staging: brcm80211: remove redundant CHIPREV macro
[zen-stable.git] / drivers / net / sis900.c
blob58183686709852ee431dba13cbe477138b94f55c
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.10 Apr. 2 2006
5 Modified from the driver which is originally written by Donald Becker.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
20 Rev 1.08.10 Apr. 2 2006 Daniele Venzano add vlan (jumbo packets) support
21 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
22 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
23 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
24 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
25 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
26 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
27 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
28 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
29 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
30 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
31 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
32 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
33 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
34 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
35 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
36 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
37 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
38 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
39 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
40 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
41 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
42 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
43 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
44 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
45 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
46 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
47 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
48 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
49 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/string.h>
57 #include <linux/timer.h>
58 #include <linux/errno.h>
59 #include <linux/ioport.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/netdevice.h>
64 #include <linux/init.h>
65 #include <linux/mii.h>
66 #include <linux/etherdevice.h>
67 #include <linux/skbuff.h>
68 #include <linux/delay.h>
69 #include <linux/ethtool.h>
70 #include <linux/crc32.h>
71 #include <linux/bitops.h>
72 #include <linux/dma-mapping.h>
74 #include <asm/processor.h> /* Processor type for cache alignment. */
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/uaccess.h> /* User space memory access functions */
79 #include "sis900.h"
81 #define SIS900_MODULE_NAME "sis900"
82 #define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
84 static const char version[] __devinitconst =
85 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
87 static int max_interrupt_work = 40;
88 static int multicast_filter_limit = 128;
90 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
92 #define SIS900_DEF_MSG \
93 (NETIF_MSG_DRV | \
94 NETIF_MSG_LINK | \
95 NETIF_MSG_RX_ERR | \
96 NETIF_MSG_TX_ERR)
98 /* Time in jiffies before concluding the transmitter is hung. */
99 #define TX_TIMEOUT (4*HZ)
101 enum {
102 SIS_900 = 0,
103 SIS_7016
105 static const char * card_names[] = {
106 "SiS 900 PCI Fast Ethernet",
107 "SiS 7016 PCI Fast Ethernet"
109 static DEFINE_PCI_DEVICE_TABLE(sis900_pci_tbl) = {
110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
112 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
113 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
114 {0,}
116 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
118 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
120 static const struct mii_chip_info {
121 const char * name;
122 u16 phy_id0;
123 u16 phy_id1;
124 u8 phy_types;
125 #define HOME 0x0001
126 #define LAN 0x0002
127 #define MIX 0x0003
128 #define UNKNOWN 0x0
129 } mii_chip_table[] = {
130 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
131 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
132 { "SiS 900 on Foxconn 661 7MI", 0x0143, 0xBC70, LAN },
133 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
134 { "ADM 7001 LAN PHY", 0x002e, 0xcc60, LAN },
135 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
136 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
137 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
138 { "ICS LAN PHY", 0x0143, 0xBC70, LAN },
139 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
140 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
141 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
142 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
143 {NULL,},
146 struct mii_phy {
147 struct mii_phy * next;
148 int phy_addr;
149 u16 phy_id0;
150 u16 phy_id1;
151 u16 status;
152 u8 phy_types;
155 typedef struct _BufferDesc {
156 u32 link;
157 u32 cmdsts;
158 u32 bufptr;
159 } BufferDesc;
161 struct sis900_private {
162 struct pci_dev * pci_dev;
164 spinlock_t lock;
166 struct mii_phy * mii;
167 struct mii_phy * first_mii; /* record the first mii structure */
168 unsigned int cur_phy;
169 struct mii_if_info mii_info;
171 struct timer_list timer; /* Link status detection timer. */
172 u8 autong_complete; /* 1: auto-negotiate complete */
174 u32 msg_enable;
176 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
177 unsigned int cur_tx, dirty_tx;
179 /* The saved address of a sent/receive-in-place packet buffer */
180 struct sk_buff *tx_skbuff[NUM_TX_DESC];
181 struct sk_buff *rx_skbuff[NUM_RX_DESC];
182 BufferDesc *tx_ring;
183 BufferDesc *rx_ring;
185 dma_addr_t tx_ring_dma;
186 dma_addr_t rx_ring_dma;
188 unsigned int tx_full; /* The Tx queue is full. */
189 u8 host_bridge_rev;
190 u8 chipset_rev;
193 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
194 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
195 MODULE_LICENSE("GPL");
197 module_param(multicast_filter_limit, int, 0444);
198 module_param(max_interrupt_work, int, 0444);
199 module_param(sis900_debug, int, 0444);
200 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
201 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
202 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
204 #ifdef CONFIG_NET_POLL_CONTROLLER
205 static void sis900_poll(struct net_device *dev);
206 #endif
207 static int sis900_open(struct net_device *net_dev);
208 static int sis900_mii_probe (struct net_device * net_dev);
209 static void sis900_init_rxfilter (struct net_device * net_dev);
210 static u16 read_eeprom(long ioaddr, int location);
211 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
212 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
213 static void sis900_timer(unsigned long data);
214 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
215 static void sis900_tx_timeout(struct net_device *net_dev);
216 static void sis900_init_tx_ring(struct net_device *net_dev);
217 static void sis900_init_rx_ring(struct net_device *net_dev);
218 static netdev_tx_t sis900_start_xmit(struct sk_buff *skb,
219 struct net_device *net_dev);
220 static int sis900_rx(struct net_device *net_dev);
221 static void sis900_finish_xmit (struct net_device *net_dev);
222 static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
223 static int sis900_close(struct net_device *net_dev);
224 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
225 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
226 static void set_rx_mode(struct net_device *net_dev);
227 static void sis900_reset(struct net_device *net_dev);
228 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
229 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
230 static u16 sis900_default_phy(struct net_device * net_dev);
231 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
232 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
233 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
234 static void sis900_set_mode (long ioaddr, int speed, int duplex);
235 static const struct ethtool_ops sis900_ethtool_ops;
238 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
239 * @pci_dev: the sis900 pci device
240 * @net_dev: the net device to get address for
242 * Older SiS900 and friends, use EEPROM to store MAC address.
243 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
246 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
248 long ioaddr = pci_resource_start(pci_dev, 0);
249 u16 signature;
250 int i;
252 /* check to see if we have sane EEPROM */
253 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
254 if (signature == 0xffff || signature == 0x0000) {
255 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
256 pci_name(pci_dev), signature);
257 return 0;
260 /* get MAC address from EEPROM */
261 for (i = 0; i < 3; i++)
262 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
264 return 1;
268 * sis630e_get_mac_addr - Get MAC address for SiS630E model
269 * @pci_dev: the sis900 pci device
270 * @net_dev: the net device to get address for
272 * SiS630E model, use APC CMOS RAM to store MAC address.
273 * APC CMOS RAM is accessed through ISA bridge.
274 * MAC address is read into @net_dev->dev_addr.
277 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
278 struct net_device *net_dev)
280 struct pci_dev *isa_bridge = NULL;
281 u8 reg;
282 int i;
284 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
285 if (!isa_bridge)
286 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
287 if (!isa_bridge) {
288 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
289 pci_name(pci_dev));
290 return 0;
292 pci_read_config_byte(isa_bridge, 0x48, &reg);
293 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
295 for (i = 0; i < 6; i++) {
296 outb(0x09 + i, 0x70);
297 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
299 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
300 pci_dev_put(isa_bridge);
302 return 1;
307 * sis635_get_mac_addr - Get MAC address for SIS635 model
308 * @pci_dev: the sis900 pci device
309 * @net_dev: the net device to get address for
311 * SiS635 model, set MAC Reload Bit to load Mac address from APC
312 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
313 * @net_dev->dev_addr.
316 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
317 struct net_device *net_dev)
319 long ioaddr = net_dev->base_addr;
320 u32 rfcrSave;
321 u32 i;
323 rfcrSave = inl(rfcr + ioaddr);
325 outl(rfcrSave | RELOAD, ioaddr + cr);
326 outl(0, ioaddr + cr);
328 /* disable packet filtering before setting filter */
329 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
331 /* load MAC addr to filter data register */
332 for (i = 0 ; i < 3 ; i++) {
333 outl((i << RFADDR_shift), ioaddr + rfcr);
334 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
337 /* enable packet filtering */
338 outl(rfcrSave | RFEN, rfcr + ioaddr);
340 return 1;
344 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
345 * @pci_dev: the sis900 pci device
346 * @net_dev: the net device to get address for
348 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
349 * is shared by
350 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
351 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
352 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
353 * EEDONE signal to refuse EEPROM access by LAN.
354 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
355 * The signature field in SiS962 or SiS963 spec is meaningless.
356 * MAC address is read into @net_dev->dev_addr.
