Raw DRR_OBJECT records must write raw data
[zfs.git] / module / zfs / dmu.c
blob2b727372c749bcc58dfdcf5f794d22d6eb386153
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dbuf.h>
34 #include <sys/dnode.h>
35 #include <sys/zfs_context.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dmu_traverse.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_prop.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/zfs_ioctl.h>
45 #include <sys/zap.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zio_compress.h>
48 #include <sys/sa.h>
49 #include <sys/zfeature.h>
50 #include <sys/abd.h>
51 #include <sys/trace_dmu.h>
52 #include <sys/zfs_rlock.h>
53 #ifdef _KERNEL
54 #include <sys/vmsystm.h>
55 #include <sys/zfs_znode.h>
56 #endif
59 * Enable/disable nopwrite feature.
61 int zfs_nopwrite_enabled = 1;
64 * Tunable to control percentage of dirtied blocks from frees in one TXG.
65 * After this threshold is crossed, additional dirty blocks from frees
66 * wait until the next TXG.
67 * A value of zero will disable this throttle.
69 unsigned long zfs_per_txg_dirty_frees_percent = 30;
72 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
74 int zfs_dmu_offset_next_sync = 0;
76 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
77 { DMU_BSWAP_UINT8, TRUE, FALSE, "unallocated" },
78 { DMU_BSWAP_ZAP, TRUE, FALSE, "object directory" },
79 { DMU_BSWAP_UINT64, TRUE, FALSE, "object array" },
80 { DMU_BSWAP_UINT8, TRUE, FALSE, "packed nvlist" },
81 { DMU_BSWAP_UINT64, TRUE, FALSE, "packed nvlist size" },
82 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj" },
83 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj header" },
84 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map header" },
85 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA space map" },
86 { DMU_BSWAP_UINT64, TRUE, TRUE, "ZIL intent log" },
87 { DMU_BSWAP_DNODE, TRUE, TRUE, "DMU dnode" },
88 { DMU_BSWAP_OBJSET, TRUE, FALSE, "DMU objset" },
89 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL directory" },
90 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL directory child map"},
91 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dataset snap map" },
92 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL props" },
93 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL dataset" },
94 { DMU_BSWAP_ZNODE, TRUE, FALSE, "ZFS znode" },
95 { DMU_BSWAP_OLDACL, TRUE, TRUE, "ZFS V0 ACL" },
96 { DMU_BSWAP_UINT8, FALSE, TRUE, "ZFS plain file" },
97 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS directory" },
98 { DMU_BSWAP_ZAP, TRUE, FALSE, "ZFS master node" },
99 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS delete queue" },
100 { DMU_BSWAP_UINT8, FALSE, TRUE, "zvol object" },
101 { DMU_BSWAP_ZAP, TRUE, FALSE, "zvol prop" },
102 { DMU_BSWAP_UINT8, FALSE, TRUE, "other uint8[]" },
103 { DMU_BSWAP_UINT64, FALSE, TRUE, "other uint64[]" },
104 { DMU_BSWAP_ZAP, TRUE, FALSE, "other ZAP" },
105 { DMU_BSWAP_ZAP, TRUE, FALSE, "persistent error log" },
106 { DMU_BSWAP_UINT8, TRUE, FALSE, "SPA history" },
107 { DMU_BSWAP_UINT64, TRUE, FALSE, "SPA history offsets" },
108 { DMU_BSWAP_ZAP, TRUE, FALSE, "Pool properties" },
109 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL permissions" },
110 { DMU_BSWAP_ACL, TRUE, TRUE, "ZFS ACL" },
111 { DMU_BSWAP_UINT8, TRUE, TRUE, "ZFS SYSACL" },
112 { DMU_BSWAP_UINT8, TRUE, TRUE, "FUID table" },
113 { DMU_BSWAP_UINT64, TRUE, FALSE, "FUID table size" },
114 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dataset next clones"},
115 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan work queue" },
116 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS user/group/project used" },
117 { DMU_BSWAP_ZAP, TRUE, TRUE, "ZFS user/group/project quota"},
118 { DMU_BSWAP_ZAP, TRUE, FALSE, "snapshot refcount tags"},
119 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT ZAP algorithm" },
120 { DMU_BSWAP_ZAP, TRUE, FALSE, "DDT statistics" },
121 { DMU_BSWAP_UINT8, TRUE, TRUE, "System attributes" },
122 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA master node" },
123 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA attr registration" },
124 { DMU_BSWAP_ZAP, TRUE, TRUE, "SA attr layouts" },
125 { DMU_BSWAP_ZAP, TRUE, FALSE, "scan translations" },
126 { DMU_BSWAP_UINT8, FALSE, TRUE, "deduplicated block" },
127 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL deadlist map" },
128 { DMU_BSWAP_UINT64, TRUE, FALSE, "DSL deadlist map hdr" },
129 { DMU_BSWAP_ZAP, TRUE, FALSE, "DSL dir clones" },
130 { DMU_BSWAP_UINT64, TRUE, FALSE, "bpobj subobj" }
133 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
134 { byteswap_uint8_array, "uint8" },
135 { byteswap_uint16_array, "uint16" },
136 { byteswap_uint32_array, "uint32" },
137 { byteswap_uint64_array, "uint64" },
138 { zap_byteswap, "zap" },
139 { dnode_buf_byteswap, "dnode" },
140 { dmu_objset_byteswap, "objset" },
141 { zfs_znode_byteswap, "znode" },
142 { zfs_oldacl_byteswap, "oldacl" },
143 { zfs_acl_byteswap, "acl" }
147 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
148 void *tag, dmu_buf_t **dbp)
150 uint64_t blkid;
151 dmu_buf_impl_t *db;
153 blkid = dbuf_whichblock(dn, 0, offset);
154 rw_enter(&dn->dn_struct_rwlock, RW_READER);
155 db = dbuf_hold(dn, blkid, tag);
156 rw_exit(&dn->dn_struct_rwlock);
158 if (db == NULL) {
159 *dbp = NULL;
160 return (SET_ERROR(EIO));
163 *dbp = &db->db;
164 return (0);
167 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
168 void *tag, dmu_buf_t **dbp)
170 dnode_t *dn;
171 uint64_t blkid;
172 dmu_buf_impl_t *db;
173 int err;
175 err = dnode_hold(os, object, FTAG, &dn);
176 if (err)
177 return (err);
178 blkid = dbuf_whichblock(dn, 0, offset);
179 rw_enter(&dn->dn_struct_rwlock, RW_READER);
180 db = dbuf_hold(dn, blkid, tag);
181 rw_exit(&dn->dn_struct_rwlock);
182 dnode_rele(dn, FTAG);
184 if (db == NULL) {
185 *dbp = NULL;
186 return (SET_ERROR(EIO));
189 *dbp = &db->db;
190 return (err);
194 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
195 void *tag, dmu_buf_t **dbp, int flags)
197 int err;
198 int db_flags = DB_RF_CANFAIL;
200 if (flags & DMU_READ_NO_PREFETCH)
201 db_flags |= DB_RF_NOPREFETCH;
202 if (flags & DMU_READ_NO_DECRYPT)
203 db_flags |= DB_RF_NO_DECRYPT;
205 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
206 if (err == 0) {
207 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
208 err = dbuf_read(db, NULL, db_flags);
209 if (err != 0) {
210 dbuf_rele(db, tag);
211 *dbp = NULL;
215 return (err);
219 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
220 void *tag, dmu_buf_t **dbp, int flags)
222 int err;
223 int db_flags = DB_RF_CANFAIL;
225 if (flags & DMU_READ_NO_PREFETCH)
226 db_flags |= DB_RF_NOPREFETCH;
227 if (flags & DMU_READ_NO_DECRYPT)
228 db_flags |= DB_RF_NO_DECRYPT;
230 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
231 if (err == 0) {
232 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
233 err = dbuf_read(db, NULL, db_flags);
234 if (err != 0) {
235 dbuf_rele(db, tag);
236 *dbp = NULL;
240 return (err);
244 dmu_bonus_max(void)
246 return (DN_OLD_MAX_BONUSLEN);
250 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
252 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
253 dnode_t *dn;
254 int error;
256 DB_DNODE_ENTER(db);
257 dn = DB_DNODE(db);
259 if (dn->dn_bonus != db) {
260 error = SET_ERROR(EINVAL);
261 } else if (newsize < 0 || newsize > db_fake->db_size) {
262 error = SET_ERROR(EINVAL);
263 } else {
264 dnode_setbonuslen(dn, newsize, tx);
265 error = 0;
268 DB_DNODE_EXIT(db);
269 return (error);
273 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
276 dnode_t *dn;
277 int error;
279 DB_DNODE_ENTER(db);
280 dn = DB_DNODE(db);
282 if (!DMU_OT_IS_VALID(type)) {
283 error = SET_ERROR(EINVAL);
284 } else if (dn->dn_bonus != db) {
285 error = SET_ERROR(EINVAL);
286 } else {
287 dnode_setbonus_type(dn, type, tx);
288 error = 0;
291 DB_DNODE_EXIT(db);
292 return (error);
295 dmu_object_type_t
296 dmu_get_bonustype(dmu_buf_t *db_fake)
298 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
299 dnode_t *dn;
300 dmu_object_type_t type;
302 DB_DNODE_ENTER(db);
303 dn = DB_DNODE(db);
304 type = dn->dn_bonustype;
305 DB_DNODE_EXIT(db);
307 return (type);
311 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
313 dnode_t *dn;
314 int error;
316 error = dnode_hold(os, object, FTAG, &dn);
317 dbuf_rm_spill(dn, tx);
318 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
319 dnode_rm_spill(dn, tx);
320 rw_exit(&dn->dn_struct_rwlock);
321 dnode_rele(dn, FTAG);
322 return (error);
326 * returns ENOENT, EIO, or 0.
