staging: brcm80211: remove redundant CHIPREV macro
[zen-stable.git] / drivers / net / cpmac.c
blobfec939f8f65f760cf31b7d4a1981a499124d1cba
1 /*
2 * Copyright (C) 2006, 2007 Eugene Konev
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_vlan.h>
32 #include <linux/etherdevice.h>
33 #include <linux/ethtool.h>
34 #include <linux/skbuff.h>
35 #include <linux/mii.h>
36 #include <linux/phy.h>
37 #include <linux/phy_fixed.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/clk.h>
41 #include <linux/gpio.h>
42 #include <asm/atomic.h>
44 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
45 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
46 MODULE_LICENSE("GPL");
47 MODULE_ALIAS("platform:cpmac");
49 static int debug_level = 8;
50 static int dumb_switch;
52 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
53 module_param(debug_level, int, 0444);
54 module_param(dumb_switch, int, 0444);
56 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
57 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
59 #define CPMAC_VERSION "0.5.2"
60 /* frame size + 802.1q tag + FCS size */
61 #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + ETH_FCS_LEN + VLAN_HLEN)
62 #define CPMAC_QUEUES 8
64 /* Ethernet registers */
65 #define CPMAC_TX_CONTROL 0x0004
66 #define CPMAC_TX_TEARDOWN 0x0008
67 #define CPMAC_RX_CONTROL 0x0014
68 #define CPMAC_RX_TEARDOWN 0x0018
69 #define CPMAC_MBP 0x0100
70 # define MBP_RXPASSCRC 0x40000000
71 # define MBP_RXQOS 0x20000000
72 # define MBP_RXNOCHAIN 0x10000000
73 # define MBP_RXCMF 0x01000000
74 # define MBP_RXSHORT 0x00800000
75 # define MBP_RXCEF 0x00400000
76 # define MBP_RXPROMISC 0x00200000
77 # define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
78 # define MBP_RXBCAST 0x00002000
79 # define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
80 # define MBP_RXMCAST 0x00000020
81 # define MBP_MCASTCHAN(channel) ((channel) & 0x7)
82 #define CPMAC_UNICAST_ENABLE 0x0104
83 #define CPMAC_UNICAST_CLEAR 0x0108
84 #define CPMAC_MAX_LENGTH 0x010c
85 #define CPMAC_BUFFER_OFFSET 0x0110
86 #define CPMAC_MAC_CONTROL 0x0160
87 # define MAC_TXPTYPE 0x00000200
88 # define MAC_TXPACE 0x00000040
89 # define MAC_MII 0x00000020
90 # define MAC_TXFLOW 0x00000010
91 # define MAC_RXFLOW 0x00000008
92 # define MAC_MTEST 0x00000004
93 # define MAC_LOOPBACK 0x00000002
94 # define MAC_FDX 0x00000001
95 #define CPMAC_MAC_STATUS 0x0164
96 # define MAC_STATUS_QOS 0x00000004
97 # define MAC_STATUS_RXFLOW 0x00000002
98 # define MAC_STATUS_TXFLOW 0x00000001
99 #define CPMAC_TX_INT_ENABLE 0x0178
100 #define CPMAC_TX_INT_CLEAR 0x017c
101 #define CPMAC_MAC_INT_VECTOR 0x0180
102 # define MAC_INT_STATUS 0x00080000
103 # define MAC_INT_HOST 0x00040000
104 # define MAC_INT_RX 0x00020000
105 # define MAC_INT_TX 0x00010000
106 #define CPMAC_MAC_EOI_VECTOR 0x0184
107 #define CPMAC_RX_INT_ENABLE 0x0198
108 #define CPMAC_RX_INT_CLEAR 0x019c
109 #define CPMAC_MAC_INT_ENABLE 0x01a8
110 #define CPMAC_MAC_INT_CLEAR 0x01ac
111 #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
112 #define CPMAC_MAC_ADDR_MID 0x01d0
113 #define CPMAC_MAC_ADDR_HI 0x01d4
114 #define CPMAC_MAC_HASH_LO 0x01d8
115 #define CPMAC_MAC_HASH_HI 0x01dc
116 #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
117 #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
118 #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
119 #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
120 #define CPMAC_REG_END 0x0680
122 * Rx/Tx statistics
123 * TODO: use some of them to fill stats in cpmac_stats()
125 #define CPMAC_STATS_RX_GOOD 0x0200
126 #define CPMAC_STATS_RX_BCAST 0x0204
127 #define CPMAC_STATS_RX_MCAST 0x0208
128 #define CPMAC_STATS_RX_PAUSE 0x020c
129 #define CPMAC_STATS_RX_CRC 0x0210
130 #define CPMAC_STATS_RX_ALIGN 0x0214
131 #define CPMAC_STATS_RX_OVER 0x0218
132 #define CPMAC_STATS_RX_JABBER 0x021c
133 #define CPMAC_STATS_RX_UNDER 0x0220
134 #define CPMAC_STATS_RX_FRAG 0x0224
135 #define CPMAC_STATS_RX_FILTER 0x0228
136 #define CPMAC_STATS_RX_QOSFILTER 0x022c
137 #define CPMAC_STATS_RX_OCTETS 0x0230
139 #define CPMAC_STATS_TX_GOOD 0x0234
140 #define CPMAC_STATS_TX_BCAST 0x0238
141 #define CPMAC_STATS_TX_MCAST 0x023c
142 #define CPMAC_STATS_TX_PAUSE 0x0240
143 #define CPMAC_STATS_TX_DEFER 0x0244
144 #define CPMAC_STATS_TX_COLLISION 0x0248
