staging: brcm80211: remove redundant CHIPREV macro
[zen-stable.git] / drivers / dma / ste_dma40.c
blobfab68a5532054650f979143d2508827a458da9e9
1 /*
2 * Copyright (C) ST-Ericsson SA 2007-2010
3 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
4 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
5 * License terms: GNU General Public License (GPL) version 2
6 */
8 #include <linux/kernel.h>
9 #include <linux/slab.h>
10 #include <linux/dmaengine.h>
11 #include <linux/platform_device.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/err.h>
16 #include <plat/ste_dma40.h>
18 #include "ste_dma40_ll.h"
20 #define D40_NAME "dma40"
22 #define D40_PHY_CHAN -1
24 /* For masking out/in 2 bit channel positions */
25 #define D40_CHAN_POS(chan) (2 * (chan / 2))
26 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28 /* Maximum iterations taken before giving up suspending a channel */
29 #define D40_SUSPEND_MAX_IT 500
31 /* Hardware requirement on LCLA alignment */
32 #define LCLA_ALIGNMENT 0x40000
34 /* Max number of links per event group */
35 #define D40_LCLA_LINK_PER_EVENT_GRP 128
36 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38 /* Attempts before giving up to trying to get pages that are aligned */
39 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41 /* Bit markings for allocation map */
42 #define D40_ALLOC_FREE (1 << 31)
43 #define D40_ALLOC_PHY (1 << 30)
44 #define D40_ALLOC_LOG_FREE 0
46 /* Hardware designer of the block */
47 #define D40_HW_DESIGNER 0x8
49 /**
50 * enum 40_command - The different commands and/or statuses.
52 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57 enum d40_command {
58 D40_DMA_STOP = 0,
59 D40_DMA_RUN = 1,
60 D40_DMA_SUSPEND_REQ = 2,
61 D40_DMA_SUSPENDED = 3
64 /**
65 * struct d40_lli_pool - Structure for keeping LLIs in memory
67 * @base: Pointer to memory area when the pre_alloc_lli's are not large
68 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69 * pre_alloc_lli is used.
70 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
71 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
72 * one buffer to one buffer.
74 struct d40_lli_pool {
75 void *base;
76 int size;
77 /* Space for dst and src, plus an extra for padding */
78 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
81 /**
82 * struct d40_desc - A descriptor is one DMA job.
84 * @lli_phy: LLI settings for physical channel. Both src and dst=
85 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
86 * lli_len equals one.
87 * @lli_log: Same as above but for logical channels.
88 * @lli_pool: The pool with two entries pre-allocated.
89 * @lli_len: Number of llis of current descriptor.
90 * @lli_current: Number of transfered llis.
91 * @lcla_alloc: Number of LCLA entries allocated.
92 * @txd: DMA engine struct. Used for among other things for communication
93 * during a transfer.
94 * @node: List entry.
95 * @is_in_client_list: true if the client owns this descriptor.
96 * @is_hw_linked: true if this job will automatically be continued for
97 * the previous one.
99 * This descriptor is used for both logical and physical transfers.
101 struct d40_desc {
102 /* LLI physical */
103 struct d40_phy_lli_bidir lli_phy;
104 /* LLI logical */
105 struct d40_log_lli_bidir lli_log;
107 struct d40_lli_pool lli_pool;
108 int lli_len;
109 int lli_current;
110 int lcla_alloc;
112 struct dma_async_tx_descriptor txd;
113 struct list_head node;
115 bool is_in_client_list;
116 bool is_hw_linked;
120 * struct d40_lcla_pool - LCLA pool settings and data.
122 * @base: The virtual address of LCLA. 18 bit aligned.
123 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
124 * This pointer is only there for clean-up on error.
125 * @pages: The number of pages needed for all physical channels.
126 * Only used later for clean-up on error
127 * @lock: Lock to protect the content in this struct.
128 * @alloc_map: big map over which LCLA entry is own by which job.
130 struct d40_lcla_pool {
131 void *base;
132 void *base_unaligned;
133 int pages;
134 spinlock_t lock;
135 struct d40_desc **alloc_map;
139 * struct d40_phy_res - struct for handling eventlines mapped to physical
140 * channels.
142 * @lock: A lock protection this entity.
143 * @num: The physical channel number of this entity.
144 * @allocated_src: Bit mapped to show which src event line's are mapped to
145 * this physical channel. Can also be free or physically allocated.
146 * @allocated_dst: Same as for src but is dst.
147 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
148 * event line number.
150 struct d40_phy_res {
151 spinlock_t lock;
152 int num;
153 u32 allocated_src;
154 u32 allocated_dst;
157 struct d40_base;
160 * struct d40_chan - Struct that describes a channel.
162 * @lock: A spinlock to protect this struct.
163 * @log_num: The logical number, if any of this channel.
164 * @completed: Starts with 1, after first interrupt it is set to dma engine's
165 * current cookie.
166 * @pending_tx: The number of pending transfers. Used between interrupt handler
167 * and tasklet.
168 * @busy: Set to true when transfer is ongoing on this channel.
169 * @phy_chan: Pointer to physical channel which this instance runs on. If this
170 * point is NULL, then the channel is not allocated.
171 * @chan: DMA engine handle.
172 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
173 * transfer and call client callback.
174 * @client: Cliented owned descriptor list.
175 * @active: Active descriptor.
176 * @queue: Queued jobs.
177 * @dma_cfg: The client configuration of this dma channel.
178 * @configured: whether the dma_cfg configuration is valid
179 * @base: Pointer to the device instance struct.
180 * @src_def_cfg: Default cfg register setting for src.
181 * @dst_def_cfg: Default cfg register setting for dst.
182 * @log_def: Default logical channel settings.
183 * @lcla: Space for one dst src pair for logical channel transfers.
184 * @lcpa: Pointer to dst and src lcpa settings.
186 * This struct can either "be" a logical or a physical channel.
188 struct d40_chan {
189 spinlock_t lock;
190 int log_num;
191 /* ID of the most recent completed transfer */
192 int completed;
193 int pending_tx;
194 bool busy;
195 struct d40_phy_res *phy_chan;
196 struct dma_chan chan;
197 struct tasklet_struct tasklet;
198 struct list_head client;
199 struct list_head active;
200 struct list_head queue;
201 struct stedma40_chan_cfg dma_cfg;
202 bool configured;
203 struct d40_base *base;
204 /* Default register configurations */
205 u32 src_def_cfg;
206 u32 dst_def_cfg;
207 struct d40_def_lcsp log_def;
208 struct d40_log_lli_full *lcpa;
209 /* Runtime reconfiguration */
210 dma_addr_t runtime_addr;
211 enum dma_data_direction runtime_direction;
215 * struct d40_base - The big global struct, one for each probe'd instance.
217 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
218 * @execmd_lock: Lock for execute command usage since several channels share
219 * the same physical register.
220 * @dev: The device structure.
221 * @virtbase: The virtual base address of the DMA's register.
222 * @rev: silicon revision detected.
223 * @clk: Pointer to the DMA clock structure.
224 * @phy_start: Physical memory start of the DMA registers.
225 * @phy_size: Size of the DMA register map.
226 * @irq: The IRQ number.
227 * @num_phy_chans: The number of physical channels. Read from HW. This
228 * is the number of available channels for this driver, not counting "Secure
229 * mode" allocated physical channels.
230 * @num_log_chans: The number of logical channels. Calculated from
231 * num_phy_chans.
232 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
233 * @dma_slave: dma_device channels that can do only do slave transfers.
234 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
235 * @log_chans: Room for all possible logical channels in system.
236 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
237 * to log_chans entries.
238 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
239 * to phy_chans entries.
240 * @plat_data: Pointer to provided platform_data which is the driver
241 * configuration.
242 * @phy_res: Vector containing all physical channels.
243 * @lcla_pool: lcla pool settings and data.
244 * @lcpa_base: The virtual mapped address of LCPA.
245 * @phy_lcpa: The physical address of the LCPA.
246 * @lcpa_size: The size of the LCPA area.
247 * @desc_slab: cache for descriptors.
249 struct d40_base {
250 spinlock_t interrupt_lock;
251 spinlock_t execmd_lock;
252 struct device *dev;
253 void __iomem *virtbase;
254 u8 rev:4;
255 struct clk *clk;
256 phys_addr_t phy_start;
257 resource_size_t phy_size;
258 int irq;
259 int num_phy_chans;
260 int num_log_chans;
261 struct dma_device dma_both;
262 struct dma_device dma_slave;
263 struct dma_device dma_memcpy;
264 struct d40_chan *phy_chans;
265 struct d40_chan *log_chans;
266 struct d40_chan **lookup_log_chans;
267 struct d40_chan **lookup_phy_chans;
268 struct stedma40_platform_data *plat_data;
269 /* Physical half channels */
270 struct d40_phy_res *phy_res;
271 struct d40_lcla_pool lcla_pool;
272 void *lcpa_base;
273 dma_addr_t phy_lcpa;
274 resource_size_t lcpa_size;
275 struct kmem_cache *desc_slab;
279 * struct d40_interrupt_lookup - lookup table for interrupt handler
281 * @src: Interrupt mask register.
282 * @clr: Interrupt clear register.
283 * @is_error: true if this is an error interrupt.
284 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
285 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
287 struct d40_interrupt_lookup {
288 u32 src;
289 u32 clr;
290 bool is_error;
291 int offset;
295 * struct d40_reg_val - simple lookup struct
297 * @reg: The register.
298 * @val: The value that belongs to the register in reg.
