Fix handling of errors from dmu_write_uio_dbuf() on FreeBSD
[zfs.git] / module / zfs / zfs_vnops.c
blobb7fdae92652047d96e8435915ca692b295187add
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/uio_impl.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/spa.h>
50 #include <sys/txg.h>
51 #include <sys/dbuf.h>
52 #include <sys/policy.h>
53 #include <sys/zfs_vnops.h>
54 #include <sys/zfs_quota.h>
55 #include <sys/zfs_vfsops.h>
56 #include <sys/zfs_znode.h>
59 static ulong_t zfs_fsync_sync_cnt = 4;
61 int
62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
64 zfsvfs_t *zfsvfs = ZTOZSB(zp);
66 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
68 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
69 ZFS_ENTER(zfsvfs);
70 ZFS_VERIFY_ZP(zp);
71 zil_commit(zfsvfs->z_log, zp->z_id);
72 ZFS_EXIT(zfsvfs);
74 tsd_set(zfs_fsyncer_key, NULL);
76 return (0);
80 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
82 * Lseek support for finding holes (cmd == SEEK_HOLE) and
83 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
85 static int
86 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
88 zfs_locked_range_t *lr;
89 uint64_t noff = (uint64_t)*off; /* new offset */
90 uint64_t file_sz;
91 int error;
92 boolean_t hole;
94 file_sz = zp->z_size;
95 if (noff >= file_sz) {
96 return (SET_ERROR(ENXIO));
99 if (cmd == F_SEEK_HOLE)
100 hole = B_TRUE;
101 else
102 hole = B_FALSE;
104 /* Flush any mmap()'d data to disk */
105 if (zn_has_cached_data(zp))
106 zn_flush_cached_data(zp, B_FALSE);
108 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER);
109 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
110 zfs_rangelock_exit(lr);
112 if (error == ESRCH)
113 return (SET_ERROR(ENXIO));
115 /* File was dirty, so fall back to using generic logic */
116 if (error == EBUSY) {
117 if (hole)
118 *off = file_sz;
120 return (0);
124 * We could find a hole that begins after the logical end-of-file,
125 * because dmu_offset_next() only works on whole blocks. If the
126 * EOF falls mid-block, then indicate that the "virtual hole"
127 * at the end of the file begins at the logical EOF, rather than
128 * at the end of the last block.
130 if (noff > file_sz) {
131 ASSERT(hole);
132 noff = file_sz;
135 if (noff < *off)
136 return (error);
137 *off = noff;
138 return (error);
142 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
144 zfsvfs_t *zfsvfs = ZTOZSB(zp);
145 int error;
147 ZFS_ENTER(zfsvfs);
148 ZFS_VERIFY_ZP(zp);
150 error = zfs_holey_common(zp, cmd, off);
152 ZFS_EXIT(zfsvfs);
153 return (error);
155 #endif /* SEEK_HOLE && SEEK_DATA */
157 /*ARGSUSED*/
159 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
161 zfsvfs_t *zfsvfs = ZTOZSB(zp);
162 int error;
164 ZFS_ENTER(zfsvfs);
165 ZFS_VERIFY_ZP(zp);
167 if (flag & V_ACE_MASK)
168 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
169 else
170 error = zfs_zaccess_rwx(zp, mode, flag, cr);
172 ZFS_EXIT(zfsvfs);
173 return (error);
176 static unsigned long zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
179 * Read bytes from specified file into supplied buffer.
181 * IN: zp - inode of file to be read from.
182 * uio - structure supplying read location, range info,
183 * and return buffer.
184 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
185 * O_DIRECT flag; used to bypass page cache.
186 * cr - credentials of caller.
188 * OUT: uio - updated offset and range, buffer filled.
190 * RETURN: 0 on success, error code on failure.