145 #define CPMAC_STATS_TX_SINGLECOLL 0x024c
146 #define CPMAC_STATS_TX_MULTICOLL 0x0250
147 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254
148 #define CPMAC_STATS_TX_LATECOLL 0x0258
149 #define CPMAC_STATS_TX_UNDERRUN 0x025c
150 #define CPMAC_STATS_TX_CARRIERSENSE 0x0260
151 #define CPMAC_STATS_TX_OCTETS 0x0264
153 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
154 #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
155 (reg)))
157 /* MDIO bus */
158 #define CPMAC_MDIO_VERSION 0x0000
159 #define CPMAC_MDIO_CONTROL 0x0004
160 # define MDIOC_IDLE 0x80000000
161 # define MDIOC_ENABLE 0x40000000
162 # define MDIOC_PREAMBLE 0x00100000
163 # define MDIOC_FAULT 0x00080000
164 # define MDIOC_FAULTDETECT 0x00040000
165 # define MDIOC_INTTEST 0x00020000
166 # define MDIOC_CLKDIV(div) ((div) & 0xff)
167 #define CPMAC_MDIO_ALIVE 0x0008
168 #define CPMAC_MDIO_LINK 0x000c
169 #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
170 # define MDIO_BUSY 0x80000000
171 # define MDIO_WRITE 0x40000000
172 # define MDIO_REG(reg) (((reg) & 0x1f) << 21)
173 # define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
174 # define MDIO_DATA(data) ((data) & 0xffff)
175 #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
176 # define PHYSEL_LINKSEL 0x00000040
177 # define PHYSEL_LINKINT 0x00000020
179 struct cpmac_desc {
180 u32 hw_next;
181 u32 hw_data;
182 u16 buflen;
183 u16 bufflags;
184 u16 datalen;
185 u16 dataflags;
186 #define CPMAC_SOP 0x8000
187 #define CPMAC_EOP 0x4000
188 #define CPMAC_OWN 0x2000
189 #define CPMAC_EOQ 0x1000
190 struct sk_buff *skb;
191 struct cpmac_desc *next;
192 struct cpmac_desc *prev;
193 dma_addr_t mapping;
194 dma_addr_t data_mapping;
197 struct cpmac_priv {
198 spinlock_t lock;
199 spinlock_t rx_lock;
200 struct cpmac_desc *rx_head;
201 int ring_size;
202 struct cpmac_desc *desc_ring;
203 dma_addr_t dma_ring;
204 void __iomem *regs;
205 struct mii_bus *mii_bus;
206 struct phy_device *phy;
207 char phy_name[MII_BUS_ID_SIZE + 3];
208 int oldlink, oldspeed, oldduplex;
209 u32 msg_enable;
210 struct net_device *dev;
211 struct work_struct reset_work;
212 struct platform_device *pdev;
213 struct napi_struct napi;
214 atomic_t reset_pending;
217 static irqreturn_t cpmac_irq(int, void *);
218 static void cpmac_hw_start(struct net_device *dev);
219 static void cpmac_hw_stop(struct net_device *dev);
220 static int cpmac_stop(struct net_device *dev);
221 static int cpmac_open(struct net_device *dev);
223 static void cpmac_dump_regs(struct net_device *dev)
225 int i;
226 struct cpmac_priv *priv = netdev_priv(dev);
227 for (i = 0; i < CPMAC_REG_END; i += 4) {
228 if (i % 16 == 0) {
229 if (i)
230 pr_cont("\n");
231 printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
232 priv->regs + i);
234 printk(" %08x", cpmac_read(priv->regs, i));
236 printk("\n");
239 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
241 int i;
242 printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
243 for (i = 0; i < sizeof(*desc) / 4; i++)
244 printk(" %08x", ((u32 *)desc)[i]);
245 printk("\n");
248 static void cpmac_dump_all_desc(struct net_device *dev)
250 struct cpmac_priv *priv = netdev_priv(dev);
251 struct cpmac_desc *dump = priv->rx_head;
252 do {
253 cpmac_dump_desc(dev, dump);
254 dump = dump->next;
255 } while (dump != priv->rx_head);
258 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
260 int i;
261 printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
262 for (i = 0; i < skb->len; i++) {
263 if (i % 16 == 0) {
264 if (i)
265 pr_cont("\n");
266 printk(KERN_DEBUG "%s: data[%p]:", dev->name,
267 skb->data + i);
269 printk(" %02x", ((u8 *)skb->data)[i]);
271 printk("\n");
274 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
276 u32 val;
278 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
279 cpu_relax();
280 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
281 MDIO_PHY(phy_id));
282 while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
283 cpu_relax();
284 return MDIO_DATA(val);
287 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
288 int reg, u16 val)
290 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
291 cpu_relax();
292 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
293 MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
