4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2023, Klara, Inc.
33 * The objective of this program is to provide a DMU/ZAP/SPA stress test
34 * that runs entirely in userland, is easy to use, and easy to extend.
36 * The overall design of the ztest program is as follows:
38 * (1) For each major functional area (e.g. adding vdevs to a pool,
39 * creating and destroying datasets, reading and writing objects, etc)
40 * we have a simple routine to test that functionality. These
41 * individual routines do not have to do anything "stressful".
43 * (2) We turn these simple functionality tests into a stress test by
44 * running them all in parallel, with as many threads as desired,
45 * and spread across as many datasets, objects, and vdevs as desired.
47 * (3) While all this is happening, we inject faults into the pool to
48 * verify that self-healing data really works.
50 * (4) Every time we open a dataset, we change its checksum and compression
51 * functions. Thus even individual objects vary from block to block
52 * in which checksum they use and whether they're compressed.
54 * (5) To verify that we never lose on-disk consistency after a crash,
55 * we run the entire test in a child of the main process.
56 * At random times, the child self-immolates with a SIGKILL.
57 * This is the software equivalent of pulling the power cord.
58 * The parent then runs the test again, using the existing
59 * storage pool, as many times as desired. If backwards compatibility
60 * testing is enabled ztest will sometimes run the "older" version
61 * of ztest after a SIGKILL.
63 * (6) To verify that we don't have future leaks or temporal incursions,
64 * many of the functional tests record the transaction group number
65 * as part of their data. When reading old data, they verify that
66 * the transaction group number is less than the current, open txg.
67 * If you add a new test, please do this if applicable.
69 * (7) Threads are created with a reduced stack size, for sanity checking.
70 * Therefore, it's important not to allocate huge buffers on the stack.
72 * When run with no arguments, ztest runs for about five minutes and
73 * produces no output if successful. To get a little bit of information,
74 * specify -V. To get more information, specify -VV, and so on.
76 * To turn this into an overnight stress test, use -T to specify run time.
78 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
79 * to increase the pool capacity, fanout, and overall stress level.
81 * Use the -k option to set the desired frequency of kills.
83 * When ztest invokes itself it passes all relevant information through a
84 * temporary file which is mmap-ed in the child process. This allows shared
85 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
86 * stored at offset 0 of this file and contains information on the size and
87 * number of shared structures in the file. The information stored in this file
88 * must remain backwards compatible with older versions of ztest so that
89 * ztest can invoke them during backwards compatibility testing (-B).
92 #include <sys/zfs_context.h>
98 #include <sys/dmu_objset.h>
100 #include <sys/stat.h>
101 #include <sys/time.h>
102 #include <sys/wait.h>
103 #include <sys/mman.h>
104 #include <sys/resource.h>
107 #include <sys/zil_impl.h>
108 #include <sys/vdev_draid.h>
109 #include <sys/vdev_impl.h>
110 #include <sys/vdev_file.h>
111 #include <sys/vdev_initialize.h>
112 #include <sys/vdev_raidz.h>
113 #include <sys/vdev_trim.h>
114 #include <sys/spa_impl.h>
115 #include <sys/metaslab_impl.h>
116 #include <sys/dsl_prop.h>
117 #include <sys/dsl_dataset.h>
118 #include <sys/dsl_destroy.h>
119 #include <sys/dsl_scan.h>
120 #include <sys/zio_checksum.h>
121 #include <sys/zfs_refcount.h>
122 #include <sys/zfeature.h>
123 #include <sys/dsl_userhold.h>
125 #include <sys/blake3.h>
134 #include <sys/fs/zfs.h>
135 #include <zfs_fletcher.h>
136 #include <libnvpair.h>
137 #include <libzutil.h>
138 #include <sys/crypto/icp.h>
139 #include <sys/zfs_impl.h>
140 #include <sys/backtrace.h>
142 static int ztest_fd_data
= -1;
143 static int ztest_fd_rand
= -1;
145 typedef struct ztest_shared_hdr
{
146 uint64_t zh_hdr_size
;
147 uint64_t zh_opts_size
;
149 uint64_t zh_stats_size
;
150 uint64_t zh_stats_count
;
152 uint64_t zh_ds_count
;
153 uint64_t zh_scratch_state_size
;
154 } ztest_shared_hdr_t
;
156 static ztest_shared_hdr_t
*ztest_shared_hdr
;
158 enum ztest_class_state
{
159 ZTEST_VDEV_CLASS_OFF
,
164 /* Dedicated RAIDZ Expansion test states */
166 RAIDZ_EXPAND_NONE
, /* Default is none, must opt-in */
167 RAIDZ_EXPAND_REQUESTED
, /* The '-X' option was used */
168 RAIDZ_EXPAND_STARTED
, /* Testing has commenced */
169 RAIDZ_EXPAND_KILLED
, /* Reached the proccess kill */
170 RAIDZ_EXPAND_CHECKED
, /* Pool scrub verification done */
171 } raidz_expand_test_state_t
;
174 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
175 #define ZO_GVARS_MAX_COUNT ((size_t)10)
177 typedef struct ztest_shared_opts
{
178 char zo_pool
[ZFS_MAX_DATASET_NAME_LEN
];
179 char zo_dir
[ZFS_MAX_DATASET_NAME_LEN
];
180 char zo_alt_ztest
[MAXNAMELEN
];
181 char zo_alt_libpath
[MAXNAMELEN
];
183 uint64_t zo_vdevtime
;
187 int zo_raid_do_expand
;
188 int zo_raid_children
;
190 char zo_raid_type
[8];
195 uint64_t zo_passtime
;
196 uint64_t zo_killrate
;
200 uint64_t zo_maxloops
;
201 uint64_t zo_metaslab_force_ganging
;
202 raidz_expand_test_state_t zo_raidz_expand_test
;
204 int zo_special_vdevs
;
207 char zo_gvars
[ZO_GVARS_MAX_COUNT
][ZO_GVARS_MAX_ARGLEN
];
208 } ztest_shared_opts_t
;
210 /* Default values for command line options. */
211 #define DEFAULT_POOL "ztest"
212 #define DEFAULT_VDEV_DIR "/tmp"
213 #define DEFAULT_VDEV_COUNT 5
214 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
215 #define DEFAULT_VDEV_SIZE_STR "256M"
216 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
217 #define DEFAULT_MIRRORS 2
218 #define DEFAULT_RAID_CHILDREN 4
219 #define DEFAULT_RAID_PARITY 1
220 #define DEFAULT_DRAID_DATA 4
221 #define DEFAULT_DRAID_SPARES 1
222 #define DEFAULT_DATASETS_COUNT 7
223 #define DEFAULT_THREADS 23
224 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
225 #define DEFAULT_RUN_TIME_STR "300 sec"
226 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
227 #define DEFAULT_PASS_TIME_STR "60 sec"
228 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
229 #define DEFAULT_KILLRATE_STR "70%"
230 #define DEFAULT_INITS 1
231 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
232 #define DEFAULT_FORCE_GANGING (64 << 10)
233 #define DEFAULT_FORCE_GANGING_STR "64K"
235 /* Simplifying assumption: -1 is not a valid default. */
236 #define NO_DEFAULT -1
238 static const ztest_shared_opts_t ztest_opts_defaults
= {
239 .zo_pool
= DEFAULT_POOL
,
240 .zo_dir
= DEFAULT_VDEV_DIR
,
241 .zo_alt_ztest
= { '\0' },
242 .zo_alt_libpath
= { '\0' },
243 .zo_vdevs
= DEFAULT_VDEV_COUNT
,
244 .zo_ashift
= DEFAULT_ASHIFT
,
245 .zo_mirrors
= DEFAULT_MIRRORS
,
246 .zo_raid_children
= DEFAULT_RAID_CHILDREN
,
247 .zo_raid_parity
= DEFAULT_RAID_PARITY
,
248 .zo_raid_type
= VDEV_TYPE_RAIDZ
,
249 .zo_vdev_size
= DEFAULT_VDEV_SIZE
,
250 .zo_draid_data
= DEFAULT_DRAID_DATA
, /* data drives */
251 .zo_draid_spares
= DEFAULT_DRAID_SPARES
, /* distributed spares */
252 .zo_datasets
= DEFAULT_DATASETS_COUNT
,
253 .zo_threads
= DEFAULT_THREADS
,
254 .zo_passtime
= DEFAULT_PASS_TIME
,
255 .zo_killrate
= DEFAULT_KILL_RATE
,
258 .zo_init
= DEFAULT_INITS
,
259 .zo_time
= DEFAULT_RUN_TIME
,
260 .zo_maxloops
= DEFAULT_MAX_LOOPS
, /* max loops during spa_freeze() */
261 .zo_metaslab_force_ganging
= DEFAULT_FORCE_GANGING
,
262 .zo_special_vdevs
= ZTEST_VDEV_CLASS_RND
,
264 .zo_raidz_expand_test
= RAIDZ_EXPAND_NONE
,
267 extern uint64_t metaslab_force_ganging
;
268 extern uint64_t metaslab_df_alloc_threshold
;
269 extern uint64_t zfs_deadman_synctime_ms
;
270 extern uint_t metaslab_preload_limit
;
271 extern int zfs_compressed_arc_enabled
;
272 extern int zfs_abd_scatter_enabled
;
273 extern uint_t dmu_object_alloc_chunk_shift
;
274 extern boolean_t zfs_force_some_double_word_sm_entries
;
275 extern unsigned long zio_decompress_fail_fraction
;
276 extern unsigned long zfs_reconstruct_indirect_damage_fraction
;
277 extern uint64_t raidz_expand_max_reflow_bytes
;
278 extern uint_t raidz_expand_pause_point
;
279 extern boolean_t ddt_prune_artificial_age
;
280 extern boolean_t ddt_dump_prune_histogram
;
283 static ztest_shared_opts_t
*ztest_shared_opts
;
284 static ztest_shared_opts_t ztest_opts
;
285 static const char *const ztest_wkeydata
= "abcdefghijklmnopqrstuvwxyz012345";
287 typedef struct ztest_shared_ds
{
291 static ztest_shared_ds_t
*ztest_shared_ds
;
292 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
294 typedef struct ztest_scratch_state
{
295 uint64_t zs_raidz_scratch_verify_pause
;
296 } ztest_shared_scratch_state_t
;
298 static ztest_shared_scratch_state_t
*ztest_scratch_state
;
300 #define BT_MAGIC 0x123456789abcdefULL
301 #define MAXFAULTS(zs) \
302 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
306 ZTEST_IO_WRITE_PATTERN
,
307 ZTEST_IO_WRITE_ZEROES
,
314 typedef struct ztest_block_tag
{
318 uint64_t bt_dnodesize
;
325 typedef struct bufwad
{
332 * It would be better to use a rangelock_t per object. Unfortunately
333 * the rangelock_t is not a drop-in replacement for rl_t, because we
334 * still need to map from object ID to rangelock_t.
356 #define ZTEST_RANGE_LOCKS 64
357 #define ZTEST_OBJECT_LOCKS 64
360 * Object descriptor. Used as a template for object lookup/create/remove.
362 typedef struct ztest_od
{
365 dmu_object_type_t od_type
;
366 dmu_object_type_t od_crtype
;
367 uint64_t od_blocksize
;
368 uint64_t od_crblocksize
;
369 uint64_t od_crdnodesize
;
372 char od_name
[ZFS_MAX_DATASET_NAME_LEN
];
378 typedef struct ztest_ds
{
379 ztest_shared_ds_t
*zd_shared
;
381 pthread_rwlock_t zd_zilog_lock
;
383 ztest_od_t
*zd_od
; /* debugging aid */
384 char zd_name
[ZFS_MAX_DATASET_NAME_LEN
];
385 kmutex_t zd_dirobj_lock
;
386 rll_t zd_object_lock
[ZTEST_OBJECT_LOCKS
];
387 rll_t zd_range_lock
[ZTEST_RANGE_LOCKS
];
391 * Per-iteration state.
393 typedef void ztest_func_t(ztest_ds_t
*zd
, uint64_t id
);
395 typedef struct ztest_info
{
396 ztest_func_t
*zi_func
; /* test function */
397 uint64_t zi_iters
; /* iterations per execution */
398 uint64_t *zi_interval
; /* execute every <interval> seconds */
399 const char *zi_funcname
; /* name of test function */
402 typedef struct ztest_shared_callstate
{
403 uint64_t zc_count
; /* per-pass count */
404 uint64_t zc_time
; /* per-pass time */
405 uint64_t zc_next
; /* next time to call this function */
406 } ztest_shared_callstate_t
;
408 static ztest_shared_callstate_t
*ztest_shared_callstate
;
409 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
411 ztest_func_t ztest_dmu_read_write
;
412 ztest_func_t ztest_dmu_write_parallel
;
413 ztest_func_t ztest_dmu_object_alloc_free
;
414 ztest_func_t ztest_dmu_object_next_chunk
;
415 ztest_func_t ztest_dmu_commit_callbacks
;
416 ztest_func_t ztest_zap
;
417 ztest_func_t ztest_zap_parallel
;
418 ztest_func_t ztest_zil_commit
;
419 ztest_func_t ztest_zil_remount
;
420 ztest_func_t ztest_dmu_read_write_zcopy
;
421 ztest_func_t ztest_dmu_objset_create_destroy
;
422 ztest_func_t ztest_dmu_prealloc
;
423 ztest_func_t ztest_fzap
;
424 ztest_func_t ztest_dmu_snapshot_create_destroy
;
425 ztest_func_t ztest_dsl_prop_get_set
;
426 ztest_func_t ztest_spa_prop_get_set
;
427 ztest_func_t ztest_spa_create_destroy
;
428 ztest_func_t ztest_fault_inject
;
429 ztest_func_t ztest_dmu_snapshot_hold
;
430 ztest_func_t ztest_mmp_enable_disable
;
431 ztest_func_t ztest_scrub
;
432 ztest_func_t ztest_dsl_dataset_promote_busy
;
433 ztest_func_t ztest_vdev_attach_detach
;
434 ztest_func_t ztest_vdev_raidz_attach
;
435 ztest_func_t ztest_vdev_LUN_growth
;
436 ztest_func_t ztest_vdev_add_remove
;
437 ztest_func_t ztest_vdev_class_add
;
438 ztest_func_t ztest_vdev_aux_add_remove
;
439 ztest_func_t ztest_split_pool
;
440 ztest_func_t ztest_reguid
;
441 ztest_func_t ztest_spa_upgrade
;
442 ztest_func_t ztest_device_removal
;
443 ztest_func_t ztest_spa_checkpoint_create_discard
;
444 ztest_func_t ztest_initialize
;
445 ztest_func_t ztest_trim
;
446 ztest_func_t ztest_blake3
;
447 ztest_func_t ztest_fletcher
;
448 ztest_func_t ztest_fletcher_incr
;
449 ztest_func_t ztest_verify_dnode_bt
;
450 ztest_func_t ztest_pool_prefetch_ddt
;
451 ztest_func_t ztest_ddt_prune
;
453 static uint64_t zopt_always
= 0ULL * NANOSEC
; /* all the time */
454 static uint64_t zopt_incessant
= 1ULL * NANOSEC
/ 10; /* every 1/10 second */
455 static uint64_t zopt_often
= 1ULL * NANOSEC
; /* every second */
456 static uint64_t zopt_sometimes
= 10ULL * NANOSEC
; /* every 10 seconds */
457 static uint64_t zopt_rarely
= 60ULL * NANOSEC
; /* every 60 seconds */
459 #define ZTI_INIT(func, iters, interval) \
460 { .zi_func = (func), \
461 .zi_iters = (iters), \
462 .zi_interval = (interval), \
463 .zi_funcname = # func }
465 static ztest_info_t ztest_info
[] = {
466 ZTI_INIT(ztest_dmu_read_write
, 1, &zopt_always
),
467 ZTI_INIT(ztest_dmu_write_parallel
, 10, &zopt_always
),
468 ZTI_INIT(ztest_dmu_object_alloc_free
, 1, &zopt_always
),
469 ZTI_INIT(ztest_dmu_object_next_chunk
, 1, &zopt_sometimes
),
470 ZTI_INIT(ztest_dmu_commit_callbacks
, 1, &zopt_always
),
471 ZTI_INIT(ztest_zap
, 30, &zopt_always
),
472 ZTI_INIT(ztest_zap_parallel
, 100, &zopt_always
),
473 ZTI_INIT(ztest_split_pool
, 1, &zopt_sometimes
),
474 ZTI_INIT(ztest_zil_commit
, 1, &zopt_incessant
),
475 ZTI_INIT(ztest_zil_remount
, 1, &zopt_sometimes
),
476 ZTI_INIT(ztest_dmu_read_write_zcopy
, 1, &zopt_often
),
477 ZTI_INIT(ztest_dmu_objset_create_destroy
, 1, &zopt_often
),
478 ZTI_INIT(ztest_dsl_prop_get_set
, 1, &zopt_often
),
479 ZTI_INIT(ztest_spa_prop_get_set
, 1, &zopt_sometimes
),
481 ZTI_INIT(ztest_dmu_prealloc
, 1, &zopt_sometimes
),
483 ZTI_INIT(ztest_fzap
, 1, &zopt_sometimes
),
484 ZTI_INIT(ztest_dmu_snapshot_create_destroy
, 1, &zopt_sometimes
),
485 ZTI_INIT(ztest_spa_create_destroy
, 1, &zopt_sometimes
),
486 ZTI_INIT(ztest_fault_inject
, 1, &zopt_sometimes
),
487 ZTI_INIT(ztest_dmu_snapshot_hold
, 1, &zopt_sometimes
),
488 ZTI_INIT(ztest_mmp_enable_disable
, 1, &zopt_sometimes
),
489 ZTI_INIT(ztest_reguid
, 1, &zopt_rarely
),
490 ZTI_INIT(ztest_scrub
, 1, &zopt_rarely
),
491 ZTI_INIT(ztest_spa_upgrade
, 1, &zopt_rarely
),
492 ZTI_INIT(ztest_dsl_dataset_promote_busy
, 1, &zopt_rarely
),
493 ZTI_INIT(ztest_vdev_attach_detach
, 1, &zopt_sometimes
),
494 ZTI_INIT(ztest_vdev_raidz_attach
, 1, &zopt_sometimes
),
495 ZTI_INIT(ztest_vdev_LUN_growth
, 1, &zopt_rarely
),
496 ZTI_INIT(ztest_vdev_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
497 ZTI_INIT(ztest_vdev_class_add
, 1, &ztest_opts
.zo_vdevtime
),
498 ZTI_INIT(ztest_vdev_aux_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
499 ZTI_INIT(ztest_device_removal
, 1, &zopt_sometimes
),
500 ZTI_INIT(ztest_spa_checkpoint_create_discard
, 1, &zopt_rarely
),
501 ZTI_INIT(ztest_initialize
, 1, &zopt_sometimes
),
502 ZTI_INIT(ztest_trim
, 1, &zopt_sometimes
),
503 ZTI_INIT(ztest_blake3
, 1, &zopt_rarely
),
504 ZTI_INIT(ztest_fletcher
, 1, &zopt_rarely
),
505 ZTI_INIT(ztest_fletcher_incr
, 1, &zopt_rarely
),
506 ZTI_INIT(ztest_verify_dnode_bt
, 1, &zopt_sometimes
),
507 ZTI_INIT(ztest_pool_prefetch_ddt
, 1, &zopt_rarely
),
508 ZTI_INIT(ztest_ddt_prune
, 1, &zopt_rarely
),
511 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
514 * The following struct is used to hold a list of uncalled commit callbacks.
515 * The callbacks are ordered by txg number.
517 typedef struct ztest_cb_list
{
518 kmutex_t zcl_callbacks_lock
;
519 list_t zcl_callbacks
;
523 * Stuff we need to share writably between parent and child.
525 typedef struct ztest_shared
{
526 boolean_t zs_do_init
;
527 hrtime_t zs_proc_start
;
528 hrtime_t zs_proc_stop
;
529 hrtime_t zs_thread_start
;
530 hrtime_t zs_thread_stop
;
531 hrtime_t zs_thread_kill
;
532 uint64_t zs_enospc_count
;
533 uint64_t zs_vdev_next_leaf
;
534 uint64_t zs_vdev_aux
;
539 uint64_t zs_metaslab_sz
;
540 uint64_t zs_metaslab_df_alloc_threshold
;
544 #define ID_PARALLEL -1ULL
546 static char ztest_dev_template
[] = "%s/%s.%llua";
547 static char ztest_aux_template
[] = "%s/%s.%s.%llu";
548 static ztest_shared_t
*ztest_shared
;
550 static spa_t
*ztest_spa
= NULL
;
551 static ztest_ds_t
*ztest_ds
;
553 static kmutex_t ztest_vdev_lock
;
554 static boolean_t ztest_device_removal_active
= B_FALSE
;
555 static boolean_t ztest_pool_scrubbed
= B_FALSE
;
556 static kmutex_t ztest_checkpoint_lock
;
559 * The ztest_name_lock protects the pool and dataset namespace used by
560 * the individual tests. To modify the namespace, consumers must grab
561 * this lock as writer. Grabbing the lock as reader will ensure that the
562 * namespace does not change while the lock is held.