300 struct d40_reg_val {
301 unsigned int reg;
302 unsigned int val;
305 static int d40_pool_lli_alloc(struct d40_desc *d40d,
306 int lli_len, bool is_log)
308 u32 align;
309 void *base;
311 if (is_log)
312 align = sizeof(struct d40_log_lli);
313 else
314 align = sizeof(struct d40_phy_lli);
316 if (lli_len == 1) {
317 base = d40d->lli_pool.pre_alloc_lli;
318 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
319 d40d->lli_pool.base = NULL;
320 } else {
321 d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
323 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
324 d40d->lli_pool.base = base;
326 if (d40d->lli_pool.base == NULL)
327 return -ENOMEM;
330 if (is_log) {
331 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
332 align);
333 d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
334 align);
335 } else {
336 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
337 align);
338 d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
339 align);
342 return 0;
345 static void d40_pool_lli_free(struct d40_desc *d40d)
347 kfree(d40d->lli_pool.base);
348 d40d->lli_pool.base = NULL;
349 d40d->lli_pool.size = 0;
350 d40d->lli_log.src = NULL;
351 d40d->lli_log.dst = NULL;
352 d40d->lli_phy.src = NULL;
353 d40d->lli_phy.dst = NULL;
356 static int d40_lcla_alloc_one(struct d40_chan *d40c,
357 struct d40_desc *d40d)
359 unsigned long flags;
360 int i;
361 int ret = -EINVAL;
362 int p;
364 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
366 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
369 * Allocate both src and dst at the same time, therefore the half
370 * start on 1 since 0 can't be used since zero is used as end marker.
372 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
373 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
374 d40c->base->lcla_pool.alloc_map[p + i] = d40d;
375 d40d->lcla_alloc++;
376 ret = i;
377 break;
381 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
383 return ret;
386 static int d40_lcla_free_all(struct d40_chan *d40c,
387 struct d40_desc *d40d)
389 unsigned long flags;
390 int i;
391 int ret = -EINVAL;
393 if (d40c->log_num == D40_PHY_CHAN)
394 return 0;
396 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
398 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
399 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
400 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
401 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
402 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
403 d40d->lcla_alloc--;
404 if (d40d->lcla_alloc == 0) {
405 ret = 0;
406 break;
411 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
413 return ret;
417 static void d40_desc_remove(struct d40_desc *d40d)
419 list_del(&d40d->node);
422 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
424 struct d40_desc *desc = NULL;
426 if (!list_empty(&d40c->client)) {
427 struct d40_desc *d;
428 struct d40_desc *_d;
430 list_for_each_entry_safe(d, _d, &d40c->client, node)
431 if (async_tx_test_ack(&d->txd)) {
432 d40_pool_lli_free(d);
433 d40_desc_remove(d);
434 desc = d;
435 memset(desc, 0, sizeof(*desc));
436 break;
440 if (!desc)
441 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
443 if (desc)
444 INIT_LIST_HEAD(&desc->node);
446 return desc;
449 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
452 d40_lcla_free_all(d40c, d40d);
453 kmem_cache_free(d40c->base->desc_slab, d40d);
456 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
458 list_add_tail(&desc->node, &d40c->active);
461 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
463 int curr_lcla = -EINVAL, next_lcla;
465 if (d40c->log_num == D40_PHY_CHAN) {
466 d40_phy_lli_write(d40c->base->virtbase,
467 d40c->phy_chan->num,
468 d40d->lli_phy.dst,
469 d40d->lli_phy.src);
470 d40d->lli_current = d40d->lli_len;
471 } else {
473 if ((d40d->lli_len - d40d->lli_current) > 1)
474 curr_lcla = d40_lcla_alloc_one(d40c, d40d);
476 d40_log_lli_lcpa_write(d40c->lcpa,
477 &d40d->lli_log.dst[d40d->lli_current],
478 &d40d->lli_log.src[d40d->lli_current],
479 curr_lcla);
481 d40d->lli_current++;
482 for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
483 struct d40_log_lli *lcla;
485 if (d40d->lli_current + 1 < d40d->lli_len)
486 next_lcla = d40_lcla_alloc_one(d40c, d40d);
487 else
488 next_lcla = -EINVAL;
490 lcla = d40c->base->lcla_pool.base +
491 d40c->phy_chan->num * 1024 +
492 8 * curr_lcla * 2;
494 d40_log_lli_lcla_write(lcla,
495 &d40d->lli_log.dst[d40d->lli_current],
496 &d40d->lli_log.src[d40d->lli_current],
497 next_lcla);
499 (void) dma_map_single(d40c->base->dev, lcla,
500 2 * sizeof(struct d40_log_lli),
501 DMA_TO_DEVICE);
503 curr_lcla = next_lcla;
505 if (curr_lcla == -EINVAL) {
506 d40d->lli_current++;
507 break;
514 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
516 struct d40_desc *d;
518 if (list_empty(&d40c->active))
519 return NULL;
521 d = list_first_entry(&d40c->active,
522 struct d40_desc,
523 node);
524 return d;
527 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
529 list_add_tail(&desc->node, &d40c->queue);
532 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
534 struct d40_desc *d;
536 if (list_empty(&d40c->queue))
537 return NULL;
539 d = list_first_entry(&d40c->queue,
540 struct d40_desc,
541 node);
542 return d;
545 static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
547 struct d40_desc *d;
549 if (list_empty(&d40c->queue))
550 return NULL;
551 list_for_each_entry(d, &d40c->queue, node)
552 if (list_is_last(&d->node, &d40c->queue))
553 break;
554 return d;
557 /* Support functions for logical channels */
560 static int d40_channel_execute_command(struct d40_chan *d40c,
561 enum d40_command command)
563 u32 status;
564 int i;
565 void __iomem *active_reg;
566 int ret = 0;
567 unsigned long flags;
568 u32 wmask;
570 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
572 if (d40c->phy_chan->num % 2 == 0)
573 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
574 else
575 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
577 if (command == D40_DMA_SUSPEND_REQ) {
578 status = (readl(active_reg) &
579 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
580 D40_CHAN_POS(d40c->phy_chan->num);
582 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
583 goto done;
586 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
587 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
588 active_reg);
590 if (command == D40_DMA_SUSPEND_REQ) {
592 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
593 status = (readl(active_reg) &
594 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
595 D40_CHAN_POS(d40c->phy_chan->num);
597 cpu_relax();
599 * Reduce the number of bus accesses while
600 * waiting for the DMA to suspend.
602 udelay(3);
604 if (status == D40_DMA_STOP ||
605 status == D40_DMA_SUSPENDED)
606 break;
609 if (i == D40_SUSPEND_MAX_IT) {
610 dev_err(&d40c->chan.dev->device,
611 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
612 __func__, d40c->phy_chan->num, d40c->log_num,
613 status);
614 dump_stack();
615 ret = -EBUSY;
619 done:
620 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
621 return ret;
624 static void d40_term_all(struct d40_chan *d40c)
626 struct d40_desc *d40d;
628 /* Release active descriptors */
629 while ((d40d = d40_first_active_get(d40c))) {
630 d40_desc_remove(d40d);
631 d40_desc_free(d40c, d40d);
634 /* Release queued descriptors waiting for transfer */
635 while ((d40d = d40_first_queued(d40c))) {
636 d40_desc_remove(d40d);
637 d40_desc_free(d40c, d40d);
641 d40c->pending_tx = 0;
642 d40c->busy = false;
645 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
647 u32 val;
648 unsigned long flags;
650 /* Notice, that disable requires the physical channel to be stopped */
651 if (do_enable)
652 val = D40_ACTIVATE_EVENTLINE;
653 else
654 val = D40_DEACTIVATE_EVENTLINE;
656 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
658 /* Enable event line connected to device (or memcpy) */
659 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
660 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
661 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
663 writel((val << D40_EVENTLINE_POS(event)) |
664 ~D40_EVENTLINE_MASK(event),
665 d40c->base->virtbase + D40_DREG_PCBASE +
666 d40c->phy_chan->num * D40_DREG_PCDELTA +
667 D40_CHAN_REG_SSLNK);
669 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
670 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
672 writel((val << D40_EVENTLINE_POS(event)) |
673 ~D40_EVENTLINE_MASK(event),
674 d40c->base->virtbase + D40_DREG_PCBASE +
675 d40c->phy_chan->num * D40_DREG_PCDELTA +
676 D40_CHAN_REG_SDLNK);
679 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
682 static u32 d40_chan_has_events(struct d40_chan *d40c)
684 u32 val;
686 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
687 d40c->phy_chan->num * D40_DREG_PCDELTA +
688 D40_CHAN_REG_SSLNK);
690 val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
691 d40c->phy_chan->num * D40_DREG_PCDELTA +
692 D40_CHAN_REG_SDLNK);
693 return val;
696 static u32 d40_get_prmo(struct d40_chan *d40c)
698 static const unsigned int phy_map[] = {
699 [STEDMA40_PCHAN_BASIC_MODE]