294 return 0;
297 static int cpmac_mdio_reset(struct mii_bus *bus)
299 struct clk *cpmac_clk;
301 cpmac_clk = clk_get(&bus->dev, "cpmac");
302 if (IS_ERR(cpmac_clk)) {
303 printk(KERN_ERR "unable to get cpmac clock\n");
304 return -1;
306 ar7_device_reset(AR7_RESET_BIT_MDIO);
307 cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
308 MDIOC_CLKDIV(clk_get_rate(cpmac_clk) / 2200000 - 1));
309 return 0;
312 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
314 static struct mii_bus *cpmac_mii;
316 static int cpmac_config(struct net_device *dev, struct ifmap *map)
318 if (dev->flags & IFF_UP)
319 return -EBUSY;
321 /* Don't allow changing the I/O address */
322 if (map->base_addr != dev->base_addr)
323 return -EOPNOTSUPP;
325 /* ignore other fields */
326 return 0;
329 static void cpmac_set_multicast_list(struct net_device *dev)
331 struct netdev_hw_addr *ha;
332 u8 tmp;
333 u32 mbp, bit, hash[2] = { 0, };
334 struct cpmac_priv *priv = netdev_priv(dev);
336 mbp = cpmac_read(priv->regs, CPMAC_MBP);
337 if (dev->flags & IFF_PROMISC) {
338 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
339 MBP_RXPROMISC);
340 } else {
341 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
342 if (dev->flags & IFF_ALLMULTI) {
343 /* enable all multicast mode */
344 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
345 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
346 } else {
348 * cpmac uses some strange mac address hashing
349 * (not crc32)
351 netdev_for_each_mc_addr(ha, dev) {
352 bit = 0;
353 tmp = ha->addr[0];
354 bit ^= (tmp >> 2) ^ (tmp << 4);
355 tmp = ha->addr[1];
356 bit ^= (tmp >> 4) ^ (tmp << 2);
357 tmp = ha->addr[2];
358 bit ^= (tmp >> 6) ^ tmp;
359 tmp = ha->addr[3];
360 bit ^= (tmp >> 2) ^ (tmp << 4);
361 tmp = ha->addr[4];
362 bit ^= (tmp >> 4) ^ (tmp << 2);
363 tmp = ha->addr[5];
364 bit ^= (tmp >> 6) ^ tmp;
365 bit &= 0x3f;
366 hash[bit / 32] |= 1 << (bit % 32);
369 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
370 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
375 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
376 struct cpmac_desc *desc)
378 struct sk_buff *skb, *result = NULL;
380 if (unlikely(netif_msg_hw(priv)))
381 cpmac_dump_desc(priv->dev, desc);
382 cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
383 if (unlikely(!desc->datalen)) {
384 if (netif_msg_rx_err(priv) && net_ratelimit())
385 printk(KERN_WARNING "%s: rx: spurious interrupt\n",
386 priv->dev->name);
387 return NULL;
390 skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
391 if (likely(skb)) {
392 skb_put(desc->skb, desc->datalen);
393 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
394 skb_checksum_none_assert(desc->skb);
395 priv->dev->stats.rx_packets++;
396 priv->dev->stats.rx_bytes += desc->datalen;
397 result = desc->skb;
398 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
399 CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
400 desc->skb = skb;
401 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
402 CPMAC_SKB_SIZE,
403 DMA_FROM_DEVICE);
404 desc->hw_data = (u32)desc->data_mapping;
405 if (unlikely(netif_msg_pktdata(priv))) {
406 printk(KERN_DEBUG "%s: received packet:\n",
407 priv->dev->name);
408 cpmac_dump_skb(priv->dev, result);
410 } else {
411 if (netif_msg_rx_err(priv) && net_ratelimit())
412 printk(KERN_WARNING
413 "%s: low on skbs, dropping packet\n",
414 priv->dev->name);
415 priv->dev->stats.rx_dropped++;
418 desc->buflen = CPMAC_SKB_SIZE;
419 desc->dataflags = CPMAC_OWN;
421 return result;
424 static int cpmac_poll(struct napi_struct *napi, int budget)
426 struct sk_buff *skb;
427 struct cpmac_desc *desc, *restart;
428 struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
429 int received = 0, processed = 0;
431 spin_lock(&priv->rx_lock);
432 if (unlikely(!priv->rx_head)) {
433 if (netif_msg_rx_err(priv) && net_ratelimit())
434 printk(KERN_WARNING "%s: rx: polling, but no queue\n",
435 priv->dev->name);
436 spin_unlock(&priv->rx_lock);
437 napi_complete(napi);
438 return 0;
441 desc = priv->rx_head;
442 restart = NULL;
443 while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
444 processed++;
446 if ((desc->dataflags & CPMAC_EOQ) != 0) {
447 /* The last update to eoq->hw_next didn't happen
448 * soon enough, and the receiver stopped here.