564 static pthread_rwlock_t ztest_name_lock
;
566 static boolean_t ztest_dump_core
= B_TRUE
;
567 static boolean_t ztest_exiting
;
569 /* Global commit callback list */
570 static ztest_cb_list_t zcl
;
571 /* Commit cb delay */
572 static uint64_t zc_min_txg_delay
= UINT64_MAX
;
573 static int zc_cb_counter
= 0;
576 * Minimum number of commit callbacks that need to be registered for us to check
577 * whether the minimum txg delay is acceptable.
579 #define ZTEST_COMMIT_CB_MIN_REG 100
582 * If a number of txgs equal to this threshold have been created after a commit
583 * callback has been registered but not called, then we assume there is an
584 * implementation bug.
586 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
589 ZTEST_META_DNODE
= 0,
594 static __attribute__((noreturn
)) void usage(boolean_t requested
);
595 static int ztest_scrub_impl(spa_t
*spa
);
598 * These libumem hooks provide a reasonable set of defaults for the allocator's
599 * debugging facilities.
602 _umem_debug_init(void)
604 return ("default,verbose"); /* $UMEM_DEBUG setting */
608 _umem_logging_init(void)
610 return ("fail,contents"); /* $UMEM_LOGGING setting */
614 dump_debug_buffer(void)
616 ssize_t ret
__attribute__((unused
));
618 if (!ztest_opts
.zo_dump_dbgmsg
)
622 * We use write() instead of printf() so that this function
623 * is safe to call from a signal handler.
625 ret
= write(STDERR_FILENO
, "\n", 1);
626 zfs_dbgmsg_print(STDERR_FILENO
, "ztest");
629 static void sig_handler(int signo
)
631 struct sigaction action
;
633 libspl_backtrace(STDERR_FILENO
);
637 * Restore default action and re-raise signal so SIGSEGV and
638 * SIGABRT can trigger a core dump.
640 action
.sa_handler
= SIG_DFL
;
641 sigemptyset(&action
.sa_mask
);
643 (void) sigaction(signo
, &action
, NULL
);
647 #define FATAL_MSG_SZ 1024
649 static const char *fatal_msg
;
651 static __attribute__((format(printf
, 2, 3))) __attribute__((noreturn
)) void
652 fatal(int do_perror
, const char *message
, ...)
655 int save_errno
= errno
;
658 (void) fflush(stdout
);
659 buf
= umem_alloc(FATAL_MSG_SZ
, UMEM_NOFAIL
);
663 va_start(args
, message
);
664 (void) sprintf(buf
, "ztest: ");
666 (void) vsprintf(buf
+ strlen(buf
), message
, args
);
669 (void) snprintf(buf
+ strlen(buf
), FATAL_MSG_SZ
- strlen(buf
),
670 ": %s", strerror(save_errno
));
672 (void) fprintf(stderr
, "%s\n", buf
);
673 fatal_msg
= buf
; /* to ease debugging */
685 str2shift(const char *buf
)
687 const char *ends
= "BKMGTPEZ";
694 for (i
= 0; i
< len
; i
++) {
695 if (toupper(buf
[0]) == ends
[i
])
699 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n",
703 if (buf
[1] == '\0' || (toupper(buf
[1]) == 'B' && buf
[2] == '\0')) {
706 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n", buf
);
711 nicenumtoull(const char *buf
)
716 val
= strtoull(buf
, &end
, 0);
718 (void) fprintf(stderr
, "ztest: bad numeric value: %s\n", buf
);
720 } else if (end
[0] == '.') {
721 double fval
= strtod(buf
, &end
);
722 fval
*= pow(2, str2shift(end
));
724 * UINT64_MAX is not exactly representable as a double.
725 * The closest representation is UINT64_MAX + 1, so we
726 * use a >= comparison instead of > for the bounds check.
728 if (fval
>= (double)UINT64_MAX
) {
729 (void) fprintf(stderr
, "ztest: value too large: %s\n",
733 val
= (uint64_t)fval
;
735 int shift
= str2shift(end
);
736 if (shift
>= 64 || (val
<< shift
) >> shift
!= val
) {
737 (void) fprintf(stderr
, "ztest: value too large: %s\n",
746 typedef struct ztest_option
{
747 const char short_opt
;
748 const char *long_opt
;
749 const char *long_opt_param
;
751 unsigned int default_int
;
752 const char *default_str
;
756 * The following option_table is used for generating the usage info as well as
757 * the long and short option information for calling getopt_long().
759 static ztest_option_t option_table
[] = {
760 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT
,
762 { 's', "vdev-size", "INTEGER", "Size of each vdev",
763 NO_DEFAULT
, DEFAULT_VDEV_SIZE_STR
},
764 { 'a', "alignment-shift", "INTEGER",
765 "Alignment shift; use 0 for random", DEFAULT_ASHIFT
, NULL
},
766 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
767 DEFAULT_MIRRORS
, NULL
},
768 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
769 DEFAULT_RAID_CHILDREN
, NULL
},
770 { 'R', "raid-parity", "INTEGER", "Raid parity",
771 DEFAULT_RAID_PARITY
, NULL
},
772 { 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
773 NO_DEFAULT
, "random"},
774 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
775 DEFAULT_DRAID_DATA
, NULL
},
776 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
777 DEFAULT_DRAID_SPARES
, NULL
},
778 { 'd', "datasets", "INTEGER", "Number of datasets",
779 DEFAULT_DATASETS_COUNT
, NULL
},
780 { 't', "threads", "INTEGER", "Number of ztest threads",
781 DEFAULT_THREADS
, NULL
},
782 { 'g', "gang-block-threshold", "INTEGER",
783 "Metaslab gang block threshold",
784 NO_DEFAULT
, DEFAULT_FORCE_GANGING_STR
},
785 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
786 DEFAULT_INITS
, NULL
},
787 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
788 NO_DEFAULT
, DEFAULT_KILLRATE_STR
},
789 { 'p', "pool-name", "STRING", "Pool name",
790 NO_DEFAULT
, DEFAULT_POOL
},
791 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
792 NO_DEFAULT
, DEFAULT_VDEV_DIR
},
793 { 'M', "multi-host", NULL
,
794 "Multi-host; simulate pool imported on remote host",
796 { 'E', "use-existing-pool", NULL
,
797 "Use existing pool instead of creating new one", NO_DEFAULT
, NULL
},
798 { 'T', "run-time", "INTEGER", "Total run time",
799 NO_DEFAULT
, DEFAULT_RUN_TIME_STR
},
800 { 'P', "pass-time", "INTEGER", "Time per pass",
801 NO_DEFAULT
, DEFAULT_PASS_TIME_STR
},
802 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
803 DEFAULT_MAX_LOOPS
, NULL
},
804 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
806 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
807 NO_DEFAULT
, "random"},
808 { 'X', "raidz-expansion", NULL
,
809 "Perform a dedicated raidz expansion test",
811 { 'o', "option", "\"OPTION=INTEGER\"",
812 "Set global variable to an unsigned 32-bit integer value",
814 { 'G', "dump-debug-msg", NULL
,
815 "Dump zfs_dbgmsg buffer before exiting due to an error",
817 { 'V', "verbose", NULL
,
818 "Verbose (use multiple times for ever more verbosity)",
820 { 'h', "help", NULL
, "Show this help",
825 static struct option
*long_opts
= NULL
;
826 static char *short_opts
= NULL
;
831 ASSERT3P(long_opts
, ==, NULL
);
832 ASSERT3P(short_opts
, ==, NULL
);
834 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
835 long_opts
= umem_alloc(sizeof (struct option
) * count
, UMEM_NOFAIL
);
837 short_opts
= umem_alloc(sizeof (char) * 2 * count
, UMEM_NOFAIL
);
838 int short_opt_index
= 0;
840 for (int i
= 0; i
< count
; i
++) {
841 long_opts
[i
].val
= option_table
[i
].short_opt
;
842 long_opts
[i
].name
= option_table
[i
].long_opt
;
843 long_opts
[i
].has_arg
= option_table
[i
].long_opt_param
!= NULL
844 ? required_argument
: no_argument
;
845 long_opts
[i
].flag
= NULL
;
846 short_opts
[short_opt_index
++] = option_table
[i
].short_opt
;
847 if (option_table
[i
].long_opt_param
!= NULL
) {
848 short_opts
[short_opt_index
++] = ':';
856 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
858 umem_free(long_opts
, sizeof (struct option
) * count
);
859 umem_free(short_opts
, sizeof (char) * 2 * count
);
865 static __attribute__((noreturn
)) void
866 usage(boolean_t requested
)
869 FILE *fp
= requested
? stdout
: stderr
;
871 (void) fprintf(fp
, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL
);
872 for (int i
= 0; option_table
[i
].short_opt
!= 0; i
++) {
873 if (option_table
[i
].long_opt_param
!= NULL
) {
874 (void) sprintf(option
, " -%c --%s=%s",
875 option_table
[i
].short_opt
,
876 option_table
[i
].long_opt
,
877 option_table
[i
].long_opt_param
);
879 (void) sprintf(option
, " -%c --%s",
880 option_table
[i
].short_opt
,
881 option_table
[i
].long_opt
);
883 (void) fprintf(fp
, " %-43s%s", option
,
884 option_table
[i
].comment
);
886 if (option_table
[i
].long_opt_param
!= NULL
) {
887 if (option_table
[i
].default_str
!= NULL
) {
888 (void) fprintf(fp
, " (default: %s)",
889 option_table
[i
].default_str
);
890 } else if (option_table
[i
].default_int
!= NO_DEFAULT
) {
891 (void) fprintf(fp
, " (default: %u)",
892 option_table
[i
].default_int
);
895 (void) fprintf(fp
, "\n");
897 exit(requested
? 0 : 1);
901 ztest_random(uint64_t range
)
905 ASSERT3S(ztest_fd_rand
, >=, 0);
910 if (read(ztest_fd_rand
, &r
, sizeof (r
)) != sizeof (r
))
911 fatal(B_TRUE
, "short read from /dev/urandom");
917 ztest_parse_name_value(const char *input
, ztest_shared_opts_t
*zo
)
921 int state
= ZTEST_VDEV_CLASS_RND
;
923 (void) strlcpy(name
, input
, sizeof (name
));
925 value
= strchr(name
, '=');
927 (void) fprintf(stderr
, "missing value in property=value "
928 "'-C' argument (%s)\n", input
);
934 if (strcmp(value
, "on") == 0) {
935 state
= ZTEST_VDEV_CLASS_ON
;
936 } else if (strcmp(value
, "off") == 0) {
937 state
= ZTEST_VDEV_CLASS_OFF
;
938 } else if (strcmp(value
, "random") == 0) {
939 state
= ZTEST_VDEV_CLASS_RND
;
941 (void) fprintf(stderr
, "invalid property value '%s'\n", value
);
945 if (strcmp(name
, "special") == 0) {
946 zo
->zo_special_vdevs
= state
;
948 (void) fprintf(stderr
, "invalid property name '%s'\n", name
);
951 if (zo
->zo_verbose
>= 3)
952 (void) printf("%s vdev state is '%s'\n", name
, value
);
956 process_options(int argc
, char **argv
)
959 ztest_shared_opts_t
*zo
= &ztest_opts
;
963 const char *raid_kind
= "random";
965 memcpy(zo
, &ztest_opts_defaults
, sizeof (*zo
));
969 while ((opt
= getopt_long(argc
, argv
, short_opts
, long_opts
,
989 value
= nicenumtoull(optarg
);
993 zo
->zo_vdevs
= value
;
996 zo
->zo_vdev_size
= MAX(SPA_MINDEVSIZE
, value
);
999 zo
->zo_ashift
= value
;
1002 zo
->zo_mirrors
= value
;
1005 zo
->zo_raid_children
= MAX(1, value
);
1008 zo
->zo_raid_parity
= MIN(MAX(value
, 1), 3);
1014 zo
->zo_draid_data
= MAX(1, value
);
1017 zo
->zo_draid_spares
= MAX(1, value
);
1020 zo
->zo_datasets
= MAX(1, value
);
1023 zo
->zo_threads
= MAX(1, value
);
1026 zo
->zo_metaslab_force_ganging
=
1027 MAX(SPA_MINBLOCKSIZE
<< 1, value
);
1030 zo
->zo_init
= value
;
1033 zo
->zo_killrate
= value
;
1036 (void) strlcpy(zo
->zo_pool
, optarg
,
1037 sizeof (zo
->zo_pool
));
1040 path
= realpath(optarg
, NULL
);
1042 (void) fprintf(stderr
, "error: %s: %s\n",
1043 optarg
, strerror(errno
));
1046 (void) strlcpy(zo
->zo_dir
, path
,
1047 sizeof (zo
->zo_dir
));
1052 zo
->zo_mmp_test
= 1;
1058 zo
->zo_raidz_expand_test
= RAIDZ_EXPAND_REQUESTED
;
1064 zo
->zo_time
= value
;
1067 zo
->zo_passtime
= MAX(1, value
);
1070 zo
->zo_maxloops
= MAX(1, value
);
1073 (void) strlcpy(zo
->zo_alt_ztest
, optarg
,
1074 sizeof (zo
->zo_alt_ztest
));
1077 ztest_parse_name_value(optarg
, zo
);
1080 if (zo
->zo_gvars_count
>= ZO_GVARS_MAX_COUNT
) {
1081 (void) fprintf(stderr
,
1082 "max global var count (%zu) exceeded\n",
1083 ZO_GVARS_MAX_COUNT
);
1086 char *v
= zo
->zo_gvars
[zo
->zo_gvars_count
];
1087 if (strlcpy(v
, optarg
, ZO_GVARS_MAX_ARGLEN
) >=
1088 ZO_GVARS_MAX_ARGLEN
) {
1089 (void) fprintf(stderr
,
1090 "global var option '%s' is too long\n",
1094 zo
->zo_gvars_count
++;
1097 zo
->zo_dump_dbgmsg
= 1;
1111 /* Force compatible options for raidz expansion run */
1112 if (zo
->zo_raidz_expand_test
== RAIDZ_EXPAND_REQUESTED
) {
1113 zo
->zo_mmp_test
= 0;
1116 zo
->zo_vdev_size
= DEFAULT_VDEV_SIZE
* 2;
1117 zo
->zo_raid_do_expand
= B_FALSE
;
1118 raid_kind
= "raidz";
1121 if (strcmp(raid_kind
, "random") == 0) {
1122 switch (ztest_random(3)) {
1124 raid_kind
= "raidz";
1127 raid_kind
= "eraidz";
1130 raid_kind
= "draid";
1134 if (ztest_opts
.zo_verbose
>= 3)
1135 (void) printf("choosing RAID type '%s'\n", raid_kind
);
1138 if (strcmp(raid_kind
, "draid") == 0) {
1139 uint64_t min_devsize
;
1141 /* With fewer disk use 256M, otherwise 128M is OK */
1142 min_devsize
= (ztest_opts
.zo_raid_children
< 16) ?
1143 (256ULL << 20) : (128ULL << 20);
1145 /* No top-level mirrors with dRAID for now */
1148 /* Use more appropriate defaults for dRAID */
1149 if (zo
->zo_vdevs
== ztest_opts_defaults
.zo_vdevs
)
1151 if (zo
->zo_raid_children
==
1152 ztest_opts_defaults
.zo_raid_children
)
1153 zo
->zo_raid_children
= 16;
1154 if (zo
->zo_ashift
< 12)
1156 if (zo
->zo_vdev_size
< min_devsize
)
1157 zo
->zo_vdev_size
= min_devsize
;
1159 if (zo
->zo_draid_data
+ zo
->zo_raid_parity
>
1160 zo
->zo_raid_children
- zo
->zo_draid_spares
) {
1161 (void) fprintf(stderr
, "error: too few draid "
1162 "children (%d) for stripe width (%d)\n",
1163 zo
->zo_raid_children
,
1164 zo
->zo_draid_data
+ zo
->zo_raid_parity
);
1168 (void) strlcpy(zo
->zo_raid_type
, VDEV_TYPE_DRAID
,
1169 sizeof (zo
->zo_raid_type
));
1171 } else if (strcmp(raid_kind
, "eraidz") == 0) {
1172 /* using eraidz (expandable raidz) */
1173 zo
->zo_raid_do_expand
= B_TRUE
;
1175 /* tests expect top-level to be raidz */
1179 /* Make sure parity is less than data columns */
1180 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1181 zo
->zo_raid_children
- 1);
1183 } else /* using raidz */ {
1184 ASSERT0(strcmp(raid_kind
, "raidz"));
1186 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1187 zo
->zo_raid_children
- 1);
1191 (zo
->zo_vdevs
> 0 ? zo
->zo_time
* NANOSEC
/ zo
->zo_vdevs
:
1194 if (*zo
->zo_alt_ztest
) {
1195 const char *invalid_what
= "ztest";
1196 char *val
= zo
->zo_alt_ztest
;
1197 if (0 != access(val
, X_OK
) ||
1198 (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
)))
1201 int dirlen
= strrchr(val
, '/') - val
;
1202 strlcpy(zo
->zo_alt_libpath
, val
,
1203 MIN(sizeof (zo
->zo_alt_libpath
), dirlen
+ 1));
1204 invalid_what
= "library path", val
= zo
->zo_alt_libpath
;
1205 if (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
))
1207 *strrchr(val
, '/') = '\0';
1208 strlcat(val
, "/lib", sizeof (zo
->zo_alt_libpath
));
1210 if (0 != access(zo
->zo_alt_libpath
, X_OK
))
1215 ztest_dump_core
= B_FALSE
;
1216 fatal(B_TRUE
, "invalid alternate %s %s", invalid_what
, val
);
1221 ztest_kill(ztest_shared_t
*zs
)
1223 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(ztest_spa
));
1224 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(ztest_spa
));
1227 * Before we kill ourselves, make sure that the config is updated.
1228 * See comment above spa_write_cachefile().
1230 if (raidz_expand_pause_point
!= RAIDZ_EXPAND_PAUSE_NONE
) {
1231 if (mutex_tryenter(&spa_namespace_lock
)) {
1232 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
,
1234 mutex_exit(&spa_namespace_lock
);
1236 ztest_scratch_state
->zs_raidz_scratch_verify_pause
=
1237 raidz_expand_pause_point
;
1240 * Do not verify scratch object in case if
1241 * spa_namespace_lock cannot be acquired,
1242 * it can cause deadlock in spa_config_update().
1244 raidz_expand_pause_point
= RAIDZ_EXPAND_PAUSE_NONE
;
1249 mutex_enter(&spa_namespace_lock
);
1250 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
, B_FALSE
);
1251 mutex_exit(&spa_namespace_lock
);
1254 (void) raise(SIGKILL
);
1258 ztest_record_enospc(const char *s
)
1261 ztest_shared
->zs_enospc_count
++;
1265 ztest_get_ashift(void)
1267 if (ztest_opts
.zo_ashift
== 0)
1268 return (SPA_MINBLOCKSHIFT
+ ztest_random(5));
1269 return (ztest_opts
.zo_ashift
);
1273 ztest_is_draid_spare(const char *name
)
1275 uint64_t spare_id
= 0, parity
= 0, vdev_id
= 0;
1277 if (sscanf(name
, VDEV_TYPE_DRAID
"%"PRIu64
"-%"PRIu64
"-%"PRIu64
"",
1278 &parity
, &vdev_id
, &spare_id
) == 3) {
1286 make_vdev_file(const char *path
, const char *aux
, const char *pool
,
1287 size_t size
, uint64_t ashift
)
1289 char *pathbuf
= NULL
;
1292 boolean_t draid_spare
= B_FALSE
;
1296 ashift
= ztest_get_ashift();
1299 pathbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1303 vdev
= ztest_shared
->zs_vdev_aux
;
1304 (void) snprintf(pathbuf
, MAXPATHLEN
,
1305 ztest_aux_template
, ztest_opts
.zo_dir
,
1306 pool
== NULL
? ztest_opts
.zo_pool
: pool
,
1309 vdev
= ztest_shared
->zs_vdev_next_leaf
++;
1310 (void) snprintf(pathbuf
, MAXPATHLEN
,
1311 ztest_dev_template
, ztest_opts
.zo_dir
,
1312 pool
== NULL
? ztest_opts
.zo_pool
: pool
, vdev
);
1315 draid_spare
= ztest_is_draid_spare(path
);
1318 if (size
!= 0 && !draid_spare
) {
1319 int fd
= open(path
, O_RDWR
| O_CREAT
| O_TRUNC
, 0666);
1321 fatal(B_TRUE
, "can't open %s", path
);
1322 if (ftruncate(fd
, size
) != 0)
1323 fatal(B_TRUE
, "can't ftruncate %s", path
);
1327 file
= fnvlist_alloc();
1328 fnvlist_add_string(file
, ZPOOL_CONFIG_TYPE
,
1329 draid_spare
? VDEV_TYPE_DRAID_SPARE
: VDEV_TYPE_FILE
);
1330 fnvlist_add_string(file
, ZPOOL_CONFIG_PATH
, path
);
1331 fnvlist_add_uint64(file
, ZPOOL_CONFIG_ASHIFT
, ashift
);
1332 umem_free(pathbuf
, MAXPATHLEN
);
1338 make_vdev_raid(const char *path
, const char *aux
, const char *pool
, size_t size
,
1339 uint64_t ashift
, int r
)
1341 nvlist_t
*raid
, **child
;
1345 return (make_vdev_file(path
, aux
, pool
, size
, ashift
));
1346 child
= umem_alloc(r
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1348 for (c
= 0; c
< r
; c
++)
1349 child
[c
] = make_vdev_file(path
, aux
, pool
, size
, ashift
);
1351 raid
= fnvlist_alloc();
1352 fnvlist_add_string(raid
, ZPOOL_CONFIG_TYPE
,
1353 ztest_opts
.zo_raid_type
);
1354 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_NPARITY
,
1355 ztest_opts
.zo_raid_parity
);
1356 fnvlist_add_nvlist_array(raid
, ZPOOL_CONFIG_CHILDREN
,
1357 (const nvlist_t
**)child
, r
);
1359 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0) {
1360 uint64_t ndata
= ztest_opts
.zo_draid_data
;
1361 uint64_t nparity
= ztest_opts
.zo_raid_parity
;
1362 uint64_t nspares
= ztest_opts
.zo_draid_spares
;
1363 uint64_t children
= ztest_opts
.zo_raid_children
;
1364 uint64_t ngroups
= 1;
1367 * Calculate the minimum number of groups required to fill a
1368 * slice. This is the LCM of the stripe width (data + parity)
1369 * and the number of data drives (children - spares).