192 * Side Effects:
193 * inode - atime updated if byte count > 0
195 /* ARGSUSED */
197 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
199 int error = 0;
200 boolean_t frsync = B_FALSE;
202 zfsvfs_t *zfsvfs = ZTOZSB(zp);
203 ZFS_ENTER(zfsvfs);
204 ZFS_VERIFY_ZP(zp);
206 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
207 ZFS_EXIT(zfsvfs);
208 return (SET_ERROR(EACCES));
211 /* We don't copy out anything useful for directories. */
212 if (Z_ISDIR(ZTOTYPE(zp))) {
213 ZFS_EXIT(zfsvfs);
214 return (SET_ERROR(EISDIR));
218 * Validate file offset
220 if (zfs_uio_offset(uio) < (offset_t)0) {
221 ZFS_EXIT(zfsvfs);
222 return (SET_ERROR(EINVAL));
226 * Fasttrack empty reads
228 if (zfs_uio_resid(uio) == 0) {
229 ZFS_EXIT(zfsvfs);
230 return (0);
233 #ifdef FRSYNC
235 * If we're in FRSYNC mode, sync out this znode before reading it.
236 * Only do this for non-snapshots.
238 * Some platforms do not support FRSYNC and instead map it
239 * to O_SYNC, which results in unnecessary calls to zil_commit. We
240 * only honor FRSYNC requests on platforms which support it.
242 frsync = !!(ioflag & FRSYNC);
243 #endif
244 if (zfsvfs->z_log &&
245 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
246 zil_commit(zfsvfs->z_log, zp->z_id);
249 * Lock the range against changes.
251 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
252 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
255 * If we are reading past end-of-file we can skip
256 * to the end; but we might still need to set atime.
258 if (zfs_uio_offset(uio) >= zp->z_size) {
259 error = 0;
260 goto out;
263 ASSERT(zfs_uio_offset(uio) < zp->z_size);
264 #if defined(__linux__)
265 ssize_t start_offset = zfs_uio_offset(uio);
266 #endif
267 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
268 ssize_t start_resid = n;
270 while (n > 0) {
271 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
272 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
273 #ifdef UIO_NOCOPY
274 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
275 error = mappedread_sf(zp, nbytes, uio);
276 else
277 #endif
278 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
279 error = mappedread(zp, nbytes, uio);
280 } else {
281 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
282 uio, nbytes);
285 if (error) {
286 /* convert checksum errors into IO errors */
287 if (error == ECKSUM)
288 error = SET_ERROR(EIO);
290 #if defined(__linux__)
292 * if we actually read some bytes, bubbling EFAULT
293 * up to become EAGAIN isn't what we want here...
295 * ...on Linux, at least. On FBSD, doing this breaks.
297 if (error == EFAULT &&
298 (zfs_uio_offset(uio) - start_offset) != 0)
299 error = 0;
300 #endif
301 break;
304 n -= nbytes;
307 int64_t nread = start_resid - n;
308 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
309 task_io_account_read(nread);
310 out:
311 zfs_rangelock_exit(lr);
313 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
314 ZFS_EXIT(zfsvfs);
315 return (error);
319 * Write the bytes to a file.
321 * IN: zp - znode of file to be written to.
322 * uio - structure supplying write location, range info,
323 * and data buffer.
324 * ioflag - O_APPEND flag set if in append mode.
325 * O_DIRECT flag; used to bypass page cache.
326 * cr - credentials of caller.
328 * OUT: uio - updated offset and range.
330 * RETURN: 0 if success
331 * error code if failure
333 * Timestamps:
334 * ip - ctime|mtime updated if byte count > 0
337 /* ARGSUSED */
339 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
341 int error = 0, error1;
342 ssize_t start_resid = zfs_uio_resid(uio);
345 * Fasttrack empty write
347 ssize_t n = start_resid;
348 if (n == 0)
349 return (0);
351 zfsvfs_t *zfsvfs = ZTOZSB(zp);
352 ZFS_ENTER(zfsvfs);
353 ZFS_VERIFY_ZP(zp);
355 sa_bulk_attr_t bulk[4];
356 int count = 0;
357 uint64_t mtime[2], ctime[2];
358 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
359 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
360 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
361 &zp->z_size, 8);
362 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
363 &zp->z_pflags, 8);
366 * Callers might not be able to detect properly that we are read-only,
367 * so check it explicitly here.