449 *Remember this descriptor so we can restart
450 * the receiver after freeing some space.
452 if (unlikely(restart)) {
453 if (netif_msg_rx_err(priv))
454 printk(KERN_ERR "%s: poll found a"
455 " duplicate EOQ: %p and %p\n",
456 priv->dev->name, restart, desc);
457 goto fatal_error;
460 restart = desc->next;
463 skb = cpmac_rx_one(priv, desc);
464 if (likely(skb)) {
465 netif_receive_skb(skb);
466 received++;
468 desc = desc->next;
471 if (desc != priv->rx_head) {
472 /* We freed some buffers, but not the whole ring,
473 * add what we did free to the rx list */
474 desc->prev->hw_next = (u32)0;
475 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
478 /* Optimization: If we did not actually process an EOQ (perhaps because
479 * of quota limits), check to see if the tail of the queue has EOQ set.
480 * We should immediately restart in that case so that the receiver can
481 * restart and run in parallel with more packet processing.
482 * This lets us handle slightly larger bursts before running
483 * out of ring space (assuming dev->weight < ring_size) */
485 if (!restart &&
486 (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
487 == CPMAC_EOQ &&
488 (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
489 /* reset EOQ so the poll loop (above) doesn't try to
490 * restart this when it eventually gets to this descriptor.
492 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
493 restart = priv->rx_head;
496 if (restart) {
497 priv->dev->stats.rx_errors++;
498 priv->dev->stats.rx_fifo_errors++;
499 if (netif_msg_rx_err(priv) && net_ratelimit())
500 printk(KERN_WARNING "%s: rx dma ring overrun\n",
501 priv->dev->name);
503 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
504 if (netif_msg_drv(priv))
505 printk(KERN_ERR "%s: cpmac_poll is trying to "
506 "restart rx from a descriptor that's "
507 "not free: %p\n",
508 priv->dev->name, restart);
509 goto fatal_error;
512 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
515 priv->rx_head = desc;
516 spin_unlock(&priv->rx_lock);
517 if (unlikely(netif_msg_rx_status(priv)))
518 printk(KERN_DEBUG "%s: poll processed %d packets\n",
519 priv->dev->name, received);
520 if (processed == 0) {
521 /* we ran out of packets to read,
522 * revert to interrupt-driven mode */
523 napi_complete(napi);
524 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
525 return 0;
528 return 1;
530 fatal_error:
531 /* Something went horribly wrong.
532 * Reset hardware to try to recover rather than wedging. */
534 if (netif_msg_drv(priv)) {
535 printk(KERN_ERR "%s: cpmac_poll is confused. "
536 "Resetting hardware\n", priv->dev->name);
537 cpmac_dump_all_desc(priv->dev);
538 printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
539 priv->dev->name,
540 cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
541 cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
544 spin_unlock(&priv->rx_lock);
545 napi_complete(napi);
546 netif_tx_stop_all_queues(priv->dev);
547 napi_disable(&priv->napi);
549 atomic_inc(&priv->reset_pending);
550 cpmac_hw_stop(priv->dev);
551 if (!schedule_work(&priv->reset_work))
552 atomic_dec(&priv->reset_pending);
553 return 0;
557 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
559 int queue, len;
560 struct cpmac_desc *desc;
561 struct cpmac_priv *priv = netdev_priv(dev);
563 if (unlikely(atomic_read(&priv->reset_pending)))
564 return NETDEV_TX_BUSY;
566 if (unlikely(skb_padto(skb, ETH_ZLEN)))
567 return NETDEV_TX_OK;
569 len = max(skb->len, ETH_ZLEN);
570 queue = skb_get_queue_mapping(skb);
571 netif_stop_subqueue(dev, queue);
573 desc = &priv->desc_ring[queue];
574 if (unlikely(desc->dataflags & CPMAC_OWN)) {
575 if (netif_msg_tx_err(priv) && net_ratelimit())
576 printk(KERN_WARNING "%s: tx dma ring full\n",
577 dev->name);
578 return NETDEV_TX_BUSY;
581 spin_lock(&priv->lock);
582 spin_unlock(&priv->lock);
583 desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
584 desc->skb = skb;
585 desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
586 DMA_TO_DEVICE);
587 desc->hw_data = (u32)desc->data_mapping;
588 desc->datalen = len;
589 desc->buflen = len;
590 if (unlikely(netif_msg_tx_queued(priv)))
591 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
592 skb->len);
593 if (unlikely(netif_msg_hw(priv)))
594 cpmac_dump_desc(dev, desc);
595 if (unlikely(netif_msg_pktdata(priv)))
596 cpmac_dump_skb(dev, skb);
597 cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
599 return NETDEV_TX_OK;
602 static void cpmac_end_xmit(struct net_device *dev, int queue)
604 struct cpmac_desc *desc;
605 struct cpmac_priv *priv = netdev_priv(dev);
607 desc = &priv->desc_ring[queue];
608 cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
609 if (likely(desc->skb)) {
610 spin_lock(&priv->lock);
611 dev->stats.tx_packets++;
612 dev->stats.tx_bytes += desc->skb->len;
613 spin_unlock(&priv->lock);
614 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
615 DMA_TO_DEVICE);
617 if (unlikely(netif_msg_tx_done(priv)))
618 printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
