4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2023, Klara, Inc.
33 * The objective of this program is to provide a DMU/ZAP/SPA stress test
34 * that runs entirely in userland, is easy to use, and easy to extend.
36 * The overall design of the ztest program is as follows:
38 * (1) For each major functional area (e.g. adding vdevs to a pool,
39 * creating and destroying datasets, reading and writing objects, etc)
40 * we have a simple routine to test that functionality. These
41 * individual routines do not have to do anything "stressful".
43 * (2) We turn these simple functionality tests into a stress test by
44 * running them all in parallel, with as many threads as desired,
45 * and spread across as many datasets, objects, and vdevs as desired.
47 * (3) While all this is happening, we inject faults into the pool to
48 * verify that self-healing data really works.
50 * (4) Every time we open a dataset, we change its checksum and compression
51 * functions. Thus even individual objects vary from block to block
52 * in which checksum they use and whether they're compressed.
54 * (5) To verify that we never lose on-disk consistency after a crash,
55 * we run the entire test in a child of the main process.
56 * At random times, the child self-immolates with a SIGKILL.
57 * This is the software equivalent of pulling the power cord.
58 * The parent then runs the test again, using the existing
59 * storage pool, as many times as desired. If backwards compatibility
60 * testing is enabled ztest will sometimes run the "older" version
61 * of ztest after a SIGKILL.
63 * (6) To verify that we don't have future leaks or temporal incursions,
64 * many of the functional tests record the transaction group number
65 * as part of their data. When reading old data, they verify that
66 * the transaction group number is less than the current, open txg.
67 * If you add a new test, please do this if applicable.
69 * (7) Threads are created with a reduced stack size, for sanity checking.
70 * Therefore, it's important not to allocate huge buffers on the stack.
72 * When run with no arguments, ztest runs for about five minutes and
73 * produces no output if successful. To get a little bit of information,
74 * specify -V. To get more information, specify -VV, and so on.
76 * To turn this into an overnight stress test, use -T to specify run time.
78 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
79 * to increase the pool capacity, fanout, and overall stress level.
81 * Use the -k option to set the desired frequency of kills.
83 * When ztest invokes itself it passes all relevant information through a
84 * temporary file which is mmap-ed in the child process. This allows shared
85 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
86 * stored at offset 0 of this file and contains information on the size and
87 * number of shared structures in the file. The information stored in this file
88 * must remain backwards compatible with older versions of ztest so that
89 * ztest can invoke them during backwards compatibility testing (-B).
92 #include <sys/zfs_context.h>
98 #include <sys/dmu_objset.h>
100 #include <sys/stat.h>
101 #include <sys/time.h>
102 #include <sys/wait.h>
103 #include <sys/mman.h>
104 #include <sys/resource.h>
107 #include <sys/zil_impl.h>
108 #include <sys/vdev_draid.h>
109 #include <sys/vdev_impl.h>
110 #include <sys/vdev_file.h>
111 #include <sys/vdev_initialize.h>
112 #include <sys/vdev_raidz.h>
113 #include <sys/vdev_trim.h>
114 #include <sys/spa_impl.h>
115 #include <sys/metaslab_impl.h>
116 #include <sys/dsl_prop.h>
117 #include <sys/dsl_dataset.h>
118 #include <sys/dsl_destroy.h>
119 #include <sys/dsl_scan.h>
120 #include <sys/zio_checksum.h>
121 #include <sys/zfs_refcount.h>
122 #include <sys/zfeature.h>
123 #include <sys/dsl_userhold.h>
125 #include <sys/blake3.h>
134 #include <sys/fs/zfs.h>
135 #include <zfs_fletcher.h>
136 #include <libnvpair.h>
137 #include <libzutil.h>
138 #include <sys/crypto/icp.h>
139 #include <sys/zfs_impl.h>
140 #include <sys/backtrace.h>
142 static int ztest_fd_data
= -1;
143 static int ztest_fd_rand
= -1;
145 typedef struct ztest_shared_hdr
{
146 uint64_t zh_hdr_size
;
147 uint64_t zh_opts_size
;
149 uint64_t zh_stats_size
;
150 uint64_t zh_stats_count
;
152 uint64_t zh_ds_count
;
153 uint64_t zh_scratch_state_size
;
154 } ztest_shared_hdr_t
;
156 static ztest_shared_hdr_t
*ztest_shared_hdr
;
158 enum ztest_class_state
{
159 ZTEST_VDEV_CLASS_OFF
,
164 /* Dedicated RAIDZ Expansion test states */
166 RAIDZ_EXPAND_NONE
, /* Default is none, must opt-in */
167 RAIDZ_EXPAND_REQUESTED
, /* The '-X' option was used */
168 RAIDZ_EXPAND_STARTED
, /* Testing has commenced */
169 RAIDZ_EXPAND_KILLED
, /* Reached the proccess kill */
170 RAIDZ_EXPAND_CHECKED
, /* Pool scrub verification done */
171 } raidz_expand_test_state_t
;
174 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
175 #define ZO_GVARS_MAX_COUNT ((size_t)10)
177 typedef struct ztest_shared_opts
{
178 char zo_pool
[ZFS_MAX_DATASET_NAME_LEN
];
179 char zo_dir
[ZFS_MAX_DATASET_NAME_LEN
];
180 char zo_alt_ztest
[MAXNAMELEN
];
181 char zo_alt_libpath
[MAXNAMELEN
];
183 uint64_t zo_vdevtime
;
187 int zo_raid_do_expand
;
188 int zo_raid_children
;
190 char zo_raid_type
[8];
195 uint64_t zo_passtime
;
196 uint64_t zo_killrate
;
200 uint64_t zo_maxloops
;
201 uint64_t zo_metaslab_force_ganging
;
202 raidz_expand_test_state_t zo_raidz_expand_test
;
204 int zo_special_vdevs
;
207 char zo_gvars
[ZO_GVARS_MAX_COUNT
][ZO_GVARS_MAX_ARGLEN
];
208 } ztest_shared_opts_t
;
210 /* Default values for command line options. */
211 #define DEFAULT_POOL "ztest"
212 #define DEFAULT_VDEV_DIR "/tmp"
213 #define DEFAULT_VDEV_COUNT 5
214 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
215 #define DEFAULT_VDEV_SIZE_STR "256M"
216 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
217 #define DEFAULT_MIRRORS 2
218 #define DEFAULT_RAID_CHILDREN 4
219 #define DEFAULT_RAID_PARITY 1
220 #define DEFAULT_DRAID_DATA 4
221 #define DEFAULT_DRAID_SPARES 1
222 #define DEFAULT_DATASETS_COUNT 7
223 #define DEFAULT_THREADS 23
224 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
225 #define DEFAULT_RUN_TIME_STR "300 sec"
226 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
227 #define DEFAULT_PASS_TIME_STR "60 sec"
228 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
229 #define DEFAULT_KILLRATE_STR "70%"
230 #define DEFAULT_INITS 1
231 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
232 #define DEFAULT_FORCE_GANGING (64 << 10)
233 #define DEFAULT_FORCE_GANGING_STR "64K"
235 /* Simplifying assumption: -1 is not a valid default. */
236 #define NO_DEFAULT -1
238 static const ztest_shared_opts_t ztest_opts_defaults
= {
239 .zo_pool
= DEFAULT_POOL
,
240 .zo_dir
= DEFAULT_VDEV_DIR
,
241 .zo_alt_ztest
= { '\0' },
242 .zo_alt_libpath
= { '\0' },
243 .zo_vdevs
= DEFAULT_VDEV_COUNT
,
244 .zo_ashift
= DEFAULT_ASHIFT
,
245 .zo_mirrors
= DEFAULT_MIRRORS
,
246 .zo_raid_children
= DEFAULT_RAID_CHILDREN
,
247 .zo_raid_parity
= DEFAULT_RAID_PARITY
,
248 .zo_raid_type
= VDEV_TYPE_RAIDZ
,
249 .zo_vdev_size
= DEFAULT_VDEV_SIZE
,
250 .zo_draid_data
= DEFAULT_DRAID_DATA
, /* data drives */
251 .zo_draid_spares
= DEFAULT_DRAID_SPARES
, /* distributed spares */
252 .zo_datasets
= DEFAULT_DATASETS_COUNT
,
253 .zo_threads
= DEFAULT_THREADS
,
254 .zo_passtime
= DEFAULT_PASS_TIME
,
255 .zo_killrate
= DEFAULT_KILL_RATE
,
258 .zo_init
= DEFAULT_INITS
,
259 .zo_time
= DEFAULT_RUN_TIME
,
260 .zo_maxloops
= DEFAULT_MAX_LOOPS
, /* max loops during spa_freeze() */
261 .zo_metaslab_force_ganging
= DEFAULT_FORCE_GANGING
,
262 .zo_special_vdevs
= ZTEST_VDEV_CLASS_RND
,
264 .zo_raidz_expand_test
= RAIDZ_EXPAND_NONE
,
267 extern uint64_t metaslab_force_ganging
;
268 extern uint64_t metaslab_df_alloc_threshold
;
269 extern uint64_t zfs_deadman_synctime_ms
;
270 extern uint_t metaslab_preload_limit
;
271 extern int zfs_compressed_arc_enabled
;
272 extern int zfs_abd_scatter_enabled
;
273 extern uint_t dmu_object_alloc_chunk_shift
;
274 extern boolean_t zfs_force_some_double_word_sm_entries
;
275 extern unsigned long zio_decompress_fail_fraction
;
276 extern unsigned long zfs_reconstruct_indirect_damage_fraction
;
277 extern uint64_t raidz_expand_max_reflow_bytes
;
278 extern uint_t raidz_expand_pause_point
;
279 extern boolean_t ddt_prune_artificial_age
;
280 extern boolean_t ddt_dump_prune_histogram
;
283 static ztest_shared_opts_t
*ztest_shared_opts
;
284 static ztest_shared_opts_t ztest_opts
;
285 static const char *const ztest_wkeydata
= "abcdefghijklmnopqrstuvwxyz012345";
287 typedef struct ztest_shared_ds
{
291 static ztest_shared_ds_t
*ztest_shared_ds
;
292 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
294 typedef struct ztest_scratch_state
{
295 uint64_t zs_raidz_scratch_verify_pause
;
296 } ztest_shared_scratch_state_t
;
298 static ztest_shared_scratch_state_t
*ztest_scratch_state
;
300 #define BT_MAGIC 0x123456789abcdefULL
301 #define MAXFAULTS(zs) \
302 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
306 ZTEST_IO_WRITE_PATTERN
,
307 ZTEST_IO_WRITE_ZEROES
,
314 typedef struct ztest_block_tag
{
318 uint64_t bt_dnodesize
;
325 typedef struct bufwad
{
332 * It would be better to use a rangelock_t per object. Unfortunately
333 * the rangelock_t is not a drop-in replacement for rl_t, because we
334 * still need to map from object ID to rangelock_t.
356 #define ZTEST_RANGE_LOCKS 64
357 #define ZTEST_OBJECT_LOCKS 64
360 * Object descriptor. Used as a template for object lookup/create/remove.
362 typedef struct ztest_od
{
365 dmu_object_type_t od_type
;
366 dmu_object_type_t od_crtype
;
367 uint64_t od_blocksize
;
368 uint64_t od_crblocksize
;
369 uint64_t od_crdnodesize
;
372 char od_name
[ZFS_MAX_DATASET_NAME_LEN
];
378 typedef struct ztest_ds
{
379 ztest_shared_ds_t
*zd_shared
;
381 pthread_rwlock_t zd_zilog_lock
;
383 ztest_od_t
*zd_od
; /* debugging aid */
384 char zd_name
[ZFS_MAX_DATASET_NAME_LEN
];
385 kmutex_t zd_dirobj_lock
;
386 rll_t zd_object_lock
[ZTEST_OBJECT_LOCKS
];
387 rll_t zd_range_lock
[ZTEST_RANGE_LOCKS
];
391 * Per-iteration state.
393 typedef void ztest_func_t(ztest_ds_t
*zd
, uint64_t id
);
395 typedef struct ztest_info
{
396 ztest_func_t
*zi_func
; /* test function */
397 uint64_t zi_iters
; /* iterations per execution */
398 uint64_t *zi_interval
; /* execute every <interval> seconds */
399 const char *zi_funcname
; /* name of test function */
402 typedef struct ztest_shared_callstate
{
403 uint64_t zc_count
; /* per-pass count */
404 uint64_t zc_time
; /* per-pass time */
405 uint64_t zc_next
; /* next time to call this function */
406 } ztest_shared_callstate_t
;
408 static ztest_shared_callstate_t
*ztest_shared_callstate
;
409 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
411 ztest_func_t ztest_dmu_read_write
;
412 ztest_func_t ztest_dmu_write_parallel
;
413 ztest_func_t ztest_dmu_object_alloc_free
;
414 ztest_func_t ztest_dmu_object_next_chunk
;
415 ztest_func_t ztest_dmu_commit_callbacks
;
416 ztest_func_t ztest_zap
;
417 ztest_func_t ztest_zap_parallel
;
418 ztest_func_t ztest_zil_commit
;
419 ztest_func_t ztest_zil_remount
;
420 ztest_func_t ztest_dmu_read_write_zcopy
;
421 ztest_func_t ztest_dmu_objset_create_destroy
;
422 ztest_func_t ztest_dmu_prealloc
;
423 ztest_func_t ztest_fzap
;
424 ztest_func_t ztest_dmu_snapshot_create_destroy
;
425 ztest_func_t ztest_dsl_prop_get_set
;
426 ztest_func_t ztest_spa_prop_get_set
;
427 ztest_func_t ztest_spa_create_destroy
;
428 ztest_func_t ztest_fault_inject
;
429 ztest_func_t ztest_dmu_snapshot_hold
;
430 ztest_func_t ztest_mmp_enable_disable
;
431 ztest_func_t ztest_scrub
;
432 ztest_func_t ztest_dsl_dataset_promote_busy
;
433 ztest_func_t ztest_vdev_attach_detach
;
434 ztest_func_t ztest_vdev_raidz_attach
;
435 ztest_func_t ztest_vdev_LUN_growth
;
436 ztest_func_t ztest_vdev_add_remove
;
437 ztest_func_t ztest_vdev_class_add
;
438 ztest_func_t ztest_vdev_aux_add_remove
;
439 ztest_func_t ztest_split_pool
;
440 ztest_func_t ztest_reguid
;
441 ztest_func_t ztest_spa_upgrade
;
442 ztest_func_t ztest_device_removal
;
443 ztest_func_t ztest_spa_checkpoint_create_discard
;
444 ztest_func_t ztest_initialize
;
445 ztest_func_t ztest_trim
;
446 ztest_func_t ztest_blake3
;
447 ztest_func_t ztest_fletcher
;
448 ztest_func_t ztest_fletcher_incr
;
449 ztest_func_t ztest_verify_dnode_bt
;
450 ztest_func_t ztest_pool_prefetch_ddt
;
451 ztest_func_t ztest_ddt_prune
;
453 static uint64_t zopt_always
= 0ULL * NANOSEC
; /* all the time */
454 static uint64_t zopt_incessant
= 1ULL * NANOSEC
/ 10; /* every 1/10 second */
455 static uint64_t zopt_often
= 1ULL * NANOSEC
; /* every second */
456 static uint64_t zopt_sometimes
= 10ULL * NANOSEC
; /* every 10 seconds */
457 static uint64_t zopt_rarely
= 60ULL * NANOSEC
; /* every 60 seconds */
459 #define ZTI_INIT(func, iters, interval) \
460 { .zi_func = (func), \
461 .zi_iters = (iters), \
462 .zi_interval = (interval), \
463 .zi_funcname = # func }
465 static ztest_info_t ztest_info
[] = {
466 ZTI_INIT(ztest_dmu_read_write
, 1, &zopt_always
),
467 ZTI_INIT(ztest_dmu_write_parallel
, 10, &zopt_always
),
468 ZTI_INIT(ztest_dmu_object_alloc_free
, 1, &zopt_always
),
469 ZTI_INIT(ztest_dmu_object_next_chunk
, 1, &zopt_sometimes
),
470 ZTI_INIT(ztest_dmu_commit_callbacks
, 1, &zopt_always
),
471 ZTI_INIT(ztest_zap
, 30, &zopt_always
),
472 ZTI_INIT(ztest_zap_parallel
, 100, &zopt_always
),
473 ZTI_INIT(ztest_split_pool
, 1, &zopt_sometimes
),
474 ZTI_INIT(ztest_zil_commit
, 1, &zopt_incessant
),
475 ZTI_INIT(ztest_zil_remount
, 1, &zopt_sometimes
),
476 ZTI_INIT(ztest_dmu_read_write_zcopy
, 1, &zopt_often
),
477 ZTI_INIT(ztest_dmu_objset_create_destroy
, 1, &zopt_often
),
478 ZTI_INIT(ztest_dsl_prop_get_set
, 1, &zopt_often
),
479 ZTI_INIT(ztest_spa_prop_get_set
, 1, &zopt_sometimes
),
481 ZTI_INIT(ztest_dmu_prealloc
, 1, &zopt_sometimes
),
483 ZTI_INIT(ztest_fzap
, 1, &zopt_sometimes
),
484 ZTI_INIT(ztest_dmu_snapshot_create_destroy
, 1, &zopt_sometimes
),
485 ZTI_INIT(ztest_spa_create_destroy
, 1, &zopt_sometimes
),
486 ZTI_INIT(ztest_fault_inject
, 1, &zopt_sometimes
),
487 ZTI_INIT(ztest_dmu_snapshot_hold
, 1, &zopt_sometimes
),
488 ZTI_INIT(ztest_mmp_enable_disable
, 1, &zopt_sometimes
),
489 ZTI_INIT(ztest_reguid
, 1, &zopt_rarely
),
490 ZTI_INIT(ztest_scrub
, 1, &zopt_rarely
),
491 ZTI_INIT(ztest_spa_upgrade
, 1, &zopt_rarely
),
492 ZTI_INIT(ztest_dsl_dataset_promote_busy
, 1, &zopt_rarely
),
493 ZTI_INIT(ztest_vdev_attach_detach
, 1, &zopt_sometimes
),
494 ZTI_INIT(ztest_vdev_raidz_attach
, 1, &zopt_sometimes
),
495 ZTI_INIT(ztest_vdev_LUN_growth
, 1, &zopt_rarely
),
496 ZTI_INIT(ztest_vdev_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
497 ZTI_INIT(ztest_vdev_class_add
, 1, &ztest_opts
.zo_vdevtime
),
498 ZTI_INIT(ztest_vdev_aux_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
499 ZTI_INIT(ztest_device_removal
, 1, &zopt_sometimes
),
500 ZTI_INIT(ztest_spa_checkpoint_create_discard
, 1, &zopt_rarely
),
501 ZTI_INIT(ztest_initialize
, 1, &zopt_sometimes
),
502 ZTI_INIT(ztest_trim
, 1, &zopt_sometimes
),
503 ZTI_INIT(ztest_blake3
, 1, &zopt_rarely
),
504 ZTI_INIT(ztest_fletcher
, 1, &zopt_rarely
),
505 ZTI_INIT(ztest_fletcher_incr
, 1, &zopt_rarely
),
506 ZTI_INIT(ztest_verify_dnode_bt
, 1, &zopt_sometimes
),
507 ZTI_INIT(ztest_pool_prefetch_ddt
, 1, &zopt_rarely
),
508 ZTI_INIT(ztest_ddt_prune
, 1, &zopt_rarely
),
511 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
514 * The following struct is used to hold a list of uncalled commit callbacks.
515 * The callbacks are ordered by txg number.
517 typedef struct ztest_cb_list
{
518 kmutex_t zcl_callbacks_lock
;
519 list_t zcl_callbacks
;
523 * Stuff we need to share writably between parent and child.
525 typedef struct ztest_shared
{
526 boolean_t zs_do_init
;
527 hrtime_t zs_proc_start
;
528 hrtime_t zs_proc_stop
;
529 hrtime_t zs_thread_start
;
530 hrtime_t zs_thread_stop
;
531 hrtime_t zs_thread_kill
;
532 uint64_t zs_enospc_count
;
533 uint64_t zs_vdev_next_leaf
;
534 uint64_t zs_vdev_aux
;
539 uint64_t zs_metaslab_sz
;
540 uint64_t zs_metaslab_df_alloc_threshold
;
544 #define ID_PARALLEL -1ULL
546 static char ztest_dev_template
[] = "%s/%s.%llua";
547 static char ztest_aux_template
[] = "%s/%s.%s.%llu";
548 static ztest_shared_t
*ztest_shared
;
550 static spa_t
*ztest_spa
= NULL
;
551 static ztest_ds_t
*ztest_ds
;
553 static kmutex_t ztest_vdev_lock
;
554 static boolean_t ztest_device_removal_active
= B_FALSE
;
555 static boolean_t ztest_pool_scrubbed
= B_FALSE
;
556 static kmutex_t ztest_checkpoint_lock
;
559 * The ztest_name_lock protects the pool and dataset namespace used by
560 * the individual tests. To modify the namespace, consumers must grab
561 * this lock as writer. Grabbing the lock as reader will ensure that the
562 * namespace does not change while the lock is held.
564 static pthread_rwlock_t ztest_name_lock
;
566 static boolean_t ztest_dump_core
= B_TRUE
;
567 static boolean_t ztest_exiting
;
569 /* Global commit callback list */
570 static ztest_cb_list_t zcl
;
571 /* Commit cb delay */
572 static uint64_t zc_min_txg_delay
= UINT64_MAX
;
573 static int zc_cb_counter
= 0;
576 * Minimum number of commit callbacks that need to be registered for us to check
577 * whether the minimum txg delay is acceptable.
579 #define ZTEST_COMMIT_CB_MIN_REG 100
582 * If a number of txgs equal to this threshold have been created after a commit
583 * callback has been registered but not called, then we assume there is an
584 * implementation bug.
586 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
589 ZTEST_META_DNODE
= 0,
594 static __attribute__((noreturn
)) void usage(boolean_t requested
);
595 static int ztest_scrub_impl(spa_t
*spa
);
598 * These libumem hooks provide a reasonable set of defaults for the allocator's
599 * debugging facilities.
602 _umem_debug_init(void)
604 return ("default,verbose"); /* $UMEM_DEBUG setting */
608 _umem_logging_init(void)
610 return ("fail,contents"); /* $UMEM_LOGGING setting */
614 dump_debug_buffer(void)
616 ssize_t ret
__attribute__((unused
));
618 if (!ztest_opts
.zo_dump_dbgmsg
)
622 * We use write() instead of printf() so that this function
623 * is safe to call from a signal handler.
625 ret
= write(STDERR_FILENO
, "\n", 1);
626 zfs_dbgmsg_print(STDERR_FILENO
, "ztest");
629 static void sig_handler(int signo
)
631 struct sigaction action
;
633 libspl_backtrace(STDERR_FILENO
);
637 * Restore default action and re-raise signal so SIGSEGV and
638 * SIGABRT can trigger a core dump.
640 action
.sa_handler
= SIG_DFL
;
641 sigemptyset(&action
.sa_mask
);
643 (void) sigaction(signo
, &action
, NULL
);
647 #define FATAL_MSG_SZ 1024
649 static const char *fatal_msg
;
651 static __attribute__((format(printf
, 2, 3))) __attribute__((noreturn
)) void
652 fatal(int do_perror
, const char *message
, ...)
655 int save_errno
= errno
;
658 (void) fflush(stdout
);
659 buf
= umem_alloc(FATAL_MSG_SZ
, UMEM_NOFAIL
);
663 va_start(args
, message
);
664 (void) sprintf(buf
, "ztest: ");
666 (void) vsprintf(buf
+ strlen(buf
), message
, args
);
669 (void) snprintf(buf
+ strlen(buf
), FATAL_MSG_SZ
- strlen(buf
),
670 ": %s", strerror(save_errno
));
672 (void) fprintf(stderr
, "%s\n", buf
);
673 fatal_msg
= buf
; /* to ease debugging */
685 str2shift(const char *buf
)
687 const char *ends
= "BKMGTPEZ";
692 for (i
= 0; i
< strlen(ends
); i
++) {
693 if (toupper(buf
[0]) == ends
[i
])
696 if (i
== strlen(ends
)) {
697 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n",
701 if (buf
[1] == '\0' || (toupper(buf
[1]) == 'B' && buf
[2] == '\0')) {
704 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n", buf
);
709 nicenumtoull(const char *buf
)
714 val
= strtoull(buf
, &end
, 0);
716 (void) fprintf(stderr
, "ztest: bad numeric value: %s\n", buf
);
718 } else if (end
[0] == '.') {
719 double fval
= strtod(buf
, &end
);
720 fval
*= pow(2, str2shift(end
));
722 * UINT64_MAX is not exactly representable as a double.
723 * The closest representation is UINT64_MAX + 1, so we
724 * use a >= comparison instead of > for the bounds check.
726 if (fval
>= (double)UINT64_MAX
) {
727 (void) fprintf(stderr
, "ztest: value too large: %s\n",
731 val
= (uint64_t)fval
;
733 int shift
= str2shift(end
);
734 if (shift
>= 64 || (val
<< shift
) >> shift
!= val
) {
735 (void) fprintf(stderr
, "ztest: value too large: %s\n",
744 typedef struct ztest_option
{
745 const char short_opt
;
746 const char *long_opt
;
747 const char *long_opt_param
;
749 unsigned int default_int
;
750 const char *default_str
;
754 * The following option_table is used for generating the usage info as well as
755 * the long and short option information for calling getopt_long().
757 static ztest_option_t option_table
[] = {
758 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT
,
760 { 's', "vdev-size", "INTEGER", "Size of each vdev",
761 NO_DEFAULT
, DEFAULT_VDEV_SIZE_STR
},
762 { 'a', "alignment-shift", "INTEGER",
763 "Alignment shift; use 0 for random", DEFAULT_ASHIFT
, NULL
},
764 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
765 DEFAULT_MIRRORS
, NULL
},
766 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
767 DEFAULT_RAID_CHILDREN
, NULL
},
768 { 'R', "raid-parity", "INTEGER", "Raid parity",
769 DEFAULT_RAID_PARITY
, NULL
},
770 { 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
771 NO_DEFAULT
, "random"},
772 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
773 DEFAULT_DRAID_DATA
, NULL
},
774 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
775 DEFAULT_DRAID_SPARES
, NULL
},
776 { 'd', "datasets", "INTEGER", "Number of datasets",
777 DEFAULT_DATASETS_COUNT
, NULL
},
778 { 't', "threads", "INTEGER", "Number of ztest threads",
779 DEFAULT_THREADS
, NULL
},
780 { 'g', "gang-block-threshold", "INTEGER",
781 "Metaslab gang block threshold",
782 NO_DEFAULT
, DEFAULT_FORCE_GANGING_STR
},
783 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
784 DEFAULT_INITS
, NULL
},
785 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
786 NO_DEFAULT
, DEFAULT_KILLRATE_STR
},
787 { 'p', "pool-name", "STRING", "Pool name",
788 NO_DEFAULT
, DEFAULT_POOL
},
789 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
790 NO_DEFAULT
, DEFAULT_VDEV_DIR
},
791 { 'M', "multi-host", NULL
,
792 "Multi-host; simulate pool imported on remote host",
794 { 'E', "use-existing-pool", NULL
,
795 "Use existing pool instead of creating new one", NO_DEFAULT
, NULL
},
796 { 'T', "run-time", "INTEGER", "Total run time",
797 NO_DEFAULT
, DEFAULT_RUN_TIME_STR
},
798 { 'P', "pass-time", "INTEGER", "Time per pass",
799 NO_DEFAULT
, DEFAULT_PASS_TIME_STR
},
800 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
801 DEFAULT_MAX_LOOPS
, NULL
},
802 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
804 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
805 NO_DEFAULT
, "random"},
806 { 'X', "raidz-expansion", NULL
,
807 "Perform a dedicated raidz expansion test",
809 { 'o', "option", "\"OPTION=INTEGER\"",
810 "Set global variable to an unsigned 32-bit integer value",
812 { 'G', "dump-debug-msg", NULL
,
813 "Dump zfs_dbgmsg buffer before exiting due to an error",
815 { 'V', "verbose", NULL
,
816 "Verbose (use multiple times for ever more verbosity)",
818 { 'h', "help", NULL
, "Show this help",
823 static struct option
*long_opts
= NULL
;
824 static char *short_opts
= NULL
;
829 ASSERT3P(long_opts
, ==, NULL
);
830 ASSERT3P(short_opts
, ==, NULL
);
832 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
833 long_opts
= umem_alloc(sizeof (struct option
) * count
, UMEM_NOFAIL
);
835 short_opts
= umem_alloc(sizeof (char) * 2 * count
, UMEM_NOFAIL
);
836 int short_opt_index
= 0;
838 for (int i
= 0; i
< count
; i
++) {
839 long_opts
[i
].val
= option_table
[i
].short_opt
;
840 long_opts
[i
].name
= option_table
[i
].long_opt
;
841 long_opts
[i
].has_arg
= option_table
[i
].long_opt_param
!= NULL
842 ? required_argument
: no_argument
;
843 long_opts
[i
].flag
= NULL
;
844 short_opts
[short_opt_index
++] = option_table
[i
].short_opt
;
845 if (option_table
[i
].long_opt_param
!= NULL
) {
846 short_opts
[short_opt_index
++] = ':';
854 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
856 umem_free(long_opts
, sizeof (struct option
) * count
);
857 umem_free(short_opts
, sizeof (char) * 2 * count
);
863 static __attribute__((noreturn
)) void
864 usage(boolean_t requested
)
867 FILE *fp
= requested
? stdout
: stderr
;
869 (void) fprintf(fp
, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL
);
870 for (int i
= 0; option_table
[i
].short_opt
!= 0; i
++) {
871 if (option_table
[i
].long_opt_param
!= NULL
) {
872 (void) sprintf(option
, " -%c --%s=%s",
873 option_table
[i
].short_opt
,
874 option_table
[i
].long_opt
,
875 option_table
[i
].long_opt_param
);
877 (void) sprintf(option
, " -%c --%s",
878 option_table
[i
].short_opt
,
879 option_table
[i
].long_opt
);
881 (void) fprintf(fp
, " %-43s%s", option
,
882 option_table
[i
].comment
);
884 if (option_table
[i
].long_opt_param
!= NULL
) {
885 if (option_table
[i
].default_str
!= NULL
) {
886 (void) fprintf(fp
, " (default: %s)",
887 option_table
[i
].default_str
);
888 } else if (option_table
[i
].default_int
!= NO_DEFAULT
) {
889 (void) fprintf(fp
, " (default: %u)",
890 option_table
[i
].default_int
);
893 (void) fprintf(fp
, "\n");
895 exit(requested
? 0 : 1);
899 ztest_random(uint64_t range
)
903 ASSERT3S(ztest_fd_rand
, >=, 0);
908 if (read(ztest_fd_rand
, &r
, sizeof (r
)) != sizeof (r
))
909 fatal(B_TRUE
, "short read from /dev/urandom");
915 ztest_parse_name_value(const char *input
, ztest_shared_opts_t
*zo
)
919 int state
= ZTEST_VDEV_CLASS_RND
;
921 (void) strlcpy(name
, input
, sizeof (name
));
923 value
= strchr(name
, '=');
925 (void) fprintf(stderr
, "missing value in property=value "
926 "'-C' argument (%s)\n", input
);
932 if (strcmp(value
, "on") == 0) {
933 state
= ZTEST_VDEV_CLASS_ON
;
934 } else if (strcmp(value
, "off") == 0) {
935 state
= ZTEST_VDEV_CLASS_OFF
;
936 } else if (strcmp(value
, "random") == 0) {
937 state
= ZTEST_VDEV_CLASS_RND
;
939 (void) fprintf(stderr
, "invalid property value '%s'\n", value
);
943 if (strcmp(name
, "special") == 0) {
944 zo
->zo_special_vdevs
= state
;
946 (void) fprintf(stderr
, "invalid property name '%s'\n", name
);
949 if (zo
->zo_verbose
>= 3)
950 (void) printf("%s vdev state is '%s'\n", name
, value
);
954 process_options(int argc
, char **argv
)
957 ztest_shared_opts_t
*zo
= &ztest_opts
;
961 const char *raid_kind
= "random";
963 memcpy(zo
, &ztest_opts_defaults
, sizeof (*zo
));
967 while ((opt
= getopt_long(argc
, argv
, short_opts
, long_opts
,
987 value
= nicenumtoull(optarg
);
991 zo
->zo_vdevs
= value
;
994 zo
->zo_vdev_size
= MAX(SPA_MINDEVSIZE
, value
);
997 zo
->zo_ashift
= value
;
1000 zo
->zo_mirrors
= value
;
1003 zo
->zo_raid_children
= MAX(1, value
);
1006 zo
->zo_raid_parity
= MIN(MAX(value
, 1), 3);
1012 zo
->zo_draid_data
= MAX(1, value
);
1015 zo
->zo_draid_spares
= MAX(1, value
);
1018 zo
->zo_datasets
= MAX(1, value
);
1021 zo
->zo_threads
= MAX(1, value
);
1024 zo
->zo_metaslab_force_ganging
=
1025 MAX(SPA_MINBLOCKSIZE
<< 1, value
);
1028 zo
->zo_init
= value
;
1031 zo
->zo_killrate
= value
;
1034 (void) strlcpy(zo
->zo_pool
, optarg
,
1035 sizeof (zo
->zo_pool
));
1038 path
= realpath(optarg
, NULL
);
1040 (void) fprintf(stderr
, "error: %s: %s\n",
1041 optarg
, strerror(errno
));
1044 (void) strlcpy(zo
->zo_dir
, path
,
1045 sizeof (zo
->zo_dir
));
1050 zo
->zo_mmp_test
= 1;
1056 zo
->zo_raidz_expand_test
= RAIDZ_EXPAND_REQUESTED
;
1062 zo
->zo_time
= value
;
1065 zo
->zo_passtime
= MAX(1, value
);
1068 zo
->zo_maxloops
= MAX(1, value
);
1071 (void) strlcpy(zo
->zo_alt_ztest
, optarg
,
1072 sizeof (zo
->zo_alt_ztest
));
1075 ztest_parse_name_value(optarg
, zo
);
1078 if (zo
->zo_gvars_count
>= ZO_GVARS_MAX_COUNT
) {
1079 (void) fprintf(stderr
,
1080 "max global var count (%zu) exceeded\n",
1081 ZO_GVARS_MAX_COUNT
);
1084 char *v
= zo
->zo_gvars
[zo
->zo_gvars_count
];
1085 if (strlcpy(v
, optarg
, ZO_GVARS_MAX_ARGLEN
) >=
1086 ZO_GVARS_MAX_ARGLEN
) {
1087 (void) fprintf(stderr
,
1088 "global var option '%s' is too long\n",
1092 zo
->zo_gvars_count
++;
1095 zo
->zo_dump_dbgmsg
= 1;
1109 /* Force compatible options for raidz expansion run */
1110 if (zo
->zo_raidz_expand_test
== RAIDZ_EXPAND_REQUESTED
) {
1111 zo
->zo_mmp_test
= 0;
1114 zo
->zo_vdev_size
= DEFAULT_VDEV_SIZE
* 2;
1115 zo
->zo_raid_do_expand
= B_FALSE
;
1116 raid_kind
= "raidz";
1119 if (strcmp(raid_kind
, "random") == 0) {
1120 switch (ztest_random(3)) {
1122 raid_kind
= "raidz";
1125 raid_kind
= "eraidz";
1128 raid_kind
= "draid";
1132 if (ztest_opts
.zo_verbose
>= 3)
1133 (void) printf("choosing RAID type '%s'\n", raid_kind
);
1136 if (strcmp(raid_kind
, "draid") == 0) {
1137 uint64_t min_devsize
;
1139 /* With fewer disk use 256M, otherwise 128M is OK */
1140 min_devsize
= (ztest_opts
.zo_raid_children
< 16) ?