329 dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag, uint32_t flags,
330 dmu_buf_t **dbp)
332 dnode_t *dn;
333 dmu_buf_impl_t *db;
334 int error;
335 uint32_t db_flags = DB_RF_MUST_SUCCEED;
337 if (flags & DMU_READ_NO_PREFETCH)
338 db_flags |= DB_RF_NOPREFETCH;
339 if (flags & DMU_READ_NO_DECRYPT)
340 db_flags |= DB_RF_NO_DECRYPT;
342 error = dnode_hold(os, object, FTAG, &dn);
343 if (error)
344 return (error);
346 rw_enter(&dn->dn_struct_rwlock, RW_READER);
347 if (dn->dn_bonus == NULL) {
348 rw_exit(&dn->dn_struct_rwlock);
349 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
350 if (dn->dn_bonus == NULL)
351 dbuf_create_bonus(dn);
353 db = dn->dn_bonus;
355 /* as long as the bonus buf is held, the dnode will be held */
356 if (refcount_add(&db->db_holds, tag) == 1) {
357 VERIFY(dnode_add_ref(dn, db));
358 atomic_inc_32(&dn->dn_dbufs_count);
362 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
363 * hold and incrementing the dbuf count to ensure that dnode_move() sees
364 * a dnode hold for every dbuf.
366 rw_exit(&dn->dn_struct_rwlock);
368 dnode_rele(dn, FTAG);
370 error = dbuf_read(db, NULL, db_flags);
371 if (error) {
372 dnode_evict_bonus(dn);
373 dbuf_rele(db, tag);
374 *dbp = NULL;
375 return (error);
378 *dbp = &db->db;
379 return (0);
383 dmu_bonus_hold(objset_t *os, uint64_t obj, void *tag, dmu_buf_t **dbp)
385 return (dmu_bonus_hold_impl(os, obj, tag, DMU_READ_NO_PREFETCH, dbp));
389 * returns ENOENT, EIO, or 0.
391 * This interface will allocate a blank spill dbuf when a spill blk
392 * doesn't already exist on the dnode.
394 * if you only want to find an already existing spill db, then
395 * dmu_spill_hold_existing() should be used.
398 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
400 dmu_buf_impl_t *db = NULL;
401 int err;
403 if ((flags & DB_RF_HAVESTRUCT) == 0)
404 rw_enter(&dn->dn_struct_rwlock, RW_READER);
406 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
408 if ((flags & DB_RF_HAVESTRUCT) == 0)
409 rw_exit(&dn->dn_struct_rwlock);
411 if (db == NULL) {
412 *dbp = NULL;
413 return (SET_ERROR(EIO));
415 err = dbuf_read(db, NULL, flags);
416 if (err == 0)
417 *dbp = &db->db;
418 else {
419 dbuf_rele(db, tag);
420 *dbp = NULL;
422 return (err);
426 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
428 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
429 dnode_t *dn;
430 int err;
432 DB_DNODE_ENTER(db);
433 dn = DB_DNODE(db);
435 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
436 err = SET_ERROR(EINVAL);
437 } else {
438 rw_enter(&dn->dn_struct_rwlock, RW_READER);
440 if (!dn->dn_have_spill) {
441 err = SET_ERROR(ENOENT);
442 } else {
443 err = dmu_spill_hold_by_dnode(dn,
444 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
447 rw_exit(&dn->dn_struct_rwlock);
450 DB_DNODE_EXIT(db);
451 return (err);
455 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
457 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
458 dnode_t *dn;
459 int err;
461 DB_DNODE_ENTER(db);
462 dn = DB_DNODE(db);
463 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
464 DB_DNODE_EXIT(db);
466 return (err);
470 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
471 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
472 * and can induce severe lock contention when writing to several files
473 * whose dnodes are in the same block.
475 static int
476 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
477 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
479 dmu_buf_t **dbp;
480 uint64_t blkid, nblks, i;
481 uint32_t dbuf_flags;
482 int err;
483 zio_t *zio;
485 ASSERT(length <= DMU_MAX_ACCESS);
488 * Note: We directly notify the prefetch code of this read, so that
489 * we can tell it about the multi-block read. dbuf_read() only knows
490 * about the one block it is accessing.
492 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
493 DB_RF_NOPREFETCH;
495 rw_enter(&dn->dn_struct_rwlock, RW_READER);
496 if (dn->dn_datablkshift) {
497 int blkshift = dn->dn_datablkshift;
498 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
499 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
500 } else {
501 if (offset + length > dn->dn_datablksz) {
502 zfs_panic_recover("zfs: accessing past end of object "
503 "%llx/%llx (size=%u access=%llu+%llu)",
504 (longlong_t)dn->dn_objset->
505 os_dsl_dataset->ds_object,
506 (longlong_t)dn->dn_object, dn->dn_datablksz,
507 (longlong_t)offset, (longlong_t)length);
508 rw_exit(&dn->dn_struct_rwlock);
509 return (SET_ERROR(EIO));
511 nblks = 1;
513 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
515 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
516 blkid = dbuf_whichblock(dn, 0, offset);
517 for (i = 0; i < nblks; i++) {
518 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
519 if (db == NULL) {
520 rw_exit(&dn->dn_struct_rwlock);
521 dmu_buf_rele_array(dbp, nblks, tag);
522 zio_nowait(zio);
523 return (SET_ERROR(EIO));
526 /* initiate async i/o */
527 if (read)
528 (void) dbuf_read(db, zio, dbuf_flags);
529 dbp[i] = &db->db;
532 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
533 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
534 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
535 read && DNODE_IS_CACHEABLE(dn));
537 rw_exit(&dn->dn_struct_rwlock);
539 /* wait for async i/o */
540 err = zio_wait(zio);
541 if (err) {
542 dmu_buf_rele_array(dbp, nblks, tag);
543 return (err);
546 /* wait for other io to complete */
547 if (read) {
548 for (i = 0; i < nblks; i++) {
549 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
550 mutex_enter(&db->db_mtx);
551 while (db->db_state == DB_READ ||
552 db->db_state == DB_FILL)
553 cv_wait(&db->db_changed, &db->db_mtx);
554 if (db->db_state == DB_UNCACHED)
555 err = SET_ERROR(EIO);
556 mutex_exit(&db->db_mtx);
557 if (err) {
558 dmu_buf_rele_array(dbp, nblks, tag);
559 return (err);
564 *numbufsp = nblks;
565 *dbpp = dbp;
566 return (0);
569 static int
570 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
571 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
573 dnode_t *dn;
574 int err;
576 err = dnode_hold(os, object, FTAG, &dn);
577 if (err)
578 return (err);
580 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
581 numbufsp, dbpp, DMU_READ_PREFETCH);
583 dnode_rele(dn, FTAG);
585 return (err);
589 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
590 uint64_t length, boolean_t read, void *tag, int *numbufsp,
591 dmu_buf_t ***dbpp)
593 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
594 dnode_t *dn;
595 int err;
597 DB_DNODE_ENTER(db);
598 dn = DB_DNODE(db);
599 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
600 numbufsp, dbpp, DMU_READ_PREFETCH);
601 DB_DNODE_EXIT(db);
603 return (err);
606 void
607 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
609 int i;
610 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
612 if (numbufs == 0)
613 return;
615 for (i = 0; i < numbufs; i++) {
616 if (dbp[i])
617 dbuf_rele(dbp[i], tag);
620 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
624 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
625 * indirect blocks prefeteched will be those that point to the blocks containing
626 * the data starting at offset, and continuing to offset + len.