619 desc->skb, desc->skb->len);
621 dev_kfree_skb_irq(desc->skb);
622 desc->skb = NULL;
623 if (__netif_subqueue_stopped(dev, queue))
624 netif_wake_subqueue(dev, queue);
625 } else {
626 if (netif_msg_tx_err(priv) && net_ratelimit())
627 printk(KERN_WARNING
628 "%s: end_xmit: spurious interrupt\n", dev->name);
629 if (__netif_subqueue_stopped(dev, queue))
630 netif_wake_subqueue(dev, queue);
634 static void cpmac_hw_stop(struct net_device *dev)
636 int i;
637 struct cpmac_priv *priv = netdev_priv(dev);
638 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
640 ar7_device_reset(pdata->reset_bit);
641 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
642 cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
643 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
644 cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
645 for (i = 0; i < 8; i++) {
646 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
647 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
649 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
650 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
651 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
652 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
653 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
654 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
657 static void cpmac_hw_start(struct net_device *dev)
659 int i;
660 struct cpmac_priv *priv = netdev_priv(dev);
661 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
663 ar7_device_reset(pdata->reset_bit);
664 for (i = 0; i < 8; i++) {
665 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
666 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
668 cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
670 cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
671 MBP_RXMCAST);
672 cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
673 for (i = 0; i < 8; i++)
674 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
675 cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
676 cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
677 (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
678 (dev->dev_addr[3] << 24));
679 cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
680 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
681 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
682 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
683 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
684 cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
685 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
686 cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
687 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
689 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
690 cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
691 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
692 cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
693 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
694 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
695 MAC_FDX);
698 static void cpmac_clear_rx(struct net_device *dev)
700 struct cpmac_priv *priv = netdev_priv(dev);
701 struct cpmac_desc *desc;
702 int i;
703 if (unlikely(!priv->rx_head))
704 return;
705 desc = priv->rx_head;
706 for (i = 0; i < priv->ring_size; i++) {
707 if ((desc->dataflags & CPMAC_OWN) == 0) {
708 if (netif_msg_rx_err(priv) && net_ratelimit())
709 printk(KERN_WARNING "%s: packet dropped\n",
710 dev->name);
711 if (unlikely(netif_msg_hw(priv)))
712 cpmac_dump_desc(dev, desc);
713 desc->dataflags = CPMAC_OWN;
714 dev->stats.rx_dropped++;
716 desc->hw_next = desc->next->mapping;
717 desc = desc->next;
719 priv->rx_head->prev->hw_next = 0;
722 static void cpmac_clear_tx(struct net_device *dev)
724 struct cpmac_priv *priv = netdev_priv(dev);
725 int i;
726 if (unlikely(!priv->desc_ring))
727 return;
728 for (i = 0; i < CPMAC_QUEUES; i++) {
729 priv->desc_ring[i].dataflags = 0;
730 if (priv->desc_ring[i].skb) {
731 dev_kfree_skb_any(priv->desc_ring[i].skb);
732 priv->desc_ring[i].skb = NULL;
737 static void cpmac_hw_error(struct work_struct *work)
739 struct cpmac_priv *priv =
740 container_of(work, struct cpmac_priv, reset_work);
742 spin_lock(&priv->rx_lock);
743 cpmac_clear_rx(priv->dev);
744 spin_unlock(&priv->rx_lock);
745 cpmac_clear_tx(priv->dev);
746 cpmac_hw_start(priv->dev);
747 barrier();
748 atomic_dec(&priv->reset_pending);
750 netif_tx_wake_all_queues(priv->dev);
751 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
754 static void cpmac_check_status(struct net_device *dev)
756 struct cpmac_priv *priv = netdev_priv(dev);
758 u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
759 int rx_channel = (macstatus >> 8) & 7;
760 int rx_code = (macstatus >> 12) & 15;
761 int tx_channel = (macstatus >> 16) & 7;
762 int tx_code = (macstatus >> 20) & 15;
764 if (rx_code || tx_code) {
765 if (netif_msg_drv(priv) && net_ratelimit()) {
766 /* Can't find any documentation on what these
767 *error codes actually are. So just log them and hope..