1141 (256ULL << 20) : (128ULL << 20);
1143 /* No top-level mirrors with dRAID for now */
1146 /* Use more appropriate defaults for dRAID */
1147 if (zo
->zo_vdevs
== ztest_opts_defaults
.zo_vdevs
)
1149 if (zo
->zo_raid_children
==
1150 ztest_opts_defaults
.zo_raid_children
)
1151 zo
->zo_raid_children
= 16;
1152 if (zo
->zo_ashift
< 12)
1154 if (zo
->zo_vdev_size
< min_devsize
)
1155 zo
->zo_vdev_size
= min_devsize
;
1157 if (zo
->zo_draid_data
+ zo
->zo_raid_parity
>
1158 zo
->zo_raid_children
- zo
->zo_draid_spares
) {
1159 (void) fprintf(stderr
, "error: too few draid "
1160 "children (%d) for stripe width (%d)\n",
1161 zo
->zo_raid_children
,
1162 zo
->zo_draid_data
+ zo
->zo_raid_parity
);
1166 (void) strlcpy(zo
->zo_raid_type
, VDEV_TYPE_DRAID
,
1167 sizeof (zo
->zo_raid_type
));
1169 } else if (strcmp(raid_kind
, "eraidz") == 0) {
1170 /* using eraidz (expandable raidz) */
1171 zo
->zo_raid_do_expand
= B_TRUE
;
1173 /* tests expect top-level to be raidz */
1177 /* Make sure parity is less than data columns */
1178 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1179 zo
->zo_raid_children
- 1);
1181 } else /* using raidz */ {
1182 ASSERT0(strcmp(raid_kind
, "raidz"));
1184 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1185 zo
->zo_raid_children
- 1);
1189 (zo
->zo_vdevs
> 0 ? zo
->zo_time
* NANOSEC
/ zo
->zo_vdevs
:
1192 if (*zo
->zo_alt_ztest
) {
1193 const char *invalid_what
= "ztest";
1194 char *val
= zo
->zo_alt_ztest
;
1195 if (0 != access(val
, X_OK
) ||
1196 (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
)))
1199 int dirlen
= strrchr(val
, '/') - val
;
1200 strlcpy(zo
->zo_alt_libpath
, val
,
1201 MIN(sizeof (zo
->zo_alt_libpath
), dirlen
+ 1));
1202 invalid_what
= "library path", val
= zo
->zo_alt_libpath
;
1203 if (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
))
1205 *strrchr(val
, '/') = '\0';
1206 strlcat(val
, "/lib", sizeof (zo
->zo_alt_libpath
));
1208 if (0 != access(zo
->zo_alt_libpath
, X_OK
))
1213 ztest_dump_core
= B_FALSE
;
1214 fatal(B_TRUE
, "invalid alternate %s %s", invalid_what
, val
);
1219 ztest_kill(ztest_shared_t
*zs
)
1221 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(ztest_spa
));
1222 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(ztest_spa
));
1225 * Before we kill ourselves, make sure that the config is updated.
1226 * See comment above spa_write_cachefile().
1228 if (raidz_expand_pause_point
!= RAIDZ_EXPAND_PAUSE_NONE
) {
1229 if (mutex_tryenter(&spa_namespace_lock
)) {
1230 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
,
1232 mutex_exit(&spa_namespace_lock
);
1234 ztest_scratch_state
->zs_raidz_scratch_verify_pause
=
1235 raidz_expand_pause_point
;
1238 * Do not verify scratch object in case if
1239 * spa_namespace_lock cannot be acquired,
1240 * it can cause deadlock in spa_config_update().
1242 raidz_expand_pause_point
= RAIDZ_EXPAND_PAUSE_NONE
;
1247 mutex_enter(&spa_namespace_lock
);
1248 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
, B_FALSE
);
1249 mutex_exit(&spa_namespace_lock
);
1252 (void) raise(SIGKILL
);
1256 ztest_record_enospc(const char *s
)
1259 ztest_shared
->zs_enospc_count
++;
1263 ztest_get_ashift(void)
1265 if (ztest_opts
.zo_ashift
== 0)
1266 return (SPA_MINBLOCKSHIFT
+ ztest_random(5));
1267 return (ztest_opts
.zo_ashift
);
1271 ztest_is_draid_spare(const char *name
)
1273 uint64_t spare_id
= 0, parity
= 0, vdev_id
= 0;
1275 if (sscanf(name
, VDEV_TYPE_DRAID
"%"PRIu64
"-%"PRIu64
"-%"PRIu64
"",
1276 &parity
, &vdev_id
, &spare_id
) == 3) {
1284 make_vdev_file(const char *path
, const char *aux
, const char *pool
,
1285 size_t size
, uint64_t ashift
)
1287 char *pathbuf
= NULL
;
1290 boolean_t draid_spare
= B_FALSE
;
1294 ashift
= ztest_get_ashift();
1297 pathbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1301 vdev
= ztest_shared
->zs_vdev_aux
;
1302 (void) snprintf(pathbuf
, MAXPATHLEN
,
1303 ztest_aux_template
, ztest_opts
.zo_dir
,
1304 pool
== NULL
? ztest_opts
.zo_pool
: pool
,
1307 vdev
= ztest_shared
->zs_vdev_next_leaf
++;
1308 (void) snprintf(pathbuf
, MAXPATHLEN
,
1309 ztest_dev_template
, ztest_opts
.zo_dir
,
1310 pool
== NULL
? ztest_opts
.zo_pool
: pool
, vdev
);
1313 draid_spare
= ztest_is_draid_spare(path
);
1316 if (size
!= 0 && !draid_spare
) {
1317 int fd
= open(path
, O_RDWR
| O_CREAT
| O_TRUNC
, 0666);
1319 fatal(B_TRUE
, "can't open %s", path
);
1320 if (ftruncate(fd
, size
) != 0)
1321 fatal(B_TRUE
, "can't ftruncate %s", path
);
1325 file
= fnvlist_alloc();
1326 fnvlist_add_string(file
, ZPOOL_CONFIG_TYPE
,
1327 draid_spare
? VDEV_TYPE_DRAID_SPARE
: VDEV_TYPE_FILE
);
1328 fnvlist_add_string(file
, ZPOOL_CONFIG_PATH
, path
);
1329 fnvlist_add_uint64(file
, ZPOOL_CONFIG_ASHIFT
, ashift
);
1330 umem_free(pathbuf
, MAXPATHLEN
);
1336 make_vdev_raid(const char *path
, const char *aux
, const char *pool
, size_t size
,
1337 uint64_t ashift
, int r
)
1339 nvlist_t
*raid
, **child
;
1343 return (make_vdev_file(path
, aux
, pool
, size
, ashift
));
1344 child
= umem_alloc(r
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1346 for (c
= 0; c
< r
; c
++)
1347 child
[c
] = make_vdev_file(path
, aux
, pool
, size
, ashift
);
1349 raid
= fnvlist_alloc();
1350 fnvlist_add_string(raid
, ZPOOL_CONFIG_TYPE
,
1351 ztest_opts
.zo_raid_type
);
1352 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_NPARITY
,
1353 ztest_opts
.zo_raid_parity
);
1354 fnvlist_add_nvlist_array(raid
, ZPOOL_CONFIG_CHILDREN
,
1355 (const nvlist_t
**)child
, r
);
1357 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0) {
1358 uint64_t ndata
= ztest_opts
.zo_draid_data
;
1359 uint64_t nparity
= ztest_opts
.zo_raid_parity
;
1360 uint64_t nspares
= ztest_opts
.zo_draid_spares
;
1361 uint64_t children
= ztest_opts
.zo_raid_children
;
1362 uint64_t ngroups
= 1;
1365 * Calculate the minimum number of groups required to fill a
1366 * slice. This is the LCM of the stripe width (data + parity)
1367 * and the number of data drives (children - spares).
1369 while (ngroups
* (ndata
+ nparity
) % (children
- nspares
) != 0)
1372 /* Store the basic dRAID configuration. */
1373 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NDATA
, ndata
);
1374 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NSPARES
, nspares
);
1375 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NGROUPS
, ngroups
);
1378 for (c
= 0; c
< r
; c
++)
1379 fnvlist_free(child
[c
]);
1381 umem_free(child
, r
* sizeof (nvlist_t
*));
1387 make_vdev_mirror(const char *path
, const char *aux
, const char *pool
,
1388 size_t size
, uint64_t ashift
, int r
, int m
)
1390 nvlist_t
*mirror
, **child
;
1394 return (make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
));
1396 child
= umem_alloc(m
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1398 for (c
= 0; c
< m
; c
++)
1399 child
[c
] = make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
);
1401 mirror
= fnvlist_alloc();
1402 fnvlist_add_string(mirror
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_MIRROR
);
1403 fnvlist_add_nvlist_array(mirror
, ZPOOL_CONFIG_CHILDREN
,
1404 (const nvlist_t
**)child
, m
);
1406 for (c
= 0; c
< m
; c
++)
1407 fnvlist_free(child
[c
]);
1409 umem_free(child
, m
* sizeof (nvlist_t
*));
1415 make_vdev_root(const char *path
, const char *aux
, const char *pool
, size_t size
,
1416 uint64_t ashift
, const char *class, int r
, int m
, int t
)
1418 nvlist_t
*root
, **child
;
1424 log
= (class != NULL
&& strcmp(class, "log") == 0);
1426 child
= umem_alloc(t
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1428 for (c
= 0; c
< t
; c
++) {
1429 child
[c
] = make_vdev_mirror(path
, aux
, pool
, size
, ashift
,
1431 fnvlist_add_uint64(child
[c
], ZPOOL_CONFIG_IS_LOG
, log
);
1433 if (class != NULL
&& class[0] != '\0') {
1434 ASSERT(m
> 1 || log
); /* expecting a mirror */
1435 fnvlist_add_string(child
[c
],
1436 ZPOOL_CONFIG_ALLOCATION_BIAS
, class);
1440 root
= fnvlist_alloc();
1441 fnvlist_add_string(root
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
1442 fnvlist_add_nvlist_array(root
, aux
? aux
: ZPOOL_CONFIG_CHILDREN
,
1443 (const nvlist_t
**)child
, t
);
1445 for (c
= 0; c
< t
; c
++)
1446 fnvlist_free(child
[c
]);
1448 umem_free(child
, t
* sizeof (nvlist_t
*));
1454 * Find a random spa version. Returns back a random spa version in the
1455 * range [initial_version, SPA_VERSION_FEATURES].
1458 ztest_random_spa_version(uint64_t initial_version
)
1460 uint64_t version
= initial_version
;
1462 if (version
<= SPA_VERSION_BEFORE_FEATURES
) {
1464 ztest_random(SPA_VERSION_BEFORE_FEATURES
- version
+ 1);
1467 if (version
> SPA_VERSION_BEFORE_FEATURES
)
1468 version
= SPA_VERSION_FEATURES
;
1470 ASSERT(SPA_VERSION_IS_SUPPORTED(version
));
1475 ztest_random_blocksize(void)
1477 ASSERT3U(ztest_spa
->spa_max_ashift
, !=, 0);
1480 * Choose a block size >= the ashift.
1481 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1483 int maxbs
= SPA_OLD_MAXBLOCKSHIFT
;
1484 if (spa_maxblocksize(ztest_spa
) == SPA_MAXBLOCKSIZE
)
1486 uint64_t block_shift
=
1487 ztest_random(maxbs
- ztest_spa
->spa_max_ashift
+ 1);
1488 return (1 << (SPA_MINBLOCKSHIFT
+ block_shift
));
1492 ztest_random_dnodesize(void)
1495 int max_slots
= spa_maxdnodesize(ztest_spa
) >> DNODE_SHIFT
;
1497 if (max_slots
== DNODE_MIN_SLOTS
)
1498 return (DNODE_MIN_SIZE
);
1501 * Weight the random distribution more heavily toward smaller
1502 * dnode sizes since that is more likely to reflect real-world
1505 ASSERT3U(max_slots
, >, 4);
1506 switch (ztest_random(10)) {
1508 slots
= 5 + ztest_random(max_slots
- 4);
1511 slots
= 2 + ztest_random(3);
1518 return (slots
<< DNODE_SHIFT
);
1522 ztest_random_ibshift(void)
1524 return (DN_MIN_INDBLKSHIFT
+
1525 ztest_random(DN_MAX_INDBLKSHIFT
- DN_MIN_INDBLKSHIFT
+ 1));
1529 ztest_random_vdev_top(spa_t
*spa
, boolean_t log_ok
)
1532 vdev_t
*rvd
= spa
->spa_root_vdev
;
1535 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
1538 top
= ztest_random(rvd
->vdev_children
);
1539 tvd
= rvd
->vdev_child
[top
];
1540 } while (!vdev_is_concrete(tvd
) || (tvd
->vdev_islog
&& !log_ok
) ||
1541 tvd
->vdev_mg
== NULL
|| tvd
->vdev_mg
->mg_class
== NULL
);
1547 ztest_random_dsl_prop(zfs_prop_t prop
)
1552 value
= zfs_prop_random_value(prop
, ztest_random(-1ULL));
1553 } while (prop
== ZFS_PROP_CHECKSUM
&& value
== ZIO_CHECKSUM_OFF
);
1559 ztest_dsl_prop_set_uint64(char *osname
, zfs_prop_t prop
, uint64_t value
,
1562 const char *propname
= zfs_prop_to_name(prop
);
1563 const char *valname
;
1568 error
= dsl_prop_set_int(osname
, propname
,
1569 (inherit
? ZPROP_SRC_NONE
: ZPROP_SRC_LOCAL
), value
);
1571 if (error
== ENOSPC
) {
1572 ztest_record_enospc(FTAG
);
1577 setpoint
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1578 VERIFY0(dsl_prop_get_integer(osname
, propname
, &curval
, setpoint
));
1580 if (ztest_opts
.zo_verbose
>= 6) {
1583 err
= zfs_prop_index_to_string(prop
, curval
, &valname
);
1585 (void) printf("%s %s = %llu at '%s'\n", osname
,
1586 propname
, (unsigned long long)curval
, setpoint
);
1588 (void) printf("%s %s = %s at '%s'\n",
1589 osname
, propname
, valname
, setpoint
);
1591 umem_free(setpoint
, MAXPATHLEN
);
1597 ztest_spa_prop_set_uint64(zpool_prop_t prop
, uint64_t value
)
1599 spa_t
*spa
= ztest_spa
;
1600 nvlist_t
*props
= NULL
;
1603 props
= fnvlist_alloc();
1604 fnvlist_add_uint64(props
, zpool_prop_to_name(prop
), value
);
1606 error
= spa_prop_set(spa
, props
);
1608 fnvlist_free(props
);
1610 if (error
== ENOSPC
) {
1611 ztest_record_enospc(FTAG
);
1620 ztest_dmu_objset_own(const char *name
, dmu_objset_type_t type
,
1621 boolean_t readonly
, boolean_t decrypt
, const void *tag
, objset_t
**osp
)
1625 char ddname
[ZFS_MAX_DATASET_NAME_LEN
];
1627 strlcpy(ddname
, name
, sizeof (ddname
));
1628 cp
= strchr(ddname
, '@');
1632 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1633 while (decrypt
&& err
== EACCES
) {
1634 dsl_crypto_params_t
*dcp
;
1635 nvlist_t
*crypto_args
= fnvlist_alloc();
1637 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
1638 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
1639 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, NULL
,
1640 crypto_args
, &dcp
));
1641 err
= spa_keystore_load_wkey(ddname
, dcp
, B_FALSE
);
1643 * Note: if there was an error loading, the wkey was not
1644 * consumed, and needs to be freed.
1646 dsl_crypto_params_free(dcp
, (err
!= 0));
1647 fnvlist_free(crypto_args
);
1649 if (err
== EINVAL
) {
1651 * We couldn't load a key for this dataset so try
1652 * the parent. This loop will eventually hit the
1653 * encryption root since ztest only makes clones
1654 * as children of their origin datasets.
1656 cp
= strrchr(ddname
, '/');
1663 } else if (err
!= 0) {
1667 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1675 ztest_rll_init(rll_t
*rll
)
1677 rll
->rll_writer
= NULL
;
1678 rll
->rll_readers
= 0;
1679 mutex_init(&rll
->rll_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1680 cv_init(&rll
->rll_cv
, NULL
, CV_DEFAULT
, NULL
);
1684 ztest_rll_destroy(rll_t
*rll
)
1686 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1687 ASSERT0(rll
->rll_readers
);
1688 mutex_destroy(&rll
->rll_lock
);
1689 cv_destroy(&rll
->rll_cv
);
1693 ztest_rll_lock(rll_t
*rll
, rl_type_t type
)
1695 mutex_enter(&rll
->rll_lock
);
1697 if (type
== ZTRL_READER
) {
1698 while (rll
->rll_writer
!= NULL
)
1699 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1702 while (rll
->rll_writer
!= NULL
|| rll
->rll_readers
)
1703 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1704 rll
->rll_writer
= curthread
;
1707 mutex_exit(&rll
->rll_lock
);
1711 ztest_rll_unlock(rll_t
*rll
)
1713 mutex_enter(&rll
->rll_lock
);
1715 if (rll
->rll_writer
) {
1716 ASSERT0(rll
->rll_readers
);
1717 rll
->rll_writer
= NULL
;
1719 ASSERT3S(rll
->rll_readers
, >, 0);
1720 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1724 if (rll
->rll_writer
== NULL
&& rll
->rll_readers
== 0)
1725 cv_broadcast(&rll
->rll_cv
);
1727 mutex_exit(&rll
->rll_lock
);
1731 ztest_object_lock(ztest_ds_t
*zd
, uint64_t object
, rl_type_t type
)
1733 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1735 ztest_rll_lock(rll
, type
);
1739 ztest_object_unlock(ztest_ds_t
*zd
, uint64_t object
)
1741 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1743 ztest_rll_unlock(rll
);
1747 ztest_range_lock(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
,
1748 uint64_t size
, rl_type_t type
)
1750 uint64_t hash
= object
^ (offset
% (ZTEST_RANGE_LOCKS
+ 1));
1751 rll_t
*rll
= &zd
->zd_range_lock
[hash
& (ZTEST_RANGE_LOCKS
- 1)];
1754 rl
= umem_alloc(sizeof (*rl
), UMEM_NOFAIL
);
1755 rl
->rl_object
= object
;
1756 rl
->rl_offset
= offset
;
1760 ztest_rll_lock(rll
, type
);
1766 ztest_range_unlock(rl_t
*rl
)
1768 rll_t
*rll
= rl
->rl_lock
;
1770 ztest_rll_unlock(rll
);
1772 umem_free(rl
, sizeof (*rl
));
1776 ztest_zd_init(ztest_ds_t
*zd
, ztest_shared_ds_t
*szd
, objset_t
*os
)
1779 zd
->zd_zilog
= dmu_objset_zil(os
);
1780 zd
->zd_shared
= szd
;
1781 dmu_objset_name(os
, zd
->zd_name
);
1784 if (zd
->zd_shared
!= NULL
)
1785 zd
->zd_shared
->zd_seq
= 0;
1787 VERIFY0(pthread_rwlock_init(&zd
->zd_zilog_lock
, NULL
));
1788 mutex_init(&zd
->zd_dirobj_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1790 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1791 ztest_rll_init(&zd
->zd_object_lock
[l
]);
1793 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1794 ztest_rll_init(&zd
->zd_range_lock
[l
]);
1798 ztest_zd_fini(ztest_ds_t
*zd
)
1802 mutex_destroy(&zd
->zd_dirobj_lock
);
1803 (void) pthread_rwlock_destroy(&zd
->zd_zilog_lock
);
1805 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1806 ztest_rll_destroy(&zd
->zd_object_lock
[l
]);
1808 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1809 ztest_rll_destroy(&zd
->zd_range_lock
[l
]);
1812 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1815 ztest_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
, const char *tag
)
1821 * Attempt to assign tx to some transaction group.
1823 error
= dmu_tx_assign(tx
, txg_how
);
1825 if (error
== ERESTART
) {
1826 ASSERT3U(txg_how
, ==, TXG_NOWAIT
);
1829 ASSERT3U(error
, ==, ENOSPC
);
1830 ztest_record_enospc(tag
);
1835 txg
= dmu_tx_get_txg(tx
);
1836 ASSERT3U(txg
, !=, 0);
1841 ztest_bt_generate(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1842 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1845 bt
->bt_magic
= BT_MAGIC
;
1846 bt
->bt_objset
= dmu_objset_id(os
);
1847 bt
->bt_object
= object
;
1848 bt
->bt_dnodesize
= dnodesize
;
1849 bt
->bt_offset
= offset
;
1852 bt
->bt_crtxg
= crtxg
;
1856 ztest_bt_verify(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1857 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1860 ASSERT3U(bt
->bt_magic
, ==, BT_MAGIC
);
1861 ASSERT3U(bt
->bt_objset
, ==, dmu_objset_id(os
));
1862 ASSERT3U(bt
->bt_object
, ==, object
);
1863 ASSERT3U(bt
->bt_dnodesize
, ==, dnodesize
);
1864 ASSERT3U(bt
->bt_offset
, ==, offset
);
1865 ASSERT3U(bt
->bt_gen
, <=, gen
);
1866 ASSERT3U(bt
->bt_txg
, <=, txg
);
1867 ASSERT3U(bt
->bt_crtxg
, ==, crtxg
);
1870 static ztest_block_tag_t
*
1871 ztest_bt_bonus(dmu_buf_t
*db
)
1873 dmu_object_info_t doi
;
1874 ztest_block_tag_t
*bt
;
1876 dmu_object_info_from_db(db
, &doi
);
1877 ASSERT3U(doi
.doi_bonus_size
, <=, db
->db_size
);
1878 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (*bt
));
1879 bt
= (void *)((char *)db
->db_data
+ doi
.doi_bonus_size
- sizeof (*bt
));
1885 * Generate a token to fill up unused bonus buffer space. Try to make
1886 * it unique to the object, generation, and offset to verify that data
1887 * is not getting overwritten by data from other dnodes.
1889 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1890 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1893 * Fill up the unused bonus buffer region before the block tag with a
1894 * verifiable pattern. Filling the whole bonus area with non-zero data
1895 * helps ensure that all dnode traversal code properly skips the
1896 * interior regions of large dnodes.
1899 ztest_fill_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1900 objset_t
*os
, uint64_t gen
)
1904 ASSERT(IS_P2ALIGNED((char *)end
- (char *)db
->db_data
, 8));
1906 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1907 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1908 gen
, bonusp
- (uint64_t *)db
->db_data
);
1914 * Verify that the unused area of a bonus buffer is filled with the
1918 ztest_verify_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1919 objset_t
*os
, uint64_t gen
)
1923 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1924 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1925 gen
, bonusp
- (uint64_t *)db
->db_data
);
1926 VERIFY3U(*bonusp
, ==, token
);
1934 #define lrz_type lr_mode
1935 #define lrz_blocksize lr_uid
1936 #define lrz_ibshift lr_gid
1937 #define lrz_bonustype lr_rdev
1938 #define lrz_dnodesize lr_crtime[1]
1941 ztest_log_create(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_create_t
*lr
)
1943 char *name
= (char *)&lr
->lr_data
[0]; /* name follows lr */
1944 size_t namesize
= strlen(name
) + 1;
1947 if (zil_replaying(zd
->zd_zilog
, tx
))
1950 itx
= zil_itx_create(TX_CREATE
, sizeof (*lr
) + namesize
);
1951 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_create
.lr_common
+ 1,
1952 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1954 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1958 ztest_log_remove(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_remove_t
*lr
, uint64_t object
)
1960 char *name
= (char *)&lr
->lr_data
[0]; /* name follows lr */
1961 size_t namesize
= strlen(name
) + 1;
1964 if (zil_replaying(zd
->zd_zilog
, tx
))
1967 itx
= zil_itx_create(TX_REMOVE
, sizeof (*lr
) + namesize
);
1968 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1969 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1971 itx
->itx_oid
= object
;
1972 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1976 ztest_log_write(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_write_t
*lr
)
1979 itx_wr_state_t write_state
= ztest_random(WR_NUM_STATES
);
1981 if (zil_replaying(zd
->zd_zilog
, tx
))
1984 if (lr
->lr_length
> zil_max_log_data(zd
->zd_zilog
, sizeof (lr_write_t
)))
1985 write_state
= WR_INDIRECT
;
1987 itx
= zil_itx_create(TX_WRITE
,
1988 sizeof (*lr
) + (write_state
== WR_COPIED
? lr
->lr_length
: 0));
1990 if (write_state
== WR_COPIED
&&
1991 dmu_read(zd
->zd_os
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1992 ((lr_write_t
*)&itx
->itx_lr
) + 1, DMU_READ_NO_PREFETCH
) != 0) {
1993 zil_itx_destroy(itx
);
1994 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
1995 write_state
= WR_NEED_COPY
;
1997 itx
->itx_private
= zd
;
1998 itx
->itx_wr_state
= write_state
;
1999 itx
->itx_sync
= (ztest_random(8) == 0);
2001 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2002 sizeof (*lr
) - sizeof (lr_t
));
2004 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2008 ztest_log_truncate(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_truncate_t
*lr
)
2012 if (zil_replaying(zd
->zd_zilog
, tx
))
2015 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
2016 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2017 sizeof (*lr
) - sizeof (lr_t
));
2019 itx
->itx_sync
= B_FALSE
;
2020 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2024 ztest_log_setattr(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_setattr_t
*lr
)
2028 if (zil_replaying(zd
->zd_zilog
, tx
))
2031 itx
= zil_itx_create(TX_SETATTR
, sizeof (*lr
));
2032 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2033 sizeof (*lr
) - sizeof (lr_t
));
2035 itx
->itx_sync
= B_FALSE
;
2036 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2043 ztest_replay_create(void *arg1
, void *arg2
, boolean_t byteswap
)
2045 ztest_ds_t
*zd
= arg1
;
2046 lr_create_t
*lrc
= arg2
;
2047 _lr_create_t
*lr
= &lrc
->lr_create
;
2048 char *name
= (char *)&lrc
->lr_data
[0]; /* name follows lr */
2049 objset_t
*os
= zd
->zd_os
;
2050 ztest_block_tag_t
*bbt
;
2058 byteswap_uint64_array(lr
, sizeof (*lr
));
2060 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2061 ASSERT3S(name
[0], !=, '\0');
2063 tx
= dmu_tx_create(os
);
2065 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_TRUE
, name
);
2067 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
2068 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
2070 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
2073 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2077 ASSERT3U(dmu_objset_zil(os
)->zl_replay
, ==, !!lr
->lr_foid
);
2078 bonuslen
= DN_BONUS_SIZE(lr
->lrz_dnodesize
);
2080 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
2081 if (lr
->lr_foid
== 0) {
2082 lr
->lr_foid
= zap_create_dnsize(os
,
2083 lr
->lrz_type
, lr
->lrz_bonustype
,
2084 bonuslen
, lr
->lrz_dnodesize
, tx
);
2086 error
= zap_create_claim_dnsize(os
, lr
->lr_foid
,
2087 lr
->lrz_type
, lr
->lrz_bonustype
,
2088 bonuslen
, lr
->lrz_dnodesize
, tx
);
2091 if (lr
->lr_foid
== 0) {
2092 lr
->lr_foid
= dmu_object_alloc_dnsize(os
,
2093 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2094 bonuslen
, lr
->lrz_dnodesize
, tx
);
2096 error
= dmu_object_claim_dnsize(os
, lr
->lr_foid
,
2097 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2098 bonuslen
, lr
->lrz_dnodesize
, tx
);
2103 ASSERT3U(error
, ==, EEXIST
);
2104 ASSERT(zd
->zd_zilog
->zl_replay
);
2109 ASSERT3U(lr
->lr_foid
, !=, 0);
2111 if (lr
->lrz_type
!= DMU_OT_ZAP_OTHER
)
2112 VERIFY0(dmu_object_set_blocksize(os
, lr
->lr_foid
,
2113 lr
->lrz_blocksize
, lr
->lrz_ibshift
, tx
));
2115 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2116 bbt
= ztest_bt_bonus(db
);
2117 dmu_buf_will_dirty(db
, tx
);
2118 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, lr
->lrz_dnodesize
, -1ULL,
2119 lr
->lr_gen
, txg
, txg
);
2120 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, lr
->lr_gen
);
2121 dmu_buf_rele(db
, FTAG
);
2123 VERIFY0(zap_add(os
, lr
->lr_doid
, name
, sizeof (uint64_t), 1,
2126 (void) ztest_log_create(zd
, tx
, lrc
);
2134 ztest_replay_remove(void *arg1
, void *arg2
, boolean_t byteswap
)
2136 ztest_ds_t
*zd
= arg1
;
2137 lr_remove_t
*lr
= arg2
;
2138 char *name
= (char *)&lr
->lr_data
[0]; /* name follows lr */
2139 objset_t
*os
= zd
->zd_os
;
2140 dmu_object_info_t doi
;
2142 uint64_t object
, txg
;
2145 byteswap_uint64_array(lr
, sizeof (*lr
));
2147 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2148 ASSERT3S(name
[0], !=, '\0');
2151 zap_lookup(os
, lr
->lr_doid
, name
, sizeof (object
), 1, &object
));
2152 ASSERT3U(object
, !=, 0);
2154 ztest_object_lock(zd
, object
, ZTRL_WRITER
);
2156 VERIFY0(dmu_object_info(os
, object
, &doi
));
2158 tx
= dmu_tx_create(os
);
2160 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_FALSE
, name
);
2161 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
2163 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2165 ztest_object_unlock(zd
, object
);
2169 if (doi
.doi_type
== DMU_OT_ZAP_OTHER
) {
2170 VERIFY0(zap_destroy(os
, object
, tx
));
2172 VERIFY0(dmu_object_free(os
, object
, tx
));
2175 VERIFY0(zap_remove(os
, lr
->lr_doid
, name
, tx
));
2177 (void) ztest_log_remove(zd
, tx
, lr
, object
);
2181 ztest_object_unlock(zd
, object
);
2187 ztest_replay_write(void *arg1
, void *arg2
, boolean_t byteswap
)
2189 ztest_ds_t
*zd
= arg1
;
2190 lr_write_t
*lr
= arg2
;
2191 objset_t
*os
= zd
->zd_os
;
2192 uint8_t *data
= &lr
->lr_data
[0]; /* data follows lr */
2193 uint64_t offset
, length
;
2194 ztest_block_tag_t
*bt
= (ztest_block_tag_t
*)data
;
2195 ztest_block_tag_t
*bbt
;
2196 uint64_t gen
, txg
, lrtxg
, crtxg
;
2197 dmu_object_info_t doi
;
2200 arc_buf_t
*abuf
= NULL
;
2204 byteswap_uint64_array(lr
, sizeof (*lr
));
2206 offset
= lr
->lr_offset
;
2207 length
= lr
->lr_length
;
2209 /* If it's a dmu_sync() block, write the whole block */
2210 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
2211 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
2212 if (length
< blocksize
) {
2213 offset
-= offset
% blocksize
;
2218 if (bt
->bt_magic
== BSWAP_64(BT_MAGIC
))
2219 byteswap_uint64_array(bt
, sizeof (*bt
));
2221 if (bt
->bt_magic
!= BT_MAGIC
)
2224 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_READER
);
2225 rl
= ztest_range_lock(zd
, lr
->lr_foid
, offset
, length
, ZTRL_WRITER
);
2227 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2229 dmu_object_info_from_db(db
, &doi
);
2231 bbt
= ztest_bt_bonus(db
);
2232 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2234 crtxg
= bbt
->bt_crtxg
;
2235 lrtxg
= lr
->lr_common
.lrc_txg
;
2237 tx
= dmu_tx_create(os
);
2239 dmu_tx_hold_write(tx
, lr
->lr_foid
, offset
, length
);
2241 if (ztest_random(8) == 0 && length
== doi
.doi_data_block_size
&&
2242 P2PHASE(offset
, length
) == 0)
2243 abuf
= dmu_request_arcbuf(db
, length
);
2245 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2248 dmu_return_arcbuf(abuf
);
2249 dmu_buf_rele(db
, FTAG
);
2250 ztest_range_unlock(rl
);
2251 ztest_object_unlock(zd
, lr
->lr_foid
);
2257 * Usually, verify the old data before writing new data --
2258 * but not always, because we also want to verify correct
2259 * behavior when the data was not recently read into cache.