700 = D40_DREG_PRMO_PCHAN_BASIC,
701 [STEDMA40_PCHAN_MODULO_MODE]
702 = D40_DREG_PRMO_PCHAN_MODULO,
703 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
704 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
706 static const unsigned int log_map[] = {
707 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
708 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
709 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
710 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
711 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
712 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
715 if (d40c->log_num == D40_PHY_CHAN)
716 return phy_map[d40c->dma_cfg.mode_opt];
717 else
718 return log_map[d40c->dma_cfg.mode_opt];
721 static void d40_config_write(struct d40_chan *d40c)
723 u32 addr_base;
724 u32 var;
726 /* Odd addresses are even addresses + 4 */
727 addr_base = (d40c->phy_chan->num % 2) * 4;
728 /* Setup channel mode to logical or physical */
729 var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
730 D40_CHAN_POS(d40c->phy_chan->num);
731 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
733 /* Setup operational mode option register */
734 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
736 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
738 if (d40c->log_num != D40_PHY_CHAN) {
739 /* Set default config for CFG reg */
740 writel(d40c->src_def_cfg,
741 d40c->base->virtbase + D40_DREG_PCBASE +
742 d40c->phy_chan->num * D40_DREG_PCDELTA +
743 D40_CHAN_REG_SSCFG);
744 writel(d40c->dst_def_cfg,
745 d40c->base->virtbase + D40_DREG_PCBASE +
746 d40c->phy_chan->num * D40_DREG_PCDELTA +
747 D40_CHAN_REG_SDCFG);
749 /* Set LIDX for lcla */
750 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
751 D40_SREG_ELEM_LOG_LIDX_MASK,
752 d40c->base->virtbase + D40_DREG_PCBASE +
753 d40c->phy_chan->num * D40_DREG_PCDELTA +
754 D40_CHAN_REG_SDELT);
756 writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
757 D40_SREG_ELEM_LOG_LIDX_MASK,
758 d40c->base->virtbase + D40_DREG_PCBASE +
759 d40c->phy_chan->num * D40_DREG_PCDELTA +
760 D40_CHAN_REG_SSELT);
765 static u32 d40_residue(struct d40_chan *d40c)
767 u32 num_elt;
769 if (d40c->log_num != D40_PHY_CHAN)
770 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
771 >> D40_MEM_LCSP2_ECNT_POS;
772 else
773 num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
774 d40c->phy_chan->num * D40_DREG_PCDELTA +
775 D40_CHAN_REG_SDELT) &
776 D40_SREG_ELEM_PHY_ECNT_MASK) >>
777 D40_SREG_ELEM_PHY_ECNT_POS;
778 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
781 static bool d40_tx_is_linked(struct d40_chan *d40c)
783 bool is_link;
785 if (d40c->log_num != D40_PHY_CHAN)
786 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
787 else
788 is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
789 d40c->phy_chan->num * D40_DREG_PCDELTA +
790 D40_CHAN_REG_SDLNK) &
791 D40_SREG_LNK_PHYS_LNK_MASK;
792 return is_link;
795 static int d40_pause(struct dma_chan *chan)
797 struct d40_chan *d40c =
798 container_of(chan, struct d40_chan, chan);
799 int res = 0;
800 unsigned long flags;
802 if (!d40c->busy)
803 return 0;
805 spin_lock_irqsave(&d40c->lock, flags);
807 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
808 if (res == 0) {
809 if (d40c->log_num != D40_PHY_CHAN) {
810 d40_config_set_event(d40c, false);
811 /* Resume the other logical channels if any */
812 if (d40_chan_has_events(d40c))
813 res = d40_channel_execute_command(d40c,
814 D40_DMA_RUN);
818 spin_unlock_irqrestore(&d40c->lock, flags);
819 return res;
822 static int d40_resume(struct dma_chan *chan)
824 struct d40_chan *d40c =
825 container_of(chan, struct d40_chan, chan);
826 int res = 0;
827 unsigned long flags;
829 if (!d40c->busy)
830 return 0;
832 spin_lock_irqsave(&d40c->lock, flags);
834 if (d40c->base->rev == 0)
835 if (d40c->log_num != D40_PHY_CHAN) {
836 res = d40_channel_execute_command(d40c,
837 D40_DMA_SUSPEND_REQ);
838 goto no_suspend;
841 /* If bytes left to transfer or linked tx resume job */
842 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
844 if (d40c->log_num != D40_PHY_CHAN)
845 d40_config_set_event(d40c, true);
847 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
850 no_suspend:
851 spin_unlock_irqrestore(&d40c->lock, flags);
852 return res;
855 static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
857 /* TODO: Write */
860 static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
862 struct d40_desc *d40d_prev = NULL;
863 int i;
864 u32 val;
866 if (!list_empty(&d40c->queue))
867 d40d_prev = d40_last_queued(d40c);
868 else if (!list_empty(&d40c->active))
869 d40d_prev = d40_first_active_get(d40c);
871 if (!d40d_prev)
872 return;
874 /* Here we try to join this job with previous jobs */
875 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
876 d40c->phy_chan->num * D40_DREG_PCDELTA +
877 D40_CHAN_REG_SSLNK);
879 /* Figure out which link we're currently transmitting */
880 for (i = 0; i < d40d_prev->lli_len; i++)
881 if (val == d40d_prev->lli_phy.src[i].reg_lnk)
882 break;
884 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
885 d40c->phy_chan->num * D40_DREG_PCDELTA +
886 D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
888 if (i == (d40d_prev->lli_len - 1) && val > 0) {
889 /* Change the current one */
890 writel(virt_to_phys(d40d->lli_phy.src),
891 d40c->base->virtbase + D40_DREG_PCBASE +
892 d40c->phy_chan->num * D40_DREG_PCDELTA +
893 D40_CHAN_REG_SSLNK);
894 writel(virt_to_phys(d40d->lli_phy.dst),
895 d40c->base->virtbase + D40_DREG_PCBASE +
896 d40c->phy_chan->num * D40_DREG_PCDELTA +
897 D40_CHAN_REG_SDLNK);
899 d40d->is_hw_linked = true;
901 } else if (i < d40d_prev->lli_len) {
902 (void) dma_unmap_single(d40c->base->dev,
903 virt_to_phys(d40d_prev->lli_phy.src),
904 d40d_prev->lli_pool.size,
905 DMA_TO_DEVICE);
907 /* Keep the settings */
908 val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
909 ~D40_SREG_LNK_PHYS_LNK_MASK;
910 d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
911 val | virt_to_phys(d40d->lli_phy.src);
913 val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
914 ~D40_SREG_LNK_PHYS_LNK_MASK;
915 d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
916 val | virt_to_phys(d40d->lli_phy.dst);
918 (void) dma_map_single(d40c->base->dev,
919 d40d_prev->lli_phy.src,
920 d40d_prev->lli_pool.size,
921 DMA_TO_DEVICE);
922 d40d->is_hw_linked = true;
926 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
928 struct d40_chan *d40c = container_of(tx->chan,
929 struct d40_chan,
930 chan);
931 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
932 unsigned long flags;
934 (void) d40_pause(&d40c->chan);
936 spin_lock_irqsave(&d40c->lock, flags);
938 d40c->chan.cookie++;
940 if (d40c->chan.cookie < 0)
941 d40c->chan.cookie = 1;
943 d40d->txd.cookie = d40c->chan.cookie;
945 if (d40c->log_num == D40_PHY_CHAN)
946 d40_tx_submit_phy(d40c, d40d);
947 else
948 d40_tx_submit_log(d40c, d40d);
950 d40_desc_queue(d40c, d40d);
952 spin_unlock_irqrestore(&d40c->lock, flags);
954 (void) d40_resume(&d40c->chan);
956 return tx->cookie;
959 static int d40_start(struct d40_chan *d40c)
961 if (d40c->base->rev == 0) {
962 int err;
964 if (d40c->log_num != D40_PHY_CHAN) {
965 err = d40_channel_execute_command(d40c,
966 D40_DMA_SUSPEND_REQ);
967 if (err)
968 return err;
972 if (d40c->log_num != D40_PHY_CHAN)
973 d40_config_set_event(d40c, true);
975 return d40_channel_execute_command(d40c, D40_DMA_RUN);
978 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
980 struct d40_desc *d40d;
981 int err;
983 /* Start queued jobs, if any */
984 d40d = d40_first_queued(d40c);
986 if (d40d != NULL) {
987 d40c->busy = true;
989 /* Remove from queue */
990 d40_desc_remove(d40d);
992 /* Add to active queue */
993 d40_desc_submit(d40c, d40d);
996 * If this job is already linked in hw,
997 * do not submit it.
1000 if (!d40d->is_hw_linked) {
1001 /* Initiate DMA job */
1002 d40_desc_load(d40c, d40d);
1004 /* Start dma job */
1005 err = d40_start(d40c);
1007 if (err)
1008 return NULL;
1012 return d40d;
1015 /* called from interrupt context */
1016 static void dma_tc_handle(struct d40_chan *d40c)
1018 struct d40_desc *d40d;
1020 /* Get first active entry from list */
1021 d40d = d40_first_active_get(d40c);
1023 if (d40d == NULL)
1024 return;
1026 d40_lcla_free_all(d40c, d40d);
1028 if (d40d->lli_current < d40d->lli_len) {
1029 d40_desc_load(d40c, d40d);
1030 /* Start dma job */
1031 (void) d40_start(d40c);
1032 return;
1035 if (d40_queue_start(d40c) == NULL)
1036 d40c->busy = false;
1038 d40c->pending_tx++;
1039 tasklet_schedule(&d40c->tasklet);
1043 static void dma_tasklet(unsigned long data)
1045 struct d40_chan *d40c = (struct d40_chan *) data;
1046 struct d40_desc *d40d;
1047 unsigned long flags;
1048 dma_async_tx_callback callback;
1049 void *callback_param;
1051 spin_lock_irqsave(&d40c->lock, flags);
1053 /* Get first active entry from list */
1054 d40d = d40_first_active_get(d40c);
1056 if (d40d == NULL)
1057 goto err;
1059 d40c->completed = d40d->txd.cookie;
1062 * If terminating a channel pending_tx is set to zero.
1063 * This prevents any finished active jobs to return to the client.