1371 while (ngroups
* (ndata
+ nparity
) % (children
- nspares
) != 0)
1374 /* Store the basic dRAID configuration. */
1375 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NDATA
, ndata
);
1376 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NSPARES
, nspares
);
1377 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NGROUPS
, ngroups
);
1380 for (c
= 0; c
< r
; c
++)
1381 fnvlist_free(child
[c
]);
1383 umem_free(child
, r
* sizeof (nvlist_t
*));
1389 make_vdev_mirror(const char *path
, const char *aux
, const char *pool
,
1390 size_t size
, uint64_t ashift
, int r
, int m
)
1392 nvlist_t
*mirror
, **child
;
1396 return (make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
));
1398 child
= umem_alloc(m
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1400 for (c
= 0; c
< m
; c
++)
1401 child
[c
] = make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
);
1403 mirror
= fnvlist_alloc();
1404 fnvlist_add_string(mirror
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_MIRROR
);
1405 fnvlist_add_nvlist_array(mirror
, ZPOOL_CONFIG_CHILDREN
,
1406 (const nvlist_t
**)child
, m
);
1408 for (c
= 0; c
< m
; c
++)
1409 fnvlist_free(child
[c
]);
1411 umem_free(child
, m
* sizeof (nvlist_t
*));
1417 make_vdev_root(const char *path
, const char *aux
, const char *pool
, size_t size
,
1418 uint64_t ashift
, const char *class, int r
, int m
, int t
)
1420 nvlist_t
*root
, **child
;
1426 log
= (class != NULL
&& strcmp(class, "log") == 0);
1428 child
= umem_alloc(t
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1430 for (c
= 0; c
< t
; c
++) {
1431 child
[c
] = make_vdev_mirror(path
, aux
, pool
, size
, ashift
,
1433 fnvlist_add_uint64(child
[c
], ZPOOL_CONFIG_IS_LOG
, log
);
1435 if (class != NULL
&& class[0] != '\0') {
1436 ASSERT(m
> 1 || log
); /* expecting a mirror */
1437 fnvlist_add_string(child
[c
],
1438 ZPOOL_CONFIG_ALLOCATION_BIAS
, class);
1442 root
= fnvlist_alloc();
1443 fnvlist_add_string(root
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
1444 fnvlist_add_nvlist_array(root
, aux
? aux
: ZPOOL_CONFIG_CHILDREN
,
1445 (const nvlist_t
**)child
, t
);
1447 for (c
= 0; c
< t
; c
++)
1448 fnvlist_free(child
[c
]);
1450 umem_free(child
, t
* sizeof (nvlist_t
*));
1456 * Find a random spa version. Returns back a random spa version in the
1457 * range [initial_version, SPA_VERSION_FEATURES].
1460 ztest_random_spa_version(uint64_t initial_version
)
1462 uint64_t version
= initial_version
;
1464 if (version
<= SPA_VERSION_BEFORE_FEATURES
) {
1466 ztest_random(SPA_VERSION_BEFORE_FEATURES
- version
+ 1);
1469 if (version
> SPA_VERSION_BEFORE_FEATURES
)
1470 version
= SPA_VERSION_FEATURES
;
1472 ASSERT(SPA_VERSION_IS_SUPPORTED(version
));
1477 ztest_random_blocksize(void)
1479 ASSERT3U(ztest_spa
->spa_max_ashift
, !=, 0);
1482 * Choose a block size >= the ashift.
1483 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1485 int maxbs
= SPA_OLD_MAXBLOCKSHIFT
;
1486 if (spa_maxblocksize(ztest_spa
) == SPA_MAXBLOCKSIZE
)
1488 uint64_t block_shift
=
1489 ztest_random(maxbs
- ztest_spa
->spa_max_ashift
+ 1);
1490 return (1 << (SPA_MINBLOCKSHIFT
+ block_shift
));
1494 ztest_random_dnodesize(void)
1497 int max_slots
= spa_maxdnodesize(ztest_spa
) >> DNODE_SHIFT
;
1499 if (max_slots
== DNODE_MIN_SLOTS
)
1500 return (DNODE_MIN_SIZE
);
1503 * Weight the random distribution more heavily toward smaller
1504 * dnode sizes since that is more likely to reflect real-world
1507 ASSERT3U(max_slots
, >, 4);
1508 switch (ztest_random(10)) {
1510 slots
= 5 + ztest_random(max_slots
- 4);
1513 slots
= 2 + ztest_random(3);
1520 return (slots
<< DNODE_SHIFT
);
1524 ztest_random_ibshift(void)
1526 return (DN_MIN_INDBLKSHIFT
+
1527 ztest_random(DN_MAX_INDBLKSHIFT
- DN_MIN_INDBLKSHIFT
+ 1));
1531 ztest_random_vdev_top(spa_t
*spa
, boolean_t log_ok
)
1534 vdev_t
*rvd
= spa
->spa_root_vdev
;
1537 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
1540 top
= ztest_random(rvd
->vdev_children
);
1541 tvd
= rvd
->vdev_child
[top
];
1542 } while (!vdev_is_concrete(tvd
) || (tvd
->vdev_islog
&& !log_ok
) ||
1543 tvd
->vdev_mg
== NULL
|| tvd
->vdev_mg
->mg_class
== NULL
);
1549 ztest_random_dsl_prop(zfs_prop_t prop
)
1554 value
= zfs_prop_random_value(prop
, ztest_random(-1ULL));
1555 } while (prop
== ZFS_PROP_CHECKSUM
&& value
== ZIO_CHECKSUM_OFF
);
1561 ztest_dsl_prop_set_uint64(char *osname
, zfs_prop_t prop
, uint64_t value
,
1564 const char *propname
= zfs_prop_to_name(prop
);
1565 const char *valname
;
1570 error
= dsl_prop_set_int(osname
, propname
,
1571 (inherit
? ZPROP_SRC_NONE
: ZPROP_SRC_LOCAL
), value
);
1573 if (error
== ENOSPC
) {
1574 ztest_record_enospc(FTAG
);
1579 setpoint
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1580 VERIFY0(dsl_prop_get_integer(osname
, propname
, &curval
, setpoint
));
1582 if (ztest_opts
.zo_verbose
>= 6) {
1585 err
= zfs_prop_index_to_string(prop
, curval
, &valname
);
1587 (void) printf("%s %s = %llu at '%s'\n", osname
,
1588 propname
, (unsigned long long)curval
, setpoint
);
1590 (void) printf("%s %s = %s at '%s'\n",
1591 osname
, propname
, valname
, setpoint
);
1593 umem_free(setpoint
, MAXPATHLEN
);
1599 ztest_spa_prop_set_uint64(zpool_prop_t prop
, uint64_t value
)
1601 spa_t
*spa
= ztest_spa
;
1602 nvlist_t
*props
= NULL
;
1605 props
= fnvlist_alloc();
1606 fnvlist_add_uint64(props
, zpool_prop_to_name(prop
), value
);
1608 error
= spa_prop_set(spa
, props
);
1610 fnvlist_free(props
);
1612 if (error
== ENOSPC
) {
1613 ztest_record_enospc(FTAG
);
1622 ztest_dmu_objset_own(const char *name
, dmu_objset_type_t type
,
1623 boolean_t readonly
, boolean_t decrypt
, const void *tag
, objset_t
**osp
)
1627 char ddname
[ZFS_MAX_DATASET_NAME_LEN
];
1629 strlcpy(ddname
, name
, sizeof (ddname
));
1630 cp
= strchr(ddname
, '@');
1634 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1635 while (decrypt
&& err
== EACCES
) {
1636 dsl_crypto_params_t
*dcp
;
1637 nvlist_t
*crypto_args
= fnvlist_alloc();
1639 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
1640 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
1641 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, NULL
,
1642 crypto_args
, &dcp
));
1643 err
= spa_keystore_load_wkey(ddname
, dcp
, B_FALSE
);
1645 * Note: if there was an error loading, the wkey was not
1646 * consumed, and needs to be freed.
1648 dsl_crypto_params_free(dcp
, (err
!= 0));
1649 fnvlist_free(crypto_args
);
1651 if (err
== EINVAL
) {
1653 * We couldn't load a key for this dataset so try
1654 * the parent. This loop will eventually hit the
1655 * encryption root since ztest only makes clones
1656 * as children of their origin datasets.
1658 cp
= strrchr(ddname
, '/');
1665 } else if (err
!= 0) {
1669 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1677 ztest_rll_init(rll_t
*rll
)
1679 rll
->rll_writer
= NULL
;
1680 rll
->rll_readers
= 0;
1681 mutex_init(&rll
->rll_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1682 cv_init(&rll
->rll_cv
, NULL
, CV_DEFAULT
, NULL
);
1686 ztest_rll_destroy(rll_t
*rll
)
1688 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1689 ASSERT0(rll
->rll_readers
);
1690 mutex_destroy(&rll
->rll_lock
);
1691 cv_destroy(&rll
->rll_cv
);
1695 ztest_rll_lock(rll_t
*rll
, rl_type_t type
)
1697 mutex_enter(&rll
->rll_lock
);
1699 if (type
== ZTRL_READER
) {
1700 while (rll
->rll_writer
!= NULL
)
1701 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1704 while (rll
->rll_writer
!= NULL
|| rll
->rll_readers
)
1705 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1706 rll
->rll_writer
= curthread
;
1709 mutex_exit(&rll
->rll_lock
);
1713 ztest_rll_unlock(rll_t
*rll
)
1715 mutex_enter(&rll
->rll_lock
);
1717 if (rll
->rll_writer
) {
1718 ASSERT0(rll
->rll_readers
);
1719 rll
->rll_writer
= NULL
;
1721 ASSERT3S(rll
->rll_readers
, >, 0);
1722 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1726 if (rll
->rll_writer
== NULL
&& rll
->rll_readers
== 0)
1727 cv_broadcast(&rll
->rll_cv
);
1729 mutex_exit(&rll
->rll_lock
);
1733 ztest_object_lock(ztest_ds_t
*zd
, uint64_t object
, rl_type_t type
)
1735 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1737 ztest_rll_lock(rll
, type
);
1741 ztest_object_unlock(ztest_ds_t
*zd
, uint64_t object
)
1743 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1745 ztest_rll_unlock(rll
);
1749 ztest_range_lock(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
,
1750 uint64_t size
, rl_type_t type
)
1752 uint64_t hash
= object
^ (offset
% (ZTEST_RANGE_LOCKS
+ 1));
1753 rll_t
*rll
= &zd
->zd_range_lock
[hash
& (ZTEST_RANGE_LOCKS
- 1)];
1756 rl
= umem_alloc(sizeof (*rl
), UMEM_NOFAIL
);
1757 rl
->rl_object
= object
;
1758 rl
->rl_offset
= offset
;
1762 ztest_rll_lock(rll
, type
);
1768 ztest_range_unlock(rl_t
*rl
)
1770 rll_t
*rll
= rl
->rl_lock
;
1772 ztest_rll_unlock(rll
);
1774 umem_free(rl
, sizeof (*rl
));
1778 ztest_zd_init(ztest_ds_t
*zd
, ztest_shared_ds_t
*szd
, objset_t
*os
)
1781 zd
->zd_zilog
= dmu_objset_zil(os
);
1782 zd
->zd_shared
= szd
;
1783 dmu_objset_name(os
, zd
->zd_name
);
1786 if (zd
->zd_shared
!= NULL
)
1787 zd
->zd_shared
->zd_seq
= 0;
1789 VERIFY0(pthread_rwlock_init(&zd
->zd_zilog_lock
, NULL
));
1790 mutex_init(&zd
->zd_dirobj_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1792 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1793 ztest_rll_init(&zd
->zd_object_lock
[l
]);
1795 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1796 ztest_rll_init(&zd
->zd_range_lock
[l
]);
1800 ztest_zd_fini(ztest_ds_t
*zd
)
1804 mutex_destroy(&zd
->zd_dirobj_lock
);
1805 (void) pthread_rwlock_destroy(&zd
->zd_zilog_lock
);
1807 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1808 ztest_rll_destroy(&zd
->zd_object_lock
[l
]);
1810 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1811 ztest_rll_destroy(&zd
->zd_range_lock
[l
]);
1814 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1817 ztest_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
, const char *tag
)
1823 * Attempt to assign tx to some transaction group.
1825 error
= dmu_tx_assign(tx
, txg_how
);
1827 if (error
== ERESTART
) {
1828 ASSERT3U(txg_how
, ==, TXG_NOWAIT
);
1831 ASSERT3U(error
, ==, ENOSPC
);
1832 ztest_record_enospc(tag
);
1837 txg
= dmu_tx_get_txg(tx
);
1838 ASSERT3U(txg
, !=, 0);
1843 ztest_bt_generate(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1844 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1847 bt
->bt_magic
= BT_MAGIC
;
1848 bt
->bt_objset
= dmu_objset_id(os
);
1849 bt
->bt_object
= object
;
1850 bt
->bt_dnodesize
= dnodesize
;
1851 bt
->bt_offset
= offset
;
1854 bt
->bt_crtxg
= crtxg
;
1858 ztest_bt_verify(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1859 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1862 ASSERT3U(bt
->bt_magic
, ==, BT_MAGIC
);
1863 ASSERT3U(bt
->bt_objset
, ==, dmu_objset_id(os
));
1864 ASSERT3U(bt
->bt_object
, ==, object
);
1865 ASSERT3U(bt
->bt_dnodesize
, ==, dnodesize
);
1866 ASSERT3U(bt
->bt_offset
, ==, offset
);
1867 ASSERT3U(bt
->bt_gen
, <=, gen
);
1868 ASSERT3U(bt
->bt_txg
, <=, txg
);
1869 ASSERT3U(bt
->bt_crtxg
, ==, crtxg
);
1872 static ztest_block_tag_t
*
1873 ztest_bt_bonus(dmu_buf_t
*db
)
1875 dmu_object_info_t doi
;
1876 ztest_block_tag_t
*bt
;
1878 dmu_object_info_from_db(db
, &doi
);
1879 ASSERT3U(doi
.doi_bonus_size
, <=, db
->db_size
);
1880 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (*bt
));
1881 bt
= (void *)((char *)db
->db_data
+ doi
.doi_bonus_size
- sizeof (*bt
));
1887 * Generate a token to fill up unused bonus buffer space. Try to make
1888 * it unique to the object, generation, and offset to verify that data
1889 * is not getting overwritten by data from other dnodes.
1891 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1892 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1895 * Fill up the unused bonus buffer region before the block tag with a
1896 * verifiable pattern. Filling the whole bonus area with non-zero data
1897 * helps ensure that all dnode traversal code properly skips the
1898 * interior regions of large dnodes.