2261 ASSERT(doi
.doi_data_block_size
);
2262 ASSERT0(offset
% doi
.doi_data_block_size
);
2263 if (ztest_random(4) != 0) {
2264 int prefetch
= ztest_random(2) ?
2265 DMU_READ_PREFETCH
: DMU_READ_NO_PREFETCH
;
2268 * We will randomly set when to do O_DIRECT on a read.
2270 if (ztest_random(4) == 0)
2271 prefetch
|= DMU_DIRECTIO
;
2273 ztest_block_tag_t rbt
;
2275 VERIFY(dmu_read(os
, lr
->lr_foid
, offset
,
2276 sizeof (rbt
), &rbt
, prefetch
) == 0);
2277 if (rbt
.bt_magic
== BT_MAGIC
) {
2278 ztest_bt_verify(&rbt
, os
, lr
->lr_foid
, 0,
2279 offset
, gen
, txg
, crtxg
);
2284 * Writes can appear to be newer than the bonus buffer because
2285 * the ztest_get_data() callback does a dmu_read() of the
2286 * open-context data, which may be different than the data
2287 * as it was when the write was generated.
2289 if (zd
->zd_zilog
->zl_replay
) {
2290 ztest_bt_verify(bt
, os
, lr
->lr_foid
, 0, offset
,
2291 MAX(gen
, bt
->bt_gen
), MAX(txg
, lrtxg
),
2296 * Set the bt's gen/txg to the bonus buffer's gen/txg
2297 * so that all of the usual ASSERTs will work.
2299 ztest_bt_generate(bt
, os
, lr
->lr_foid
, 0, offset
, gen
, txg
,
2304 dmu_write(os
, lr
->lr_foid
, offset
, length
, data
, tx
);
2306 memcpy(abuf
->b_data
, data
, length
);
2307 VERIFY0(dmu_assign_arcbuf_by_dbuf(db
, offset
, abuf
, tx
));
2310 (void) ztest_log_write(zd
, tx
, lr
);
2312 dmu_buf_rele(db
, FTAG
);
2316 ztest_range_unlock(rl
);
2317 ztest_object_unlock(zd
, lr
->lr_foid
);
2323 ztest_replay_truncate(void *arg1
, void *arg2
, boolean_t byteswap
)
2325 ztest_ds_t
*zd
= arg1
;
2326 lr_truncate_t
*lr
= arg2
;
2327 objset_t
*os
= zd
->zd_os
;
2333 byteswap_uint64_array(lr
, sizeof (*lr
));
2335 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_READER
);
2336 rl
= ztest_range_lock(zd
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
2339 tx
= dmu_tx_create(os
);
2341 dmu_tx_hold_free(tx
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
);
2343 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2345 ztest_range_unlock(rl
);
2346 ztest_object_unlock(zd
, lr
->lr_foid
);
2350 VERIFY0(dmu_free_range(os
, lr
->lr_foid
, lr
->lr_offset
,
2351 lr
->lr_length
, tx
));
2353 (void) ztest_log_truncate(zd
, tx
, lr
);
2357 ztest_range_unlock(rl
);
2358 ztest_object_unlock(zd
, lr
->lr_foid
);
2364 ztest_replay_setattr(void *arg1
, void *arg2
, boolean_t byteswap
)
2366 ztest_ds_t
*zd
= arg1
;
2367 lr_setattr_t
*lr
= arg2
;
2368 objset_t
*os
= zd
->zd_os
;
2371 ztest_block_tag_t
*bbt
;
2372 uint64_t txg
, lrtxg
, crtxg
, dnodesize
;
2375 byteswap_uint64_array(lr
, sizeof (*lr
));
2377 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_WRITER
);
2379 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2381 tx
= dmu_tx_create(os
);
2382 dmu_tx_hold_bonus(tx
, lr
->lr_foid
);
2384 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2386 dmu_buf_rele(db
, FTAG
);
2387 ztest_object_unlock(zd
, lr
->lr_foid
);
2391 bbt
= ztest_bt_bonus(db
);
2392 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2393 crtxg
= bbt
->bt_crtxg
;
2394 lrtxg
= lr
->lr_common
.lrc_txg
;
2395 dnodesize
= bbt
->bt_dnodesize
;
2397 if (zd
->zd_zilog
->zl_replay
) {
2398 ASSERT3U(lr
->lr_size
, !=, 0);
2399 ASSERT3U(lr
->lr_mode
, !=, 0);
2400 ASSERT3U(lrtxg
, !=, 0);
2403 * Randomly change the size and increment the generation.
2405 lr
->lr_size
= (ztest_random(db
->db_size
/ sizeof (*bbt
)) + 1) *
2407 lr
->lr_mode
= bbt
->bt_gen
+ 1;
2412 * Verify that the current bonus buffer is not newer than our txg.
2414 ztest_bt_verify(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2415 MAX(txg
, lrtxg
), crtxg
);
2417 dmu_buf_will_dirty(db
, tx
);
2419 ASSERT3U(lr
->lr_size
, >=, sizeof (*bbt
));
2420 ASSERT3U(lr
->lr_size
, <=, db
->db_size
);
2421 VERIFY0(dmu_set_bonus(db
, lr
->lr_size
, tx
));
2422 bbt
= ztest_bt_bonus(db
);
2424 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2426 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, bbt
->bt_gen
);
2427 dmu_buf_rele(db
, FTAG
);
2429 (void) ztest_log_setattr(zd
, tx
, lr
);
2433 ztest_object_unlock(zd
, lr
->lr_foid
);
2438 static zil_replay_func_t
*ztest_replay_vector
[TX_MAX_TYPE
] = {
2439 NULL
, /* 0 no such transaction type */
2440 ztest_replay_create
, /* TX_CREATE */
2441 NULL
, /* TX_MKDIR */
2442 NULL
, /* TX_MKXATTR */
2443 NULL
, /* TX_SYMLINK */
2444 ztest_replay_remove
, /* TX_REMOVE */
2445 NULL
, /* TX_RMDIR */
2447 NULL
, /* TX_RENAME */
2448 ztest_replay_write
, /* TX_WRITE */
2449 ztest_replay_truncate
, /* TX_TRUNCATE */
2450 ztest_replay_setattr
, /* TX_SETATTR */
2452 NULL
, /* TX_CREATE_ACL */
2453 NULL
, /* TX_CREATE_ATTR */
2454 NULL
, /* TX_CREATE_ACL_ATTR */
2455 NULL
, /* TX_MKDIR_ACL */
2456 NULL
, /* TX_MKDIR_ATTR */
2457 NULL
, /* TX_MKDIR_ACL_ATTR */
2458 NULL
, /* TX_WRITE2 */
2459 NULL
, /* TX_SETSAXATTR */
2460 NULL
, /* TX_RENAME_EXCHANGE */
2461 NULL
, /* TX_RENAME_WHITEOUT */
2465 * ZIL get_data callbacks
2469 ztest_get_done(zgd_t
*zgd
, int error
)
2472 ztest_ds_t
*zd
= zgd
->zgd_private
;
2473 uint64_t object
= ((rl_t
*)zgd
->zgd_lr
)->rl_object
;
2476 dmu_buf_rele(zgd
->zgd_db
, zgd
);
2478 ztest_range_unlock((rl_t
*)zgd
->zgd_lr
);
2479 ztest_object_unlock(zd
, object
);
2481 umem_free(zgd
, sizeof (*zgd
));
2485 ztest_get_data(void *arg
, uint64_t arg2
, lr_write_t
*lr
, char *buf
,
2486 struct lwb
*lwb
, zio_t
*zio
)
2489 ztest_ds_t
*zd
= arg
;
2490 objset_t
*os
= zd
->zd_os
;
2491 uint64_t object
= lr
->lr_foid
;
2492 uint64_t offset
= lr
->lr_offset
;
2493 uint64_t size
= lr
->lr_length
;
2494 uint64_t txg
= lr
->lr_common
.lrc_txg
;
2496 dmu_object_info_t doi
;
2501 ASSERT3P(lwb
, !=, NULL
);
2502 ASSERT3U(size
, !=, 0);
2504 ztest_object_lock(zd
, object
, ZTRL_READER
);
2505 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
2507 ztest_object_unlock(zd
, object
);
2511 crtxg
= ztest_bt_bonus(db
)->bt_crtxg
;
2513 if (crtxg
== 0 || crtxg
> txg
) {
2514 dmu_buf_rele(db
, FTAG
);
2515 ztest_object_unlock(zd
, object
);
2519 dmu_object_info_from_db(db
, &doi
);
2520 dmu_buf_rele(db
, FTAG
);
2523 zgd
= umem_zalloc(sizeof (*zgd
), UMEM_NOFAIL
);
2525 zgd
->zgd_private
= zd
;
2527 if (buf
!= NULL
) { /* immediate write */
2528 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2529 object
, offset
, size
, ZTRL_READER
);
2531 error
= dmu_read(os
, object
, offset
, size
, buf
,
2532 DMU_READ_NO_PREFETCH
);
2535 ASSERT3P(zio
, !=, NULL
);
2536 size
= doi
.doi_data_block_size
;
2538 offset
= P2ALIGN_TYPED(offset
, size
, uint64_t);
2540 ASSERT3U(offset
, <, size
);
2544 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2545 object
, offset
, size
, ZTRL_READER
);
2547 error
= dmu_buf_hold_noread(os
, object
, offset
, zgd
, &db
);
2550 blkptr_t
*bp
= &lr
->lr_blkptr
;
2555 ASSERT3U(db
->db_offset
, ==, offset
);
2556 ASSERT3U(db
->db_size
, ==, size
);
2558 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
2559 ztest_get_done
, zgd
);
2566 ztest_get_done(zgd
, error
);
2572 ztest_lr_alloc(size_t lrsize
, char *name
)
2575 size_t namesize
= name
? strlen(name
) + 1 : 0;
2577 lr
= umem_zalloc(lrsize
+ namesize
, UMEM_NOFAIL
);
2580 memcpy(lr
+ lrsize
, name
, namesize
);
2586 ztest_lr_free(void *lr
, size_t lrsize
, char *name
)
2588 size_t namesize
= name
? strlen(name
) + 1 : 0;
2590 umem_free(lr
, lrsize
+ namesize
);
2594 * Lookup a bunch of objects. Returns the number of objects not found.
2597 ztest_lookup(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2603 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2605 for (i
= 0; i
< count
; i
++, od
++) {
2607 error
= zap_lookup(zd
->zd_os
, od
->od_dir
, od
->od_name
,
2608 sizeof (uint64_t), 1, &od
->od_object
);
2610 ASSERT3S(error
, ==, ENOENT
);
2611 ASSERT0(od
->od_object
);
2615 ztest_block_tag_t
*bbt
;
2616 dmu_object_info_t doi
;
2618 ASSERT3U(od
->od_object
, !=, 0);
2619 ASSERT0(missing
); /* there should be no gaps */
2621 ztest_object_lock(zd
, od
->od_object
, ZTRL_READER
);
2622 VERIFY0(dmu_bonus_hold(zd
->zd_os
, od
->od_object
,
2624 dmu_object_info_from_db(db
, &doi
);
2625 bbt
= ztest_bt_bonus(db
);
2626 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2627 od
->od_type
= doi
.doi_type
;
2628 od
->od_blocksize
= doi
.doi_data_block_size
;
2629 od
->od_gen
= bbt
->bt_gen
;
2630 dmu_buf_rele(db
, FTAG
);
2631 ztest_object_unlock(zd
, od
->od_object
);
2639 ztest_create(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2644 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2646 for (i
= 0; i
< count
; i
++, od
++) {
2653 lr_create_t
*lrc
= ztest_lr_alloc(sizeof (*lrc
), od
->od_name
);
2654 _lr_create_t
*lr
= &lrc
->lr_create
;
2656 lr
->lr_doid
= od
->od_dir
;
2657 lr
->lr_foid
= 0; /* 0 to allocate, > 0 to claim */
2658 lr
->lrz_type
= od
->od_crtype
;
2659 lr
->lrz_blocksize
= od
->od_crblocksize
;
2660 lr
->lrz_ibshift
= ztest_random_ibshift();
2661 lr
->lrz_bonustype
= DMU_OT_UINT64_OTHER
;
2662 lr
->lrz_dnodesize
= od
->od_crdnodesize
;
2663 lr
->lr_gen
= od
->od_crgen
;
2664 lr
->lr_crtime
[0] = time(NULL
);
2666 if (ztest_replay_create(zd
, lr
, B_FALSE
) != 0) {
2671 od
->od_object
= lr
->lr_foid
;
2672 od
->od_type
= od
->od_crtype
;
2673 od
->od_blocksize
= od
->od_crblocksize
;
2674 od
->od_gen
= od
->od_crgen
;
2675 ASSERT3U(od
->od_object
, !=, 0);
2678 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2685 ztest_remove(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2691 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2695 for (i
= count
- 1; i
>= 0; i
--, od
--) {
2702 * No object was found.
2704 if (od
->od_object
== 0)
2707 lr_remove_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2709 lr
->lr_doid
= od
->od_dir
;
2711 if ((error
= ztest_replay_remove(zd
, lr
, B_FALSE
)) != 0) {
2712 ASSERT3U(error
, ==, ENOSPC
);
2717 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2724 ztest_write(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
,
2730 lr
= ztest_lr_alloc(sizeof (*lr
) + size
, NULL
);
2732 lr
->lr_foid
= object
;
2733 lr
->lr_offset
= offset
;
2734 lr
->lr_length
= size
;
2736 BP_ZERO(&lr
->lr_blkptr
);
2738 memcpy(&lr
->lr_data
[0], data
, size
);
2740 error
= ztest_replay_write(zd
, lr
, B_FALSE
);
2742 ztest_lr_free(lr
, sizeof (*lr
) + size
, NULL
);
2748 ztest_truncate(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2753 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2755 lr
->lr_foid
= object
;
2756 lr
->lr_offset
= offset
;
2757 lr
->lr_length
= size
;
2759 error
= ztest_replay_truncate(zd
, lr
, B_FALSE
);
2761 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2767 ztest_setattr(ztest_ds_t
*zd
, uint64_t object
)
2772 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2774 lr
->lr_foid
= object
;
2778 error
= ztest_replay_setattr(zd
, lr
, B_FALSE
);
2780 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2786 ztest_prealloc(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2788 objset_t
*os
= zd
->zd_os
;
2793 txg_wait_synced(dmu_objset_pool(os
), 0);
2795 ztest_object_lock(zd
, object
, ZTRL_READER
);
2796 rl
= ztest_range_lock(zd
, object
, offset
, size
, ZTRL_WRITER
);
2798 tx
= dmu_tx_create(os
);
2800 dmu_tx_hold_write(tx
, object
, offset
, size
);
2802 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2805 dmu_prealloc(os
, object
, offset
, size
, tx
);
2807 txg_wait_synced(dmu_objset_pool(os
), txg
);
2809 (void) dmu_free_long_range(os
, object
, offset
, size
);
2812 ztest_range_unlock(rl
);
2813 ztest_object_unlock(zd
, object
);
2817 ztest_io(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
)
2820 ztest_block_tag_t wbt
;
2821 dmu_object_info_t doi
;
2822 enum ztest_io_type io_type
;
2825 uint32_t dmu_read_flags
= DMU_READ_NO_PREFETCH
;
2828 * We will randomly set when to do O_DIRECT on a read.
2830 if (ztest_random(4) == 0)
2831 dmu_read_flags
|= DMU_DIRECTIO
;
2833 VERIFY0(dmu_object_info(zd
->zd_os
, object
, &doi
));
2834 blocksize
= doi
.doi_data_block_size
;
2835 data
= umem_alloc(blocksize
, UMEM_NOFAIL
);
2838 * Pick an i/o type at random, biased toward writing block tags.
2840 io_type
= ztest_random(ZTEST_IO_TYPES
);
2841 if (ztest_random(2) == 0)
2842 io_type
= ZTEST_IO_WRITE_TAG
;
2844 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2848 case ZTEST_IO_WRITE_TAG
:
2849 ztest_bt_generate(&wbt
, zd
->zd_os
, object
, doi
.doi_dnodesize
,
2851 (void) ztest_write(zd
, object
, offset
, sizeof (wbt
), &wbt
);
2854 case ZTEST_IO_WRITE_PATTERN
:
2855 (void) memset(data
, 'a' + (object
+ offset
) % 5, blocksize
);
2856 if (ztest_random(2) == 0) {
2858 * Induce fletcher2 collisions to ensure that
2859 * zio_ddt_collision() detects and resolves them
2860 * when using fletcher2-verify for deduplication.
2862 ((uint64_t *)data
)[0] ^= 1ULL << 63;
2863 ((uint64_t *)data
)[4] ^= 1ULL << 63;
2865 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2868 case ZTEST_IO_WRITE_ZEROES
:
2869 memset(data
, 0, blocksize
);
2870 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2873 case ZTEST_IO_TRUNCATE
:
2874 (void) ztest_truncate(zd
, object
, offset
, blocksize
);
2877 case ZTEST_IO_SETATTR
:
2878 (void) ztest_setattr(zd
, object
);
2883 case ZTEST_IO_REWRITE
:
2884 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2885 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2886 ZFS_PROP_CHECKSUM
, spa_dedup_checksum(ztest_spa
),
2888 ASSERT(err
== 0 || err
== ENOSPC
);
2889 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2890 ZFS_PROP_COMPRESSION
,
2891 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
),
2893 ASSERT(err
== 0 || err
== ENOSPC
);
2894 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2896 VERIFY0(dmu_read(zd
->zd_os
, object
, offset
, blocksize
, data
,
2899 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2903 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2905 umem_free(data
, blocksize
);
2909 * Initialize an object description template.
2912 ztest_od_init(ztest_od_t
*od
, uint64_t id
, const char *tag
, uint64_t index
,
2913 dmu_object_type_t type
, uint64_t blocksize
, uint64_t dnodesize
,
2916 od
->od_dir
= ZTEST_DIROBJ
;
2919 od
->od_crtype
= type
;
2920 od
->od_crblocksize
= blocksize
? blocksize
: ztest_random_blocksize();
2921 od
->od_crdnodesize
= dnodesize
? dnodesize
: ztest_random_dnodesize();
2924 od
->od_type
= DMU_OT_NONE
;
2925 od
->od_blocksize
= 0;
2928 (void) snprintf(od
->od_name
, sizeof (od
->od_name
),
2929 "%s(%"PRId64
")[%"PRIu64
"]",
2934 * Lookup or create the objects for a test using the od template.
2935 * If the objects do not all exist, or if 'remove' is specified,
2936 * remove any existing objects and create new ones. Otherwise,
2937 * use the existing objects.
2940 ztest_object_init(ztest_ds_t
*zd
, ztest_od_t
*od
, size_t size
, boolean_t remove
)
2942 int count
= size
/ sizeof (*od
);
2945 mutex_enter(&zd
->zd_dirobj_lock
);
2946 if ((ztest_lookup(zd
, od
, count
) != 0 || remove
) &&
2947 (ztest_remove(zd
, od
, count
) != 0 ||
2948 ztest_create(zd
, od
, count
) != 0))
2951 mutex_exit(&zd
->zd_dirobj_lock
);
2957 ztest_zil_commit(ztest_ds_t
*zd
, uint64_t id
)
2960 zilog_t
*zilog
= zd
->zd_zilog
;
2962 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2964 zil_commit(zilog
, ztest_random(ZTEST_OBJECTS
));
2967 * Remember the committed values in zd, which is in parent/child
2968 * shared memory. If we die, the next iteration of ztest_run()
2969 * will verify that the log really does contain this record.
2971 mutex_enter(&zilog
->zl_lock
);
2972 ASSERT3P(zd
->zd_shared
, !=, NULL
);
2973 ASSERT3U(zd
->zd_shared
->zd_seq
, <=, zilog
->zl_commit_lr_seq
);
2974 zd
->zd_shared
->zd_seq
= zilog
->zl_commit_lr_seq
;
2975 mutex_exit(&zilog
->zl_lock
);
2977 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2981 * This function is designed to simulate the operations that occur during a
2982 * mount/unmount operation. We hold the dataset across these operations in an
2983 * attempt to expose any implicit assumptions about ZIL management.
2986 ztest_zil_remount(ztest_ds_t
*zd
, uint64_t id
)
2989 objset_t
*os
= zd
->zd_os
;
2992 * We hold the ztest_vdev_lock so we don't cause problems with
2993 * other threads that wish to remove a log device, such as
2994 * ztest_device_removal().
2996 mutex_enter(&ztest_vdev_lock
);
2999 * We grab the zd_dirobj_lock to ensure that no other thread is
3000 * updating the zil (i.e. adding in-memory log records) and the
3001 * zd_zilog_lock to block any I/O.
3003 mutex_enter(&zd
->zd_dirobj_lock
);
3004 (void) pthread_rwlock_wrlock(&zd
->zd_zilog_lock
);
3006 /* zfsvfs_teardown() */
3007 zil_close(zd
->zd_zilog
);
3009 /* zfsvfs_setup() */
3010 VERIFY3P(zil_open(os
, ztest_get_data
, NULL
), ==, zd
->zd_zilog
);
3011 zil_replay(os
, zd
, ztest_replay_vector
);
3013 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
3014 mutex_exit(&zd
->zd_dirobj_lock
);
3015 mutex_exit(&ztest_vdev_lock
);
3019 * Verify that we can't destroy an active pool, create an existing pool,
3020 * or create a pool with a bad vdev spec.
3023 ztest_spa_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
3025 (void) zd
, (void) id
;
3026 ztest_shared_opts_t
*zo
= &ztest_opts
;
3030 if (zo
->zo_mmp_test
)
3034 * Attempt to create using a bad file.
3036 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
3037 VERIFY3U(ENOENT
, ==,
3038 spa_create("ztest_bad_file", nvroot
, NULL
, NULL
, NULL
));
3039 fnvlist_free(nvroot
);
3042 * Attempt to create using a bad mirror.
3044 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 2, 1);
3045 VERIFY3U(ENOENT
, ==,
3046 spa_create("ztest_bad_mirror", nvroot
, NULL
, NULL
, NULL
));
3047 fnvlist_free(nvroot
);
3050 * Attempt to create an existing pool. It shouldn't matter
3051 * what's in the nvroot; we should fail with EEXIST.
3053 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
3054 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
3055 VERIFY3U(EEXIST
, ==,
3056 spa_create(zo
->zo_pool
, nvroot
, NULL
, NULL
, NULL
));
3057 fnvlist_free(nvroot
);
3060 * We open a reference to the spa and then we try to export it
3061 * expecting one of the following errors:
3064 * Because of the reference we just opened.
3066 * ZFS_ERR_EXPORT_IN_PROGRESS
3067 * For the case that there is another ztest thread doing
3068 * an export concurrently.
3070 VERIFY0(spa_open(zo
->zo_pool
, &spa
, FTAG
));
3071 int error
= spa_destroy(zo
->zo_pool
);
3072 if (error
!= EBUSY
&& error
!= ZFS_ERR_EXPORT_IN_PROGRESS
) {
3073 fatal(B_FALSE
, "spa_destroy(%s) returned unexpected value %d",
3074 spa
->spa_name
, error
);
3076 spa_close(spa
, FTAG
);
3078 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3082 * Start and then stop the MMP threads to ensure the startup and shutdown code
3083 * works properly. Actual protection and property-related code tested via ZTS.
3086 ztest_mmp_enable_disable(ztest_ds_t
*zd
, uint64_t id
)
3088 (void) zd
, (void) id
;
3089 ztest_shared_opts_t
*zo
= &ztest_opts
;
3090 spa_t
*spa
= ztest_spa
;
3092 if (zo
->zo_mmp_test
)
3096 * Since enabling MMP involves setting a property, it could not be done
3097 * while the pool is suspended.
3099 if (spa_suspended(spa
))
3102 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3103 mutex_enter(&spa
->spa_props_lock
);
3105 zfs_multihost_fail_intervals
= 0;
3107 if (!spa_multihost(spa
)) {
3108 spa
->spa_multihost
= B_TRUE
;
3109 mmp_thread_start(spa
);
3112 mutex_exit(&spa
->spa_props_lock
);
3113 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3115 txg_wait_synced(spa_get_dsl(spa
), 0);
3116 mmp_signal_all_threads();
3117 txg_wait_synced(spa_get_dsl(spa
), 0);
3119 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3120 mutex_enter(&spa
->spa_props_lock
);
3122 if (spa_multihost(spa
)) {
3123 mmp_thread_stop(spa
);
3124 spa
->spa_multihost
= B_FALSE
;
3127 mutex_exit(&spa
->spa_props_lock
);
3128 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3132 ztest_get_raidz_children(spa_t
*spa
)
3137 ASSERT(MUTEX_HELD(&ztest_vdev_lock
));
3139 if (ztest_opts
.zo_raid_do_expand
) {
3140 raidvd
= ztest_spa
->spa_root_vdev
->vdev_child
[0];
3142 ASSERT(raidvd
->vdev_ops
== &vdev_raidz_ops
);
3144 return (raidvd
->vdev_children
);
3147 return (ztest_opts
.zo_raid_children
);
3151 ztest_spa_upgrade(ztest_ds_t
*zd
, uint64_t id
)
3153 (void) zd
, (void) id
;
3155 uint64_t initial_version
= SPA_VERSION_INITIAL
;
3156 uint64_t raidz_children
, version
, newversion
;
3157 nvlist_t
*nvroot
, *props
;
3160 if (ztest_opts
.zo_mmp_test
)
3163 /* dRAID added after feature flags, skip upgrade test. */
3164 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0)
3167 mutex_enter(&ztest_vdev_lock
);
3168 name
= kmem_asprintf("%s_upgrade", ztest_opts
.zo_pool
);
3171 * Clean up from previous runs.
3173 (void) spa_destroy(name
);
3175 raidz_children
= ztest_get_raidz_children(ztest_spa
);
3177 nvroot
= make_vdev_root(NULL
, NULL
, name
, ztest_opts
.zo_vdev_size
, 0,
3178 NULL
, raidz_children
, ztest_opts
.zo_mirrors
, 1);
3181 * If we're configuring a RAIDZ device then make sure that the
3182 * initial version is capable of supporting that feature.
3184 switch (ztest_opts
.zo_raid_parity
) {
3187 initial_version
= SPA_VERSION_INITIAL
;
3190 initial_version
= SPA_VERSION_RAIDZ2
;
3193 initial_version
= SPA_VERSION_RAIDZ3
;
3198 * Create a pool with a spa version that can be upgraded. Pick
3199 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3202 version
= ztest_random_spa_version(initial_version
);
3203 } while (version
> SPA_VERSION_BEFORE_FEATURES
);
3205 props
= fnvlist_alloc();
3206 fnvlist_add_uint64(props
,
3207 zpool_prop_to_name(ZPOOL_PROP_VERSION
), version
);
3208 VERIFY0(spa_create(name
, nvroot
, props
, NULL
, NULL
));
3209 fnvlist_free(nvroot
);
3210 fnvlist_free(props
);
3212 VERIFY0(spa_open(name
, &spa
, FTAG
));
3213 VERIFY3U(spa_version(spa
), ==, version
);
3214 newversion
= ztest_random_spa_version(version
+ 1);
3216 if (ztest_opts
.zo_verbose
>= 4) {
3217 (void) printf("upgrading spa version from "
3218 "%"PRIu64
" to %"PRIu64
"\n",
3219 version
, newversion
);
3222 spa_upgrade(spa
, newversion
);
3223 VERIFY3U(spa_version(spa
), >, version
);
3224 VERIFY3U(spa_version(spa
), ==, fnvlist_lookup_uint64(spa
->spa_config
,
3225 zpool_prop_to_name(ZPOOL_PROP_VERSION
)));
3226 spa_close(spa
, FTAG
);
3229 mutex_exit(&ztest_vdev_lock
);
3233 ztest_spa_checkpoint(spa_t
*spa
)
3235 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3237 int error
= spa_checkpoint(spa
->spa_name
);
3241 case ZFS_ERR_DEVRM_IN_PROGRESS
:
3242 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3243 case ZFS_ERR_CHECKPOINT_EXISTS
:
3244 case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS
:
3247 ztest_record_enospc(FTAG
);
3250 fatal(B_FALSE
, "spa_checkpoint(%s) = %d", spa
->spa_name
, error
);
3255 ztest_spa_discard_checkpoint(spa_t
*spa
)
3257 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3259 int error
= spa_checkpoint_discard(spa
->spa_name
);
3263 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3264 case ZFS_ERR_NO_CHECKPOINT
:
3267 fatal(B_FALSE
, "spa_discard_checkpoint(%s) = %d",
3268 spa
->spa_name
, error
);
3274 ztest_spa_checkpoint_create_discard(ztest_ds_t
*zd
, uint64_t id
)
3276 (void) zd
, (void) id
;
3277 spa_t
*spa
= ztest_spa
;
3279 mutex_enter(&ztest_checkpoint_lock
);
3280 if (ztest_random(2) == 0) {
3281 ztest_spa_checkpoint(spa
);
3283 ztest_spa_discard_checkpoint(spa
);
3285 mutex_exit(&ztest_checkpoint_lock
);
3290 vdev_lookup_by_path(vdev_t
*vd
, const char *path
)
3295 if (vd
->vdev_path
!= NULL
&& strcmp(path
, vd
->vdev_path
) == 0)
3298 for (c
= 0; c
< vd
->vdev_children
; c
++)
3299 if ((mvd
= vdev_lookup_by_path(vd
->vdev_child
[c
], path
)) !=
3307 spa_num_top_vdevs(spa_t
*spa
)
3309 vdev_t
*rvd
= spa
->spa_root_vdev
;
3310 ASSERT3U(spa_config_held(spa
, SCL_VDEV
, RW_READER
), ==, SCL_VDEV
);
3311 return (rvd
->vdev_children
);
3315 * Verify that vdev_add() works as expected.
3318 ztest_vdev_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3320 (void) zd
, (void) id
;
3321 ztest_shared_t
*zs
= ztest_shared
;
3322 spa_t
*spa
= ztest_spa
;
3325 uint64_t raidz_children
;
3330 if (ztest_opts
.zo_mmp_test
)
3333 mutex_enter(&ztest_vdev_lock
);
3334 raidz_children
= ztest_get_raidz_children(spa
);
3335 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
3337 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3339 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3342 * If we have slogs then remove them 1/4 of the time.
3344 if (spa_has_slogs(spa
) && ztest_random(4) == 0) {
3345 metaslab_group_t
*mg
;
3348 * find the first real slog in log allocation class
3350 mg
= spa_log_class(spa
)->mc_allocator
[0].mca_rotor
;
3351 while (!mg
->mg_vd
->vdev_islog
)
3354 guid
= mg
->mg_vd
->vdev_guid
;
3356 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3359 * We have to grab the zs_name_lock as writer to
3360 * prevent a race between removing a slog (dmu_objset_find)
3361 * and destroying a dataset. Removing the slog will
3362 * grab a reference on the dataset which may cause
3363 * dsl_destroy_head() to fail with EBUSY thus
3364 * leaving the dataset in an inconsistent state.
3366 pthread_rwlock_wrlock(&ztest_name_lock
);
3367 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3368 pthread_rwlock_unlock(&ztest_name_lock
);
3372 case EEXIST
: /* Generic zil_reset() error */
3373 case EBUSY
: /* Replay required */
3374 case EACCES
: /* Crypto key not loaded */
3375 case ZFS_ERR_CHECKPOINT_EXISTS
:
3376 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3379 fatal(B_FALSE
, "spa_vdev_remove() = %d", error
);
3382 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3385 * Make 1/4 of the devices be log devices
3387 nvroot
= make_vdev_root(NULL
, NULL
, NULL
,
3388 ztest_opts
.zo_vdev_size
, 0, (ztest_random(4) == 0) ?