369 if (zfs_is_readonly(zfsvfs)) {
370 ZFS_EXIT(zfsvfs);
371 return (SET_ERROR(EROFS));
375 * If immutable or not appending then return EPERM.
376 * Intentionally allow ZFS_READONLY through here.
377 * See zfs_zaccess_common()
379 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
380 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
381 (zfs_uio_offset(uio) < zp->z_size))) {
382 ZFS_EXIT(zfsvfs);
383 return (SET_ERROR(EPERM));
387 * Validate file offset
389 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
390 if (woff < 0) {
391 ZFS_EXIT(zfsvfs);
392 return (SET_ERROR(EINVAL));
395 const uint64_t max_blksz = zfsvfs->z_max_blksz;
398 * Pre-fault the pages to ensure slow (eg NFS) pages
399 * don't hold up txg.
400 * Skip this if uio contains loaned arc_buf.
402 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
403 ZFS_EXIT(zfsvfs);
404 return (SET_ERROR(EFAULT));
408 * If in append mode, set the io offset pointer to eof.
410 zfs_locked_range_t *lr;
411 if (ioflag & O_APPEND) {
413 * Obtain an appending range lock to guarantee file append
414 * semantics. We reset the write offset once we have the lock.
416 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
417 woff = lr->lr_offset;
418 if (lr->lr_length == UINT64_MAX) {
420 * We overlocked the file because this write will cause
421 * the file block size to increase.
422 * Note that zp_size cannot change with this lock held.
424 woff = zp->z_size;
426 zfs_uio_setoffset(uio, woff);
427 } else {
429 * Note that if the file block size will change as a result of
430 * this write, then this range lock will lock the entire file
431 * so that we can re-write the block safely.
433 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
436 if (zn_rlimit_fsize(zp, uio)) {
437 zfs_rangelock_exit(lr);
438 ZFS_EXIT(zfsvfs);
439 return (SET_ERROR(EFBIG));
442 const rlim64_t limit = MAXOFFSET_T;
444 if (woff >= limit) {
445 zfs_rangelock_exit(lr);
446 ZFS_EXIT(zfsvfs);
447 return (SET_ERROR(EFBIG));
450 if (n > limit - woff)
451 n = limit - woff;
453 uint64_t end_size = MAX(zp->z_size, woff + n);
454 zilog_t *zilog = zfsvfs->z_log;
456 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
457 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
458 const uint64_t projid = zp->z_projid;
461 * Write the file in reasonable size chunks. Each chunk is written
462 * in a separate transaction; this keeps the intent log records small
463 * and allows us to do more fine-grained space accounting.
465 while (n > 0) {
466 woff = zfs_uio_offset(uio);
468 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
469 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
470 (projid != ZFS_DEFAULT_PROJID &&
471 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
472 projid))) {
473 error = SET_ERROR(EDQUOT);
474 break;
477 arc_buf_t *abuf = NULL;
478 if (n >= max_blksz && woff >= zp->z_size &&
479 P2PHASE(woff, max_blksz) == 0 &&
480 zp->z_blksz == max_blksz) {
482 * This write covers a full block. "Borrow" a buffer
483 * from the dmu so that we can fill it before we enter
484 * a transaction. This avoids the possibility of
485 * holding up the transaction if the data copy hangs
486 * up on a pagefault (e.g., from an NFS server mapping).
488 size_t cbytes;
490 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
491 max_blksz);
492 ASSERT(abuf != NULL);
493 ASSERT(arc_buf_size(abuf) == max_blksz);
494 if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
495 UIO_WRITE, uio, &cbytes))) {
496 dmu_return_arcbuf(abuf);
497 break;
499 ASSERT3S(cbytes, ==, max_blksz);
503 * Start a transaction.
505 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
506 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
507 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
508 DB_DNODE_ENTER(db);
509 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
510 MIN(n, max_blksz));
511 DB_DNODE_EXIT(db);
512 zfs_sa_upgrade_txholds(tx, zp);
513 error = dmu_tx_assign(tx, TXG_WAIT);
514 if (error) {
515 dmu_tx_abort(tx);
516 if (abuf != NULL)
517 dmu_return_arcbuf(abuf);
518 break;
522 * If rangelock_enter() over-locked we grow the blocksize
523 * and then reduce the lock range. This will only happen
524 * on the first iteration since rangelock_reduce() will
525 * shrink down lr_length to the appropriate size.
