4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2014, 2022 by Delphix. All rights reserved.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27 * Copyright 2017 RackTop Systems.
28 * Copyright (c) 2018 Datto Inc.
29 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33 * Routines to manage ZFS mounts. We separate all the nasty routines that have
34 * to deal with the OS. The following functions are the main entry points --
35 * they are used by mount and unmount and when changing a filesystem's
44 * This file also contains the functions used to manage sharing filesystems:
52 * The following functions are available for pool consumers, and will
53 * mount/unmount and share/unshare all datasets within pool:
55 * zpool_enable_datasets()
56 * zpool_disable_datasets()
70 #include <sys/mntent.h>
71 #include <sys/mount.h>
74 #include <sys/dsl_crypt.h>
79 #include "libzfs_impl.h"
80 #include <thread_pool.h>
83 #include <sys/systeminfo.h>
84 #define MAXISALEN 257 /* based on sysinfo(2) man page */
86 static void zfs_mount_task(void *);
88 static const proto_table_t proto_table
[SA_PROTOCOL_COUNT
] = {
90 {ZFS_PROP_SHARENFS
, EZFS_SHARENFSFAILED
, EZFS_UNSHARENFSFAILED
},
92 {ZFS_PROP_SHARESMB
, EZFS_SHARESMBFAILED
, EZFS_UNSHARESMBFAILED
},
95 static const enum sa_protocol share_all_proto
[SA_PROTOCOL_COUNT
+ 1] = {
104 dir_is_empty_stat(const char *dirname
)
109 * We only want to return false if the given path is a non empty
110 * directory, all other errors are handled elsewhere.
112 if (stat(dirname
, &st
) < 0 || !S_ISDIR(st
.st_mode
)) {
117 * An empty directory will still have two entries in it, one
118 * entry for each of "." and "..".
120 if (st
.st_size
> 2) {
128 dir_is_empty_readdir(const char *dirname
)
134 if ((dirfd
= openat(AT_FDCWD
, dirname
,
135 O_RDONLY
| O_NDELAY
| O_LARGEFILE
| O_CLOEXEC
, 0)) < 0) {
139 if ((dirp
= fdopendir(dirfd
)) == NULL
) {
144 while ((dp
= readdir64(dirp
)) != NULL
) {
146 if (strcmp(dp
->d_name
, ".") == 0 ||
147 strcmp(dp
->d_name
, "..") == 0)
150 (void) closedir(dirp
);
154 (void) closedir(dirp
);
159 * Returns true if the specified directory is empty. If we can't open the
160 * directory at all, return true so that the mount can fail with a more
161 * informative error message.
164 dir_is_empty(const char *dirname
)
169 * If the statvfs call fails or the filesystem is not a ZFS
170 * filesystem, fall back to the slow path which uses readdir.
172 if ((statfs64(dirname
, &st
) != 0) ||
173 (st
.f_type
!= ZFS_SUPER_MAGIC
)) {
174 return (dir_is_empty_readdir(dirname
));
178 * At this point, we know the provided path is on a ZFS
179 * filesystem, so we can use stat instead of readdir to
180 * determine if the directory is empty or not. We try to avoid
181 * using readdir because that requires opening "dirname"; this
182 * open file descriptor can potentially end up in a child
183 * process if there's a concurrent fork, thus preventing the
184 * zfs_mount() from otherwise succeeding (the open file
185 * descriptor inherited by the child process will cause the
186 * parent's mount to fail with EBUSY). The performance
187 * implications of replacing the open, read, and close with a
188 * single stat is nice; but is not the main motivation for the
191 return (dir_is_empty_stat(dirname
));
195 * Checks to see if the mount is active. If the filesystem is mounted, we fill
196 * in 'where' with the current mountpoint, and return 1. Otherwise, we return
200 is_mounted(libzfs_handle_t
*zfs_hdl
, const char *special
, char **where
)
204 if (libzfs_mnttab_find(zfs_hdl
, special
, &entry
) != 0)
208 *where
= zfs_strdup(zfs_hdl
, entry
.mnt_mountp
);
214 zfs_is_mounted(zfs_handle_t
*zhp
, char **where
)
216 return (is_mounted(zhp
->zfs_hdl
, zfs_get_name(zhp
), where
));
220 * Checks any higher order concerns about whether the given dataset is
221 * mountable, false otherwise. zfs_is_mountable_internal specifically assumes
222 * that the caller has verified the sanity of mounting the dataset at
223 * its mountpoint to the extent the caller wants.
226 zfs_is_mountable_internal(zfs_handle_t
*zhp
)
228 if (zfs_prop_get_int(zhp
, ZFS_PROP_ZONED
) &&
229 getzoneid() == GLOBAL_ZONEID
)
236 * Returns true if the given dataset is mountable, false otherwise. Returns the
237 * mountpoint in 'buf'.
240 zfs_is_mountable(zfs_handle_t
*zhp
, char *buf
, size_t buflen
,
241 zprop_source_t
*source
, int flags
)
243 char sourceloc
[MAXNAMELEN
];
244 zprop_source_t sourcetype
;
246 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT
, zhp
->zfs_type
,
250 verify(zfs_prop_get(zhp
, ZFS_PROP_MOUNTPOINT
, buf
, buflen
,
251 &sourcetype
, sourceloc
, sizeof (sourceloc
), B_FALSE
) == 0);
253 if (strcmp(buf
, ZFS_MOUNTPOINT_NONE
) == 0 ||
254 strcmp(buf
, ZFS_MOUNTPOINT_LEGACY
) == 0)
257 if (zfs_prop_get_int(zhp
, ZFS_PROP_CANMOUNT
) == ZFS_CANMOUNT_OFF
)
260 if (!zfs_is_mountable_internal(zhp
))
263 if (zfs_prop_get_int(zhp
, ZFS_PROP_REDACTED
) && !(flags
& MS_FORCE
))
267 *source
= sourcetype
;
273 * The filesystem is mounted by invoking the system mount utility rather
274 * than by the system call mount(2). This ensures that the /etc/mtab
275 * file is correctly locked for the update. Performing our own locking
276 * and /etc/mtab update requires making an unsafe assumption about how
277 * the mount utility performs its locking. Unfortunately, this also means
278 * in the case of a mount failure we do not have the exact errno. We must
279 * make due with return value from the mount process.