3389 "log" : NULL
, raidz_children
, zs
->zs_mirrors
,
3392 error
= spa_vdev_add(spa
, nvroot
, B_FALSE
);
3393 fnvlist_free(nvroot
);
3399 ztest_record_enospc("spa_vdev_add");
3402 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3406 mutex_exit(&ztest_vdev_lock
);
3410 ztest_vdev_class_add(ztest_ds_t
*zd
, uint64_t id
)
3412 (void) zd
, (void) id
;
3413 ztest_shared_t
*zs
= ztest_shared
;
3414 spa_t
*spa
= ztest_spa
;
3417 uint64_t raidz_children
;
3418 const char *class = (ztest_random(2) == 0) ?
3419 VDEV_ALLOC_BIAS_SPECIAL
: VDEV_ALLOC_BIAS_DEDUP
;
3423 * By default add a special vdev 50% of the time
3425 if ((ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_OFF
) ||
3426 (ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_RND
&&
3427 ztest_random(2) == 0)) {
3431 mutex_enter(&ztest_vdev_lock
);
3433 /* Only test with mirrors */
3434 if (zs
->zs_mirrors
< 2) {
3435 mutex_exit(&ztest_vdev_lock
);
3439 /* requires feature@allocation_classes */
3440 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_ALLOCATION_CLASSES
)) {
3441 mutex_exit(&ztest_vdev_lock
);
3445 raidz_children
= ztest_get_raidz_children(spa
);
3446 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
3448 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3449 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3450 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3452 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
3453 class, raidz_children
, zs
->zs_mirrors
, 1);
3455 error
= spa_vdev_add(spa
, nvroot
, B_FALSE
);
3456 fnvlist_free(nvroot
);
3458 if (error
== ENOSPC
)
3459 ztest_record_enospc("spa_vdev_add");
3460 else if (error
!= 0)
3461 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3464 * 50% of the time allow small blocks in the special class
3467 spa_special_class(spa
)->mc_groups
== 1 && ztest_random(2) == 0) {
3468 if (ztest_opts
.zo_verbose
>= 3)
3469 (void) printf("Enabling special VDEV small blocks\n");
3470 error
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
3471 ZFS_PROP_SPECIAL_SMALL_BLOCKS
, 32768, B_FALSE
);
3472 ASSERT(error
== 0 || error
== ENOSPC
);
3475 mutex_exit(&ztest_vdev_lock
);
3477 if (ztest_opts
.zo_verbose
>= 3) {
3478 metaslab_class_t
*mc
;
3480 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL
) == 0)
3481 mc
= spa_special_class(spa
);
3483 mc
= spa_dedup_class(spa
);
3484 (void) printf("Added a %s mirrored vdev (of %d)\n",
3485 class, (int)mc
->mc_groups
);
3490 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3493 ztest_vdev_aux_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3495 (void) zd
, (void) id
;
3496 ztest_shared_t
*zs
= ztest_shared
;
3497 spa_t
*spa
= ztest_spa
;
3498 vdev_t
*rvd
= spa
->spa_root_vdev
;
3499 spa_aux_vdev_t
*sav
;
3503 int error
, ignore_err
= 0;
3505 if (ztest_opts
.zo_mmp_test
)
3508 path
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3510 if (ztest_random(2) == 0) {
3511 sav
= &spa
->spa_spares
;
3512 aux
= ZPOOL_CONFIG_SPARES
;
3514 sav
= &spa
->spa_l2cache
;
3515 aux
= ZPOOL_CONFIG_L2CACHE
;
3518 mutex_enter(&ztest_vdev_lock
);
3520 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3522 if (sav
->sav_count
!= 0 && ztest_random(4) == 0) {
3524 * Pick a random device to remove.
3526 vdev_t
*svd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3528 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3529 if (strstr(svd
->vdev_path
, VDEV_TYPE_DRAID
) != NULL
)
3530 ignore_err
= ENOTSUP
;
3532 guid
= svd
->vdev_guid
;
3535 * Find an unused device we can add.
3537 zs
->zs_vdev_aux
= 0;
3540 (void) snprintf(path
, MAXPATHLEN
, ztest_aux_template
,
3541 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, aux
,
3543 for (c
= 0; c
< sav
->sav_count
; c
++)
3544 if (strcmp(sav
->sav_vdevs
[c
]->vdev_path
,
3547 if (c
== sav
->sav_count
&&
3548 vdev_lookup_by_path(rvd
, path
) == NULL
)
3554 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3560 nvlist_t
*nvroot
= make_vdev_root(NULL
, aux
, NULL
,
3561 (ztest_opts
.zo_vdev_size
* 5) / 4, 0, NULL
, 0, 0, 1);
3562 error
= spa_vdev_add(spa
, nvroot
, B_FALSE
);
3568 fatal(B_FALSE
, "spa_vdev_add(%p) = %d", nvroot
, error
);
3570 fnvlist_free(nvroot
);
3573 * Remove an existing device. Sometimes, dirty its
3574 * vdev state first to make sure we handle removal
3575 * of devices that have pending state changes.
3577 if (ztest_random(2) == 0)
3578 (void) vdev_online(spa
, guid
, 0, NULL
);
3580 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3585 case ZFS_ERR_CHECKPOINT_EXISTS
:
3586 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3589 if (error
!= ignore_err
)
3591 "spa_vdev_remove(%"PRIu64
") = %d",
3596 mutex_exit(&ztest_vdev_lock
);
3598 umem_free(path
, MAXPATHLEN
);
3602 * split a pool if it has mirror tlvdevs
3605 ztest_split_pool(ztest_ds_t
*zd
, uint64_t id
)
3607 (void) zd
, (void) id
;
3608 ztest_shared_t
*zs
= ztest_shared
;
3609 spa_t
*spa
= ztest_spa
;
3610 vdev_t
*rvd
= spa
->spa_root_vdev
;
3611 nvlist_t
*tree
, **child
, *config
, *split
, **schild
;
3612 uint_t c
, children
, schildren
= 0, lastlogid
= 0;
3615 if (ztest_opts
.zo_mmp_test
)
3618 mutex_enter(&ztest_vdev_lock
);
3620 /* ensure we have a usable config; mirrors of raidz aren't supported */
3621 if (zs
->zs_mirrors
< 3 || ztest_opts
.zo_raid_children
> 1) {
3622 mutex_exit(&ztest_vdev_lock
);
3626 /* clean up the old pool, if any */
3627 (void) spa_destroy("splitp");
3629 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3631 /* generate a config from the existing config */
3632 mutex_enter(&spa
->spa_props_lock
);
3633 tree
= fnvlist_lookup_nvlist(spa
->spa_config
, ZPOOL_CONFIG_VDEV_TREE
);
3634 mutex_exit(&spa
->spa_props_lock
);
3636 VERIFY0(nvlist_lookup_nvlist_array(tree
, ZPOOL_CONFIG_CHILDREN
,
3637 &child
, &children
));
3639 schild
= umem_alloc(rvd
->vdev_children
* sizeof (nvlist_t
*),
3641 for (c
= 0; c
< children
; c
++) {
3642 vdev_t
*tvd
= rvd
->vdev_child
[c
];
3646 if (tvd
->vdev_islog
|| tvd
->vdev_ops
== &vdev_hole_ops
) {
3647 schild
[schildren
] = fnvlist_alloc();
3648 fnvlist_add_string(schild
[schildren
],
3649 ZPOOL_CONFIG_TYPE
, VDEV_TYPE_HOLE
);
3650 fnvlist_add_uint64(schild
[schildren
],
3651 ZPOOL_CONFIG_IS_HOLE
, 1);
3653 lastlogid
= schildren
;
3658 VERIFY0(nvlist_lookup_nvlist_array(child
[c
],
3659 ZPOOL_CONFIG_CHILDREN
, &mchild
, &mchildren
));
3660 schild
[schildren
++] = fnvlist_dup(mchild
[0]);
3663 /* OK, create a config that can be used to split */
3664 split
= fnvlist_alloc();
3665 fnvlist_add_string(split
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
3666 fnvlist_add_nvlist_array(split
, ZPOOL_CONFIG_CHILDREN
,
3667 (const nvlist_t
**)schild
, lastlogid
!= 0 ? lastlogid
: schildren
);
3669 config
= fnvlist_alloc();
3670 fnvlist_add_nvlist(config
, ZPOOL_CONFIG_VDEV_TREE
, split
);
3672 for (c
= 0; c
< schildren
; c
++)
3673 fnvlist_free(schild
[c
]);
3674 umem_free(schild
, rvd
->vdev_children
* sizeof (nvlist_t
*));
3675 fnvlist_free(split
);
3677 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3679 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
3680 error
= spa_vdev_split_mirror(spa
, "splitp", config
, NULL
, B_FALSE
);
3681 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3683 fnvlist_free(config
);
3686 (void) printf("successful split - results:\n");
3687 mutex_enter(&spa_namespace_lock
);
3688 show_pool_stats(spa
);
3689 show_pool_stats(spa_lookup("splitp"));
3690 mutex_exit(&spa_namespace_lock
);
3694 mutex_exit(&ztest_vdev_lock
);
3698 * Verify that we can attach and detach devices.
3701 ztest_vdev_attach_detach(ztest_ds_t
*zd
, uint64_t id
)
3703 (void) zd
, (void) id
;
3704 ztest_shared_t
*zs
= ztest_shared
;
3705 spa_t
*spa
= ztest_spa
;
3706 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
3707 vdev_t
*rvd
= spa
->spa_root_vdev
;
3708 vdev_t
*oldvd
, *newvd
, *pvd
;
3712 uint64_t ashift
= ztest_get_ashift();
3713 uint64_t oldguid
, pguid
;
3714 uint64_t oldsize
, newsize
;
3715 uint64_t raidz_children
;
3716 char *oldpath
, *newpath
;
3718 int oldvd_has_siblings
= B_FALSE
;
3719 int newvd_is_spare
= B_FALSE
;
3720 int newvd_is_dspare
= B_FALSE
;
3722 int oldvd_is_special
;
3723 int error
, expected_error
;
3725 if (ztest_opts
.zo_mmp_test
)
3728 oldpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3729 newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3731 mutex_enter(&ztest_vdev_lock
);
3732 raidz_children
= ztest_get_raidz_children(spa
);
3733 leaves
= MAX(zs
->zs_mirrors
, 1) * raidz_children
;
3735 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
3738 * If a vdev is in the process of being removed, its removal may
3739 * finish while we are in progress, leading to an unexpected error
3740 * value. Don't bother trying to attach while we are in the middle
3743 if (ztest_device_removal_active
) {
3744 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3749 * RAIDZ leaf VDEV mirrors are not currently supported while a
3750 * RAIDZ expansion is in progress.
3752 if (ztest_opts
.zo_raid_do_expand
) {
3753 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3758 * Decide whether to do an attach or a replace.
3760 replacing
= ztest_random(2);
3763 * Pick a random top-level vdev.
3765 top
= ztest_random_vdev_top(spa
, B_TRUE
);
3768 * Pick a random leaf within it.
3770 leaf
= ztest_random(leaves
);
3775 oldvd
= rvd
->vdev_child
[top
];
3777 /* pick a child from the mirror */
3778 if (zs
->zs_mirrors
>= 1) {
3779 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_mirror_ops
);
3780 ASSERT3U(oldvd
->vdev_children
, >=, zs
->zs_mirrors
);
3781 oldvd
= oldvd
->vdev_child
[leaf
/ raidz_children
];
3784 /* pick a child out of the raidz group */
3785 if (ztest_opts
.zo_raid_children
> 1) {
3786 if (strcmp(oldvd
->vdev_ops
->vdev_op_type
, "raidz") == 0)
3787 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_raidz_ops
);
3789 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_draid_ops
);
3790 oldvd
= oldvd
->vdev_child
[leaf
% raidz_children
];
3794 * If we're already doing an attach or replace, oldvd may be a
3795 * mirror vdev -- in which case, pick a random child.
3797 while (oldvd
->vdev_children
!= 0) {
3798 oldvd_has_siblings
= B_TRUE
;
3799 ASSERT3U(oldvd
->vdev_children
, >=, 2);
3800 oldvd
= oldvd
->vdev_child
[ztest_random(oldvd
->vdev_children
)];
3803 oldguid
= oldvd
->vdev_guid
;
3804 oldsize
= vdev_get_min_asize(oldvd
);
3805 oldvd_is_log
= oldvd
->vdev_top
->vdev_islog
;
3807 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_SPECIAL
||
3808 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_DEDUP
;
3809 (void) strlcpy(oldpath
, oldvd
->vdev_path
, MAXPATHLEN
);
3810 pvd
= oldvd
->vdev_parent
;
3811 pguid
= pvd
->vdev_guid
;
3814 * If oldvd has siblings, then half of the time, detach it. Prior
3815 * to the detach the pool is scrubbed in order to prevent creating
3816 * unrepairable blocks as a result of the data corruption injection.
3818 if (oldvd_has_siblings
&& ztest_random(2) == 0) {
3819 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3821 error
= ztest_scrub_impl(spa
);
3825 error
= spa_vdev_detach(spa
, oldguid
, pguid
, B_FALSE
);
3826 if (error
!= 0 && error
!= ENODEV
&& error
!= EBUSY
&&
3827 error
!= ENOTSUP
&& error
!= ZFS_ERR_CHECKPOINT_EXISTS
&&
3828 error
!= ZFS_ERR_DISCARDING_CHECKPOINT
)
3829 fatal(B_FALSE
, "detach (%s) returned %d",
3835 * For the new vdev, choose with equal probability between the two
3836 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3838 if (sav
->sav_count
!= 0 && ztest_random(3) == 0) {
3839 newvd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3840 newvd_is_spare
= B_TRUE
;
3842 if (newvd
->vdev_ops
== &vdev_draid_spare_ops
)
3843 newvd_is_dspare
= B_TRUE
;
3845 (void) strlcpy(newpath
, newvd
->vdev_path
, MAXPATHLEN
);
3847 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
3848 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
3849 top
* leaves
+ leaf
);
3850 if (ztest_random(2) == 0)
3851 newpath
[strlen(newpath
) - 1] = 'b';
3852 newvd
= vdev_lookup_by_path(rvd
, newpath
);
3857 * Reopen to ensure the vdev's asize field isn't stale.
3860 newsize
= vdev_get_min_asize(newvd
);
3863 * Make newsize a little bigger or smaller than oldsize.
3864 * If it's smaller, the attach should fail.
3865 * If it's larger, and we're doing a replace,
3866 * we should get dynamic LUN growth when we're done.
3868 newsize
= 10 * oldsize
/ (9 + ztest_random(3));
3872 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3873 * unless it's a replace; in that case any non-replacing parent is OK.
3875 * If newvd is already part of the pool, it should fail with EBUSY.
3877 * If newvd is too small, it should fail with EOVERFLOW.
3879 * If newvd is a distributed spare and it's being attached to a
3880 * dRAID which is not its parent it should fail with EINVAL.
3882 if (pvd
->vdev_ops
!= &vdev_mirror_ops
&&
3883 pvd
->vdev_ops
!= &vdev_root_ops
&& (!replacing
||
3884 pvd
->vdev_ops
== &vdev_replacing_ops
||
3885 pvd
->vdev_ops
== &vdev_spare_ops
))
3886 expected_error
= ENOTSUP
;
3887 else if (newvd_is_spare
&&
3888 (!replacing
|| oldvd_is_log
|| oldvd_is_special
))
3889 expected_error
= ENOTSUP
;
3890 else if (newvd
== oldvd
)
3891 expected_error
= replacing
? 0 : EBUSY
;
3892 else if (vdev_lookup_by_path(rvd
, newpath
) != NULL
)
3893 expected_error
= EBUSY
;
3894 else if (!newvd_is_dspare
&& newsize
< oldsize
)
3895 expected_error
= EOVERFLOW
;
3896 else if (ashift
> oldvd
->vdev_top
->vdev_ashift
)
3897 expected_error
= EDOM
;
3898 else if (newvd_is_dspare
&& pvd
!= vdev_draid_spare_get_parent(newvd
))
3899 expected_error
= EINVAL
;
3903 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3906 * Build the nvlist describing newpath.
3908 root
= make_vdev_root(newpath
, NULL
, NULL
, newvd
== NULL
? newsize
: 0,
3909 ashift
, NULL
, 0, 0, 1);
3912 * When supported select either a healing or sequential resilver.
3914 boolean_t rebuilding
= B_FALSE
;
3915 if (pvd
->vdev_ops
== &vdev_mirror_ops
||
3916 pvd
->vdev_ops
== &vdev_root_ops
) {
3917 rebuilding
= !!ztest_random(2);
3920 error
= spa_vdev_attach(spa
, oldguid
, root
, replacing
, rebuilding
);
3925 * If our parent was the replacing vdev, but the replace completed,
3926 * then instead of failing with ENOTSUP we may either succeed,
3927 * fail with ENODEV, or fail with EOVERFLOW.
3929 if (expected_error
== ENOTSUP
&&
3930 (error
== 0 || error
== ENODEV
|| error
== EOVERFLOW
))
3931 expected_error
= error
;
3934 * If someone grew the LUN, the replacement may be too small.
3936 if (error
== EOVERFLOW
|| error
== EBUSY
)
3937 expected_error
= error
;
3939 if (error
== ZFS_ERR_CHECKPOINT_EXISTS
||
3940 error
== ZFS_ERR_DISCARDING_CHECKPOINT
||
3941 error
== ZFS_ERR_RESILVER_IN_PROGRESS
||
3942 error
== ZFS_ERR_REBUILD_IN_PROGRESS
)
3943 expected_error
= error
;
3945 if (error
!= expected_error
&& expected_error
!= EBUSY
) {
3946 fatal(B_FALSE
, "attach (%s %"PRIu64
", %s %"PRIu64
", %d) "
3947 "returned %d, expected %d",
3948 oldpath
, oldsize
, newpath
,
3949 newsize
, replacing
, error
, expected_error
);
3952 mutex_exit(&ztest_vdev_lock
);
3954 umem_free(oldpath
, MAXPATHLEN
);
3955 umem_free(newpath
, MAXPATHLEN
);
3959 raidz_scratch_verify(void)
3962 uint64_t write_size
, logical_size
, offset
;
3963 raidz_reflow_scratch_state_t state
;
3964 vdev_raidz_expand_t
*vre
;
3967 ASSERT(raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
);
3969 if (ztest_scratch_state
->zs_raidz_scratch_verify_pause
== 0)
3972 kernel_init(SPA_MODE_READ
);
3974 mutex_enter(&spa_namespace_lock
);
3975 spa
= spa_lookup(ztest_opts
.zo_pool
);
3977 spa
->spa_import_flags
|= ZFS_IMPORT_SKIP_MMP
;
3978 mutex_exit(&spa_namespace_lock
);
3980 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
3982 ASSERT3U(RRSS_GET_OFFSET(&spa
->spa_uberblock
), !=, UINT64_MAX
);
3984 mutex_enter(&ztest_vdev_lock
);
3986 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_READER
);
3988 vre
= spa
->spa_raidz_expand
;
3992 raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
3993 offset
= RRSS_GET_OFFSET(&spa
->spa_uberblock
);
3994 state
= RRSS_GET_STATE(&spa
->spa_uberblock
);
3995 write_size
= P2ALIGN_TYPED(VDEV_BOOT_SIZE
, 1 << raidvd
->vdev_ashift
,
3997 logical_size
= write_size
* raidvd
->vdev_children
;
4001 * Initial state of reflow process. RAIDZ expansion was
4002 * requested by user, but scratch object was not created.
4004 case RRSS_SCRATCH_NOT_IN_USE
:
4005 ASSERT3U(offset
, ==, 0);
4009 * Scratch object was synced and stored in boot area.
4011 case RRSS_SCRATCH_VALID
:
4014 * Scratch object was synced back to raidz start offset,
4015 * raidz is ready for sector by sector reflow process.
4017 case RRSS_SCRATCH_INVALID_SYNCED
:
4020 * Scratch object was synced back to raidz start offset
4021 * on zpool importing, raidz is ready for sector by sector
4024 case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT
:
4025 ASSERT3U(offset
, ==, logical_size
);
4029 * Sector by sector reflow process started.
4031 case RRSS_SCRATCH_INVALID_SYNCED_REFLOW
:
4032 ASSERT3U(offset
, >=, logical_size
);
4037 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4039 mutex_exit(&ztest_vdev_lock
);
4041 ztest_scratch_state
->zs_raidz_scratch_verify_pause
= 0;
4043 spa_close(spa
, FTAG
);
4048 ztest_scratch_thread(void *arg
)
4052 /* wait up to 10 seconds */
4053 for (int t
= 100; t
> 0; t
-= 1) {
4054 if (raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
)
4057 (void) poll(NULL
, 0, 100);
4060 /* killed when the scratch area progress reached a certain point */
4061 ztest_kill(ztest_shared
);
4065 * Verify that we can attach raidz device.
4068 ztest_vdev_raidz_attach(ztest_ds_t
*zd
, uint64_t id
)
4070 (void) zd
, (void) id
;
4071 ztest_shared_t
*zs
= ztest_shared
;
4072 spa_t
*spa
= ztest_spa
;
4073 uint64_t leaves
, raidz_children
, newsize
, ashift
= ztest_get_ashift();
4074 kthread_t
*scratch_thread
= NULL
;
4075 vdev_t
*newvd
, *pvd
;
4077 char *newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
4078 int error
, expected_error
= 0;
4080 mutex_enter(&ztest_vdev_lock
);
4082 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_READER
);
4084 /* Only allow attach when raid-kind = 'eraidz' */
4085 if (!ztest_opts
.zo_raid_do_expand
) {
4086 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4090 if (ztest_opts
.zo_mmp_test
) {
4091 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4095 if (ztest_device_removal_active
) {
4096 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4100 pvd
= vdev_lookup_top(spa
, 0);
4102 ASSERT(pvd
->vdev_ops
== &vdev_raidz_ops
);
4105 * Get size of a child of the raidz group,
4106 * make sure device is a bit bigger
4108 newvd
= pvd
->vdev_child
[ztest_random(pvd
->vdev_children
)];
4109 newsize
= 10 * vdev_get_min_asize(newvd
) / (9 + ztest_random(2));
4112 * Get next attached leaf id
4114 raidz_children
= ztest_get_raidz_children(spa
);
4115 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
4116 zs
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
4118 if (spa
->spa_raidz_expand
)
4119 expected_error
= ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS
;
4121 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4124 * Path to vdev to be attached
4126 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
4127 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, zs
->zs_vdev_next_leaf
);
4130 * Build the nvlist describing newpath.
4132 root
= make_vdev_root(newpath
, NULL
, NULL
, newsize
, ashift
, NULL
,
4136 * 50% of the time, set raidz_expand_pause_point to cause
4137 * raidz_reflow_scratch_sync() to pause at a certain point and
4138 * then kill the test after 10 seconds so raidz_scratch_verify()
4139 * can confirm consistency when the pool is imported.
4141 if (ztest_random(2) == 0 && expected_error
== 0) {
4142 raidz_expand_pause_point
=
4143 ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2
) + 1;
4144 scratch_thread
= thread_create(NULL
, 0, ztest_scratch_thread
,
4145 ztest_shared
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
4148 error
= spa_vdev_attach(spa
, pvd
->vdev_guid
, root
, B_FALSE
, B_FALSE
);
4152 if (error
== EOVERFLOW
|| error
== ENXIO
||
4153 error
== ZFS_ERR_CHECKPOINT_EXISTS
||
4154 error
== ZFS_ERR_DISCARDING_CHECKPOINT
)
4155 expected_error
= error
;
4157 if (error
!= 0 && error
!= expected_error
) {
4158 fatal(0, "raidz attach (%s %"PRIu64
") returned %d, expected %d",
4159 newpath
, newsize
, error
, expected_error
);
4162 if (raidz_expand_pause_point
) {
4165 * Do not verify scratch object in case of error
4166 * returned by vdev attaching.
4168 raidz_expand_pause_point
= RAIDZ_EXPAND_PAUSE_NONE
;
4171 VERIFY0(thread_join(scratch_thread
));
4174 mutex_exit(&ztest_vdev_lock
);
4176 umem_free(newpath
, MAXPATHLEN
);
4180 ztest_device_removal(ztest_ds_t
*zd
, uint64_t id
)
4182 (void) zd
, (void) id
;
4183 spa_t
*spa
= ztest_spa
;
4188 mutex_enter(&ztest_vdev_lock
);
4190 if (ztest_device_removal_active
) {
4191 mutex_exit(&ztest_vdev_lock
);
4196 * Remove a random top-level vdev and wait for removal to finish.
4198 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
4199 vd
= vdev_lookup_top(spa
, ztest_random_vdev_top(spa
, B_FALSE
));
4200 guid
= vd
->vdev_guid
;
4201 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
4203 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
4205 ztest_device_removal_active
= B_TRUE
;
4206 mutex_exit(&ztest_vdev_lock
);
4209 * spa->spa_vdev_removal is created in a sync task that
4210 * is initiated via dsl_sync_task_nowait(). Since the
4211 * task may not run before spa_vdev_remove() returns, we
4212 * must wait at least 1 txg to ensure that the removal
4213 * struct has been created.
4215 txg_wait_synced(spa_get_dsl(spa
), 0);
4217 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
4218 txg_wait_synced(spa_get_dsl(spa
), 0);
4220 mutex_exit(&ztest_vdev_lock
);
4225 * The pool needs to be scrubbed after completing device removal.
4226 * Failure to do so may result in checksum errors due to the
4227 * strategy employed by ztest_fault_inject() when selecting which
4228 * offset are redundant and can be damaged.
4230 error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
4232 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
4233 txg_wait_synced(spa_get_dsl(spa
), 0);
4236 mutex_enter(&ztest_vdev_lock
);
4237 ztest_device_removal_active
= B_FALSE
;
4238 mutex_exit(&ztest_vdev_lock
);
4242 * Callback function which expands the physical size of the vdev.
4245 grow_vdev(vdev_t
*vd
, void *arg
)
4247 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
4248 size_t *newsize
= arg
;
4252 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
4253 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4255 if ((fd
= open(vd
->vdev_path
, O_RDWR
)) == -1)
4258 fsize
= lseek(fd
, 0, SEEK_END
);
4259 VERIFY0(ftruncate(fd
, *newsize
));
4261 if (ztest_opts
.zo_verbose
>= 6) {
4262 (void) printf("%s grew from %lu to %lu bytes\n",
4263 vd
->vdev_path
, (ulong_t
)fsize
, (ulong_t
)*newsize
);
4270 * Callback function which expands a given vdev by calling vdev_online().
4273 online_vdev(vdev_t
*vd
, void *arg
)
4276 spa_t
*spa
= vd
->vdev_spa
;
4277 vdev_t
*tvd
= vd
->vdev_top
;
4278 uint64_t guid
= vd
->vdev_guid
;
4279 uint64_t generation
= spa
->spa_config_generation
+ 1;
4280 vdev_state_t newstate
= VDEV_STATE_UNKNOWN
;
4283 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
4284 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4286 /* Calling vdev_online will initialize the new metaslabs */
4287 spa_config_exit(spa
, SCL_STATE
, spa
);
4288 error
= vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, &newstate
);
4289 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4292 * If vdev_online returned an error or the underlying vdev_open
4293 * failed then we abort the expand. The only way to know that
4294 * vdev_open fails is by checking the returned newstate.
4296 if (error
|| newstate
!= VDEV_STATE_HEALTHY
) {
4297 if (ztest_opts
.zo_verbose
>= 5) {
4298 (void) printf("Unable to expand vdev, state %u, "
4299 "error %d\n", newstate
, error
);
4303 ASSERT3U(newstate
, ==, VDEV_STATE_HEALTHY
);
4306 * Since we dropped the lock we need to ensure that we're
4307 * still talking to the original vdev. It's possible this
4308 * vdev may have been detached/replaced while we were
4309 * trying to online it.
4311 if (generation
!= spa
->spa_config_generation
) {
4312 if (ztest_opts
.zo_verbose
>= 5) {
4313 (void) printf("vdev configuration has changed, "
4314 "guid %"PRIu64
", state %"PRIu64
", "
4315 "expected gen %"PRIu64
", got gen %"PRIu64
"\n",
4319 spa
->spa_config_generation
);
4327 * Traverse the vdev tree calling the supplied function.
4328 * We continue to walk the tree until we either have walked all
4329 * children or we receive a non-NULL return from the callback.
4330 * If a NULL callback is passed, then we just return back the first
4331 * leaf vdev we encounter.
4334 vdev_walk_tree(vdev_t
*vd
, vdev_t
*(*func
)(vdev_t
*, void *), void *arg
)
4338 if (vd
->vdev_ops
->vdev_op_leaf
) {
4342 return (func(vd
, arg
));
4345 for (c
= 0; c
< vd
->vdev_children
; c
++) {
4346 vdev_t
*cvd
= vd
->vdev_child
[c
];
4347 if ((cvd
= vdev_walk_tree(cvd
, func
, arg
)) != NULL
)
4354 * Verify that dynamic LUN growth works as expected.
4357 ztest_vdev_LUN_growth(ztest_ds_t
*zd
, uint64_t id
)
4359 (void) zd
, (void) id
;
4360 spa_t
*spa
= ztest_spa
;
4362 metaslab_class_t
*mc
;
4363 metaslab_group_t
*mg
;
4364 size_t psize
, newsize
;
4366 uint64_t old_class_space
, new_class_space
, old_ms_count
, new_ms_count
;
4368 mutex_enter(&ztest_checkpoint_lock
);
4369 mutex_enter(&ztest_vdev_lock
);
4370 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4373 * If there is a vdev removal in progress, it could complete while
4374 * we are running, in which case we would not be able to verify
4375 * that the metaslab_class space increased (because it decreases
4376 * when the device removal completes).
4378 if (ztest_device_removal_active
) {
4379 spa_config_exit(spa
, SCL_STATE
, spa
);
4380 mutex_exit(&ztest_vdev_lock
);
4381 mutex_exit(&ztest_checkpoint_lock
);
4386 * If we are under raidz expansion, the test can failed because the
4387 * metaslabs count will not increase immediately after the vdev is
4388 * expanded. It will happen only after raidz expansion completion.
4390 if (spa
->spa_raidz_expand
) {
4391 spa_config_exit(spa
, SCL_STATE
, spa
);
4392 mutex_exit(&ztest_vdev_lock
);
4393 mutex_exit(&ztest_checkpoint_lock
);
4397 top
= ztest_random_vdev_top(spa
, B_TRUE
);
4399 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4402 old_ms_count
= tvd
->vdev_ms_count
;
4403 old_class_space
= metaslab_class_get_space(mc
);
4406 * Determine the size of the first leaf vdev associated with
4407 * our top-level device.
4409 vd
= vdev_walk_tree(tvd
, NULL
, NULL
);
4410 ASSERT3P(vd
, !=, NULL
);
4411 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4413 psize
= vd
->vdev_psize
;
4416 * We only try to expand the vdev if it's healthy, less than 4x its
4417 * original size, and it has a valid psize.
4419 if (tvd
->vdev_state
!= VDEV_STATE_HEALTHY
||
4420 psize
== 0 || psize
>= 4 * ztest_opts
.zo_vdev_size
) {
4421 spa_config_exit(spa
, SCL_STATE
, spa
);
4422 mutex_exit(&ztest_vdev_lock
);
4423 mutex_exit(&ztest_checkpoint_lock
);
4426 ASSERT3U(psize
, >, 0);
4427 newsize
= psize
+ MAX(psize
/ 8, SPA_MAXBLOCKSIZE
);
4428 ASSERT3U(newsize
, >, psize
);
4430 if (ztest_opts
.zo_verbose
>= 6) {
4431 (void) printf("Expanding LUN %s from %lu to %lu\n",
4432 vd
->vdev_path
, (ulong_t
)psize
, (ulong_t
)newsize
);
4436 * Growing the vdev is a two step process:
4437 * 1). expand the physical size (i.e. relabel)
4438 * 2). online the vdev to create the new metaslabs
4440 if (vdev_walk_tree(tvd
, grow_vdev
, &newsize
) != NULL
||
4441 vdev_walk_tree(tvd
, online_vdev
, NULL
) != NULL
||
4442 tvd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
4443 if (ztest_opts
.zo_verbose
>= 5) {
4444 (void) printf("Could not expand LUN because "
4445 "the vdev configuration changed.\n");
4447 spa_config_exit(spa
, SCL_STATE
, spa
);
4448 mutex_exit(&ztest_vdev_lock
);
4449 mutex_exit(&ztest_checkpoint_lock
);
4453 spa_config_exit(spa
, SCL_STATE
, spa
);
4456 * Expanding the LUN will update the config asynchronously,
4457 * thus we must wait for the async thread to complete any
4458 * pending tasks before proceeding.
4462 mutex_enter(&spa
->spa_async_lock
);
4463 done
= (spa
->spa_async_thread
== NULL
&& !spa
->spa_async_tasks
);
4464 mutex_exit(&spa
->spa_async_lock
);
4467 txg_wait_synced(spa_get_dsl(spa
), 0);
4468 (void) poll(NULL
, 0, 100);
4471 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4473 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4474 new_ms_count
= tvd
->vdev_ms_count
;
4475 new_class_space
= metaslab_class_get_space(mc
);
4477 if (tvd
->vdev_mg
!= mg
|| mg
->mg_class
!= mc
) {
4478 if (ztest_opts
.zo_verbose
>= 5) {
4479 (void) printf("Could not verify LUN expansion due to "
4480 "intervening vdev offline or remove.\n");
4482 spa_config_exit(spa
, SCL_STATE
, spa
);
4483 mutex_exit(&ztest_vdev_lock
);
4484 mutex_exit(&ztest_checkpoint_lock
);
4489 * Make sure we were able to grow the vdev.