527 if (lr->lr_length == UINT64_MAX) {
528 uint64_t new_blksz;
530 if (zp->z_blksz > max_blksz) {
532 * File's blocksize is already larger than the
533 * "recordsize" property. Only let it grow to
534 * the next power of 2.
536 ASSERT(!ISP2(zp->z_blksz));
537 new_blksz = MIN(end_size,
538 1 << highbit64(zp->z_blksz));
539 } else {
540 new_blksz = MIN(end_size, max_blksz);
542 zfs_grow_blocksize(zp, new_blksz, tx);
543 zfs_rangelock_reduce(lr, woff, n);
547 * XXX - should we really limit each write to z_max_blksz?
548 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
550 const ssize_t nbytes =
551 MIN(n, max_blksz - P2PHASE(woff, max_blksz));
553 ssize_t tx_bytes;
554 if (abuf == NULL) {
555 tx_bytes = zfs_uio_resid(uio);
556 zfs_uio_fault_disable(uio, B_TRUE);
557 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
558 uio, nbytes, tx);
559 zfs_uio_fault_disable(uio, B_FALSE);
560 #ifdef __linux__
561 if (error == EFAULT) {
562 dmu_tx_commit(tx);
564 * Account for partial writes before
565 * continuing the loop.
566 * Update needs to occur before the next
567 * zfs_uio_prefaultpages, or prefaultpages may
568 * error, and we may break the loop early.
570 if (tx_bytes != zfs_uio_resid(uio))
571 n -= tx_bytes - zfs_uio_resid(uio);
572 if (zfs_uio_prefaultpages(MIN(n, max_blksz),
573 uio)) {
574 break;
576 continue;
578 #endif
580 * On FreeBSD, EFAULT should be propagated back to the
581 * VFS, which will handle faulting and will retry.
583 if (error != 0 && error != EFAULT) {
584 dmu_tx_commit(tx);
585 break;
587 tx_bytes -= zfs_uio_resid(uio);
588 } else {
589 /* Implied by abuf != NULL: */
590 ASSERT3S(n, >=, max_blksz);
591 ASSERT0(P2PHASE(woff, max_blksz));
593 * We can simplify nbytes to MIN(n, max_blksz) since
594 * P2PHASE(woff, max_blksz) is 0, and knowing
595 * n >= max_blksz lets us simplify further:
597 ASSERT3S(nbytes, ==, max_blksz);
599 * Thus, we're writing a full block at a block-aligned
600 * offset and extending the file past EOF.
602 * dmu_assign_arcbuf_by_dbuf() will directly assign the
603 * arc buffer to a dbuf.
605 error = dmu_assign_arcbuf_by_dbuf(
606 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
607 if (error != 0) {
608 dmu_return_arcbuf(abuf);
609 dmu_tx_commit(tx);
610 break;
612 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
613 zfs_uioskip(uio, nbytes);
614 tx_bytes = nbytes;
616 if (tx_bytes && zn_has_cached_data(zp) &&
617 !(ioflag & O_DIRECT)) {
618 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
622 * If we made no progress, we're done. If we made even
623 * partial progress, update the znode and ZIL accordingly.
625 if (tx_bytes == 0) {
626 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
627 (void *)&zp->z_size, sizeof (uint64_t), tx);
628 dmu_tx_commit(tx);
629 ASSERT(error != 0);
630 break;
634 * Clear Set-UID/Set-GID bits on successful write if not
635 * privileged and at least one of the execute bits is set.
637 * It would be nice to do this after all writes have
638 * been done, but that would still expose the ISUID/ISGID
639 * to another app after the partial write is committed.
641 * Note: we don't call zfs_fuid_map_id() here because
642 * user 0 is not an ephemeral uid.
