(old, pipelined);
2663 if (ret) {
2664 drm_gem_object_unreference(&old->base);
2665 return ret;
2668 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2669 pipelined = NULL;
2671 old->fence_reg = I915_FENCE_REG_NONE;
2672 old->last_fenced_ring = pipelined;
2673 old->last_fenced_seqno =
2674 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2676 drm_gem_object_unreference(&old->base);
2677 } else if (obj->last_fenced_seqno == 0)
2678 pipelined = NULL;
2680 reg->obj = obj;
2681 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2682 obj->fence_reg = reg - dev_priv->fence_regs;
2683 obj->last_fenced_ring = pipelined;
2685 reg->setup_seqno =
2686 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2687 obj->last_fenced_seqno = reg->setup_seqno;
2689 update:
2690 obj->tiling_changed = false;
2691 switch (INTEL_INFO(dev)->gen) {
2692 case 7:
2693 case 6:
2694 ret = sandybridge_write_fence_reg(obj, pipelined);
2695 break;
2696 case 5:
2697 case 4:
2698 ret = i965_write_fence_reg(obj, pipelined);
2699 break;
2700 case 3:
2701 ret = i915_write_fence_reg(obj, pipelined);
2702 break;
2703 case 2:
2704 ret = i830_write_fence_reg(obj, pipelined);
2705 break;
2708 return ret;
2712 * i915_gem_clear_fence_reg - clear out fence register info
2713 * @obj: object to clear
2715 * Zeroes out the fence register itself and clears out the associated
2716 * data structures in dev_priv and obj.
2718 static void
2719 i915_gem_clear_fence_reg(struct drm_device *dev,
2720 struct drm_i915_fence_reg *reg)
2722 drm_i915_private_t *dev_priv = dev->dev_private;
2723 uint32_t fence_reg = reg - dev_priv->fence_regs;
2725 switch (INTEL_INFO(dev)->gen) {
2726 case 7:
2727 case 6:
2728 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2729 break;
2730 case 5:
2731 case 4:
2732 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2733 break;
2734 case 3:
2735 if (fence_reg >= 8)
2736 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2737 else
2738 case 2:
2739 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2741 I915_WRITE(fence_reg, 0);
2742 break;
2745 list_del_init(&reg->lru_list);
2746 reg->obj = NULL;
2747 reg->setup_seqno = 0;
2751 * Finds free space in the GTT aperture and binds the object there.
2753 static int
2754 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2755 unsigned alignment,
2756 bool map_and_fenceable)
2758 struct drm_device *dev = obj->base.dev;
2759 drm_i915_private_t *dev_priv = dev->dev_private;
2760 struct drm_mm_node *free_space;
2761 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2762 u32 size, fence_size, fence_alignment, unfenced_alignment;
2763 bool mappable, fenceable;
2764 int ret;
2766 if (obj->madv != I915_MADV_WILLNEED) {
2767 DRM_ERROR("Attempting to bind a purgeable object\n");
2768 return -EINVAL;
2771 fence_size = i915_gem_get_gtt_size(dev,
2772 obj->base.size,
2773 obj->tiling_mode);
2774 fence_alignment = i915_gem_get_gtt_alignment(dev,
2775 obj->base.size,
2776 obj->tiling_mode);
2777 unfenced_alignment =
2778 i915_gem_get_unfenced_gtt_alignment(dev,
2779 obj->base.size,
2780 obj->tiling_mode);
2782 if (alignment == 0)
2783 alignment = map_and_fenceable ? fence_alignment :
2784 unfenced_alignment;
2785 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2786 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2787 return -EINVAL;
2790 size = map_and_fenceable ? fence_size : obj->base.size;
2792 /* If the object is bigger than the entire aperture, reject it early
2793 * before evicting everything in a vain attempt to find space.
2795 if (obj->base.size >
2796 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2797 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2798 return -E2BIG;
2801 search_free:
2802 if (map_and_fenceable)
2803 free_space =
2804 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2805 size, alignment, 0,
2806 dev_priv->mm.gtt_mappable_end,
2808 else
2809 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2810 size, alignment, 0);
2812 if (free_space != NULL) {
2813 if (map_and_fenceable)
2814 obj->gtt_space =
2815 drm_mm_get_block_range_generic(free_space,
2816 size, alignment, 0,
2817 dev_priv->mm.gtt_mappable_end,
2819 else
2820 obj->gtt_space =
2821 drm_mm_get_block(free_space, size, alignment);
2823 if (obj->gtt_space == NULL) {
2824 /* If the gtt is empty and we're still having trouble
2825 * fitting our object in, we're out of memory.