628 * Note that if the indirect blocks above the blocks being prefetched are not
629 * in cache, they will be asychronously read in.
631 void
632 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
633 uint64_t len, zio_priority_t pri)
635 dnode_t *dn;
636 uint64_t blkid;
637 int nblks, err;
639 if (len == 0) { /* they're interested in the bonus buffer */
640 dn = DMU_META_DNODE(os);
642 if (object == 0 || object >= DN_MAX_OBJECT)
643 return;
645 rw_enter(&dn->dn_struct_rwlock, RW_READER);
646 blkid = dbuf_whichblock(dn, level,
647 object * sizeof (dnode_phys_t));
648 dbuf_prefetch(dn, level, blkid, pri, 0);
649 rw_exit(&dn->dn_struct_rwlock);
650 return;
654 * XXX - Note, if the dnode for the requested object is not
655 * already cached, we will do a *synchronous* read in the
656 * dnode_hold() call. The same is true for any indirects.
658 err = dnode_hold(os, object, FTAG, &dn);
659 if (err != 0)
660 return;
662 rw_enter(&dn->dn_struct_rwlock, RW_READER);
664 * offset + len - 1 is the last byte we want to prefetch for, and offset
665 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
666 * last block we want to prefetch, and dbuf_whichblock(dn, level,
667 * offset) is the first. Then the number we need to prefetch is the
668 * last - first + 1.
670 if (level > 0 || dn->dn_datablkshift != 0) {
671 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
672 dbuf_whichblock(dn, level, offset) + 1;
673 } else {
674 nblks = (offset < dn->dn_datablksz);
677 if (nblks != 0) {
678 blkid = dbuf_whichblock(dn, level, offset);
679 for (int i = 0; i < nblks; i++)
680 dbuf_prefetch(dn, level, blkid + i, pri, 0);
683 rw_exit(&dn->dn_struct_rwlock);
685 dnode_rele(dn, FTAG);
689 * Get the next "chunk" of file data to free. We traverse the file from
690 * the end so that the file gets shorter over time (if we crashes in the
691 * middle, this will leave us in a better state). We find allocated file
692 * data by simply searching the allocated level 1 indirects.
694 * On input, *start should be the first offset that does not need to be
695 * freed (e.g. "offset + length"). On return, *start will be the first
696 * offset that should be freed.
698 static int
699 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
701 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
702 /* bytes of data covered by a level-1 indirect block */
703 uint64_t iblkrange =
704 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
706 ASSERT3U(minimum, <=, *start);
708 if (*start - minimum <= iblkrange * maxblks) {
709 *start = minimum;
710 return (0);
712 ASSERT(ISP2(iblkrange));
714 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
715 int err;
718 * dnode_next_offset(BACKWARDS) will find an allocated L1
719 * indirect block at or before the input offset. We must
720 * decrement *start so that it is at the end of the region
721 * to search.
723 (*start)--;
724 err = dnode_next_offset(dn,
725 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
727 /* if there are no indirect blocks before start, we are done */
728 if (err == ESRCH) {
729 *start = minimum;
730 break;
731 } else if (err != 0) {
732 return (err);
735 /* set start to the beginning of this L1 indirect */
736 *start = P2ALIGN(*start, iblkrange);
738 if (*start < minimum)
739 *start = minimum;
740 return (0);
744 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
745 * otherwise return false.
746 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
748 /*ARGSUSED*/
749 static boolean_t
750 dmu_objset_zfs_unmounting(objset_t *os)
752 #ifdef _KERNEL
753 if (dmu_objset_type(os) == DMU_OST_ZFS)
754 return (zfs_get_vfs_flag_unmounted(os));
755 #endif
756 return (B_FALSE);
759 static int
760 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
761 uint64_t length, boolean_t raw)
763 uint64_t object_size;
764 int err;
765 uint64_t dirty_frees_threshold;
766 dsl_pool_t *dp = dmu_objset_pool(os);
768 if (dn == NULL)
769 return (SET_ERROR(EINVAL));
771 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
772 if (offset >= object_size)
773 return (0);
775 if (zfs_per_txg_dirty_frees_percent <= 100)
776 dirty_frees_threshold =
777 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
778 else
779 dirty_frees_threshold = zfs_dirty_data_max / 4;
781 if (length == DMU_OBJECT_END || offset + length > object_size)
782 length = object_size - offset;
784 while (length != 0) {
785 uint64_t chunk_end, chunk_begin, chunk_len;
786 uint64_t long_free_dirty_all_txgs = 0;
787 dmu_tx_t *tx;
789 if (dmu_objset_zfs_unmounting(dn->dn_objset))
790 return (SET_ERROR(EINTR));
792 chunk_end = chunk_begin = offset + length;
794 /* move chunk_begin backwards to the beginning of this chunk */
795 err = get_next_chunk(dn, &chunk_begin, offset);
796 if (err)
797 return (err);
798 ASSERT3U(chunk_begin, >=, offset);
799 ASSERT3U(chunk_begin, <=, chunk_end);
801 chunk_len = chunk_end - chunk_begin;
803 mutex_enter(&dp->dp_lock);
804 for (int t = 0; t < TXG_SIZE; t++) {
805 long_free_dirty_all_txgs +=
806 dp->dp_long_free_dirty_pertxg[t];
808 mutex_exit(&dp->dp_lock);
811 * To avoid filling up a TXG with just frees wait for
812 * the next TXG to open before freeing more chunks if
813 * we have reached the threshold of frees
815 if (dirty_frees_threshold != 0 &&
816 long_free_dirty_all_txgs >= dirty_frees_threshold) {
817 txg_wait_open(dp, 0);
818 continue;
821 tx = dmu_tx_create(os);
822 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
825 * Mark this transaction as typically resulting in a net
826 * reduction in space used.
828 dmu_tx_mark_netfree(tx);
829 err = dmu_tx_assign(tx, TXG_WAIT);
830 if (err) {
831 dmu_tx_abort(tx);
832 return (err);
835 mutex_enter(&dp->dp_lock);
836 dp->dp_long_free_dirty_pertxg[dmu_tx_get_txg(tx) & TXG_MASK] +=
837 chunk_len;
838 mutex_exit(&dp->dp_lock);
839 DTRACE_PROBE3(free__long__range,
840 uint64_t, long_free_dirty_all_txgs, uint64_t, chunk_len,
841 uint64_t, dmu_tx_get_txg(tx));
842 dnode_free_range(dn, chunk_begin, chunk_len, tx);
844 /* if this is a raw free, mark the dirty record as such */
845 if (raw) {
846 dbuf_dirty_record_t *dr = dn->dn_dbuf->db_last_dirty;
848 while (dr != NULL && dr->dr_txg > tx->tx_txg)
849 dr = dr->dr_next;
850 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
851 dr->dt.dl.dr_raw = B_TRUE;
852 dn->dn_objset->os_next_write_raw
853 [tx->tx_txg & TXG_MASK] = B_TRUE;
857 dmu_tx_commit(tx);
859 length -= chunk_len;
861 return (0);
865 dmu_free_long_range(objset_t *os, uint64_t object,
866 uint64_t offset, uint64_t length)
868 dnode_t *dn;
869 int err;
871 err = dnode_hold(os, object, FTAG, &dn);
872 if (err != 0)
873 return (err);
874 err = dmu_free_long_range_impl(os, dn, offset, length, B_FALSE);
877 * It is important to zero out the maxblkid when freeing the entire
878 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
879 * will take the fast path, and (b) dnode_reallocate() can verify
880 * that the entire file has been freed.
882 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
883 dn->dn_maxblkid = 0;
885 dnode_rele(dn, FTAG);
886 return (err);
890 * This function is equivalent to dmu_free_long_range(), but also
891 * marks the new dirty record as a raw write.
894 dmu_free_long_range_raw(objset_t *os, uint64_t object,
895 uint64_t offset, uint64_t length)
897 dnode_t *dn;
898 int err;
900 err = dnode_hold(os, object, FTAG, &dn);
901 if (err != 0)
902 return (err);
903 err = dmu_free_long_range_impl(os, dn, offset, length, B_TRUE);
906 * It is important to zero out the maxblkid when freeing the entire
907 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
908 * will take the fast path, and (b) dnode_reallocate() can verify
909 * that the entire file has been freed.