1065 if (d40c->pending_tx == 0) {
1066 spin_unlock_irqrestore(&d40c->lock, flags);
1067 return;
1070 /* Callback to client */
1071 callback = d40d->txd.callback;
1072 callback_param = d40d->txd.callback_param;
1074 if (async_tx_test_ack(&d40d->txd)) {
1075 d40_pool_lli_free(d40d);
1076 d40_desc_remove(d40d);
1077 d40_desc_free(d40c, d40d);
1078 } else {
1079 if (!d40d->is_in_client_list) {
1080 d40_desc_remove(d40d);
1081 d40_lcla_free_all(d40c, d40d);
1082 list_add_tail(&d40d->node, &d40c->client);
1083 d40d->is_in_client_list = true;
1087 d40c->pending_tx--;
1089 if (d40c->pending_tx)
1090 tasklet_schedule(&d40c->tasklet);
1092 spin_unlock_irqrestore(&d40c->lock, flags);
1094 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1095 callback(callback_param);
1097 return;
1099 err:
1100 /* Rescue manouver if receiving double interrupts */
1101 if (d40c->pending_tx > 0)
1102 d40c->pending_tx--;
1103 spin_unlock_irqrestore(&d40c->lock, flags);
1106 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1108 static const struct d40_interrupt_lookup il[] = {
1109 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1110 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1111 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1112 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1113 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1114 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1115 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1116 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1117 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1118 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1121 int i;
1122 u32 regs[ARRAY_SIZE(il)];
1123 u32 idx;
1124 u32 row;
1125 long chan = -1;
1126 struct d40_chan *d40c;
1127 unsigned long flags;
1128 struct d40_base *base = data;
1130 spin_lock_irqsave(&base->interrupt_lock, flags);
1132 /* Read interrupt status of both logical and physical channels */
1133 for (i = 0; i < ARRAY_SIZE(il); i++)
1134 regs[i] = readl(base->virtbase + il[i].src);
1136 for (;;) {
1138 chan = find_next_bit((unsigned long *)regs,
1139 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1141 /* No more set bits found? */
1142 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1143 break;
1145 row = chan / BITS_PER_LONG;
1146 idx = chan & (BITS_PER_LONG - 1);
1148 /* ACK interrupt */
1149 writel(1 << idx, base->virtbase + il[row].clr);
1151 if (il[row].offset == D40_PHY_CHAN)
1152 d40c = base->lookup_phy_chans[idx];
1153 else
1154 d40c = base->lookup_log_chans[il[row].offset + idx];
1155 spin_lock(&d40c->lock);
1157 if (!il[row].is_error)
1158 dma_tc_handle(d40c);
1159 else
1160 dev_err(base->dev,
1161 "[%s] IRQ chan: %ld offset %d idx %d\n",
1162 __func__, chan, il[row].offset, idx);
1164 spin_unlock(&d40c->lock);
1167 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1169 return IRQ_HANDLED;
1172 static int d40_validate_conf(struct d40_chan *d40c,
1173 struct stedma40_chan_cfg *conf)
1175 int res = 0;
1176 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1177 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1178 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1180 if (!conf->dir) {
1181 dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
1182 __func__);
1183 res = -EINVAL;
1186 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1187 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1188 d40c->runtime_addr == 0) {
1190 dev_err(&d40c->chan.dev->device,
1191 "[%s] Invalid TX channel address (%d)\n",
1192 __func__, conf->dst_dev_type);
1193 res = -EINVAL;
1196 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1197 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1198 d40c->runtime_addr == 0) {
1199 dev_err(&d40c->chan.dev->device,
1200 "[%s] Invalid RX channel address (%d)\n",
1201 __func__, conf->src_dev_type);
1202 res = -EINVAL;
1205 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1206 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1207 dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
1208 __func__);
1209 res = -EINVAL;
1212 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1213 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1214 dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
1215 __func__);
1216 res = -EINVAL;
1219 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1220 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1221 dev_err(&d40c->chan.dev->device,
1222 "[%s] No event line\n", __func__);
1223 res = -EINVAL;
1226 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1227 (src_event_group != dst_event_group)) {
1228 dev_err(&d40c->chan.dev->device,
1229 "[%s] Invalid event group\n", __func__);
1230 res = -EINVAL;
1233 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1235 * DMAC HW supports it. Will be added to this driver,
1236 * in case any dma client requires it.
1238 dev_err(&d40c->chan.dev->device,
1239 "[%s] periph to periph not supported\n",
1240 __func__);
1241 res = -EINVAL;
1244 return res;
1247 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1248 int log_event_line, bool is_log)
1250 unsigned long flags;
1251 spin_lock_irqsave(&phy->lock, flags);
1252 if (!is_log) {
1253 /* Physical interrupts are masked per physical full channel */
1254 if (phy->allocated_src == D40_ALLOC_FREE &&
1255 phy->allocated_dst == D40_ALLOC_FREE) {
1256 phy->allocated_dst = D40_ALLOC_PHY;
1257 phy->allocated_src = D40_ALLOC_PHY;
1258 goto found;
1259 } else
1260 goto not_found;
1263 /* Logical channel */
1264 if (is_src) {
1265 if (phy->allocated_src == D40_ALLOC_PHY)
1266 goto not_found;
1268 if (phy->allocated_src == D40_ALLOC_FREE)
1269 phy->allocated_src = D40_ALLOC_LOG_FREE;
1271 if (!(phy->allocated_src & (1 << log_event_line))) {
1272 phy->allocated_src |= 1 << log_event_line;
1273 goto found;
1274 } else
1275 goto not_found;
1276 } else {
1277 if (phy->allocated_dst == D40_ALLOC_PHY)
1278 goto not_found;
1280 if (phy->allocated_dst == D40_ALLOC_FREE)
1281 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1283 if (!(phy->allocated_dst & (1 << log_event_line))) {
1284 phy->allocated_dst |= 1 << log_event_line;
1285 goto found;
1286 } else
1287 goto not_found;
1290 not_found:
1291 spin_unlock_irqrestore(&phy->lock, flags);
1292 return false;
1293 found:
1294 spin_unlock_irqrestore(&phy->lock, flags);
1295 return true;
1298 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1299 int log_event_line)
1301 unsigned long flags;
1302 bool is_free = false;
1304 spin_lock_irqsave(&phy->lock, flags);
1305 if (!log_event_line) {
1306 phy->allocated_dst = D40_ALLOC_FREE;
1307 phy->allocated_src = D40_ALLOC_FREE;
1308 is_free = true;
1309 goto out;
1312 /* Logical channel */
1313 if (is_src) {
1314 phy->allocated_src &= ~(1 << log_event_line);
1315 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1316 phy->allocated_src = D40_ALLOC_FREE;
1317 } else {
1318 phy->allocated_dst &= ~(1 << log_event_line);
1319 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1320 phy->allocated_dst = D40_ALLOC_FREE;
1323 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1324 D40_ALLOC_FREE);
1326 out:
1327 spin_unlock_irqrestore(&phy->lock, flags);
1329 return is_free;
1332 static int d40_allocate_channel(struct d40_chan *d40c)
1334 int dev_type;
1335 int event_group;
1336 int event_line;
1337 struct d40_phy_res *phys;
1338 int i;
1339 int j;
1340 int log_num;
1341 bool is_src;
1342 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1344 phys = d40c->base->phy_res;
1346 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1347 dev_type = d40c->dma_cfg.src_dev_type;
1348 log_num = 2 * dev_type;
1349 is_src = true;
1350 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1351 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1352 /* dst event lines are used for logical memcpy */
1353 dev_type = d40c->dma_cfg.dst_dev_type;
1354 log_num = 2 * dev_type + 1;
1355 is_src = false;
1356 } else
1357 return -EINVAL;
1359 event_group = D40_TYPE_TO_GROUP(dev_type);
1360 event_line = D40_TYPE_TO_EVENT(dev_type);
1362 if (!is_log) {
1363 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1364 /* Find physical half channel */
1365 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1367 if (d40_alloc_mask_set(&phys[i], is_src,
1368 0, is_log))
1369 goto found_phy;
1371 } else
1372 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1373 int phy_num = j + event_group * 2;
1374 for (i = phy_num; i < phy_num + 2; i++) {
1375 if (d40_alloc_mask_set(&phys[i],
1376 is_src,
1378 is_log))
1379 goto found_phy;
1382 return -EINVAL;
1383 found_phy:
1384 d40c->phy_chan = &phys[i];
1385 d40c->log_num = D40_PHY_CHAN;
1386 goto out;
1388 if (dev_type == -1)
1389 return -EINVAL;
1391 /* Find logical channel */
1392 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1393 int phy_num = j + event_group * 2;
1395 * Spread logical channels across all available physical rather
1396 * than pack every logical channel at the first available phy
1397 * channels.
1399 if (is_src) {
1400 for (i = phy_num; i < phy_num + 2; i++) {
1401 if (d40_alloc_mask_set(&phys[i], is_src,
1402 event_line, is_log))
1403 goto found_log;
1405 } else {
1406 for (i = phy_num + 1; i >= phy_num; i--) {
1407 if (d40_alloc_mask_set(&phys[i], is_src,
1408 event_line, is_log))
1409 goto found_log;
1413 return -EINVAL;
1415 found_log:
1416 d40c->phy_chan = &phys[i];
1417 d40c->log_num = log_num;
1418 out:
1420 if (is_log)
1421 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1422 else
1423 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1425 return 0;
1429 static int d40_config_memcpy(struct d40_chan *d40c)
1431 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1433 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1434 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1435 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1436 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1437 memcpy[d40c->chan.chan_id];
1439 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1440 dma_has_cap(DMA_SLAVE, cap)) {
1441 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1442 } else {
1443 dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1444 __func__);
1445 return -EINVAL;
1448 return 0;
1452 static int d40_free_dma(struct d40_chan *d40c)
1455 int res = 0;
1456 u32 event;
1457 struct d40_phy_res *phy = d40c->phy_chan;
1458 bool is_src;
1459 struct d40_desc *d;
1460 struct d40_desc *_d;
1463 /* Terminate all queued and active transfers */
1464 d40_term_all(d40c);
1466 /* Release client owned descriptors */
1467 if (!list_empty(&d40c->client))
1468 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1469 d40_pool_lli_free(d);
1470 d40_desc_remove(d);
1471 d40_desc_free(d40c, d);
1474 if (phy == NULL) {
1475 dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1476 __func__);
1477 return -EINVAL;
1480 if (phy->allocated_src == D40_ALLOC_FREE &&
1481 phy->allocated_dst == D40_ALLOC_FREE) {
1482 dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1483 __func__);
1484 return -EINVAL;
1487 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1488 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1489 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1490 is_src = false;
1491 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1492 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1493 is_src = true;
1494 } else {
1495 dev_err(&d40c->chan.dev->device,
1496 "[%s] Unknown direction\n", __func__);
1497 return -EINVAL;
1500 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1501 if (res) {
1502 dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1503 __func__);
1504 return res;
1507 if (d40c->log_num != D40_PHY_CHAN) {
1508 /* Release logical channel, deactivate the event line */
1510 d40_config_set_event(d40c, false);
1511 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1514 * Check if there are more logical allocation
1515 * on this phy channel.