769 if (rx_code)
770 printk(KERN_WARNING "%s: host error %d on rx "
771 "channel %d (macstatus %08x), resetting\n",
772 dev->name, rx_code, rx_channel, macstatus);
773 if (tx_code)
774 printk(KERN_WARNING "%s: host error %d on tx "
775 "channel %d (macstatus %08x), resetting\n",
776 dev->name, tx_code, tx_channel, macstatus);
779 netif_tx_stop_all_queues(dev);
780 cpmac_hw_stop(dev);
781 if (schedule_work(&priv->reset_work))
782 atomic_inc(&priv->reset_pending);
783 if (unlikely(netif_msg_hw(priv)))
784 cpmac_dump_regs(dev);
786 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
789 static irqreturn_t cpmac_irq(int irq, void *dev_id)
791 struct net_device *dev = dev_id;
792 struct cpmac_priv *priv;
793 int queue;
794 u32 status;
796 priv = netdev_priv(dev);
798 status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
800 if (unlikely(netif_msg_intr(priv)))
801 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
802 status);
804 if (status & MAC_INT_TX)
805 cpmac_end_xmit(dev, (status & 7));
807 if (status & MAC_INT_RX) {
808 queue = (status >> 8) & 7;
809 if (napi_schedule_prep(&priv->napi)) {
810 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
811 __napi_schedule(&priv->napi);
815 cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
817 if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
818 cpmac_check_status(dev);
820 return IRQ_HANDLED;
823 static void cpmac_tx_timeout(struct net_device *dev)
825 struct cpmac_priv *priv = netdev_priv(dev);
827 spin_lock(&priv->lock);
828 dev->stats.tx_errors++;
829 spin_unlock(&priv->lock);
830 if (netif_msg_tx_err(priv) && net_ratelimit())
831 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
833 atomic_inc(&priv->reset_pending);
834 barrier();
835 cpmac_clear_tx(dev);
836 barrier();
837 atomic_dec(&priv->reset_pending);
839 netif_tx_wake_all_queues(priv->dev);
842 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
844 struct cpmac_priv *priv = netdev_priv(dev);
845 if (!(netif_running(dev)))
846 return -EINVAL;
847 if (!priv->phy)
848 return -EINVAL;
850 return phy_mii_ioctl(priv->phy, ifr, cmd);
853 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
855 struct cpmac_priv *priv = netdev_priv(dev);
857 if (priv->phy)
858 return phy_ethtool_gset(priv->phy, cmd);
860 return -EINVAL;
863 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
865 struct cpmac_priv *priv = netdev_priv(dev);
867 if (!capable(CAP_NET_ADMIN))
868 return -EPERM;
870 if (priv->phy)
871 return phy_ethtool_sset(priv->phy, cmd);
873 return -EINVAL;
876 static void cpmac_get_ringparam(struct net_device *dev,
877 struct ethtool_ringparam *ring)
879 struct cpmac_priv *priv = netdev_priv(dev);
881 ring->rx_max_pending = 1024;
882 ring->rx_mini_max_pending = 1;
883 ring->rx_jumbo_max_pending = 1;
884 ring->tx_max_pending = 1;
886 ring->rx_pending = priv->ring_size;
887 ring->rx_mini_pending = 1;
888 ring->rx_jumbo_pending = 1;
889 ring->tx_pending = 1;
892 static int cpmac_set_ringparam(struct net_device *dev,
893 struct ethtool_ringparam *ring)
895 struct cpmac_priv *priv = netdev_priv(dev);
897 if (netif_running(dev))
898 return -EBUSY;
899 priv->ring_size = ring->rx_pending;
900 return 0;
903 static void cpmac_get_drvinfo(struct net_device *dev,
904 struct ethtool_drvinfo *info)
906 strcpy(info->driver, "cpmac");
907 strcpy(info->version, CPMAC_VERSION);
908 info->fw_version[0] = '\0';
909 sprintf(info->bus_info, "%s", "cpmac");
910 info->regdump_len = 0;
913 static const struct ethtool_ops cpmac_ethtool_ops = {
914 .get_settings = cpmac_get_settings,
915 .set_settings = cpmac_set_settings,
916 .get_drvinfo = cpmac_get_drvinfo,
917 .get_link = ethtool_op_get_link,
918 .get_ringparam = cpmac_get_ringparam,
919 .set_ringparam = cpmac_set_ringparam,
922 static void cpmac_adjust_link(struct net_device *dev)
924 struct cpmac_priv *priv = netdev_priv(dev);
925 int new_state = 0;
927 spin_lock(&priv->lock);
928 if (priv->phy->link) {
929 netif_tx_start_all_queues(dev);
930 if (priv->phy->duplex != priv->oldduplex) {
931 new_state = 1;
932 priv->oldduplex = priv->phy->duplex;
935 if (priv->phy->speed != priv->oldspeed) {
936 new_state = 1;
937 priv->oldspeed = priv->phy->speed;
940 if (!priv->oldlink) {
941 new_state = 1;
942 priv->oldlink = 1;
944 } else if (priv->oldlink) {
945 new_state = 1;
946 priv->oldlink = 0;
947 priv->oldspeed = 0;
948 priv->oldduplex = -1;
951 if (new_state && netif_msg_link(priv) && net_ratelimit())