911 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
912 dn->dn_maxblkid = 0;
914 dnode_rele(dn, FTAG);
915 return (err);
918 static int
919 dmu_free_long_object_impl(objset_t *os, uint64_t object, boolean_t raw)
921 dmu_tx_t *tx;
922 int err;
924 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
925 if (err != 0)
926 return (err);
928 tx = dmu_tx_create(os);
929 dmu_tx_hold_bonus(tx, object);
930 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
931 dmu_tx_mark_netfree(tx);
932 err = dmu_tx_assign(tx, TXG_WAIT);
933 if (err == 0) {
934 if (raw)
935 err = dmu_object_dirty_raw(os, object, tx);
936 if (err == 0)
937 err = dmu_object_free(os, object, tx);
939 dmu_tx_commit(tx);
940 } else {
941 dmu_tx_abort(tx);
944 return (err);
948 dmu_free_long_object(objset_t *os, uint64_t object)
950 return (dmu_free_long_object_impl(os, object, B_FALSE));
954 dmu_free_long_object_raw(objset_t *os, uint64_t object)
956 return (dmu_free_long_object_impl(os, object, B_TRUE));
961 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
962 uint64_t size, dmu_tx_t *tx)
964 dnode_t *dn;
965 int err = dnode_hold(os, object, FTAG, &dn);
966 if (err)
967 return (err);
968 ASSERT(offset < UINT64_MAX);
969 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
970 dnode_free_range(dn, offset, size, tx);
971 dnode_rele(dn, FTAG);
972 return (0);
975 static int
976 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
977 void *buf, uint32_t flags)
979 dmu_buf_t **dbp;
980 int numbufs, err = 0;
983 * Deal with odd block sizes, where there can't be data past the first
984 * block. If we ever do the tail block optimization, we will need to
985 * handle that here as well.
987 if (dn->dn_maxblkid == 0) {
988 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
989 MIN(size, dn->dn_datablksz - offset);
990 bzero((char *)buf + newsz, size - newsz);
991 size = newsz;
994 while (size > 0) {
995 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
996 int i;
999 * NB: we could do this block-at-a-time, but it's nice
1000 * to be reading in parallel.
1002 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1003 TRUE, FTAG, &numbufs, &dbp, flags);
1004 if (err)
1005 break;
1007 for (i = 0; i < numbufs; i++) {
1008 uint64_t tocpy;
1009 int64_t bufoff;
1010 dmu_buf_t *db = dbp[i];
1012 ASSERT(size > 0);
1014 bufoff = offset - db->db_offset;
1015 tocpy = MIN(db->db_size - bufoff, size);
1017 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1019 offset += tocpy;
1020 size -= tocpy;
1021 buf = (char *)buf + tocpy;
1023 dmu_buf_rele_array(dbp, numbufs, FTAG);
1025 return (err);
1029 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1030 void *buf, uint32_t flags)
1032 dnode_t *dn;
1033 int err;
1035 err = dnode_hold(os, object, FTAG, &dn);
1036 if (err != 0)
1037 return (err);
1039 err = dmu_read_impl(dn, offset, size, buf, flags);
1040 dnode_rele(dn, FTAG);
1041 return (err);
1045 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1046 uint32_t flags)
1048 return (dmu_read_impl(dn, offset, size, buf, flags));
1051 static void
1052 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1053 const void *buf, dmu_tx_t *tx)
1055 int i;
1057 for (i = 0; i < numbufs; i++) {
1058 uint64_t tocpy;
1059 int64_t bufoff;
1060 dmu_buf_t *db = dbp[i];
1062 ASSERT(size > 0);
1064 bufoff = offset - db->db_offset;
1065 tocpy = MIN(db->db_size - bufoff, size);
1067 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1069 if (tocpy == db->db_size)
1070 dmu_buf_will_fill(db, tx);
1071 else
1072 dmu_buf_will_dirty(db, tx);
1074 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1076 if (tocpy == db->db_size)
1077 dmu_buf_fill_done(db, tx);
1079 offset += tocpy;
1080 size -= tocpy;
1081 buf = (char *)buf + tocpy;
1085 void
1086 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1087 const void *buf, dmu_tx_t *tx)
1089 dmu_buf_t **dbp;
1090 int numbufs;
1092 if (size == 0)
1093 return;
1095 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1096 FALSE, FTAG, &numbufs, &dbp));
1097 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1098 dmu_buf_rele_array(dbp, numbufs, FTAG);
1101 void
1102 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1103 const void *buf, dmu_tx_t *tx)
1105 dmu_buf_t **dbp;
1106 int numbufs;
1108 if (size == 0)
1109 return;
1111 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1112 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1113 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1114 dmu_buf_rele_array(dbp, numbufs, FTAG);
1117 void
1118 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1119 dmu_tx_t *tx)
1121 dmu_buf_t **dbp;
1122 int numbufs, i;
1124 if (size == 0)
1125 return;
1127 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1128 FALSE, FTAG, &numbufs, &dbp));
1130 for (i = 0; i < numbufs; i++) {
1131 dmu_buf_t *db = dbp[i];
1133 dmu_buf_will_not_fill(db, tx);
1135 dmu_buf_rele_array(dbp, numbufs, FTAG);
1138 void
1139 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1140 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1141 int compressed_size, int byteorder, dmu_tx_t *tx)
1143 dmu_buf_t *db;
1145 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1146 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1147 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1148 FTAG, &db));
1150 dmu_buf_write_embedded(db,
1151 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1152 uncompressed_size, compressed_size, byteorder, tx);
1154 dmu_buf_rele(db, FTAG);
1158 * DMU support for xuio
1160 kstat_t *xuio_ksp = NULL;
1162 typedef struct xuio_stats {
1163 /* loaned yet not returned arc_buf */
1164 kstat_named_t xuiostat_onloan_rbuf;
1165 kstat_named_t xuiostat_onloan_wbuf;
1166 /* whether a copy is made when loaning out a read buffer */
1167 kstat_named_t xuiostat_rbuf_copied;
1168 kstat_named_t xuiostat_rbuf_nocopy;
1169 /* whether a copy is made when assigning a write buffer */
1170 kstat_named_t xuiostat_wbuf_copied;
1171 kstat_named_t xuiostat_wbuf_nocopy;
1172 } xuio_stats_t;
1174 static xuio_stats_t xuio_stats = {
1175 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1176 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1177 { "read_buf_copied", KSTAT_DATA_UINT64 },
1178 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1179 { "write_buf_copied", KSTAT_DATA_UINT64 },
1180 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1183 #define XUIOSTAT_INCR(stat, val) \
1184 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1185 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
1187 #ifdef HAVE_UIO_ZEROCOPY
1189 dmu_xuio_init(xuio_t *xuio, int nblk)
1191 dmu_xuio_t *priv;
1192 uio_t *uio = &xuio->xu_uio;
1194 uio->uio_iovcnt = nblk;
1195 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1197 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1198 priv->cnt = nblk;
1199 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1200 priv->iovp = (iovec_t *)uio->uio_iov;
1201 XUIO_XUZC_PRIV(xuio) = priv;
1203 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1204 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1205 else
1206 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1208 return (0);
1211 void
1212 dmu_xuio_fini(xuio_t *xuio)
1214 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1215 int nblk = priv->cnt;
1217 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1218 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1219 kmem_free(priv, sizeof (dmu_xuio_t));
1221 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1222 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1223 else
1224 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1228 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1229 * and increase priv->next by 1.
1232 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1234 struct iovec *iov;
1235 uio_t *uio = &xuio->xu_uio;
1236 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1237 int i = priv->next++;
1239 ASSERT(i < priv->cnt);
1240 ASSERT(off + n <= arc_buf_lsize(abuf));
1241 iov = (iovec_t *)uio->uio_iov + i;
1242 iov->iov_base = (char *)abuf->b_data + off;
1243 iov->iov_len = n;
1244 priv->bufs[i] = abuf;
1245 return (0);
1249 dmu_xuio_cnt(xuio_t *xuio)
1251 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1252 return (priv->cnt);
1255 arc_buf_t *
1256 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1258 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1260 ASSERT(i < priv->cnt);
1261 return (priv->bufs[i]);
1264 void
1265 dmu_xuio_clear(xuio_t *xuio, int i)
1267 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1269 ASSERT(i < priv->cnt);
1270 priv->bufs[i] = NULL;
1272 #endif /* HAVE_UIO_ZEROCOPY */
1274 static void
1275 xuio_stat_init(void)
1277 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1278 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1279 KSTAT_FLAG_VIRTUAL);
1280 if (xuio_ksp != NULL) {
1281 xuio_ksp->ks_data = &xuio_stats;
1282 kstat_install(xuio_ksp);
1286 static void
1287 xuio_stat_fini(void)
1289 if (xuio_ksp != NULL) {
1290 kstat_delete(xuio_ksp);
1291 xuio_ksp = NULL;
1295 void
1296 xuio_stat_wbuf_copied(void)
1298 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1301 void
1302 xuio_stat_wbuf_nocopy(void)
1304 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1307 #ifdef _KERNEL
1309 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1311 dmu_buf_t **dbp;
1312 int numbufs, i, err;
1313 #ifdef HAVE_UIO_ZEROCOPY
1314 xuio_t *xuio = NULL;
1315 #endif
1318 * NB: we could do this block-at-a-time, but it's nice
1319 * to be reading in parallel.