359 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
360 struct net_device *net_dev)
362 long ioaddr = net_dev->base_addr;
363 long ee_addr = ioaddr + mear;
364 u32 waittime = 0;
365 int i;
367 outl(EEREQ, ee_addr);
368 while(waittime < 2000) {
369 if(inl(ee_addr) & EEGNT) {
371 /* get MAC address from EEPROM */
372 for (i = 0; i < 3; i++)
373 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
375 outl(EEDONE, ee_addr);
376 return 1;
377 } else {
378 udelay(1);
379 waittime ++;
382 outl(EEDONE, ee_addr);
383 return 0;
386 static const struct net_device_ops sis900_netdev_ops = {
387 .ndo_open = sis900_open,
388 .ndo_stop = sis900_close,
389 .ndo_start_xmit = sis900_start_xmit,
390 .ndo_set_config = sis900_set_config,
391 .ndo_set_multicast_list = set_rx_mode,
392 .ndo_change_mtu = eth_change_mtu,
393 .ndo_validate_addr = eth_validate_addr,
394 .ndo_set_mac_address = eth_mac_addr,
395 .ndo_do_ioctl = mii_ioctl,
396 .ndo_tx_timeout = sis900_tx_timeout,
397 #ifdef CONFIG_NET_POLL_CONTROLLER
398 .ndo_poll_controller = sis900_poll,
399 #endif
403 * sis900_probe - Probe for sis900 device
404 * @pci_dev: the sis900 pci device
405 * @pci_id: the pci device ID
407 * Check and probe sis900 net device for @pci_dev.
408 * Get mac address according to the chip revision,
409 * and assign SiS900-specific entries in the device structure.
410 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
413 static int __devinit sis900_probe(struct pci_dev *pci_dev,
414 const struct pci_device_id *pci_id)
416 struct sis900_private *sis_priv;
417 struct net_device *net_dev;
418 struct pci_dev *dev;
419 dma_addr_t ring_dma;
420 void *ring_space;
421 long ioaddr;
422 int i, ret;
423 const char *card_name = card_names[pci_id->driver_data];
424 const char *dev_name = pci_name(pci_dev);
426 /* when built into the kernel, we only print version if device is found */
427 #ifndef MODULE
428 static int printed_version;
429 if (!printed_version++)
430 printk(version);
431 #endif
433 /* setup various bits in PCI command register */
434 ret = pci_enable_device(pci_dev);
435 if(ret) return ret;
437 i = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
438 if(i){
439 printk(KERN_ERR "sis900.c: architecture does not support "
440 "32bit PCI busmaster DMA\n");
441 return i;
444 pci_set_master(pci_dev);
446 net_dev = alloc_etherdev(sizeof(struct sis900_private));
447 if (!net_dev)
448 return -ENOMEM;
449 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
451 /* We do a request_region() to register /proc/ioports info. */
452 ioaddr = pci_resource_start(pci_dev, 0);
453 ret = pci_request_regions(pci_dev, "sis900");
454 if (ret)
455 goto err_out;
457 sis_priv = netdev_priv(net_dev);
458 net_dev->base_addr = ioaddr;
459 net_dev->irq = pci_dev->irq;
460 sis_priv->pci_dev = pci_dev;
461 spin_lock_init(&sis_priv->lock);
463 pci_set_drvdata(pci_dev, net_dev);
465 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
466 if (!ring_space) {
467 ret = -ENOMEM;
468 goto err_out_cleardev;
470 sis_priv->tx_ring = (BufferDesc *)ring_space;
471 sis_priv->tx_ring_dma = ring_dma;
473 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
474 if (!ring_space) {
475 ret = -ENOMEM;
476 goto err_unmap_tx;
478 sis_priv->rx_ring = (BufferDesc *)ring_space;
479 sis_priv->rx_ring_dma = ring_dma;
481 /* The SiS900-specific entries in the device structure. */
482 net_dev->netdev_ops = &sis900_netdev_ops;
483 net_dev->watchdog_timeo = TX_TIMEOUT;
484 net_dev->ethtool_ops = &sis900_ethtool_ops;
486 if (sis900_debug > 0)
487 sis_priv->msg_enable = sis900_debug;
488 else
489 sis_priv->msg_enable = SIS900_DEF_MSG;
491 sis_priv->mii_info.dev = net_dev;
492 sis_priv->mii_info.mdio_read = mdio_read;
493 sis_priv->mii_info.mdio_write = mdio_write;
494 sis_priv->mii_info.phy_id_mask = 0x1f;
495 sis_priv->mii_info.reg_num_mask = 0x1f;
497 /* Get Mac address according to the chip revision */
498 pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
499 if(netif_msg_probe(sis_priv))
500 printk(KERN_DEBUG "%s: detected revision %2.2x, "
501 "trying to get MAC address...\n",
502 dev_name, sis_priv->chipset_rev);
504 ret = 0;
505 if (sis_priv->chipset_rev == SIS630E_900_REV)
506 ret = sis630e_get_mac_addr(pci_dev, net_dev);
507 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
508 ret = sis635_get_mac_addr(pci_dev, net_dev);
509 else if (sis_priv->chipset_rev == SIS96x_900_REV)
510 ret = sis96x_get_mac_addr(pci_dev, net_dev);
511 else
512 ret = sis900_get_mac_addr(pci_dev, net_dev);
514 if (!ret || !is_valid_ether_addr(net_dev->dev_addr)) {
515 random_ether_addr(net_dev->dev_addr);
516 printk(KERN_WARNING "%s: Unreadable or invalid MAC address,"
517 "using random generated one\n", dev_name);
520 /* 630ET : set the mii access mode as software-mode */
521 if (sis_priv->chipset_rev == SIS630ET_900_REV)
522 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
524 /* probe for mii transceiver */
525 if (sis900_mii_probe(net_dev) == 0) {
526 printk(KERN_WARNING "%s: Error probing MII device.\n",
527 dev_name);
528 ret = -ENODEV;
529 goto err_unmap_rx;
532 /* save our host bridge revision */
533 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
534 if (dev) {
535 pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
536 pci_dev_put(dev);
539 ret = register_netdev(net_dev);
540 if (ret)
541 goto err_unmap_rx;
543 /* print some information about our NIC */
544 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
545 net_dev->name, card_name, ioaddr, net_dev->irq,
546 net_dev->dev_addr);
548 /* Detect Wake on Lan support */
549 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
550 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
551 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
553 return 0;
555 err_unmap_rx:
556 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
557 sis_priv->rx_ring_dma);
558 err_unmap_tx:
559 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
560 sis_priv->tx_ring_dma);
561 err_out_cleardev:
562 pci_set_drvdata(pci_dev, NULL);
563 pci_release_regions(pci_dev);
564 err_out:
565 free_netdev(net_dev);
566 return ret;
570 * sis900_mii_probe - Probe MII PHY for sis900
571 * @net_dev: the net device to probe for
573 * Search for total of 32 possible mii phy addresses.
574 * Identify and set current phy if found one,
575 * return error if it failed to found.
578 static int __devinit sis900_mii_probe(struct net_device * net_dev)
580 struct sis900_private *sis_priv = netdev_priv(net_dev);
581 const char *dev_name = pci_name(sis_priv->pci_dev);
582 u16 poll_bit = MII_STAT_LINK, status = 0;
583 unsigned long timeout = jiffies + 5 * HZ;
584 int phy_addr;
586 sis_priv->mii = NULL;
588 /* search for total of 32 possible mii phy addresses */
589 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
590 struct mii_phy * mii_phy = NULL;
591 u16 mii_status;
592 int i;
594 mii_phy = NULL;
595 for(i = 0; i < 2; i++)
596 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
598 if (mii_status == 0xffff || mii_status == 0x0000) {
599 if (netif_msg_probe(sis_priv))
600 printk(KERN_DEBUG "%s: MII at address %d"
601 " not accessible\n",
602 dev_name, phy_addr);
603 continue;
606 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
607 printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
608 mii_phy = sis_priv->first_mii;
609 while (mii_phy) {
610 struct mii_phy *phy;
611 phy = mii_phy;
612 mii_phy = mii_phy->next;
613 kfree(phy);
615 return 0;
618 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
619 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
620 mii_phy->phy_addr = phy_addr;
621 mii_phy->status = mii_status;
622 mii_phy->next = sis_priv->mii;
623 sis_priv->mii = mii_phy;
624 sis_priv->first_mii = mii_phy;
626 for (i = 0; mii_chip_table[i].phy_id1; i++)
627 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
628 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
629 mii_phy->phy_types = mii_chip_table[i].phy_types;
630 if (mii_chip_table[i].phy_types == MIX)
631 mii_phy->phy_types =
632 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
633 printk(KERN_INFO "%s: %s transceiver found "
634 "at address %d.\n",
635 dev_name,
636 mii_chip_table[i].name,
637 phy_addr);
638 break;
641 if( !mii_chip_table[i].phy_id1 ) {
642 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
643 dev_name, phy_addr);
644 mii_phy->phy_types = UNKNOWN;
648 if (sis_priv->mii == NULL) {
649 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
650 return 0;
653 /* select default PHY for mac */
654 sis_priv->mii = NULL;
655 sis900_default_phy( net_dev );
657 /* Reset phy if default phy is internal sis900 */
658 if ((sis_priv->mii->phy_id0 == 0x001D) &&
659 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
660 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
662 /* workaround for ICS1893 PHY */
663 if ((sis_priv->mii->phy_id0 == 0x0015) &&
664 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
665 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
667 if(status & MII_STAT_LINK){
668 while (poll_bit) {
669 yield();
671 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
672 if (time_after_eq(jiffies, timeout)) {
673 printk(KERN_WARNING "%s: reset phy and link down now\n",
674 dev_name);
675 return -ETIME;
680 if (sis_priv->chipset_rev == SIS630E_900_REV) {
681 /* SiS 630E has some bugs on default value of PHY registers */
682 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
683 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
684 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
685 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
686 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
689 if (sis_priv->mii->status & MII_STAT_LINK)
690 netif_carrier_on(net_dev);
691 else
692 netif_carrier_off(net_dev);
694 return 1;
698 * sis900_default_phy - Select default PHY for sis900 mac.