2827 ret = i915_gem_evict_something(dev, size, alignment,
2828 map_and_fenceable);
2829 if (ret)
2830 return ret;
2832 goto search_free;
2835 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2836 if (ret) {
2837 drm_mm_put_block(obj->gtt_space);
2838 obj->gtt_space = NULL;
2840 if (ret == -ENOMEM) {
2841 /* first try to reclaim some memory by clearing the GTT */
2842 ret = i915_gem_evict_everything(dev, false);
2843 if (ret) {
2844 /* now try to shrink everyone else */
2845 if (gfpmask) {
2846 gfpmask = 0;
2847 goto search_free;
2850 return -ENOMEM;
2853 goto search_free;
2856 return ret;
2859 ret = i915_gem_gtt_bind_object(obj);
2860 if (ret) {
2861 i915_gem_object_put_pages_gtt(obj);
2862 drm_mm_put_block(obj->gtt_space);
2863 obj->gtt_space = NULL;
2865 if (i915_gem_evict_everything(dev, false))
2866 return ret;
2868 goto search_free;
2871 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2872 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2874 /* Assert that the object is not currently in any GPU domain. As it
2875 * wasn't in the GTT, there shouldn't be any way it could have been in
2876 * a GPU cache
2878 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2879 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2881 obj->gtt_offset = obj->gtt_space->start;
2883 fenceable =
2884 obj->gtt_space->size == fence_size &&
2885 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2887 mappable =
2888 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2890 obj->map_and_fenceable = mappable && fenceable;
2892 trace_i915_gem_object_bind(obj, map_and_fenceable);
2893 return 0;
2896 void
2897 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2899 /* If we don't have a page list set up, then we're not pinned
2900 * to GPU, and we can ignore the cache flush because it'll happen
2901 * again at bind time.
2903 if (obj->pages == NULL)
2904 return;
2906 /* If the GPU is snooping the contents of the CPU cache,
2907 * we do not need to manually clear the CPU cache lines. However,
2908 * the caches are only snooped when the render cache is
2909 * flushed/invalidated. As we always have to emit invalidations
2910 * and flushes when moving into and out of the RENDER domain, correct
2911 * snooping behaviour occurs naturally as the result of our domain
2912 * tracking.
2914 if (obj->cache_level != I915_CACHE_NONE)
2915 return;
2917 trace_i915_gem_object_clflush(obj);
2919 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2922 /** Flushes any GPU write domain for the object if it's dirty. */
2923 static int
2924 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2926 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2927 return 0;
2929 /* Queue the GPU write cache flushing we need. */
2930 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2933 /** Flushes the GTT write domain for the object if it's dirty. */
2934 static void
2935 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2937 uint32_t old_write_domain;
2939 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2940 return;
2942 /* No actual flushing is required for the GTT write domain. Writes
2943 * to it immediately go to main memory as far as we know, so there's
2944 * no chipset flush. It also doesn't land in render cache.
2946 * However, we do have to enforce the order so that all writes through
2947 * the GTT land before any writes to the device, such as updates to
2948 * the GATT itself.
2950 wmb();
2952 old_write_domain = obj->base.write_domain;
2953 obj->base.write_domain = 0;
2955 trace_i915_gem_object_change_domain(obj,
2956 obj->base.read_domains,
2957 old_write_domain);
2960 /** Flushes the CPU write domain for the object if it's dirty. */
2961 static void
2962 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2964 uint32_t old_write_domain;
2966 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2967 return;
2969 i915_gem_clflush_object(obj);
2970 intel_gtt_chipset_flush();
2971 old_write_domain = obj->base.write_domain;
2972 obj->base.write_domain = 0;
2974 trace_i915_gem_object_change_domain(obj,
2975 obj->base.read_domains,
2976 old_write_domain);
2980 * Moves a single object to the GTT read, and possibly write domain.
2982 * This function returns when the move is complete, including waiting on
2983 * flushes to occur.
2986 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2988 uint32_t old_write_domain, old_read_domains;
2989 int ret;
2991 /* Not valid to be called on unbound objects. */
2992 if (obj->gtt_space == NULL)
2993 return -EINVAL;
2995 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2996 return 0;
2998 ret = i915_gem_object_flush_gpu_write_domain(obj);
2999 if (ret)
3000 return ret;
3002 if (obj->pending_gpu_write || write) {
3003 ret = i915_gem_object_wait_rendering(obj);
3004 if (ret)
3005 return ret;
3008 i915_gem_object_flush_cpu_write_domain(obj);
3010 old_write_domain = obj->base.write_domain;
3011 old_read_domains = obj->base.read_domains;
3013 /* It should now be out of any other write domains, and we can update
3014 * the domain values for our changes.
3016 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3017 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3018 if (write) {
3019 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3020 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3021 obj->dirty = 1;
3024 trace_i915_gem_object_change_domain(obj,
3025 old_read_domains,
3026 old_write_domain);
3028 return 0;
3031 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3032 enum i915_cache_level cache_level)
3034 int ret;
3036 if (obj->cache_level == cache_level)
3037 return 0;
3039 if (obj->pin_count) {
3040 DRM_DEBUG("can not change the cache level of pinned objects\n");
3041 return -EBUSY;
3044 if (obj->gtt_space) {
3045 ret = i915_gem_object_finish_gpu(obj);
3046 if (ret)
3047 return ret;
3049 i915_gem_object_finish_gtt(obj);
3051 /* Before SandyBridge, you could not use tiling or fence
3052 * registers with snooped memory, so relinquish any fences
3053 * currently pointing to our region in the aperture.
3055 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3056 ret = i915_gem_object_put_fence(obj);
3057 if (ret)
3058 return ret;
3061 i915_gem_gtt_rebind_object(obj, cache_level);
3064 if (cache_level == I915_CACHE_NONE) {
3065 u32 old_read_domains, old_write_domain;
3067 /* If we're coming from LLC cached, then we haven't
3068 * actually been tracking whether the data is in the
3069 * CPU cache or not, since we only allow one bit set
3070 * in obj->write_domain and have been skipping the clflushes.
3071 * Just set it to the CPU cache for now.