1321 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1322 TRUE, FTAG, &numbufs, &dbp, 0);
1323 if (err)
1324 return (err);
1326 for (i = 0; i < numbufs; i++) {
1327 uint64_t tocpy;
1328 int64_t bufoff;
1329 dmu_buf_t *db = dbp[i];
1331 ASSERT(size > 0);
1333 bufoff = uio->uio_loffset - db->db_offset;
1334 tocpy = MIN(db->db_size - bufoff, size);
1336 #ifdef HAVE_UIO_ZEROCOPY
1337 if (xuio) {
1338 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1339 arc_buf_t *dbuf_abuf = dbi->db_buf;
1340 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1341 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1342 if (!err) {
1343 uio->uio_resid -= tocpy;
1344 uio->uio_loffset += tocpy;
1347 if (abuf == dbuf_abuf)
1348 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1349 else
1350 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1351 } else
1352 #endif
1353 err = uiomove((char *)db->db_data + bufoff, tocpy,
1354 UIO_READ, uio);
1355 if (err)
1356 break;
1358 size -= tocpy;
1360 dmu_buf_rele_array(dbp, numbufs, FTAG);
1362 return (err);
1366 * Read 'size' bytes into the uio buffer.
1367 * From object zdb->db_object.
1368 * Starting at offset uio->uio_loffset.
1370 * If the caller already has a dbuf in the target object
1371 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1372 * because we don't have to find the dnode_t for the object.
1375 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1377 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1378 dnode_t *dn;
1379 int err;
1381 if (size == 0)
1382 return (0);
1384 DB_DNODE_ENTER(db);
1385 dn = DB_DNODE(db);
1386 err = dmu_read_uio_dnode(dn, uio, size);
1387 DB_DNODE_EXIT(db);
1389 return (err);
1393 * Read 'size' bytes into the uio buffer.
1394 * From the specified object
1395 * Starting at offset uio->uio_loffset.
1398 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1400 dnode_t *dn;
1401 int err;
1403 if (size == 0)
1404 return (0);
1406 err = dnode_hold(os, object, FTAG, &dn);
1407 if (err)
1408 return (err);
1410 err = dmu_read_uio_dnode(dn, uio, size);
1412 dnode_rele(dn, FTAG);
1414 return (err);
1418 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1420 dmu_buf_t **dbp;
1421 int numbufs;
1422 int err = 0;
1423 int i;
1425 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1426 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1427 if (err)
1428 return (err);
1430 for (i = 0; i < numbufs; i++) {
1431 uint64_t tocpy;
1432 int64_t bufoff;
1433 dmu_buf_t *db = dbp[i];
1435 ASSERT(size > 0);
1437 bufoff = uio->uio_loffset - db->db_offset;
1438 tocpy = MIN(db->db_size - bufoff, size);
1440 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1442 if (tocpy == db->db_size)
1443 dmu_buf_will_fill(db, tx);
1444 else
1445 dmu_buf_will_dirty(db, tx);
1448 * XXX uiomove could block forever (eg.nfs-backed
1449 * pages). There needs to be a uiolockdown() function
1450 * to lock the pages in memory, so that uiomove won't
1451 * block.
1453 err = uiomove((char *)db->db_data + bufoff, tocpy,
1454 UIO_WRITE, uio);
1456 if (tocpy == db->db_size)
1457 dmu_buf_fill_done(db, tx);
1459 if (err)
1460 break;
1462 size -= tocpy;
1465 dmu_buf_rele_array(dbp, numbufs, FTAG);
1466 return (err);
1470 * Write 'size' bytes from the uio buffer.
1471 * To object zdb->db_object.
1472 * Starting at offset uio->uio_loffset.
1474 * If the caller already has a dbuf in the target object
1475 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1476 * because we don't have to find the dnode_t for the object.
1479 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1480 dmu_tx_t *tx)
1482 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1483 dnode_t *dn;
1484 int err;
1486 if (size == 0)
1487 return (0);
1489 DB_DNODE_ENTER(db);
1490 dn = DB_DNODE(db);
1491 err = dmu_write_uio_dnode(dn, uio, size, tx);
1492 DB_DNODE_EXIT(db);
1494 return (err);
1498 * Write 'size' bytes from the uio buffer.
1499 * To the specified object.
1500 * Starting at offset uio->uio_loffset.
1503 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1504 dmu_tx_t *tx)
1506 dnode_t *dn;
1507 int err;
1509 if (size == 0)
1510 return (0);
1512 err = dnode_hold(os, object, FTAG, &dn);
1513 if (err)
1514 return (err);
1516 err = dmu_write_uio_dnode(dn, uio, size, tx);
1518 dnode_rele(dn, FTAG);
1520 return (err);
1522 #endif /* _KERNEL */
1525 * Allocate a loaned anonymous arc buffer.
1527 arc_buf_t *
1528 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1530 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1532 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1536 * Free a loaned arc buffer.
1538 void
1539 dmu_return_arcbuf(arc_buf_t *buf)
1541 arc_return_buf(buf, FTAG);
1542 arc_buf_destroy(buf, FTAG);
1546 dmu_convert_mdn_block_to_raw(objset_t *os, uint64_t firstobj,
1547 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
1548 const uint8_t *mac, dmu_tx_t *tx)
1550 int ret;
1551 dmu_buf_t *handle = NULL;
1552 dmu_buf_impl_t *db = NULL;
1553 uint64_t offset = firstobj * DNODE_MIN_SIZE;
1554 uint64_t dsobj = dmu_objset_id(os);
1556 ret = dmu_buf_hold_by_dnode(DMU_META_DNODE(os), offset, FTAG, &handle,
1557 DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1558 if (ret != 0)
1559 return (ret);
1561 dmu_buf_will_change_crypt_params(handle, tx);
1563 db = (dmu_buf_impl_t *)handle;
1564 ASSERT3P(db->db_buf, !=, NULL);
1565 ASSERT3U(dsobj, !=, 0);
1568 * This technically violates the assumption the dmu code makes
1569 * that dnode blocks are only released in syncing context.
1571 (void) arc_release(db->db_buf, db);
1572 arc_convert_to_raw(db->db_buf, dsobj, byteorder, DMU_OT_DNODE,
1573 salt, iv, mac);
1575 dmu_buf_rele(handle, FTAG);
1577 return (0);
1580 void
1581 dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1582 dmu_buf_t *handle, dmu_tx_t *tx)
1584 dmu_buf_t *dst_handle;
1585 dmu_buf_impl_t *dstdb;
1586 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
1587 arc_buf_t *abuf;
1588 uint64_t datalen;
1589 boolean_t byteorder;
1590 uint8_t salt[ZIO_DATA_SALT_LEN];
1591 uint8_t iv[ZIO_DATA_IV_LEN];
1592 uint8_t mac[ZIO_DATA_MAC_LEN];
1594 ASSERT3P(srcdb->db_buf, !=, NULL);
1596 /* hold the db that we want to write to */
1597 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1598 DMU_READ_NO_DECRYPT));
1599 dstdb = (dmu_buf_impl_t *)dst_handle;
1600 datalen = arc_buf_size(srcdb->db_buf);
1602 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1603 if (arc_is_encrypted(srcdb->db_buf)) {
1604 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1605 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
1606 byteorder, salt, iv, mac, DB_DNODE(dstdb)->dn_type,
1607 datalen, arc_buf_lsize(srcdb->db_buf),
1608 arc_get_compression(srcdb->db_buf));
1609 } else {
1610 /* we won't get a compressed db back from dmu_buf_hold() */
1611 ASSERT3U(arc_get_compression(srcdb->db_buf),
1612 ==, ZIO_COMPRESS_OFF);
1613 abuf = arc_loan_buf(os->os_spa,
1614 DMU_OT_IS_METADATA(DB_DNODE(dstdb)->dn_type), datalen);
1617 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1619 /* copy the data to the new buffer and assign it to the dstdb */
1620 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1621 dbuf_assign_arcbuf(dstdb, abuf, tx);
1622 dmu_buf_rele(dst_handle, FTAG);
1626 * When possible directly assign passed loaned arc buffer to a dbuf.