699 * @net_dev: the net device to probe for
701 * Select first detected PHY with link as default.
702 * If no one is link on, select PHY whose types is HOME as default.
703 * If HOME doesn't exist, select LAN.
706 static u16 sis900_default_phy(struct net_device * net_dev)
708 struct sis900_private *sis_priv = netdev_priv(net_dev);
709 struct mii_phy *phy = NULL, *phy_home = NULL,
710 *default_phy = NULL, *phy_lan = NULL;
711 u16 status;
713 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
714 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
715 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
717 /* Link ON & Not select default PHY & not ghost PHY */
718 if ((status & MII_STAT_LINK) && !default_phy &&
719 (phy->phy_types != UNKNOWN))
720 default_phy = phy;
721 else {
722 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
723 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
724 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
725 if (phy->phy_types == HOME)
726 phy_home = phy;
727 else if(phy->phy_types == LAN)
728 phy_lan = phy;
732 if (!default_phy && phy_home)
733 default_phy = phy_home;
734 else if (!default_phy && phy_lan)
735 default_phy = phy_lan;
736 else if (!default_phy)
737 default_phy = sis_priv->first_mii;
739 if (sis_priv->mii != default_phy) {
740 sis_priv->mii = default_phy;
741 sis_priv->cur_phy = default_phy->phy_addr;
742 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
743 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
746 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
748 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
749 status &= (~MII_CNTL_ISOLATE);
751 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
752 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
753 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
755 return status;
760 * sis900_set_capability - set the media capability of network adapter.
761 * @net_dev : the net device to probe for
762 * @phy : default PHY
764 * Set the media capability of network adapter according to
765 * mii status register. It's necessary before auto-negotiate.
768 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
770 u16 cap;
771 u16 status;
773 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
774 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
776 cap = MII_NWAY_CSMA_CD |
777 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
778 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
779 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
780 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
782 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
786 /* Delay between EEPROM clock transitions. */
787 #define eeprom_delay() inl(ee_addr)
790 * read_eeprom - Read Serial EEPROM
791 * @ioaddr: base i/o address
792 * @location: the EEPROM location to read
794 * Read Serial EEPROM through EEPROM Access Register.
795 * Note that location is in word (16 bits) unit
798 static u16 __devinit read_eeprom(long ioaddr, int location)
800 int i;
801 u16 retval = 0;
802 long ee_addr = ioaddr + mear;
803 u32 read_cmd = location | EEread;
805 outl(0, ee_addr);
806 eeprom_delay();
807 outl(EECS, ee_addr);
808 eeprom_delay();
810 /* Shift the read command (9) bits out. */
811 for (i = 8; i >= 0; i--) {
812 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
813 outl(dataval, ee_addr);
814 eeprom_delay();
815 outl(dataval | EECLK, ee_addr);
816 eeprom_delay();
818 outl(EECS, ee_addr);
819 eeprom_delay();
821 /* read the 16-bits data in */
822 for (i = 16; i > 0; i--) {
823 outl(EECS, ee_addr);
824 eeprom_delay();
825 outl(EECS | EECLK, ee_addr);
826 eeprom_delay();
827 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
828 eeprom_delay();
831 /* Terminate the EEPROM access. */
832 outl(0, ee_addr);
833 eeprom_delay();
835 return retval;
838 /* Read and write the MII management registers using software-generated
839 serial MDIO protocol. Note that the command bits and data bits are
840 send out separately */
841 #define mdio_delay() inl(mdio_addr)
843 static void mdio_idle(long mdio_addr)
845 outl(MDIO | MDDIR, mdio_addr);
846 mdio_delay();
847 outl(MDIO | MDDIR | MDC, mdio_addr);
850 /* Syncronize the MII management interface by shifting 32 one bits out. */
851 static void mdio_reset(long mdio_addr)
853 int i;
855 for (i = 31; i >= 0; i--) {
856 outl(MDDIR | MDIO, mdio_addr);
857 mdio_delay();
858 outl(MDDIR | MDIO | MDC, mdio_addr);
859 mdio_delay();
864 * mdio_read - read MII PHY register
865 * @net_dev: the net device to read
866 * @phy_id: the phy address to read
867 * @location: the phy regiester id to read
869 * Read MII registers through MDIO and MDC
870 * using MDIO management frame structure and protocol(defined by ISO/IEC).
871 * Please see SiS7014 or ICS spec
874 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
876 long mdio_addr = net_dev->base_addr + mear;
877 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
878 u16 retval = 0;
879 int i;
881 mdio_reset(mdio_addr);
882 mdio_idle(mdio_addr);
884 for (i = 15; i >= 0; i--) {
885 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
886 outl(dataval, mdio_addr);
887 mdio_delay();
888 outl(dataval | MDC, mdio_addr);
889 mdio_delay();
892 /* Read the 16 data bits. */
893 for (i = 16; i > 0; i--) {
894 outl(0, mdio_addr);
895 mdio_delay();
896 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
897 outl(MDC, mdio_addr);
898 mdio_delay();
900 outl(0x00, mdio_addr);
902 return retval;
906 * mdio_write - write MII PHY register
907 * @net_dev: the net device to write
908 * @phy_id: the phy address to write
909 * @location: the phy regiester id to write
910 * @value: the register value to write with
912 * Write MII registers with @value through MDIO and MDC
913 * using MDIO management frame structure and protocol(defined by ISO/IEC)
914 * please see SiS7014 or ICS spec
917 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
918 int value)
920 long mdio_addr = net_dev->base_addr + mear;
921 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
922 int i;
924 mdio_reset(mdio_addr);
925 mdio_idle(mdio_addr);
927 /* Shift the command bits out. */
928 for (i = 15; i >= 0; i--) {
929 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
930 outb(dataval, mdio_addr);
931 mdio_delay();
932 outb(dataval | MDC, mdio_addr);
933 mdio_delay();
935 mdio_delay();
937 /* Shift the value bits out. */
938 for (i = 15; i >= 0; i--) {
939 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
940 outl(dataval, mdio_addr);
941 mdio_delay();
942 outl(dataval | MDC, mdio_addr);
943 mdio_delay();
945 mdio_delay();
947 /* Clear out extra bits. */
948 for (i = 2; i > 0; i--) {
949 outb(0, mdio_addr);
950 mdio_delay();
951 outb(MDC, mdio_addr);
952 mdio_delay();
954 outl(0x00, mdio_addr);
959 * sis900_reset_phy - reset sis900 mii phy.
960 * @net_dev: the net device to write
961 * @phy_addr: default phy address
963 * Some specific phy can't work properly without reset.
964 * This function will be called during initialization and
965 * link status change from ON to DOWN.
968 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
970 int i;
971 u16 status;
973 for (i = 0; i < 2; i++)
974 status = mdio_read(net_dev, phy_addr, MII_STATUS);
976 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
978 return status;
981 #ifdef CONFIG_NET_POLL_CONTROLLER
983 * Polling 'interrupt' - used by things like netconsole to send skbs
984 * without having to re-enable interrupts. It's not called while
985 * the interrupt routine is executing.
987 static void sis900_poll(struct net_device *dev)
989 disable_irq(dev->irq);
990 sis900_interrupt(dev->irq, dev);
991 enable_irq(dev->irq);
993 #endif
996 * sis900_open - open sis900 device
997 * @net_dev: the net device to open
999 * Do some initialization and start net interface.
1000 * enable interrupts and set sis900 timer.