1517 if (!d40_alloc_mask_free(phy, is_src, event)) {
1518 /* Resume the other logical channels if any */
1519 if (d40_chan_has_events(d40c)) {
1520 res = d40_channel_execute_command(d40c,
1521 D40_DMA_RUN);
1522 if (res) {
1523 dev_err(&d40c->chan.dev->device,
1524 "[%s] Executing RUN command\n",
1525 __func__);
1526 return res;
1529 return 0;
1531 } else {
1532 (void) d40_alloc_mask_free(phy, is_src, 0);
1535 /* Release physical channel */
1536 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1537 if (res) {
1538 dev_err(&d40c->chan.dev->device,
1539 "[%s] Failed to stop channel\n", __func__);
1540 return res;
1542 d40c->phy_chan = NULL;
1543 d40c->configured = false;
1544 d40c->base->lookup_phy_chans[phy->num] = NULL;
1546 return 0;
1549 static bool d40_is_paused(struct d40_chan *d40c)
1551 bool is_paused = false;
1552 unsigned long flags;
1553 void __iomem *active_reg;
1554 u32 status;
1555 u32 event;
1557 spin_lock_irqsave(&d40c->lock, flags);
1559 if (d40c->log_num == D40_PHY_CHAN) {
1560 if (d40c->phy_chan->num % 2 == 0)
1561 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1562 else
1563 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1565 status = (readl(active_reg) &
1566 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1567 D40_CHAN_POS(d40c->phy_chan->num);
1568 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1569 is_paused = true;
1571 goto _exit;
1574 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1575 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1576 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1577 status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1578 d40c->phy_chan->num * D40_DREG_PCDELTA +
1579 D40_CHAN_REG_SDLNK);
1580 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1581 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1582 status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1583 d40c->phy_chan->num * D40_DREG_PCDELTA +
1584 D40_CHAN_REG_SSLNK);
1585 } else {
1586 dev_err(&d40c->chan.dev->device,
1587 "[%s] Unknown direction\n", __func__);
1588 goto _exit;
1591 status = (status & D40_EVENTLINE_MASK(event)) >>
1592 D40_EVENTLINE_POS(event);
1594 if (status != D40_DMA_RUN)
1595 is_paused = true;
1596 _exit:
1597 spin_unlock_irqrestore(&d40c->lock, flags);
1598 return is_paused;
1603 static u32 stedma40_residue(struct dma_chan *chan)
1605 struct d40_chan *d40c =
1606 container_of(chan, struct d40_chan, chan);
1607 u32 bytes_left;
1608 unsigned long flags;
1610 spin_lock_irqsave(&d40c->lock, flags);
1611 bytes_left = d40_residue(d40c);
1612 spin_unlock_irqrestore(&d40c->lock, flags);
1614 return bytes_left;
1617 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1618 struct scatterlist *sgl_dst,
1619 struct scatterlist *sgl_src,
1620 unsigned int sgl_len,
1621 unsigned long dma_flags)
1623 int res;
1624 struct d40_desc *d40d;
1625 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1626 chan);
1627 unsigned long flags;
1629 if (d40c->phy_chan == NULL) {
1630 dev_err(&d40c->chan.dev->device,
1631 "[%s] Unallocated channel.\n", __func__);
1632 return ERR_PTR(-EINVAL);
1635 spin_lock_irqsave(&d40c->lock, flags);
1636 d40d = d40_desc_get(d40c);
1638 if (d40d == NULL)
1639 goto err;
1641 d40d->lli_len = sgl_len;
1642 d40d->lli_current = 0;
1643 d40d->txd.flags = dma_flags;
1645 if (d40c->log_num != D40_PHY_CHAN) {
1647 if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1648 dev_err(&d40c->chan.dev->device,
1649 "[%s] Out of memory\n", __func__);
1650 goto err;
1653 (void) d40_log_sg_to_lli(sgl_src,
1654 sgl_len,
1655 d40d->lli_log.src,
1656 d40c->log_def.lcsp1,
1657 d40c->dma_cfg.src_info.data_width);
1659 (void) d40_log_sg_to_lli(sgl_dst,
1660 sgl_len,
1661 d40d->lli_log.dst,
1662 d40c->log_def.lcsp3,
1663 d40c->dma_cfg.dst_info.data_width);
1664 } else {
1665 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1666 dev_err(&d40c->chan.dev->device,
1667 "[%s] Out of memory\n", __func__);
1668 goto err;
1671 res = d40_phy_sg_to_lli(sgl_src,
1672 sgl_len,
1674 d40d->lli_phy.src,
1675 virt_to_phys(d40d->lli_phy.src),
1676 d40c->src_def_cfg,
1677 d40c->dma_cfg.src_info.data_width,
1678 d40c->dma_cfg.src_info.psize);
1680 if (res < 0)
1681 goto err;
1683 res = d40_phy_sg_to_lli(sgl_dst,
1684 sgl_len,
1686 d40d->lli_phy.dst,
1687 virt_to_phys(d40d->lli_phy.dst),
1688 d40c->dst_def_cfg,
1689 d40c->dma_cfg.dst_info.data_width,
1690 d40c->dma_cfg.dst_info.psize);
1692 if (res < 0)
1693 goto err;
1695 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1696 d40d->lli_pool.size, DMA_TO_DEVICE);
1699 dma_async_tx_descriptor_init(&d40d->txd, chan);
1701 d40d->txd.tx_submit = d40_tx_submit;
1703 spin_unlock_irqrestore(&d40c->lock, flags);
1705 return &d40d->txd;
1706 err:
1707 if (d40d)
1708 d40_desc_free(d40c, d40d);
1709 spin_unlock_irqrestore(&d40c->lock, flags);
1710 return NULL;
1712 EXPORT_SYMBOL(stedma40_memcpy_sg);
1714 bool stedma40_filter(struct dma_chan *chan, void *data)
1716 struct stedma40_chan_cfg *info = data;
1717 struct d40_chan *d40c =
1718 container_of(chan, struct d40_chan, chan);
1719 int err;
1721 if (data) {
1722 err = d40_validate_conf(d40c, info);
1723 if (!err)
1724 d40c->dma_cfg = *info;
1725 } else
1726 err = d40_config_memcpy(d40c);
1728 if (!err)
1729 d40c->configured = true;
1731 return err == 0;
1733 EXPORT_SYMBOL(stedma40_filter);
1735 /* DMA ENGINE functions */
1736 static int d40_alloc_chan_resources(struct dma_chan *chan)
1738 int err;
1739 unsigned long flags;
1740 struct d40_chan *d40c =
1741 container_of(chan, struct d40_chan, chan);
1742 bool is_free_phy;
1743 spin_lock_irqsave(&d40c->lock, flags);
1745 d40c->completed = chan->cookie = 1;
1747 /* If no dma configuration is set use default configuration (memcpy) */
1748 if (!d40c->configured) {
1749 err = d40_config_memcpy(d40c);
1750 if (err) {
1751 dev_err(&d40c->chan.dev->device,
1752 "[%s] Failed to configure memcpy channel\n",
1753 __func__);
1754 goto fail;
1757 is_free_phy = (d40c->phy_chan == NULL);
1759 err = d40_allocate_channel(d40c);
1760 if (err) {
1761 dev_err(&d40c->chan.dev->device,
1762 "[%s] Failed to allocate channel\n", __func__);
1763 goto fail;
1766 /* Fill in basic CFG register values */
1767 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1768 &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1770 if (d40c->log_num != D40_PHY_CHAN) {
1771 d40_log_cfg(&d40c->dma_cfg,
1772 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1774 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1775 d40c->lcpa = d40c->base->lcpa_base +
1776 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1777 else
1778 d40c->lcpa = d40c->base->lcpa_base +
1779 d40c->dma_cfg.dst_dev_type *
1780 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1784 * Only write channel configuration to the DMA if the physical
1785 * resource is free. In case of multiple logical channels
1786 * on the same physical resource, only the first write is necessary.