4491 if (new_ms_count
<= old_ms_count
) {
4493 "LUN expansion failed: ms_count %"PRIu64
" < %"PRIu64
"\n",
4494 old_ms_count
, new_ms_count
);
4498 * Make sure we were able to grow the pool.
4500 if (new_class_space
<= old_class_space
) {
4502 "LUN expansion failed: class_space %"PRIu64
" < %"PRIu64
"\n",
4503 old_class_space
, new_class_space
);
4506 if (ztest_opts
.zo_verbose
>= 5) {
4507 char oldnumbuf
[NN_NUMBUF_SZ
], newnumbuf
[NN_NUMBUF_SZ
];
4509 nicenum(old_class_space
, oldnumbuf
, sizeof (oldnumbuf
));
4510 nicenum(new_class_space
, newnumbuf
, sizeof (newnumbuf
));
4511 (void) printf("%s grew from %s to %s\n",
4512 spa
->spa_name
, oldnumbuf
, newnumbuf
);
4515 spa_config_exit(spa
, SCL_STATE
, spa
);
4516 mutex_exit(&ztest_vdev_lock
);
4517 mutex_exit(&ztest_checkpoint_lock
);
4521 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4524 ztest_objset_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
4526 (void) arg
, (void) cr
;
4529 * Create the objects common to all ztest datasets.
4531 VERIFY0(zap_create_claim(os
, ZTEST_DIROBJ
,
4532 DMU_OT_ZAP_OTHER
, DMU_OT_NONE
, 0, tx
));
4536 ztest_dataset_create(char *dsname
)
4540 dsl_crypto_params_t
*dcp
= NULL
;
4543 * 50% of the time, we create encrypted datasets
4544 * using a random cipher suite and a hard-coded
4547 rand
= ztest_random(2);
4549 nvlist_t
*crypto_args
= fnvlist_alloc();
4550 nvlist_t
*props
= fnvlist_alloc();
4552 /* slight bias towards the default cipher suite */
4553 rand
= ztest_random(ZIO_CRYPT_FUNCTIONS
);
4554 if (rand
< ZIO_CRYPT_AES_128_CCM
)
4555 rand
= ZIO_CRYPT_ON
;
4557 fnvlist_add_uint64(props
,
4558 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), rand
);
4559 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
4560 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
4563 * These parameters aren't really used by the kernel. They
4564 * are simply stored so that userspace knows how to load
4567 fnvlist_add_uint64(props
,
4568 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), ZFS_KEYFORMAT_RAW
);
4569 fnvlist_add_string(props
,
4570 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), "prompt");
4571 fnvlist_add_uint64(props
,
4572 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 0ULL);
4573 fnvlist_add_uint64(props
,
4574 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 0ULL);
4576 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, props
,
4577 crypto_args
, &dcp
));
4580 * Cycle through all available encryption implementations
4581 * to verify interoperability.
4583 VERIFY0(gcm_impl_set("cycle"));
4584 VERIFY0(aes_impl_set("cycle"));
4586 fnvlist_free(crypto_args
);
4587 fnvlist_free(props
);
4590 err
= dmu_objset_create(dsname
, DMU_OST_OTHER
, 0, dcp
,
4591 ztest_objset_create_cb
, NULL
);
4592 dsl_crypto_params_free(dcp
, !!err
);
4594 rand
= ztest_random(100);
4595 if (err
|| rand
< 80)
4598 if (ztest_opts
.zo_verbose
>= 5)
4599 (void) printf("Setting dataset %s to sync always\n", dsname
);
4600 return (ztest_dsl_prop_set_uint64(dsname
, ZFS_PROP_SYNC
,
4601 ZFS_SYNC_ALWAYS
, B_FALSE
));
4605 ztest_objset_destroy_cb(const char *name
, void *arg
)
4609 dmu_object_info_t doi
;
4613 * Verify that the dataset contains a directory object.
4615 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
4616 B_TRUE
, FTAG
, &os
));
4617 error
= dmu_object_info(os
, ZTEST_DIROBJ
, &doi
);
4618 if (error
!= ENOENT
) {
4619 /* We could have crashed in the middle of destroying it */
4621 ASSERT3U(doi
.doi_type
, ==, DMU_OT_ZAP_OTHER
);
4622 ASSERT3S(doi
.doi_physical_blocks_512
, >=, 0);
4624 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4627 * Destroy the dataset.
4629 if (strchr(name
, '@') != NULL
) {
4630 error
= dsl_destroy_snapshot(name
, B_TRUE
);
4631 if (error
!= ECHRNG
) {
4633 * The program was executed, but encountered a runtime
4634 * error, such as insufficient slop, or a hold on the
4640 error
= dsl_destroy_head(name
);
4641 if (error
== ENOSPC
) {
4642 /* There could be checkpoint or insufficient slop */
4643 ztest_record_enospc(FTAG
);
4644 } else if (error
!= EBUSY
) {
4645 /* There could be a hold on this dataset */
4653 ztest_snapshot_create(char *osname
, uint64_t id
)
4655 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4658 (void) snprintf(snapname
, sizeof (snapname
), "%"PRIu64
"", id
);
4660 error
= dmu_objset_snapshot_one(osname
, snapname
);
4661 if (error
== ENOSPC
) {
4662 ztest_record_enospc(FTAG
);
4665 if (error
!= 0 && error
!= EEXIST
&& error
!= ECHRNG
) {
4666 fatal(B_FALSE
, "ztest_snapshot_create(%s@%s) = %d", osname
,
4673 ztest_snapshot_destroy(char *osname
, uint64_t id
)
4675 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4678 (void) snprintf(snapname
, sizeof (snapname
), "%s@%"PRIu64
"",
4681 error
= dsl_destroy_snapshot(snapname
, B_FALSE
);
4682 if (error
!= 0 && error
!= ENOENT
&& error
!= ECHRNG
)
4683 fatal(B_FALSE
, "ztest_snapshot_destroy(%s) = %d",
4689 ztest_dmu_objset_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4696 char name
[ZFS_MAX_DATASET_NAME_LEN
];
4700 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
4702 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4704 (void) snprintf(name
, sizeof (name
), "%s/temp_%"PRIu64
"",
4705 ztest_opts
.zo_pool
, id
);
4708 * If this dataset exists from a previous run, process its replay log
4709 * half of the time. If we don't replay it, then dsl_destroy_head()
4710 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4712 if (ztest_random(2) == 0 &&
4713 ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
4714 B_TRUE
, FTAG
, &os
) == 0) {
4715 ztest_zd_init(zdtmp
, NULL
, os
);
4716 zil_replay(os
, zdtmp
, ztest_replay_vector
);
4717 ztest_zd_fini(zdtmp
);
4718 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4722 * There may be an old instance of the dataset we're about to
4723 * create lying around from a previous run. If so, destroy it
4724 * and all of its snapshots.
4726 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
4727 DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
4730 * Verify that the destroyed dataset is no longer in the namespace.
4731 * It may still be present if the destroy above fails with ENOSPC.
4733 error
= ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
, B_TRUE
,
4736 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4737 ztest_record_enospc(FTAG
);
4740 VERIFY3U(ENOENT
, ==, error
);
4743 * Verify that we can create a new dataset.
4745 error
= ztest_dataset_create(name
);
4747 if (error
== ENOSPC
) {
4748 ztest_record_enospc(FTAG
);
4751 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", name
, error
);
4754 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, B_TRUE
,
4757 ztest_zd_init(zdtmp
, NULL
, os
);
4760 * Open the intent log for it.
4762 zilog
= zil_open(os
, ztest_get_data
, NULL
);
4765 * Put some objects in there, do a little I/O to them,
4766 * and randomly take a couple of snapshots along the way.
4768 iters
= ztest_random(5);
4769 for (i
= 0; i
< iters
; i
++) {
4770 ztest_dmu_object_alloc_free(zdtmp
, id
);
4771 if (ztest_random(iters
) == 0)
4772 (void) ztest_snapshot_create(name
, i
);
4776 * Verify that we cannot create an existing dataset.
4778 VERIFY3U(EEXIST
, ==,
4779 dmu_objset_create(name
, DMU_OST_OTHER
, 0, NULL
, NULL
, NULL
));
4782 * Verify that we can hold an objset that is also owned.
4784 VERIFY0(dmu_objset_hold(name
, FTAG
, &os2
));
4785 dmu_objset_rele(os2
, FTAG
);
4788 * Verify that we cannot own an objset that is already owned.
4790 VERIFY3U(EBUSY
, ==, ztest_dmu_objset_own(name
, DMU_OST_OTHER
,
4791 B_FALSE
, B_TRUE
, FTAG
, &os2
));
4794 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4795 ztest_zd_fini(zdtmp
);
4797 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4799 umem_free(zdtmp
, sizeof (ztest_ds_t
));
4803 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4806 ztest_dmu_snapshot_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4808 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4809 (void) ztest_snapshot_destroy(zd
->zd_name
, id
);
4810 (void) ztest_snapshot_create(zd
->zd_name
, id
);
4811 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4815 * Cleanup non-standard snapshots and clones.
4818 ztest_dsl_dataset_cleanup(char *osname
, uint64_t id
)
4827 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4828 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4829 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4830 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4831 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4833 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4835 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4837 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4839 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4841 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4844 error
= dsl_destroy_head(clone2name
);
4845 if (error
&& error
!= ENOENT
)
4846 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone2name
, error
);
4847 error
= dsl_destroy_snapshot(snap3name
, B_FALSE
);
4848 if (error
&& error
!= ENOENT
)
4849 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4851 error
= dsl_destroy_snapshot(snap2name
, B_FALSE
);
4852 if (error
&& error
!= ENOENT
)
4853 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4855 error
= dsl_destroy_head(clone1name
);
4856 if (error
&& error
!= ENOENT
)
4857 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone1name
, error
);
4858 error
= dsl_destroy_snapshot(snap1name
, B_FALSE
);
4859 if (error
&& error
!= ENOENT
)
4860 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4863 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4864 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4865 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4866 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4867 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4871 * Verify dsl_dataset_promote handles EBUSY
4874 ztest_dsl_dataset_promote_busy(ztest_ds_t
*zd
, uint64_t id
)
4882 char *osname
= zd
->zd_name
;
4885 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4886 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4887 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4888 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4889 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4891 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4893 ztest_dsl_dataset_cleanup(osname
, id
);
4895 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4897 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4899 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4901 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4903 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4906 error
= dmu_objset_snapshot_one(osname
, strchr(snap1name
, '@') + 1);
4907 if (error
&& error
!= EEXIST
) {
4908 if (error
== ENOSPC
) {
4909 ztest_record_enospc(FTAG
);
4912 fatal(B_FALSE
, "dmu_take_snapshot(%s) = %d", snap1name
, error
);
4915 error
= dmu_objset_clone(clone1name
, snap1name
);
4917 if (error
== ENOSPC
) {
4918 ztest_record_enospc(FTAG
);
4921 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone1name
, error
);
4924 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap2name
, '@') + 1);
4925 if (error
&& error
!= EEXIST
) {
4926 if (error
== ENOSPC
) {
4927 ztest_record_enospc(FTAG
);
4930 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap2name
, error
);
4933 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap3name
, '@') + 1);
4934 if (error
&& error
!= EEXIST
) {
4935 if (error
== ENOSPC
) {
4936 ztest_record_enospc(FTAG
);
4939 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap3name
, error
);
4942 error
= dmu_objset_clone(clone2name
, snap3name
);
4944 if (error
== ENOSPC
) {
4945 ztest_record_enospc(FTAG
);
4948 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone2name
, error
);
4951 error
= ztest_dmu_objset_own(snap2name
, DMU_OST_ANY
, B_TRUE
, B_TRUE
,
4954 fatal(B_FALSE
, "dmu_objset_own(%s) = %d", snap2name
, error
);
4955 error
= dsl_dataset_promote(clone2name
, NULL
);
4956 if (error
== ENOSPC
) {
4957 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4958 ztest_record_enospc(FTAG
);
4962 fatal(B_FALSE
, "dsl_dataset_promote(%s), %d, not EBUSY",
4964 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4967 ztest_dsl_dataset_cleanup(osname
, id
);
4969 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4971 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4972 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4973 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4974 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4975 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4978 #undef OD_ARRAY_SIZE
4979 #define OD_ARRAY_SIZE 4
4982 * Verify that dmu_object_{alloc,free} work as expected.
4985 ztest_dmu_object_alloc_free(ztest_ds_t
*zd
, uint64_t id
)
4992 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4993 od
= umem_alloc(size
, UMEM_NOFAIL
);
4994 batchsize
= OD_ARRAY_SIZE
;
4996 for (b
= 0; b
< batchsize
; b
++)
4997 ztest_od_init(od
+ b
, id
, FTAG
, b
, DMU_OT_UINT64_OTHER
,
5001 * Destroy the previous batch of objects, create a new batch,
5002 * and do some I/O on the new objects.
5004 if (ztest_object_init(zd
, od
, size
, B_TRUE
) != 0) {
5006 umem_free(od
, size
);
5010 while (ztest_random(4 * batchsize
) != 0)
5011 ztest_io(zd
, od
[ztest_random(batchsize
)].od_object
,
5012 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5014 umem_free(od
, size
);
5018 * Rewind the global allocator to verify object allocation backfilling.
5021 ztest_dmu_object_next_chunk(ztest_ds_t
*zd
, uint64_t id
)
5024 objset_t
*os
= zd
->zd_os
;
5025 uint_t dnodes_per_chunk
= 1 << dmu_object_alloc_chunk_shift
;
5029 * Rewind the global allocator randomly back to a lower object number
5030 * to force backfilling and reclamation of recently freed dnodes.
5032 mutex_enter(&os
->os_obj_lock
);
5033 object
= ztest_random(os
->os_obj_next_chunk
);
5034 os
->os_obj_next_chunk
= P2ALIGN_TYPED(object
, dnodes_per_chunk
,
5036 mutex_exit(&os
->os_obj_lock
);
5039 #undef OD_ARRAY_SIZE
5040 #define OD_ARRAY_SIZE 2
5043 * Verify that dmu_{read,write} work as expected.
5046 ztest_dmu_read_write(ztest_ds_t
*zd
, uint64_t id
)
5051 objset_t
*os
= zd
->zd_os
;
5052 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
5053 od
= umem_alloc(size
, UMEM_NOFAIL
);
5056 uint64_t i
, n
, s
, txg
;
5057 bufwad_t
*packbuf
, *bigbuf
, *pack
, *bigH
, *bigT
;
5058 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
5059 uint64_t chunksize
= (1000 + ztest_random(1000)) * sizeof (uint64_t);
5060 uint64_t regions
= 997;
5061 uint64_t stride
= 123456789ULL;
5062 uint64_t width
= 40;
5063 int free_percent
= 5;
5064 uint32_t dmu_read_flags
= DMU_READ_PREFETCH
;
5067 * We will randomly set when to do O_DIRECT on a read.
5069 if (ztest_random(4) == 0)
5070 dmu_read_flags
|= DMU_DIRECTIO
;
5073 * This test uses two objects, packobj and bigobj, that are always
5074 * updated together (i.e. in the same tx) so that their contents are
5075 * in sync and can be compared. Their contents relate to each other
5076 * in a simple way: packobj is a dense array of 'bufwad' structures,
5077 * while bigobj is a sparse array of the same bufwads. Specifically,
5078 * for any index n, there are three bufwads that should be identical:
5080 * packobj, at offset n * sizeof (bufwad_t)
5081 * bigobj, at the head of the nth chunk
5082 * bigobj, at the tail of the nth chunk
5084 * The chunk size is arbitrary. It doesn't have to be a power of two,
5085 * and it doesn't have any relation to the object blocksize.
5086 * The only requirement is that it can hold at least two bufwads.
5088 * Normally, we write the bufwad to each of these locations.
5089 * However, free_percent of the time we instead write zeroes to
5090 * packobj and perform a dmu_free_range() on bigobj. By comparing
5091 * bigobj to packobj, we can verify that the DMU is correctly
5092 * tracking which parts of an object are allocated and free,
5093 * and that the contents of the allocated blocks are correct.
5097 * Read the directory info. If it's the first time, set things up.
5099 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, chunksize
);
5100 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
5103 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
5104 umem_free(od
, size
);
5108 bigobj
= od
[0].od_object
;
5109 packobj
= od
[1].od_object
;
5110 chunksize
= od
[0].od_gen
;
5111 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5114 * Prefetch a random chunk of the big object.
5115 * Our aim here is to get some async reads in flight
5116 * for blocks that we may free below; the DMU should
5117 * handle this race correctly.
5119 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5120 s
= 1 + ztest_random(2 * width
- 1);
5121 dmu_prefetch(os
, bigobj
, 0, n
* chunksize
, s
* chunksize
,
5122 ZIO_PRIORITY_SYNC_READ
);
5125 * Pick a random index and compute the offsets into packobj and bigobj.
5127 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5128 s
= 1 + ztest_random(width
- 1);
5130 packoff
= n
* sizeof (bufwad_t
);
5131 packsize
= s
* sizeof (bufwad_t
);
5133 bigoff
= n
* chunksize
;
5134 bigsize
= s
* chunksize
;
5136 packbuf
= umem_alloc(packsize
, UMEM_NOFAIL
);
5137 bigbuf
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5140 * free_percent of the time, free a range of bigobj rather than
5143 freeit
= (ztest_random(100) < free_percent
);
5146 * Read the current contents of our objects.
5148 error
= dmu_read(os
, packobj
, packoff
, packsize
, packbuf
,
5151 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
, bigbuf
,
5156 * Get a tx for the mods to both packobj and bigobj.
5158 tx
= dmu_tx_create(os
);
5160 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5163 dmu_tx_hold_free(tx
, bigobj
, bigoff
, bigsize
);
5165 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5167 /* This accounts for setting the checksum/compression. */
5168 dmu_tx_hold_bonus(tx
, bigobj
);
5170 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5172 umem_free(packbuf
, packsize
);
5173 umem_free(bigbuf
, bigsize
);
5174 umem_free(od
, size
);
5178 enum zio_checksum cksum
;
5180 cksum
= (enum zio_checksum
)
5181 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM
);
5182 } while (cksum
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
5183 dmu_object_set_checksum(os
, bigobj
, cksum
, tx
);
5185 enum zio_compress comp
;
5187 comp
= (enum zio_compress
)
5188 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
);
5189 } while (comp
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
);
5190 dmu_object_set_compress(os
, bigobj
, comp
, tx
);
5193 * For each index from n to n + s, verify that the existing bufwad
5194 * in packobj matches the bufwads at the head and tail of the
5195 * corresponding chunk in bigobj. Then update all three bufwads
5196 * with the new values we want to write out.
5198 for (i
= 0; i
< s
; i
++) {
5200 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
5202 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
5204 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
5206 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
5207 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
5209 if (pack
->bw_txg
> txg
)
5211 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
5214 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
5215 fatal(B_FALSE
, "wrong index: "
5216 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
5217 pack
->bw_index
, n
, i
);
5219 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
5220 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
5223 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
5224 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
5228 memset(pack
, 0, sizeof (bufwad_t
));
5230 pack
->bw_index
= n
+ i
;
5232 pack
->bw_data
= 1 + ztest_random(-2ULL);
5239 * We've verified all the old bufwads, and made new ones.
5240 * Now write them out.
5242 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5245 if (ztest_opts
.zo_verbose
>= 7) {
5246 (void) printf("freeing offset %"PRIx64
" size %"PRIx64
""
5248 bigoff
, bigsize
, txg
);
5250 VERIFY0(dmu_free_range(os
, bigobj
, bigoff
, bigsize
, tx
));
5252 if (ztest_opts
.zo_verbose
>= 7) {
5253 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5255 bigoff
, bigsize
, txg
);
5257 dmu_write(os
, bigobj
, bigoff
, bigsize
, bigbuf
, tx
);
5263 * Sanity check the stuff we just wrote.
5266 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5267 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5269 VERIFY0(dmu_read(os
, packobj
, packoff
,
5270 packsize
, packcheck
, dmu_read_flags
));
5271 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5272 bigsize
, bigcheck
, dmu_read_flags
));
5274 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5275 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5277 umem_free(packcheck
, packsize
);
5278 umem_free(bigcheck
, bigsize
);
5281 umem_free(packbuf
, packsize
);
5282 umem_free(bigbuf
, bigsize
);
5283 umem_free(od
, size
);
5287 compare_and_update_pbbufs(uint64_t s
, bufwad_t
*packbuf
, bufwad_t
*bigbuf
,
5288 uint64_t bigsize
, uint64_t n
, uint64_t chunksize
, uint64_t txg
)
5296 * For each index from n to n + s, verify that the existing bufwad
5297 * in packobj matches the bufwads at the head and tail of the
5298 * corresponding chunk in bigobj. Then update all three bufwads
5299 * with the new values we want to write out.
5301 for (i
= 0; i
< s
; i
++) {
5303 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
5305 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
5307 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
5309 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
5310 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
5312 if (pack
->bw_txg
> txg
)
5314 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
5317 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
5318 fatal(B_FALSE
, "wrong index: "
5319 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
5320 pack
->bw_index
, n
, i
);
5322 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
5323 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
5326 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
5327 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
5330 pack
->bw_index
= n
+ i
;
5332 pack
->bw_data
= 1 + ztest_random(-2ULL);
5339 #undef OD_ARRAY_SIZE
5340 #define OD_ARRAY_SIZE 2
5343 ztest_dmu_read_write_zcopy(ztest_ds_t
*zd
, uint64_t id
)
5345 objset_t
*os
= zd
->zd_os
;
5352 bufwad_t
*packbuf
, *bigbuf
;
5353 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
5354 uint64_t blocksize
= ztest_random_blocksize();
5355 uint64_t chunksize
= blocksize
;
5356 uint64_t regions
= 997;
5357 uint64_t stride
= 123456789ULL;
5359 dmu_buf_t
*bonus_db
;
5360 arc_buf_t
**bigbuf_arcbufs
;
5361 dmu_object_info_t doi
;
5362 uint32_t dmu_read_flags
= DMU_READ_PREFETCH
;
5365 * We will randomly set when to do O_DIRECT on a read.
5367 if (ztest_random(4) == 0)
5368 dmu_read_flags
|= DMU_DIRECTIO
;
5370 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
5371 od
= umem_alloc(size
, UMEM_NOFAIL
);
5374 * This test uses two objects, packobj and bigobj, that are always
5375 * updated together (i.e. in the same tx) so that their contents are
5376 * in sync and can be compared. Their contents relate to each other
5377 * in a simple way: packobj is a dense array of 'bufwad' structures,
5378 * while bigobj is a sparse array of the same bufwads. Specifically,
5379 * for any index n, there are three bufwads that should be identical:
5381 * packobj, at offset n * sizeof (bufwad_t)
5382 * bigobj, at the head of the nth chunk
5383 * bigobj, at the tail of the nth chunk
5385 * The chunk size is set equal to bigobj block size so that
5386 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5390 * Read the directory info. If it's the first time, set things up.
5392 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5393 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
5397 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
5398 umem_free(od
, size
);
5402 bigobj
= od
[0].od_object
;
5403 packobj
= od
[1].od_object
;
5404 blocksize
= od
[0].od_blocksize
;
5405 chunksize
= blocksize
;
5406 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5408 VERIFY0(dmu_object_info(os
, bigobj
, &doi
));
5409 VERIFY(ISP2(doi
.doi_data_block_size
));
5410 VERIFY3U(chunksize
, ==, doi
.doi_data_block_size
);
5411 VERIFY3U(chunksize
, >=, 2 * sizeof (bufwad_t
));
5414 * Pick a random index and compute the offsets into packobj and bigobj.
5416 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5417 s
= 1 + ztest_random(width
- 1);
5419 packoff
= n
* sizeof (bufwad_t
);
5420 packsize
= s
* sizeof (bufwad_t
);
5422 bigoff
= n
* chunksize
;
5423 bigsize
= s
* chunksize
;
5425 packbuf
= umem_zalloc(packsize
, UMEM_NOFAIL
);
5426 bigbuf
= umem_zalloc(bigsize
, UMEM_NOFAIL
);
5428 VERIFY0(dmu_bonus_hold(os
, bigobj
, FTAG
, &bonus_db
));
5430 bigbuf_arcbufs
= umem_zalloc(2 * s
* sizeof (arc_buf_t
*), UMEM_NOFAIL
);
5433 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5434 * Iteration 1 test zcopy to already referenced dbufs.
5435 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5436 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5437 * Iteration 4 test zcopy when dbuf is no longer dirty.
5438 * Iteration 5 test zcopy when it can't be done.
5439 * Iteration 6 one more zcopy write.
5441 for (i
= 0; i
< 7; i
++) {
5446 * In iteration 5 (i == 5) use arcbufs
5447 * that don't match bigobj blksz to test
5448 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5449 * assign an arcbuf to a dbuf.
5451 for (j
= 0; j
< s
; j
++) {
5452 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5454 dmu_request_arcbuf(bonus_db
, chunksize
);
5456 bigbuf_arcbufs
[2 * j
] =
5457 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5458 bigbuf_arcbufs
[2 * j
+ 1] =
5459 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5464 * Get a tx for the mods to both packobj and bigobj.
5466 tx
= dmu_tx_create(os
);
5468 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5469 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5471 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5473 umem_free(packbuf
, packsize
);
5474 umem_free(bigbuf
, bigsize
);
5475 for (j
= 0; j
< s
; j
++) {
5477 chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5478 dmu_return_arcbuf(bigbuf_arcbufs
[j
]);
5481 bigbuf_arcbufs
[2 * j
]);
5483 bigbuf_arcbufs
[2 * j
+ 1]);
5486 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5487 umem_free(od
, size
);
5488 dmu_buf_rele(bonus_db
, FTAG
);
5493 * 50% of the time don't read objects in the 1st iteration to
5494 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5495 * no existing dbufs for the specified offsets.
5497 if (i
!= 0 || ztest_random(2) != 0) {
5498 error
= dmu_read(os
, packobj
, packoff
,
5499 packsize
, packbuf
, dmu_read_flags
);
5501 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
,
5502 bigbuf
, dmu_read_flags
);
5505 compare_and_update_pbbufs(s
, packbuf
, bigbuf
, bigsize
,
5509 * We've verified all the old bufwads, and made new ones.
5510 * Now write them out.
5512 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5513 if (ztest_opts
.zo_verbose
>= 7) {
5514 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5516 bigoff
, bigsize
, txg
);
5518 for (off
= bigoff
, j
= 0; j
< s
; j
++, off
+= chunksize
) {
5520 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5521 memcpy(bigbuf_arcbufs
[j
]->b_data
,
5522 (caddr_t
)bigbuf
+ (off
- bigoff
),
5525 memcpy(bigbuf_arcbufs
[2 * j
]->b_data
,
5526 (caddr_t
)bigbuf
+ (off
- bigoff
),
5528 memcpy(bigbuf_arcbufs
[2 * j
+ 1]->b_data
,
5529 (caddr_t
)bigbuf
+ (off
- bigoff
) +
5535 VERIFY(dmu_buf_hold(os
, bigobj
, off
,
5536 FTAG
, &dbt
, DMU_READ_NO_PREFETCH
) == 0);
5538 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5539 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5540 off
, bigbuf_arcbufs
[j
], tx
));
5542 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5543 off
, bigbuf_arcbufs
[2 * j
], tx
));
5544 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5545 off
+ chunksize
/ 2,
5546 bigbuf_arcbufs
[2 * j
+ 1], tx
));
5549 dmu_buf_rele(dbt
, FTAG
);
5555 * Sanity check the stuff we just wrote.
5558 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5559 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5561 VERIFY0(dmu_read(os
, packobj
, packoff
,
5562 packsize
, packcheck
, dmu_read_flags
));
5563 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5564 bigsize
, bigcheck
, dmu_read_flags
));
5566 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5567 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5569 umem_free(packcheck
, packsize
);
5570 umem_free(bigcheck
, bigsize
);
5573 txg_wait_open(dmu_objset_pool(os
), 0, B_TRUE
);
5574 } else if (i
== 3) {
5575 txg_wait_synced(dmu_objset_pool(os
), 0);
5579 dmu_buf_rele(bonus_db
, FTAG
);
5580 umem_free(packbuf
, packsize
);
5581 umem_free(bigbuf
, bigsize
);
5582 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5583 umem_free(od
, size
);
5587 ztest_dmu_write_parallel(ztest_ds_t
*zd
, uint64_t id
)
5592 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5593 uint64_t offset
= (1ULL << (ztest_random(20) + 43)) +
5594 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5597 * Have multiple threads write to large offsets in an object
5598 * to verify that parallel writes to an object -- even to the
5599 * same blocks within the object -- doesn't cause any trouble.
5601 ztest_od_init(od
, ID_PARALLEL
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5603 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0)
5606 while (ztest_random(10) != 0)
5607 ztest_io(zd
, od
->od_object
, offset
);
5609 umem_free(od
, sizeof (ztest_od_t
));
5613 ztest_dmu_prealloc(ztest_ds_t
*zd
, uint64_t id
)
5616 uint64_t offset
= (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT
)) +
5617 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5618 uint64_t count
= ztest_random(20) + 1;
5619 uint64_t blocksize
= ztest_random_blocksize();
5622 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5624 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5626 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5627 !ztest_random(2)) != 0) {
5628 umem_free(od
, sizeof (ztest_od_t
));
5632 if (ztest_truncate(zd
, od
->od_object
, offset
, count
* blocksize
) != 0) {
5633 umem_free(od
, sizeof (ztest_od_t
));
5637 ztest_prealloc(zd
, od
->od_object
, offset
, count
* blocksize
);
5639 data
= umem_zalloc(blocksize
, UMEM_NOFAIL
);
5641 while (ztest_random(count
) != 0) {
5642 uint64_t randoff
= offset
+ (ztest_random(count
) * blocksize
);
5643 if (ztest_write(zd
, od
->od_object
, randoff
, blocksize
,
5646 while (ztest_random(4) != 0)
5647 ztest_io(zd
, od
->od_object
, randoff
);
5650 umem_free(data
, blocksize
);
5651 umem_free(od
, sizeof (ztest_od_t
));
5655 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5657 #define ZTEST_ZAP_MIN_INTS 1
5658 #define ZTEST_ZAP_MAX_INTS 4
5659 #define ZTEST_ZAP_MAX_PROPS 1000
5662 ztest_zap(ztest_ds_t
*zd
, uint64_t id
)
5664 objset_t
*os
= zd
->zd_os
;
5667 uint64_t txg
, last_txg
;
5668 uint64_t value
[ZTEST_ZAP_MAX_INTS
];
5669 uint64_t zl_ints
, zl_intsize
, prop
;
5672 char propname
[100], txgname
[100];
5674 const char *const hc
[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5676 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5677 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5679 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5680 !ztest_random(2)) != 0)
5683 object
= od
->od_object
;
5686 * Generate a known hash collision, and verify that
5687 * we can lookup and remove both entries.
5689 tx
= dmu_tx_create(os
);
5690 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5691 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5694 for (i
= 0; i
< 2; i
++) {
5696 VERIFY0(zap_add(os
, object
, hc
[i
], sizeof (uint64_t),
5699 for (i
= 0; i
< 2; i
++) {
5700 VERIFY3U(EEXIST
, ==, zap_add(os
, object
, hc
[i
],
5701 sizeof (uint64_t), 1, &value
[i
], tx
));
5703 zap_length(os
, object
, hc
[i
], &zl_intsize
, &zl_ints
));
5704 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5705 ASSERT3U(zl_ints
, ==, 1);
5707 for (i
= 0; i
< 2; i
++) {
5708 VERIFY0(zap_remove(os
, object
, hc
[i
], tx
));
5713 * Generate a bunch of random entries.
5715 ints
= MAX(ZTEST_ZAP_MIN_INTS
, object
% ZTEST_ZAP_MAX_INTS
);
5717 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5718 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5719 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5720 memset(value
, 0, sizeof (value
));
5724 * If these zap entries already exist, validate their contents.
5726 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5728 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5729 ASSERT3U(zl_ints
, ==, 1);
5731 VERIFY0(zap_lookup(os
, object
, txgname
, zl_intsize
,
5732 zl_ints
, &last_txg
));
5734 VERIFY0(zap_length(os
, object
, propname
, &zl_intsize
,
5737 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5738 ASSERT3U(zl_ints
, ==, ints
);
5740 VERIFY0(zap_lookup(os
, object
, propname
, zl_intsize
,
5743 for (i
= 0; i
< ints
; i
++) {
5744 ASSERT3U(value
[i
], ==, last_txg
+ object
+ i
);
5747 ASSERT3U(error
, ==, ENOENT
);
5751 * Atomically update two entries in our zap object.
5752 * The first is named txg_%llu, and contains the txg
5753 * in which the property was last updated. The second
5754 * is named prop_%llu, and the nth element of its value
5755 * should be txg + object + n.