1003 static int
1004 sis900_open(struct net_device *net_dev)
1006 struct sis900_private *sis_priv = netdev_priv(net_dev);
1007 long ioaddr = net_dev->base_addr;
1008 int ret;
1010 /* Soft reset the chip. */
1011 sis900_reset(net_dev);
1013 /* Equalizer workaround Rule */
1014 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1016 ret = request_irq(net_dev->irq, sis900_interrupt, IRQF_SHARED,
1017 net_dev->name, net_dev);
1018 if (ret)
1019 return ret;
1021 sis900_init_rxfilter(net_dev);
1023 sis900_init_tx_ring(net_dev);
1024 sis900_init_rx_ring(net_dev);
1026 set_rx_mode(net_dev);
1028 netif_start_queue(net_dev);
1030 /* Workaround for EDB */
1031 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1033 /* Enable all known interrupts by setting the interrupt mask. */
1034 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1035 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1036 outl(IE, ioaddr + ier);
1038 sis900_check_mode(net_dev, sis_priv->mii);
1040 /* Set the timer to switch to check for link beat and perhaps switch
1041 to an alternate media type. */
1042 init_timer(&sis_priv->timer);
1043 sis_priv->timer.expires = jiffies + HZ;
1044 sis_priv->timer.data = (unsigned long)net_dev;
1045 sis_priv->timer.function = sis900_timer;
1046 add_timer(&sis_priv->timer);
1048 return 0;
1052 * sis900_init_rxfilter - Initialize the Rx filter
1053 * @net_dev: the net device to initialize for
1055 * Set receive filter address to our MAC address
1056 * and enable packet filtering.
1059 static void
1060 sis900_init_rxfilter (struct net_device * net_dev)
1062 struct sis900_private *sis_priv = netdev_priv(net_dev);
1063 long ioaddr = net_dev->base_addr;
1064 u32 rfcrSave;
1065 u32 i;
1067 rfcrSave = inl(rfcr + ioaddr);
1069 /* disable packet filtering before setting filter */
1070 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1072 /* load MAC addr to filter data register */
1073 for (i = 0 ; i < 3 ; i++) {
1074 u32 w;
1076 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1077 outl((i << RFADDR_shift), ioaddr + rfcr);
1078 outl(w, ioaddr + rfdr);
1080 if (netif_msg_hw(sis_priv)) {
1081 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1082 net_dev->name, i, inl(ioaddr + rfdr));
1086 /* enable packet filtering */
1087 outl(rfcrSave | RFEN, rfcr + ioaddr);
1091 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1092 * @net_dev: the net device to initialize for
1094 * Initialize the Tx descriptor ring,
1097 static void
1098 sis900_init_tx_ring(struct net_device *net_dev)
1100 struct sis900_private *sis_priv = netdev_priv(net_dev);
1101 long ioaddr = net_dev->base_addr;
1102 int i;
1104 sis_priv->tx_full = 0;
1105 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1107 for (i = 0; i < NUM_TX_DESC; i++) {
1108 sis_priv->tx_skbuff[i] = NULL;
1110 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1111 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1112 sis_priv->tx_ring[i].cmdsts = 0;
1113 sis_priv->tx_ring[i].bufptr = 0;
1116 /* load Transmit Descriptor Register */
1117 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1118 if (netif_msg_hw(sis_priv))
1119 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1120 net_dev->name, inl(ioaddr + txdp));
1124 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1125 * @net_dev: the net device to initialize for
1127 * Initialize the Rx descriptor ring,
1128 * and pre-allocate recevie buffers (socket buffer)
1131 static void
1132 sis900_init_rx_ring(struct net_device *net_dev)
1134 struct sis900_private *sis_priv = netdev_priv(net_dev);
1135 long ioaddr = net_dev->base_addr;
1136 int i;
1138 sis_priv->cur_rx = 0;
1139 sis_priv->dirty_rx = 0;
1141 /* init RX descriptor */
1142 for (i = 0; i < NUM_RX_DESC; i++) {
1143 sis_priv->rx_skbuff[i] = NULL;
1145 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1146 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1147 sis_priv->rx_ring[i].cmdsts = 0;
1148 sis_priv->rx_ring[i].bufptr = 0;
1151 /* allocate sock buffers */
1152 for (i = 0; i < NUM_RX_DESC; i++) {
1153 struct sk_buff *skb;
1155 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1156 /* not enough memory for skbuff, this makes a "hole"
1157 on the buffer ring, it is not clear how the
1158 hardware will react to this kind of degenerated
1159 buffer */
1160 break;
1162 sis_priv->rx_skbuff[i] = skb;
1163 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1164 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1165 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1167 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1169 /* load Receive Descriptor Register */
1170 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1171 if (netif_msg_hw(sis_priv))
1172 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1173 net_dev->name, inl(ioaddr + rxdp));
1177 * sis630_set_eq - set phy equalizer value for 630 LAN
1178 * @net_dev: the net device to set equalizer value
1179 * @revision: 630 LAN revision number
1181 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1182 * PHY register 14h(Test)
1183 * Bit 14: 0 -- Automatically dectect (default)
1184 * 1 -- Manually set Equalizer filter
1185 * Bit 13: 0 -- (Default)
1186 * 1 -- Speed up convergence of equalizer setting
1187 * Bit 9 : 0 -- (Default)
1188 * 1 -- Disable Baseline Wander
1189 * Bit 3~7 -- Equalizer filter setting
1190 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1191 * Then calculate equalizer value
1192 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1193 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1194 * Calculate Equalizer value:
1195 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1196 * When the equalizer is stable, this value is not a fixed value. It will be within
1197 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1198 * 0 <= max <= 4 --> set equalizer to max
1199 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1200 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1203 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1205 struct sis900_private *sis_priv = netdev_priv(net_dev);
1206 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1207 int i, maxcount=10;
1209 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1210 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1211 return;
1213 if (netif_carrier_ok(net_dev)) {
1214 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1215 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1216 (0x2200 | reg14h) & 0xBFFF);
1217 for (i=0; i < maxcount; i++) {
1218 eq_value = (0x00F8 & mdio_read(net_dev,
1219 sis_priv->cur_phy, MII_RESV)) >> 3;
1220 if (i == 0)
1221 max_value=min_value=eq_value;
1222 max_value = (eq_value > max_value) ?
1223 eq_value : max_value;
1224 min_value = (eq_value < min_value) ?
1225 eq_value : min_value;
1227 /* 630E rule to determine the equalizer value */
1228 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1229 revision == SIS630ET_900_REV) {
1230 if (max_value < 5)
1231 eq_value = max_value;
1232 else if (max_value >= 5 && max_value < 15)
1233 eq_value = (max_value == min_value) ?
1234 max_value+2 : max_value+1;
1235 else if (max_value >= 15)
1236 eq_value=(max_value == min_value) ?
1237 max_value+6 : max_value+5;
1239 /* 630B0&B1 rule to determine the equalizer value */
1240 if (revision == SIS630A_900_REV &&
1241 (sis_priv->host_bridge_rev == SIS630B0 ||
1242 sis_priv->host_bridge_rev == SIS630B1)) {
1243 if (max_value == 0)
1244 eq_value = 3;
1245 else
1246 eq_value = (max_value + min_value + 1)/2;
1248 /* write equalizer value and setting */
1249 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1250 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1251 reg14h = (reg14h | 0x6000) & 0xFDFF;
1252 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1253 } else {
1254 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1255 if (revision == SIS630A_900_REV &&
1256 (sis_priv->host_bridge_rev == SIS630B0 ||
1257 sis_priv->host_bridge_rev == SIS630B1))
1258 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1259 (reg14h | 0x2200) & 0xBFFF);
1260 else
1261 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1262 (reg14h | 0x2000) & 0xBFFF);
1267 * sis900_timer - sis900 timer routine
1268 * @data: pointer to sis900 net device
1270 * On each timer ticks we check two things,
1271 * link status (ON/OFF) and link mode (10/100/Full/Half)
1274 static void sis900_timer(unsigned long data)
1276 struct net_device *net_dev = (struct net_device *)data;
1277 struct sis900_private *sis_priv = netdev_priv(net_dev);
1278 struct mii_phy *mii_phy = sis_priv->mii;
1279 static const int next_tick = 5*HZ;
1280 u16 status;
1282 if (!sis_priv->autong_complete){
1283 int uninitialized_var(speed), duplex = 0;
1285 sis900_read_mode(net_dev, &speed, &duplex);
1286 if (duplex){
1287 sis900_set_mode(net_dev->base_addr, speed, duplex);
1288 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1289 netif_start_queue(net_dev);
1292 sis_priv->timer.expires = jiffies + HZ;
1293 add_timer(&sis_priv->timer);
1294 return;
1297 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1298 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1300 /* Link OFF -> ON */
1301 if (!netif_carrier_ok(net_dev)) {
1302 LookForLink:
1303 /* Search for new PHY */
1304 status = sis900_default_phy(net_dev);
1305 mii_phy = sis_priv->mii;
1307 if (status & MII_STAT_LINK){
1308 sis900_check_mode(net_dev, mii_phy);
1309 netif_carrier_on(net_dev);
1311 } else {
1312 /* Link ON -> OFF */
1313 if (!(status & MII_STAT_LINK)){
1314 netif_carrier_off(net_dev);
1315 if(netif_msg_link(sis_priv))
1316 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1318 /* Change mode issue */
1319 if ((mii_phy->phy_id0 == 0x001D) &&
1320 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1321 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1323 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1325 goto LookForLink;
1329 sis_priv->timer.expires = jiffies + next_tick;
1330 add_timer(&sis_priv->timer);
1334 * sis900_check_mode - check the media mode for sis900
1335 * @net_dev: the net device to be checked
1336 * @mii_phy: the mii phy
1338 * Older driver gets the media mode from mii status output
1339 * register. Now we set our media capability and auto-negotiate
1340 * to get the upper bound of speed and duplex between two ends.