1788 if (is_free_phy)
1789 d40_config_write(d40c);
1790 fail:
1791 spin_unlock_irqrestore(&d40c->lock, flags);
1792 return err;
1795 static void d40_free_chan_resources(struct dma_chan *chan)
1797 struct d40_chan *d40c =
1798 container_of(chan, struct d40_chan, chan);
1799 int err;
1800 unsigned long flags;
1802 if (d40c->phy_chan == NULL) {
1803 dev_err(&d40c->chan.dev->device,
1804 "[%s] Cannot free unallocated channel\n", __func__);
1805 return;
1809 spin_lock_irqsave(&d40c->lock, flags);
1811 err = d40_free_dma(d40c);
1813 if (err)
1814 dev_err(&d40c->chan.dev->device,
1815 "[%s] Failed to free channel\n", __func__);
1816 spin_unlock_irqrestore(&d40c->lock, flags);
1819 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1820 dma_addr_t dst,
1821 dma_addr_t src,
1822 size_t size,
1823 unsigned long dma_flags)
1825 struct d40_desc *d40d;
1826 struct d40_chan *d40c = container_of(chan, struct d40_chan,
1827 chan);
1828 unsigned long flags;
1829 int err = 0;
1831 if (d40c->phy_chan == NULL) {
1832 dev_err(&d40c->chan.dev->device,
1833 "[%s] Channel is not allocated.\n", __func__);
1834 return ERR_PTR(-EINVAL);
1837 spin_lock_irqsave(&d40c->lock, flags);
1838 d40d = d40_desc_get(d40c);
1840 if (d40d == NULL) {
1841 dev_err(&d40c->chan.dev->device,
1842 "[%s] Descriptor is NULL\n", __func__);
1843 goto err;
1846 d40d->txd.flags = dma_flags;
1848 dma_async_tx_descriptor_init(&d40d->txd, chan);
1850 d40d->txd.tx_submit = d40_tx_submit;
1852 if (d40c->log_num != D40_PHY_CHAN) {
1854 if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1855 dev_err(&d40c->chan.dev->device,
1856 "[%s] Out of memory\n", __func__);
1857 goto err;
1859 d40d->lli_len = 1;
1860 d40d->lli_current = 0;
1862 d40_log_fill_lli(d40d->lli_log.src,
1863 src,
1864 size,
1865 d40c->log_def.lcsp1,
1866 d40c->dma_cfg.src_info.data_width,
1867 true);
1869 d40_log_fill_lli(d40d->lli_log.dst,
1870 dst,
1871 size,
1872 d40c->log_def.lcsp3,
1873 d40c->dma_cfg.dst_info.data_width,
1874 true);
1876 } else {
1878 if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1879 dev_err(&d40c->chan.dev->device,
1880 "[%s] Out of memory\n", __func__);
1881 goto err;
1884 err = d40_phy_fill_lli(d40d->lli_phy.src,
1885 src,
1886 size,
1887 d40c->dma_cfg.src_info.psize,
1889 d40c->src_def_cfg,
1890 true,
1891 d40c->dma_cfg.src_info.data_width,
1892 false);
1893 if (err)
1894 goto err_fill_lli;
1896 err = d40_phy_fill_lli(d40d->lli_phy.dst,
1897 dst,
1898 size,
1899 d40c->dma_cfg.dst_info.psize,
1901 d40c->dst_def_cfg,
1902 true,
1903 d40c->dma_cfg.dst_info.data_width,
1904 false);
1906 if (err)
1907 goto err_fill_lli;
1909 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1910 d40d->lli_pool.size, DMA_TO_DEVICE);
1913 spin_unlock_irqrestore(&d40c->lock, flags);
1914 return &d40d->txd;
1916 err_fill_lli:
1917 dev_err(&d40c->chan.dev->device,
1918 "[%s] Failed filling in PHY LLI\n", __func__);
1919 err:
1920 if (d40d)
1921 d40_desc_free(d40c, d40d);
1922 spin_unlock_irqrestore(&d40c->lock, flags);
1923 return NULL;
1926 static struct dma_async_tx_descriptor *
1927 d40_prep_sg(struct dma_chan *chan,
1928 struct scatterlist *dst_sg, unsigned int dst_nents,
1929 struct scatterlist *src_sg, unsigned int src_nents,
1930 unsigned long dma_flags)
1932 if (dst_nents != src_nents)
1933 return NULL;
1935 return stedma40_memcpy_sg(chan, dst_sg, src_sg, dst_nents, dma_flags);
1938 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1939 struct d40_chan *d40c,
1940 struct scatterlist *sgl,
1941 unsigned int sg_len,
1942 enum dma_data_direction direction,
1943 unsigned long dma_flags)
1945 dma_addr_t dev_addr = 0;
1946 int total_size;
1948 if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1949 dev_err(&d40c->chan.dev->device,
1950 "[%s] Out of memory\n", __func__);
1951 return -ENOMEM;
1954 d40d->lli_len = sg_len;
1955 d40d->lli_current = 0;
1957 if (direction == DMA_FROM_DEVICE)
1958 if (d40c->runtime_addr)
1959 dev_addr = d40c->runtime_addr;
1960 else
1961 dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1962 else if (direction == DMA_TO_DEVICE)
1963 if (d40c->runtime_addr)
1964 dev_addr = d40c->runtime_addr;
1965 else
1966 dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1968 else
1969 return -EINVAL;
1971 total_size = d40_log_sg_to_dev(sgl, sg_len,
1972 &d40d->lli_log,
1973 &d40c->log_def,
1974 d40c->dma_cfg.src_info.data_width,
1975 d40c->dma_cfg.dst_info.data_width,
1976 direction,
1977 dev_addr);
1979 if (total_size < 0)
1980 return -EINVAL;
1982 return 0;
1985 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1986 struct d40_chan *d40c,
1987 struct scatterlist *sgl,
1988 unsigned int sgl_len,
1989 enum dma_data_direction direction,
1990 unsigned long dma_flags)
1992 dma_addr_t src_dev_addr;
1993 dma_addr_t dst_dev_addr;
1994 int res;
1996 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1997 dev_err(&d40c->chan.dev->device,
1998 "[%s] Out of memory\n", __func__);
1999 return -ENOMEM;
2002 d40d->lli_len = sgl_len;
2003 d40d->lli_current = 0;
2005 if (direction == DMA_FROM_DEVICE) {
2006 dst_dev_addr = 0;
2007 if (d40c->runtime_addr)
2008 src_dev_addr = d40c->runtime_addr;
2009 else
2010 src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
2011 } else if (direction == DMA_TO_DEVICE) {
2012 if (d40c->runtime_addr)
2013 dst_dev_addr = d40c->runtime_addr;
2014 else
2015 dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
2016 src_dev_addr = 0;
2017 } else
2018 return -EINVAL;
2020 res = d40_phy_sg_to_lli(sgl,
2021 sgl_len,
2022 src_dev_addr,
2023 d40d->lli_phy.src,
2024 virt_to_phys(d40d->lli_phy.src),
2025 d40c->src_def_cfg,
2026 d40c->dma_cfg.src_info.data_width,
2027 d40c->dma_cfg.src_info.psize);
2028 if (res < 0)
2029 return res;
2031 res = d40_phy_sg_to_lli(sgl,
2032 sgl_len,
2033 dst_dev_addr,
2034 d40d->lli_phy.dst,
2035 virt_to_phys(d40d->lli_phy.dst),
2036 d40c->dst_def_cfg,
2037 d40c->dma_cfg.dst_info.data_width,
2038 d40c->dma_cfg.dst_info.psize);
2039 if (res < 0)
2040 return res;
2042 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2043 d40d->lli_pool.size, DMA_TO_DEVICE);
2044 return 0;
2047 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2048 struct scatterlist *sgl,
2049 unsigned int sg_len,
2050 enum dma_data_direction direction,
2051 unsigned long dma_flags)
2053 struct d40_desc *d40d;
2054 struct d40_chan *d40c = container_of(chan, struct d40_chan,
2055 chan);
2056 unsigned long flags;
2057 int err;
2059 if (d40c->phy_chan == NULL) {
2060 dev_err(&d40c->chan.dev->device,
2061 "[%s] Cannot prepare unallocated channel\n", __func__);
2062 return ERR_PTR(-EINVAL);
2065 spin_lock_irqsave(&d40c->lock, flags);
2066 d40d = d40_desc_get(d40c);
2068 if (d40d == NULL)
2069 goto err;
2071 if (d40c->log_num != D40_PHY_CHAN)
2072 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2073 direction, dma_flags);
2074 else
2075 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2076 direction, dma_flags);
2077 if (err) {
2078 dev_err(&d40c->chan.dev->device,
2079 "[%s] Failed to prepare %s slave sg job: %d\n",
2080 __func__,
2081 d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2082 goto err;
2085 d40d->txd.flags = dma_flags;
2087 dma_async_tx_descriptor_init(&d40d->txd, chan);
2089 d40d->txd.tx_submit = d40_tx_submit;
2091 spin_unlock_irqrestore(&d40c->lock, flags);
2092 return &d40d->txd;
2094 err:
2095 if (d40d)
2096 d40_desc_free(d40c, d40d);
2097 spin_unlock_irqrestore(&d40c->lock, flags);
2098 return NULL;
2101 static enum dma_status d40_tx_status(struct dma_chan *chan,
2102 dma_cookie_t cookie,
2103 struct dma_tx_state *txstate)
2105 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2106 dma_cookie_t last_used;
2107 dma_cookie_t last_complete;
2108 int ret;
2110 if (d40c->phy_chan == NULL) {
2111 dev_err(&d40c->chan.dev->device,
2112 "[%s] Cannot read status of unallocated channel\n",
2113 __func__);
2114 return -EINVAL;
2117 last_complete = d40c->completed;
2118 last_used = chan->cookie;
2120 if (d40_is_paused(d40c))
2121 ret = DMA_PAUSED;
2122 else
2123 ret = dma_async_is_complete(cookie, last_complete, last_used);
2125 dma_set_tx_state(txstate, last_complete, last_used,
2126 stedma40_residue(chan));
2128 return ret;
2131 static void d40_issue_pending(struct dma_chan *chan)
2133 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2134 unsigned long flags;
2136 if (d40c->phy_chan == NULL) {
2137 dev_err(&d40c->chan.dev->device,
2138 "[%s] Channel is not allocated!\n", __func__);
2139 return;
2142 spin_lock_irqsave(&d40c->lock, flags);
2144 /* Busy means that pending jobs are already being processed */
2145 if (!d40c->busy)
2146 (void) d40_queue_start(d40c);
2148 spin_unlock_irqrestore(&d40c->lock, flags);
2151 /* Runtime reconfiguration extension */
2152 static void d40_set_runtime_config(struct dma_chan *chan,
2153 struct dma_slave_config *config)
2155 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2156 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2157 enum dma_slave_buswidth config_addr_width;
2158 dma_addr_t config_addr;
2159 u32 config_maxburst;
2160 enum stedma40_periph_data_width addr_width;
2161 int psize;
2163 if (config->direction == DMA_FROM_DEVICE) {
2164 dma_addr_t dev_addr_rx =
2165 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2167 config_addr = config->src_addr;
2168 if (dev_addr_rx)
2169 dev_dbg(d40c->base->dev,
2170 "channel has a pre-wired RX address %08x "
2171 "overriding with %08x\n",
2172 dev_addr_rx, config_addr);
2173 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2174 dev_dbg(d40c->base->dev,
2175 "channel was not configured for peripheral "
2176 "to memory transfer (%d) overriding\n",
2177 cfg->dir);
2178 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2180 config_addr_width = config->src_addr_width;
2181 config_maxburst = config->src_maxburst;
2183 } else if (config->direction == DMA_TO_DEVICE) {
2184 dma_addr_t dev_addr_tx =
2185 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2187 config_addr = config->dst_addr;
2188 if (dev_addr_tx)
2189 dev_dbg(d40c->base->dev,
2190 "channel has a pre-wired TX address %08x "
2191 "overriding with %08x\n",
2192 dev_addr_tx, config_addr);
2193 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2194 dev_dbg(d40c->base->dev,
2195 "channel was not configured for memory "
2196 "to peripheral transfer (%d) overriding\n",
2197 cfg->dir);
2198 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2200 config_addr_width = config->dst_addr_width;
2201 config_maxburst = config->dst_maxburst;
2203 } else {