3073 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3074 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3076 old_read_domains = obj->base.read_domains;
3077 old_write_domain = obj->base.write_domain;
3079 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3080 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3082 trace_i915_gem_object_change_domain(obj,
3083 old_read_domains,
3084 old_write_domain);
3087 obj->cache_level = cache_level;
3088 return 0;
3092 * Prepare buffer for display plane (scanout, cursors, etc).
3093 * Can be called from an uninterruptible phase (modesetting) and allows
3094 * any flushes to be pipelined (for pageflips).
3096 * For the display plane, we want to be in the GTT but out of any write
3097 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
3098 * ability to pipeline the waits, pinning and any additional subtleties
3099 * that may differentiate the display plane from ordinary buffers.
3102 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3103 u32 alignment,
3104 struct intel_ring_buffer *pipelined)
3106 u32 old_read_domains, old_write_domain;
3107 int ret;
3109 ret = i915_gem_object_flush_gpu_write_domain(obj);
3110 if (ret)
3111 return ret;
3113 if (pipelined != obj->ring) {
3114 ret = i915_gem_object_wait_rendering(obj);
3115 if (ret == -ERESTARTSYS)
3116 return ret;
3119 /* The display engine is not coherent with the LLC cache on gen6. As
3120 * a result, we make sure that the pinning that is about to occur is
3121 * done with uncached PTEs. This is lowest common denominator for all
3122 * chipsets.
3124 * However for gen6+, we could do better by using the GFDT bit instead
3125 * of uncaching, which would allow us to flush all the LLC-cached data
3126 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3128 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3129 if (ret)
3130 return ret;
3132 /* As the user may map the buffer once pinned in the display plane
3133 * (e.g. libkms for the bootup splash), we have to ensure that we
3134 * always use map_and_fenceable for all scanout buffers.
3136 ret = i915_gem_object_pin(obj, alignment, true);
3137 if (ret)
3138 return ret;
3140 i915_gem_object_flush_cpu_write_domain(obj);
3142 old_write_domain = obj->base.write_domain;
3143 old_read_domains = obj->base.read_domains;
3145 /* It should now be out of any other write domains, and we can update
3146 * the domain values for our changes.
3148 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3149 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3151 trace_i915_gem_object_change_domain(obj,
3152 old_read_domains,
3153 old_write_domain);
3155 return 0;
3159 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3161 int ret;
3163 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3164 return 0;
3166 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3167 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3168 if (ret)
3169 return ret;
3172 /* Ensure that we invalidate the GPU's caches and TLBs. */
3173 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3175 return i915_gem_object_wait_rendering(obj);
3179 * Moves a single object to the CPU read, and possibly write domain.
3181 * This function returns when the move is complete, including waiting on
3182 * flushes to occur.
3184 static int
3185 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3187 uint32_t old_write_domain, old_read_domains;
3188 int ret;
3190 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3191 return 0;
3193 ret = i915_gem_object_flush_gpu_write_domain(obj);
3194 if (ret)
3195 return ret;
3197 ret = i915_gem_object_wait_rendering(obj);
3198 if (ret)
3199 return ret;
3201 i915_gem_object_flush_gtt_write_domain(obj);
3203 /* If we have a partially-valid cache of the object in the CPU,
3204 * finish invalidating it and free the per-page flags.
3206 i915_gem_object_set_to_full_cpu_read_domain(obj);
3208 old_write_domain = obj->base.write_domain;
3209 old_read_domains = obj->base.read_domains;
3211 /* Flush the CPU cache if it's still invalid. */
3212 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3213 i915_gem_clflush_object(obj);
3215 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3218 /* It should now be out of any other write domains, and we can update
3219 * the domain values for our changes.
3221 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3223 /* If we're writing through the CPU, then the GPU read domains will
3224 * need to be invalidated at next use.
3226 if (write) {
3227 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3228 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3231 trace_i915_gem_object_change_domain(obj,
3232 old_read_domains,
3233 old_write_domain);
3235 return 0;
3239 * Moves the object from a partially CPU read to a full one.
3241 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3242 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3244 static void
3245 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3247 if (!obj->page_cpu_valid)
3248 return;
3250 /* If we're partially in the CPU read domain, finish moving it in.
3252 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3253 int i;
3255 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3256 if (obj->page_cpu_valid[i])
3257 continue;
3258 drm_clflush_pages(obj->pages + i, 1);
3262 /* Free the page_cpu_valid mappings which are now stale, whether
3263 * or not we've got I915_GEM_DOMAIN_CPU.
3265 kfree(obj->page_cpu_valid);
3266 obj->page_cpu_valid = NULL;
3270 * Set the CPU read domain on a range of the object.
3272 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3273 * not entirely valid. The page_cpu_valid member of the object flags which
3274 * pages have been flushed, and will be respected by
3275 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3276 * of the whole object.
3278 * This function returns when the move is complete, including waiting on
3279 * flushes to occur.