1341 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1342 * and autong_complete should be set to 1.
1345 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1347 struct sis900_private *sis_priv = netdev_priv(net_dev);
1348 long ioaddr = net_dev->base_addr;
1349 int speed, duplex;
1351 if (mii_phy->phy_types == LAN) {
1352 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1353 sis900_set_capability(net_dev , mii_phy);
1354 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1355 } else {
1356 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1357 speed = HW_SPEED_HOME;
1358 duplex = FDX_CAPABLE_HALF_SELECTED;
1359 sis900_set_mode(ioaddr, speed, duplex);
1360 sis_priv->autong_complete = 1;
1365 * sis900_set_mode - Set the media mode of mac register.
1366 * @ioaddr: the address of the device
1367 * @speed : the transmit speed to be determined
1368 * @duplex: the duplex mode to be determined
1370 * Set the media mode of mac register txcfg/rxcfg according to
1371 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1372 * bus is used instead of PCI bus. When this bit is set 1, the
1373 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1374 * double words.
1377 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1379 u32 tx_flags = 0, rx_flags = 0;
1381 if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1382 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1383 (TX_FILL_THRESH << TxFILLT_shift);
1384 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1385 } else {
1386 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1387 (TX_FILL_THRESH << TxFILLT_shift);
1388 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1391 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1392 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1393 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1394 } else {
1395 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1396 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1399 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1400 tx_flags |= (TxCSI | TxHBI);
1401 rx_flags |= RxATX;
1404 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1405 /* Can accept Jumbo packet */
1406 rx_flags |= RxAJAB;
1407 #endif
1409 outl (tx_flags, ioaddr + txcfg);
1410 outl (rx_flags, ioaddr + rxcfg);
1414 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1415 * @net_dev: the net device to read mode for
1416 * @phy_addr: mii phy address
1418 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1419 * autong_complete should be set to 0 when starting auto-negotiation.
1420 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1421 * sis900_timer will wait for link on again if autong_complete = 0.
1424 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1426 struct sis900_private *sis_priv = netdev_priv(net_dev);
1427 int i = 0;
1428 u32 status;
1430 for (i = 0; i < 2; i++)
1431 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1433 if (!(status & MII_STAT_LINK)){
1434 if(netif_msg_link(sis_priv))
1435 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1436 sis_priv->autong_complete = 1;
1437 netif_carrier_off(net_dev);
1438 return;
1441 /* (Re)start AutoNegotiate */
1442 mdio_write(net_dev, phy_addr, MII_CONTROL,
1443 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1444 sis_priv->autong_complete = 0;
1449 * sis900_read_mode - read media mode for sis900 internal phy
1450 * @net_dev: the net device to read mode for
1451 * @speed : the transmit speed to be determined
1452 * @duplex : the duplex mode to be determined
1454 * The capability of remote end will be put in mii register autorec
1455 * after auto-negotiation. Use AND operation to get the upper bound
1456 * of speed and duplex between two ends.
1459 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1461 struct sis900_private *sis_priv = netdev_priv(net_dev);
1462 struct mii_phy *phy = sis_priv->mii;
1463 int phy_addr = sis_priv->cur_phy;
1464 u32 status;
1465 u16 autoadv, autorec;
1466 int i;
1468 for (i = 0; i < 2; i++)
1469 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1471 if (!(status & MII_STAT_LINK))
1472 return;
1474 /* AutoNegotiate completed */
1475 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1476 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1477 status = autoadv & autorec;
1479 *speed = HW_SPEED_10_MBPS;
1480 *duplex = FDX_CAPABLE_HALF_SELECTED;
1482 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1483 *speed = HW_SPEED_100_MBPS;
1484 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1485 *duplex = FDX_CAPABLE_FULL_SELECTED;
1487 sis_priv->autong_complete = 1;
1489 /* Workaround for Realtek RTL8201 PHY issue */
1490 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1491 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1492 *duplex = FDX_CAPABLE_FULL_SELECTED;
1493 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1494 *speed = HW_SPEED_100_MBPS;
1497 if(netif_msg_link(sis_priv))
1498 printk(KERN_INFO "%s: Media Link On %s %s-duplex\n",
1499 net_dev->name,
1500 *speed == HW_SPEED_100_MBPS ?
1501 "100mbps" : "10mbps",
1502 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1503 "full" : "half");
1507 * sis900_tx_timeout - sis900 transmit timeout routine
1508 * @net_dev: the net device to transmit
1510 * print transmit timeout status
1511 * disable interrupts and do some tasks
1514 static void sis900_tx_timeout(struct net_device *net_dev)
1516 struct sis900_private *sis_priv = netdev_priv(net_dev);
1517 long ioaddr = net_dev->base_addr;
1518 unsigned long flags;
1519 int i;
1521 if(netif_msg_tx_err(sis_priv))
1522 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x\n",
1523 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1525 /* Disable interrupts by clearing the interrupt mask. */
1526 outl(0x0000, ioaddr + imr);
1528 /* use spinlock to prevent interrupt handler accessing buffer ring */
1529 spin_lock_irqsave(&sis_priv->lock, flags);
1531 /* discard unsent packets */
1532 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1533 for (i = 0; i < NUM_TX_DESC; i++) {
1534 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1536 if (skb) {
1537 pci_unmap_single(sis_priv->pci_dev,
1538 sis_priv->tx_ring[i].bufptr, skb->len,
1539 PCI_DMA_TODEVICE);
1540 dev_kfree_skb_irq(skb);
1541 sis_priv->tx_skbuff[i] = NULL;
1542 sis_priv->tx_ring[i].cmdsts = 0;
1543 sis_priv->tx_ring[i].bufptr = 0;
1544 net_dev->stats.tx_dropped++;
1547 sis_priv->tx_full = 0;
1548 netif_wake_queue(net_dev);
1550 spin_unlock_irqrestore(&sis_priv->lock, flags);
1552 net_dev->trans_start = jiffies; /* prevent tx timeout */
1554 /* load Transmit Descriptor Register */
1555 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1557 /* Enable all known interrupts by setting the interrupt mask. */
1558 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1562 * sis900_start_xmit - sis900 start transmit routine
1563 * @skb: socket buffer pointer to put the data being transmitted
1564 * @net_dev: the net device to transmit with
1566 * Set the transmit buffer descriptor,
1567 * and write TxENA to enable transmit state machine.