281 * In the long term a shared library called libmount is under development
282 * which provides a common API to address the locking and errno issues.
283 * Once the standard mount utility has been updated to use this library
284 * we can add an autoconf check to conditionally use it.
286 * http://www.kernel.org/pub/linux/utils/util-linux/libmount-docs/index.html
290 zfs_add_option(zfs_handle_t
*zhp
, char *options
, int len
,
291 zfs_prop_t prop
, const char *on
, const char *off
)
296 /* Skip adding duplicate default options */
297 if ((strstr(options
, on
) != NULL
) || (strstr(options
, off
) != NULL
))
301 * zfs_prop_get_int() is not used to ensure our mount options
302 * are not influenced by the current /proc/self/mounts contents.
304 value
= getprop_uint64(zhp
, prop
, &source
);
306 (void) strlcat(options
, ",", len
);
307 (void) strlcat(options
, value
? on
: off
, len
);
313 zfs_add_options(zfs_handle_t
*zhp
, char *options
, int len
)
317 error
= zfs_add_option(zhp
, options
, len
,
318 ZFS_PROP_ATIME
, MNTOPT_ATIME
, MNTOPT_NOATIME
);
320 * don't add relatime/strictatime when atime=off, otherwise strictatime
321 * will force atime=on
323 if (strstr(options
, MNTOPT_NOATIME
) == NULL
) {
324 error
= zfs_add_option(zhp
, options
, len
,
325 ZFS_PROP_RELATIME
, MNTOPT_RELATIME
, MNTOPT_STRICTATIME
);
327 error
= error
? error
: zfs_add_option(zhp
, options
, len
,
328 ZFS_PROP_DEVICES
, MNTOPT_DEVICES
, MNTOPT_NODEVICES
);
329 error
= error
? error
: zfs_add_option(zhp
, options
, len
,
330 ZFS_PROP_EXEC
, MNTOPT_EXEC
, MNTOPT_NOEXEC
);
331 error
= error
? error
: zfs_add_option(zhp
, options
, len
,
332 ZFS_PROP_READONLY
, MNTOPT_RO
, MNTOPT_RW
);
333 error
= error
? error
: zfs_add_option(zhp
, options
, len
,
334 ZFS_PROP_SETUID
, MNTOPT_SETUID
, MNTOPT_NOSETUID
);
335 error
= error
? error
: zfs_add_option(zhp
, options
, len
,
336 ZFS_PROP_NBMAND
, MNTOPT_NBMAND
, MNTOPT_NONBMAND
);
342 zfs_mount(zfs_handle_t
*zhp
, const char *options
, int flags
)
344 char mountpoint
[ZFS_MAXPROPLEN
];
346 if (!zfs_is_mountable(zhp
, mountpoint
, sizeof (mountpoint
), NULL
,
350 return (zfs_mount_at(zhp
, options
, flags
, mountpoint
));
354 * Mount the given filesystem.
357 zfs_mount_at(zfs_handle_t
*zhp
, const char *options
, int flags
,
358 const char *mountpoint
)
361 char mntopts
[MNT_LINE_MAX
];
362 char overlay
[ZFS_MAXPROPLEN
];
363 char prop_encroot
[MAXNAMELEN
];
364 boolean_t is_encroot
;
365 zfs_handle_t
*encroot_hp
= zhp
;
366 libzfs_handle_t
*hdl
= zhp
->zfs_hdl
;
370 if (options
== NULL
) {
371 (void) strlcpy(mntopts
, MNTOPT_DEFAULTS
, sizeof (mntopts
));
373 (void) strlcpy(mntopts
, options
, sizeof (mntopts
));
376 if (strstr(mntopts
, MNTOPT_REMOUNT
) != NULL
)
379 /* Potentially duplicates some checks if invoked by zfs_mount(). */
380 if (!zfs_is_mountable_internal(zhp
))
384 * If the pool is imported read-only then all mounts must be read-only
386 if (zpool_get_prop_int(zhp
->zpool_hdl
, ZPOOL_PROP_READONLY
, NULL
))
387 (void) strlcat(mntopts
, "," MNTOPT_RO
, sizeof (mntopts
));
390 * Append default mount options which apply to the mount point.
391 * This is done because under Linux (unlike Solaris) multiple mount
392 * points may reference a single super block. This means that just
393 * given a super block there is no back reference to update the per
394 * mount point options.
396 rc
= zfs_add_options(zhp
, mntopts
, sizeof (mntopts
));
398 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
399 "default options unavailable"));
400 return (zfs_error_fmt(hdl
, EZFS_MOUNTFAILED
,
401 dgettext(TEXT_DOMAIN
, "cannot mount '%s'"),
406 * If the filesystem is encrypted the key must be loaded in order to
407 * mount. If the key isn't loaded, the MS_CRYPT flag decides whether
408 * or not we attempt to load the keys. Note: we must call
409 * zfs_refresh_properties() here since some callers of this function
410 * (most notably zpool_enable_datasets()) may implicitly load our key
411 * by loading the parent's key first.