3281 static int
3282 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3283 uint64_t offset, uint64_t size)
3285 uint32_t old_read_domains;
3286 int i, ret;
3288 if (offset == 0 && size == obj->base.size)
3289 return i915_gem_object_set_to_cpu_domain(obj, 0);
3291 ret = i915_gem_object_flush_gpu_write_domain(obj);
3292 if (ret)
3293 return ret;
3295 ret = i915_gem_object_wait_rendering(obj);
3296 if (ret)
3297 return ret;
3299 i915_gem_object_flush_gtt_write_domain(obj);
3301 /* If we're already fully in the CPU read domain, we're done. */
3302 if (obj->page_cpu_valid == NULL &&
3303 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3304 return 0;
3306 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3307 * newly adding I915_GEM_DOMAIN_CPU
3309 if (obj->page_cpu_valid == NULL) {
3310 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3311 GFP_KERNEL);
3312 if (obj->page_cpu_valid == NULL)
3313 return -ENOMEM;
3314 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3315 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3317 /* Flush the cache on any pages that are still invalid from the CPU's
3318 * perspective.
3320 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3321 i++) {
3322 if (obj->page_cpu_valid[i])
3323 continue;
3325 drm_clflush_pages(obj->pages + i, 1);
3327 obj->page_cpu_valid[i] = 1;
3330 /* It should now be out of any other write domains, and we can update
3331 * the domain values for our changes.
3333 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3335 old_read_domains = obj->base.read_domains;
3336 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3338 trace_i915_gem_object_change_domain(obj,
3339 old_read_domains,
3340 obj->base.write_domain);
3342 return 0;
3345 /* Throttle our rendering by waiting until the ring has completed our requests
3346 * emitted over 20 msec ago.
3348 * Note that if we were to use the current jiffies each time around the loop,
3349 * we wouldn't escape the function with any frames outstanding if the time to
3350 * render a frame was over 20ms.
3352 * This should get us reasonable parallelism between CPU and GPU but also
3353 * relatively low latency when blocking on a particular request to finish.
3355 static int
3356 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3358 struct drm_i915_private *dev_priv = dev->dev_private;
3359 struct drm_i915_file_private *file_priv = file->driver_priv;
3360 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3361 struct drm_i915_gem_request *request;
3362 struct intel_ring_buffer *ring = NULL;
3363 u32 seqno = 0;
3364 int ret;
3366 if (atomic_read(&dev_priv->mm.wedged))
3367 return -EIO;
3369 spin_lock(&file_priv->mm.lock);
3370 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3371 if (time_after_eq(request->emitted_jiffies, recent_enough))
3372 break;
3374 ring = request->ring;
3375 seqno = request->seqno;
3377 spin_unlock(&file_priv->mm.lock);
3379 if (seqno == 0)
3380 return 0;
3382 ret = 0;
3383 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3384 /* And wait for the seqno passing without holding any locks and
3385 * causing extra latency for others. This is safe as the irq
3386 * generation is designed to be run atomically and so is
3387 * lockless.
3389 if (ring->irq_get(ring)) {
3390 ret = wait_event_interruptible(ring->irq_queue,
3391 i915_seqno_passed(ring->get_seqno(ring), seqno)
3392 || atomic_read(&dev_priv->mm.wedged));
3393 ring->irq_put(ring);
3395 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3396 ret = -EIO;
3400 if (ret == 0)
3401 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3403 return ret;
3407 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3408 uint32_t alignment,
3409 bool map_and_fenceable)
3411 struct drm_device *dev = obj->base.dev;
3412 struct drm_i915_private *dev_priv = dev->dev_private;
3413 int ret;
3415 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3416 WARN_ON(i915_verify_lists(dev));
3418 if (obj->gtt_space != NULL) {
3419 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3420 (map_and_fenceable && !obj->map_and_fenceable)) {
3421 WARN(obj->pin_count,
3422 "bo is already pinned with incorrect alignment:"
3423 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3424 " obj->map_and_fenceable=%d\n",
3425 obj->gtt_offset, alignment,
3426 map_and_fenceable,
3427 obj->map_and_fenceable);
3428 ret = i915_gem_object_unbind(obj);
3429 if (ret)
3430 return ret;
3434 if (obj->gtt_space == NULL) {
3435 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3436 map_and_fenceable);
3437 if (ret)
3438 return ret;
3441 if (obj->pin_count++ == 0) {
3442 if (!obj->active)
3443 list_move_tail(&obj->mm_list,
3444 &dev_priv->mm.pinned_list);
3446 obj->pin_mappable |= map_and_fenceable;
3448 WARN_ON(i915_verify_lists(dev));
3449 return 0;
3452 void
3453 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3455 struct drm_device *dev = obj->base.dev;
3456 drm_i915_private_t *dev_priv = dev->dev_private;
3458 WARN_ON(i915_verify_lists(dev));
3459 BUG_ON(obj->pin_count == 0);
3460 BUG_ON(obj->gtt_space == NULL);
3462 if (--obj->pin_count == 0) {
3463 if (!obj->active)
3464 list_move_tail(&obj->mm_list,
3465 &dev_priv->mm.inactive_list);
3466 obj->pin_mappable = false;
3468 WARN_ON(i915_verify_lists(dev));
3472 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3473 struct drm_file *file)
3475 struct drm_i915_gem_pin *args = data;
3476 struct drm_i915_gem_object *obj;
3477 int ret;
3479 ret = i915_mutex_lock_interruptible(dev);
3480 if (ret)
3481 return ret;
3483 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3484 if (&obj->base == NULL) {
3485 ret = -ENOENT;
3486 goto unlock;
3489 if (obj->madv != I915_MADV_WILLNEED) {