1568 * tell upper layer if the buffer is full
1571 static netdev_tx_t
1572 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1574 struct sis900_private *sis_priv = netdev_priv(net_dev);
1575 long ioaddr = net_dev->base_addr;
1576 unsigned int entry;
1577 unsigned long flags;
1578 unsigned int index_cur_tx, index_dirty_tx;
1579 unsigned int count_dirty_tx;
1581 /* Don't transmit data before the complete of auto-negotiation */
1582 if(!sis_priv->autong_complete){
1583 netif_stop_queue(net_dev);
1584 return NETDEV_TX_BUSY;
1587 spin_lock_irqsave(&sis_priv->lock, flags);
1589 /* Calculate the next Tx descriptor entry. */
1590 entry = sis_priv->cur_tx % NUM_TX_DESC;
1591 sis_priv->tx_skbuff[entry] = skb;
1593 /* set the transmit buffer descriptor and enable Transmit State Machine */
1594 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1595 skb->data, skb->len, PCI_DMA_TODEVICE);
1596 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1597 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1599 sis_priv->cur_tx ++;
1600 index_cur_tx = sis_priv->cur_tx;
1601 index_dirty_tx = sis_priv->dirty_tx;
1603 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1604 count_dirty_tx ++;
1606 if (index_cur_tx == index_dirty_tx) {
1607 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1608 sis_priv->tx_full = 1;
1609 netif_stop_queue(net_dev);
1610 } else if (count_dirty_tx < NUM_TX_DESC) {
1611 /* Typical path, tell upper layer that more transmission is possible */
1612 netif_start_queue(net_dev);
1613 } else {
1614 /* buffer full, tell upper layer no more transmission */
1615 sis_priv->tx_full = 1;
1616 netif_stop_queue(net_dev);
1619 spin_unlock_irqrestore(&sis_priv->lock, flags);
1621 if (netif_msg_tx_queued(sis_priv))
1622 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1623 "to slot %d.\n",
1624 net_dev->name, skb->data, (int)skb->len, entry);
1626 return NETDEV_TX_OK;
1630 * sis900_interrupt - sis900 interrupt handler
1631 * @irq: the irq number
1632 * @dev_instance: the client data object
1634 * The interrupt handler does all of the Rx thread work,
1635 * and cleans up after the Tx thread
1638 static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1640 struct net_device *net_dev = dev_instance;
1641 struct sis900_private *sis_priv = netdev_priv(net_dev);
1642 int boguscnt = max_interrupt_work;
1643 long ioaddr = net_dev->base_addr;
1644 u32 status;
1645 unsigned int handled = 0;
1647 spin_lock (&sis_priv->lock);
1649 do {
1650 status = inl(ioaddr + isr);
1652 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1653 /* nothing intresting happened */
1654 break;
1655 handled = 1;
1657 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1658 if (status & (RxORN | RxERR | RxOK))
1659 /* Rx interrupt */
1660 sis900_rx(net_dev);
1662 if (status & (TxURN | TxERR | TxIDLE))
1663 /* Tx interrupt */
1664 sis900_finish_xmit(net_dev);
1666 /* something strange happened !!! */
1667 if (status & HIBERR) {
1668 if(netif_msg_intr(sis_priv))
1669 printk(KERN_INFO "%s: Abnormal interrupt, "
1670 "status %#8.8x.\n", net_dev->name, status);
1671 break;
1673 if (--boguscnt < 0) {
1674 if(netif_msg_intr(sis_priv))
1675 printk(KERN_INFO "%s: Too much work at interrupt, "
1676 "interrupt status = %#8.8x.\n",
1677 net_dev->name, status);
1678 break;
1680 } while (1);
1682 if(netif_msg_intr(sis_priv))
1683 printk(KERN_DEBUG "%s: exiting interrupt, "
1684 "interrupt status = 0x%#8.8x.\n",
1685 net_dev->name, inl(ioaddr + isr));
1687 spin_unlock (&sis_priv->lock);
1688 return IRQ_RETVAL(handled);
1692 * sis900_rx - sis900 receive routine
1693 * @net_dev: the net device which receives data
1695 * Process receive interrupt events,
1696 * put buffer to higher layer and refill buffer pool
1697 * Note: This function is called by interrupt handler,
1698 * don't do "too much" work here
1701 static int sis900_rx(struct net_device *net_dev)
1703 struct sis900_private *sis_priv = netdev_priv(net_dev);
1704 long ioaddr = net_dev->base_addr;
1705 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1706 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1707 int rx_work_limit;
1709 if (netif_msg_rx_status(sis_priv))
1710 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1711 "status:0x%8.8x\n",
1712 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1713 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1715 while (rx_status & OWN) {
1716 unsigned int rx_size;
1717 unsigned int data_size;
1719 if (--rx_work_limit < 0)
1720 break;
1722 data_size = rx_status & DSIZE;
1723 rx_size = data_size - CRC_SIZE;
1725 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1726 /* ``TOOLONG'' flag means jumbo packet recived. */
1727 if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1728 rx_status &= (~ ((unsigned int)TOOLONG));
1729 #endif
1731 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1732 /* corrupted packet received */
1733 if (netif_msg_rx_err(sis_priv))
1734 printk(KERN_DEBUG "%s: Corrupted packet "
1735 "received, buffer status = 0x%8.8x/%d.\n",
1736 net_dev->name, rx_status, data_size);
1737 net_dev->stats.rx_errors++;
1738 if (rx_status & OVERRUN)
1739 net_dev->stats.rx_over_errors++;
1740 if (rx_status & (TOOLONG|RUNT))
1741 net_dev->stats.rx_length_errors++;
1742 if (rx_status & (RXISERR | FAERR))
1743 net_dev->stats.rx_frame_errors++;
1744 if (rx_status & CRCERR)
1745 net_dev->stats.rx_crc_errors++;
1746 /* reset buffer descriptor state */
1747 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1748 } else {
1749 struct sk_buff * skb;
1750 struct sk_buff * rx_skb;
1752 pci_unmap_single(sis_priv->pci_dev,
1753 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1754 PCI_DMA_FROMDEVICE);
1756 /* refill the Rx buffer, what if there is not enough
1757 * memory for new socket buffer ?? */
1758 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1760 * Not enough memory to refill the buffer
1761 * so we need to recycle the old one so
1762 * as to avoid creating a memory hole
1763 * in the rx ring
1765 skb = sis_priv->rx_skbuff[entry];
1766 net_dev->stats.rx_dropped++;
1767 goto refill_rx_ring;
1770 /* This situation should never happen, but due to
1771 some unknown bugs, it is possible that
1772 we are working on NULL sk_buff :-( */
1773 if (sis_priv->rx_skbuff[entry] == NULL) {
1774 if (netif_msg_rx_err(sis_priv))
1775 printk(KERN_WARNING "%s: NULL pointer "
1776 "encountered in Rx ring\n"
1777 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1778 net_dev->name, sis_priv->cur_rx,
1779 sis_priv->dirty_rx);
1780 break;
1783 /* give the socket buffer to upper layers */
1784 rx_skb = sis_priv->rx_skbuff[entry];
1785 skb_put(rx_skb, rx_size);
1786 rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1787 netif_rx(rx_skb);
1789 /* some network statistics */
1790 if ((rx_status & BCAST) == MCAST)
1791 net_dev->stats.multicast++;
1792 net_dev->stats.rx_bytes += rx_size;
1793 net_dev->stats.rx_packets++;
1794 sis_priv->dirty_rx++;
1795 refill_rx_ring:
1796 sis_priv->rx_skbuff[entry] = skb;
1797 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1798 sis_priv->rx_ring[entry].bufptr =
1799 pci_map_single(sis_priv->pci_dev, skb->data,
1800 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1802 sis_priv->cur_rx++;
1803 entry = sis_priv->cur_rx % NUM_RX_DESC;
1804 rx_status = sis_priv->rx_ring[entry].cmdsts;
1805 } // while
1807 /* refill the Rx buffer, what if the rate of refilling is slower
1808 * than consuming ?? */
1809 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1810 struct sk_buff *skb;
1812 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1814 if (sis_priv->rx_skbuff[entry] == NULL) {
1815 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1816 /* not enough memory for skbuff, this makes a
1817 * "hole" on the buffer ring, it is not clear
1818 * how the hardware will react to this kind
1819 * of degenerated buffer */
1820 if (netif_msg_rx_err(sis_priv))
1821 printk(KERN_INFO "%s: Memory squeeze, "
1822 "deferring packet.\n",
1823 net_dev->name);
1824 net_dev->stats.rx_dropped++;
1825 break;
1827 sis_priv->rx_skbuff[entry] = skb;
1828 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1829 sis_priv->rx_ring[entry].bufptr =
1830 pci_map_single(sis_priv->pci_dev, skb->data,
1831 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1834 /* re-enable the potentially idle receive state matchine */
1835 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1837 return 0;
1841 * sis900_finish_xmit - finish up transmission of packets
1842 * @net_dev: the net device to be transmitted on
1844 * Check for error condition and free socket buffer etc
1845 * schedule for more transmission as needed
1846 * Note: This function is called by interrupt handler,
1847 * don't do "too much" work here
1850 static void sis900_finish_xmit (struct net_device *net_dev)
1852 struct sis900_private *sis_priv = netdev_priv(net_dev);
1854 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1855 struct sk_buff *skb;
1856 unsigned int entry;
1857 u32 tx_status;
1859 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1860 tx_status = sis_priv->tx_ring[entry].cmdsts;
1862 if (tx_status & OWN) {
1863 /* The packet is not transmitted yet (owned by hardware) !