413 if (zfs_prop_get_int(zhp
, ZFS_PROP_ENCRYPTION
) != ZIO_CRYPT_OFF
) {
414 zfs_refresh_properties(zhp
);
415 keystatus
= zfs_prop_get_int(zhp
, ZFS_PROP_KEYSTATUS
);
418 * If the key is unavailable and MS_CRYPT is set give the
419 * user a chance to enter the key. Otherwise just fail
422 if (keystatus
== ZFS_KEYSTATUS_UNAVAILABLE
) {
423 if (flags
& MS_CRYPT
) {
424 rc
= zfs_crypto_get_encryption_root(zhp
,
425 &is_encroot
, prop_encroot
);
427 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
428 "Failed to get encryption root for "
429 "'%s'."), zfs_get_name(zhp
));
434 encroot_hp
= zfs_open(hdl
, prop_encroot
,
436 if (encroot_hp
== NULL
)
437 return (hdl
->libzfs_error
);
440 rc
= zfs_crypto_load_key(encroot_hp
,
444 zfs_close(encroot_hp
);
448 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
449 "encryption key not loaded"));
450 return (zfs_error_fmt(hdl
, EZFS_MOUNTFAILED
,
451 dgettext(TEXT_DOMAIN
, "cannot mount '%s'"),
459 * Append zfsutil option so the mount helper allow the mount
461 strlcat(mntopts
, "," MNTOPT_ZFSUTIL
, sizeof (mntopts
));
463 /* Create the directory if it doesn't already exist */
464 if (lstat(mountpoint
, &buf
) != 0) {
465 if (mkdirp(mountpoint
, 0755) != 0) {
466 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
467 "failed to create mountpoint: %s"),
468 zfs_strerror(errno
));
469 return (zfs_error_fmt(hdl
, EZFS_MOUNTFAILED
,
470 dgettext(TEXT_DOMAIN
, "cannot mount '%s'"),
476 * Overlay mounts are enabled by default but may be disabled
477 * via the 'overlay' property. The -O flag remains for compatibility.
479 if (!(flags
& MS_OVERLAY
)) {
480 if (zfs_prop_get(zhp
, ZFS_PROP_OVERLAY
, overlay
,
481 sizeof (overlay
), NULL
, NULL
, 0, B_FALSE
) == 0) {
482 if (strcmp(overlay
, "on") == 0) {
489 * Determine if the mountpoint is empty. If so, refuse to perform the
490 * mount. We don't perform this check if 'remount' is
491 * specified or if overlay option (-O) is given
493 if ((flags
& MS_OVERLAY
) == 0 && !remount
&&
494 !dir_is_empty(mountpoint
)) {
495 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
496 "directory is not empty"));
497 return (zfs_error_fmt(hdl
, EZFS_MOUNTFAILED
,
498 dgettext(TEXT_DOMAIN
, "cannot mount '%s'"), mountpoint
));
501 /* perform the mount */
502 rc
= do_mount(zhp
, mountpoint
, mntopts
, flags
);
505 * Generic errors are nasty, but there are just way too many
506 * from mount(), and they're well-understood. We pick a few
507 * common ones to improve upon.
510 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
511 "mountpoint or dataset is busy"));
512 } else if (rc
== EPERM
) {
513 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
514 "Insufficient privileges"));
515 } else if (rc
== ENOTSUP
) {
518 VERIFY(zfs_spa_version(zhp
, &spa_version
) == 0);
519 zfs_error_aux(hdl
, dgettext(TEXT_DOMAIN
,
520 "Can't mount a version %llu "
521 "file system on a version %d pool. Pool must be"
522 " upgraded to mount this file system."),
523 (u_longlong_t
)zfs_prop_get_int(zhp
,
524 ZFS_PROP_VERSION
), spa_version
);
526 zfs_error_aux(hdl
, "%s", zfs_strerror(rc
));
528 return (zfs_error_fmt(hdl
, EZFS_MOUNTFAILED
,
529 dgettext(TEXT_DOMAIN
, "cannot mount '%s'"),
533 /* remove the mounted entry before re-adding on remount */
535 libzfs_mnttab_remove(hdl
, zhp
->zfs_name
);
537 /* add the mounted entry into our cache */
538 libzfs_mnttab_add(hdl
, zfs_get_name(zhp
), mountpoint
, mntopts
);
543 * Unmount a single filesystem.
546 unmount_one(zfs_handle_t
*zhp
, const char *mountpoint
, int flags
)
550 error
= do_unmount(zhp
, mountpoint
, flags
);
556 libzfs_err
= EZFS_BUSY
;
559 libzfs_err
= EZFS_IO
;
562 libzfs_err
= EZFS_NOENT
;
565 libzfs_err
= EZFS_NOMEM
;
568 libzfs_err
= EZFS_PERM
;
571 libzfs_err
= EZFS_UMOUNTFAILED
;
574 return (zfs_error_fmt(zhp
->zfs_hdl
, libzfs_err
,
575 dgettext(TEXT_DOMAIN
, "cannot unmount '%s'"),
586 * Unmount the given filesystem.