1901 ztest_fill_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1902 objset_t
*os
, uint64_t gen
)
1906 ASSERT(IS_P2ALIGNED((char *)end
- (char *)db
->db_data
, 8));
1908 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1909 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1910 gen
, bonusp
- (uint64_t *)db
->db_data
);
1916 * Verify that the unused area of a bonus buffer is filled with the
1920 ztest_verify_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1921 objset_t
*os
, uint64_t gen
)
1925 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1926 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1927 gen
, bonusp
- (uint64_t *)db
->db_data
);
1928 VERIFY3U(*bonusp
, ==, token
);
1936 #define lrz_type lr_mode
1937 #define lrz_blocksize lr_uid
1938 #define lrz_ibshift lr_gid
1939 #define lrz_bonustype lr_rdev
1940 #define lrz_dnodesize lr_crtime[1]
1943 ztest_log_create(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_create_t
*lr
)
1945 char *name
= (char *)&lr
->lr_data
[0]; /* name follows lr */
1946 size_t namesize
= strlen(name
) + 1;
1949 if (zil_replaying(zd
->zd_zilog
, tx
))
1952 itx
= zil_itx_create(TX_CREATE
, sizeof (*lr
) + namesize
);
1953 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_create
.lr_common
+ 1,
1954 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1956 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1960 ztest_log_remove(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_remove_t
*lr
, uint64_t object
)
1962 char *name
= (char *)&lr
->lr_data
[0]; /* name follows lr */
1963 size_t namesize
= strlen(name
) + 1;
1966 if (zil_replaying(zd
->zd_zilog
, tx
))
1969 itx
= zil_itx_create(TX_REMOVE
, sizeof (*lr
) + namesize
);
1970 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1971 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1973 itx
->itx_oid
= object
;
1974 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1978 ztest_log_write(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_write_t
*lr
)
1981 itx_wr_state_t write_state
= ztest_random(WR_NUM_STATES
);
1983 if (zil_replaying(zd
->zd_zilog
, tx
))
1986 if (lr
->lr_length
> zil_max_log_data(zd
->zd_zilog
, sizeof (lr_write_t
)))
1987 write_state
= WR_INDIRECT
;
1989 itx
= zil_itx_create(TX_WRITE
,
1990 sizeof (*lr
) + (write_state
== WR_COPIED
? lr
->lr_length
: 0));
1992 if (write_state
== WR_COPIED
&&
1993 dmu_read(zd
->zd_os
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1994 ((lr_write_t
*)&itx
->itx_lr
) + 1, DMU_READ_NO_PREFETCH
) != 0) {
1995 zil_itx_destroy(itx
);
1996 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
1997 write_state
= WR_NEED_COPY
;
1999 itx
->itx_private
= zd
;
2000 itx
->itx_wr_state
= write_state
;
2001 itx
->itx_sync
= (ztest_random(8) == 0);
2003 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2004 sizeof (*lr
) - sizeof (lr_t
));
2006 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2010 ztest_log_truncate(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_truncate_t
*lr
)
2014 if (zil_replaying(zd
->zd_zilog
, tx
))
2017 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
2018 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2019 sizeof (*lr
) - sizeof (lr_t
));
2021 itx
->itx_sync
= B_FALSE
;
2022 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2026 ztest_log_setattr(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_setattr_t
*lr
)
2030 if (zil_replaying(zd
->zd_zilog
, tx
))
2033 itx
= zil_itx_create(TX_SETATTR
, sizeof (*lr
));
2034 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2035 sizeof (*lr
) - sizeof (lr_t
));
2037 itx
->itx_sync
= B_FALSE
;
2038 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2045 ztest_replay_create(void *arg1
, void *arg2
, boolean_t byteswap
)
2047 ztest_ds_t
*zd
= arg1
;
2048 lr_create_t
*lrc
= arg2
;
2049 _lr_create_t
*lr
= &lrc
->lr_create
;
2050 char *name
= (char *)&lrc
->lr_data
[0]; /* name follows lr */
2051 objset_t
*os
= zd
->zd_os
;
2052 ztest_block_tag_t
*bbt
;
2060 byteswap_uint64_array(lr
, sizeof (*lr
));
2062 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2063 ASSERT3S(name
[0], !=, '\0');
2065 tx
= dmu_tx_create(os
);
2067 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_TRUE
, name
);
2069 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
2070 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
2072 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
2075 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2079 ASSERT3U(dmu_objset_zil(os
)->zl_replay
, ==, !!lr
->lr_foid
);
2080 bonuslen
= DN_BONUS_SIZE(lr
->lrz_dnodesize
);
2082 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
2083 if (lr
->lr_foid
== 0) {
2084 lr
->lr_foid
= zap_create_dnsize(os
,
2085 lr
->lrz_type
, lr
->lrz_bonustype
,
2086 bonuslen
, lr
->lrz_dnodesize
, tx
);
2088 error
= zap_create_claim_dnsize(os
, lr
->lr_foid
,
2089 lr
->lrz_type
, lr
->lrz_bonustype
,
2090 bonuslen
, lr
->lrz_dnodesize
, tx
);
2093 if (lr
->lr_foid
== 0) {
2094 lr
->lr_foid
= dmu_object_alloc_dnsize(os
,
2095 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2096 bonuslen
, lr
->lrz_dnodesize
, tx
);
2098 error
= dmu_object_claim_dnsize(os
, lr
->lr_foid
,
2099 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2100 bonuslen
, lr
->lrz_dnodesize
, tx
);
2105 ASSERT3U(error
, ==, EEXIST
);
2106 ASSERT(zd
->zd_zilog
->zl_replay
);
2111 ASSERT3U(lr
->lr_foid
, !=, 0);
2113 if (lr
->lrz_type
!= DMU_OT_ZAP_OTHER
)
2114 VERIFY0(dmu_object_set_blocksize(os
, lr
->lr_foid
,
2115 lr
->lrz_blocksize
, lr
->lrz_ibshift
, tx
));
2117 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2118 bbt
= ztest_bt_bonus(db
);
2119 dmu_buf_will_dirty(db
, tx
);
2120 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, lr
->lrz_dnodesize
, -1ULL,
2121 lr
->lr_gen
, txg
, txg
);
2122 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, lr
->lr_gen
);
2123 dmu_buf_rele(db
, FTAG
);
2125 VERIFY0(zap_add(os
, lr
->lr_doid
, name
, sizeof (uint64_t), 1,
2128 (void) ztest_log_create(zd
, tx
, lrc
);
2136 ztest_replay_remove(void *arg1
, void *arg2
, boolean_t byteswap
)
2138 ztest_ds_t
*zd
= arg1
;
2139 lr_remove_t
*lr
= arg2
;
2140 char *name
= (char *)&lr
->lr_data
[0]; /* name follows lr */
2141 objset_t
*os
= zd
->zd_os
;
2142 dmu_object_info_t doi
;
2144 uint64_t object
, txg
;
2147 byteswap_uint64_array(lr
, sizeof (*lr
));
2149 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2150 ASSERT3S(name
[0], !=, '\0');
2153 zap_lookup(os
, lr
->lr_doid
, name
, sizeof (object
), 1, &object
));
2154 ASSERT3U(object
, !=, 0);
2156 ztest_object_lock(zd
, object
, ZTRL_WRITER
);
2158 VERIFY0(dmu_object_info(os
, object
, &doi
));
2160 tx
= dmu_tx_create(os
);
2162 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_FALSE
, name
);
2163 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
2165 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2167 ztest_object_unlock(zd
, object
);
2171 if (doi
.doi_type
== DMU_OT_ZAP_OTHER
) {
2172 VERIFY0(zap_destroy(os
, object
, tx
));
2174 VERIFY0(dmu_object_free(os
, object
, tx
));
2177 VERIFY0(zap_remove(os
, lr
->lr_doid
, name
, tx
));
2179 (void) ztest_log_remove(zd
, tx
, lr
, object
);
2183 ztest_object_unlock(zd
, object
);
2189 ztest_replay_write(void *arg1
, void *arg2
, boolean_t byteswap
)
2191 ztest_ds_t
*zd
= arg1
;
2192 lr_write_t
*lr
= arg2
;
2193 objset_t
*os
= zd
->zd_os
;
2194 uint8_t *data
= &lr
->lr_data
[0]; /* data follows lr */
2195 uint64_t offset
, length
;
2196 ztest_block_tag_t
*bt
= (ztest_block_tag_t
*)data
;
2197 ztest_block_tag_t
*bbt
;
2198 uint64_t gen
, txg
, lrtxg
, crtxg
;
2199 dmu_object_info_t doi
;
2202 arc_buf_t
*abuf
= NULL
;
2206 byteswap_uint64_array(lr
, sizeof (*lr
));
2208 offset
= lr
->lr_offset
;
2209 length
= lr
->lr_length
;
2211 /* If it's a dmu_sync() block, write the whole block */
2212 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
2213 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
2214 if (length
< blocksize
) {
2215 offset
-= offset
% blocksize
;
2220 if (bt
->bt_magic
== BSWAP_64(BT_MAGIC
))
2221 byteswap_uint64_array(bt
, sizeof (*bt
));
2223 if (bt
->bt_magic
!= BT_MAGIC
)
2226 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_READER
);
2227 rl
= ztest_range_lock(zd
, lr
->lr_foid
, offset
, length
, ZTRL_WRITER
);
2229 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2231 dmu_object_info_from_db(db
, &doi
);
2233 bbt
= ztest_bt_bonus(db
);
2234 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2236 crtxg
= bbt
->bt_crtxg
;
2237 lrtxg
= lr
->lr_common
.lrc_txg
;
2239 tx
= dmu_tx_create(os
);
2241 dmu_tx_hold_write(tx
, lr
->lr_foid
, offset
, length
);
2243 if (ztest_random(8) == 0 && length
== doi
.doi_data_block_size
&&
2244 P2PHASE(offset
, length
) == 0)
2245 abuf
= dmu_request_arcbuf(db
, length
);
2247 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2250 dmu_return_arcbuf(abuf
);
2251 dmu_buf_rele(db
, FTAG
);
2252 ztest_range_unlock(rl
);
2253 ztest_object_unlock(zd
, lr
->lr_foid
);
2259 * Usually, verify the old data before writing new data --
2260 * but not always, because we also want to verify correct
2261 * behavior when the data was not recently read into cache.
2263 ASSERT(doi
.doi_data_block_size
);
2264 ASSERT0(offset
% doi
.doi_data_block_size
);
2265 if (ztest_random(4) != 0) {
2266 int prefetch
= ztest_random(2) ?
2267 DMU_READ_PREFETCH
: DMU_READ_NO_PREFETCH
;
2270 * We will randomly set when to do O_DIRECT on a read.
2272 if (ztest_random(4) == 0)
2273 prefetch
|= DMU_DIRECTIO
;
2275 ztest_block_tag_t rbt
;
2277 VERIFY(dmu_read(os
, lr
->lr_foid
, offset
,
2278 sizeof (rbt
), &rbt
, prefetch
) == 0);
2279 if (rbt
.bt_magic
== BT_MAGIC
) {
2280 ztest_bt_verify(&rbt
, os
, lr
->lr_foid
, 0,
2281 offset
, gen
, txg
, crtxg
);
2286 * Writes can appear to be newer than the bonus buffer because
2287 * the ztest_get_data() callback does a dmu_read() of the
2288 * open-context data, which may be different than the data
2289 * as it was when the write was generated.
2291 if (zd
->zd_zilog
->zl_replay
) {
2292 ztest_bt_verify(bt
, os
, lr
->lr_foid
, 0, offset
,
2293 MAX(gen
, bt
->bt_gen
), MAX(txg
, lrtxg
),
2298 * Set the bt's gen/txg to the bonus buffer's gen/txg
2299 * so that all of the usual ASSERTs will work.
2301 ztest_bt_generate(bt
, os
, lr
->lr_foid
, 0, offset
, gen
, txg
,
2306 dmu_write(os
, lr
->lr_foid
, offset
, length
, data
, tx
);
2308 memcpy(abuf
->b_data
, data
, length
);
2309 VERIFY0(dmu_assign_arcbuf_by_dbuf(db
, offset
, abuf
, tx
));
2312 (void) ztest_log_write(zd
, tx
, lr
);
2314 dmu_buf_rele(db
, FTAG
);
2318 ztest_range_unlock(rl
);
2319 ztest_object_unlock(zd
, lr
->lr_foid
);
2325 ztest_replay_truncate(void *arg1
, void *arg2
, boolean_t byteswap
)
2327 ztest_ds_t
*zd
= arg1
;
2328 lr_truncate_t
*lr
= arg2
;
2329 objset_t
*os
= zd
->zd_os
;
2335 byteswap_uint64_array(lr
, sizeof (*lr
));
2337 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_READER
);
2338 rl
= ztest_range_lock(zd
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
2341 tx
= dmu_tx_create(os
);
2343 dmu_tx_hold_free(tx
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
);
2345 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2347 ztest_range_unlock(rl
);
2348 ztest_object_unlock(zd
, lr
->lr_foid
);
2352 VERIFY0(dmu_free_range(os
, lr
->lr_foid
, lr
->lr_offset
,
2353 lr
->lr_length
, tx
));
2355 (void) ztest_log_truncate(zd
, tx
, lr
);
2359 ztest_range_unlock(rl
);
2360 ztest_object_unlock(zd
, lr
->lr_foid
);
2366 ztest_replay_setattr(void *arg1
, void *arg2
, boolean_t byteswap
)
2368 ztest_ds_t
*zd
= arg1
;
2369 lr_setattr_t
*lr
= arg2
;
2370 objset_t
*os
= zd
->zd_os
;
2373 ztest_block_tag_t
*bbt
;
2374 uint64_t txg
, lrtxg
, crtxg
, dnodesize
;
2377 byteswap_uint64_array(lr
, sizeof (*lr
));
2379 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_WRITER
);
2381 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2383 tx
= dmu_tx_create(os
);
2384 dmu_tx_hold_bonus(tx
, lr
->lr_foid
);
2386 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2388 dmu_buf_rele(db
, FTAG
);
2389 ztest_object_unlock(zd
, lr
->lr_foid
);
2393 bbt
= ztest_bt_bonus(db
);
2394 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2395 crtxg
= bbt
->bt_crtxg
;
2396 lrtxg
= lr
->lr_common
.lrc_txg
;
2397 dnodesize
= bbt
->bt_dnodesize
;
2399 if (zd
->zd_zilog
->zl_replay
) {
2400 ASSERT3U(lr
->lr_size
, !=, 0);
2401 ASSERT3U(lr
->lr_mode
, !=, 0);
2402 ASSERT3U(lrtxg
, !=, 0);
2405 * Randomly change the size and increment the generation.
2407 lr
->lr_size
= (ztest_random(db
->db_size
/ sizeof (*bbt
)) + 1) *
2409 lr
->lr_mode
= bbt
->bt_gen
+ 1;
2414 * Verify that the current bonus buffer is not newer than our txg.
2416 ztest_bt_verify(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2417 MAX(txg
, lrtxg
), crtxg
);
2419 dmu_buf_will_dirty(db
, tx
);
2421 ASSERT3U(lr
->lr_size
, >=, sizeof (*bbt
));
2422 ASSERT3U(lr
->lr_size
, <=, db
->db_size
);
2423 VERIFY0(dmu_set_bonus(db
, lr
->lr_size
, tx
));
2424 bbt
= ztest_bt_bonus(db
);
2426 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2428 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, bbt
->bt_gen
);
2429 dmu_buf_rele(db
, FTAG
);
2431 (void) ztest_log_setattr(zd
, tx
, lr
);
2435 ztest_object_unlock(zd
, lr
->lr_foid
);
2440 static zil_replay_func_t
*ztest_replay_vector
[TX_MAX_TYPE
] = {
2441 NULL
, /* 0 no such transaction type */
2442 ztest_replay_create
, /* TX_CREATE */
2443 NULL
, /* TX_MKDIR */
2444 NULL
, /* TX_MKXATTR */
2445 NULL
, /* TX_SYMLINK */
2446 ztest_replay_remove
, /* TX_REMOVE */
2447 NULL
, /* TX_RMDIR */
2449 NULL
, /* TX_RENAME */
2450 ztest_replay_write
, /* TX_WRITE */
2451 ztest_replay_truncate
, /* TX_TRUNCATE */
2452 ztest_replay_setattr
, /* TX_SETATTR */
2454 NULL
, /* TX_CREATE_ACL */
2455 NULL
, /* TX_CREATE_ATTR */
2456 NULL
, /* TX_CREATE_ACL_ATTR */
2457 NULL
, /* TX_MKDIR_ACL */
2458 NULL
, /* TX_MKDIR_ATTR */
2459 NULL
, /* TX_MKDIR_ACL_ATTR */
2460 NULL
, /* TX_WRITE2 */
2461 NULL
, /* TX_SETSAXATTR */
2462 NULL
, /* TX_RENAME_EXCHANGE */
2463 NULL
, /* TX_RENAME_WHITEOUT */
2467 * ZIL get_data callbacks
2471 ztest_get_done(zgd_t
*zgd
, int error
)
2474 ztest_ds_t
*zd
= zgd
->zgd_private
;
2475 uint64_t object
= ((rl_t
*)zgd
->zgd_lr
)->rl_object
;
2478 dmu_buf_rele(zgd
->zgd_db
, zgd
);
2480 ztest_range_unlock((rl_t
*)zgd
->zgd_lr
);
2481 ztest_object_unlock(zd
, object
);
2483 umem_free(zgd
, sizeof (*zgd
));
2487 ztest_get_data(void *arg
, uint64_t arg2
, lr_write_t
*lr
, char *buf
,
2488 struct lwb
*lwb
, zio_t
*zio
)
2491 ztest_ds_t
*zd
= arg
;
2492 objset_t
*os
= zd
->zd_os
;
2493 uint64_t object
= lr
->lr_foid
;
2494 uint64_t offset
= lr
->lr_offset
;
2495 uint64_t size
= lr
->lr_length
;
2496 uint64_t txg
= lr
->lr_common
.lrc_txg
;
2498 dmu_object_info_t doi
;
2503 ASSERT3P(lwb
, !=, NULL
);
2504 ASSERT3U(size
, !=, 0);
2506 ztest_object_lock(zd
, object
, ZTRL_READER
);
2507 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
2509 ztest_object_unlock(zd
, object
);
2513 crtxg
= ztest_bt_bonus(db
)->bt_crtxg
;
2515 if (crtxg
== 0 || crtxg
> txg
) {
2516 dmu_buf_rele(db
, FTAG
);
2517 ztest_object_unlock(zd
, object
);
2521 dmu_object_info_from_db(db
, &doi
);
2522 dmu_buf_rele(db
, FTAG
);
2525 zgd
= umem_zalloc(sizeof (*zgd
), UMEM_NOFAIL
);
2527 zgd
->zgd_private
= zd
;
2529 if (buf
!= NULL
) { /* immediate write */
2530 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2531 object
, offset
, size
, ZTRL_READER
);
2533 error
= dmu_read(os
, object
, offset
, size
, buf
,
2534 DMU_READ_NO_PREFETCH
);
2537 ASSERT3P(zio
, !=, NULL
);
2538 size
= doi
.doi_data_block_size
;
2540 offset
= P2ALIGN_TYPED(offset
, size
, uint64_t);
2542 ASSERT3U(offset
, <, size
);
2546 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2547 object
, offset
, size
, ZTRL_READER
);
2549 error
= dmu_buf_hold_noread(os
, object
, offset
, zgd
, &db
);
2552 blkptr_t
*bp
= &lr
->lr_blkptr
;
2557 ASSERT3U(db
->db_offset
, ==, offset
);
2558 ASSERT3U(db
->db_size
, ==, size
);
2560 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
2561 ztest_get_done
, zgd
);
2568 ztest_get_done(zgd
, error
);
2574 ztest_lr_alloc(size_t lrsize
, char *name
)
2577 size_t namesize
= name
? strlen(name
) + 1 : 0;
2579 lr
= umem_zalloc(lrsize
+ namesize
, UMEM_NOFAIL
);
2582 memcpy(lr
+ lrsize
, name
, namesize
);
2588 ztest_lr_free(void *lr
, size_t lrsize
, char *name
)
2590 size_t namesize
= name
? strlen(name
) + 1 : 0;
2592 umem_free(lr
, lrsize
+ namesize
);
2596 * Lookup a bunch of objects. Returns the number of objects not found.
2599 ztest_lookup(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2605 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2607 for (i
= 0; i
< count
; i
++, od
++) {
2609 error
= zap_lookup(zd
->zd_os
, od
->od_dir
, od
->od_name
,
2610 sizeof (uint64_t), 1, &od
->od_object
);
2612 ASSERT3S(error
, ==, ENOENT
);
2613 ASSERT0(od
->od_object
);
2617 ztest_block_tag_t
*bbt
;
2618 dmu_object_info_t doi
;
2620 ASSERT3U(od
->od_object
, !=, 0);
2621 ASSERT0(missing
); /* there should be no gaps */
2623 ztest_object_lock(zd
, od
->od_object
, ZTRL_READER
);
2624 VERIFY0(dmu_bonus_hold(zd
->zd_os
, od
->od_object
,
2626 dmu_object_info_from_db(db
, &doi
);
2627 bbt
= ztest_bt_bonus(db
);
2628 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2629 od
->od_type
= doi
.doi_type
;
2630 od
->od_blocksize
= doi
.doi_data_block_size
;
2631 od
->od_gen
= bbt
->bt_gen
;
2632 dmu_buf_rele(db
, FTAG
);
2633 ztest_object_unlock(zd
, od
->od_object
);
2641 ztest_create(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2646 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2648 for (i
= 0; i
< count
; i
++, od
++) {
2655 lr_create_t
*lrc
= ztest_lr_alloc(sizeof (*lrc
), od
->od_name
);
2656 _lr_create_t
*lr
= &lrc
->lr_create
;
2658 lr
->lr_doid
= od
->od_dir
;
2659 lr
->lr_foid
= 0; /* 0 to allocate, > 0 to claim */
2660 lr
->lrz_type
= od
->od_crtype
;
2661 lr
->lrz_blocksize
= od
->od_crblocksize
;
2662 lr
->lrz_ibshift
= ztest_random_ibshift();
2663 lr
->lrz_bonustype
= DMU_OT_UINT64_OTHER
;
2664 lr
->lrz_dnodesize
= od
->od_crdnodesize
;
2665 lr
->lr_gen
= od
->od_crgen
;
2666 lr
->lr_crtime
[0] = time(NULL
);
2668 if (ztest_replay_create(zd
, lr
, B_FALSE
) != 0) {
2673 od
->od_object
= lr
->lr_foid
;
2674 od
->od_type
= od
->od_crtype
;
2675 od
->od_blocksize
= od
->od_crblocksize
;
2676 od
->od_gen
= od
->od_crgen
;
2677 ASSERT3U(od
->od_object
, !=, 0);
2680 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2687 ztest_remove(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2693 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2697 for (i
= count
- 1; i
>= 0; i
--, od
--) {
2704 * No object was found.
2706 if (od
->od_object
== 0)
2709 lr_remove_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2711 lr
->lr_doid
= od
->od_dir
;
2713 if ((error
= ztest_replay_remove(zd
, lr
, B_FALSE
)) != 0) {
2714 ASSERT3U(error
, ==, ENOSPC
);
2719 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2726 ztest_write(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
,
2732 lr
= ztest_lr_alloc(sizeof (*lr
) + size
, NULL
);
2734 lr
->lr_foid
= object
;
2735 lr
->lr_offset
= offset
;
2736 lr
->lr_length
= size
;
2738 BP_ZERO(&lr
->lr_blkptr
);
2740 memcpy(&lr
->lr_data
[0], data
, size
);
2742 error
= ztest_replay_write(zd
, lr
, B_FALSE
);
2744 ztest_lr_free(lr
, sizeof (*lr
) + size
, NULL
);
2750 ztest_truncate(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2755 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2757 lr
->lr_foid
= object
;
2758 lr
->lr_offset
= offset
;
2759 lr
->lr_length
= size
;
2761 error
= ztest_replay_truncate(zd
, lr
, B_FALSE
);
2763 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2769 ztest_setattr(ztest_ds_t
*zd
, uint64_t object
)
2774 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2776 lr
->lr_foid
= object
;
2780 error
= ztest_replay_setattr(zd
, lr
, B_FALSE
);
2782 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2788 ztest_prealloc(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2790 objset_t
*os
= zd
->zd_os
;
2795 txg_wait_synced(dmu_objset_pool(os
), 0);
2797 ztest_object_lock(zd
, object
, ZTRL_READER
);
2798 rl
= ztest_range_lock(zd
, object
, offset
, size
, ZTRL_WRITER
);
2800 tx
= dmu_tx_create(os
);
2802 dmu_tx_hold_write(tx
, object
, offset
, size
);
2804 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2807 dmu_prealloc(os
, object
, offset
, size
, tx
);
2809 txg_wait_synced(dmu_objset_pool(os
), txg
);
2811 (void) dmu_free_long_range(os
, object
, offset
, size
);
2814 ztest_range_unlock(rl
);
2815 ztest_object_unlock(zd
, object
);
2819 ztest_io(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
)
2822 ztest_block_tag_t wbt
;
2823 dmu_object_info_t doi
;
2824 enum ztest_io_type io_type
;
2827 uint32_t dmu_read_flags
= DMU_READ_NO_PREFETCH
;
2830 * We will randomly set when to do O_DIRECT on a read.