1864 * Note: the interrupt is generated only when Tx Machine
1865 * is idle, so this is an almost impossible case */
1866 break;
1869 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1870 /* packet unsuccessfully transmitted */
1871 if (netif_msg_tx_err(sis_priv))
1872 printk(KERN_DEBUG "%s: Transmit "
1873 "error, Tx status %8.8x.\n",
1874 net_dev->name, tx_status);
1875 net_dev->stats.tx_errors++;
1876 if (tx_status & UNDERRUN)
1877 net_dev->stats.tx_fifo_errors++;
1878 if (tx_status & ABORT)
1879 net_dev->stats.tx_aborted_errors++;
1880 if (tx_status & NOCARRIER)
1881 net_dev->stats.tx_carrier_errors++;
1882 if (tx_status & OWCOLL)
1883 net_dev->stats.tx_window_errors++;
1884 } else {
1885 /* packet successfully transmitted */
1886 net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1887 net_dev->stats.tx_bytes += tx_status & DSIZE;
1888 net_dev->stats.tx_packets++;
1890 /* Free the original skb. */
1891 skb = sis_priv->tx_skbuff[entry];
1892 pci_unmap_single(sis_priv->pci_dev,
1893 sis_priv->tx_ring[entry].bufptr, skb->len,
1894 PCI_DMA_TODEVICE);
1895 dev_kfree_skb_irq(skb);
1896 sis_priv->tx_skbuff[entry] = NULL;
1897 sis_priv->tx_ring[entry].bufptr = 0;
1898 sis_priv->tx_ring[entry].cmdsts = 0;
1901 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1902 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1903 /* The ring is no longer full, clear tx_full and schedule
1904 * more transmission by netif_wake_queue(net_dev) */
1905 sis_priv->tx_full = 0;
1906 netif_wake_queue (net_dev);
1911 * sis900_close - close sis900 device
1912 * @net_dev: the net device to be closed
1914 * Disable interrupts, stop the Tx and Rx Status Machine
1915 * free Tx and RX socket buffer
1918 static int sis900_close(struct net_device *net_dev)
1920 long ioaddr = net_dev->base_addr;
1921 struct sis900_private *sis_priv = netdev_priv(net_dev);
1922 struct sk_buff *skb;
1923 int i;
1925 netif_stop_queue(net_dev);
1927 /* Disable interrupts by clearing the interrupt mask. */
1928 outl(0x0000, ioaddr + imr);
1929 outl(0x0000, ioaddr + ier);
1931 /* Stop the chip's Tx and Rx Status Machine */
1932 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1934 del_timer(&sis_priv->timer);
1936 free_irq(net_dev->irq, net_dev);
1938 /* Free Tx and RX skbuff */
1939 for (i = 0; i < NUM_RX_DESC; i++) {
1940 skb = sis_priv->rx_skbuff[i];
1941 if (skb) {
1942 pci_unmap_single(sis_priv->pci_dev,
1943 sis_priv->rx_ring[i].bufptr,
1944 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1945 dev_kfree_skb(skb);
1946 sis_priv->rx_skbuff[i] = NULL;
1949 for (i = 0; i < NUM_TX_DESC; i++) {
1950 skb = sis_priv->tx_skbuff[i];
1951 if (skb) {
1952 pci_unmap_single(sis_priv->pci_dev,
1953 sis_priv->tx_ring[i].bufptr, skb->len,
1954 PCI_DMA_TODEVICE);
1955 dev_kfree_skb(skb);
1956 sis_priv->tx_skbuff[i] = NULL;
1960 /* Green! Put the chip in low-power mode. */
1962 return 0;
1966 * sis900_get_drvinfo - Return information about driver
1967 * @net_dev: the net device to probe
1968 * @info: container for info returned
1970 * Process ethtool command such as "ehtool -i" to show information
1973 static void sis900_get_drvinfo(struct net_device *net_dev,
1974 struct ethtool_drvinfo *info)
1976 struct sis900_private *sis_priv = netdev_priv(net_dev);
1978 strcpy (info->driver, SIS900_MODULE_NAME);
1979 strcpy (info->version, SIS900_DRV_VERSION);
1980 strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1983 static u32 sis900_get_msglevel(struct net_device *net_dev)
1985 struct sis900_private *sis_priv = netdev_priv(net_dev);
1986 return sis_priv->msg_enable;
1989 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1991 struct sis900_private *sis_priv = netdev_priv(net_dev);
1992 sis_priv->msg_enable = value;
1995 static u32 sis900_get_link(struct net_device *net_dev)
1997 struct sis900_private *sis_priv = netdev_priv(net_dev);
1998 return mii_link_ok(&sis_priv->mii_info);
2001 static int sis900_get_settings(struct net_device *net_dev,
2002 struct ethtool_cmd *cmd)
2004 struct sis900_private *sis_priv = netdev_priv(net_dev);
2005 spin_lock_irq(&sis_priv->lock);
2006 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2007 spin_unlock_irq(&sis_priv->lock);
2008 return 0;
2011 static int sis900_set_settings(struct net_device *net_dev,
2012 struct ethtool_cmd *cmd)
2014 struct sis900_private *sis_priv = netdev_priv(net_dev);
2015 int rt;
2016 spin_lock_irq(&sis_priv->lock);
2017 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2018 spin_unlock_irq(&sis_priv->lock);
2019 return rt;
2022 static int sis900_nway_reset(struct net_device *net_dev)
2024 struct sis900_private *sis_priv = netdev_priv(net_dev);
2025 return mii_nway_restart(&sis_priv->mii_info);
2029 * sis900_set_wol - Set up Wake on Lan registers
2030 * @net_dev: the net device to probe
2031 * @wol: container for info passed to the driver
2033 * Process ethtool command "wol" to setup wake on lan features.
2034 * SiS900 supports sending WoL events if a correct packet is received,
2035 * but there is no simple way to filter them to only a subset (broadcast,
2036 * multicast, unicast or arp).
2039 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2041 struct sis900_private *sis_priv = netdev_priv(net_dev);
2042 long pmctrl_addr = net_dev->base_addr + pmctrl;
2043 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2045 if (wol->wolopts == 0) {
2046 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2047 cfgpmcsr &= ~PME_EN;
2048 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2049 outl(pmctrl_bits, pmctrl_addr);
2050 if (netif_msg_wol(sis_priv))
2051 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2052 return 0;
2055 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2056 | WAKE_BCAST | WAKE_ARP))
2057 return -EINVAL;
2059 if (wol->wolopts & WAKE_MAGIC)
2060 pmctrl_bits |= MAGICPKT;
2061 if (wol->wolopts & WAKE_PHY)
2062 pmctrl_bits |= LINKON;
2064 outl(pmctrl_bits, pmctrl_addr);
2066 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2067 cfgpmcsr |= PME_EN;
2068 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2069 if (netif_msg_wol(sis_priv))
2070 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2072 return 0;
2075 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2077 long pmctrl_addr = net_dev->base_addr + pmctrl;
2078 u32 pmctrl_bits;
2080 pmctrl_bits = inl(pmctrl_addr);
2081 if (pmctrl_bits & MAGICPKT)
2082 wol->wolopts |= WAKE_MAGIC;
2083 if (pmctrl_bits & LINKON)
2084 wol->wolopts |= WAKE_PHY;
2086 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2089 static const struct ethtool_ops sis900_ethtool_ops = {
2090 .get_drvinfo = sis900_get_drvinfo,
2091 .get_msglevel = sis900_get_msglevel,
2092 .set_msglevel = sis900_set_msglevel,
2093 .get_link = sis900_get_link,
2094 .get_settings = sis900_get_settings,
2095 .set_settings = sis900_set_settings,
2096 .nway_reset = sis900_nway_reset,
2097 .get_wol = sis900_get_wol,
2098 .set_wol = sis900_set_wol
2102 * mii_ioctl - process MII i/o control command
2103 * @net_dev: the net device to command for
2104 * @rq: parameter for command
2105 * @cmd: the i/o command
2107 * Process MII command like read/write MII register
2110 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2112 struct sis900_private *sis_priv = netdev_priv(net_dev);
2113 struct mii_ioctl_data *data = if_mii(rq);
2115 switch(cmd) {
2116 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2117 data->phy_id = sis_priv->mii->phy_addr;
2118 /* Fall Through */
2120 case SIOCGMIIREG: /* Read MII PHY register. */
2121 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2122 return 0;
2124 case SIOCSMIIREG: /* Write MII PHY register. */
2125 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2126 return 0;
2127 default:
2128 return -EOPNOTSUPP;
2133 * sis900_set_config - Set media type by net_device.set_config
2134 * @dev: the net device for media type change
2135 * @map: ifmap passed by ifconfig
2137 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2138 * we support only port changes. All other runtime configuration
2139 * changes will be ignored
2142 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2144 struct sis900_private *sis_priv = netdev_priv(dev);
2145 struct mii_phy *mii_phy = sis_priv->mii;
2147 u16 status;
2149 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2150 /* we switch on the ifmap->port field. I couldn't find anything
2151 * like a definition or standard for the values of that field.