589 zfs_unmount(zfs_handle_t
*zhp
, const char *mountpoint
, int flags
)
591 libzfs_handle_t
*hdl
= zhp
->zfs_hdl
;
594 boolean_t encroot
, unmounted
= B_FALSE
;
596 /* check to see if we need to unmount the filesystem */
597 if (mountpoint
!= NULL
|| ((zfs_get_type(zhp
) == ZFS_TYPE_FILESYSTEM
) &&
598 libzfs_mnttab_find(hdl
, zhp
->zfs_name
, &entry
) == 0)) {
600 * mountpoint may have come from a call to
601 * getmnt/getmntany if it isn't NULL. If it is NULL,
602 * we know it comes from libzfs_mnttab_find which can
603 * then get freed later. We strdup it to play it safe.
605 if (mountpoint
== NULL
)
606 mntpt
= zfs_strdup(hdl
, entry
.mnt_mountp
);
608 mntpt
= zfs_strdup(hdl
, mountpoint
);
611 * Unshare and unmount the filesystem
613 if (zfs_unshare(zhp
, mntpt
, share_all_proto
) != 0) {
617 zfs_commit_shares(NULL
);
619 if (unmount_one(zhp
, mntpt
, flags
) != 0) {
621 (void) zfs_share(zhp
, NULL
);
622 zfs_commit_shares(NULL
);
626 libzfs_mnttab_remove(hdl
, zhp
->zfs_name
);
632 * If the MS_CRYPT flag is provided we must ensure we attempt to
633 * unload the dataset's key regardless of whether we did any work
634 * to unmount it. We only do this for encryption roots.
636 if ((flags
& MS_CRYPT
) != 0 &&
637 zfs_prop_get_int(zhp
, ZFS_PROP_ENCRYPTION
) != ZIO_CRYPT_OFF
) {
638 zfs_refresh_properties(zhp
);
640 if (zfs_crypto_get_encryption_root(zhp
, &encroot
, NULL
) != 0 &&
642 (void) zfs_mount(zhp
, NULL
, 0);
646 if (encroot
&& zfs_prop_get_int(zhp
, ZFS_PROP_KEYSTATUS
) ==
647 ZFS_KEYSTATUS_AVAILABLE
&&
648 zfs_crypto_unload_key(zhp
) != 0) {
649 (void) zfs_mount(zhp
, NULL
, 0);
654 zpool_disable_volume_os(zhp
->zfs_name
);
660 * Unmount this filesystem and any children inheriting the mountpoint property.
661 * To do this, just act like we're changing the mountpoint property, but don't
662 * remount the filesystems afterwards.
665 zfs_unmountall(zfs_handle_t
*zhp
, int flags
)
667 prop_changelist_t
*clp
;
670 clp
= changelist_gather(zhp
, ZFS_PROP_MOUNTPOINT
,
671 CL_GATHER_ITER_MOUNTED
, flags
);
675 ret
= changelist_prefix(clp
);
676 changelist_free(clp
);
682 * Unshare a filesystem by mountpoint.
685 unshare_one(libzfs_handle_t
*hdl
, const char *name
, const char *mountpoint
,
686 enum sa_protocol proto
)
688 int err
= sa_disable_share(mountpoint
, proto
);
690 return (zfs_error_fmt(hdl
, proto_table
[proto
].p_unshare_err
,
691 dgettext(TEXT_DOMAIN
, "cannot unshare '%s': %s"),
692 name
, sa_errorstr(err
)));
698 * Share the given filesystem according to the options in the specified
699 * protocol specific properties (sharenfs, sharesmb). We rely
700 * on "libshare" to do the dirty work for us.
703 zfs_share(zfs_handle_t
*zhp
, const enum sa_protocol
*proto
)
705 char mountpoint
[ZFS_MAXPROPLEN
];
706 char shareopts
[ZFS_MAXPROPLEN
];
707 char sourcestr
[ZFS_MAXPROPLEN
];
708 const enum sa_protocol
*curr_proto
;
709 zprop_source_t sourcetype
;
713 proto
= share_all_proto
;
715 if (!zfs_is_mountable(zhp
, mountpoint
, sizeof (mountpoint
), NULL
, 0))
718 for (curr_proto
= proto
; *curr_proto
!= SA_NO_PROTOCOL
; curr_proto
++) {
720 * Return success if there are no share options.
722 if (zfs_prop_get(zhp
, proto_table
[*curr_proto
].p_prop
,
723 shareopts
, sizeof (shareopts
), &sourcetype
, sourcestr
,
724 ZFS_MAXPROPLEN
, B_FALSE
) != 0 ||
725 strcmp(shareopts
, "off") == 0)
729 * If the 'zoned' property is set, then zfs_is_mountable()
730 * will have already bailed out if we are in the global zone.
731 * But local zones cannot be NFS servers, so we ignore it for
732 * local zones as well.
734 if (zfs_prop_get_int(zhp
, ZFS_PROP_ZONED
))
737 err
= sa_enable_share(zfs_get_name(zhp
), mountpoint
, shareopts
,
740 return (zfs_error_fmt(zhp
->zfs_hdl
,
741 proto_table
[*curr_proto
].p_share_err
,
742 dgettext(TEXT_DOMAIN
, "cannot share '%s: %s'"),
743 zfs_get_name(zhp
), sa_errorstr(err
)));
751 * Check to see if the filesystem is currently shared.
754 zfs_is_shared(zfs_handle_t
*zhp
, char **where
,
755 const enum sa_protocol
*proto
)
759 proto
= share_all_proto
;
761 if (ZFS_IS_VOLUME(zhp
))
764 if (!zfs_is_mounted(zhp
, &mountpoint
))
767 for (const enum sa_protocol
*p
= proto
; *p
!= SA_NO_PROTOCOL
; ++p
)
768 if (sa_is_shared(mountpoint
, *p
)) {
781 zfs_commit_shares(const enum sa_protocol
*proto
)
784 proto
= share_all_proto
;
786 for (const enum sa_protocol
*p
= proto
; *p
!= SA_NO_PROTOCOL
; ++p
)
787 sa_commit_shares(*p
);
791 zfs_truncate_shares(const enum sa_protocol
*proto
)
794 proto
= share_all_proto
;
796 for (const enum sa_protocol
*p
= proto
; *p
!= SA_NO_PROTOCOL
; ++p
)
797 sa_truncate_shares(*p
);
801 * Unshare the given filesystem.