2204 dev_err(d40c->base->dev,
2205 "unrecognized channel direction %d\n",
2206 config->direction);
2207 return;
2210 switch (config_addr_width) {
2211 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2212 addr_width = STEDMA40_BYTE_WIDTH;
2213 break;
2214 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2215 addr_width = STEDMA40_HALFWORD_WIDTH;
2216 break;
2217 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2218 addr_width = STEDMA40_WORD_WIDTH;
2219 break;
2220 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2221 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2222 break;
2223 default:
2224 dev_err(d40c->base->dev,
2225 "illegal peripheral address width "
2226 "requested (%d)\n",
2227 config->src_addr_width);
2228 return;
2231 if (d40c->log_num != D40_PHY_CHAN) {
2232 if (config_maxburst >= 16)
2233 psize = STEDMA40_PSIZE_LOG_16;
2234 else if (config_maxburst >= 8)
2235 psize = STEDMA40_PSIZE_LOG_8;
2236 else if (config_maxburst >= 4)
2237 psize = STEDMA40_PSIZE_LOG_4;
2238 else
2239 psize = STEDMA40_PSIZE_LOG_1;
2240 } else {
2241 if (config_maxburst >= 16)
2242 psize = STEDMA40_PSIZE_PHY_16;
2243 else if (config_maxburst >= 8)
2244 psize = STEDMA40_PSIZE_PHY_8;
2245 else if (config_maxburst >= 4)
2246 psize = STEDMA40_PSIZE_PHY_4;
2247 else
2248 psize = STEDMA40_PSIZE_PHY_1;
2251 /* Set up all the endpoint configs */
2252 cfg->src_info.data_width = addr_width;
2253 cfg->src_info.psize = psize;
2254 cfg->src_info.big_endian = false;
2255 cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2256 cfg->dst_info.data_width = addr_width;
2257 cfg->dst_info.psize = psize;
2258 cfg->dst_info.big_endian = false;
2259 cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2261 /* Fill in register values */
2262 if (d40c->log_num != D40_PHY_CHAN)
2263 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2264 else
2265 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2266 &d40c->dst_def_cfg, false);
2268 /* These settings will take precedence later */
2269 d40c->runtime_addr = config_addr;
2270 d40c->runtime_direction = config->direction;
2271 dev_dbg(d40c->base->dev,
2272 "configured channel %s for %s, data width %d, "
2273 "maxburst %d bytes, LE, no flow control\n",
2274 dma_chan_name(chan),
2275 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2276 config_addr_width,
2277 config_maxburst);
2280 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2281 unsigned long arg)
2283 unsigned long flags;
2284 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2286 if (d40c->phy_chan == NULL) {
2287 dev_err(&d40c->chan.dev->device,
2288 "[%s] Channel is not allocated!\n", __func__);
2289 return -EINVAL;
2292 switch (cmd) {
2293 case DMA_TERMINATE_ALL:
2294 spin_lock_irqsave(&d40c->lock, flags);
2295 d40_term_all(d40c);
2296 spin_unlock_irqrestore(&d40c->lock, flags);
2297 return 0;
2298 case DMA_PAUSE:
2299 return d40_pause(chan);
2300 case DMA_RESUME:
2301 return d40_resume(chan);
2302 case DMA_SLAVE_CONFIG:
2303 d40_set_runtime_config(chan,
2304 (struct dma_slave_config *) arg);
2305 return 0;
2306 default:
2307 break;
2310 /* Other commands are unimplemented */
2311 return -ENXIO;
2314 /* Initialization functions */
2316 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2317 struct d40_chan *chans, int offset,
2318 int num_chans)
2320 int i = 0;
2321 struct d40_chan *d40c;
2323 INIT_LIST_HEAD(&dma->channels);
2325 for (i = offset; i < offset + num_chans; i++) {
2326 d40c = &chans[i];
2327 d40c->base = base;
2328 d40c->chan.device = dma;
2330 spin_lock_init(&d40c->lock);
2332 d40c->log_num = D40_PHY_CHAN;
2334 INIT_LIST_HEAD(&d40c->active);
2335 INIT_LIST_HEAD(&d40c->queue);
2336 INIT_LIST_HEAD(&d40c->client);
2338 tasklet_init(&d40c->tasklet, dma_tasklet,
2339 (unsigned long) d40c);
2341 list_add_tail(&d40c->chan.device_node,
2342 &dma->channels);
2346 static int __init d40_dmaengine_init(struct d40_base *base,
2347 int num_reserved_chans)
2349 int err ;
2351 d40_chan_init(base, &base->dma_slave, base->log_chans,
2352 0, base->num_log_chans);
2354 dma_cap_zero(base->dma_slave.cap_mask);
2355 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2357 base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2358 base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2359 base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2360 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2361 base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2362 base->dma_slave.device_tx_status = d40_tx_status;
2363 base->dma_slave.device_issue_pending = d40_issue_pending;
2364 base->dma_slave.device_control = d40_control;
2365 base->dma_slave.dev = base->dev;
2367 err = dma_async_device_register(&base->dma_slave);
2369 if (err) {
2370 dev_err(base->dev,
2371 "[%s] Failed to register slave channels\n",
2372 __func__);
2373 goto failure1;
2376 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2377 base->num_log_chans, base->plat_data->memcpy_len);
2379 dma_cap_zero(base->dma_memcpy.cap_mask);
2380 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2381 dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2383 base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2384 base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2385 base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2386 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2387 base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2388 base->dma_memcpy.device_tx_status = d40_tx_status;
2389 base->dma_memcpy.device_issue_pending = d40_issue_pending;
2390 base->dma_memcpy.device_control = d40_control;
2391 base->dma_memcpy.dev = base->dev;
2393 * This controller can only access address at even
2394 * 32bit boundaries, i.e. 2^2
2396 base->dma_memcpy.copy_align = 2;
2398 err = dma_async_device_register(&base->dma_memcpy);
2400 if (err) {
2401 dev_err(base->dev,
2402 "[%s] Failed to regsiter memcpy only channels\n",
2403 __func__);
2404 goto failure2;
2407 d40_chan_init(base, &base->dma_both, base->phy_chans,
2408 0, num_reserved_chans);
2410 dma_cap_zero(base->dma_both.cap_mask);
2411 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2412 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2413 dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2415 base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2416 base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2417 base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2418 base->dma_slave.device_prep_dma_sg = d40_prep_sg;
2419 base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2420 base->dma_both.device_tx_status = d40_tx_status;
2421 base->dma_both.device_issue_pending = d40_issue_pending;
2422 base->dma_both.device_control = d40_control;
2423 base->dma_both.dev = base->dev;
2424 base->dma_both.copy_align = 2;
2425 err = dma_async_device_register(&base->dma_both);
2427 if (err) {
2428 dev_err(base->dev,
2429 "[%s] Failed to register logical and physical capable channels\n",
2430 __func__);
2431 goto failure3;
2433 return 0;
2434 failure3:
2435 dma_async_device_unregister(&base->dma_memcpy);
2436 failure2:
2437 dma_async_device_unregister(&base->dma_slave);
2438 failure1:
2439 return err;
2442 /* Initialization functions. */
2444 static int __init d40_phy_res_init(struct d40_base *base)
2446 int i;
2447 int num_phy_chans_avail = 0;
2448 u32 val[2];
2449 int odd_even_bit = -2;
2451 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2452 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2454 for (i = 0; i < base->num_phy_chans; i++) {
2455 base->phy_res[i].num = i;
2456 odd_even_bit += 2 * ((i % 2) == 0);
2457 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2458 /* Mark security only channels as occupied */
2459 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2460 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2461 } else {
2462 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2463 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2464 num_phy_chans_avail++;
2466 spin_lock_init(&base->phy_res[i].lock);
2469 /* Mark disabled channels as occupied */
2470 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2471 int chan = base->plat_data->disabled_channels[i];
2473 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2474 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2475 num_phy_chans_avail--;
2478 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2479 num_phy_chans_avail, base->num_phy_chans);
2481 /* Verify settings extended vs standard */
2482 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2484 for (i = 0; i < base->num_phy_chans; i++) {
2486 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2487 (val[0] & 0x3) != 1)
2488 dev_info(base->dev,
2489 "[%s] INFO: channel %d is misconfigured (%d)\n",
2490 __func__, i, val[0] & 0x3);
2492 val[0] = val[0] >> 2;
2495 return num_phy_chans_avail;
2498 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2500 static const struct d40_reg_val dma_id_regs[] = {
2501 /* Peripheral Id */
2502 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2503 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2505 * D40_DREG_PERIPHID2 Depends on HW revision:
2506 * MOP500/HREF ED has 0x0008,
2507 * ? has 0x0018,
2508 * HREF V1 has 0x0028
2510 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2512 /* PCell Id */
2513 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2514 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2515 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2516 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2518 struct stedma40_platform_data *plat_data;
2519 struct clk *clk = NULL;
2520 void __iomem *virtbase = NULL;
2521 struct resource *res = NULL;
2522 struct d40_base *base = NULL;
2523 int num_log_chans = 0;
2524 int num_phy_chans;
2525 int i;
2526 u32 val;
2527 u32 rev;
2529 clk = clk_get(&pdev->dev, NULL);
2531 if (IS_ERR(clk)) {
2532 dev_err(&pdev->dev, "[%s] No matching clock found\n",
2533 __func__);
2534 goto failure;
2537 clk_enable(clk);
2539 /* Get IO for DMAC base address */
2540 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2541 if (!res)
2542 goto failure;
2544 if (request_mem_region(res->start, resource_size(res),
2545 D40_NAME " I/O base") == NULL)
2546 goto failure;
2548 virtbase = ioremap(res->start, resource_size(res));
2549 if (!virtbase)
2550 goto failure;
2552 /* HW version check */
2553 for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2554 if (dma_id_regs[i].val !=
2555 readl(virtbase + dma_id_regs[i].reg)) {