644 mutex_enter(&zp->z_acl_lock);
645 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
646 (S_IXUSR >> 6))) != 0 &&
647 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
648 secpolicy_vnode_setid_retain(zp, cr,
649 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
650 uint64_t newmode;
651 zp->z_mode &= ~(S_ISUID | S_ISGID);
652 newmode = zp->z_mode;
653 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
654 (void *)&newmode, sizeof (uint64_t), tx);
656 mutex_exit(&zp->z_acl_lock);
658 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
661 * Update the file size (zp_size) if it has changed;
662 * account for possible concurrent updates.
664 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
665 (void) atomic_cas_64(&zp->z_size, end_size,
666 zfs_uio_offset(uio));
667 ASSERT(error == 0 || error == EFAULT);
670 * If we are replaying and eof is non zero then force
671 * the file size to the specified eof. Note, there's no
672 * concurrency during replay.
674 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
675 zp->z_size = zfsvfs->z_replay_eof;
677 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
678 if (error1 != 0)
679 /* Avoid clobbering EFAULT. */
680 error = error1;
682 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
683 NULL, NULL);
684 dmu_tx_commit(tx);
686 if (error != 0)
687 break;
688 ASSERT3S(tx_bytes, ==, nbytes);
689 n -= nbytes;
691 if (n > 0) {
692 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
693 error = SET_ERROR(EFAULT);
694 break;
699 zfs_znode_update_vfs(zp);
700 zfs_rangelock_exit(lr);
703 * If we're in replay mode, or we made no progress, or the
704 * uio data is inaccessible return an error. Otherwise, it's
705 * at least a partial write, so it's successful.
707 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
708 error == EFAULT) {
709 ZFS_EXIT(zfsvfs);
710 return (error);
713 if (ioflag & (O_SYNC | O_DSYNC) ||
714 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
715 zil_commit(zilog, zp->z_id);
717 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
718 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
719 task_io_account_write(nwritten);
721 ZFS_EXIT(zfsvfs);
722 return (0);
725 /*ARGSUSED*/
727 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
729 zfsvfs_t *zfsvfs = ZTOZSB(zp);
730 int error;
731 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
733 ZFS_ENTER(zfsvfs);
734 ZFS_VERIFY_ZP(zp);
735 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
736 ZFS_EXIT(zfsvfs);
738 return (error);
741 /*ARGSUSED*/
743 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
745 zfsvfs_t *zfsvfs = ZTOZSB(zp);
746 int error;
747 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
748 zilog_t *zilog = zfsvfs->z_log;
750 ZFS_ENTER(zfsvfs);
751 ZFS_VERIFY_ZP(zp);
753 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
755 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
756 zil_commit(zilog, 0);
758 ZFS_EXIT(zfsvfs);
759 return (error);
762 #ifdef ZFS_DEBUG
763 static int zil_fault_io = 0;
764 #endif
766 static void zfs_get_done(zgd_t *zgd, int error);
769 * Get data to generate a TX_WRITE intent log record.
772 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
773 struct lwb *lwb, zio_t *zio)
775 zfsvfs_t *zfsvfs = arg;
776 objset_t *os = zfsvfs->z_os;
777 znode_t *zp;
778 uint64_t object = lr->lr_foid;
779 uint64_t offset = lr->lr_offset;
780 uint64_t size = lr->lr_length;
781 dmu_buf_t *db;
782 zgd_t *zgd;
783 int error = 0;
784 uint64_t zp_gen;
786 ASSERT3P(lwb, !=, NULL);
787 ASSERT3P(zio, !=, NULL);
788 ASSERT3U(size, !=, 0);
791 * Nothing to do if the file has been removed
793 if (zfs_zget(zfsvfs, object, &zp) != 0)
794 return (SET_ERROR(ENOENT));
795 if (zp->z_unlinked) {
797 * Release the vnode asynchronously as we currently have the
798 * txg stopped from syncing.