804 zfs_unshare(zfs_handle_t
*zhp
, const char *mountpoint
,
805 const enum sa_protocol
*proto
)
807 libzfs_handle_t
*hdl
= zhp
->zfs_hdl
;
811 proto
= share_all_proto
;
813 if (mountpoint
!= NULL
|| ((zfs_get_type(zhp
) == ZFS_TYPE_FILESYSTEM
) &&
814 libzfs_mnttab_find(hdl
, zfs_get_name(zhp
), &entry
) == 0)) {
816 /* check to see if need to unmount the filesystem */
817 const char *mntpt
= mountpoint
?: entry
.mnt_mountp
;
819 for (const enum sa_protocol
*curr_proto
= proto
;
820 *curr_proto
!= SA_NO_PROTOCOL
; curr_proto
++)
821 if (sa_is_shared(mntpt
, *curr_proto
) &&
822 unshare_one(hdl
, zhp
->zfs_name
,
823 mntpt
, *curr_proto
) != 0)
831 * Same as zfs_unmountall(), but for NFS and SMB unshares.
834 zfs_unshareall(zfs_handle_t
*zhp
, const enum sa_protocol
*proto
)
836 prop_changelist_t
*clp
;
840 proto
= share_all_proto
;
842 clp
= changelist_gather(zhp
, ZFS_PROP_SHARENFS
, 0, 0);
846 ret
= changelist_unshare(clp
, proto
);
847 changelist_free(clp
);
853 * Remove the mountpoint associated with the current dataset, if necessary.
854 * We only remove the underlying directory if:
856 * - The mountpoint is not 'none' or 'legacy'
857 * - The mountpoint is non-empty
858 * - The mountpoint is the default or inherited
859 * - The 'zoned' property is set, or we're in a local zone
861 * Any other directories we leave alone.
864 remove_mountpoint(zfs_handle_t
*zhp
)
866 char mountpoint
[ZFS_MAXPROPLEN
];
867 zprop_source_t source
;
869 if (!zfs_is_mountable(zhp
, mountpoint
, sizeof (mountpoint
),
873 if (source
== ZPROP_SRC_DEFAULT
||
874 source
== ZPROP_SRC_INHERITED
) {
876 * Try to remove the directory, silently ignoring any errors.
877 * The filesystem may have since been removed or moved around,
878 * and this error isn't really useful to the administrator in
881 (void) rmdir(mountpoint
);
886 * Add the given zfs handle to the cb_handles array, dynamically reallocating
887 * the array if it is out of space.
890 libzfs_add_handle(get_all_cb_t
*cbp
, zfs_handle_t
*zhp
)
892 if (cbp
->cb_alloc
== cbp
->cb_used
) {
894 zfs_handle_t
**newhandles
;
896 newsz
= cbp
->cb_alloc
!= 0 ? cbp
->cb_alloc
* 2 : 64;
897 newhandles
= zfs_realloc(zhp
->zfs_hdl
,
898 cbp
->cb_handles
, cbp
->cb_alloc
* sizeof (zfs_handle_t
*),
899 newsz
* sizeof (zfs_handle_t
*));
900 cbp
->cb_handles
= newhandles
;
901 cbp
->cb_alloc
= newsz
;
903 cbp
->cb_handles
[cbp
->cb_used
++] = zhp
;
907 * Recursive helper function used during file system enumeration
910 zfs_iter_cb(zfs_handle_t
*zhp
, void *data
)
912 get_all_cb_t
*cbp
= data
;
914 if (!(zfs_get_type(zhp
) & ZFS_TYPE_FILESYSTEM
)) {
919 if (zfs_prop_get_int(zhp
, ZFS_PROP_CANMOUNT
) == ZFS_CANMOUNT_NOAUTO
) {
924 if (zfs_prop_get_int(zhp
, ZFS_PROP_KEYSTATUS
) ==
925 ZFS_KEYSTATUS_UNAVAILABLE
) {
931 * If this filesystem is inconsistent and has a receive resume
932 * token, we can not mount it.
934 if (zfs_prop_get_int(zhp
, ZFS_PROP_INCONSISTENT
) &&
935 zfs_prop_get(zhp
, ZFS_PROP_RECEIVE_RESUME_TOKEN
,
936 NULL
, 0, NULL
, NULL
, 0, B_TRUE
) == 0) {
941 libzfs_add_handle(cbp
, zhp
);
942 if (zfs_iter_filesystems_v2(zhp
, 0, zfs_iter_cb
, cbp
) != 0) {
950 * Sort comparator that compares two mountpoint paths. We sort these paths so
951 * that subdirectories immediately follow their parents. This means that we
952 * effectively treat the '/' character as the lowest value non-nul char.
953 * Since filesystems from non-global zones can have the same mountpoint
954 * as other filesystems, the comparator sorts global zone filesystems to
955 * the top of the list. This means that the global zone will traverse the
956 * filesystem list in the correct order and can stop when it sees the
957 * first zoned filesystem. In a non-global zone, only the delegated
958 * filesystems are seen.
960 * An example sorted list using this comparator would look like:
970 * The mounting code depends on this ordering to deterministically iterate
971 * over filesystems in order to spawn parallel mount tasks.