1627 * If this is not possible copy the contents of passed arc buf via
1628 * dmu_write().
1630 void
1631 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1632 dmu_tx_t *tx)
1634 dmu_buf_impl_t *db;
1635 objset_t *os = dn->dn_objset;
1636 uint64_t object = dn->dn_object;
1637 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1638 uint64_t blkid;
1640 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1641 blkid = dbuf_whichblock(dn, 0, offset);
1642 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1643 rw_exit(&dn->dn_struct_rwlock);
1646 * We can only assign if the offset is aligned, the arc buf is the
1647 * same size as the dbuf, and the dbuf is not metadata.
1649 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1650 dbuf_assign_arcbuf(db, buf, tx);
1651 dbuf_rele(db, FTAG);
1652 } else {
1653 /* compressed bufs must always be assignable to their dbuf */
1654 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1655 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1657 dbuf_rele(db, FTAG);
1658 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1659 dmu_return_arcbuf(buf);
1660 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1664 void
1665 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1666 dmu_tx_t *tx)
1668 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1670 DB_DNODE_ENTER(dbuf);
1671 dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1672 DB_DNODE_EXIT(dbuf);
1675 typedef struct {
1676 dbuf_dirty_record_t *dsa_dr;
1677 dmu_sync_cb_t *dsa_done;
1678 zgd_t *dsa_zgd;
1679 dmu_tx_t *dsa_tx;
1680 } dmu_sync_arg_t;
1682 /* ARGSUSED */
1683 static void
1684 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1686 dmu_sync_arg_t *dsa = varg;
1687 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1688 blkptr_t *bp = zio->io_bp;
1690 if (zio->io_error == 0) {
1691 if (BP_IS_HOLE(bp)) {
1693 * A block of zeros may compress to a hole, but the
1694 * block size still needs to be known for replay.
1696 BP_SET_LSIZE(bp, db->db_size);
1697 } else if (!BP_IS_EMBEDDED(bp)) {
1698 ASSERT(BP_GET_LEVEL(bp) == 0);
1699 BP_SET_FILL(bp, 1);
1704 static void
1705 dmu_sync_late_arrival_ready(zio_t *zio)
1707 dmu_sync_ready(zio, NULL, zio->io_private);
1710 /* ARGSUSED */
1711 static void
1712 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1714 dmu_sync_arg_t *dsa = varg;
1715 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1716 dmu_buf_impl_t *db = dr->dr_dbuf;
1718 mutex_enter(&db->db_mtx);
1719 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1720 if (zio->io_error == 0) {
1721 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1722 if (dr->dt.dl.dr_nopwrite) {
1723 blkptr_t *bp = zio->io_bp;
1724 blkptr_t *bp_orig = &zio->io_bp_orig;
1725 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1727 ASSERT(BP_EQUAL(bp, bp_orig));
1728 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1729 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1730 VERIFY(zio_checksum_table[chksum].ci_flags &
1731 ZCHECKSUM_FLAG_NOPWRITE);
1733 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1734 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1735 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1738 * Old style holes are filled with all zeros, whereas
1739 * new-style holes maintain their lsize, type, level,
1740 * and birth time (see zio_write_compress). While we
1741 * need to reset the BP_SET_LSIZE() call that happened
1742 * in dmu_sync_ready for old style holes, we do *not*
1743 * want to wipe out the information contained in new
1744 * style holes. Thus, only zero out the block pointer if
1745 * it's an old style hole.
1747 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1748 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1749 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1750 } else {
1751 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1753 cv_broadcast(&db->db_changed);
1754 mutex_exit(&db->db_mtx);
1756 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1758 kmem_free(dsa, sizeof (*dsa));
1761 static void
1762 dmu_sync_late_arrival_done(zio_t *zio)
1764 blkptr_t *bp = zio->io_bp;
1765 dmu_sync_arg_t *dsa = zio->io_private;
1766 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1768 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1769 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1770 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1771 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1772 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1773 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1776 dmu_tx_commit(dsa->dsa_tx);
1778 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1780 abd_put(zio->io_abd);
1781 kmem_free(dsa, sizeof (*dsa));
1784 static int
1785 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1786 zio_prop_t *zp, zbookmark_phys_t *zb)
1788 dmu_sync_arg_t *dsa;
1789 dmu_tx_t *tx;
1791 tx = dmu_tx_create(os);
1792 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1793 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1794 dmu_tx_abort(tx);
1795 /* Make zl_get_data do txg_waited_synced() */
1796 return (SET_ERROR(EIO));
1800 * In order to prevent the zgd's lwb from being free'd prior to
1801 * dmu_sync_late_arrival_done() being called, we have to ensure
1802 * the lwb's "max txg" takes this tx's txg into account.
1804 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1806 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1807 dsa->dsa_dr = NULL;
1808 dsa->dsa_done = done;
1809 dsa->dsa_zgd = zgd;
1810 dsa->dsa_tx = tx;
1813 * Since we are currently syncing this txg, it's nontrivial to
1814 * determine what BP to nopwrite against, so we disable nopwrite.
1816 * When syncing, the db_blkptr is initially the BP of the previous
1817 * txg. We can not nopwrite against it because it will be changed
1818 * (this is similar to the non-late-arrival case where the dbuf is
1819 * dirty in a future txg).
1821 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1822 * We can not nopwrite against it because although the BP will not
1823 * (typically) be changed, the data has not yet been persisted to this
1824 * location.
1826 * Finally, when dbuf_write_done() is called, it is theoretically
1827 * possible to always nopwrite, because the data that was written in
1828 * this txg is the same data that we are trying to write. However we
1829 * would need to check that this dbuf is not dirty in any future
1830 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1831 * don't nopwrite in this case.
1833 zp->zp_nopwrite = B_FALSE;
1835 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1836 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1837 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1838 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1839 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1841 return (0);
1845 * Intent log support: sync the block associated with db to disk.
1846 * N.B. and XXX: the caller is responsible for making sure that the
1847 * data isn't changing while dmu_sync() is writing it.
1849 * Return values:
1851 * EEXIST: this txg has already been synced, so there's nothing to do.
1852 * The caller should not log the write.
1854 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1855 * The caller should not log the write.
1857 * EALREADY: this block is already in the process of being synced.
1858 * The caller should track its progress (somehow).
1860 * EIO: could not do the I/O.
1861 * The caller should do a txg_wait_synced().
1863 * 0: the I/O has been initiated.
1864 * The caller should log this blkptr in the done callback.
1865 * It is possible that the I/O will fail, in which case
1866 * the error will be reported to the done callback and
1867 * propagated to pio from zio_done().
1870 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1872 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1873 objset_t *os = db->db_objset;
1874 dsl_dataset_t *ds = os->os_dsl_dataset;
1875 dbuf_dirty_record_t *dr;
1876 dmu_sync_arg_t *dsa;
1877 zbookmark_phys_t zb;
1878 zio_prop_t zp;
1879 dnode_t *dn;
1881 ASSERT(pio != NULL);
1882 ASSERT(txg != 0);
1884 /* dbuf is within the locked range */
1885 ASSERT3U(db->db.db_offset, >=, zgd->zgd_rl->r_off);
1886 ASSERT3U(db->db.db_offset + db->db.db_size, <=,
1887 zgd->zgd_rl->r_off + zgd->zgd_rl->r_len);
1889 SET_BOOKMARK(&zb, ds->ds_object,
1890 db->db.db_object, db->db_level, db->db_blkid);
1892 DB_DNODE_ENTER(db);
1893 dn = DB_DNODE(db);
1894 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1895 DB_DNODE_EXIT(db);
1898 * If we're frozen (running ziltest), we always need to generate a bp.
1900 if (txg > spa_freeze_txg(os->os_spa))
1901 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1904 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1905 * and us. If we determine that this txg is not yet syncing,
1906 * but it begins to sync a moment later, that's OK because the
1907 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1909 mutex_enter(&db->db_mtx);
1911 if (txg <= spa_last_synced_txg(os->os_spa)) {
1913 * This txg has already synced. There's nothing to do.
1915 mutex_exit(&db->db_mtx);
1916 return (SET_ERROR(EEXIST));
1919 if (txg <= spa_syncing_txg(os->os_spa)) {
1921 * This txg is currently syncing, so we can't mess with
1922 * the dirty record anymore; just write a new log block.
1924 mutex_exit(&db->db_mtx);
1925 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1928 dr = db->db_last_dirty;
1929 while (dr && dr->dr_txg != txg)
1930 dr = dr->dr_next;
1932 if (dr == NULL) {
1934 * There's no dr for this dbuf, so it must have been freed.
1935 * There's no need to log writes to freed blocks, so we're done.