5757 tx
= dmu_tx_create(os
);
5758 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5759 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5764 fatal(B_FALSE
, "zap future leak: old %"PRIu64
" new %"PRIu64
"",
5767 for (i
= 0; i
< ints
; i
++)
5768 value
[i
] = txg
+ object
+ i
;
5770 VERIFY0(zap_update(os
, object
, txgname
, sizeof (uint64_t),
5772 VERIFY0(zap_update(os
, object
, propname
, sizeof (uint64_t),
5778 * Remove a random pair of entries.
5780 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5781 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5782 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5784 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5786 if (error
== ENOENT
)
5791 tx
= dmu_tx_create(os
);
5792 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5793 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5796 VERIFY0(zap_remove(os
, object
, txgname
, tx
));
5797 VERIFY0(zap_remove(os
, object
, propname
, tx
));
5800 umem_free(od
, sizeof (ztest_od_t
));
5804 * Test case to test the upgrading of a microzap to fatzap.
5807 ztest_fzap(ztest_ds_t
*zd
, uint64_t id
)
5809 objset_t
*os
= zd
->zd_os
;
5811 uint64_t object
, txg
, value
;
5813 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5814 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5816 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5817 !ztest_random(2)) != 0)
5819 object
= od
->od_object
;
5822 * Add entries to this ZAP and make sure it spills over
5823 * and gets upgraded to a fatzap. Also, since we are adding
5824 * 2050 entries we should see ptrtbl growth and leaf-block split.
5826 for (value
= 0; value
< 2050; value
++) {
5827 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5831 (void) snprintf(name
, sizeof (name
), "fzap-%"PRIu64
"-%"PRIu64
"",
5834 tx
= dmu_tx_create(os
);
5835 dmu_tx_hold_zap(tx
, object
, B_TRUE
, name
);
5836 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5839 error
= zap_add(os
, object
, name
, sizeof (uint64_t), 1,
5841 ASSERT(error
== 0 || error
== EEXIST
);
5845 umem_free(od
, sizeof (ztest_od_t
));
5849 ztest_zap_parallel(ztest_ds_t
*zd
, uint64_t id
)
5852 objset_t
*os
= zd
->zd_os
;
5854 uint64_t txg
, object
, count
, wsize
, wc
, zl_wsize
, zl_wc
;
5856 int i
, namelen
, error
;
5857 int micro
= ztest_random(2);
5858 char name
[20], string_value
[20];
5861 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5862 ztest_od_init(od
, ID_PARALLEL
, FTAG
, micro
, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5864 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5865 umem_free(od
, sizeof (ztest_od_t
));
5869 object
= od
->od_object
;
5872 * Generate a random name of the form 'xxx.....' where each
5873 * x is a random printable character and the dots are dots.
5874 * There are 94 such characters, and the name length goes from
5875 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5877 namelen
= ztest_random(sizeof (name
) - 5) + 5 + 1;
5879 for (i
= 0; i
< 3; i
++)
5880 name
[i
] = '!' + ztest_random('~' - '!' + 1);
5881 for (; i
< namelen
- 1; i
++)
5885 if ((namelen
& 1) || micro
) {
5886 wsize
= sizeof (txg
);
5892 data
= string_value
;
5896 VERIFY0(zap_count(os
, object
, &count
));
5897 ASSERT3S(count
, !=, -1ULL);
5900 * Select an operation: length, lookup, add, update, remove.
5902 i
= ztest_random(5);
5905 tx
= dmu_tx_create(os
);
5906 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5907 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5909 umem_free(od
, sizeof (ztest_od_t
));
5912 memcpy(string_value
, name
, namelen
);
5916 memset(string_value
, 0, namelen
);
5922 error
= zap_length(os
, object
, name
, &zl_wsize
, &zl_wc
);
5924 ASSERT3U(wsize
, ==, zl_wsize
);
5925 ASSERT3U(wc
, ==, zl_wc
);
5927 ASSERT3U(error
, ==, ENOENT
);
5932 error
= zap_lookup(os
, object
, name
, wsize
, wc
, data
);
5934 if (data
== string_value
&&
5935 memcmp(name
, data
, namelen
) != 0)
5936 fatal(B_FALSE
, "name '%s' != val '%s' len %d",
5937 name
, (char *)data
, namelen
);
5939 ASSERT3U(error
, ==, ENOENT
);
5944 error
= zap_add(os
, object
, name
, wsize
, wc
, data
, tx
);
5945 ASSERT(error
== 0 || error
== EEXIST
);
5949 VERIFY0(zap_update(os
, object
, name
, wsize
, wc
, data
, tx
));
5953 error
= zap_remove(os
, object
, name
, tx
);
5954 ASSERT(error
== 0 || error
== ENOENT
);
5961 umem_free(od
, sizeof (ztest_od_t
));
5965 * Commit callback data.
5967 typedef struct ztest_cb_data
{
5968 list_node_t zcd_node
;
5970 int zcd_expected_err
;
5971 boolean_t zcd_added
;
5972 boolean_t zcd_called
;
5976 /* This is the actual commit callback function */
5978 ztest_commit_callback(void *arg
, int error
)
5980 ztest_cb_data_t
*data
= arg
;
5981 uint64_t synced_txg
;
5983 VERIFY3P(data
, !=, NULL
);
5984 VERIFY3S(data
->zcd_expected_err
, ==, error
);
5985 VERIFY(!data
->zcd_called
);
5987 synced_txg
= spa_last_synced_txg(data
->zcd_spa
);
5988 if (data
->zcd_txg
> synced_txg
)
5990 "commit callback of txg %"PRIu64
" called prematurely, "
5991 "last synced txg = %"PRIu64
"\n",
5992 data
->zcd_txg
, synced_txg
);
5994 data
->zcd_called
= B_TRUE
;
5996 if (error
== ECANCELED
) {
5997 ASSERT0(data
->zcd_txg
);
5998 ASSERT(!data
->zcd_added
);
6001 * The private callback data should be destroyed here, but
6002 * since we are going to check the zcd_called field after
6003 * dmu_tx_abort(), we will destroy it there.
6008 ASSERT(data
->zcd_added
);
6009 ASSERT3U(data
->zcd_txg
, !=, 0);
6011 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
6013 /* See if this cb was called more quickly */
6014 if ((synced_txg
- data
->zcd_txg
) < zc_min_txg_delay
)
6015 zc_min_txg_delay
= synced_txg
- data
->zcd_txg
;
6017 /* Remove our callback from the list */
6018 list_remove(&zcl
.zcl_callbacks
, data
);
6020 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
6022 umem_free(data
, sizeof (ztest_cb_data_t
));
6025 /* Allocate and initialize callback data structure */
6026 static ztest_cb_data_t
*
6027 ztest_create_cb_data(objset_t
*os
, uint64_t txg
)
6029 ztest_cb_data_t
*cb_data
;
6031 cb_data
= umem_zalloc(sizeof (ztest_cb_data_t
), UMEM_NOFAIL
);
6033 cb_data
->zcd_txg
= txg
;
6034 cb_data
->zcd_spa
= dmu_objset_spa(os
);
6035 list_link_init(&cb_data
->zcd_node
);
6041 * Commit callback test.
6044 ztest_dmu_commit_callbacks(ztest_ds_t
*zd
, uint64_t id
)
6046 objset_t
*os
= zd
->zd_os
;
6049 ztest_cb_data_t
*cb_data
[3], *tmp_cb
;
6050 uint64_t old_txg
, txg
;
6053 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
6054 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
6056 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
6057 umem_free(od
, sizeof (ztest_od_t
));
6061 tx
= dmu_tx_create(os
);
6063 cb_data
[0] = ztest_create_cb_data(os
, 0);
6064 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[0]);
6066 dmu_tx_hold_write(tx
, od
->od_object
, 0, sizeof (uint64_t));
6068 /* Every once in a while, abort the transaction on purpose */
6069 if (ztest_random(100) == 0)
6073 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
6075 txg
= error
? 0 : dmu_tx_get_txg(tx
);
6077 cb_data
[0]->zcd_txg
= txg
;
6078 cb_data
[1] = ztest_create_cb_data(os
, txg
);
6079 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[1]);
6083 * It's not a strict requirement to call the registered
6084 * callbacks from inside dmu_tx_abort(), but that's what
6085 * it's supposed to happen in the current implementation
6086 * so we will check for that.
6088 for (i
= 0; i
< 2; i
++) {
6089 cb_data
[i
]->zcd_expected_err
= ECANCELED
;
6090 VERIFY(!cb_data
[i
]->zcd_called
);
6095 for (i
= 0; i
< 2; i
++) {
6096 VERIFY(cb_data
[i
]->zcd_called
);
6097 umem_free(cb_data
[i
], sizeof (ztest_cb_data_t
));
6100 umem_free(od
, sizeof (ztest_od_t
));
6104 cb_data
[2] = ztest_create_cb_data(os
, txg
);
6105 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[2]);
6108 * Read existing data to make sure there isn't a future leak.
6110 VERIFY0(dmu_read(os
, od
->od_object
, 0, sizeof (uint64_t),
6111 &old_txg
, DMU_READ_PREFETCH
));
6115 "future leak: got %"PRIu64
", open txg is %"PRIu64
"",
6118 dmu_write(os
, od
->od_object
, 0, sizeof (uint64_t), &txg
, tx
);
6120 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
6123 * Since commit callbacks don't have any ordering requirement and since
6124 * it is theoretically possible for a commit callback to be called
6125 * after an arbitrary amount of time has elapsed since its txg has been
6126 * synced, it is difficult to reliably determine whether a commit
6127 * callback hasn't been called due to high load or due to a flawed
6130 * In practice, we will assume that if after a certain number of txgs a
6131 * commit callback hasn't been called, then most likely there's an
6132 * implementation bug..
6134 tmp_cb
= list_head(&zcl
.zcl_callbacks
);
6135 if (tmp_cb
!= NULL
&&
6136 tmp_cb
->zcd_txg
+ ZTEST_COMMIT_CB_THRESH
< txg
) {
6138 "Commit callback threshold exceeded, "
6139 "oldest txg: %"PRIu64
", open txg: %"PRIu64
"\n",
6140 tmp_cb
->zcd_txg
, txg
);
6144 * Let's find the place to insert our callbacks.
6146 * Even though the list is ordered by txg, it is possible for the
6147 * insertion point to not be the end because our txg may already be
6148 * quiescing at this point and other callbacks in the open txg
6149 * (from other objsets) may have sneaked in.
6151 tmp_cb
= list_tail(&zcl
.zcl_callbacks
);
6152 while (tmp_cb
!= NULL
&& tmp_cb
->zcd_txg
> txg
)
6153 tmp_cb
= list_prev(&zcl
.zcl_callbacks
, tmp_cb
);
6155 /* Add the 3 callbacks to the list */
6156 for (i
= 0; i
< 3; i
++) {
6158 list_insert_head(&zcl
.zcl_callbacks
, cb_data
[i
]);
6160 list_insert_after(&zcl
.zcl_callbacks
, tmp_cb
,
6163 cb_data
[i
]->zcd_added
= B_TRUE
;
6164 VERIFY(!cb_data
[i
]->zcd_called
);
6166 tmp_cb
= cb_data
[i
];
6171 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
6175 umem_free(od
, sizeof (ztest_od_t
));
6179 * Visit each object in the dataset. Verify that its properties
6180 * are consistent what was stored in the block tag when it was created,
6181 * and that its unused bonus buffer space has not been overwritten.
6184 ztest_verify_dnode_bt(ztest_ds_t
*zd
, uint64_t id
)
6187 objset_t
*os
= zd
->zd_os
;
6191 for (obj
= 0; err
== 0; err
= dmu_object_next(os
, &obj
, FALSE
, 0)) {
6192 ztest_block_tag_t
*bt
= NULL
;
6193 dmu_object_info_t doi
;
6196 ztest_object_lock(zd
, obj
, ZTRL_READER
);
6197 if (dmu_bonus_hold(os
, obj
, FTAG
, &db
) != 0) {
6198 ztest_object_unlock(zd
, obj
);
6202 dmu_object_info_from_db(db
, &doi
);
6203 if (doi
.doi_bonus_size
>= sizeof (*bt
))
6204 bt
= ztest_bt_bonus(db
);
6206 if (bt
&& bt
->bt_magic
== BT_MAGIC
) {
6207 ztest_bt_verify(bt
, os
, obj
, doi
.doi_dnodesize
,
6208 bt
->bt_offset
, bt
->bt_gen
, bt
->bt_txg
,
6210 ztest_verify_unused_bonus(db
, bt
, obj
, os
, bt
->bt_gen
);
6213 dmu_buf_rele(db
, FTAG
);
6214 ztest_object_unlock(zd
, obj
);
6219 ztest_dsl_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
6222 zfs_prop_t proplist
[] = {
6224 ZFS_PROP_COMPRESSION
,
6229 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6231 for (int p
= 0; p
< sizeof (proplist
) / sizeof (proplist
[0]); p
++) {
6232 int error
= ztest_dsl_prop_set_uint64(zd
->zd_name
, proplist
[p
],
6233 ztest_random_dsl_prop(proplist
[p
]), (int)ztest_random(2));
6234 ASSERT(error
== 0 || error
== ENOSPC
);
6237 int error
= ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_RECORDSIZE
,
6238 ztest_random_blocksize(), (int)ztest_random(2));
6239 ASSERT(error
== 0 || error
== ENOSPC
);
6241 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6245 ztest_spa_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
6247 (void) zd
, (void) id
;
6249 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6251 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM
, ztest_random(2));
6253 nvlist_t
*props
= fnvlist_alloc();
6255 VERIFY0(spa_prop_get(ztest_spa
, props
));
6257 if (ztest_opts
.zo_verbose
>= 6)
6258 dump_nvlist(props
, 4);
6260 fnvlist_free(props
);
6262 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6266 user_release_one(const char *snapname
, const char *holdname
)
6268 nvlist_t
*snaps
, *holds
;
6271 snaps
= fnvlist_alloc();
6272 holds
= fnvlist_alloc();
6273 fnvlist_add_boolean(holds
, holdname
);
6274 fnvlist_add_nvlist(snaps
, snapname
, holds
);
6275 fnvlist_free(holds
);
6276 error
= dsl_dataset_user_release(snaps
, NULL
);
6277 fnvlist_free(snaps
);
6282 * Test snapshot hold/release and deferred destroy.
6285 ztest_dmu_snapshot_hold(ztest_ds_t
*zd
, uint64_t id
)
6288 objset_t
*os
= zd
->zd_os
;
6292 char clonename
[100];
6294 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
6297 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6299 dmu_objset_name(os
, osname
);
6301 (void) snprintf(snapname
, sizeof (snapname
), "sh1_%"PRIu64
"", id
);
6302 (void) snprintf(fullname
, sizeof (fullname
), "%s@%s", osname
, snapname
);
6303 (void) snprintf(clonename
, sizeof (clonename
), "%s/ch1_%"PRIu64
"",
6305 (void) snprintf(tag
, sizeof (tag
), "tag_%"PRIu64
"", id
);
6308 * Clean up from any previous run.
6310 error
= dsl_destroy_head(clonename
);
6311 if (error
!= ENOENT
)
6313 error
= user_release_one(fullname
, tag
);
6314 if (error
!= ESRCH
&& error
!= ENOENT
)
6316 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
6317 if (error
!= ENOENT
)
6321 * Create snapshot, clone it, mark snap for deferred destroy,
6322 * destroy clone, verify snap was also destroyed.
6324 error
= dmu_objset_snapshot_one(osname
, snapname
);
6326 if (error
== ENOSPC
) {
6327 ztest_record_enospc("dmu_objset_snapshot");
6330 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
6333 error
= dmu_objset_clone(clonename
, fullname
);
6335 if (error
== ENOSPC
) {
6336 ztest_record_enospc("dmu_objset_clone");
6339 fatal(B_FALSE
, "dmu_objset_clone(%s) = %d", clonename
, error
);
6342 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
6344 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6348 error
= dsl_destroy_head(clonename
);
6350 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clonename
, error
);
6352 error
= dmu_objset_hold(fullname
, FTAG
, &origin
);
6353 if (error
!= ENOENT
)
6354 fatal(B_FALSE
, "dmu_objset_hold(%s) = %d", fullname
, error
);
6357 * Create snapshot, add temporary hold, verify that we can't
6358 * destroy a held snapshot, mark for deferred destroy,
6359 * release hold, verify snapshot was destroyed.
6361 error
= dmu_objset_snapshot_one(osname
, snapname
);
6363 if (error
== ENOSPC
) {
6364 ztest_record_enospc("dmu_objset_snapshot");
6367 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
6370 holds
= fnvlist_alloc();
6371 fnvlist_add_string(holds
, fullname
, tag
);
6372 error
= dsl_dataset_user_hold(holds
, 0, NULL
);
6373 fnvlist_free(holds
);
6375 if (error
== ENOSPC
) {
6376 ztest_record_enospc("dsl_dataset_user_hold");
6379 fatal(B_FALSE
, "dsl_dataset_user_hold(%s, %s) = %u",
6380 fullname
, tag
, error
);
6383 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
6384 if (error
!= EBUSY
) {
6385 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6389 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
6391 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6395 error
= user_release_one(fullname
, tag
);
6397 fatal(B_FALSE
, "user_release_one(%s, %s) = %d",
6398 fullname
, tag
, error
);
6400 VERIFY3U(dmu_objset_hold(fullname
, FTAG
, &origin
), ==, ENOENT
);
6403 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6407 * Inject random faults into the on-disk data.
6410 ztest_fault_inject(ztest_ds_t
*zd
, uint64_t id
)
6412 (void) zd
, (void) id
;
6413 ztest_shared_t
*zs
= ztest_shared
;
6414 spa_t
*spa
= ztest_spa
;
6418 uint64_t bad
= 0x1990c0ffeedecadeull
;
6420 uint64_t raidz_children
;
6424 int bshift
= SPA_MAXBLOCKSHIFT
+ 2;
6430 boolean_t islog
= B_FALSE
;
6431 boolean_t injected
= B_FALSE
;
6433 path0
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6434 pathrand
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6436 mutex_enter(&ztest_vdev_lock
);
6439 * Device removal is in progress, fault injection must be disabled
6440 * until it completes and the pool is scrubbed. The fault injection
6441 * strategy for damaging blocks does not take in to account evacuated
6442 * blocks which may have already been damaged.
6444 if (ztest_device_removal_active
)
6448 * The fault injection strategy for damaging blocks cannot be used
6449 * if raidz expansion is in progress. The leaves value
6450 * (attached raidz children) is variable and strategy for damaging
6451 * blocks will corrupt same data blocks on different child vdevs
6452 * because of the reflow process.
6454 if (spa
->spa_raidz_expand
!= NULL
)
6457 maxfaults
= MAXFAULTS(zs
);
6458 raidz_children
= ztest_get_raidz_children(spa
);
6459 leaves
= MAX(zs
->zs_mirrors
, 1) * raidz_children
;
6460 mirror_save
= zs
->zs_mirrors
;
6462 ASSERT3U(leaves
, >=, 1);
6465 * While ztest is running the number of leaves will not change. This
6466 * is critical for the fault injection logic as it determines where
6467 * errors can be safely injected such that they are always repairable.
6469 * When restarting ztest a different number of leaves may be requested
6470 * which will shift the regions to be damaged. This is fine as long
6471 * as the pool has been scrubbed prior to using the new mapping.
6472 * Failure to do can result in non-repairable damage being injected.
6474 if (ztest_pool_scrubbed
== B_FALSE
)
6478 * Grab the name lock as reader. There are some operations
6479 * which don't like to have their vdevs changed while
6480 * they are in progress (i.e. spa_change_guid). Those
6481 * operations will have grabbed the name lock as writer.
6483 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6486 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6488 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
6490 if (ztest_random(2) == 0) {
6492 * Inject errors on a normal data device or slog device.
6494 top
= ztest_random_vdev_top(spa
, B_TRUE
);
6495 leaf
= ztest_random(leaves
) + zs
->zs_splits
;
6498 * Generate paths to the first leaf in this top-level vdev,
6499 * and to the random leaf we selected. We'll induce transient
6500 * write failures and random online/offline activity on leaf 0,
6501 * and we'll write random garbage to the randomly chosen leaf.
6503 (void) snprintf(path0
, MAXPATHLEN
, ztest_dev_template
,
6504 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6505 top
* leaves
+ zs
->zs_splits
);
6506 (void) snprintf(pathrand
, MAXPATHLEN
, ztest_dev_template
,
6507 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6508 top
* leaves
+ leaf
);
6510 vd0
= vdev_lookup_by_path(spa
->spa_root_vdev
, path0
);
6511 if (vd0
!= NULL
&& vd0
->vdev_top
->vdev_islog
)
6515 * If the top-level vdev needs to be resilvered
6516 * then we only allow faults on the device that is
6519 if (vd0
!= NULL
&& maxfaults
!= 1 &&
6520 (!vdev_resilver_needed(vd0
->vdev_top
, NULL
, NULL
) ||
6521 vd0
->vdev_resilver_txg
!= 0)) {
6523 * Make vd0 explicitly claim to be unreadable,
6524 * or unwritable, or reach behind its back
6525 * and close the underlying fd. We can do this if
6526 * maxfaults == 0 because we'll fail and reexecute,
6527 * and we can do it if maxfaults >= 2 because we'll
6528 * have enough redundancy. If maxfaults == 1, the
6529 * combination of this with injection of random data
6530 * corruption below exceeds the pool's fault tolerance.
6532 vdev_file_t
*vf
= vd0
->vdev_tsd
;
6534 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6535 (long long)vd0
->vdev_id
, (int)maxfaults
);
6537 if (vf
!= NULL
&& ztest_random(3) == 0) {
6538 (void) close(vf
->vf_file
->f_fd
);
6539 vf
->vf_file
->f_fd
= -1;
6540 } else if (ztest_random(2) == 0) {
6541 vd0
->vdev_cant_read
= B_TRUE
;
6543 vd0
->vdev_cant_write
= B_TRUE
;
6545 guid0
= vd0
->vdev_guid
;
6549 * Inject errors on an l2cache device.
6551 spa_aux_vdev_t
*sav
= &spa
->spa_l2cache
;
6553 if (sav
->sav_count
== 0) {
6554 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6555 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6558 vd0
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
6559 guid0
= vd0
->vdev_guid
;
6560 (void) strlcpy(path0
, vd0
->vdev_path
, MAXPATHLEN
);
6561 (void) strlcpy(pathrand
, vd0
->vdev_path
, MAXPATHLEN
);
6565 maxfaults
= INT_MAX
; /* no limit on cache devices */
6568 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6569 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6572 * If we can tolerate two or more faults, or we're dealing
6573 * with a slog, randomly online/offline vd0.
6575 if ((maxfaults
>= 2 || islog
) && guid0
!= 0) {
6576 if (ztest_random(10) < 6) {
6577 int flags
= (ztest_random(2) == 0 ?
6578 ZFS_OFFLINE_TEMPORARY
: 0);
6581 * We have to grab the zs_name_lock as writer to
6582 * prevent a race between offlining a slog and
6583 * destroying a dataset. Offlining the slog will
6584 * grab a reference on the dataset which may cause
6585 * dsl_destroy_head() to fail with EBUSY thus
6586 * leaving the dataset in an inconsistent state.
6589 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6591 VERIFY3U(vdev_offline(spa
, guid0
, flags
), !=, EBUSY
);
6594 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6597 * Ideally we would like to be able to randomly
6598 * call vdev_[on|off]line without holding locks
6599 * to force unpredictable failures but the side
6600 * effects of vdev_[on|off]line prevent us from
6603 (void) vdev_online(spa
, guid0
, 0, NULL
);
6611 * We have at least single-fault tolerance, so inject data corruption.
6613 fd
= open(pathrand
, O_RDWR
);
6615 if (fd
== -1) /* we hit a gap in the device namespace */
6618 fsize
= lseek(fd
, 0, SEEK_END
);
6620 while (--iters
!= 0) {
6622 * The offset must be chosen carefully to ensure that
6623 * we do not inject a given logical block with errors
6624 * on two different leaf devices, because ZFS can not
6625 * tolerate that (if maxfaults==1).
6627 * To achieve this we divide each leaf device into
6628 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6629 * Each chunk is further divided into error-injection
6630 * ranges (can accept errors) and clear ranges (we do
6631 * not inject errors in those). Each error-injection
6632 * range can accept errors only for a single leaf vdev.
6633 * Error-injection ranges are separated by clear ranges.
6635 * For example, with 3 leaves, each chunk looks like:
6636 * 0 to 32M: injection range for leaf 0
6637 * 32M to 64M: clear range - no injection allowed
6638 * 64M to 96M: injection range for leaf 1
6639 * 96M to 128M: clear range - no injection allowed
6640 * 128M to 160M: injection range for leaf 2
6641 * 160M to 192M: clear range - no injection allowed
6643 * Each clear range must be large enough such that a
6644 * single block cannot straddle it. This way a block
6645 * can't be a target in two different injection ranges
6646 * (on different leaf vdevs).
6648 offset
= ztest_random(fsize
/ (leaves
<< bshift
)) *
6649 (leaves
<< bshift
) + (leaf
<< bshift
) +
6650 (ztest_random(1ULL << (bshift
- 1)) & -8ULL);
6653 * Only allow damage to the labels at one end of the vdev.
6655 * If all labels are damaged, the device will be totally
6656 * inaccessible, which will result in loss of data,
6657 * because we also damage (parts of) the other side of
6660 * Additionally, we will always have both an even and an
6661 * odd label, so that we can handle crashes in the
6662 * middle of vdev_config_sync().
6664 if ((leaf
& 1) == 0 && offset
< VDEV_LABEL_START_SIZE
)
6668 * The two end labels are stored at the "end" of the disk, but
6669 * the end of the disk (vdev_psize) is aligned to
6670 * sizeof (vdev_label_t).
6672 uint64_t psize
= P2ALIGN_TYPED(fsize
, sizeof (vdev_label_t
),
6674 if ((leaf
& 1) == 1 &&
6675 offset
+ sizeof (bad
) > psize
- VDEV_LABEL_END_SIZE
)
6678 if (mirror_save
!= zs
->zs_mirrors
) {
6683 if (pwrite(fd
, &bad
, sizeof (bad
), offset
) != sizeof (bad
))
6685 "can't inject bad word at 0x%"PRIx64
" in %s",
6688 if (ztest_opts
.zo_verbose
>= 7)
6689 (void) printf("injected bad word into %s,"
6690 " offset 0x%"PRIx64
"\n", pathrand
, offset
);
6697 mutex_exit(&ztest_vdev_lock
);
6699 if (injected
&& ztest_opts
.zo_raid_do_expand
) {
6700 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6702 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6703 txg_wait_synced(spa_get_dsl(spa
), 0);
6707 umem_free(path0
, MAXPATHLEN
);
6708 umem_free(pathrand
, MAXPATHLEN
);
6712 * By design ztest will never inject uncorrectable damage in to the pool.
6713 * Issue a scrub, wait for it to complete, and verify there is never any
6714 * persistent damage.
6716 * Only after a full scrub has been completed is it safe to start injecting
6717 * data corruption. See the comment in zfs_fault_inject().
6720 ztest_scrub_impl(spa_t
*spa
)
6722 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6726 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6727 txg_wait_synced(spa_get_dsl(spa
), 0);
6729 if (spa_approx_errlog_size(spa
) > 0)
6732 ztest_pool_scrubbed
= B_TRUE
;
6741 ztest_scrub(ztest_ds_t
*zd
, uint64_t id
)
6743 (void) zd
, (void) id
;
6744 spa_t
*spa
= ztest_spa
;
6748 * Scrub in progress by device removal.
6750 if (ztest_device_removal_active
)
6754 * Start a scrub, wait a moment, then force a restart.
6756 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
6757 (void) poll(NULL
, 0, 100);
6759 error
= ztest_scrub_impl(spa
);
6766 * Change the guid for the pool.
6769 ztest_reguid(ztest_ds_t
*zd
, uint64_t id
)
6771 (void) zd
, (void) id
;
6772 spa_t
*spa
= ztest_spa
;
6773 uint64_t orig
, load
;
6775 ztest_shared_t
*zs
= ztest_shared
;
6777 if (ztest_opts
.zo_mmp_test
)
6780 orig
= spa_guid(spa
);
6781 load
= spa_load_guid(spa
);
6783 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6784 error
= spa_change_guid(spa
, NULL
);
6785 zs
->zs_guid
= spa_guid(spa
);
6786 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6791 if (ztest_opts
.zo_verbose
>= 4) {
6792 (void) printf("Changed guid old %"PRIu64
" -> %"PRIu64
"\n",
6793 orig
, spa_guid(spa
));
6796 VERIFY3U(orig
, !=, spa_guid(spa
));
6797 VERIFY3U(load
, ==, spa_load_guid(spa
));
6801 ztest_blake3(ztest_ds_t
*zd
, uint64_t id
)
6803 (void) zd
, (void) id
;
6804 hrtime_t end
= gethrtime() + NANOSEC
;
6805 zio_cksum_salt_t salt
;
6806 void *salt_ptr
= &salt
.zcs_bytes
;
6807 struct abd
*abd_data
, *abd_meta
;
6812 const zfs_impl_t
*blake3
= zfs_impl_get_ops("blake3");
6814 size
= ztest_random_blocksize();
6815 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6816 abd_data
= abd_alloc(size
, B_FALSE
);
6817 abd_meta
= abd_alloc(size
, B_TRUE
);
6819 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6820 *ptr
= ztest_random(UINT_MAX
);
6821 memset(salt_ptr
, 'A', 32);
6823 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6824 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6826 while (gethrtime() <= end
) {
6827 int run_count
= 100;
6828 zio_cksum_t zc_ref1
, zc_ref2
;
6829 zio_cksum_t zc_res1
, zc_res2
;
6831 void *ref1
= &zc_ref1
;
6832 void *ref2
= &zc_ref2
;
6833 void *res1
= &zc_res1
;
6834 void *res2
= &zc_res2
;
6836 /* BLAKE3_KEY_LEN = 32 */
6837 VERIFY0(blake3
->setname("generic"));
6838 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6839 Blake3_InitKeyed(&ctx
, salt_ptr
);
6840 Blake3_Update(&ctx
, buf
, size
);
6841 Blake3_Final(&ctx
, ref1
);
6843 ZIO_CHECKSUM_BSWAP(&zc_ref2
);
6844 abd_checksum_blake3_tmpl_free(templ
);
6846 VERIFY0(blake3
->setname("cycle"));
6847 while (run_count
-- > 0) {
6849 /* Test current implementation */
6850 Blake3_InitKeyed(&ctx
, salt_ptr
);
6851 Blake3_Update(&ctx
, buf
, size
);
6852 Blake3_Final(&ctx
, res1
);
6854 ZIO_CHECKSUM_BSWAP(&zc_res2
);
6856 VERIFY0(memcmp(ref1
, res1
, 32));
6857 VERIFY0(memcmp(ref2
, res2
, 32));
6859 /* Test ABD - data */
6860 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6861 abd_checksum_blake3_native(abd_data
, size
,
6863 abd_checksum_blake3_byteswap(abd_data
, size
,
6866 VERIFY0(memcmp(ref1
, res1
, 32));
6867 VERIFY0(memcmp(ref2
, res2
, 32));
6869 /* Test ABD - metadata */
6870 abd_checksum_blake3_native(abd_meta
, size
,
6872 abd_checksum_blake3_byteswap(abd_meta
, size
,
6874 abd_checksum_blake3_tmpl_free(templ
);
6876 VERIFY0(memcmp(ref1
, res1
, 32));
6877 VERIFY0(memcmp(ref2
, res2
, 32));
6884 umem_free(buf
, size
);
6888 ztest_fletcher(ztest_ds_t
*zd
, uint64_t id
)
6890 (void) zd
, (void) id
;
6891 hrtime_t end
= gethrtime() + NANOSEC
;
6893 while (gethrtime() <= end
) {
6894 int run_count
= 100;
6896 struct abd
*abd_data
, *abd_meta
;
6901 zio_cksum_t zc_ref_byteswap
;
6903 size
= ztest_random_blocksize();
6905 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6906 abd_data
= abd_alloc(size
, B_FALSE
);
6907 abd_meta
= abd_alloc(size
, B_TRUE
);
6909 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6910 *ptr
= ztest_random(UINT_MAX
);
6912 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6913 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6915 VERIFY0(fletcher_4_impl_set("scalar"));
6916 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6917 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_byteswap
);
6919 VERIFY0(fletcher_4_impl_set("cycle"));
6920 while (run_count
-- > 0) {
6922 zio_cksum_t zc_byteswap
;
6924 fletcher_4_byteswap(buf
, size
, NULL
, &zc_byteswap
);
6925 fletcher_4_native(buf
, size
, NULL
, &zc
);
6927 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6928 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6929 sizeof (zc_byteswap
)));
6931 /* Test ABD - data */
6932 abd_fletcher_4_byteswap(abd_data
, size
, NULL
,
6934 abd_fletcher_4_native(abd_data
, size
, NULL
, &zc
);
6936 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6937 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6938 sizeof (zc_byteswap
)));
6940 /* Test ABD - metadata */
6941 abd_fletcher_4_byteswap(abd_meta
, size
, NULL
,
6943 abd_fletcher_4_native(abd_meta
, size
, NULL
, &zc
);
6945 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6946 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6947 sizeof (zc_byteswap
)));
6951 umem_free(buf
, size
);
6958 ztest_fletcher_incr(ztest_ds_t
*zd
, uint64_t id
)
6960 (void) zd
, (void) id
;
6966 zio_cksum_t zc_ref_bswap
;
6968 hrtime_t end
= gethrtime() + NANOSEC
;
6970 while (gethrtime() <= end
) {
6971 int run_count
= 100;
6973 size
= ztest_random_blocksize();
6974 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6976 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6977 *ptr
= ztest_random(UINT_MAX
);
6979 VERIFY0(fletcher_4_impl_set("scalar"));
6980 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6981 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_bswap
);
6983 VERIFY0(fletcher_4_impl_set("cycle"));
6985 while (run_count
-- > 0) {
6987 zio_cksum_t zc_bswap
;
6990 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6991 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6993 while (pos
< size
) {
6994 size_t inc
= 64 * ztest_random(size
/ 67);
6995 /* sometimes add few bytes to test non-simd */
6996 if (ztest_random(100) < 10)
6997 inc
+= P2ALIGN_TYPED(ztest_random(64),
6998 sizeof (uint32_t), uint64_t);
7000 if (inc
> (size
- pos
))
7003 fletcher_4_incremental_native(buf
+ pos
, inc
,
7005 fletcher_4_incremental_byteswap(buf
+ pos
, inc
,
7011 VERIFY3U(pos
, ==, size
);
7013 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
7014 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
7017 * verify if incremental on the whole buffer is
7018 * equivalent to non-incremental version
7020 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
7021 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
7023 fletcher_4_incremental_native(buf
, size
, &zc
);
7024 fletcher_4_incremental_byteswap(buf
, size
, &zc_bswap
);
7026 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
7027 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
7030 umem_free(buf
, size
);
7035 ztest_pool_prefetch_ddt(ztest_ds_t
*zd
, uint64_t id
)
7037 (void) zd
, (void) id
;
7040 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
7041 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7043 ddt_prefetch_all(spa
);
7045 spa_close(spa
, FTAG
);
7046 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7050 ztest_set_global_vars(void)
7052 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
7053 char *kv
= ztest_opts
.zo_gvars
[i
];
7054 VERIFY3U(strlen(kv
), <=, ZO_GVARS_MAX_ARGLEN
);
7055 VERIFY3U(strlen(kv
), >, 0);
7056 int err
= set_global_var(kv
);
7057 if (ztest_opts
.zo_verbose
> 0) {
7058 (void) printf("setting global var %s ... %s\n", kv
,
7059 err
? "failed" : "ok");
7062 (void) fprintf(stderr
,
7063 "failed to set global var '%s'\n", kv
);
7071 ztest_global_vars_to_zdb_args(void)
7073 char **args
= calloc(2*ztest_opts
.zo_gvars_count
+ 1, sizeof (char *));
7077 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
7078 *cur
++ = (char *)"-o";
7079 *cur
++ = ztest_opts
.zo_gvars
[i
];
7081 ASSERT3P(cur
, ==, &args
[2*ztest_opts
.zo_gvars_count
]);
7086 /* The end of strings is indicated by a NULL element */
7088 join_strings(char **strings
, const char *sep
)
7090 size_t totallen
= 0;
7091 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
7092 totallen
+= strlen(*sp
);
7093 totallen
+= strlen(sep
);
7096 ASSERT(totallen
>= strlen(sep
));
7097 totallen
-= strlen(sep
);
7100 size_t buflen
= totallen
+ 1;
7101 char *o
= umem_alloc(buflen
, UMEM_NOFAIL
); /* trailing 0 byte */
7103 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
7105 would
= strlcat(o
, *sp
, buflen
);
7106 VERIFY3U(would
, <, buflen
);
7107 if (*(sp
+1) == NULL
) {
7110 would
= strlcat(o
, sep
, buflen
);
7111 VERIFY3U(would
, <, buflen
);
7113 ASSERT3S(strlen(o
), ==, totallen
);
7118 ztest_check_path(char *path
)
7121 /* return true on success */
7122 return (!stat(path
, &s
));
7126 ztest_get_zdb_bin(char *bin
, int len
)
7130 * Try to use $ZDB and in-tree zdb path. If not successful, just
7131 * let popen to search through PATH.