3490 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3491 ret = -EINVAL;
3492 goto out;
3495 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3496 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3497 args->handle);
3498 ret = -EINVAL;
3499 goto out;
3502 obj->user_pin_count++;
3503 obj->pin_filp = file;
3504 if (obj->user_pin_count == 1) {
3505 ret = i915_gem_object_pin(obj, args->alignment, true);
3506 if (ret)
3507 goto out;
3510 /* XXX - flush the CPU caches for pinned objects
3511 * as the X server doesn't manage domains yet
3513 i915_gem_object_flush_cpu_write_domain(obj);
3514 args->offset = obj->gtt_offset;
3515 out:
3516 drm_gem_object_unreference(&obj->base);
3517 unlock:
3518 mutex_unlock(&dev->struct_mutex);
3519 return ret;
3523 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3524 struct drm_file *file)
3526 struct drm_i915_gem_pin *args = data;
3527 struct drm_i915_gem_object *obj;
3528 int ret;
3530 ret = i915_mutex_lock_interruptible(dev);
3531 if (ret)
3532 return ret;
3534 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3535 if (&obj->base == NULL) {
3536 ret = -ENOENT;
3537 goto unlock;
3540 if (obj->pin_filp != file) {
3541 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3542 args->handle);
3543 ret = -EINVAL;
3544 goto out;
3546 obj->user_pin_count--;
3547 if (obj->user_pin_count == 0) {
3548 obj->pin_filp = NULL;
3549 i915_gem_object_unpin(obj);
3552 out:
3553 drm_gem_object_unreference(&obj->base);
3554 unlock:
3555 mutex_unlock(&dev->struct_mutex);
3556 return ret;
3560 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3561 struct drm_file *file)
3563 struct drm_i915_gem_busy *args = data;
3564 struct drm_i915_gem_object *obj;
3565 int ret;
3567 ret = i915_mutex_lock_interruptible(dev);
3568 if (ret)
3569 return ret;
3571 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3572 if (&obj->base == NULL) {
3573 ret = -ENOENT;
3574 goto unlock;
3577 /* Count all active objects as busy, even if they are currently not used
3578 * by the gpu. Users of this interface expect objects to eventually
3579 * become non-busy without any further actions, therefore emit any
3580 * necessary flushes here.
3582 args->busy = obj->active;
3583 if (args->busy) {
3584 /* Unconditionally flush objects, even when the gpu still uses this
3585 * object. Userspace calling this function indicates that it wants to
3586 * use this buffer rather sooner than later, so issuing the required
3587 * flush earlier is beneficial.
3589 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3590 ret = i915_gem_flush_ring(obj->ring,
3591 0, obj->base.write_domain);
3592 } else if (obj->ring->outstanding_lazy_request ==
3593 obj->last_rendering_seqno) {
3594 struct drm_i915_gem_request *request;
3596 /* This ring is not being cleared by active usage,
3597 * so emit a request to do so.
3599 request = kzalloc(sizeof(*request), GFP_KERNEL);
3600 if (request)
3601 ret = i915_add_request(obj->ring, NULL,request);
3602 else
3603 ret = -ENOMEM;
3606 /* Update the active list for the hardware's current position.
3607 * Otherwise this only updates on a delayed timer or when irqs
3608 * are actually unmasked, and our working set ends up being
3609 * larger than required.
3611 i915_gem_retire_requests_ring(obj->ring);
3613 args->busy = obj->active;
3616 drm_gem_object_unreference(&obj->base);
3617 unlock:
3618 mutex_unlock(&dev->struct_mutex);
3619 return ret;
3623 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3624 struct drm_file *file_priv)
3626 return i915_gem_ring_throttle(dev, file_priv);
3630 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3631 struct drm_file *file_priv)
3633 struct drm_i915_gem_madvise *args = data;
3634 struct drm_i915_gem_object *obj;
3635 int ret;
3637 switch (args->madv) {
3638 case I915_MADV_DONTNEED:
3639 case I915_MADV_WILLNEED:
3640 break;
3641 default:
3642 return -EINVAL;
3645 ret = i915_mutex_lock_interruptible(dev);
3646 if (ret)
3647 return ret;
3649 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3650 if (&obj->base == NULL) {
3651 ret = -ENOENT;
3652 goto unlock;
3655 if (obj->pin_count) {
3656 ret = -EINVAL;
3657 goto out;
3660 if (obj->madv != __I915_MADV_PURGED)
3661 obj->madv = args->madv;
3663 /* if the object is no longer bound, discard its backing storage */
3664 if (i915_gem_object_is_purgeable(obj) &&
3665 obj->gtt_space == NULL)
3666 i915_gem_object_truncate(obj);
3668 args->retained = obj->madv != __I915_MADV_PURGED;
3670 out:
3671 drm_gem_object_unreference(&obj->base);
3672 unlock:
3673 mutex_unlock(&dev->struct_mutex);
3674 return ret;
3677 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3678 size_t size)
3680 struct drm_i915_private *dev_priv = dev->dev_private;
3681 struct drm_i915_gem_object *obj;
3682 struct address_space *mapping;
3684 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3685 if (obj == NULL)
3686 return NULL;
3688 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3689 kfree(obj);
3690 return NULL;
3693 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3694 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3696 i915_gem_info_add_obj(dev_priv, size);
3698 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3699 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3701 if (IS_GEN6(dev)) {
3702 /* On Gen6, we can have the GPU use the LLC (the CPU
3703 * cache) for about a 10% performance improvement
3704 * compared to uncached. Graphics requests other than
3705 * display scanout are coherent with the CPU in
3706 * accessing this cache. This means in this mode we
3707 * don't need to clflush on the CPU side, and on the
3708 * GPU side we only need to flush internal caches to
3709 * get data visible to the CPU.