974 mountpoint_cmp(const void *arga
, const void *argb
)
976 zfs_handle_t
*const *zap
= arga
;
977 zfs_handle_t
*za
= *zap
;
978 zfs_handle_t
*const *zbp
= argb
;
979 zfs_handle_t
*zb
= *zbp
;
980 char mounta
[MAXPATHLEN
];
981 char mountb
[MAXPATHLEN
];
982 const char *a
= mounta
;
983 const char *b
= mountb
;
984 boolean_t gota
, gotb
;
985 uint64_t zoneda
, zonedb
;
987 zoneda
= zfs_prop_get_int(za
, ZFS_PROP_ZONED
);
988 zonedb
= zfs_prop_get_int(zb
, ZFS_PROP_ZONED
);
989 if (zoneda
&& !zonedb
)
991 if (!zoneda
&& zonedb
)
994 gota
= (zfs_get_type(za
) == ZFS_TYPE_FILESYSTEM
);
996 verify(zfs_prop_get(za
, ZFS_PROP_MOUNTPOINT
, mounta
,
997 sizeof (mounta
), NULL
, NULL
, 0, B_FALSE
) == 0);
999 gotb
= (zfs_get_type(zb
) == ZFS_TYPE_FILESYSTEM
);
1001 verify(zfs_prop_get(zb
, ZFS_PROP_MOUNTPOINT
, mountb
,
1002 sizeof (mountb
), NULL
, NULL
, 0, B_FALSE
) == 0);
1006 while (*a
!= '\0' && (*a
== *b
)) {
1020 return (*a
< *b
? -1 : *a
> *b
);
1029 * If neither filesystem has a mountpoint, revert to sorting by
1032 return (strcmp(zfs_get_name(za
), zfs_get_name(zb
)));
1036 * Return true if path2 is a child of path1 or path2 equals path1 or
1037 * path1 is "/" (path2 is always a child of "/").
1040 libzfs_path_contains(const char *path1
, const char *path2
)
1042 return (strcmp(path1
, path2
) == 0 || strcmp(path1
, "/") == 0 ||
1043 (strstr(path2
, path1
) == path2
&& path2
[strlen(path1
)] == '/'));
1047 * Given a mountpoint specified by idx in the handles array, find the first
1048 * non-descendent of that mountpoint and return its index. Descendant paths
1049 * start with the parent's path. This function relies on the ordering
1050 * enforced by mountpoint_cmp().
1053 non_descendant_idx(zfs_handle_t
**handles
, size_t num_handles
, int idx
)
1055 char parent
[ZFS_MAXPROPLEN
];
1056 char child
[ZFS_MAXPROPLEN
];
1059 verify(zfs_prop_get(handles
[idx
], ZFS_PROP_MOUNTPOINT
, parent
,
1060 sizeof (parent
), NULL
, NULL
, 0, B_FALSE
) == 0);
1062 for (i
= idx
+ 1; i
< num_handles
; i
++) {
1063 verify(zfs_prop_get(handles
[i
], ZFS_PROP_MOUNTPOINT
, child
,
1064 sizeof (child
), NULL
, NULL
, 0, B_FALSE
) == 0);
1065 if (!libzfs_path_contains(parent
, child
))
1071 typedef struct mnt_param
{
1072 libzfs_handle_t
*mnt_hdl
;
1074 zfs_handle_t
**mnt_zhps
; /* filesystems to mount */
1075 size_t mnt_num_handles
;
1076 int mnt_idx
; /* Index of selected entry to mount */
1077 zfs_iter_f mnt_func
;
1082 * Allocate and populate the parameter struct for mount function, and
1083 * schedule mounting of the entry selected by idx.
1086 zfs_dispatch_mount(libzfs_handle_t
*hdl
, zfs_handle_t
**handles
,
1087 size_t num_handles
, int idx
, zfs_iter_f func
, void *data
, tpool_t
*tp
)
1089 mnt_param_t
*mnt_param
= zfs_alloc(hdl
, sizeof (mnt_param_t
));
1091 mnt_param
->mnt_hdl
= hdl
;
1092 mnt_param
->mnt_tp
= tp
;
1093 mnt_param
->mnt_zhps
= handles
;
1094 mnt_param
->mnt_num_handles
= num_handles
;
1095 mnt_param
->mnt_idx
= idx
;
1096 mnt_param
->mnt_func
= func
;
1097 mnt_param
->mnt_data
= data
;
1099 if (tpool_dispatch(tp
, zfs_mount_task
, (void*)mnt_param
)) {
1100 /* Could not dispatch to thread pool; execute directly */
1101 zfs_mount_task((void*)mnt_param
);
1106 * This is the structure used to keep state of mounting or sharing operations
1107 * during a call to zpool_enable_datasets().
1109 typedef struct mount_state
{
1111 * ms_mntstatus is set to -1 if any mount fails. While multiple threads
1112 * could update this variable concurrently, no synchronization is
1113 * needed as it's only ever set to -1.