2832 if (ztest_random(4) == 0)
2833 dmu_read_flags
|= DMU_DIRECTIO
;
2835 VERIFY0(dmu_object_info(zd
->zd_os
, object
, &doi
));
2836 blocksize
= doi
.doi_data_block_size
;
2837 data
= umem_alloc(blocksize
, UMEM_NOFAIL
);
2840 * Pick an i/o type at random, biased toward writing block tags.
2842 io_type
= ztest_random(ZTEST_IO_TYPES
);
2843 if (ztest_random(2) == 0)
2844 io_type
= ZTEST_IO_WRITE_TAG
;
2846 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2850 case ZTEST_IO_WRITE_TAG
:
2851 ztest_bt_generate(&wbt
, zd
->zd_os
, object
, doi
.doi_dnodesize
,
2853 (void) ztest_write(zd
, object
, offset
, sizeof (wbt
), &wbt
);
2856 case ZTEST_IO_WRITE_PATTERN
:
2857 (void) memset(data
, 'a' + (object
+ offset
) % 5, blocksize
);
2858 if (ztest_random(2) == 0) {
2860 * Induce fletcher2 collisions to ensure that
2861 * zio_ddt_collision() detects and resolves them
2862 * when using fletcher2-verify for deduplication.
2864 ((uint64_t *)data
)[0] ^= 1ULL << 63;
2865 ((uint64_t *)data
)[4] ^= 1ULL << 63;
2867 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2870 case ZTEST_IO_WRITE_ZEROES
:
2871 memset(data
, 0, blocksize
);
2872 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2875 case ZTEST_IO_TRUNCATE
:
2876 (void) ztest_truncate(zd
, object
, offset
, blocksize
);
2879 case ZTEST_IO_SETATTR
:
2880 (void) ztest_setattr(zd
, object
);
2885 case ZTEST_IO_REWRITE
:
2886 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2887 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2888 ZFS_PROP_CHECKSUM
, spa_dedup_checksum(ztest_spa
),
2890 ASSERT(err
== 0 || err
== ENOSPC
);
2891 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2892 ZFS_PROP_COMPRESSION
,
2893 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
),
2895 ASSERT(err
== 0 || err
== ENOSPC
);
2896 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2898 VERIFY0(dmu_read(zd
->zd_os
, object
, offset
, blocksize
, data
,
2901 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2905 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2907 umem_free(data
, blocksize
);
2911 * Initialize an object description template.
2914 ztest_od_init(ztest_od_t
*od
, uint64_t id
, const char *tag
, uint64_t index
,
2915 dmu_object_type_t type
, uint64_t blocksize
, uint64_t dnodesize
,
2918 od
->od_dir
= ZTEST_DIROBJ
;
2921 od
->od_crtype
= type
;
2922 od
->od_crblocksize
= blocksize
? blocksize
: ztest_random_blocksize();
2923 od
->od_crdnodesize
= dnodesize
? dnodesize
: ztest_random_dnodesize();
2926 od
->od_type
= DMU_OT_NONE
;
2927 od
->od_blocksize
= 0;
2930 (void) snprintf(od
->od_name
, sizeof (od
->od_name
),
2931 "%s(%"PRId64
")[%"PRIu64
"]",
2936 * Lookup or create the objects for a test using the od template.
2937 * If the objects do not all exist, or if 'remove' is specified,
2938 * remove any existing objects and create new ones. Otherwise,
2939 * use the existing objects.
2942 ztest_object_init(ztest_ds_t
*zd
, ztest_od_t
*od
, size_t size
, boolean_t remove
)
2944 int count
= size
/ sizeof (*od
);
2947 mutex_enter(&zd
->zd_dirobj_lock
);
2948 if ((ztest_lookup(zd
, od
, count
) != 0 || remove
) &&
2949 (ztest_remove(zd
, od
, count
) != 0 ||
2950 ztest_create(zd
, od
, count
) != 0))
2953 mutex_exit(&zd
->zd_dirobj_lock
);
2959 ztest_zil_commit(ztest_ds_t
*zd
, uint64_t id
)
2962 zilog_t
*zilog
= zd
->zd_zilog
;
2964 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2966 zil_commit(zilog
, ztest_random(ZTEST_OBJECTS
));
2969 * Remember the committed values in zd, which is in parent/child
2970 * shared memory. If we die, the next iteration of ztest_run()
2971 * will verify that the log really does contain this record.
2973 mutex_enter(&zilog
->zl_lock
);
2974 ASSERT3P(zd
->zd_shared
, !=, NULL
);
2975 ASSERT3U(zd
->zd_shared
->zd_seq
, <=, zilog
->zl_commit_lr_seq
);
2976 zd
->zd_shared
->zd_seq
= zilog
->zl_commit_lr_seq
;
2977 mutex_exit(&zilog
->zl_lock
);
2979 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2983 * This function is designed to simulate the operations that occur during a
2984 * mount/unmount operation. We hold the dataset across these operations in an
2985 * attempt to expose any implicit assumptions about ZIL management.
2988 ztest_zil_remount(ztest_ds_t
*zd
, uint64_t id
)
2991 objset_t
*os
= zd
->zd_os
;
2994 * We hold the ztest_vdev_lock so we don't cause problems with
2995 * other threads that wish to remove a log device, such as
2996 * ztest_device_removal().
2998 mutex_enter(&ztest_vdev_lock
);
3001 * We grab the zd_dirobj_lock to ensure that no other thread is
3002 * updating the zil (i.e. adding in-memory log records) and the
3003 * zd_zilog_lock to block any I/O.
3005 mutex_enter(&zd
->zd_dirobj_lock
);
3006 (void) pthread_rwlock_wrlock(&zd
->zd_zilog_lock
);
3008 /* zfsvfs_teardown() */
3009 zil_close(zd
->zd_zilog
);
3011 /* zfsvfs_setup() */
3012 VERIFY3P(zil_open(os
, ztest_get_data
, NULL
), ==, zd
->zd_zilog
);
3013 zil_replay(os
, zd
, ztest_replay_vector
);
3015 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
3016 mutex_exit(&zd
->zd_dirobj_lock
);
3017 mutex_exit(&ztest_vdev_lock
);
3021 * Verify that we can't destroy an active pool, create an existing pool,
3022 * or create a pool with a bad vdev spec.
3025 ztest_spa_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
3027 (void) zd
, (void) id
;
3028 ztest_shared_opts_t
*zo
= &ztest_opts
;
3032 if (zo
->zo_mmp_test
)
3036 * Attempt to create using a bad file.
3038 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
3039 VERIFY3U(ENOENT
, ==,
3040 spa_create("ztest_bad_file", nvroot
, NULL
, NULL
, NULL
));
3041 fnvlist_free(nvroot
);
3044 * Attempt to create using a bad mirror.
3046 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 2, 1);
3047 VERIFY3U(ENOENT
, ==,
3048 spa_create("ztest_bad_mirror", nvroot
, NULL
, NULL
, NULL
));
3049 fnvlist_free(nvroot
);
3052 * Attempt to create an existing pool. It shouldn't matter
3053 * what's in the nvroot; we should fail with EEXIST.
3055 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
3056 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
3057 VERIFY3U(EEXIST
, ==,
3058 spa_create(zo
->zo_pool
, nvroot
, NULL
, NULL
, NULL
));
3059 fnvlist_free(nvroot
);
3062 * We open a reference to the spa and then we try to export it
3063 * expecting one of the following errors:
3066 * Because of the reference we just opened.
3068 * ZFS_ERR_EXPORT_IN_PROGRESS
3069 * For the case that there is another ztest thread doing
3070 * an export concurrently.
3072 VERIFY0(spa_open(zo
->zo_pool
, &spa
, FTAG
));
3073 int error
= spa_destroy(zo
->zo_pool
);
3074 if (error
!= EBUSY
&& error
!= ZFS_ERR_EXPORT_IN_PROGRESS
) {
3075 fatal(B_FALSE
, "spa_destroy(%s) returned unexpected value %d",
3076 spa
->spa_name
, error
);
3078 spa_close(spa
, FTAG
);
3080 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3084 * Start and then stop the MMP threads to ensure the startup and shutdown code
3085 * works properly. Actual protection and property-related code tested via ZTS.
3088 ztest_mmp_enable_disable(ztest_ds_t
*zd
, uint64_t id
)
3090 (void) zd
, (void) id
;
3091 ztest_shared_opts_t
*zo
= &ztest_opts
;
3092 spa_t
*spa
= ztest_spa
;
3094 if (zo
->zo_mmp_test
)
3098 * Since enabling MMP involves setting a property, it could not be done
3099 * while the pool is suspended.
3101 if (spa_suspended(spa
))
3104 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3105 mutex_enter(&spa
->spa_props_lock
);
3107 zfs_multihost_fail_intervals
= 0;
3109 if (!spa_multihost(spa
)) {
3110 spa
->spa_multihost
= B_TRUE
;
3111 mmp_thread_start(spa
);
3114 mutex_exit(&spa
->spa_props_lock
);
3115 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3117 txg_wait_synced(spa_get_dsl(spa
), 0);
3118 mmp_signal_all_threads();
3119 txg_wait_synced(spa_get_dsl(spa
), 0);
3121 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3122 mutex_enter(&spa
->spa_props_lock
);
3124 if (spa_multihost(spa
)) {
3125 mmp_thread_stop(spa
);
3126 spa
->spa_multihost
= B_FALSE
;
3129 mutex_exit(&spa
->spa_props_lock
);
3130 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3134 ztest_get_raidz_children(spa_t
*spa
)
3139 ASSERT(MUTEX_HELD(&ztest_vdev_lock
));
3141 if (ztest_opts
.zo_raid_do_expand
) {
3142 raidvd
= ztest_spa
->spa_root_vdev
->vdev_child
[0];
3144 ASSERT(raidvd
->vdev_ops
== &vdev_raidz_ops
);
3146 return (raidvd
->vdev_children
);
3149 return (ztest_opts
.zo_raid_children
);
3153 ztest_spa_upgrade(ztest_ds_t
*zd
, uint64_t id
)
3155 (void) zd
, (void) id
;
3157 uint64_t initial_version
= SPA_VERSION_INITIAL
;
3158 uint64_t raidz_children
, version
, newversion
;
3159 nvlist_t
*nvroot
, *props
;
3162 if (ztest_opts
.zo_mmp_test
)
3165 /* dRAID added after feature flags, skip upgrade test. */
3166 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0)
3169 mutex_enter(&ztest_vdev_lock
);
3170 name
= kmem_asprintf("%s_upgrade", ztest_opts
.zo_pool
);
3173 * Clean up from previous runs.
3175 (void) spa_destroy(name
);
3177 raidz_children
= ztest_get_raidz_children(ztest_spa
);
3179 nvroot
= make_vdev_root(NULL
, NULL
, name
, ztest_opts
.zo_vdev_size
, 0,
3180 NULL
, raidz_children
, ztest_opts
.zo_mirrors
, 1);
3183 * If we're configuring a RAIDZ device then make sure that the
3184 * initial version is capable of supporting that feature.
3186 switch (ztest_opts
.zo_raid_parity
) {
3189 initial_version
= SPA_VERSION_INITIAL
;
3192 initial_version
= SPA_VERSION_RAIDZ2
;
3195 initial_version
= SPA_VERSION_RAIDZ3
;
3200 * Create a pool with a spa version that can be upgraded. Pick
3201 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3204 version
= ztest_random_spa_version(initial_version
);
3205 } while (version
> SPA_VERSION_BEFORE_FEATURES
);
3207 props
= fnvlist_alloc();
3208 fnvlist_add_uint64(props
,
3209 zpool_prop_to_name(ZPOOL_PROP_VERSION
), version
);
3210 VERIFY0(spa_create(name
, nvroot
, props
, NULL
, NULL
));
3211 fnvlist_free(nvroot
);
3212 fnvlist_free(props
);
3214 VERIFY0(spa_open(name
, &spa
, FTAG
));
3215 VERIFY3U(spa_version(spa
), ==, version
);
3216 newversion
= ztest_random_spa_version(version
+ 1);
3218 if (ztest_opts
.zo_verbose
>= 4) {
3219 (void) printf("upgrading spa version from "
3220 "%"PRIu64
" to %"PRIu64
"\n",
3221 version
, newversion
);
3224 spa_upgrade(spa
, newversion
);
3225 VERIFY3U(spa_version(spa
), >, version
);
3226 VERIFY3U(spa_version(spa
), ==, fnvlist_lookup_uint64(spa
->spa_config
,
3227 zpool_prop_to_name(ZPOOL_PROP_VERSION
)));
3228 spa_close(spa
, FTAG
);
3231 mutex_exit(&ztest_vdev_lock
);
3235 ztest_spa_checkpoint(spa_t
*spa
)
3237 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3239 int error
= spa_checkpoint(spa
->spa_name
);
3243 case ZFS_ERR_DEVRM_IN_PROGRESS
:
3244 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3245 case ZFS_ERR_CHECKPOINT_EXISTS
:
3246 case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS
:
3249 ztest_record_enospc(FTAG
);
3252 fatal(B_FALSE
, "spa_checkpoint(%s) = %d", spa
->spa_name
, error
);
3257 ztest_spa_discard_checkpoint(spa_t
*spa
)
3259 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3261 int error
= spa_checkpoint_discard(spa
->spa_name
);
3265 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3266 case ZFS_ERR_NO_CHECKPOINT
:
3269 fatal(B_FALSE
, "spa_discard_checkpoint(%s) = %d",
3270 spa
->spa_name
, error
);
3276 ztest_spa_checkpoint_create_discard(ztest_ds_t
*zd
, uint64_t id
)
3278 (void) zd
, (void) id
;
3279 spa_t
*spa
= ztest_spa
;
3281 mutex_enter(&ztest_checkpoint_lock
);
3282 if (ztest_random(2) == 0) {
3283 ztest_spa_checkpoint(spa
);
3285 ztest_spa_discard_checkpoint(spa
);
3287 mutex_exit(&ztest_checkpoint_lock
);
3292 vdev_lookup_by_path(vdev_t
*vd
, const char *path
)
3297 if (vd
->vdev_path
!= NULL
&& strcmp(path
, vd
->vdev_path
) == 0)
3300 for (c
= 0; c
< vd
->vdev_children
; c
++)
3301 if ((mvd
= vdev_lookup_by_path(vd
->vdev_child
[c
], path
)) !=
3309 spa_num_top_vdevs(spa_t
*spa
)
3311 vdev_t
*rvd
= spa
->spa_root_vdev
;
3312 ASSERT3U(spa_config_held(spa
, SCL_VDEV
, RW_READER
), ==, SCL_VDEV
);
3313 return (rvd
->vdev_children
);
3317 * Verify that vdev_add() works as expected.
3320 ztest_vdev_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3322 (void) zd
, (void) id
;
3323 ztest_shared_t
*zs
= ztest_shared
;
3324 spa_t
*spa
= ztest_spa
;
3327 uint64_t raidz_children
;
3332 if (ztest_opts
.zo_mmp_test
)
3335 mutex_enter(&ztest_vdev_lock
);
3336 raidz_children
= ztest_get_raidz_children(spa
);
3337 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
3339 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3341 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3344 * If we have slogs then remove them 1/4 of the time.
3346 if (spa_has_slogs(spa
) && ztest_random(4) == 0) {
3347 metaslab_group_t
*mg
;
3350 * find the first real slog in log allocation class
3352 mg
= spa_log_class(spa
)->mc_allocator
[0].mca_rotor
;
3353 while (!mg
->mg_vd
->vdev_islog
)
3356 guid
= mg
->mg_vd
->vdev_guid
;
3358 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3361 * We have to grab the zs_name_lock as writer to
3362 * prevent a race between removing a slog (dmu_objset_find)
3363 * and destroying a dataset. Removing the slog will
3364 * grab a reference on the dataset which may cause
3365 * dsl_destroy_head() to fail with EBUSY thus
3366 * leaving the dataset in an inconsistent state.
3368 pthread_rwlock_wrlock(&ztest_name_lock
);
3369 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3370 pthread_rwlock_unlock(&ztest_name_lock
);
3374 case EEXIST
: /* Generic zil_reset() error */
3375 case EBUSY
: /* Replay required */
3376 case EACCES
: /* Crypto key not loaded */
3377 case ZFS_ERR_CHECKPOINT_EXISTS
:
3378 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3381 fatal(B_FALSE
, "spa_vdev_remove() = %d", error
);
3384 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3387 * Make 1/4 of the devices be log devices
3389 nvroot
= make_vdev_root(NULL
, NULL
, NULL
,
3390 ztest_opts
.zo_vdev_size
, 0, (ztest_random(4) == 0) ?
3391 "log" : NULL
, raidz_children
, zs
->zs_mirrors
,
3394 error
= spa_vdev_add(spa
, nvroot
, B_FALSE
);
3395 fnvlist_free(nvroot
);
3401 ztest_record_enospc("spa_vdev_add");
3404 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3408 mutex_exit(&ztest_vdev_lock
);
3412 ztest_vdev_class_add(ztest_ds_t
*zd
, uint64_t id
)
3414 (void) zd
, (void) id
;
3415 ztest_shared_t
*zs
= ztest_shared
;
3416 spa_t
*spa
= ztest_spa
;
3419 uint64_t raidz_children
;
3420 const char *class = (ztest_random(2) == 0) ?
3421 VDEV_ALLOC_BIAS_SPECIAL
: VDEV_ALLOC_BIAS_DEDUP
;
3425 * By default add a special vdev 50% of the time
3427 if ((ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_OFF
) ||
3428 (ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_RND
&&
3429 ztest_random(2) == 0)) {
3433 mutex_enter(&ztest_vdev_lock
);
3435 /* Only test with mirrors */
3436 if (zs
->zs_mirrors
< 2) {
3437 mutex_exit(&ztest_vdev_lock
);
3441 /* requires feature@allocation_classes */
3442 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_ALLOCATION_CLASSES
)) {
3443 mutex_exit(&ztest_vdev_lock
);
3447 raidz_children
= ztest_get_raidz_children(spa
);
3448 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
3450 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3451 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3452 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3454 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
3455 class, raidz_children
, zs
->zs_mirrors
, 1);
3457 error
= spa_vdev_add(spa
, nvroot
, B_FALSE
);
3458 fnvlist_free(nvroot
);
3460 if (error
== ENOSPC
)
3461 ztest_record_enospc("spa_vdev_add");
3462 else if (error
!= 0)
3463 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3466 * 50% of the time allow small blocks in the special class
3469 spa_special_class(spa
)->mc_groups
== 1 && ztest_random(2) == 0) {
3470 if (ztest_opts
.zo_verbose
>= 3)
3471 (void) printf("Enabling special VDEV small blocks\n");
3472 error
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
3473 ZFS_PROP_SPECIAL_SMALL_BLOCKS
, 32768, B_FALSE
);
3474 ASSERT(error
== 0 || error
== ENOSPC
);
3477 mutex_exit(&ztest_vdev_lock
);
3479 if (ztest_opts
.zo_verbose
>= 3) {
3480 metaslab_class_t
*mc
;
3482 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL
) == 0)
3483 mc
= spa_special_class(spa
);
3485 mc
= spa_dedup_class(spa
);
3486 (void) printf("Added a %s mirrored vdev (of %d)\n",
3487 class, (int)mc
->mc_groups
);
3492 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3495 ztest_vdev_aux_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3497 (void) zd
, (void) id
;
3498 ztest_shared_t
*zs
= ztest_shared
;
3499 spa_t
*spa
= ztest_spa
;
3500 vdev_t
*rvd
= spa
->spa_root_vdev
;
3501 spa_aux_vdev_t
*sav
;
3505 int error
, ignore_err
= 0;
3507 if (ztest_opts
.zo_mmp_test
)
3510 path
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3512 if (ztest_random(2) == 0) {
3513 sav
= &spa
->spa_spares
;
3514 aux
= ZPOOL_CONFIG_SPARES
;
3516 sav
= &spa
->spa_l2cache
;
3517 aux
= ZPOOL_CONFIG_L2CACHE
;
3520 mutex_enter(&ztest_vdev_lock
);
3522 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3524 if (sav
->sav_count
!= 0 && ztest_random(4) == 0) {
3526 * Pick a random device to remove.
3528 vdev_t
*svd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3530 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3531 if (strstr(svd
->vdev_path
, VDEV_TYPE_DRAID
) != NULL
)
3532 ignore_err
= ENOTSUP
;
3534 guid
= svd
->vdev_guid
;
3537 * Find an unused device we can add.