3711 * However, we maintain the display planes as UC, and so
3712 * need to rebind when first used as such.
3714 obj->cache_level = I915_CACHE_LLC;
3715 } else
3716 obj->cache_level = I915_CACHE_NONE;
3718 obj->base.driver_private = NULL;
3719 obj->fence_reg = I915_FENCE_REG_NONE;
3720 INIT_LIST_HEAD(&obj->mm_list);
3721 INIT_LIST_HEAD(&obj->gtt_list);
3722 INIT_LIST_HEAD(&obj->ring_list);
3723 INIT_LIST_HEAD(&obj->exec_list);
3724 INIT_LIST_HEAD(&obj->gpu_write_list);
3725 obj->madv = I915_MADV_WILLNEED;
3726 /* Avoid an unnecessary call to unbind on the first bind. */
3727 obj->map_and_fenceable = true;
3729 return obj;
3732 int i915_gem_init_object(struct drm_gem_object *obj)
3734 BUG();
3736 return 0;
3739 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3741 struct drm_device *dev = obj->base.dev;
3742 drm_i915_private_t *dev_priv = dev->dev_private;
3743 int ret;
3745 ret = i915_gem_object_unbind(obj);
3746 if (ret == -ERESTARTSYS) {
3747 list_move(&obj->mm_list,
3748 &dev_priv->mm.deferred_free_list);
3749 return;
3752 trace_i915_gem_object_destroy(obj);
3754 if (obj->base.map_list.map)
3755 i915_gem_free_mmap_offset(obj);
3757 drm_gem_object_release(&obj->base);
3758 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3760 kfree(obj->page_cpu_valid);
3761 kfree(obj->bit_17);
3762 kfree(obj);
3765 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3767 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3768 struct drm_device *dev = obj->base.dev;
3770 while (obj->pin_count > 0)
3771 i915_gem_object_unpin(obj);
3773 if (obj->phys_obj)
3774 i915_gem_detach_phys_object(dev, obj);
3776 i915_gem_free_object_tail(obj);
3780 i915_gem_idle(struct drm_device *dev)
3782 drm_i915_private_t *dev_priv = dev->dev_private;
3783 int ret;
3785 mutex_lock(&dev->struct_mutex);
3787 if (dev_priv->mm.suspended) {
3788 mutex_unlock(&dev->struct_mutex);
3789 return 0;
3792 ret = i915_gpu_idle(dev);
3793 if (ret) {
3794 mutex_unlock(&dev->struct_mutex);
3795 return ret;
3798 /* Under UMS, be paranoid and evict. */
3799 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3800 ret = i915_gem_evict_inactive(dev, false);
3801 if (ret) {
3802 mutex_unlock(&dev->struct_mutex);
3803 return ret;
3807 i915_gem_reset_fences(dev);
3809 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3810 * We need to replace this with a semaphore, or something.
3811 * And not confound mm.suspended!
3813 dev_priv->mm.suspended = 1;
3814 del_timer_sync(&dev_priv->hangcheck_timer);
3816 i915_kernel_lost_context(dev);
3817 i915_gem_cleanup_ringbuffer(dev);
3819 mutex_unlock(&dev->struct_mutex);
3821 /* Cancel the retire work handler, which should be idle now. */
3822 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3824 return 0;
3828 i915_gem_init_ringbuffer(struct drm_device *dev)
3830 drm_i915_private_t *dev_priv = dev->dev_private;
3831 int ret;
3833 ret = intel_init_render_ring_buffer(dev);
3834 if (ret)
3835 return ret;
3837 if (HAS_BSD(dev)) {
3838 ret = intel_init_bsd_ring_buffer(dev);
3839 if (ret)
3840 goto cleanup_render_ring;
3843 if (HAS_BLT(dev)) {
3844 ret = intel_init_blt_ring_buffer(dev);
3845 if (ret)
3846 goto cleanup_bsd_ring;
3849 dev_priv->next_seqno = 1;
3851 return 0;
3853 cleanup_bsd_ring:
3854 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3855 cleanup_render_ring:
3856 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3857 return ret;
3860 void
3861 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3863 drm_i915_private_t *dev_priv = dev->dev_private;
3864 int i;
3866 for (i = 0; i < I915_NUM_RINGS; i++)
3867 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3871 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3872 struct drm_file *file_priv)
3874 drm_i915_private_t *dev_priv = dev->dev_private;
3875 int ret, i;
3877 if (drm_core_check_feature(dev, DRIVER_MODESET))
3878 return 0;
3880 if (atomic_read(&dev_priv->mm.wedged)) {
3881 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3882 atomic_set(&dev_priv->mm.wedged, 0);
3885 mutex_lock(&dev->struct_mutex);
3886 dev_priv->mm.suspended = 0;
3888 ret = i915_gem_init_ringbuffer(dev);
3889 if (ret != 0) {
3890 mutex_unlock(&dev->struct_mutex);
3891 return ret;
3894 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3895 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3896 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3897 for (i = 0; i < I915_NUM_RINGS; i++) {
3898 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3899 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3901 mutex_unlock(&dev->struct_mutex);
3903 ret = drm_irq_install(dev);
3904 if (ret)
3905 goto cleanup_ringbuffer;
3907 return 0;
3909 cleanup_ringbuffer:
3910 mutex_lock(&dev->struct_mutex);
3911 i915_gem_cleanup_ringbuffer(dev);
3912 dev_priv->mm.suspended = 1;
3913 mutex_unlock(&dev->struct_mutex);
3915 return ret;