1117 const char *ms_mntopts
;
1121 zfs_mount_one(zfs_handle_t
*zhp
, void *arg
)
1123 mount_state_t
*ms
= arg
;
1127 * don't attempt to mount encrypted datasets with
1130 if (zfs_prop_get_int(zhp
, ZFS_PROP_KEYSTATUS
) ==
1131 ZFS_KEYSTATUS_UNAVAILABLE
)
1134 if (zfs_mount(zhp
, ms
->ms_mntopts
, ms
->ms_mntflags
) != 0)
1135 ret
= ms
->ms_mntstatus
= -1;
1140 zfs_share_one(zfs_handle_t
*zhp
, void *arg
)
1142 mount_state_t
*ms
= arg
;
1145 if (zfs_share(zhp
, NULL
) != 0)
1146 ret
= ms
->ms_mntstatus
= -1;
1151 * Thread pool function to mount one file system. On completion, it finds and
1152 * schedules its children to be mounted. This depends on the sorting done in
1153 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries
1154 * each descending from the previous) will have no parallelism since we always
1155 * have to wait for the parent to finish mounting before we can schedule
1159 zfs_mount_task(void *arg
)
1161 mnt_param_t
*mp
= arg
;
1162 int idx
= mp
->mnt_idx
;
1163 zfs_handle_t
**handles
= mp
->mnt_zhps
;
1164 size_t num_handles
= mp
->mnt_num_handles
;
1165 char mountpoint
[ZFS_MAXPROPLEN
];
1167 verify(zfs_prop_get(handles
[idx
], ZFS_PROP_MOUNTPOINT
, mountpoint
,
1168 sizeof (mountpoint
), NULL
, NULL
, 0, B_FALSE
) == 0);
1170 if (mp
->mnt_func(handles
[idx
], mp
->mnt_data
) != 0)
1174 * We dispatch tasks to mount filesystems with mountpoints underneath
1175 * this one. We do this by dispatching the next filesystem with a
1176 * descendant mountpoint of the one we just mounted, then skip all of
1177 * its descendants, dispatch the next descendant mountpoint, and so on.
1178 * The non_descendant_idx() function skips over filesystems that are
1179 * descendants of the filesystem we just dispatched.
1181 for (int i
= idx
+ 1; i
< num_handles
;
1182 i
= non_descendant_idx(handles
, num_handles
, i
)) {
1183 char child
[ZFS_MAXPROPLEN
];
1184 verify(zfs_prop_get(handles
[i
], ZFS_PROP_MOUNTPOINT
,
1185 child
, sizeof (child
), NULL
, NULL
, 0, B_FALSE
) == 0);
1187 if (!libzfs_path_contains(mountpoint
, child
))
1188 break; /* not a descendant, return */
1189 zfs_dispatch_mount(mp
->mnt_hdl
, handles
, num_handles
, i
,
1190 mp
->mnt_func
, mp
->mnt_data
, mp
->mnt_tp
);
1198 * Issue the func callback for each ZFS handle contained in the handles
1199 * array. This function is used to mount all datasets, and so this function
1200 * guarantees that filesystems for parent mountpoints are called before their
1201 * children. As such, before issuing any callbacks, we first sort the array
1202 * of handles by mountpoint.
1204 * Callbacks are issued in one of two ways:
1206 * 1. Sequentially: If the nthr argument is <= 1 or the ZFS_SERIAL_MOUNT
1207 * environment variable is set, then we issue callbacks sequentially.
1209 * 2. In parallel: If the nthr argument is > 1 and the ZFS_SERIAL_MOUNT
1210 * environment variable is not set, then we use a tpool to dispatch threads
1211 * to mount filesystems in parallel. This function dispatches tasks to mount
1212 * the filesystems at the top-level mountpoints, and these tasks in turn
1213 * are responsible for recursively mounting filesystems in their children
1214 * mountpoints. The value of the nthr argument will be the number of worker
1215 * threads for the thread pool.
1218 zfs_foreach_mountpoint(libzfs_handle_t
*hdl
, zfs_handle_t
**handles
,
1219 size_t num_handles
, zfs_iter_f func
, void *data
, uint_t nthr
)
1221 zoneid_t zoneid
= getzoneid();
1224 * The ZFS_SERIAL_MOUNT environment variable is an undocumented
1225 * variable that can be used as a convenience to do a/b comparison
1226 * of serial vs. parallel mounting.
1228 boolean_t serial_mount
= nthr
<= 1 ||
1229 (getenv("ZFS_SERIAL_MOUNT") != NULL
);
1232 * Sort the datasets by mountpoint. See mountpoint_cmp for details
1233 * of how these are sorted.
1235 qsort(handles
, num_handles
, sizeof (zfs_handle_t
*), mountpoint_cmp
);
1238 for (int i
= 0; i
< num_handles
; i
++) {
1239 func(handles
[i
], data
);
1245 * Issue the callback function for each dataset using a parallel
1246 * algorithm that uses a thread pool to manage threads.
1248 tpool_t
*tp
= tpool_create(1, nthr
, 0, NULL
);
1251 * There may be multiple "top level" mountpoints outside of the pool's
1252 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of
1255 for (int i
= 0; i
< num_handles
;
1256 i
= non_descendant_idx(handles
, num_handles
, i
)) {
1258 * Since the mountpoints have been sorted so that the zoned
1259 * filesystems are at the end, a zoned filesystem seen from
1260 * the global zone means that we're done.
1262 if (zoneid
== GLOBAL_ZONEID
&&
1263 zfs_prop_get_int(handles
[i
], ZFS_PROP_ZONED
))
1265 zfs_dispatch_mount(hdl
, handles
, num_handles
, i
, func
, data
,
1269 tpool_wait(tp
); /* wait for all scheduled mounts to complete */
1274 * Mount and share all datasets within the given pool. This assumes that no
1275 * datasets within the pool are currently mounted. nthr will be number of
1276 * worker threads to use while mounting datasets.