952 phy_print_status(priv->phy);
954 spin_unlock(&priv->lock);
957 static int cpmac_open(struct net_device *dev)
959 int i, size, res;
960 struct cpmac_priv *priv = netdev_priv(dev);
961 struct resource *mem;
962 struct cpmac_desc *desc;
963 struct sk_buff *skb;
965 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
966 if (!request_mem_region(mem->start, resource_size(mem), dev->name)) {
967 if (netif_msg_drv(priv))
968 printk(KERN_ERR "%s: failed to request registers\n",
969 dev->name);
970 res = -ENXIO;
971 goto fail_reserve;
974 priv->regs = ioremap(mem->start, resource_size(mem));
975 if (!priv->regs) {
976 if (netif_msg_drv(priv))
977 printk(KERN_ERR "%s: failed to remap registers\n",
978 dev->name);
979 res = -ENXIO;
980 goto fail_remap;
983 size = priv->ring_size + CPMAC_QUEUES;
984 priv->desc_ring = dma_alloc_coherent(&dev->dev,
985 sizeof(struct cpmac_desc) * size,
986 &priv->dma_ring,
987 GFP_KERNEL);
988 if (!priv->desc_ring) {
989 res = -ENOMEM;
990 goto fail_alloc;
993 for (i = 0; i < size; i++)
994 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
996 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
997 for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
998 skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
999 if (unlikely(!skb)) {
1000 res = -ENOMEM;
1001 goto fail_desc;
1003 desc->skb = skb;
1004 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
1005 CPMAC_SKB_SIZE,
1006 DMA_FROM_DEVICE);
1007 desc->hw_data = (u32)desc->data_mapping;
1008 desc->buflen = CPMAC_SKB_SIZE;
1009 desc->dataflags = CPMAC_OWN;
1010 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1011 desc->next->prev = desc;
1012 desc->hw_next = (u32)desc->next->mapping;
1015 priv->rx_head->prev->hw_next = (u32)0;
1017 res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev);
1018 if (res) {
1019 if (netif_msg_drv(priv))
1020 printk(KERN_ERR "%s: failed to obtain irq\n",
1021 dev->name);
1022 goto fail_irq;
1025 atomic_set(&priv->reset_pending, 0);
1026 INIT_WORK(&priv->reset_work, cpmac_hw_error);
1027 cpmac_hw_start(dev);
1029 napi_enable(&priv->napi);
1030 priv->phy->state = PHY_CHANGELINK;
1031 phy_start(priv->phy);
1033 return 0;
1035 fail_irq:
1036 fail_desc:
1037 for (i = 0; i < priv->ring_size; i++) {
1038 if (priv->rx_head[i].skb) {
1039 dma_unmap_single(&dev->dev,
1040 priv->rx_head[i].data_mapping,
1041 CPMAC_SKB_SIZE,
1042 DMA_FROM_DEVICE);
1043 kfree_skb(priv->rx_head[i].skb);
1046 fail_alloc:
1047 kfree(priv->desc_ring);
1048 iounmap(priv->regs);
1050 fail_remap:
1051 release_mem_region(mem->start, resource_size(mem));
1053 fail_reserve:
1054 return res;
1057 static int cpmac_stop(struct net_device *dev)
1059 int i;
1060 struct cpmac_priv *priv = netdev_priv(dev);
1061 struct resource *mem;
1063 netif_tx_stop_all_queues(dev);
1065 cancel_work_sync(&priv->reset_work);
1066 napi_disable(&priv->napi);
1067 phy_stop(priv->phy);
1069 cpmac_hw_stop(dev);
1071 for (i = 0; i < 8; i++)
1072 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1073 cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1074 cpmac_write(priv->regs, CPMAC_MBP, 0);
1076 free_irq(dev->irq, dev);
1077 iounmap(priv->regs);
1078 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1079 release_mem_region(mem->start, resource_size(mem));
1080 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1081 for (i = 0; i < priv->ring_size; i++) {
1082 if (priv->rx_head[i].skb) {
1083 dma_unmap_single(&dev->dev,
1084 priv->rx_head[i].data_mapping,
1085 CPMAC_SKB_SIZE,
1086 DMA_FROM_DEVICE);
1087 kfree_skb(priv->rx_head[i].skb);
1091 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1092 (CPMAC_QUEUES + priv->ring_size),
1093 priv->desc_ring, priv->dma_ring);
1094 return 0;
1097 static const struct net_device_ops cpmac_netdev_ops = {
1098 .ndo_open = cpmac_open,
1099 .ndo_stop = cpmac_stop,
1100 .ndo_start_xmit = cpmac_start_xmit,
1101 .ndo_tx_timeout = cpmac_tx_timeout,
1102 .ndo_set_multicast_list = cpmac_set_multicast_list,
1103 .ndo_do_ioctl = cpmac_ioctl,
1104 .ndo_set_config = cpmac_config,
1105 .ndo_change_mtu = eth_change_mtu,
1106 .ndo_validate_addr = eth_validate_addr,
1107 .ndo_set_mac_address = eth_mac_addr,
1110 static int external_switch;
1112 static int __devinit cpmac_probe(struct platform_device *pdev)
1114 int rc, phy_id;
1115 char mdio_bus_id[MII_BUS_ID_SIZE];
1116 struct resource *mem;
1117 struct cpmac_priv *priv;