3539 zs
->zs_vdev_aux
= 0;
3542 (void) snprintf(path
, MAXPATHLEN
, ztest_aux_template
,
3543 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, aux
,
3545 for (c
= 0; c
< sav
->sav_count
; c
++)
3546 if (strcmp(sav
->sav_vdevs
[c
]->vdev_path
,
3549 if (c
== sav
->sav_count
&&
3550 vdev_lookup_by_path(rvd
, path
) == NULL
)
3556 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3562 nvlist_t
*nvroot
= make_vdev_root(NULL
, aux
, NULL
,
3563 (ztest_opts
.zo_vdev_size
* 5) / 4, 0, NULL
, 0, 0, 1);
3564 error
= spa_vdev_add(spa
, nvroot
, B_FALSE
);
3570 fatal(B_FALSE
, "spa_vdev_add(%p) = %d", nvroot
, error
);
3572 fnvlist_free(nvroot
);
3575 * Remove an existing device. Sometimes, dirty its
3576 * vdev state first to make sure we handle removal
3577 * of devices that have pending state changes.
3579 if (ztest_random(2) == 0)
3580 (void) vdev_online(spa
, guid
, 0, NULL
);
3582 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3587 case ZFS_ERR_CHECKPOINT_EXISTS
:
3588 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3591 if (error
!= ignore_err
)
3593 "spa_vdev_remove(%"PRIu64
") = %d",
3598 mutex_exit(&ztest_vdev_lock
);
3600 umem_free(path
, MAXPATHLEN
);
3604 * split a pool if it has mirror tlvdevs
3607 ztest_split_pool(ztest_ds_t
*zd
, uint64_t id
)
3609 (void) zd
, (void) id
;
3610 ztest_shared_t
*zs
= ztest_shared
;
3611 spa_t
*spa
= ztest_spa
;
3612 vdev_t
*rvd
= spa
->spa_root_vdev
;
3613 nvlist_t
*tree
, **child
, *config
, *split
, **schild
;
3614 uint_t c
, children
, schildren
= 0, lastlogid
= 0;
3617 if (ztest_opts
.zo_mmp_test
)
3620 mutex_enter(&ztest_vdev_lock
);
3622 /* ensure we have a usable config; mirrors of raidz aren't supported */
3623 if (zs
->zs_mirrors
< 3 || ztest_opts
.zo_raid_children
> 1) {
3624 mutex_exit(&ztest_vdev_lock
);
3628 /* clean up the old pool, if any */
3629 (void) spa_destroy("splitp");
3631 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3633 /* generate a config from the existing config */
3634 mutex_enter(&spa
->spa_props_lock
);
3635 tree
= fnvlist_lookup_nvlist(spa
->spa_config
, ZPOOL_CONFIG_VDEV_TREE
);
3636 mutex_exit(&spa
->spa_props_lock
);
3638 VERIFY0(nvlist_lookup_nvlist_array(tree
, ZPOOL_CONFIG_CHILDREN
,
3639 &child
, &children
));
3641 schild
= umem_alloc(rvd
->vdev_children
* sizeof (nvlist_t
*),
3643 for (c
= 0; c
< children
; c
++) {
3644 vdev_t
*tvd
= rvd
->vdev_child
[c
];
3648 if (tvd
->vdev_islog
|| tvd
->vdev_ops
== &vdev_hole_ops
) {
3649 schild
[schildren
] = fnvlist_alloc();
3650 fnvlist_add_string(schild
[schildren
],
3651 ZPOOL_CONFIG_TYPE
, VDEV_TYPE_HOLE
);
3652 fnvlist_add_uint64(schild
[schildren
],
3653 ZPOOL_CONFIG_IS_HOLE
, 1);
3655 lastlogid
= schildren
;
3660 VERIFY0(nvlist_lookup_nvlist_array(child
[c
],
3661 ZPOOL_CONFIG_CHILDREN
, &mchild
, &mchildren
));
3662 schild
[schildren
++] = fnvlist_dup(mchild
[0]);
3665 /* OK, create a config that can be used to split */
3666 split
= fnvlist_alloc();
3667 fnvlist_add_string(split
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
3668 fnvlist_add_nvlist_array(split
, ZPOOL_CONFIG_CHILDREN
,
3669 (const nvlist_t
**)schild
, lastlogid
!= 0 ? lastlogid
: schildren
);
3671 config
= fnvlist_alloc();
3672 fnvlist_add_nvlist(config
, ZPOOL_CONFIG_VDEV_TREE
, split
);
3674 for (c
= 0; c
< schildren
; c
++)
3675 fnvlist_free(schild
[c
]);
3676 umem_free(schild
, rvd
->vdev_children
* sizeof (nvlist_t
*));
3677 fnvlist_free(split
);
3679 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3681 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
3682 error
= spa_vdev_split_mirror(spa
, "splitp", config
, NULL
, B_FALSE
);
3683 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3685 fnvlist_free(config
);
3688 (void) printf("successful split - results:\n");
3689 mutex_enter(&spa_namespace_lock
);
3690 show_pool_stats(spa
);
3691 show_pool_stats(spa_lookup("splitp"));
3692 mutex_exit(&spa_namespace_lock
);
3696 mutex_exit(&ztest_vdev_lock
);
3700 * Verify that we can attach and detach devices.
3703 ztest_vdev_attach_detach(ztest_ds_t
*zd
, uint64_t id
)
3705 (void) zd
, (void) id
;
3706 ztest_shared_t
*zs
= ztest_shared
;
3707 spa_t
*spa
= ztest_spa
;
3708 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
3709 vdev_t
*rvd
= spa
->spa_root_vdev
;
3710 vdev_t
*oldvd
, *newvd
, *pvd
;
3714 uint64_t ashift
= ztest_get_ashift();
3715 uint64_t oldguid
, pguid
;
3716 uint64_t oldsize
, newsize
;
3717 uint64_t raidz_children
;
3718 char *oldpath
, *newpath
;
3720 int oldvd_has_siblings
= B_FALSE
;
3721 int newvd_is_spare
= B_FALSE
;
3722 int newvd_is_dspare
= B_FALSE
;
3724 int oldvd_is_special
;
3725 int error
, expected_error
;
3727 if (ztest_opts
.zo_mmp_test
)
3730 oldpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3731 newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3733 mutex_enter(&ztest_vdev_lock
);
3734 raidz_children
= ztest_get_raidz_children(spa
);
3735 leaves
= MAX(zs
->zs_mirrors
, 1) * raidz_children
;
3737 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
3740 * If a vdev is in the process of being removed, its removal may
3741 * finish while we are in progress, leading to an unexpected error
3742 * value. Don't bother trying to attach while we are in the middle
3745 if (ztest_device_removal_active
) {
3746 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3751 * RAIDZ leaf VDEV mirrors are not currently supported while a
3752 * RAIDZ expansion is in progress.
3754 if (ztest_opts
.zo_raid_do_expand
) {
3755 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3760 * Decide whether to do an attach or a replace.
3762 replacing
= ztest_random(2);
3765 * Pick a random top-level vdev.
3767 top
= ztest_random_vdev_top(spa
, B_TRUE
);
3770 * Pick a random leaf within it.
3772 leaf
= ztest_random(leaves
);
3777 oldvd
= rvd
->vdev_child
[top
];
3779 /* pick a child from the mirror */
3780 if (zs
->zs_mirrors
>= 1) {
3781 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_mirror_ops
);
3782 ASSERT3U(oldvd
->vdev_children
, >=, zs
->zs_mirrors
);
3783 oldvd
= oldvd
->vdev_child
[leaf
/ raidz_children
];
3786 /* pick a child out of the raidz group */
3787 if (ztest_opts
.zo_raid_children
> 1) {
3788 if (strcmp(oldvd
->vdev_ops
->vdev_op_type
, "raidz") == 0)
3789 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_raidz_ops
);
3791 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_draid_ops
);
3792 oldvd
= oldvd
->vdev_child
[leaf
% raidz_children
];
3796 * If we're already doing an attach or replace, oldvd may be a
3797 * mirror vdev -- in which case, pick a random child.
3799 while (oldvd
->vdev_children
!= 0) {
3800 oldvd_has_siblings
= B_TRUE
;
3801 ASSERT3U(oldvd
->vdev_children
, >=, 2);
3802 oldvd
= oldvd
->vdev_child
[ztest_random(oldvd
->vdev_children
)];
3805 oldguid
= oldvd
->vdev_guid
;
3806 oldsize
= vdev_get_min_asize(oldvd
);
3807 oldvd_is_log
= oldvd
->vdev_top
->vdev_islog
;
3809 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_SPECIAL
||
3810 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_DEDUP
;
3811 (void) strlcpy(oldpath
, oldvd
->vdev_path
, MAXPATHLEN
);
3812 pvd
= oldvd
->vdev_parent
;
3813 pguid
= pvd
->vdev_guid
;
3816 * If oldvd has siblings, then half of the time, detach it. Prior
3817 * to the detach the pool is scrubbed in order to prevent creating
3818 * unrepairable blocks as a result of the data corruption injection.
3820 if (oldvd_has_siblings
&& ztest_random(2) == 0) {
3821 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3823 error
= ztest_scrub_impl(spa
);
3827 error
= spa_vdev_detach(spa
, oldguid
, pguid
, B_FALSE
);
3828 if (error
!= 0 && error
!= ENODEV
&& error
!= EBUSY
&&
3829 error
!= ENOTSUP
&& error
!= ZFS_ERR_CHECKPOINT_EXISTS
&&
3830 error
!= ZFS_ERR_DISCARDING_CHECKPOINT
)
3831 fatal(B_FALSE
, "detach (%s) returned %d",
3837 * For the new vdev, choose with equal probability between the two
3838 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3840 if (sav
->sav_count
!= 0 && ztest_random(3) == 0) {
3841 newvd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3842 newvd_is_spare
= B_TRUE
;
3844 if (newvd
->vdev_ops
== &vdev_draid_spare_ops
)
3845 newvd_is_dspare
= B_TRUE
;
3847 (void) strlcpy(newpath
, newvd
->vdev_path
, MAXPATHLEN
);
3849 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
3850 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
3851 top
* leaves
+ leaf
);
3852 if (ztest_random(2) == 0)
3853 newpath
[strlen(newpath
) - 1] = 'b';
3854 newvd
= vdev_lookup_by_path(rvd
, newpath
);
3859 * Reopen to ensure the vdev's asize field isn't stale.
3862 newsize
= vdev_get_min_asize(newvd
);
3865 * Make newsize a little bigger or smaller than oldsize.
3866 * If it's smaller, the attach should fail.
3867 * If it's larger, and we're doing a replace,
3868 * we should get dynamic LUN growth when we're done.
3870 newsize
= 10 * oldsize
/ (9 + ztest_random(3));
3874 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3875 * unless it's a replace; in that case any non-replacing parent is OK.
3877 * If newvd is already part of the pool, it should fail with EBUSY.
3879 * If newvd is too small, it should fail with EOVERFLOW.
3881 * If newvd is a distributed spare and it's being attached to a
3882 * dRAID which is not its parent it should fail with EINVAL.
3884 if (pvd
->vdev_ops
!= &vdev_mirror_ops
&&
3885 pvd
->vdev_ops
!= &vdev_root_ops
&& (!replacing
||
3886 pvd
->vdev_ops
== &vdev_replacing_ops
||
3887 pvd
->vdev_ops
== &vdev_spare_ops
))
3888 expected_error
= ENOTSUP
;
3889 else if (newvd_is_spare
&&
3890 (!replacing
|| oldvd_is_log
|| oldvd_is_special
))
3891 expected_error
= ENOTSUP
;
3892 else if (newvd
== oldvd
)
3893 expected_error
= replacing
? 0 : EBUSY
;
3894 else if (vdev_lookup_by_path(rvd
, newpath
) != NULL
)
3895 expected_error
= EBUSY
;
3896 else if (!newvd_is_dspare
&& newsize
< oldsize
)
3897 expected_error
= EOVERFLOW
;
3898 else if (ashift
> oldvd
->vdev_top
->vdev_ashift
)
3899 expected_error
= EDOM
;
3900 else if (newvd_is_dspare
&& pvd
!= vdev_draid_spare_get_parent(newvd
))
3901 expected_error
= EINVAL
;
3905 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3908 * Build the nvlist describing newpath.
3910 root
= make_vdev_root(newpath
, NULL
, NULL
, newvd
== NULL
? newsize
: 0,
3911 ashift
, NULL
, 0, 0, 1);
3914 * When supported select either a healing or sequential resilver.
3916 boolean_t rebuilding
= B_FALSE
;
3917 if (pvd
->vdev_ops
== &vdev_mirror_ops
||
3918 pvd
->vdev_ops
== &vdev_root_ops
) {
3919 rebuilding
= !!ztest_random(2);
3922 error
= spa_vdev_attach(spa
, oldguid
, root
, replacing
, rebuilding
);
3927 * If our parent was the replacing vdev, but the replace completed,
3928 * then instead of failing with ENOTSUP we may either succeed,
3929 * fail with ENODEV, or fail with EOVERFLOW.
3931 if (expected_error
== ENOTSUP
&&
3932 (error
== 0 || error
== ENODEV
|| error
== EOVERFLOW
))
3933 expected_error
= error
;
3936 * If someone grew the LUN, the replacement may be too small.
3938 if (error
== EOVERFLOW
|| error
== EBUSY
)
3939 expected_error
= error
;
3941 if (error
== ZFS_ERR_CHECKPOINT_EXISTS
||
3942 error
== ZFS_ERR_DISCARDING_CHECKPOINT
||
3943 error
== ZFS_ERR_RESILVER_IN_PROGRESS
||
3944 error
== ZFS_ERR_REBUILD_IN_PROGRESS
)
3945 expected_error
= error
;
3947 if (error
!= expected_error
&& expected_error
!= EBUSY
) {
3948 fatal(B_FALSE
, "attach (%s %"PRIu64
", %s %"PRIu64
", %d) "
3949 "returned %d, expected %d",
3950 oldpath
, oldsize
, newpath
,
3951 newsize
, replacing
, error
, expected_error
);
3954 mutex_exit(&ztest_vdev_lock
);
3956 umem_free(oldpath
, MAXPATHLEN
);
3957 umem_free(newpath
, MAXPATHLEN
);
3961 raidz_scratch_verify(void)
3964 uint64_t write_size
, logical_size
, offset
;
3965 raidz_reflow_scratch_state_t state
;
3966 vdev_raidz_expand_t
*vre
;
3969 ASSERT(raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
);
3971 if (ztest_scratch_state
->zs_raidz_scratch_verify_pause
== 0)
3974 kernel_init(SPA_MODE_READ
);
3976 mutex_enter(&spa_namespace_lock
);
3977 spa
= spa_lookup(ztest_opts
.zo_pool
);
3979 spa
->spa_import_flags
|= ZFS_IMPORT_SKIP_MMP
;
3980 mutex_exit(&spa_namespace_lock
);
3982 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
3984 ASSERT3U(RRSS_GET_OFFSET(&spa
->spa_uberblock
), !=, UINT64_MAX
);
3986 mutex_enter(&ztest_vdev_lock
);
3988 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_READER
);
3990 vre
= spa
->spa_raidz_expand
;
3994 raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
3995 offset
= RRSS_GET_OFFSET(&spa
->spa_uberblock
);
3996 state
= RRSS_GET_STATE(&spa
->spa_uberblock
);
3997 write_size
= P2ALIGN_TYPED(VDEV_BOOT_SIZE
, 1 << raidvd
->vdev_ashift
,
3999 logical_size
= write_size
* raidvd
->vdev_children
;
4003 * Initial state of reflow process. RAIDZ expansion was
4004 * requested by user, but scratch object was not created.
4006 case RRSS_SCRATCH_NOT_IN_USE
:
4007 ASSERT3U(offset
, ==, 0);
4011 * Scratch object was synced and stored in boot area.
4013 case RRSS_SCRATCH_VALID
:
4016 * Scratch object was synced back to raidz start offset,
4017 * raidz is ready for sector by sector reflow process.
4019 case RRSS_SCRATCH_INVALID_SYNCED
:
4022 * Scratch object was synced back to raidz start offset
4023 * on zpool importing, raidz is ready for sector by sector
4026 case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT
:
4027 ASSERT3U(offset
, ==, logical_size
);
4031 * Sector by sector reflow process started.
4033 case RRSS_SCRATCH_INVALID_SYNCED_REFLOW
:
4034 ASSERT3U(offset
, >=, logical_size
);
4039 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4041 mutex_exit(&ztest_vdev_lock
);
4043 ztest_scratch_state
->zs_raidz_scratch_verify_pause
= 0;
4045 spa_close(spa
, FTAG
);
4050 ztest_scratch_thread(void *arg
)
4054 /* wait up to 10 seconds */
4055 for (int t
= 100; t
> 0; t
-= 1) {
4056 if (raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
)
4059 (void) poll(NULL
, 0, 100);
4062 /* killed when the scratch area progress reached a certain point */
4063 ztest_kill(ztest_shared
);
4067 * Verify that we can attach raidz device.
4070 ztest_vdev_raidz_attach(ztest_ds_t
*zd
, uint64_t id
)
4072 (void) zd
, (void) id
;
4073 ztest_shared_t
*zs
= ztest_shared
;
4074 spa_t
*spa
= ztest_spa
;
4075 uint64_t leaves
, raidz_children
, newsize
, ashift
= ztest_get_ashift();
4076 kthread_t
*scratch_thread
= NULL
;
4077 vdev_t
*newvd
, *pvd
;
4079 char *newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
4080 int error
, expected_error
= 0;
4082 mutex_enter(&ztest_vdev_lock
);
4084 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_READER
);
4086 /* Only allow attach when raid-kind = 'eraidz' */
4087 if (!ztest_opts
.zo_raid_do_expand
) {
4088 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4092 if (ztest_opts
.zo_mmp_test
) {
4093 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4097 if (ztest_device_removal_active
) {
4098 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4102 pvd
= vdev_lookup_top(spa
, 0);
4104 ASSERT(pvd
->vdev_ops
== &vdev_raidz_ops
);
4107 * Get size of a child of the raidz group,
4108 * make sure device is a bit bigger
4110 newvd
= pvd
->vdev_child
[ztest_random(pvd
->vdev_children
)];
4111 newsize
= 10 * vdev_get_min_asize(newvd
) / (9 + ztest_random(2));
4114 * Get next attached leaf id
4116 raidz_children
= ztest_get_raidz_children(spa
);
4117 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
4118 zs
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
4120 if (spa
->spa_raidz_expand
)
4121 expected_error
= ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS
;
4123 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4126 * Path to vdev to be attached
4128 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
4129 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, zs
->zs_vdev_next_leaf
);
4132 * Build the nvlist describing newpath.
4134 root
= make_vdev_root(newpath
, NULL
, NULL
, newsize
, ashift
, NULL
,
4138 * 50% of the time, set raidz_expand_pause_point to cause
4139 * raidz_reflow_scratch_sync() to pause at a certain point and
4140 * then kill the test after 10 seconds so raidz_scratch_verify()
4141 * can confirm consistency when the pool is imported.
4143 if (ztest_random(2) == 0 && expected_error
== 0) {
4144 raidz_expand_pause_point
=
4145 ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2
) + 1;
4146 scratch_thread
= thread_create(NULL
, 0, ztest_scratch_thread
,
4147 ztest_shared
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
4150 error
= spa_vdev_attach(spa
, pvd
->vdev_guid
, root
, B_FALSE
, B_FALSE
);
4154 if (error
== EOVERFLOW
|| error
== ENXIO
||
4155 error
== ZFS_ERR_CHECKPOINT_EXISTS
||
4156 error
== ZFS_ERR_DISCARDING_CHECKPOINT
)
4157 expected_error
= error
;
4159 if (error
!= 0 && error
!= expected_error
) {
4160 fatal(0, "raidz attach (%s %"PRIu64
") returned %d, expected %d",
4161 newpath
, newsize
, error
, expected_error
);
4164 if (raidz_expand_pause_point
) {
4167 * Do not verify scratch object in case of error
4168 * returned by vdev attaching.
4170 raidz_expand_pause_point
= RAIDZ_EXPAND_PAUSE_NONE
;
4173 VERIFY0(thread_join(scratch_thread
));
4176 mutex_exit(&ztest_vdev_lock
);
4178 umem_free(newpath
, MAXPATHLEN
);
4182 ztest_device_removal(ztest_ds_t
*zd
, uint64_t id
)
4184 (void) zd
, (void) id
;
4185 spa_t
*spa
= ztest_spa
;
4190 mutex_enter(&ztest_vdev_lock
);
4192 if (ztest_device_removal_active
) {
4193 mutex_exit(&ztest_vdev_lock
);
4198 * Remove a random top-level vdev and wait for removal to finish.