1937 mutex_exit(&db->db_mtx);
1938 return (SET_ERROR(ENOENT));
1941 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1943 if (db->db_blkptr != NULL) {
1945 * We need to fill in zgd_bp with the current blkptr so that
1946 * the nopwrite code can check if we're writing the same
1947 * data that's already on disk. We can only nopwrite if we
1948 * are sure that after making the copy, db_blkptr will not
1949 * change until our i/o completes. We ensure this by
1950 * holding the db_mtx, and only allowing nopwrite if the
1951 * block is not already dirty (see below). This is verified
1952 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1953 * not changed.
1955 *zgd->zgd_bp = *db->db_blkptr;
1959 * Assume the on-disk data is X, the current syncing data (in
1960 * txg - 1) is Y, and the current in-memory data is Z (currently
1961 * in dmu_sync).
1963 * We usually want to perform a nopwrite if X and Z are the
1964 * same. However, if Y is different (i.e. the BP is going to
1965 * change before this write takes effect), then a nopwrite will
1966 * be incorrect - we would override with X, which could have
1967 * been freed when Y was written.
1969 * (Note that this is not a concern when we are nop-writing from
1970 * syncing context, because X and Y must be identical, because
1971 * all previous txgs have been synced.)
1973 * Therefore, we disable nopwrite if the current BP could change
1974 * before this TXG. There are two ways it could change: by
1975 * being dirty (dr_next is non-NULL), or by being freed
1976 * (dnode_block_freed()). This behavior is verified by
1977 * zio_done(), which VERIFYs that the override BP is identical
1978 * to the on-disk BP.
1980 DB_DNODE_ENTER(db);
1981 dn = DB_DNODE(db);
1982 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1983 zp.zp_nopwrite = B_FALSE;
1984 DB_DNODE_EXIT(db);
1986 ASSERT(dr->dr_txg == txg);
1987 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1988 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1990 * We have already issued a sync write for this buffer,
1991 * or this buffer has already been synced. It could not
1992 * have been dirtied since, or we would have cleared the state.
1994 mutex_exit(&db->db_mtx);
1995 return (SET_ERROR(EALREADY));
1998 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1999 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2000 mutex_exit(&db->db_mtx);
2002 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2003 dsa->dsa_dr = dr;
2004 dsa->dsa_done = done;
2005 dsa->dsa_zgd = zgd;
2006 dsa->dsa_tx = NULL;
2008 zio_nowait(arc_write(pio, os->os_spa, txg,
2009 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
2010 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
2011 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
2013 return (0);
2017 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2019 dnode_t *dn;
2020 int err;
2022 err = dnode_hold(os, object, FTAG, &dn);
2023 if (err)
2024 return (err);
2025 err = dnode_set_nlevels(dn, nlevels, tx);
2026 dnode_rele(dn, FTAG);
2027 return (err);
2031 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2032 dmu_tx_t *tx)
2034 dnode_t *dn;
2035 int err;
2037 err = dnode_hold(os, object, FTAG, &dn);
2038 if (err)
2039 return (err);
2040 err = dnode_set_blksz(dn, size, ibs, tx);
2041 dnode_rele(dn, FTAG);
2042 return (err);
2046 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2047 dmu_tx_t *tx)
2049 dnode_t *dn;
2050 int err;
2052 err = dnode_hold(os, object, FTAG, &dn);
2053 if (err)
2054 return (err);
2055 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2056 dnode_new_blkid(dn, maxblkid, tx, B_FALSE);
2057 rw_exit(&dn->dn_struct_rwlock);
2058 dnode_rele(dn, FTAG);
2059 return (0);
2062 void
2063 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2064 dmu_tx_t *tx)
2066 dnode_t *dn;
2069 * Send streams include each object's checksum function. This
2070 * check ensures that the receiving system can understand the
2071 * checksum function transmitted.
2073 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2075 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2076 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2077 dn->dn_checksum = checksum;
2078 dnode_setdirty(dn, tx);
2079 dnode_rele(dn, FTAG);
2082 void
2083 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2084 dmu_tx_t *tx)
2086 dnode_t *dn;
2089 * Send streams include each object's compression function. This
2090 * check ensures that the receiving system can understand the
2091 * compression function transmitted.
2093 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2095 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2096 dn->dn_compress = compress;
2097 dnode_setdirty(dn, tx);
2098 dnode_rele(dn, FTAG);
2102 * Dirty an object and set the dirty record's raw flag. This is used
2103 * when writing raw data to an object that will not effect the
2104 * encryption parameters, specifically during raw receives.
2107 dmu_object_dirty_raw(objset_t *os, uint64_t object, dmu_tx_t *tx)
2109 dnode_t *dn;
2110 int err;
2112 err = dnode_hold(os, object, FTAG, &dn);
2113 if (err)
2114 return (err);
2115 dmu_buf_will_change_crypt_params((dmu_buf_t *)dn->dn_dbuf, tx);
2116 dnode_rele(dn, FTAG);
2117 return (err);
2121 * When the "redundant_metadata" property is set to "most", only indirect
2122 * blocks of this level and higher will have an additional ditto block.
2124 int zfs_redundant_metadata_most_ditto_level = 2;
2126 void
2127 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2129 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2130 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2131 (wp & WP_SPILL));
2132 enum zio_checksum checksum = os->os_checksum;
2133 enum zio_compress compress = os->os_compress;
2134 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2135 boolean_t dedup = B_FALSE;
2136 boolean_t nopwrite = B_FALSE;
2137 boolean_t dedup_verify = os->os_dedup_verify;
2138 boolean_t encrypt = B_FALSE;
2139 int copies = os->os_copies;
2142 * We maintain different write policies for each of the following
2143 * types of data:
2144 * 1. metadata
2145 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2146 * 3. all other level 0 blocks
2148 if (ismd) {
2150 * XXX -- we should design a compression algorithm
2151 * that specializes in arrays of bps.
2153 compress = zio_compress_select(os->os_spa,
2154 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2157 * Metadata always gets checksummed. If the data
2158 * checksum is multi-bit correctable, and it's not a
2159 * ZBT-style checksum, then it's suitable for metadata
2160 * as well. Otherwise, the metadata checksum defaults
2161 * to fletcher4.
2163 if (!(zio_checksum_table[checksum].ci_flags &
2164 ZCHECKSUM_FLAG_METADATA) ||
2165 (zio_checksum_table[checksum].ci_flags &
2166 ZCHECKSUM_FLAG_EMBEDDED))
2167 checksum = ZIO_CHECKSUM_FLETCHER_4;
2169 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2170 (os->os_redundant_metadata ==
2171 ZFS_REDUNDANT_METADATA_MOST &&
2172 (level >= zfs_redundant_metadata_most_ditto_level ||
2173 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2174 copies++;
2175 } else if (wp & WP_NOFILL) {
2176 ASSERT(level == 0);
2179 * If we're writing preallocated blocks, we aren't actually
2180 * writing them so don't set any policy properties. These
2181 * blocks are currently only used by an external subsystem
2182 * outside of zfs (i.e. dump) and not written by the zio
2183 * pipeline.
2185 compress = ZIO_COMPRESS_OFF;
2186 checksum = ZIO_CHECKSUM_OFF;
2187 } else {
2188 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2189 compress);
2191 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2192 zio_checksum_select(dn->dn_checksum, checksum) :
2193 dedup_checksum;
2196 * Determine dedup setting. If we are in dmu_sync(),
2197 * we won't actually dedup now because that's all
2198 * done in syncing context; but we do want to use the
2199 * dedup checkum. If the checksum is not strong
2200 * enough to ensure unique signatures, force
2201 * dedup_verify.
2203 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2204 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2205 if (!(zio_checksum_table[checksum].ci_flags &
2206 ZCHECKSUM_FLAG_DEDUP))
2207 dedup_verify = B_TRUE;
2211 * Enable nopwrite if we have secure enough checksum
2212 * algorithm (see comment in zio_nop_write) and
2213 * compression is enabled. We don't enable nopwrite if
2214 * dedup is enabled as the two features are mutually
2215 * exclusive.
2217 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2218 ZCHECKSUM_FLAG_NOPWRITE) &&
2219 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2223 * All objects in an encrypted objset are protected from modification
2224 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2225 * in the bp, so we cannot use all copies. Encrypted objects are also
2226 * not subject to nopwrite since writing the same data will still
2227 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2228 * to avoid ambiguity in the dedup code since the DDT does not store
2229 * object types.