3919 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3920 struct drm_file *file_priv)
3922 if (drm_core_check_feature(dev, DRIVER_MODESET))
3923 return 0;
3925 drm_irq_uninstall(dev);
3926 return i915_gem_idle(dev);
3929 void
3930 i915_gem_lastclose(struct drm_device *dev)
3932 int ret;
3934 if (drm_core_check_feature(dev, DRIVER_MODESET))
3935 return;
3937 ret = i915_gem_idle(dev);
3938 if (ret)
3939 DRM_ERROR("failed to idle hardware: %d\n", ret);
3942 static void
3943 init_ring_lists(struct intel_ring_buffer *ring)
3945 INIT_LIST_HEAD(&ring->active_list);
3946 INIT_LIST_HEAD(&ring->request_list);
3947 INIT_LIST_HEAD(&ring->gpu_write_list);
3950 void
3951 i915_gem_load(struct drm_device *dev)
3953 int i;
3954 drm_i915_private_t *dev_priv = dev->dev_private;
3956 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3957 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3958 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3959 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3960 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3961 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3962 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3963 for (i = 0; i < I915_NUM_RINGS; i++)
3964 init_ring_lists(&dev_priv->ring[i]);
3965 for (i = 0; i < 16; i++)
3966 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3967 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3968 i915_gem_retire_work_handler);
3969 init_completion(&dev_priv->error_completion);
3971 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3972 if (IS_GEN3(dev)) {
3973 u32 tmp = I915_READ(MI_ARB_STATE);
3974 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3975 /* arb state is a masked write, so set bit + bit in mask */
3976 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3977 I915_WRITE(MI_ARB_STATE, tmp);
3981 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3983 /* Old X drivers will take 0-2 for front, back, depth buffers */
3984 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3985 dev_priv->fence_reg_start = 3;
3987 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3988 dev_priv->num_fence_regs = 16;
3989 else
3990 dev_priv->num_fence_regs = 8;
3992 /* Initialize fence registers to zero */
3993 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3994 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3997 i915_gem_detect_bit_6_swizzle(dev);
3998 init_waitqueue_head(&dev_priv->pending_flip_queue);
4000 dev_priv->mm.interruptible = true;
4002 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4003 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4004 register_shrinker(&dev_priv->mm.inactive_shrinker);
4008 * Create a physically contiguous memory object for this object
4009 * e.g. for cursor + overlay regs
4011 static int i915_gem_init_phys_object(struct drm_device *dev,
4012 int id, int size, int align)
4014 drm_i915_private_t *dev_priv = dev->dev_private;
4015 struct drm_i915_gem_phys_object *phys_obj;
4016 int ret;
4018 if (dev_priv->mm.phys_objs[id - 1] || !size)
4019 return 0;
4021 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4022 if (!phys_obj)
4023 return -ENOMEM;
4025 phys_obj->id = id;
4027 phys_obj->handle = drm_pci_alloc(dev, size, align);
4028 if (!phys_obj->handle) {
4029 ret = -ENOMEM;
4030 goto kfree_obj;
4032 #ifdef CONFIG_X86
4033 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4034 #endif
4036 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4038 return 0;
4039 kfree_obj:
4040 kfree(phys_obj);
4041 return ret;
4044 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4046 drm_i915_private_t *dev_priv = dev->dev_private;
4047 struct drm_i915_gem_phys_object *phys_obj;
4049 if (!dev_priv->mm.phys_objs[id - 1])
4050 return;
4052 phys_obj = dev_priv->mm.phys_objs[id - 1];
4053 if (phys_obj->cur_obj) {
4054 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4057 #ifdef CONFIG_X86
4058 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4059 #endif
4060 drm_pci_free(dev, phys_obj->handle);
4061 kfree(phys_obj);
4062 dev_priv->mm.phys_objs[id - 1] = NULL;
4065 void i915_gem_free_all_phys_object(struct drm_device *dev)
4067 int i;
4069 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4070 i915_gem_free_phys_object(dev, i);
4073 void i915_gem_detach_phys_object(struct drm_device *dev,
4074 struct drm_i915_gem_object *obj)
4076 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4077 char *vaddr;
4078 int i;
4079 int page_count;
4081 if (!obj->phys_obj)
4082 return;
4083 vaddr = obj->phys_obj->handle->vaddr;
4085 page_count = obj->base.size / PAGE_SIZE;
4086 for (i = 0; i < page_count; i++) {
4087 struct page *page = shmem_read_mapping_page(mapping, i);
4088 if (!IS_ERR(page)) {
4089 char *dst = kmap_atomic(page);
4090 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4091 kunmap_atomic(dst);
4093 drm_clflush_pages(&page, 1);