4200 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
4201 vd
= vdev_lookup_top(spa
, ztest_random_vdev_top(spa
, B_FALSE
));
4202 guid
= vd
->vdev_guid
;
4203 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
4205 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
4207 ztest_device_removal_active
= B_TRUE
;
4208 mutex_exit(&ztest_vdev_lock
);
4211 * spa->spa_vdev_removal is created in a sync task that
4212 * is initiated via dsl_sync_task_nowait(). Since the
4213 * task may not run before spa_vdev_remove() returns, we
4214 * must wait at least 1 txg to ensure that the removal
4215 * struct has been created.
4217 txg_wait_synced(spa_get_dsl(spa
), 0);
4219 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
4220 txg_wait_synced(spa_get_dsl(spa
), 0);
4222 mutex_exit(&ztest_vdev_lock
);
4227 * The pool needs to be scrubbed after completing device removal.
4228 * Failure to do so may result in checksum errors due to the
4229 * strategy employed by ztest_fault_inject() when selecting which
4230 * offset are redundant and can be damaged.
4232 error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
4234 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
4235 txg_wait_synced(spa_get_dsl(spa
), 0);
4238 mutex_enter(&ztest_vdev_lock
);
4239 ztest_device_removal_active
= B_FALSE
;
4240 mutex_exit(&ztest_vdev_lock
);
4244 * Callback function which expands the physical size of the vdev.
4247 grow_vdev(vdev_t
*vd
, void *arg
)
4249 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
4250 size_t *newsize
= arg
;
4254 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
4255 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4257 if ((fd
= open(vd
->vdev_path
, O_RDWR
)) == -1)
4260 fsize
= lseek(fd
, 0, SEEK_END
);
4261 VERIFY0(ftruncate(fd
, *newsize
));
4263 if (ztest_opts
.zo_verbose
>= 6) {
4264 (void) printf("%s grew from %lu to %lu bytes\n",
4265 vd
->vdev_path
, (ulong_t
)fsize
, (ulong_t
)*newsize
);
4272 * Callback function which expands a given vdev by calling vdev_online().
4275 online_vdev(vdev_t
*vd
, void *arg
)
4278 spa_t
*spa
= vd
->vdev_spa
;
4279 vdev_t
*tvd
= vd
->vdev_top
;
4280 uint64_t guid
= vd
->vdev_guid
;
4281 uint64_t generation
= spa
->spa_config_generation
+ 1;
4282 vdev_state_t newstate
= VDEV_STATE_UNKNOWN
;
4285 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
4286 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4288 /* Calling vdev_online will initialize the new metaslabs */
4289 spa_config_exit(spa
, SCL_STATE
, spa
);
4290 error
= vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, &newstate
);
4291 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4294 * If vdev_online returned an error or the underlying vdev_open
4295 * failed then we abort the expand. The only way to know that
4296 * vdev_open fails is by checking the returned newstate.
4298 if (error
|| newstate
!= VDEV_STATE_HEALTHY
) {
4299 if (ztest_opts
.zo_verbose
>= 5) {
4300 (void) printf("Unable to expand vdev, state %u, "
4301 "error %d\n", newstate
, error
);
4305 ASSERT3U(newstate
, ==, VDEV_STATE_HEALTHY
);
4308 * Since we dropped the lock we need to ensure that we're
4309 * still talking to the original vdev. It's possible this
4310 * vdev may have been detached/replaced while we were
4311 * trying to online it.
4313 if (generation
!= spa
->spa_config_generation
) {
4314 if (ztest_opts
.zo_verbose
>= 5) {
4315 (void) printf("vdev configuration has changed, "
4316 "guid %"PRIu64
", state %"PRIu64
", "
4317 "expected gen %"PRIu64
", got gen %"PRIu64
"\n",
4321 spa
->spa_config_generation
);
4329 * Traverse the vdev tree calling the supplied function.
4330 * We continue to walk the tree until we either have walked all
4331 * children or we receive a non-NULL return from the callback.
4332 * If a NULL callback is passed, then we just return back the first
4333 * leaf vdev we encounter.
4336 vdev_walk_tree(vdev_t
*vd
, vdev_t
*(*func
)(vdev_t
*, void *), void *arg
)
4340 if (vd
->vdev_ops
->vdev_op_leaf
) {
4344 return (func(vd
, arg
));
4347 for (c
= 0; c
< vd
->vdev_children
; c
++) {
4348 vdev_t
*cvd
= vd
->vdev_child
[c
];
4349 if ((cvd
= vdev_walk_tree(cvd
, func
, arg
)) != NULL
)
4356 * Verify that dynamic LUN growth works as expected.
4359 ztest_vdev_LUN_growth(ztest_ds_t
*zd
, uint64_t id
)
4361 (void) zd
, (void) id
;
4362 spa_t
*spa
= ztest_spa
;
4364 metaslab_class_t
*mc
;
4365 metaslab_group_t
*mg
;
4366 size_t psize
, newsize
;
4368 uint64_t old_class_space
, new_class_space
, old_ms_count
, new_ms_count
;
4370 mutex_enter(&ztest_checkpoint_lock
);
4371 mutex_enter(&ztest_vdev_lock
);
4372 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4375 * If there is a vdev removal in progress, it could complete while
4376 * we are running, in which case we would not be able to verify
4377 * that the metaslab_class space increased (because it decreases
4378 * when the device removal completes).
4380 if (ztest_device_removal_active
) {
4381 spa_config_exit(spa
, SCL_STATE
, spa
);
4382 mutex_exit(&ztest_vdev_lock
);
4383 mutex_exit(&ztest_checkpoint_lock
);
4388 * If we are under raidz expansion, the test can failed because the
4389 * metaslabs count will not increase immediately after the vdev is
4390 * expanded. It will happen only after raidz expansion completion.
4392 if (spa
->spa_raidz_expand
) {
4393 spa_config_exit(spa
, SCL_STATE
, spa
);
4394 mutex_exit(&ztest_vdev_lock
);
4395 mutex_exit(&ztest_checkpoint_lock
);
4399 top
= ztest_random_vdev_top(spa
, B_TRUE
);
4401 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4404 old_ms_count
= tvd
->vdev_ms_count
;
4405 old_class_space
= metaslab_class_get_space(mc
);
4408 * Determine the size of the first leaf vdev associated with
4409 * our top-level device.
4411 vd
= vdev_walk_tree(tvd
, NULL
, NULL
);
4412 ASSERT3P(vd
, !=, NULL
);
4413 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4415 psize
= vd
->vdev_psize
;
4418 * We only try to expand the vdev if it's healthy, less than 4x its
4419 * original size, and it has a valid psize.
4421 if (tvd
->vdev_state
!= VDEV_STATE_HEALTHY
||
4422 psize
== 0 || psize
>= 4 * ztest_opts
.zo_vdev_size
) {
4423 spa_config_exit(spa
, SCL_STATE
, spa
);
4424 mutex_exit(&ztest_vdev_lock
);
4425 mutex_exit(&ztest_checkpoint_lock
);
4428 ASSERT3U(psize
, >, 0);
4429 newsize
= psize
+ MAX(psize
/ 8, SPA_MAXBLOCKSIZE
);
4430 ASSERT3U(newsize
, >, psize
);
4432 if (ztest_opts
.zo_verbose
>= 6) {
4433 (void) printf("Expanding LUN %s from %lu to %lu\n",
4434 vd
->vdev_path
, (ulong_t
)psize
, (ulong_t
)newsize
);
4438 * Growing the vdev is a two step process:
4439 * 1). expand the physical size (i.e. relabel)
4440 * 2). online the vdev to create the new metaslabs
4442 if (vdev_walk_tree(tvd
, grow_vdev
, &newsize
) != NULL
||
4443 vdev_walk_tree(tvd
, online_vdev
, NULL
) != NULL
||
4444 tvd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
4445 if (ztest_opts
.zo_verbose
>= 5) {
4446 (void) printf("Could not expand LUN because "
4447 "the vdev configuration changed.\n");
4449 spa_config_exit(spa
, SCL_STATE
, spa
);
4450 mutex_exit(&ztest_vdev_lock
);
4451 mutex_exit(&ztest_checkpoint_lock
);
4455 spa_config_exit(spa
, SCL_STATE
, spa
);
4458 * Expanding the LUN will update the config asynchronously,
4459 * thus we must wait for the async thread to complete any
4460 * pending tasks before proceeding.
4464 mutex_enter(&spa
->spa_async_lock
);
4465 done
= (spa
->spa_async_thread
== NULL
&& !spa
->spa_async_tasks
);
4466 mutex_exit(&spa
->spa_async_lock
);
4469 txg_wait_synced(spa_get_dsl(spa
), 0);
4470 (void) poll(NULL
, 0, 100);
4473 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4475 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4476 new_ms_count
= tvd
->vdev_ms_count
;
4477 new_class_space
= metaslab_class_get_space(mc
);
4479 if (tvd
->vdev_mg
!= mg
|| mg
->mg_class
!= mc
) {
4480 if (ztest_opts
.zo_verbose
>= 5) {
4481 (void) printf("Could not verify LUN expansion due to "
4482 "intervening vdev offline or remove.\n");
4484 spa_config_exit(spa
, SCL_STATE
, spa
);
4485 mutex_exit(&ztest_vdev_lock
);
4486 mutex_exit(&ztest_checkpoint_lock
);
4491 * Make sure we were able to grow the vdev.
4493 if (new_ms_count
<= old_ms_count
) {
4495 "LUN expansion failed: ms_count %"PRIu64
" < %"PRIu64
"\n",
4496 old_ms_count
, new_ms_count
);
4500 * Make sure we were able to grow the pool.
4502 if (new_class_space
<= old_class_space
) {
4504 "LUN expansion failed: class_space %"PRIu64
" < %"PRIu64
"\n",
4505 old_class_space
, new_class_space
);
4508 if (ztest_opts
.zo_verbose
>= 5) {
4509 char oldnumbuf
[NN_NUMBUF_SZ
], newnumbuf
[NN_NUMBUF_SZ
];
4511 nicenum(old_class_space
, oldnumbuf
, sizeof (oldnumbuf
));
4512 nicenum(new_class_space
, newnumbuf
, sizeof (newnumbuf
));
4513 (void) printf("%s grew from %s to %s\n",
4514 spa
->spa_name
, oldnumbuf
, newnumbuf
);
4517 spa_config_exit(spa
, SCL_STATE
, spa
);
4518 mutex_exit(&ztest_vdev_lock
);
4519 mutex_exit(&ztest_checkpoint_lock
);
4523 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4526 ztest_objset_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
4528 (void) arg
, (void) cr
;
4531 * Create the objects common to all ztest datasets.
4533 VERIFY0(zap_create_claim(os
, ZTEST_DIROBJ
,
4534 DMU_OT_ZAP_OTHER
, DMU_OT_NONE
, 0, tx
));
4538 ztest_dataset_create(char *dsname
)
4542 dsl_crypto_params_t
*dcp
= NULL
;
4545 * 50% of the time, we create encrypted datasets
4546 * using a random cipher suite and a hard-coded
4549 rand
= ztest_random(2);
4551 nvlist_t
*crypto_args
= fnvlist_alloc();
4552 nvlist_t
*props
= fnvlist_alloc();
4554 /* slight bias towards the default cipher suite */
4555 rand
= ztest_random(ZIO_CRYPT_FUNCTIONS
);
4556 if (rand
< ZIO_CRYPT_AES_128_CCM
)
4557 rand
= ZIO_CRYPT_ON
;
4559 fnvlist_add_uint64(props
,
4560 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), rand
);
4561 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
4562 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
4565 * These parameters aren't really used by the kernel. They
4566 * are simply stored so that userspace knows how to load
4569 fnvlist_add_uint64(props
,
4570 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), ZFS_KEYFORMAT_RAW
);
4571 fnvlist_add_string(props
,
4572 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), "prompt");
4573 fnvlist_add_uint64(props
,
4574 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 0ULL);
4575 fnvlist_add_uint64(props
,
4576 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 0ULL);
4578 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, props
,
4579 crypto_args
, &dcp
));
4582 * Cycle through all available encryption implementations
4583 * to verify interoperability.
4585 VERIFY0(gcm_impl_set("cycle"));
4586 VERIFY0(aes_impl_set("cycle"));
4588 fnvlist_free(crypto_args
);
4589 fnvlist_free(props
);
4592 err
= dmu_objset_create(dsname
, DMU_OST_OTHER
, 0, dcp
,
4593 ztest_objset_create_cb
, NULL
);
4594 dsl_crypto_params_free(dcp
, !!err
);
4596 rand
= ztest_random(100);
4597 if (err
|| rand
< 80)
4600 if (ztest_opts
.zo_verbose
>= 5)
4601 (void) printf("Setting dataset %s to sync always\n", dsname
);
4602 return (ztest_dsl_prop_set_uint64(dsname
, ZFS_PROP_SYNC
,
4603 ZFS_SYNC_ALWAYS
, B_FALSE
));
4607 ztest_objset_destroy_cb(const char *name
, void *arg
)
4611 dmu_object_info_t doi
;
4615 * Verify that the dataset contains a directory object.
4617 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
4618 B_TRUE
, FTAG
, &os
));
4619 error
= dmu_object_info(os
, ZTEST_DIROBJ
, &doi
);
4620 if (error
!= ENOENT
) {
4621 /* We could have crashed in the middle of destroying it */
4623 ASSERT3U(doi
.doi_type
, ==, DMU_OT_ZAP_OTHER
);
4624 ASSERT3S(doi
.doi_physical_blocks_512
, >=, 0);
4626 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4629 * Destroy the dataset.
4631 if (strchr(name
, '@') != NULL
) {
4632 error
= dsl_destroy_snapshot(name
, B_TRUE
);
4633 if (error
!= ECHRNG
) {
4635 * The program was executed, but encountered a runtime
4636 * error, such as insufficient slop, or a hold on the
4642 error
= dsl_destroy_head(name
);
4643 if (error
== ENOSPC
) {
4644 /* There could be checkpoint or insufficient slop */
4645 ztest_record_enospc(FTAG
);
4646 } else if (error
!= EBUSY
) {
4647 /* There could be a hold on this dataset */
4655 ztest_snapshot_create(char *osname
, uint64_t id
)
4657 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4660 (void) snprintf(snapname
, sizeof (snapname
), "%"PRIu64
"", id
);
4662 error
= dmu_objset_snapshot_one(osname
, snapname
);
4663 if (error
== ENOSPC
) {
4664 ztest_record_enospc(FTAG
);
4667 if (error
!= 0 && error
!= EEXIST
&& error
!= ECHRNG
) {
4668 fatal(B_FALSE
, "ztest_snapshot_create(%s@%s) = %d", osname
,
4675 ztest_snapshot_destroy(char *osname
, uint64_t id
)
4677 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4680 (void) snprintf(snapname
, sizeof (snapname
), "%s@%"PRIu64
"",
4683 error
= dsl_destroy_snapshot(snapname
, B_FALSE
);
4684 if (error
!= 0 && error
!= ENOENT
&& error
!= ECHRNG
)
4685 fatal(B_FALSE
, "ztest_snapshot_destroy(%s) = %d",
4691 ztest_dmu_objset_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4698 char name
[ZFS_MAX_DATASET_NAME_LEN
];
4702 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
4704 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4706 (void) snprintf(name
, sizeof (name
), "%s/temp_%"PRIu64
"",
4707 ztest_opts
.zo_pool
, id
);
4710 * If this dataset exists from a previous run, process its replay log
4711 * half of the time. If we don't replay it, then dsl_destroy_head()
4712 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4714 if (ztest_random(2) == 0 &&
4715 ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
4716 B_TRUE
, FTAG
, &os
) == 0) {
4717 ztest_zd_init(zdtmp
, NULL
, os
);
4718 zil_replay(os
, zdtmp
, ztest_replay_vector
);
4719 ztest_zd_fini(zdtmp
);
4720 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4724 * There may be an old instance of the dataset we're about to
4725 * create lying around from a previous run. If so, destroy it
4726 * and all of its snapshots.
4728 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
4729 DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
4732 * Verify that the destroyed dataset is no longer in the namespace.
4733 * It may still be present if the destroy above fails with ENOSPC.
4735 error
= ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
, B_TRUE
,
4738 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4739 ztest_record_enospc(FTAG
);
4742 VERIFY3U(ENOENT
, ==, error
);
4745 * Verify that we can create a new dataset.
4747 error
= ztest_dataset_create(name
);
4749 if (error
== ENOSPC
) {
4750 ztest_record_enospc(FTAG
);
4753 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", name
, error
);
4756 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, B_TRUE
,
4759 ztest_zd_init(zdtmp
, NULL
, os
);
4762 * Open the intent log for it.
4764 zilog
= zil_open(os
, ztest_get_data
, NULL
);
4767 * Put some objects in there, do a little I/O to them,
4768 * and randomly take a couple of snapshots along the way.
4770 iters
= ztest_random(5);
4771 for (i
= 0; i
< iters
; i
++) {
4772 ztest_dmu_object_alloc_free(zdtmp
, id
);
4773 if (ztest_random(iters
) == 0)
4774 (void) ztest_snapshot_create(name
, i
);
4778 * Verify that we cannot create an existing dataset.
4780 VERIFY3U(EEXIST
, ==,
4781 dmu_objset_create(name
, DMU_OST_OTHER
, 0, NULL
, NULL
, NULL
));
4784 * Verify that we can hold an objset that is also owned.
4786 VERIFY0(dmu_objset_hold(name
, FTAG
, &os2
));
4787 dmu_objset_rele(os2
, FTAG
);
4790 * Verify that we cannot own an objset that is already owned.
4792 VERIFY3U(EBUSY
, ==, ztest_dmu_objset_own(name
, DMU_OST_OTHER
,
4793 B_FALSE
, B_TRUE
, FTAG
, &os2
));
4796 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4797 ztest_zd_fini(zdtmp
);
4799 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4801 umem_free(zdtmp
, sizeof (ztest_ds_t
));
4805 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4808 ztest_dmu_snapshot_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4810 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4811 (void) ztest_snapshot_destroy(zd
->zd_name
, id
);
4812 (void) ztest_snapshot_create(zd
->zd_name
, id
);
4813 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4817 * Cleanup non-standard snapshots and clones.
4820 ztest_dsl_dataset_cleanup(char *osname
, uint64_t id
)
4829 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4830 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4831 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4832 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4833 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4835 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4837 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4839 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4841 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4843 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4846 error
= dsl_destroy_head(clone2name
);
4847 if (error
&& error
!= ENOENT
)
4848 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone2name
, error
);
4849 error
= dsl_destroy_snapshot(snap3name
, B_FALSE
);
4850 if (error
&& error
!= ENOENT
)
4851 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4853 error
= dsl_destroy_snapshot(snap2name
, B_FALSE
);
4854 if (error
&& error
!= ENOENT
)
4855 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4857 error
= dsl_destroy_head(clone1name
);
4858 if (error
&& error
!= ENOENT
)
4859 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone1name
, error
);
4860 error
= dsl_destroy_snapshot(snap1name
, B_FALSE
);
4861 if (error
&& error
!= ENOENT
)
4862 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4865 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4866 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4867 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4868 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4869 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4873 * Verify dsl_dataset_promote handles EBUSY
4876 ztest_dsl_dataset_promote_busy(ztest_ds_t
*zd
, uint64_t id
)
4884 char *osname
= zd
->zd_name
;
4887 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4888 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4889 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4890 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4891 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4893 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4895 ztest_dsl_dataset_cleanup(osname
, id
);
4897 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4899 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4901 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4903 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4905 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4908 error
= dmu_objset_snapshot_one(osname
, strchr(snap1name
, '@') + 1);
4909 if (error
&& error
!= EEXIST
) {
4910 if (error
== ENOSPC
) {
4911 ztest_record_enospc(FTAG
);
4914 fatal(B_FALSE
, "dmu_take_snapshot(%s) = %d", snap1name
, error
);
4917 error
= dmu_objset_clone(clone1name
, snap1name
);
4919 if (error
== ENOSPC
) {
4920 ztest_record_enospc(FTAG
);
4923 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone1name
, error
);
4926 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap2name
, '@') + 1);
4927 if (error
&& error
!= EEXIST
) {
4928 if (error
== ENOSPC
) {
4929 ztest_record_enospc(FTAG
);
4932 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap2name
, error
);
4935 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap3name
, '@') + 1);
4936 if (error
&& error
!= EEXIST
) {
4937 if (error
== ENOSPC
) {
4938 ztest_record_enospc(FTAG
);
4941 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap3name
, error
);
4944 error
= dmu_objset_clone(clone2name
, snap3name
);
4946 if (error
== ENOSPC
) {
4947 ztest_record_enospc(FTAG
);
4950 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone2name
, error
);
4953 error
= ztest_dmu_objset_own(snap2name
, DMU_OST_ANY
, B_TRUE
, B_TRUE
,
4956 fatal(B_FALSE
, "dmu_objset_own(%s) = %d", snap2name
, error
);
4957 error
= dsl_dataset_promote(clone2name
, NULL
);
4958 if (error
== ENOSPC
) {
4959 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4960 ztest_record_enospc(FTAG
);
4964 fatal(B_FALSE
, "dsl_dataset_promote(%s), %d, not EBUSY",
4966 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4969 ztest_dsl_dataset_cleanup(osname
, id
);
4971 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4973 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4974 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4975 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4976 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4977 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4980 #undef OD_ARRAY_SIZE
4981 #define OD_ARRAY_SIZE 4
4984 * Verify that dmu_object_{alloc,free} work as expected.