7133 if ((zdb_path
= getenv("ZDB"))) {
7134 strlcpy(bin
, zdb_path
, len
); /* In env */
7135 if (!ztest_check_path(bin
)) {
7136 ztest_dump_core
= 0;
7137 fatal(B_TRUE
, "invalid ZDB '%s'", bin
);
7142 VERIFY3P(realpath(getexecname(), bin
), !=, NULL
);
7143 if (strstr(bin
, ".libs/ztest")) {
7144 strstr(bin
, ".libs/ztest")[0] = '\0'; /* In-tree */
7146 if (ztest_check_path(bin
))
7153 ztest_random_concrete_vdev_leaf(vdev_t
*vd
)
7158 if (vd
->vdev_children
== 0)
7161 vdev_t
*eligible
[vd
->vdev_children
];
7162 int eligible_idx
= 0, i
;
7163 for (i
= 0; i
< vd
->vdev_children
; i
++) {
7164 vdev_t
*cvd
= vd
->vdev_child
[i
];
7165 if (cvd
->vdev_top
->vdev_removing
)
7167 if (cvd
->vdev_children
> 0 ||
7168 (vdev_is_concrete(cvd
) && !cvd
->vdev_detached
)) {
7169 eligible
[eligible_idx
++] = cvd
;
7172 VERIFY3S(eligible_idx
, >, 0);
7174 uint64_t child_no
= ztest_random(eligible_idx
);
7175 return (ztest_random_concrete_vdev_leaf(eligible
[child_no
]));
7179 ztest_initialize(ztest_ds_t
*zd
, uint64_t id
)
7181 (void) zd
, (void) id
;
7182 spa_t
*spa
= ztest_spa
;
7185 mutex_enter(&ztest_vdev_lock
);
7187 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
7189 /* Random leaf vdev */
7190 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
7191 if (rand_vd
== NULL
) {
7192 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7193 mutex_exit(&ztest_vdev_lock
);
7198 * The random vdev we've selected may change as soon as we
7199 * drop the spa_config_lock. We create local copies of things
7200 * we're interested in.
7202 uint64_t guid
= rand_vd
->vdev_guid
;
7203 char *path
= strdup(rand_vd
->vdev_path
);
7204 boolean_t active
= rand_vd
->vdev_initialize_thread
!= NULL
;
7206 zfs_dbgmsg("vd %px, guid %llu", rand_vd
, (u_longlong_t
)guid
);
7207 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7209 uint64_t cmd
= ztest_random(POOL_INITIALIZE_FUNCS
);
7211 nvlist_t
*vdev_guids
= fnvlist_alloc();
7212 nvlist_t
*vdev_errlist
= fnvlist_alloc();
7213 fnvlist_add_uint64(vdev_guids
, path
, guid
);
7214 error
= spa_vdev_initialize(spa
, vdev_guids
, cmd
, vdev_errlist
);
7215 fnvlist_free(vdev_guids
);
7216 fnvlist_free(vdev_errlist
);
7219 case POOL_INITIALIZE_CANCEL
:
7220 if (ztest_opts
.zo_verbose
>= 4) {
7221 (void) printf("Cancel initialize %s", path
);
7223 (void) printf(" failed (no initialize active)");
7224 (void) printf("\n");
7227 case POOL_INITIALIZE_START
:
7228 if (ztest_opts
.zo_verbose
>= 4) {
7229 (void) printf("Start initialize %s", path
);
7230 if (active
&& error
== 0)
7231 (void) printf(" failed (already active)");
7232 else if (error
!= 0)
7233 (void) printf(" failed (error %d)", error
);
7234 (void) printf("\n");
7237 case POOL_INITIALIZE_SUSPEND
:
7238 if (ztest_opts
.zo_verbose
>= 4) {
7239 (void) printf("Suspend initialize %s", path
);
7241 (void) printf(" failed (no initialize active)");
7242 (void) printf("\n");
7247 mutex_exit(&ztest_vdev_lock
);
7251 ztest_trim(ztest_ds_t
*zd
, uint64_t id
)
7253 (void) zd
, (void) id
;
7254 spa_t
*spa
= ztest_spa
;
7257 mutex_enter(&ztest_vdev_lock
);
7259 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
7261 /* Random leaf vdev */
7262 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
7263 if (rand_vd
== NULL
) {
7264 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7265 mutex_exit(&ztest_vdev_lock
);
7270 * The random vdev we've selected may change as soon as we
7271 * drop the spa_config_lock. We create local copies of things
7272 * we're interested in.
7274 uint64_t guid
= rand_vd
->vdev_guid
;
7275 char *path
= strdup(rand_vd
->vdev_path
);
7276 boolean_t active
= rand_vd
->vdev_trim_thread
!= NULL
;
7278 zfs_dbgmsg("vd %p, guid %llu", rand_vd
, (u_longlong_t
)guid
);
7279 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7281 uint64_t cmd
= ztest_random(POOL_TRIM_FUNCS
);
7282 uint64_t rate
= 1 << ztest_random(30);
7283 boolean_t partial
= (ztest_random(5) > 0);
7284 boolean_t secure
= (ztest_random(5) > 0);
7286 nvlist_t
*vdev_guids
= fnvlist_alloc();
7287 nvlist_t
*vdev_errlist
= fnvlist_alloc();
7288 fnvlist_add_uint64(vdev_guids
, path
, guid
);
7289 error
= spa_vdev_trim(spa
, vdev_guids
, cmd
, rate
, partial
,
7290 secure
, vdev_errlist
);
7291 fnvlist_free(vdev_guids
);
7292 fnvlist_free(vdev_errlist
);
7295 case POOL_TRIM_CANCEL
:
7296 if (ztest_opts
.zo_verbose
>= 4) {
7297 (void) printf("Cancel TRIM %s", path
);
7299 (void) printf(" failed (no TRIM active)");
7300 (void) printf("\n");
7303 case POOL_TRIM_START
:
7304 if (ztest_opts
.zo_verbose
>= 4) {
7305 (void) printf("Start TRIM %s", path
);
7306 if (active
&& error
== 0)
7307 (void) printf(" failed (already active)");
7308 else if (error
!= 0)
7309 (void) printf(" failed (error %d)", error
);
7310 (void) printf("\n");
7313 case POOL_TRIM_SUSPEND
:
7314 if (ztest_opts
.zo_verbose
>= 4) {
7315 (void) printf("Suspend TRIM %s", path
);
7317 (void) printf(" failed (no TRIM active)");
7318 (void) printf("\n");
7323 mutex_exit(&ztest_vdev_lock
);
7327 ztest_ddt_prune(ztest_ds_t
*zd
, uint64_t id
)
7329 (void) zd
, (void) id
;
7331 spa_t
*spa
= ztest_spa
;
7332 uint64_t pct
= ztest_random(15) + 1;
7334 (void) ddt_prune_unique_entries(spa
, ZPOOL_DDT_PRUNE_PERCENTAGE
, pct
);
7338 * Verify pool integrity by running zdb.
7341 ztest_run_zdb(uint64_t guid
)
7347 const int len
= MAXPATHLEN
+ MAXNAMELEN
+ 20;
7350 bin
= umem_alloc(len
, UMEM_NOFAIL
);
7351 zdb
= umem_alloc(len
, UMEM_NOFAIL
);
7352 zbuf
= umem_alloc(1024, UMEM_NOFAIL
);
7354 ztest_get_zdb_bin(bin
, len
);
7356 char **set_gvars_args
= ztest_global_vars_to_zdb_args();
7357 if (set_gvars_args
== NULL
) {
7358 fatal(B_FALSE
, "Failed to allocate memory in "
7359 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7361 char *set_gvars_args_joined
= join_strings(set_gvars_args
, " ");
7362 free(set_gvars_args
);
7364 size_t would
= snprintf(zdb
, len
,
7365 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64
,
7367 ztest_opts
.zo_verbose
>= 3 ? "s" : "",
7368 ztest_opts
.zo_verbose
>= 4 ? "v" : "",
7369 set_gvars_args_joined
,
7372 ASSERT3U(would
, <, len
);
7374 umem_free(set_gvars_args_joined
, strlen(set_gvars_args_joined
) + 1);
7376 if (ztest_opts
.zo_verbose
>= 5)
7377 (void) printf("Executing %s\n", zdb
);
7379 fp
= popen(zdb
, "r");
7381 while (fgets(zbuf
, 1024, fp
) != NULL
)
7382 if (ztest_opts
.zo_verbose
>= 3)
7383 (void) printf("%s", zbuf
);
7385 status
= pclose(fp
);
7390 ztest_dump_core
= 0;
7391 if (WIFEXITED(status
))
7392 fatal(B_FALSE
, "'%s' exit code %d", zdb
, WEXITSTATUS(status
));
7394 fatal(B_FALSE
, "'%s' died with signal %d",
7395 zdb
, WTERMSIG(status
));
7397 umem_free(bin
, len
);
7398 umem_free(zdb
, len
);
7399 umem_free(zbuf
, 1024);
7403 ztest_walk_pool_directory(const char *header
)
7407 if (ztest_opts
.zo_verbose
>= 6)
7408 (void) puts(header
);
7410 mutex_enter(&spa_namespace_lock
);
7411 while ((spa
= spa_next(spa
)) != NULL
)
7412 if (ztest_opts
.zo_verbose
>= 6)
7413 (void) printf("\t%s\n", spa_name(spa
));
7414 mutex_exit(&spa_namespace_lock
);
7418 ztest_spa_import_export(char *oldname
, char *newname
)
7420 nvlist_t
*config
, *newconfig
;
7425 if (ztest_opts
.zo_verbose
>= 4) {
7426 (void) printf("import/export: old = %s, new = %s\n",
7431 * Clean up from previous runs.
7433 (void) spa_destroy(newname
);
7436 * Get the pool's configuration and guid.
7438 VERIFY0(spa_open(oldname
, &spa
, FTAG
));
7441 * Kick off a scrub to tickle scrub/export races.
7443 if (ztest_random(2) == 0)
7444 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
7446 pool_guid
= spa_guid(spa
);
7447 spa_close(spa
, FTAG
);
7449 ztest_walk_pool_directory("pools before export");
7454 VERIFY0(spa_export(oldname
, &config
, B_FALSE
, B_FALSE
));
7456 ztest_walk_pool_directory("pools after export");
7461 newconfig
= spa_tryimport(config
);
7462 ASSERT3P(newconfig
, !=, NULL
);
7463 fnvlist_free(newconfig
);
7466 * Import it under the new name.
7468 error
= spa_import(newname
, config
, NULL
, 0);
7470 dump_nvlist(config
, 0);
7471 fatal(B_FALSE
, "couldn't import pool %s as %s: error %u",
7472 oldname
, newname
, error
);
7475 ztest_walk_pool_directory("pools after import");
7478 * Try to import it again -- should fail with EEXIST.
7480 VERIFY3U(EEXIST
, ==, spa_import(newname
, config
, NULL
, 0));
7483 * Try to import it under a different name -- should fail with EEXIST.
7485 VERIFY3U(EEXIST
, ==, spa_import(oldname
, config
, NULL
, 0));
7488 * Verify that the pool is no longer visible under the old name.
7490 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
7493 * Verify that we can open and close the pool using the new name.
7495 VERIFY0(spa_open(newname
, &spa
, FTAG
));
7496 ASSERT3U(pool_guid
, ==, spa_guid(spa
));
7497 spa_close(spa
, FTAG
);
7499 fnvlist_free(config
);
7503 ztest_resume(spa_t
*spa
)
7505 if (spa_suspended(spa
) && ztest_opts
.zo_verbose
>= 6)
7506 (void) printf("resuming from suspended state\n");
7507 spa_vdev_state_enter(spa
, SCL_NONE
);
7508 vdev_clear(spa
, NULL
);
7509 (void) spa_vdev_state_exit(spa
, NULL
, 0);
7510 (void) zio_resume(spa
);
7513 static __attribute__((noreturn
)) void
7514 ztest_resume_thread(void *arg
)
7519 * Synthesize aged DDT entries for ddt prune testing
7521 ddt_prune_artificial_age
= B_TRUE
;
7522 if (ztest_opts
.zo_verbose
>= 3)
7523 ddt_dump_prune_histogram
= B_TRUE
;
7525 while (!ztest_exiting
) {
7526 if (spa_suspended(spa
))
7528 (void) poll(NULL
, 0, 100);
7531 * Periodically change the zfs_compressed_arc_enabled setting.
7533 if (ztest_random(10) == 0)
7534 zfs_compressed_arc_enabled
= ztest_random(2);
7537 * Periodically change the zfs_abd_scatter_enabled setting.
7539 if (ztest_random(10) == 0)
7540 zfs_abd_scatter_enabled
= ztest_random(2);
7546 static __attribute__((noreturn
)) void
7547 ztest_deadman_thread(void *arg
)
7549 ztest_shared_t
*zs
= arg
;
7550 spa_t
*spa
= ztest_spa
;
7551 hrtime_t delay
, overdue
, last_run
= gethrtime();
7553 delay
= (zs
->zs_thread_stop
- zs
->zs_thread_start
) +
7554 MSEC2NSEC(zfs_deadman_synctime_ms
);
7556 while (!ztest_exiting
) {
7558 * Wait for the delay timer while checking occasionally
7559 * if we should stop.
7561 if (gethrtime() < last_run
+ delay
) {
7562 (void) poll(NULL
, 0, 1000);
7567 * If the pool is suspended then fail immediately. Otherwise,
7568 * check to see if the pool is making any progress. If
7569 * vdev_deadman() discovers that there hasn't been any recent
7570 * I/Os then it will end up aborting the tests.
7572 if (spa_suspended(spa
) || spa
->spa_root_vdev
== NULL
) {
7574 "aborting test after %llu seconds because "
7575 "pool has transitioned to a suspended state.",
7576 (u_longlong_t
)zfs_deadman_synctime_ms
/ 1000);
7578 vdev_deadman(spa
->spa_root_vdev
, FTAG
);
7581 * If the process doesn't complete within a grace period of
7582 * zfs_deadman_synctime_ms over the expected finish time,
7583 * then it may be hung and is terminated.
7585 overdue
= zs
->zs_proc_stop
+ MSEC2NSEC(zfs_deadman_synctime_ms
);
7586 if (gethrtime() > overdue
) {
7588 "aborting test after %llu seconds because "
7589 "the process is overdue for termination.",
7590 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7593 (void) printf("ztest has been running for %lld seconds\n",
7594 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7596 last_run
= gethrtime();
7597 delay
= MSEC2NSEC(zfs_deadman_checktime_ms
);
7604 ztest_execute(int test
, ztest_info_t
*zi
, uint64_t id
)
7606 ztest_ds_t
*zd
= &ztest_ds
[id
% ztest_opts
.zo_datasets
];
7607 ztest_shared_callstate_t
*zc
= ZTEST_GET_SHARED_CALLSTATE(test
);
7608 hrtime_t functime
= gethrtime();
7611 for (i
= 0; i
< zi
->zi_iters
; i
++)
7612 zi
->zi_func(zd
, id
);
7614 functime
= gethrtime() - functime
;
7616 atomic_add_64(&zc
->zc_count
, 1);
7617 atomic_add_64(&zc
->zc_time
, functime
);
7619 if (ztest_opts
.zo_verbose
>= 4)
7620 (void) printf("%6.2f sec in %s\n",
7621 (double)functime
/ NANOSEC
, zi
->zi_funcname
);
7624 typedef struct ztest_raidz_expand_io
{
7626 uint64_t rzx_amount
;
7627 uint64_t rzx_bufsize
;
7628 const void *rzx_buffer
;
7629 uint64_t rzx_alloc_max
;
7631 } ztest_expand_io_t
;
7633 #undef OD_ARRAY_SIZE
7634 #define OD_ARRAY_SIZE 10
7637 * Write a request amount of data to some dataset objects.
7638 * There will be ztest_opts.zo_threads count of these running in parallel.
7640 static __attribute__((noreturn
)) void
7641 ztest_rzx_thread(void *arg
)
7643 ztest_expand_io_t
*info
= (ztest_expand_io_t
*)arg
;
7647 ztest_ds_t
*zd
= &ztest_ds
[info
->rzx_id
% ztest_opts
.zo_datasets
];
7648 spa_t
*spa
= info
->rzx_spa
;
7650 od_size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
7651 od
= umem_alloc(od_size
, UMEM_NOFAIL
);
7652 batchsize
= OD_ARRAY_SIZE
;
7654 /* Create objects to write to */
7655 for (int b
= 0; b
< batchsize
; b
++) {
7656 ztest_od_init(od
+ b
, info
->rzx_id
, FTAG
, b
,
7657 DMU_OT_UINT64_OTHER
, 0, 0, 0);
7659 if (ztest_object_init(zd
, od
, od_size
, B_FALSE
) != 0) {
7660 umem_free(od
, od_size
);
7664 for (uint64_t offset
= 0, written
= 0; written
< info
->rzx_amount
;
7665 offset
+= info
->rzx_bufsize
) {
7666 /* write to 10 objects */
7667 for (int i
= 0; i
< batchsize
&& written
< info
->rzx_amount
;
7669 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
7670 ztest_write(zd
, od
[i
].od_object
, offset
,
7671 info
->rzx_bufsize
, info
->rzx_buffer
);
7672 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
7673 written
+= info
->rzx_bufsize
;
7675 txg_wait_synced(spa_get_dsl(spa
), 0);
7676 /* due to inflation, we'll typically bail here */
7677 if (metaslab_class_get_alloc(spa_normal_class(spa
)) >
7678 info
->rzx_alloc_max
) {
7683 /* Remove a few objects to leave some holes in allocation space */
7684 mutex_enter(&zd
->zd_dirobj_lock
);
7685 (void) ztest_remove(zd
, od
, 2);
7686 mutex_exit(&zd
->zd_dirobj_lock
);
7688 umem_free(od
, od_size
);
7693 static __attribute__((noreturn
)) void
7694 ztest_thread(void *arg
)
7697 uint64_t id
= (uintptr_t)arg
;
7698 ztest_shared_t
*zs
= ztest_shared
;
7702 ztest_shared_callstate_t
*zc
;
7704 while ((now
= gethrtime()) < zs
->zs_thread_stop
) {
7706 * See if it's time to force a crash.
7708 if (now
> zs
->zs_thread_kill
&&
7709 raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
) {
7714 * If we're getting ENOSPC with some regularity, stop.
7716 if (zs
->zs_enospc_count
> 10)
7720 * Pick a random function to execute.
7722 rand
= ztest_random(ZTEST_FUNCS
);
7723 zi
= &ztest_info
[rand
];
7724 zc
= ZTEST_GET_SHARED_CALLSTATE(rand
);
7725 call_next
= zc
->zc_next
;
7727 if (now
>= call_next
&&
7728 atomic_cas_64(&zc
->zc_next
, call_next
, call_next
+
7729 ztest_random(2 * zi
->zi_interval
[0] + 1)) == call_next
) {
7730 ztest_execute(rand
, zi
, id
);
7738 ztest_dataset_name(char *dsname
, const char *pool
, int d
)
7740 (void) snprintf(dsname
, ZFS_MAX_DATASET_NAME_LEN
, "%s/ds_%d", pool
, d
);
7744 ztest_dataset_destroy(int d
)
7746 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7749 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7751 if (ztest_opts
.zo_verbose
>= 3)
7752 (void) printf("Destroying %s to free up space\n", name
);
7755 * Cleanup any non-standard clones and snapshots. In general,
7756 * ztest thread t operates on dataset (t % zopt_datasets),
7757 * so there may be more than one thing to clean up.
7759 for (t
= d
; t
< ztest_opts
.zo_threads
;
7760 t
+= ztest_opts
.zo_datasets
)
7761 ztest_dsl_dataset_cleanup(name
, t
);
7763 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
7764 DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
7768 ztest_dataset_dirobj_verify(ztest_ds_t
*zd
)
7770 uint64_t usedobjs
, dirobjs
, scratch
;
7773 * ZTEST_DIROBJ is the object directory for the entire dataset.
7774 * Therefore, the number of objects in use should equal the
7775 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7776 * If not, we have an object leak.
7778 * Note that we can only check this in ztest_dataset_open(),
7779 * when the open-context and syncing-context values agree.
7780 * That's because zap_count() returns the open-context value,
7781 * while dmu_objset_space() returns the rootbp fill count.
7783 VERIFY0(zap_count(zd
->zd_os
, ZTEST_DIROBJ
, &dirobjs
));
7784 dmu_objset_space(zd
->zd_os
, &scratch
, &scratch
, &usedobjs
, &scratch
);
7785 ASSERT3U(dirobjs
+ 1, ==, usedobjs
);
7789 ztest_dataset_open(int d
)
7791 ztest_ds_t
*zd
= &ztest_ds
[d
];
7792 uint64_t committed_seq
= ZTEST_GET_SHARED_DS(d
)->zd_seq
;
7795 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7798 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7800 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
7802 error
= ztest_dataset_create(name
);
7803 if (error
== ENOSPC
) {
7804 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7805 ztest_record_enospc(FTAG
);
7808 ASSERT(error
== 0 || error
== EEXIST
);
7810 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
7812 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7814 ztest_zd_init(zd
, ZTEST_GET_SHARED_DS(d
), os
);
7816 zilog
= zd
->zd_zilog
;
7818 if (zilog
->zl_header
->zh_claim_lr_seq
!= 0 &&
7819 zilog
->zl_header
->zh_claim_lr_seq
< committed_seq
)
7820 fatal(B_FALSE
, "missing log records: "
7821 "claimed %"PRIu64
" < committed %"PRIu64
"",
7822 zilog
->zl_header
->zh_claim_lr_seq
, committed_seq
);
7824 ztest_dataset_dirobj_verify(zd
);
7826 zil_replay(os
, zd
, ztest_replay_vector
);
7828 ztest_dataset_dirobj_verify(zd
);
7830 if (ztest_opts
.zo_verbose
>= 6)
7831 (void) printf("%s replay %"PRIu64
" blocks, "
7832 "%"PRIu64
" records, seq %"PRIu64
"\n",
7834 zilog
->zl_parse_blk_count
,
7835 zilog
->zl_parse_lr_count
,
7836 zilog
->zl_replaying_seq
);
7838 zilog
= zil_open(os
, ztest_get_data
, NULL
);
7840 if (zilog
->zl_replaying_seq
!= 0 &&
7841 zilog
->zl_replaying_seq
< committed_seq
)
7842 fatal(B_FALSE
, "missing log records: "
7843 "replayed %"PRIu64
" < committed %"PRIu64
"",
7844 zilog
->zl_replaying_seq
, committed_seq
);
7850 ztest_dataset_close(int d
)
7852 ztest_ds_t
*zd
= &ztest_ds
[d
];
7854 zil_close(zd
->zd_zilog
);
7855 dmu_objset_disown(zd
->zd_os
, B_TRUE
, zd
);
7861 ztest_replay_zil_cb(const char *name
, void *arg
)
7867 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_ANY
, B_TRUE
,
7868 B_TRUE
, FTAG
, &os
));
7870 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
7872 ztest_zd_init(zdtmp
, NULL
, os
);
7873 zil_replay(os
, zdtmp
, ztest_replay_vector
);
7874 ztest_zd_fini(zdtmp
);
7876 if (dmu_objset_zil(os
)->zl_parse_lr_count
!= 0 &&
7877 ztest_opts
.zo_verbose
>= 6) {
7878 zilog_t
*zilog
= dmu_objset_zil(os
);
7880 (void) printf("%s replay %"PRIu64
" blocks, "
7881 "%"PRIu64
" records, seq %"PRIu64
"\n",
7883 zilog
->zl_parse_blk_count
,
7884 zilog
->zl_parse_lr_count
,
7885 zilog
->zl_replaying_seq
);
7888 umem_free(zdtmp
, sizeof (ztest_ds_t
));
7890 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7897 ztest_ds_t
*zd
= &ztest_ds
[0];
7901 /* freeze not supported during RAIDZ expansion */
7902 if (ztest_opts
.zo_raid_do_expand
)
7905 if (ztest_opts
.zo_verbose
>= 3)
7906 (void) printf("testing spa_freeze()...\n");
7908 raidz_scratch_verify();
7909 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7910 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7911 VERIFY0(ztest_dataset_open(0));
7915 * Force the first log block to be transactionally allocated.
7916 * We have to do this before we freeze the pool -- otherwise
7917 * the log chain won't be anchored.
7919 while (BP_IS_HOLE(&zd
->zd_zilog
->zl_header
->zh_log
)) {
7920 ztest_dmu_object_alloc_free(zd
, 0);
7921 zil_commit(zd
->zd_zilog
, 0);
7924 txg_wait_synced(spa_get_dsl(spa
), 0);
7927 * Freeze the pool. This stops spa_sync() from doing anything,
7928 * so that the only way to record changes from now on is the ZIL.
7933 * Because it is hard to predict how much space a write will actually
7934 * require beforehand, we leave ourselves some fudge space to write over
7937 uint64_t capacity
= metaslab_class_get_space(spa_normal_class(spa
)) / 2;
7940 * Run tests that generate log records but don't alter the pool config
7941 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7942 * We do a txg_wait_synced() after each iteration to force the txg
7943 * to increase well beyond the last synced value in the uberblock.
7944 * The ZIL should be OK with that.
7946 * Run a random number of times less than zo_maxloops and ensure we do
7947 * not run out of space on the pool.
7949 while (ztest_random(10) != 0 &&
7950 numloops
++ < ztest_opts
.zo_maxloops
&&
7951 metaslab_class_get_alloc(spa_normal_class(spa
)) < capacity
) {
7953 ztest_od_init(&od
, 0, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
7954 VERIFY0(ztest_object_init(zd
, &od
, sizeof (od
), B_FALSE
));
7955 ztest_io(zd
, od
.od_object
,
7956 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
7957 txg_wait_synced(spa_get_dsl(spa
), 0);
7961 * Commit all of the changes we just generated.
7963 zil_commit(zd
->zd_zilog
, 0);
7964 txg_wait_synced(spa_get_dsl(spa
), 0);
7967 * Close our dataset and close the pool.
7969 ztest_dataset_close(0);
7970 spa_close(spa
, FTAG
);
7974 * Open and close the pool and dataset to induce log replay.
7976 raidz_scratch_verify();
7977 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7978 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7979 ASSERT3U(spa_freeze_txg(spa
), ==, UINT64_MAX
);
7980 VERIFY0(ztest_dataset_open(0));
7982 txg_wait_synced(spa_get_dsl(spa
), 0);
7983 ztest_dataset_close(0);
7984 ztest_reguid(NULL
, 0);
7986 spa_close(spa
, FTAG
);
7991 ztest_import_impl(void)
7993 importargs_t args
= { 0 };
7994 nvlist_t
*cfg
= NULL
;
7996 char *searchdirs
[nsearch
];
7997 int flags
= ZFS_IMPORT_MISSING_LOG
;
7999 searchdirs
[0] = ztest_opts
.zo_dir
;
8000 args
.paths
= nsearch
;
8001 args
.path
= searchdirs
;
8002 args
.can_be_active
= B_FALSE
;
8004 libpc_handle_t lpch
= {
8005 .lpc_lib_handle
= NULL
,
8006 .lpc_ops
= &libzpool_config_ops
,
8007 .lpc_printerr
= B_TRUE
8009 VERIFY0(zpool_find_config(&lpch
, ztest_opts
.zo_pool
, &cfg
, &args
));
8010 VERIFY0(spa_import(ztest_opts
.zo_pool
, cfg
, NULL
, flags
));
8015 * Import a storage pool with the given name.
8018 ztest_import(ztest_shared_t
*zs
)
8022 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8023 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8024 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
8026 raidz_scratch_verify();
8027 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
8029 ztest_import_impl();
8031 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
8032 zs
->zs_metaslab_sz
=
8033 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
8034 zs
->zs_guid
= spa_guid(spa
);
8035 spa_close(spa
, FTAG
);
8039 if (!ztest_opts
.zo_mmp_test
) {
8040 ztest_run_zdb(zs
->zs_guid
);
8042 ztest_run_zdb(zs
->zs_guid
);
8045 (void) pthread_rwlock_destroy(&ztest_name_lock
);
8046 mutex_destroy(&ztest_vdev_lock
);
8047 mutex_destroy(&ztest_checkpoint_lock
);
8051 * After the expansion was killed, check that the pool is healthy
8054 ztest_raidz_expand_check(spa_t
*spa
)
8056 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, ==, RAIDZ_EXPAND_KILLED
);
8058 * Set pool check done flag, main program will run a zdb check
8059 * of the pool when we exit.
8061 ztest_shared_opts
->zo_raidz_expand_test
= RAIDZ_EXPAND_CHECKED
;
8063 /* Wait for reflow to finish */
8064 if (ztest_opts
.zo_verbose
>= 1) {
8065 (void) printf("\nwaiting for reflow to finish ...\n");
8067 pool_raidz_expand_stat_t rzx_stats
;
8068 pool_raidz_expand_stat_t
*pres
= &rzx_stats
;
8070 txg_wait_synced(spa_get_dsl(spa
), 0);
8071 (void) poll(NULL
, 0, 500); /* wait 1/2 second */
8073 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8074 (void) spa_raidz_expand_get_stats(spa
, pres
);
8075 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8076 } while (pres
->pres_state
!= DSS_FINISHED
&&
8077 pres
->pres_reflowed
< pres
->pres_to_reflow
);
8079 if (ztest_opts
.zo_verbose
>= 1) {
8080 (void) printf("verifying an interrupted raidz "
8081 "expansion using a pool scrub ...\n");
8083 /* Will fail here if there is non-recoverable corruption detected */
8084 VERIFY0(ztest_scrub_impl(spa
));
8085 if (ztest_opts
.zo_verbose
>= 1) {
8086 (void) printf("raidz expansion scrub check complete\n");
8091 * Start a raidz expansion test. We run some I/O on the pool for a while
8092 * to get some data in the pool. Then we grow the raidz and
8093 * kill the test at the requested offset into the reflow, verifying that
8094 * doing such does not lead to pool corruption.