1118 struct net_device *dev;
1119 struct plat_cpmac_data *pdata;
1121 pdata = pdev->dev.platform_data;
1123 if (external_switch || dumb_switch) {
1124 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1125 phy_id = pdev->id;
1126 } else {
1127 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1128 if (!(pdata->phy_mask & (1 << phy_id)))
1129 continue;
1130 if (!cpmac_mii->phy_map[phy_id])
1131 continue;
1132 strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1133 break;
1137 if (phy_id == PHY_MAX_ADDR) {
1138 dev_err(&pdev->dev, "no PHY present, falling back "
1139 "to switch on MDIO bus 0\n");
1140 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1141 phy_id = pdev->id;
1144 dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1146 if (!dev) {
1147 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1148 return -ENOMEM;
1151 platform_set_drvdata(pdev, dev);
1152 priv = netdev_priv(dev);
1154 priv->pdev = pdev;
1155 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1156 if (!mem) {
1157 rc = -ENODEV;
1158 goto fail;
1161 dev->irq = platform_get_irq_byname(pdev, "irq");
1163 dev->netdev_ops = &cpmac_netdev_ops;
1164 dev->ethtool_ops = &cpmac_ethtool_ops;
1166 netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1168 spin_lock_init(&priv->lock);
1169 spin_lock_init(&priv->rx_lock);
1170 priv->dev = dev;
1171 priv->ring_size = 64;
1172 priv->msg_enable = netif_msg_init(debug_level, 0xff);
1173 memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1175 snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT,
1176 mdio_bus_id, phy_id);
1178 priv->phy = phy_connect(dev, priv->phy_name, cpmac_adjust_link, 0,
1179 PHY_INTERFACE_MODE_MII);
1181 if (IS_ERR(priv->phy)) {
1182 if (netif_msg_drv(priv))
1183 printk(KERN_ERR "%s: Could not attach to PHY\n",
1184 dev->name);
1185 rc = PTR_ERR(priv->phy);
1186 goto fail;
1189 rc = register_netdev(dev);
1190 if (rc) {
1191 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1192 dev->name);
1193 goto fail;
1196 if (netif_msg_probe(priv)) {
1197 printk(KERN_INFO
1198 "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1199 "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1200 priv->phy_name, dev->dev_addr);
1202 return 0;
1204 fail:
1205 free_netdev(dev);
1206 return rc;
1209 static int __devexit cpmac_remove(struct platform_device *pdev)
1211 struct net_device *dev = platform_get_drvdata(pdev);
1212 unregister_netdev(dev);
1213 free_netdev(dev);
1214 return 0;
1217 static struct platform_driver cpmac_driver = {
1218 .driver.name = "cpmac",
1219 .driver.owner = THIS_MODULE,
1220 .probe = cpmac_probe,
1221 .remove = __devexit_p(cpmac_remove),
1224 int __devinit cpmac_init(void)
1226 u32 mask;
1227 int i, res;
1229 cpmac_mii = mdiobus_alloc();
1230 if (cpmac_mii == NULL)
1231 return -ENOMEM;
1233 cpmac_mii->name = "cpmac-mii";
1234 cpmac_mii->read = cpmac_mdio_read;
1235 cpmac_mii->write = cpmac_mdio_write;
1236 cpmac_mii->reset = cpmac_mdio_reset;
1237 cpmac_mii->irq = mii_irqs;
1239 cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1241 if (!cpmac_mii->priv) {
1242 printk(KERN_ERR "Can't ioremap mdio registers\n");
1243 res = -ENXIO;
1244 goto fail_alloc;
1247 #warning FIXME: unhardcode gpio&reset bits
1248 ar7_gpio_disable(26);
1249 ar7_gpio_disable(27);
1250 ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1251 ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1252 ar7_device_reset(AR7_RESET_BIT_EPHY);
1254 cpmac_mii->reset(cpmac_mii);
1256 for (i = 0; i < 300; i++) {
1257 mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE);
1258 if (mask)
1259 break;
1260 else
1261 msleep(10);
1264 mask &= 0x7fffffff;
1265 if (mask & (mask - 1)) {
1266 external_switch = 1;
1267 mask = 0;
1270 cpmac_mii->phy_mask = ~(mask | 0x80000000);
1271 snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "1");
1273 res = mdiobus_register(cpmac_mii);
1274 if (res)
1275 goto fail_mii;
1277 res = platform_driver_register(&cpmac_driver);
1278 if (res)
1279 goto fail_cpmac;
1281 return 0;
1283 fail_cpmac:
1284 mdiobus_unregister(cpmac_mii);
1286 fail_mii:
1287 iounmap(cpmac_mii->priv);
1289 fail_alloc:
1290 mdiobus_free(cpmac_mii);
1292 return res;
1295 void __devexit cpmac_exit(void)
1297 platform_driver_unregister(&cpmac_driver);
1298 mdiobus_unregister(cpmac_mii);
1299 iounmap(cpmac_mii->priv);
1300 mdiobus_free(cpmac_mii);
1303 module_init(cpmac_init);
1304 module_exit(cpmac_exit);