4095 set_page_dirty(page);
4096 mark_page_accessed(page);
4097 page_cache_release(page);
4100 intel_gtt_chipset_flush();
4102 obj->phys_obj->cur_obj = NULL;
4103 obj->phys_obj = NULL;
4107 i915_gem_attach_phys_object(struct drm_device *dev,
4108 struct drm_i915_gem_object *obj,
4109 int id,
4110 int align)
4112 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4113 drm_i915_private_t *dev_priv = dev->dev_private;
4114 int ret = 0;
4115 int page_count;
4116 int i;
4118 if (id > I915_MAX_PHYS_OBJECT)
4119 return -EINVAL;
4121 if (obj->phys_obj) {
4122 if (obj->phys_obj->id == id)
4123 return 0;
4124 i915_gem_detach_phys_object(dev, obj);
4127 /* create a new object */
4128 if (!dev_priv->mm.phys_objs[id - 1]) {
4129 ret = i915_gem_init_phys_object(dev, id,
4130 obj->base.size, align);
4131 if (ret) {
4132 DRM_ERROR("failed to init phys object %d size: %zu\n",
4133 id, obj->base.size);
4134 return ret;
4138 /* bind to the object */
4139 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4140 obj->phys_obj->cur_obj = obj;
4142 page_count = obj->base.size / PAGE_SIZE;
4144 for (i = 0; i < page_count; i++) {
4145 struct page *page;
4146 char *dst, *src;
4148 page = shmem_read_mapping_page(mapping, i);
4149 if (IS_ERR(page))
4150 return PTR_ERR(page);
4152 src = kmap_atomic(page);
4153 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4154 memcpy(dst, src, PAGE_SIZE);
4155 kunmap_atomic(src);
4157 mark_page_accessed(page);
4158 page_cache_release(page);
4161 return 0;
4164 static int
4165 i915_gem_phys_pwrite(struct drm_device *dev,
4166 struct drm_i915_gem_object *obj,
4167 struct drm_i915_gem_pwrite *args,
4168 struct drm_file *file_priv)
4170 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4171 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4173 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4174 unsigned long unwritten;
4176 /* The physical object once assigned is fixed for the lifetime
4177 * of the obj, so we can safely drop the lock and continue
4178 * to access vaddr.
4180 mutex_unlock(&dev->struct_mutex);
4181 unwritten = copy_from_user(vaddr, user_data, args->size);
4182 mutex_lock(&dev->struct_mutex);
4183 if (unwritten)
4184 return -EFAULT;
4187 intel_gtt_chipset_flush();
4188 return 0;
4191 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4193 struct drm_i915_file_private *file_priv = file->driver_priv;
4195 /* Clean up our request list when the client is going away, so that
4196 * later retire_requests won't dereference our soon-to-be-gone
4197 * file_priv.
4199 spin_lock(&file_priv->mm.lock);
4200 while (!list_empty(&file_priv->mm.request_list)) {
4201 struct drm_i915_gem_request *request;
4203 request = list_first_entry(&file_priv->mm.request_list,
4204 struct drm_i915_gem_request,
4205 client_list);
4206 list_del(&request->client_list);
4207 request->file_priv = NULL;
4209 spin_unlock(&file_priv->mm.lock);
4212 static int
4213 i915_gpu_is_active(struct drm_device *dev)
4215 drm_i915_private_t *dev_priv = dev->dev_private;
4216 int lists_empty;
4218 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4219 list_empty(&dev_priv->mm.active_list);
4221 return !lists_empty;
4224 static int
4225 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4227 struct drm_i915_private *dev_priv =
4228 container_of(shrinker,
4229 struct drm_i915_private,
4230 mm.inactive_shrinker);
4231 struct drm_device *dev = dev_priv->dev;
4232 struct drm_i915_gem_object *obj, *next;
4233 int nr_to_scan = sc->nr_to_scan;
4234 int cnt;
4236 if (!mutex_trylock(&dev->struct_mutex))
4237 return 0;
4239 /* "fast-path" to count number of available objects */
4240 if (nr_to_scan == 0) {
4241 cnt = 0;
4242 list_for_each_entry(obj,
4243 &dev_priv->mm.inactive_list,
4244 mm_list)
4245 cnt++;
4246 mutex_unlock(&dev->struct_mutex);
4247 return cnt / 100 * sysctl_vfs_cache_pressure;
4250 rescan:
4251 /* first scan for clean buffers */
4252 i915_gem_retire_requests(dev);
4254 list_for_each_entry_safe(obj, next,
4255 &dev_priv->mm.inactive_list,
4256 mm_list) {
4257 if (i915_gem_object_is_purgeable(obj)) {
4258 if (i915_gem_object_unbind(obj) == 0 &&
4259 --nr_to_scan == 0)
4260 break;
4264 /* second pass, evict/count anything still on the inactive list */
4265 cnt = 0;
4266 list_for_each_entry_safe(obj, next,
4267 &dev_priv->mm.inactive_list,
4268 mm_list) {
4269 if (nr_to_scan &&
4270 i915_gem_object_unbind(obj) == 0)
4271 nr_to_scan--;
4272 else
4273 cnt++;
4276 if (nr_to_scan && i915_gpu_is_active(dev)) {
4278 * We are desperate for pages, so as a last resort, wait
4279 * for the GPU to finish and discard whatever we can.
4280 * This has a dramatic impact to reduce the number of
4281 * OOM-killer events whilst running the GPU aggressively.
4283 if (i915_gpu_idle(dev) == 0)
4284 goto rescan;
4286 mutex_unlock(&dev->struct_mutex);
4287 return cnt / 100 * sysctl_vfs_cache_pressure;