2152 * I think the meaning of those values is device specific. But
2153 * since I would like to change the media type via the ifconfig
2154 * command I use the definition from linux/netdevice.h
2155 * (which seems to be different from the ifport(pcmcia) definition) */
2156 switch(map->port){
2157 case IF_PORT_UNKNOWN: /* use auto here */
2158 dev->if_port = map->port;
2159 /* we are going to change the media type, so the Link
2160 * will be temporary down and we need to reflect that
2161 * here. When the Link comes up again, it will be
2162 * sensed by the sis_timer procedure, which also does
2163 * all the rest for us */
2164 netif_carrier_off(dev);
2166 /* read current state */
2167 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2169 /* enable auto negotiation and reset the negotioation
2170 * (I don't really know what the auto negatiotiation
2171 * reset really means, but it sounds for me right to
2172 * do one here) */
2173 mdio_write(dev, mii_phy->phy_addr,
2174 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2176 break;
2178 case IF_PORT_10BASET: /* 10BaseT */
2179 dev->if_port = map->port;
2181 /* we are going to change the media type, so the Link
2182 * will be temporary down and we need to reflect that
2183 * here. When the Link comes up again, it will be
2184 * sensed by the sis_timer procedure, which also does
2185 * all the rest for us */
2186 netif_carrier_off(dev);
2188 /* set Speed to 10Mbps */
2189 /* read current state */
2190 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2192 /* disable auto negotiation and force 10MBit mode*/
2193 mdio_write(dev, mii_phy->phy_addr,
2194 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2195 MII_CNTL_AUTO));
2196 break;
2198 case IF_PORT_100BASET: /* 100BaseT */
2199 case IF_PORT_100BASETX: /* 100BaseTx */
2200 dev->if_port = map->port;
2202 /* we are going to change the media type, so the Link
2203 * will be temporary down and we need to reflect that
2204 * here. When the Link comes up again, it will be
2205 * sensed by the sis_timer procedure, which also does
2206 * all the rest for us */
2207 netif_carrier_off(dev);
2209 /* set Speed to 100Mbps */
2210 /* disable auto negotiation and enable 100MBit Mode */
2211 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2212 mdio_write(dev, mii_phy->phy_addr,
2213 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2214 MII_CNTL_SPEED);
2216 break;
2218 case IF_PORT_10BASE2: /* 10Base2 */
2219 case IF_PORT_AUI: /* AUI */
2220 case IF_PORT_100BASEFX: /* 100BaseFx */
2221 /* These Modes are not supported (are they?)*/
2222 return -EOPNOTSUPP;
2223 break;
2225 default:
2226 return -EINVAL;
2229 return 0;
2233 * sis900_mcast_bitnr - compute hashtable index
2234 * @addr: multicast address
2235 * @revision: revision id of chip
2237 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2238 * hash table, which makes this function a little bit different from other drivers
2239 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2240 * multicast hash table.
2243 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2246 u32 crc = ether_crc(6, addr);
2248 /* leave 8 or 7 most siginifant bits */
2249 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2250 return (int)(crc >> 24);
2251 else
2252 return (int)(crc >> 25);
2256 * set_rx_mode - Set SiS900 receive mode
2257 * @net_dev: the net device to be set
2259 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2260 * And set the appropriate multicast filter.
2261 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2264 static void set_rx_mode(struct net_device *net_dev)
2266 long ioaddr = net_dev->base_addr;
2267 struct sis900_private *sis_priv = netdev_priv(net_dev);
2268 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2269 int i, table_entries;
2270 u32 rx_mode;
2272 /* 635 Hash Table entries = 256(2^16) */
2273 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2274 (sis_priv->chipset_rev == SIS900B_900_REV))
2275 table_entries = 16;
2276 else
2277 table_entries = 8;
2279 if (net_dev->flags & IFF_PROMISC) {
2280 /* Accept any kinds of packets */
2281 rx_mode = RFPromiscuous;
2282 for (i = 0; i < table_entries; i++)
2283 mc_filter[i] = 0xffff;
2284 } else if ((netdev_mc_count(net_dev) > multicast_filter_limit) ||
2285 (net_dev->flags & IFF_ALLMULTI)) {
2286 /* too many multicast addresses or accept all multicast packet */
2287 rx_mode = RFAAB | RFAAM;
2288 for (i = 0; i < table_entries; i++)
2289 mc_filter[i] = 0xffff;
2290 } else {
2291 /* Accept Broadcast packet, destination address matchs our
2292 * MAC address, use Receive Filter to reject unwanted MCAST
2293 * packets */
2294 struct netdev_hw_addr *ha;
2295 rx_mode = RFAAB;
2297 netdev_for_each_mc_addr(ha, net_dev) {
2298 unsigned int bit_nr;
2300 bit_nr = sis900_mcast_bitnr(ha->addr,
2301 sis_priv->chipset_rev);
2302 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2306 /* update Multicast Hash Table in Receive Filter */
2307 for (i = 0; i < table_entries; i++) {
2308 /* why plus 0x04 ??, That makes the correct value for hash table. */
2309 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2310 outl(mc_filter[i], ioaddr + rfdr);
2313 outl(RFEN | rx_mode, ioaddr + rfcr);
2315 /* sis900 is capable of looping back packets at MAC level for
2316 * debugging purpose */
2317 if (net_dev->flags & IFF_LOOPBACK) {
2318 u32 cr_saved;
2319 /* We must disable Tx/Rx before setting loopback mode */
2320 cr_saved = inl(ioaddr + cr);
2321 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2322 /* enable loopback */
2323 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2324 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2325 /* restore cr */
2326 outl(cr_saved, ioaddr + cr);
2331 * sis900_reset - Reset sis900 MAC
2332 * @net_dev: the net device to reset
2334 * reset sis900 MAC and wait until finished
2335 * reset through command register
2336 * change backoff algorithm for 900B0 & 635 M/B
2339 static void sis900_reset(struct net_device *net_dev)
2341 struct sis900_private *sis_priv = netdev_priv(net_dev);
2342 long ioaddr = net_dev->base_addr;
2343 int i = 0;
2344 u32 status = TxRCMP | RxRCMP;
2346 outl(0, ioaddr + ier);
2347 outl(0, ioaddr + imr);
2348 outl(0, ioaddr + rfcr);
2350 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2352 /* Check that the chip has finished the reset. */
2353 while (status && (i++ < 1000)) {
2354 status ^= (inl(isr + ioaddr) & status);
2357 if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2358 (sis_priv->chipset_rev == SIS900B_900_REV) )
2359 outl(PESEL | RND_CNT, ioaddr + cfg);
2360 else
2361 outl(PESEL, ioaddr + cfg);
2365 * sis900_remove - Remove sis900 device
2366 * @pci_dev: the pci device to be removed
2368 * remove and release SiS900 net device
2371 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2373 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2374 struct sis900_private *sis_priv = netdev_priv(net_dev);
2375 struct mii_phy *phy = NULL;
2377 while (sis_priv->first_mii) {
2378 phy = sis_priv->first_mii;
2379 sis_priv->first_mii = phy->next;
2380 kfree(phy);
2383 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2384 sis_priv->rx_ring_dma);
2385 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2386 sis_priv->tx_ring_dma);
2387 unregister_netdev(net_dev);
2388 free_netdev(net_dev);
2389 pci_release_regions(pci_dev);
2390 pci_set_drvdata(pci_dev, NULL);
2393 #ifdef CONFIG_PM
2395 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2397 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2398 long ioaddr = net_dev->base_addr;
2400 if(!netif_running(net_dev))
2401 return 0;
2403 netif_stop_queue(net_dev);
2404 netif_device_detach(net_dev);
2406 /* Stop the chip's Tx and Rx Status Machine */
2407 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2409 pci_set_power_state(pci_dev, PCI_D3hot);
2410 pci_save_state(pci_dev);
2412 return 0;
2415 static int sis900_resume(struct pci_dev *pci_dev)
2417 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2418 struct sis900_private *sis_priv = netdev_priv(net_dev);
2419 long ioaddr = net_dev->base_addr;
2421 if(!netif_running(net_dev))
2422 return 0;
2423 pci_restore_state(pci_dev);
2424 pci_set_power_state(pci_dev, PCI_D0);
2426 sis900_init_rxfilter(net_dev);
2428 sis900_init_tx_ring(net_dev);
2429 sis900_init_rx_ring(net_dev);
2431 set_rx_mode(net_dev);
2433 netif_device_attach(net_dev);
2434 netif_start_queue(net_dev);
2436 /* Workaround for EDB */
2437 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2439 /* Enable all known interrupts by setting the interrupt mask. */
2440 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2441 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2442 outl(IE, ioaddr + ier);
2444 sis900_check_mode(net_dev, sis_priv->mii);
2446 return 0;
2448 #endif /* CONFIG_PM */
2450 static struct pci_driver sis900_pci_driver = {
2451 .name = SIS900_MODULE_NAME,
2452 .id_table = sis900_pci_tbl,
2453 .probe = sis900_probe,
2454 .remove = __devexit_p(sis900_remove),
2455 #ifdef CONFIG_PM
2456 .suspend = sis900_suspend,
2457 .resume = sis900_resume,
2458 #endif /* CONFIG_PM */
2461 static int __init sis900_init_module(void)
2463 /* when a module, this is printed whether or not devices are found in probe */
2464 #ifdef MODULE
2465 printk(version);
2466 #endif
2468 return pci_register_driver(&sis900_pci_driver);
2471 static void __exit sis900_cleanup_module(void)
2473 pci_unregister_driver(&sis900_pci_driver);
2476 module_init(sis900_init_module);
2477 module_exit(sis900_cleanup_module);