2556 dev_err(&pdev->dev,
2557 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2558 __func__,
2559 dma_id_regs[i].val,
2560 dma_id_regs[i].reg,
2561 readl(virtbase + dma_id_regs[i].reg));
2562 goto failure;
2566 /* Get silicon revision and designer */
2567 val = readl(virtbase + D40_DREG_PERIPHID2);
2569 if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2570 D40_HW_DESIGNER) {
2571 dev_err(&pdev->dev,
2572 "[%s] Unknown designer! Got %x wanted %x\n",
2573 __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2574 D40_HW_DESIGNER);
2575 goto failure;
2578 rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2579 D40_DREG_PERIPHID2_REV_POS;
2581 /* The number of physical channels on this HW */
2582 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2584 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2585 rev, res->start);
2587 plat_data = pdev->dev.platform_data;
2589 /* Count the number of logical channels in use */
2590 for (i = 0; i < plat_data->dev_len; i++)
2591 if (plat_data->dev_rx[i] != 0)
2592 num_log_chans++;
2594 for (i = 0; i < plat_data->dev_len; i++)
2595 if (plat_data->dev_tx[i] != 0)
2596 num_log_chans++;
2598 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2599 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2600 sizeof(struct d40_chan), GFP_KERNEL);
2602 if (base == NULL) {
2603 dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2604 goto failure;
2607 base->rev = rev;
2608 base->clk = clk;
2609 base->num_phy_chans = num_phy_chans;
2610 base->num_log_chans = num_log_chans;
2611 base->phy_start = res->start;
2612 base->phy_size = resource_size(res);
2613 base->virtbase = virtbase;
2614 base->plat_data = plat_data;
2615 base->dev = &pdev->dev;
2616 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2617 base->log_chans = &base->phy_chans[num_phy_chans];
2619 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2620 GFP_KERNEL);
2621 if (!base->phy_res)
2622 goto failure;
2624 base->lookup_phy_chans = kzalloc(num_phy_chans *
2625 sizeof(struct d40_chan *),
2626 GFP_KERNEL);
2627 if (!base->lookup_phy_chans)
2628 goto failure;
2630 if (num_log_chans + plat_data->memcpy_len) {
2632 * The max number of logical channels are event lines for all
2633 * src devices and dst devices
2635 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2636 sizeof(struct d40_chan *),
2637 GFP_KERNEL);
2638 if (!base->lookup_log_chans)
2639 goto failure;
2642 base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2643 sizeof(struct d40_desc *) *
2644 D40_LCLA_LINK_PER_EVENT_GRP,
2645 GFP_KERNEL);
2646 if (!base->lcla_pool.alloc_map)
2647 goto failure;
2649 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2650 0, SLAB_HWCACHE_ALIGN,
2651 NULL);
2652 if (base->desc_slab == NULL)
2653 goto failure;
2655 return base;
2657 failure:
2658 if (!IS_ERR(clk)) {
2659 clk_disable(clk);
2660 clk_put(clk);
2662 if (virtbase)
2663 iounmap(virtbase);
2664 if (res)
2665 release_mem_region(res->start,
2666 resource_size(res));
2667 if (virtbase)
2668 iounmap(virtbase);
2670 if (base) {
2671 kfree(base->lcla_pool.alloc_map);
2672 kfree(base->lookup_log_chans);
2673 kfree(base->lookup_phy_chans);
2674 kfree(base->phy_res);
2675 kfree(base);
2678 return NULL;
2681 static void __init d40_hw_init(struct d40_base *base)
2684 static const struct d40_reg_val dma_init_reg[] = {
2685 /* Clock every part of the DMA block from start */
2686 { .reg = D40_DREG_GCC, .val = 0x0000ff01},
2688 /* Interrupts on all logical channels */
2689 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2690 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2691 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2692 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2693 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2694 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2695 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2696 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2697 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2698 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2699 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2700 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2702 int i;
2703 u32 prmseo[2] = {0, 0};
2704 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2705 u32 pcmis = 0;
2706 u32 pcicr = 0;
2708 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2709 writel(dma_init_reg[i].val,
2710 base->virtbase + dma_init_reg[i].reg);
2712 /* Configure all our dma channels to default settings */
2713 for (i = 0; i < base->num_phy_chans; i++) {
2715 activeo[i % 2] = activeo[i % 2] << 2;
2717 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2718 == D40_ALLOC_PHY) {
2719 activeo[i % 2] |= 3;
2720 continue;
2723 /* Enable interrupt # */
2724 pcmis = (pcmis << 1) | 1;
2726 /* Clear interrupt # */
2727 pcicr = (pcicr << 1) | 1;
2729 /* Set channel to physical mode */
2730 prmseo[i % 2] = prmseo[i % 2] << 2;
2731 prmseo[i % 2] |= 1;
2735 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2736 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2737 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2738 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2740 /* Write which interrupt to enable */
2741 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2743 /* Write which interrupt to clear */
2744 writel(pcicr, base->virtbase + D40_DREG_PCICR);
2748 static int __init d40_lcla_allocate(struct d40_base *base)
2750 unsigned long *page_list;
2751 int i, j;
2752 int ret = 0;
2755 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2756 * To full fill this hardware requirement without wasting 256 kb
2757 * we allocate pages until we get an aligned one.
2759 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2760 GFP_KERNEL);
2762 if (!page_list) {
2763 ret = -ENOMEM;
2764 goto failure;
2767 /* Calculating how many pages that are required */
2768 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2770 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2771 page_list[i] = __get_free_pages(GFP_KERNEL,
2772 base->lcla_pool.pages);
2773 if (!page_list[i]) {
2775 dev_err(base->dev,
2776 "[%s] Failed to allocate %d pages.\n",
2777 __func__, base->lcla_pool.pages);
2779 for (j = 0; j < i; j++)
2780 free_pages(page_list[j], base->lcla_pool.pages);
2781 goto failure;
2784 if ((virt_to_phys((void *)page_list[i]) &
2785 (LCLA_ALIGNMENT - 1)) == 0)
2786 break;
2789 for (j = 0; j < i; j++)
2790 free_pages(page_list[j], base->lcla_pool.pages);
2792 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2793 base->lcla_pool.base = (void *)page_list[i];
2794 } else {
2796 * After many attempts and no succees with finding the correct
2797 * alignment, try with allocating a big buffer.
2799 dev_warn(base->dev,
2800 "[%s] Failed to get %d pages @ 18 bit align.\n",
2801 __func__, base->lcla_pool.pages);
2802 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2803 base->num_phy_chans +
2804 LCLA_ALIGNMENT,
2805 GFP_KERNEL);
2806 if (!base->lcla_pool.base_unaligned) {
2807 ret = -ENOMEM;
2808 goto failure;
2811 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2812 LCLA_ALIGNMENT);
2815 writel(virt_to_phys(base->lcla_pool.base),
2816 base->virtbase + D40_DREG_LCLA);
2817 failure:
2818 kfree(page_list);
2819 return ret;
2822 static int __init d40_probe(struct platform_device *pdev)
2824 int err;
2825 int ret = -ENOENT;
2826 struct d40_base *base;
2827 struct resource *res = NULL;
2828 int num_reserved_chans;
2829 u32 val;
2831 base = d40_hw_detect_init(pdev);
2833 if (!base)
2834 goto failure;
2836 num_reserved_chans = d40_phy_res_init(base);
2838 platform_set_drvdata(pdev, base);
2840 spin_lock_init(&base->interrupt_lock);
2841 spin_lock_init(&base->execmd_lock);
2843 /* Get IO for logical channel parameter address */
2844 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2845 if (!res) {
2846 ret = -ENOENT;
2847 dev_err(&pdev->dev,
2848 "[%s] No \"lcpa\" memory resource\n",
2849 __func__);
2850 goto failure;
2852 base->lcpa_size = resource_size(res);
2853 base->phy_lcpa = res->start;
2855 if (request_mem_region(res->start, resource_size(res),
2856 D40_NAME " I/O lcpa") == NULL) {
2857 ret = -EBUSY;
2858 dev_err(&pdev->dev,
2859 "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2860 __func__, res->start, res->end);
2861 goto failure;
2864 /* We make use of ESRAM memory for this. */
2865 val = readl(base->virtbase + D40_DREG_LCPA);
2866 if (res->start != val && val != 0) {
2867 dev_warn(&pdev->dev,
2868 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2869 __func__, val, res->start);
2870 } else
2871 writel(res->start, base->virtbase + D40_DREG_LCPA);
2873 base->lcpa_base = ioremap(res->start, resource_size(res));
2874 if (!base->lcpa_base) {
2875 ret = -ENOMEM;
2876 dev_err(&pdev->dev,
2877 "[%s] Failed to ioremap LCPA region\n",
2878 __func__);
2879 goto failure;
2882 ret = d40_lcla_allocate(base);
2883 if (ret) {
2884 dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2885 __func__);
2886 goto failure;
2889 spin_lock_init(&base->lcla_pool.lock);
2891 base->irq = platform_get_irq(pdev, 0);
2893 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2895 if (ret) {
2896 dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2897 goto failure;
2900 err = d40_dmaengine_init(base, num_reserved_chans);
2901 if (err)
2902 goto failure;
2904 d40_hw_init(base);
2906 dev_info(base->dev, "initialized\n");
2907 return 0;
2909 failure:
2910 if (base) {
2911 if (base->desc_slab)
2912 kmem_cache_destroy(base->desc_slab);
2913 if (base->virtbase)
2914 iounmap(base->virtbase);
2915 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2916 free_pages((unsigned long)base->lcla_pool.base,
2917 base->lcla_pool.pages);
2919 kfree(base->lcla_pool.base_unaligned);
2921 if (base->phy_lcpa)
2922 release_mem_region(base->phy_lcpa,
2923 base->lcpa_size);
2924 if (base->phy_start)
2925 release_mem_region(base->phy_start,
2926 base->phy_size);
2927 if (base->clk) {
2928 clk_disable(base->clk);
2929 clk_put(base->clk);
2932 kfree(base->lcla_pool.alloc_map);
2933 kfree(base->lookup_log_chans);
2934 kfree(base->lookup_phy_chans);
2935 kfree(base->phy_res);
2936 kfree(base);
2939 dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2940 return ret;
2943 static struct platform_driver d40_driver = {
2944 .driver = {
2945 .owner = THIS_MODULE,
2946 .name = D40_NAME,
2950 int __init stedma40_init(void)
2952 return platform_driver_probe(&d40_driver, d40_probe);
2954 arch_initcall(stedma40_init);