2231 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2232 encrypt = B_TRUE;
2234 if (DMU_OT_IS_ENCRYPTED(type)) {
2235 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2236 nopwrite = B_FALSE;
2237 } else {
2238 dedup = B_FALSE;
2241 if (level <= 0 &&
2242 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2243 compress = ZIO_COMPRESS_EMPTY;
2247 zp->zp_compress = compress;
2248 zp->zp_checksum = checksum;
2249 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2250 zp->zp_level = level;
2251 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2252 zp->zp_dedup = dedup;
2253 zp->zp_dedup_verify = dedup && dedup_verify;
2254 zp->zp_nopwrite = nopwrite;
2255 zp->zp_encrypt = encrypt;
2256 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2257 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2258 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2259 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2261 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2265 * This function is only called from zfs_holey_common() for zpl_llseek()
2266 * in order to determine the location of holes. In order to accurately
2267 * report holes all dirty data must be synced to disk. This causes extremely
2268 * poor performance when seeking for holes in a dirty file. As a compromise,
2269 * only provide hole data when the dnode is clean. When a dnode is dirty
2270 * report the dnode as having no holes which is always a safe thing to do.
2273 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2275 dnode_t *dn;
2276 int i, err;
2277 boolean_t clean = B_TRUE;
2279 err = dnode_hold(os, object, FTAG, &dn);
2280 if (err)
2281 return (err);
2284 * Check if dnode is dirty
2286 for (i = 0; i < TXG_SIZE; i++) {
2287 if (list_link_active(&dn->dn_dirty_link[i])) {
2288 clean = B_FALSE;
2289 break;
2294 * If compatibility option is on, sync any current changes before
2295 * we go trundling through the block pointers.
2297 if (!clean && zfs_dmu_offset_next_sync) {
2298 clean = B_TRUE;
2299 dnode_rele(dn, FTAG);
2300 txg_wait_synced(dmu_objset_pool(os), 0);
2301 err = dnode_hold(os, object, FTAG, &dn);
2302 if (err)
2303 return (err);
2306 if (clean)
2307 err = dnode_next_offset(dn,
2308 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2309 else
2310 err = SET_ERROR(EBUSY);
2312 dnode_rele(dn, FTAG);
2314 return (err);
2317 void
2318 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2320 dnode_phys_t *dnp = dn->dn_phys;
2322 doi->doi_data_block_size = dn->dn_datablksz;
2323 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2324 1ULL << dn->dn_indblkshift : 0;
2325 doi->doi_type = dn->dn_type;
2326 doi->doi_bonus_type = dn->dn_bonustype;
2327 doi->doi_bonus_size = dn->dn_bonuslen;
2328 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2329 doi->doi_indirection = dn->dn_nlevels;
2330 doi->doi_checksum = dn->dn_checksum;
2331 doi->doi_compress = dn->dn_compress;
2332 doi->doi_nblkptr = dn->dn_nblkptr;
2333 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2334 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2335 doi->doi_fill_count = 0;
2336 for (int i = 0; i < dnp->dn_nblkptr; i++)
2337 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2340 void
2341 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2343 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2344 mutex_enter(&dn->dn_mtx);
2346 __dmu_object_info_from_dnode(dn, doi);
2348 mutex_exit(&dn->dn_mtx);
2349 rw_exit(&dn->dn_struct_rwlock);
2353 * Get information on a DMU object.
2354 * If doi is NULL, just indicates whether the object exists.
2357 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2359 dnode_t *dn;
2360 int err = dnode_hold(os, object, FTAG, &dn);
2362 if (err)
2363 return (err);
2365 if (doi != NULL)
2366 dmu_object_info_from_dnode(dn, doi);
2368 dnode_rele(dn, FTAG);
2369 return (0);
2373 * As above, but faster; can be used when you have a held dbuf in hand.
2375 void
2376 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2378 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2380 DB_DNODE_ENTER(db);
2381 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2382 DB_DNODE_EXIT(db);
2386 * Faster still when you only care about the size.
2387 * This is specifically optimized for zfs_getattr().
2389 void
2390 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2391 u_longlong_t *nblk512)
2393 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2394 dnode_t *dn;
2396 DB_DNODE_ENTER(db);
2397 dn = DB_DNODE(db);
2399 *blksize = dn->dn_datablksz;
2400 /* add in number of slots used for the dnode itself */
2401 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2402 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2403 DB_DNODE_EXIT(db);
2406 void
2407 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2409 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2410 dnode_t *dn;
2412 DB_DNODE_ENTER(db);
2413 dn = DB_DNODE(db);
2414 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
2415 DB_DNODE_EXIT(db);
2418 void
2419 byteswap_uint64_array(void *vbuf, size_t size)
2421 uint64_t *buf = vbuf;
2422 size_t count = size >> 3;
2423 int i;
2425 ASSERT((size & 7) == 0);
2427 for (i = 0; i < count; i++)
2428 buf[i] = BSWAP_64(buf[i]);
2431 void
2432 byteswap_uint32_array(void *vbuf, size_t size)
2434 uint32_t *buf = vbuf;
2435 size_t count = size >> 2;
2436 int i;
2438 ASSERT((size & 3) == 0);
2440 for (i = 0; i < count; i++)
2441 buf[i] = BSWAP_32(buf[i]);
2444 void
2445 byteswap_uint16_array(void *vbuf, size_t size)
2447 uint16_t *buf = vbuf;
2448 size_t count = size >> 1;
2449 int i;
2451 ASSERT((size & 1) == 0);
2453 for (i = 0; i < count; i++)
2454 buf[i] = BSWAP_16(buf[i]);
2457 /* ARGSUSED */
2458 void
2459 byteswap_uint8_array(void *vbuf, size_t size)
2463 void
2464 dmu_init(void)
2466 abd_init();
2467 zfs_dbgmsg_init();
2468 sa_cache_init();
2469 xuio_stat_init();
2470 dmu_objset_init();
2471 dnode_init();
2472 zfetch_init();
2473 dmu_tx_init();
2474 l2arc_init();
2475 arc_init();
2476 dbuf_init();
2479 void
2480 dmu_fini(void)
2482 arc_fini(); /* arc depends on l2arc, so arc must go first */
2483 l2arc_fini();
2484 dmu_tx_fini();
2485 zfetch_fini();
2486 dbuf_fini();
2487 dnode_fini();
2488 dmu_objset_fini();
2489 xuio_stat_fini();
2490 sa_cache_fini();
2491 zfs_dbgmsg_fini();
2492 abd_fini();
2495 #if defined(_KERNEL) && defined(HAVE_SPL)
2496 EXPORT_SYMBOL(dmu_bonus_hold);
2497 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2498 EXPORT_SYMBOL(dmu_buf_rele_array);
2499 EXPORT_SYMBOL(dmu_prefetch);
2500 EXPORT_SYMBOL(dmu_free_range);
2501 EXPORT_SYMBOL(dmu_free_long_range);
2502 EXPORT_SYMBOL(dmu_free_long_range_raw);
2503 EXPORT_SYMBOL(dmu_free_long_object);
2504 EXPORT_SYMBOL(dmu_free_long_object_raw);
2505 EXPORT_SYMBOL(dmu_read);
2506 EXPORT_SYMBOL(dmu_read_by_dnode);
2507 EXPORT_SYMBOL(dmu_write);
2508 EXPORT_SYMBOL(dmu_write_by_dnode);
2509 EXPORT_SYMBOL(dmu_prealloc);
2510 EXPORT_SYMBOL(dmu_object_info);
2511 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2512 EXPORT_SYMBOL(dmu_object_info_from_db);
2513 EXPORT_SYMBOL(dmu_object_size_from_db);
2514 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2515 EXPORT_SYMBOL(dmu_object_set_nlevels);
2516 EXPORT_SYMBOL(dmu_object_set_blocksize);
2517 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2518 EXPORT_SYMBOL(dmu_object_set_checksum);
2519 EXPORT_SYMBOL(dmu_object_set_compress);
2520 EXPORT_SYMBOL(dmu_write_policy);
2521 EXPORT_SYMBOL(dmu_sync);
2522 EXPORT_SYMBOL(dmu_request_arcbuf);
2523 EXPORT_SYMBOL(dmu_return_arcbuf);
2524 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2525 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2526 EXPORT_SYMBOL(dmu_buf_hold);
2527 EXPORT_SYMBOL(dmu_ot);
2529 /* BEGIN CSTYLED */
2530 module_param(zfs_nopwrite_enabled, int, 0644);
2531 MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2533 module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2534 MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2535 "percentage of dirtied blocks from frees in one TXG");
2537 module_param(zfs_dmu_offset_next_sync, int, 0644);
2538 MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2539 "Enable forcing txg sync to find holes");
2541 /* END CSTYLED */
2543 #endif