1279 zpool_enable_datasets(zpool_handle_t
*zhp
, const char *mntopts
, int flags
,
1282 get_all_cb_t cb
= { 0 };
1283 mount_state_t ms
= { 0 };
1287 if ((zfsp
= zfs_open(zhp
->zpool_hdl
, zhp
->zpool_name
,
1288 ZFS_TYPE_DATASET
)) == NULL
)
1292 * Gather all non-snapshot datasets within the pool. Start by adding
1293 * the root filesystem for this pool to the list, and then iterate
1294 * over all child filesystems.
1296 libzfs_add_handle(&cb
, zfsp
);
1297 if (zfs_iter_filesystems_v2(zfsp
, 0, zfs_iter_cb
, &cb
) != 0)
1301 * Mount all filesystems
1303 ms
.ms_mntopts
= mntopts
;
1304 ms
.ms_mntflags
= flags
;
1305 zfs_foreach_mountpoint(zhp
->zpool_hdl
, cb
.cb_handles
, cb
.cb_used
,
1306 zfs_mount_one
, &ms
, nthr
);
1307 if (ms
.ms_mntstatus
!= 0)
1308 ret
= EZFS_MOUNTFAILED
;
1311 * Share all filesystems that need to be shared. This needs to be
1312 * a separate pass because libshare is not mt-safe, and so we need
1313 * to share serially.
1315 ms
.ms_mntstatus
= 0;
1316 zfs_foreach_mountpoint(zhp
->zpool_hdl
, cb
.cb_handles
, cb
.cb_used
,
1317 zfs_share_one
, &ms
, 1);
1318 if (ms
.ms_mntstatus
!= 0)
1319 ret
= EZFS_SHAREFAILED
;
1321 zfs_commit_shares(NULL
);
1324 for (int i
= 0; i
< cb
.cb_used
; i
++)
1325 zfs_close(cb
.cb_handles
[i
]);
1326 free(cb
.cb_handles
);
1333 zfs_handle_t
*dataset
;
1337 mountpoint_compare(const void *a
, const void *b
)
1339 const struct sets_s
*mounta
= (struct sets_s
*)a
;
1340 const struct sets_s
*mountb
= (struct sets_s
*)b
;
1342 return (strcmp(mountb
->mountpoint
, mounta
->mountpoint
));
1346 * Unshare and unmount all datasets within the given pool. We don't want to
1347 * rely on traversing the DSL to discover the filesystems within the pool,
1348 * because this may be expensive (if not all of them are mounted), and can fail
1349 * arbitrarily (on I/O error, for example). Instead, we walk /proc/self/mounts
1350 * and gather all the filesystems that are currently mounted.
1353 zpool_disable_datasets(zpool_handle_t
*zhp
, boolean_t force
)
1357 struct mnttab entry
;
1359 struct sets_s
*sets
= NULL
;
1360 libzfs_handle_t
*hdl
= zhp
->zpool_hdl
;
1363 int flags
= (force
? MS_FORCE
: 0);
1365 namelen
= strlen(zhp
->zpool_name
);
1367 if ((mnttab
= fopen(MNTTAB
, "re")) == NULL
)
1371 while (getmntent(mnttab
, &entry
) == 0) {
1373 * Ignore non-ZFS entries.
1375 if (entry
.mnt_fstype
== NULL
||
1376 strcmp(entry
.mnt_fstype
, MNTTYPE_ZFS
) != 0)
1380 * Ignore filesystems not within this pool.
1382 if (entry
.mnt_mountp
== NULL
||
1383 strncmp(entry
.mnt_special
, zhp
->zpool_name
, namelen
) != 0 ||
1384 (entry
.mnt_special
[namelen
] != '/' &&
1385 entry
.mnt_special
[namelen
] != '\0'))
1389 * At this point we've found a filesystem within our pool. Add
1390 * it to our growing list.
1392 if (used
== alloc
) {
1394 sets
= zfs_alloc(hdl
,
1395 8 * sizeof (struct sets_s
));
1398 sets
= zfs_realloc(hdl
, sets
,
1399 alloc
* sizeof (struct sets_s
),
1400 alloc
* 2 * sizeof (struct sets_s
));
1406 sets
[used
].mountpoint
= zfs_strdup(hdl
, entry
.mnt_mountp
);
1409 * This is allowed to fail, in case there is some I/O error. It
1410 * is only used to determine if we need to remove the underlying
1411 * mountpoint, so failure is not fatal.
1413 sets
[used
].dataset
= make_dataset_handle(hdl
,
1420 * At this point, we have the entire list of filesystems, so sort it by
1424 qsort(sets
, used
, sizeof (struct sets_s
), mountpoint_compare
);
1427 * Walk through and first unshare everything.
1429 for (i
= 0; i
< used
; i
++) {
1430 for (enum sa_protocol p
= 0; p
< SA_PROTOCOL_COUNT
; ++p
) {
1431 if (sa_is_shared(sets
[i
].mountpoint
, p
) &&
1432 unshare_one(hdl
, sets
[i
].mountpoint
,
1433 sets
[i
].mountpoint
, p
) != 0)
1437 zfs_commit_shares(NULL
);
1440 * Now unmount everything, removing the underlying directories as
1443 for (i
= 0; i
< used
; i
++) {
1444 if (unmount_one(sets
[i
].dataset
, sets
[i
].mountpoint
,
1449 for (i
= 0; i
< used
; i
++) {
1450 if (sets
[i
].dataset
)
1451 remove_mountpoint(sets
[i
].dataset
);
1454 zpool_disable_datasets_os(zhp
, force
);
1458 (void) fclose(mnttab
);
1459 for (i
= 0; i
< used
; i
++) {
1460 if (sets
[i
].dataset
)
1461 zfs_close(sets
[i
].dataset
);
1462 free(sets
[i
].mountpoint
);