800 zfs_zrele_async(zp);
801 return (SET_ERROR(ENOENT));
803 /* check if generation number matches */
804 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
805 sizeof (zp_gen)) != 0) {
806 zfs_zrele_async(zp);
807 return (SET_ERROR(EIO));
809 if (zp_gen != gen) {
810 zfs_zrele_async(zp);
811 return (SET_ERROR(ENOENT));
814 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
815 zgd->zgd_lwb = lwb;
816 zgd->zgd_private = zp;
819 * Write records come in two flavors: immediate and indirect.
820 * For small writes it's cheaper to store the data with the
821 * log record (immediate); for large writes it's cheaper to
822 * sync the data and get a pointer to it (indirect) so that
823 * we don't have to write the data twice.
825 if (buf != NULL) { /* immediate write */
826 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
827 offset, size, RL_READER);
828 /* test for truncation needs to be done while range locked */
829 if (offset >= zp->z_size) {
830 error = SET_ERROR(ENOENT);
831 } else {
832 error = dmu_read(os, object, offset, size, buf,
833 DMU_READ_NO_PREFETCH);
835 ASSERT(error == 0 || error == ENOENT);
836 } else { /* indirect write */
838 * Have to lock the whole block to ensure when it's
839 * written out and its checksum is being calculated
840 * that no one can change the data. We need to re-check
841 * blocksize after we get the lock in case it's changed!
843 for (;;) {
844 uint64_t blkoff;
845 size = zp->z_blksz;
846 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
847 offset -= blkoff;
848 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
849 offset, size, RL_READER);
850 if (zp->z_blksz == size)
851 break;
852 offset += blkoff;
853 zfs_rangelock_exit(zgd->zgd_lr);
855 /* test for truncation needs to be done while range locked */
856 if (lr->lr_offset >= zp->z_size)
857 error = SET_ERROR(ENOENT);
858 #ifdef ZFS_DEBUG
859 if (zil_fault_io) {
860 error = SET_ERROR(EIO);
861 zil_fault_io = 0;
863 #endif
864 if (error == 0)
865 error = dmu_buf_hold(os, object, offset, zgd, &db,
866 DMU_READ_NO_PREFETCH);
868 if (error == 0) {
869 blkptr_t *bp = &lr->lr_blkptr;
871 zgd->zgd_db = db;
872 zgd->zgd_bp = bp;
874 ASSERT(db->db_offset == offset);
875 ASSERT(db->db_size == size);
877 error = dmu_sync(zio, lr->lr_common.lrc_txg,
878 zfs_get_done, zgd);
879 ASSERT(error || lr->lr_length <= size);
882 * On success, we need to wait for the write I/O
883 * initiated by dmu_sync() to complete before we can
884 * release this dbuf. We will finish everything up
885 * in the zfs_get_done() callback.
887 if (error == 0)
888 return (0);
890 if (error == EALREADY) {
891 lr->lr_common.lrc_txtype = TX_WRITE2;
893 * TX_WRITE2 relies on the data previously
894 * written by the TX_WRITE that caused
895 * EALREADY. We zero out the BP because
896 * it is the old, currently-on-disk BP.
898 zgd->zgd_bp = NULL;
899 BP_ZERO(bp);
900 error = 0;
905 zfs_get_done(zgd, error);
907 return (error);
911 /* ARGSUSED */
912 static void
913 zfs_get_done(zgd_t *zgd, int error)
915 znode_t *zp = zgd->zgd_private;
917 if (zgd->zgd_db)
918 dmu_buf_rele(zgd->zgd_db, zgd);
920 zfs_rangelock_exit(zgd->zgd_lr);
923 * Release the vnode asynchronously as we currently have the
924 * txg stopped from syncing.
926 zfs_zrele_async(zp);
928 kmem_free(zgd, sizeof (zgd_t));
931 EXPORT_SYMBOL(zfs_access);
932 EXPORT_SYMBOL(zfs_fsync);
933 EXPORT_SYMBOL(zfs_holey);
934 EXPORT_SYMBOL(zfs_read);
935 EXPORT_SYMBOL(zfs_write);
936 EXPORT_SYMBOL(zfs_getsecattr);
937 EXPORT_SYMBOL(zfs_setsecattr);
939 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, ULONG, ZMOD_RW,
940 "Bytes to read per chunk");