8097 ztest_raidz_expand_run(ztest_shared_t
*zs
, spa_t
*spa
)
8100 pool_raidz_expand_stat_t rzx_stats
;
8101 pool_raidz_expand_stat_t
*pres
= &rzx_stats
;
8102 kthread_t
**run_threads
;
8103 vdev_t
*cvd
, *rzvd
= spa
->spa_root_vdev
->vdev_child
[0];
8104 int total_disks
= rzvd
->vdev_children
;
8105 int data_disks
= total_disks
- vdev_get_nparity(rzvd
);
8106 uint64_t alloc_goal
;
8109 int threads
= ztest_opts
.zo_threads
;
8110 ztest_expand_io_t
*thread_args
;
8112 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, !=, RAIDZ_EXPAND_NONE
);
8113 ASSERT3P(rzvd
->vdev_ops
, ==, &vdev_raidz_ops
);
8114 ztest_opts
.zo_raidz_expand_test
= RAIDZ_EXPAND_STARTED
;
8116 /* Setup a 1 MiB buffer of random data */
8117 uint64_t bufsize
= 1024 * 1024;
8118 void *buffer
= umem_alloc(bufsize
, UMEM_NOFAIL
);
8120 if (read(ztest_fd_rand
, buffer
, bufsize
) != bufsize
) {
8121 fatal(B_TRUE
, "short read from /dev/urandom");
8124 * Put some data in the pool and then attach a vdev to initiate
8127 run_threads
= umem_zalloc(threads
* sizeof (kthread_t
*), UMEM_NOFAIL
);
8128 thread_args
= umem_zalloc(threads
* sizeof (ztest_expand_io_t
),
8130 /* Aim for roughly 25% of allocatable space up to 1GB */
8131 alloc_goal
= (vdev_get_min_asize(rzvd
) * data_disks
) / total_disks
;
8132 alloc_goal
= MIN(alloc_goal
>> 2, 1024*1024*1024);
8133 if (ztest_opts
.zo_verbose
>= 1) {
8134 (void) printf("adding data to pool '%s', goal %llu bytes\n",
8135 ztest_opts
.zo_pool
, (u_longlong_t
)alloc_goal
);
8139 * Kick off all the I/O generators that run in parallel.
8141 for (t
= 0; t
< threads
; t
++) {
8142 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
8143 umem_free(run_threads
, threads
* sizeof (kthread_t
*));
8144 umem_free(buffer
, bufsize
);
8147 thread_args
[t
].rzx_id
= t
;
8148 thread_args
[t
].rzx_amount
= alloc_goal
/ threads
;
8149 thread_args
[t
].rzx_bufsize
= bufsize
;
8150 thread_args
[t
].rzx_buffer
= buffer
;
8151 thread_args
[t
].rzx_alloc_max
= alloc_goal
;
8152 thread_args
[t
].rzx_spa
= spa
;
8153 run_threads
[t
] = thread_create(NULL
, 0, ztest_rzx_thread
,
8154 &thread_args
[t
], 0, NULL
, TS_RUN
| TS_JOINABLE
,
8159 * Wait for all of the writers to complete.
8161 for (t
= 0; t
< threads
; t
++)
8162 VERIFY0(thread_join(run_threads
[t
]));
8165 * Close all datasets. This must be done after all the threads
8166 * are joined so we can be sure none of the datasets are in-use
8167 * by any of the threads.
8169 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8170 if (t
< ztest_opts
.zo_datasets
)
8171 ztest_dataset_close(t
);
8174 txg_wait_synced(spa_get_dsl(spa
), 0);
8176 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
8177 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
8179 umem_free(buffer
, bufsize
);
8180 umem_free(run_threads
, threads
* sizeof (kthread_t
*));
8181 umem_free(thread_args
, threads
* sizeof (ztest_expand_io_t
));
8183 /* Set our reflow target to 25%, 50% or 75% of allocated size */
8184 uint_t multiple
= ztest_random(3) + 1;
8185 uint64_t reflow_max
= (rzvd
->vdev_stat
.vs_alloc
* multiple
) / 4;
8186 raidz_expand_max_reflow_bytes
= reflow_max
;
8188 if (ztest_opts
.zo_verbose
>= 1) {
8189 (void) printf("running raidz expansion test, killing when "
8190 "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8191 (u_longlong_t
)reflow_max
, multiple
);
8194 /* XXX - do we want some I/O load during the reflow? */
8197 * Use a disk size that is larger than existing ones
8199 cvd
= rzvd
->vdev_child
[0];
8200 csize
= vdev_get_min_asize(cvd
);
8201 csize
+= csize
/ 10;
8203 * Path to vdev to be attached
8205 char *newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
8206 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
8207 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, rzvd
->vdev_children
);
8209 * Build the nvlist describing newpath.
8211 root
= make_vdev_root(newpath
, NULL
, NULL
, csize
, ztest_get_ashift(),
8214 * Expand the raidz vdev by attaching the new disk
8216 if (ztest_opts
.zo_verbose
>= 1) {
8217 (void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8218 (int)rzvd
->vdev_children
, (int)rzvd
->vdev_children
+ 1,
8221 error
= spa_vdev_attach(spa
, rzvd
->vdev_guid
, root
, B_FALSE
, B_FALSE
);
8224 fatal(0, "raidz expand: attach (%s %llu) returned %d",
8225 newpath
, (long long)csize
, error
);
8229 * Wait for reflow to begin
8231 while (spa
->spa_raidz_expand
== NULL
) {
8232 txg_wait_synced(spa_get_dsl(spa
), 0);
8233 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8235 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8236 (void) spa_raidz_expand_get_stats(spa
, pres
);
8237 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8238 while (pres
->pres_state
!= DSS_SCANNING
) {
8239 txg_wait_synced(spa_get_dsl(spa
), 0);
8240 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8241 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8242 (void) spa_raidz_expand_get_stats(spa
, pres
);
8243 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8246 ASSERT3U(pres
->pres_state
, ==, DSS_SCANNING
);
8247 ASSERT3U(pres
->pres_to_reflow
, !=, 0);
8249 * Set so when we are killed we go to raidz checking rather than
8252 ztest_shared_opts
->zo_raidz_expand_test
= RAIDZ_EXPAND_KILLED
;
8253 if (ztest_opts
.zo_verbose
>= 1) {
8254 (void) printf("raidz expansion reflow started, waiting for "
8255 "%llu bytes to be copied\n", (u_longlong_t
)reflow_max
);
8259 * Wait for reflow maximum to be reached and then kill the test
8261 while (pres
->pres_reflowed
< reflow_max
) {
8262 txg_wait_synced(spa_get_dsl(spa
), 0);
8263 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8264 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8265 (void) spa_raidz_expand_get_stats(spa
, pres
);
8266 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8269 /* Reset the reflow pause before killing */
8270 raidz_expand_max_reflow_bytes
= 0;
8272 if (ztest_opts
.zo_verbose
>= 1) {
8273 (void) printf("killing raidz expansion test after reflow "
8274 "reached %llu bytes\n", (u_longlong_t
)pres
->pres_reflowed
);
8278 * Kill ourself to simulate a panic during a reflow. Our parent will
8279 * restart the test and the changed flag value will drive the test
8280 * through the scrub/check code to verify the pool is not corrupted.
8286 ztest_generic_run(ztest_shared_t
*zs
, spa_t
*spa
)
8288 kthread_t
**run_threads
;
8291 run_threads
= umem_zalloc(ztest_opts
.zo_threads
* sizeof (kthread_t
*),
8295 * Kick off all the tests that run in parallel.
8297 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8298 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
8299 umem_free(run_threads
, ztest_opts
.zo_threads
*
8300 sizeof (kthread_t
*));
8304 run_threads
[t
] = thread_create(NULL
, 0, ztest_thread
,
8305 (void *)(uintptr_t)t
, 0, NULL
, TS_RUN
| TS_JOINABLE
,
8310 * Wait for all of the tests to complete.
8312 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++)
8313 VERIFY0(thread_join(run_threads
[t
]));
8316 * Close all datasets. This must be done after all the threads
8317 * are joined so we can be sure none of the datasets are in-use
8318 * by any of the threads.
8320 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8321 if (t
< ztest_opts
.zo_datasets
)
8322 ztest_dataset_close(t
);
8325 txg_wait_synced(spa_get_dsl(spa
), 0);
8327 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
8328 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
8330 umem_free(run_threads
, ztest_opts
.zo_threads
* sizeof (kthread_t
*));
8334 * Setup our test context and kick off threads to run tests on all datasets
8338 ztest_run(ztest_shared_t
*zs
)
8342 kthread_t
*resume_thread
, *deadman_thread
;
8347 ztest_exiting
= B_FALSE
;
8350 * Initialize parent/child shared state.
8352 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8353 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8354 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
8356 zs
->zs_thread_start
= gethrtime();
8357 zs
->zs_thread_stop
=
8358 zs
->zs_thread_start
+ ztest_opts
.zo_passtime
* NANOSEC
;
8359 zs
->zs_thread_stop
= MIN(zs
->zs_thread_stop
, zs
->zs_proc_stop
);
8360 zs
->zs_thread_kill
= zs
->zs_thread_stop
;
8361 if (ztest_random(100) < ztest_opts
.zo_killrate
) {
8362 zs
->zs_thread_kill
-=
8363 ztest_random(ztest_opts
.zo_passtime
* NANOSEC
);
8366 mutex_init(&zcl
.zcl_callbacks_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8368 list_create(&zcl
.zcl_callbacks
, sizeof (ztest_cb_data_t
),
8369 offsetof(ztest_cb_data_t
, zcd_node
));
8372 * Open our pool. It may need to be imported first depending on
8373 * what tests were running when the previous pass was terminated.
8375 raidz_scratch_verify();
8376 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
8377 error
= spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
);
8379 VERIFY3S(error
, ==, ENOENT
);
8380 ztest_import_impl();
8381 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
8382 zs
->zs_metaslab_sz
=
8383 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
8386 metaslab_preload_limit
= ztest_random(20) + 1;
8390 * XXX - BUGBUG raidz expansion do not run this for generic for now
8392 if (ztest_opts
.zo_raidz_expand_test
!= RAIDZ_EXPAND_NONE
)
8393 VERIFY0(vdev_raidz_impl_set("cycle"));
8395 dmu_objset_stats_t dds
;
8396 VERIFY0(ztest_dmu_objset_own(ztest_opts
.zo_pool
,
8397 DMU_OST_ANY
, B_TRUE
, B_TRUE
, FTAG
, &os
));
8398 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
8399 dmu_objset_fast_stat(os
, &dds
);
8400 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
8401 dmu_objset_disown(os
, B_TRUE
, FTAG
);
8403 /* Give the dedicated raidz expansion test more grace time */
8404 if (ztest_opts
.zo_raidz_expand_test
!= RAIDZ_EXPAND_NONE
)
8405 zfs_deadman_synctime_ms
*= 2;
8408 * Create a thread to periodically resume suspended I/O.
8410 resume_thread
= thread_create(NULL
, 0, ztest_resume_thread
,
8411 spa
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
8414 * Create a deadman thread and set to panic if we hang.
8416 deadman_thread
= thread_create(NULL
, 0, ztest_deadman_thread
,
8417 zs
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
8419 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_PANIC
;
8422 * Verify that we can safely inquire about any object,
8423 * whether it's allocated or not. To make it interesting,
8424 * we probe a 5-wide window around each power of two.
8425 * This hits all edge cases, including zero and the max.
8427 for (t
= 0; t
< 64; t
++) {
8428 for (d
= -5; d
<= 5; d
++) {
8429 error
= dmu_object_info(spa
->spa_meta_objset
,
8430 (1ULL << t
) + d
, NULL
);
8431 ASSERT(error
== 0 || error
== ENOENT
||
8437 * If we got any ENOSPC errors on the previous run, destroy something.
8439 if (zs
->zs_enospc_count
!= 0) {
8440 /* Not expecting ENOSPC errors during raidz expansion tests */
8441 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, ==,
8444 int d
= ztest_random(ztest_opts
.zo_datasets
);
8445 ztest_dataset_destroy(d
);
8447 zs
->zs_enospc_count
= 0;
8450 * If we were in the middle of ztest_device_removal() and were killed
8451 * we need to ensure the removal and scrub complete before running
8452 * any tests that check ztest_device_removal_active. The removal will
8453 * be restarted automatically when the spa is opened, but we need to
8454 * initiate the scrub manually if it is not already in progress. Note
8455 * that we always run the scrub whenever an indirect vdev exists
8456 * because we have no way of knowing for sure if ztest_device_removal()
8457 * fully completed its scrub before the pool was reimported.
8459 * Does not apply for the RAIDZ expansion specific test runs
8461 if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_NONE
&&
8462 (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
||
8463 spa
->spa_removing_phys
.sr_prev_indirect_vdev
!= -1)) {
8464 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
8465 txg_wait_synced(spa_get_dsl(spa
), 0);
8467 error
= ztest_scrub_impl(spa
);
8473 if (ztest_opts
.zo_verbose
>= 4)
8474 (void) printf("starting main threads...\n");
8477 * Replay all logs of all datasets in the pool. This is primarily for
8478 * temporary datasets which wouldn't otherwise get replayed, which
8479 * can trigger failures when attempting to offline a SLOG in
8480 * ztest_fault_inject().
8482 (void) dmu_objset_find(ztest_opts
.zo_pool
, ztest_replay_zil_cb
,
8483 NULL
, DS_FIND_CHILDREN
);
8485 if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_REQUESTED
)
8486 ztest_raidz_expand_run(zs
, spa
);
8487 else if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_KILLED
)
8488 ztest_raidz_expand_check(spa
);
8490 ztest_generic_run(zs
, spa
);
8492 /* Kill the resume and deadman threads */
8493 ztest_exiting
= B_TRUE
;
8494 VERIFY0(thread_join(resume_thread
));
8495 VERIFY0(thread_join(deadman_thread
));
8499 * Right before closing the pool, kick off a bunch of async I/O;
8500 * spa_close() should wait for it to complete.
8502 for (object
= 1; object
< 50; object
++) {
8503 dmu_prefetch(spa
->spa_meta_objset
, object
, 0, 0, 1ULL << 20,
8504 ZIO_PRIORITY_SYNC_READ
);
8507 /* Verify that at least one commit cb was called in a timely fashion */
8508 if (zc_cb_counter
>= ZTEST_COMMIT_CB_MIN_REG
)
8509 VERIFY0(zc_min_txg_delay
);
8511 spa_close(spa
, FTAG
);
8514 * Verify that we can loop over all pools.
8516 mutex_enter(&spa_namespace_lock
);
8517 for (spa
= spa_next(NULL
); spa
!= NULL
; spa
= spa_next(spa
))
8518 if (ztest_opts
.zo_verbose
> 3)
8519 (void) printf("spa_next: found %s\n", spa_name(spa
));
8520 mutex_exit(&spa_namespace_lock
);
8523 * Verify that we can export the pool and reimport it under a
8526 if ((ztest_random(2) == 0) && !ztest_opts
.zo_mmp_test
) {
8527 char name
[ZFS_MAX_DATASET_NAME_LEN
];
8528 (void) snprintf(name
, sizeof (name
), "%s_import",
8529 ztest_opts
.zo_pool
);
8530 ztest_spa_import_export(ztest_opts
.zo_pool
, name
);
8531 ztest_spa_import_export(name
, ztest_opts
.zo_pool
);
8536 list_destroy(&zcl
.zcl_callbacks
);
8537 mutex_destroy(&zcl
.zcl_callbacks_lock
);
8538 (void) pthread_rwlock_destroy(&ztest_name_lock
);
8539 mutex_destroy(&ztest_vdev_lock
);
8540 mutex_destroy(&ztest_checkpoint_lock
);
8544 print_time(hrtime_t t
, char *timebuf
)
8546 hrtime_t s
= t
/ NANOSEC
;
8547 hrtime_t m
= s
/ 60;
8548 hrtime_t h
= m
/ 60;
8549 hrtime_t d
= h
/ 24;
8558 (void) sprintf(timebuf
,
8559 "%llud%02lluh%02llum%02llus", d
, h
, m
, s
);
8561 (void) sprintf(timebuf
, "%lluh%02llum%02llus", h
, m
, s
);
8563 (void) sprintf(timebuf
, "%llum%02llus", m
, s
);
8565 (void) sprintf(timebuf
, "%llus", s
);
8569 make_random_pool_props(void)
8573 props
= fnvlist_alloc();
8575 /* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8576 if (ztest_random(5) == 0) {
8577 fnvlist_add_uint64(props
,
8578 zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA
),
8582 /* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8583 if (ztest_random(2) == 0) {
8584 fnvlist_add_uint64(props
,
8585 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE
), 1);
8592 * Create a storage pool with the given name and initial vdev size.
8593 * Then test spa_freeze() functionality.
8596 ztest_init(ztest_shared_t
*zs
)
8599 nvlist_t
*nvroot
, *props
;
8602 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8603 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8604 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
8606 raidz_scratch_verify();
8607 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
8610 * Create the storage pool.
8612 (void) spa_destroy(ztest_opts
.zo_pool
);
8613 ztest_shared
->zs_vdev_next_leaf
= 0;
8615 zs
->zs_mirrors
= ztest_opts
.zo_mirrors
;
8616 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
8617 NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
8618 props
= make_random_pool_props();
8621 * We don't expect the pool to suspend unless maxfaults == 0,
8622 * in which case ztest_fault_inject() temporarily takes away
8623 * the only valid replica.
8625 fnvlist_add_uint64(props
,
8626 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE
),
8627 MAXFAULTS(zs
) ? ZIO_FAILURE_MODE_PANIC
: ZIO_FAILURE_MODE_WAIT
);
8629 for (i
= 0; i
< SPA_FEATURES
; i
++) {
8632 if (!spa_feature_table
[i
].fi_zfs_mod_supported
)
8636 * 75% chance of using the log space map feature. We want ztest
8637 * to exercise both the code paths that use the log space map
8638 * feature and the ones that don't.
8640 if (i
== SPA_FEATURE_LOG_SPACEMAP
&& ztest_random(4) == 0)
8644 * split 50/50 between legacy and fast dedup
8646 if (i
== SPA_FEATURE_FAST_DEDUP
&& ztest_random(2) != 0)
8649 VERIFY3S(-1, !=, asprintf(&buf
, "feature@%s",
8650 spa_feature_table
[i
].fi_uname
));
8651 fnvlist_add_uint64(props
, buf
, 0);
8655 VERIFY0(spa_create(ztest_opts
.zo_pool
, nvroot
, props
, NULL
, NULL
));
8656 fnvlist_free(nvroot
);
8657 fnvlist_free(props
);
8659 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
8660 zs
->zs_metaslab_sz
=
8661 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
8662 zs
->zs_guid
= spa_guid(spa
);
8663 spa_close(spa
, FTAG
);
8667 if (!ztest_opts
.zo_mmp_test
) {
8668 ztest_run_zdb(zs
->zs_guid
);
8670 ztest_run_zdb(zs
->zs_guid
);
8673 (void) pthread_rwlock_destroy(&ztest_name_lock
);
8674 mutex_destroy(&ztest_vdev_lock
);
8675 mutex_destroy(&ztest_checkpoint_lock
);
8681 static char ztest_name_data
[] = "/tmp/ztest.data.XXXXXX";
8683 ztest_fd_data
= mkstemp(ztest_name_data
);
8684 ASSERT3S(ztest_fd_data
, >=, 0);
8685 (void) unlink(ztest_name_data
);
8689 shared_data_size(ztest_shared_hdr_t
*hdr
)
8693 size
= hdr
->zh_hdr_size
;
8694 size
+= hdr
->zh_opts_size
;
8695 size
+= hdr
->zh_size
;
8696 size
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
8697 size
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
8698 size
+= hdr
->zh_scratch_state_size
;
8707 ztest_shared_hdr_t
*hdr
;
8709 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
8710 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
8711 ASSERT3P(hdr
, !=, MAP_FAILED
);
8713 VERIFY0(ftruncate(ztest_fd_data
, sizeof (ztest_shared_hdr_t
)));
8715 hdr
->zh_hdr_size
= sizeof (ztest_shared_hdr_t
);
8716 hdr
->zh_opts_size
= sizeof (ztest_shared_opts_t
);
8717 hdr
->zh_size
= sizeof (ztest_shared_t
);
8718 hdr
->zh_stats_size
= sizeof (ztest_shared_callstate_t
);
8719 hdr
->zh_stats_count
= ZTEST_FUNCS
;
8720 hdr
->zh_ds_size
= sizeof (ztest_shared_ds_t
);
8721 hdr
->zh_ds_count
= ztest_opts
.zo_datasets
;
8722 hdr
->zh_scratch_state_size
= sizeof (ztest_shared_scratch_state_t
);
8724 size
= shared_data_size(hdr
);
8725 VERIFY0(ftruncate(ztest_fd_data
, size
));
8727 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
8734 ztest_shared_hdr_t
*hdr
;
8737 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
8738 PROT_READ
, MAP_SHARED
, ztest_fd_data
, 0);
8739 ASSERT3P(hdr
, !=, MAP_FAILED
);
8741 size
= shared_data_size(hdr
);
8743 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
8744 hdr
= ztest_shared_hdr
= (void *)mmap(0, P2ROUNDUP(size
, getpagesize()),
8745 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
8746 ASSERT3P(hdr
, !=, MAP_FAILED
);
8747 buf
= (uint8_t *)hdr
;
8749 offset
= hdr
->zh_hdr_size
;
8750 ztest_shared_opts
= (void *)&buf
[offset
];
8751 offset
+= hdr
->zh_opts_size
;
8752 ztest_shared
= (void *)&buf
[offset
];
8753 offset
+= hdr
->zh_size
;
8754 ztest_shared_callstate
= (void *)&buf
[offset
];
8755 offset
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
8756 ztest_shared_ds
= (void *)&buf
[offset
];
8757 offset
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
8758 ztest_scratch_state
= (void *)&buf
[offset
];
8762 exec_child(char *cmd
, char *libpath
, boolean_t ignorekill
, int *statusp
)
8766 char *cmdbuf
= NULL
;
8771 cmdbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
8772 (void) strlcpy(cmdbuf
, getexecname(), MAXPATHLEN
);
8777 fatal(B_TRUE
, "fork failed");
8779 if (pid
== 0) { /* child */
8780 char fd_data_str
[12];
8783 snprintf(fd_data_str
, 12, "%d", ztest_fd_data
));
8784 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str
, 1));
8786 if (libpath
!= NULL
) {
8787 const char *curlp
= getenv("LD_LIBRARY_PATH");
8789 VERIFY0(setenv("LD_LIBRARY_PATH", libpath
, 1));
8793 asprintf(&newlp
, "%s:%s", libpath
, curlp
));
8794 VERIFY0(setenv("LD_LIBRARY_PATH", newlp
, 1));
8798 (void) execl(cmd
, cmd
, (char *)NULL
);
8799 ztest_dump_core
= B_FALSE
;
8800 fatal(B_TRUE
, "exec failed: %s", cmd
);
8803 if (cmdbuf
!= NULL
) {
8804 umem_free(cmdbuf
, MAXPATHLEN
);
8808 while (waitpid(pid
, &status
, 0) != pid
)
8810 if (statusp
!= NULL
)
8813 if (WIFEXITED(status
)) {
8814 if (WEXITSTATUS(status
) != 0) {
8815 (void) fprintf(stderr
, "child exited with code %d\n",
8816 WEXITSTATUS(status
));
8820 } else if (WIFSIGNALED(status
)) {
8821 if (!ignorekill
|| WTERMSIG(status
) != SIGKILL
) {
8822 (void) fprintf(stderr
, "child died with signal %d\n",
8828 (void) fprintf(stderr
, "something strange happened to child\n");
8834 ztest_run_init(void)
8838 ztest_shared_t
*zs
= ztest_shared
;
8841 * Blow away any existing copy of zpool.cache
8843 (void) remove(spa_config_path
);
8845 if (ztest_opts
.zo_init
== 0) {
8846 if (ztest_opts
.zo_verbose
>= 1)
8847 (void) printf("Importing pool %s\n",
8848 ztest_opts
.zo_pool
);
8854 * Create and initialize our storage pool.
8856 for (i
= 1; i
<= ztest_opts
.zo_init
; i
++) {
8857 memset(zs
, 0, sizeof (*zs
));
8858 if (ztest_opts
.zo_verbose
>= 3 &&
8859 ztest_opts
.zo_init
!= 1) {
8860 (void) printf("ztest_init(), pass %d\n", i
);
8867 main(int argc
, char **argv
)
8875 ztest_shared_callstate_t
*zc
;
8877 char numbuf
[NN_NUMBUF_SZ
];
8881 char *fd_data_str
= getenv("ZTEST_FD_DATA");
8882 struct sigaction action
;
8884 (void) setvbuf(stdout
, NULL
, _IOLBF
, 0);
8886 dprintf_setup(&argc
, argv
);
8887 zfs_deadman_synctime_ms
= 300000;
8888 zfs_deadman_checktime_ms
= 30000;
8890 * As two-word space map entries may not come up often (especially
8891 * if pool and vdev sizes are small) we want to force at least some
8892 * of them so the feature get tested.
8894 zfs_force_some_double_word_sm_entries
= B_TRUE
;
8897 * Verify that even extensively damaged split blocks with many
8898 * segments can be reconstructed in a reasonable amount of time
8899 * when reconstruction is known to be possible.
8901 * Note: the lower this value is, the more damage we inflict, and
8902 * the more time ztest spends in recovering that damage. We chose
8903 * to induce damage 1/100th of the time so recovery is tested but
8904 * not so frequently that ztest doesn't get to test other code paths.
8906 zfs_reconstruct_indirect_damage_fraction
= 100;
8908 action
.sa_handler
= sig_handler
;
8909 sigemptyset(&action
.sa_mask
);
8910 action
.sa_flags
= 0;
8912 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
8913 (void) fprintf(stderr
, "ztest: cannot catch SIGSEGV: %s.\n",
8918 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
8919 (void) fprintf(stderr
, "ztest: cannot catch SIGABRT: %s.\n",
8925 * Force random_get_bytes() to use /dev/urandom in order to prevent
8926 * ztest from needlessly depleting the system entropy pool.
8928 random_path
= "/dev/urandom";
8929 ztest_fd_rand
= open(random_path
, O_RDONLY
| O_CLOEXEC
);
8930 ASSERT3S(ztest_fd_rand
, >=, 0);
8933 process_options(argc
, argv
);
8938 memcpy(ztest_shared_opts
, &ztest_opts
,
8939 sizeof (*ztest_shared_opts
));
8941 ztest_fd_data
= atoi(fd_data_str
);
8943 memcpy(&ztest_opts
, ztest_shared_opts
, sizeof (ztest_opts
));
8945 ASSERT3U(ztest_opts
.zo_datasets
, ==, ztest_shared_hdr
->zh_ds_count
);
8947 err
= ztest_set_global_vars();
8948 if (err
!= 0 && !fd_data_str
) {
8949 /* error message done by ztest_set_global_vars */
8952 /* children should not be spawned if setting gvars fails */
8953 VERIFY3S(err
, ==, 0);
8956 /* Override location of zpool.cache */
8957 VERIFY3S(asprintf((char **)&spa_config_path
, "%s/zpool.cache",
8958 ztest_opts
.zo_dir
), !=, -1);
8960 ztest_ds
= umem_alloc(ztest_opts
.zo_datasets
* sizeof (ztest_ds_t
),
8965 metaslab_force_ganging
= ztest_opts
.zo_metaslab_force_ganging
;
8966 metaslab_df_alloc_threshold
=
8967 zs
->zs_metaslab_df_alloc_threshold
;
8976 hasalt
= (strlen(ztest_opts
.zo_alt_ztest
) != 0);
8978 if (ztest_opts
.zo_verbose
>= 1) {
8979 (void) printf("%"PRIu64
" vdevs, %d datasets, %d threads, "
8980 "%d %s disks, parity %d, %"PRIu64
" seconds...\n\n",
8981 ztest_opts
.zo_vdevs
,
8982 ztest_opts
.zo_datasets
,
8983 ztest_opts
.zo_threads
,
8984 ztest_opts
.zo_raid_children
,
8985 ztest_opts
.zo_raid_type
,
8986 ztest_opts
.zo_raid_parity
,
8987 ztest_opts
.zo_time
);
8990 cmd
= umem_alloc(MAXNAMELEN
, UMEM_NOFAIL
);
8991 (void) strlcpy(cmd
, getexecname(), MAXNAMELEN
);
8993 zs
->zs_do_init
= B_TRUE
;
8994 if (strlen(ztest_opts
.zo_alt_ztest
) != 0) {
8995 if (ztest_opts
.zo_verbose
>= 1) {
8996 (void) printf("Executing older ztest for "
8997 "initialization: %s\n", ztest_opts
.zo_alt_ztest
);
8999 VERIFY(!exec_child(ztest_opts
.zo_alt_ztest
,
9000 ztest_opts
.zo_alt_libpath
, B_FALSE
, NULL
));
9002 VERIFY(!exec_child(NULL
, NULL
, B_FALSE
, NULL
));
9004 zs
->zs_do_init
= B_FALSE
;
9006 zs
->zs_proc_start
= gethrtime();
9007 zs
->zs_proc_stop
= zs
->zs_proc_start
+ ztest_opts
.zo_time
* NANOSEC
;
9009 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
9010 zi
= &ztest_info
[f
];
9011 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
9012 if (zs
->zs_proc_start
+ zi
->zi_interval
[0] > zs
->zs_proc_stop
)
9013 zc
->zc_next
= UINT64_MAX
;
9015 zc
->zc_next
= zs
->zs_proc_start
+
9016 ztest_random(2 * zi
->zi_interval
[0] + 1);
9020 * Run the tests in a loop. These tests include fault injection
9021 * to verify that self-healing data works, and forced crashes
9022 * to verify that we never lose on-disk consistency.
9024 while (gethrtime() < zs
->zs_proc_stop
) {
9029 * Initialize the workload counters for each function.
9031 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
9032 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
9037 /* Set the allocation switch size */
9038 zs
->zs_metaslab_df_alloc_threshold
=
9039 ztest_random(zs
->zs_metaslab_sz
/ 4) + 1;
9041 if (!hasalt
|| ztest_random(2) == 0) {
9042 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
9043 (void) printf("Executing newer ztest: %s\n",
9047 killed
= exec_child(cmd
, NULL
, B_TRUE
, &status
);
9049 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
9050 (void) printf("Executing older ztest: %s\n",
9051 ztest_opts
.zo_alt_ztest
);
9054 killed
= exec_child(ztest_opts
.zo_alt_ztest
,
9055 ztest_opts
.zo_alt_libpath
, B_TRUE
, &status
);
9062 if (ztest_opts
.zo_verbose
>= 1) {
9063 hrtime_t now
= gethrtime();
9065 now
= MIN(now
, zs
->zs_proc_stop
);
9066 print_time(zs
->zs_proc_stop
- now
, timebuf
);
9067 nicenum(zs
->zs_space
, numbuf
, sizeof (numbuf
));
9069 (void) printf("Pass %3d, %8s, %3"PRIu64
" ENOSPC, "
9070 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9072 WIFEXITED(status
) ? "Complete" : "SIGKILL",
9073 zs
->zs_enospc_count
,
9074 100.0 * zs
->zs_alloc
/ zs
->zs_space
,
9076 100.0 * (now
- zs
->zs_proc_start
) /
9077 (ztest_opts
.zo_time
* NANOSEC
), timebuf
);
9080 if (ztest_opts
.zo_verbose
>= 2) {
9081 (void) printf("\nWorkload summary:\n\n");
9082 (void) printf("%7s %9s %s\n",
9083 "Calls", "Time", "Function");
9084 (void) printf("%7s %9s %s\n",
9085 "-----", "----", "--------");
9086 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
9087 zi
= &ztest_info
[f
];
9088 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
9089 print_time(zc
->zc_time
, timebuf
);
9090 (void) printf("%7"PRIu64
" %9s %s\n",
9091 zc
->zc_count
, timebuf
,
9094 (void) printf("\n");
9097 if (!ztest_opts
.zo_mmp_test
)
9098 ztest_run_zdb(zs
->zs_guid
);
9099 if (ztest_shared_opts
->zo_raidz_expand_test
==
9100 RAIDZ_EXPAND_CHECKED
)
9101 break; /* raidz expand test complete */
9104 if (ztest_opts
.zo_verbose
>= 1) {
9106 (void) printf("%d runs of older ztest: %s\n", older
,
9107 ztest_opts
.zo_alt_ztest
);
9108 (void) printf("%d runs of newer ztest: %s\n", newer
,
9111 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9112 kills
, iters
- kills
, (100.0 * kills
) / MAX(1, iters
));
9115 umem_free(cmd
, MAXNAMELEN
);