4987 ztest_dmu_object_alloc_free(ztest_ds_t
*zd
, uint64_t id
)
4994 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4995 od
= umem_alloc(size
, UMEM_NOFAIL
);
4996 batchsize
= OD_ARRAY_SIZE
;
4998 for (b
= 0; b
< batchsize
; b
++)
4999 ztest_od_init(od
+ b
, id
, FTAG
, b
, DMU_OT_UINT64_OTHER
,
5003 * Destroy the previous batch of objects, create a new batch,
5004 * and do some I/O on the new objects.
5006 if (ztest_object_init(zd
, od
, size
, B_TRUE
) != 0) {
5008 umem_free(od
, size
);
5012 while (ztest_random(4 * batchsize
) != 0)
5013 ztest_io(zd
, od
[ztest_random(batchsize
)].od_object
,
5014 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5016 umem_free(od
, size
);
5020 * Rewind the global allocator to verify object allocation backfilling.
5023 ztest_dmu_object_next_chunk(ztest_ds_t
*zd
, uint64_t id
)
5026 objset_t
*os
= zd
->zd_os
;
5027 uint_t dnodes_per_chunk
= 1 << dmu_object_alloc_chunk_shift
;
5031 * Rewind the global allocator randomly back to a lower object number
5032 * to force backfilling and reclamation of recently freed dnodes.
5034 mutex_enter(&os
->os_obj_lock
);
5035 object
= ztest_random(os
->os_obj_next_chunk
);
5036 os
->os_obj_next_chunk
= P2ALIGN_TYPED(object
, dnodes_per_chunk
,
5038 mutex_exit(&os
->os_obj_lock
);
5041 #undef OD_ARRAY_SIZE
5042 #define OD_ARRAY_SIZE 2
5045 * Verify that dmu_{read,write} work as expected.
5048 ztest_dmu_read_write(ztest_ds_t
*zd
, uint64_t id
)
5053 objset_t
*os
= zd
->zd_os
;
5054 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
5055 od
= umem_alloc(size
, UMEM_NOFAIL
);
5058 uint64_t i
, n
, s
, txg
;
5059 bufwad_t
*packbuf
, *bigbuf
, *pack
, *bigH
, *bigT
;
5060 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
5061 uint64_t chunksize
= (1000 + ztest_random(1000)) * sizeof (uint64_t);
5062 uint64_t regions
= 997;
5063 uint64_t stride
= 123456789ULL;
5064 uint64_t width
= 40;
5065 int free_percent
= 5;
5066 uint32_t dmu_read_flags
= DMU_READ_PREFETCH
;
5069 * We will randomly set when to do O_DIRECT on a read.
5071 if (ztest_random(4) == 0)
5072 dmu_read_flags
|= DMU_DIRECTIO
;
5075 * This test uses two objects, packobj and bigobj, that are always
5076 * updated together (i.e. in the same tx) so that their contents are
5077 * in sync and can be compared. Their contents relate to each other
5078 * in a simple way: packobj is a dense array of 'bufwad' structures,
5079 * while bigobj is a sparse array of the same bufwads. Specifically,
5080 * for any index n, there are three bufwads that should be identical:
5082 * packobj, at offset n * sizeof (bufwad_t)
5083 * bigobj, at the head of the nth chunk
5084 * bigobj, at the tail of the nth chunk
5086 * The chunk size is arbitrary. It doesn't have to be a power of two,
5087 * and it doesn't have any relation to the object blocksize.
5088 * The only requirement is that it can hold at least two bufwads.
5090 * Normally, we write the bufwad to each of these locations.
5091 * However, free_percent of the time we instead write zeroes to
5092 * packobj and perform a dmu_free_range() on bigobj. By comparing
5093 * bigobj to packobj, we can verify that the DMU is correctly
5094 * tracking which parts of an object are allocated and free,
5095 * and that the contents of the allocated blocks are correct.
5099 * Read the directory info. If it's the first time, set things up.
5101 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, chunksize
);
5102 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
5105 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
5106 umem_free(od
, size
);
5110 bigobj
= od
[0].od_object
;
5111 packobj
= od
[1].od_object
;
5112 chunksize
= od
[0].od_gen
;
5113 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5116 * Prefetch a random chunk of the big object.
5117 * Our aim here is to get some async reads in flight
5118 * for blocks that we may free below; the DMU should
5119 * handle this race correctly.
5121 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5122 s
= 1 + ztest_random(2 * width
- 1);
5123 dmu_prefetch(os
, bigobj
, 0, n
* chunksize
, s
* chunksize
,
5124 ZIO_PRIORITY_SYNC_READ
);
5127 * Pick a random index and compute the offsets into packobj and bigobj.
5129 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5130 s
= 1 + ztest_random(width
- 1);
5132 packoff
= n
* sizeof (bufwad_t
);
5133 packsize
= s
* sizeof (bufwad_t
);
5135 bigoff
= n
* chunksize
;
5136 bigsize
= s
* chunksize
;
5138 packbuf
= umem_alloc(packsize
, UMEM_NOFAIL
);
5139 bigbuf
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5142 * free_percent of the time, free a range of bigobj rather than
5145 freeit
= (ztest_random(100) < free_percent
);
5148 * Read the current contents of our objects.
5150 error
= dmu_read(os
, packobj
, packoff
, packsize
, packbuf
,
5153 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
, bigbuf
,
5158 * Get a tx for the mods to both packobj and bigobj.
5160 tx
= dmu_tx_create(os
);
5162 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5165 dmu_tx_hold_free(tx
, bigobj
, bigoff
, bigsize
);
5167 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5169 /* This accounts for setting the checksum/compression. */
5170 dmu_tx_hold_bonus(tx
, bigobj
);
5172 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5174 umem_free(packbuf
, packsize
);
5175 umem_free(bigbuf
, bigsize
);
5176 umem_free(od
, size
);
5180 enum zio_checksum cksum
;
5182 cksum
= (enum zio_checksum
)
5183 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM
);
5184 } while (cksum
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
5185 dmu_object_set_checksum(os
, bigobj
, cksum
, tx
);
5187 enum zio_compress comp
;
5189 comp
= (enum zio_compress
)
5190 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
);
5191 } while (comp
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
);
5192 dmu_object_set_compress(os
, bigobj
, comp
, tx
);
5195 * For each index from n to n + s, verify that the existing bufwad
5196 * in packobj matches the bufwads at the head and tail of the
5197 * corresponding chunk in bigobj. Then update all three bufwads
5198 * with the new values we want to write out.
5200 for (i
= 0; i
< s
; i
++) {
5202 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
5204 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
5206 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
5208 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
5209 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
5211 if (pack
->bw_txg
> txg
)
5213 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
5216 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
5217 fatal(B_FALSE
, "wrong index: "
5218 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
5219 pack
->bw_index
, n
, i
);
5221 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
5222 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
5225 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
5226 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
5230 memset(pack
, 0, sizeof (bufwad_t
));
5232 pack
->bw_index
= n
+ i
;
5234 pack
->bw_data
= 1 + ztest_random(-2ULL);
5241 * We've verified all the old bufwads, and made new ones.
5242 * Now write them out.
5244 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5247 if (ztest_opts
.zo_verbose
>= 7) {
5248 (void) printf("freeing offset %"PRIx64
" size %"PRIx64
""
5250 bigoff
, bigsize
, txg
);
5252 VERIFY0(dmu_free_range(os
, bigobj
, bigoff
, bigsize
, tx
));
5254 if (ztest_opts
.zo_verbose
>= 7) {
5255 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5257 bigoff
, bigsize
, txg
);
5259 dmu_write(os
, bigobj
, bigoff
, bigsize
, bigbuf
, tx
);
5265 * Sanity check the stuff we just wrote.
5268 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5269 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5271 VERIFY0(dmu_read(os
, packobj
, packoff
,
5272 packsize
, packcheck
, dmu_read_flags
));
5273 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5274 bigsize
, bigcheck
, dmu_read_flags
));
5276 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5277 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5279 umem_free(packcheck
, packsize
);
5280 umem_free(bigcheck
, bigsize
);
5283 umem_free(packbuf
, packsize
);
5284 umem_free(bigbuf
, bigsize
);
5285 umem_free(od
, size
);
5289 compare_and_update_pbbufs(uint64_t s
, bufwad_t
*packbuf
, bufwad_t
*bigbuf
,
5290 uint64_t bigsize
, uint64_t n
, uint64_t chunksize
, uint64_t txg
)
5298 * For each index from n to n + s, verify that the existing bufwad
5299 * in packobj matches the bufwads at the head and tail of the
5300 * corresponding chunk in bigobj. Then update all three bufwads
5301 * with the new values we want to write out.
5303 for (i
= 0; i
< s
; i
++) {
5305 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
5307 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
5309 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
5311 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
5312 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
5314 if (pack
->bw_txg
> txg
)
5316 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
5319 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
5320 fatal(B_FALSE
, "wrong index: "
5321 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
5322 pack
->bw_index
, n
, i
);
5324 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
5325 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
5328 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
5329 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
5332 pack
->bw_index
= n
+ i
;
5334 pack
->bw_data
= 1 + ztest_random(-2ULL);
5341 #undef OD_ARRAY_SIZE
5342 #define OD_ARRAY_SIZE 2
5345 ztest_dmu_read_write_zcopy(ztest_ds_t
*zd
, uint64_t id
)
5347 objset_t
*os
= zd
->zd_os
;
5354 bufwad_t
*packbuf
, *bigbuf
;
5355 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
5356 uint64_t blocksize
= ztest_random_blocksize();
5357 uint64_t chunksize
= blocksize
;
5358 uint64_t regions
= 997;
5359 uint64_t stride
= 123456789ULL;
5361 dmu_buf_t
*bonus_db
;
5362 arc_buf_t
**bigbuf_arcbufs
;
5363 dmu_object_info_t doi
;
5364 uint32_t dmu_read_flags
= DMU_READ_PREFETCH
;
5367 * We will randomly set when to do O_DIRECT on a read.
5369 if (ztest_random(4) == 0)
5370 dmu_read_flags
|= DMU_DIRECTIO
;
5372 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
5373 od
= umem_alloc(size
, UMEM_NOFAIL
);
5376 * This test uses two objects, packobj and bigobj, that are always
5377 * updated together (i.e. in the same tx) so that their contents are
5378 * in sync and can be compared. Their contents relate to each other
5379 * in a simple way: packobj is a dense array of 'bufwad' structures,
5380 * while bigobj is a sparse array of the same bufwads. Specifically,
5381 * for any index n, there are three bufwads that should be identical:
5383 * packobj, at offset n * sizeof (bufwad_t)
5384 * bigobj, at the head of the nth chunk
5385 * bigobj, at the tail of the nth chunk
5387 * The chunk size is set equal to bigobj block size so that
5388 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5392 * Read the directory info. If it's the first time, set things up.
5394 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5395 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
5399 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
5400 umem_free(od
, size
);
5404 bigobj
= od
[0].od_object
;
5405 packobj
= od
[1].od_object
;
5406 blocksize
= od
[0].od_blocksize
;
5407 chunksize
= blocksize
;
5408 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5410 VERIFY0(dmu_object_info(os
, bigobj
, &doi
));
5411 VERIFY(ISP2(doi
.doi_data_block_size
));
5412 VERIFY3U(chunksize
, ==, doi
.doi_data_block_size
);
5413 VERIFY3U(chunksize
, >=, 2 * sizeof (bufwad_t
));
5416 * Pick a random index and compute the offsets into packobj and bigobj.
5418 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5419 s
= 1 + ztest_random(width
- 1);
5421 packoff
= n
* sizeof (bufwad_t
);
5422 packsize
= s
* sizeof (bufwad_t
);
5424 bigoff
= n
* chunksize
;
5425 bigsize
= s
* chunksize
;
5427 packbuf
= umem_zalloc(packsize
, UMEM_NOFAIL
);
5428 bigbuf
= umem_zalloc(bigsize
, UMEM_NOFAIL
);
5430 VERIFY0(dmu_bonus_hold(os
, bigobj
, FTAG
, &bonus_db
));
5432 bigbuf_arcbufs
= umem_zalloc(2 * s
* sizeof (arc_buf_t
*), UMEM_NOFAIL
);
5435 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5436 * Iteration 1 test zcopy to already referenced dbufs.
5437 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5438 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5439 * Iteration 4 test zcopy when dbuf is no longer dirty.
5440 * Iteration 5 test zcopy when it can't be done.
5441 * Iteration 6 one more zcopy write.
5443 for (i
= 0; i
< 7; i
++) {
5448 * In iteration 5 (i == 5) use arcbufs
5449 * that don't match bigobj blksz to test
5450 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5451 * assign an arcbuf to a dbuf.
5453 for (j
= 0; j
< s
; j
++) {
5454 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5456 dmu_request_arcbuf(bonus_db
, chunksize
);
5458 bigbuf_arcbufs
[2 * j
] =
5459 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5460 bigbuf_arcbufs
[2 * j
+ 1] =
5461 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5466 * Get a tx for the mods to both packobj and bigobj.
5468 tx
= dmu_tx_create(os
);
5470 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5471 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5473 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5475 umem_free(packbuf
, packsize
);
5476 umem_free(bigbuf
, bigsize
);
5477 for (j
= 0; j
< s
; j
++) {
5479 chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5480 dmu_return_arcbuf(bigbuf_arcbufs
[j
]);
5483 bigbuf_arcbufs
[2 * j
]);
5485 bigbuf_arcbufs
[2 * j
+ 1]);
5488 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5489 umem_free(od
, size
);
5490 dmu_buf_rele(bonus_db
, FTAG
);
5495 * 50% of the time don't read objects in the 1st iteration to
5496 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5497 * no existing dbufs for the specified offsets.
5499 if (i
!= 0 || ztest_random(2) != 0) {
5500 error
= dmu_read(os
, packobj
, packoff
,
5501 packsize
, packbuf
, dmu_read_flags
);
5503 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
,
5504 bigbuf
, dmu_read_flags
);
5507 compare_and_update_pbbufs(s
, packbuf
, bigbuf
, bigsize
,
5511 * We've verified all the old bufwads, and made new ones.
5512 * Now write them out.
5514 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5515 if (ztest_opts
.zo_verbose
>= 7) {
5516 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5518 bigoff
, bigsize
, txg
);
5520 for (off
= bigoff
, j
= 0; j
< s
; j
++, off
+= chunksize
) {
5522 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5523 memcpy(bigbuf_arcbufs
[j
]->b_data
,
5524 (caddr_t
)bigbuf
+ (off
- bigoff
),
5527 memcpy(bigbuf_arcbufs
[2 * j
]->b_data
,
5528 (caddr_t
)bigbuf
+ (off
- bigoff
),
5530 memcpy(bigbuf_arcbufs
[2 * j
+ 1]->b_data
,
5531 (caddr_t
)bigbuf
+ (off
- bigoff
) +
5537 VERIFY(dmu_buf_hold(os
, bigobj
, off
,
5538 FTAG
, &dbt
, DMU_READ_NO_PREFETCH
) == 0);
5540 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5541 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5542 off
, bigbuf_arcbufs
[j
], tx
));
5544 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5545 off
, bigbuf_arcbufs
[2 * j
], tx
));
5546 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5547 off
+ chunksize
/ 2,
5548 bigbuf_arcbufs
[2 * j
+ 1], tx
));
5551 dmu_buf_rele(dbt
, FTAG
);
5557 * Sanity check the stuff we just wrote.
5560 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5561 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5563 VERIFY0(dmu_read(os
, packobj
, packoff
,
5564 packsize
, packcheck
, dmu_read_flags
));
5565 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5566 bigsize
, bigcheck
, dmu_read_flags
));
5568 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5569 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5571 umem_free(packcheck
, packsize
);
5572 umem_free(bigcheck
, bigsize
);
5575 txg_wait_open(dmu_objset_pool(os
), 0, B_TRUE
);
5576 } else if (i
== 3) {
5577 txg_wait_synced(dmu_objset_pool(os
), 0);
5581 dmu_buf_rele(bonus_db
, FTAG
);
5582 umem_free(packbuf
, packsize
);
5583 umem_free(bigbuf
, bigsize
);
5584 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5585 umem_free(od
, size
);
5589 ztest_dmu_write_parallel(ztest_ds_t
*zd
, uint64_t id
)
5594 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5595 uint64_t offset
= (1ULL << (ztest_random(20) + 43)) +
5596 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5599 * Have multiple threads write to large offsets in an object
5600 * to verify that parallel writes to an object -- even to the
5601 * same blocks within the object -- doesn't cause any trouble.
5603 ztest_od_init(od
, ID_PARALLEL
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5605 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0)
5608 while (ztest_random(10) != 0)
5609 ztest_io(zd
, od
->od_object
, offset
);
5611 umem_free(od
, sizeof (ztest_od_t
));
5615 ztest_dmu_prealloc(ztest_ds_t
*zd
, uint64_t id
)
5618 uint64_t offset
= (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT
)) +
5619 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5620 uint64_t count
= ztest_random(20) + 1;
5621 uint64_t blocksize
= ztest_random_blocksize();
5624 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5626 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5628 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5629 !ztest_random(2)) != 0) {
5630 umem_free(od
, sizeof (ztest_od_t
));
5634 if (ztest_truncate(zd
, od
->od_object
, offset
, count
* blocksize
) != 0) {
5635 umem_free(od
, sizeof (ztest_od_t
));
5639 ztest_prealloc(zd
, od
->od_object
, offset
, count
* blocksize
);
5641 data
= umem_zalloc(blocksize
, UMEM_NOFAIL
);
5643 while (ztest_random(count
) != 0) {
5644 uint64_t randoff
= offset
+ (ztest_random(count
) * blocksize
);
5645 if (ztest_write(zd
, od
->od_object
, randoff
, blocksize
,
5648 while (ztest_random(4) != 0)
5649 ztest_io(zd
, od
->od_object
, randoff
);
5652 umem_free(data
, blocksize
);
5653 umem_free(od
, sizeof (ztest_od_t
));
5657 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5659 #define ZTEST_ZAP_MIN_INTS 1
5660 #define ZTEST_ZAP_MAX_INTS 4
5661 #define ZTEST_ZAP_MAX_PROPS 1000
5664 ztest_zap(ztest_ds_t
*zd
, uint64_t id
)
5666 objset_t
*os
= zd
->zd_os
;
5669 uint64_t txg
, last_txg
;
5670 uint64_t value
[ZTEST_ZAP_MAX_INTS
];
5671 uint64_t zl_ints
, zl_intsize
, prop
;
5674 char propname
[100], txgname
[100];
5676 const char *const hc
[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5678 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5679 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5681 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5682 !ztest_random(2)) != 0)
5685 object
= od
->od_object
;
5688 * Generate a known hash collision, and verify that
5689 * we can lookup and remove both entries.
5691 tx
= dmu_tx_create(os
);
5692 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5693 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5696 for (i
= 0; i
< 2; i
++) {
5698 VERIFY0(zap_add(os
, object
, hc
[i
], sizeof (uint64_t),
5701 for (i
= 0; i
< 2; i
++) {
5702 VERIFY3U(EEXIST
, ==, zap_add(os
, object
, hc
[i
],
5703 sizeof (uint64_t), 1, &value
[i
], tx
));
5705 zap_length(os
, object
, hc
[i
], &zl_intsize
, &zl_ints
));
5706 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5707 ASSERT3U(zl_ints
, ==, 1);
5709 for (i
= 0; i
< 2; i
++) {
5710 VERIFY0(zap_remove(os
, object
, hc
[i
], tx
));
5715 * Generate a bunch of random entries.
5717 ints
= MAX(ZTEST_ZAP_MIN_INTS
, object
% ZTEST_ZAP_MAX_INTS
);
5719 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5720 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5721 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5722 memset(value
, 0, sizeof (value
));
5726 * If these zap entries already exist, validate their contents.
5728 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5730 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5731 ASSERT3U(zl_ints
, ==, 1);
5733 VERIFY0(zap_lookup(os
, object
, txgname
, zl_intsize
,
5734 zl_ints
, &last_txg
));
5736 VERIFY0(zap_length(os
, object
, propname
, &zl_intsize
,
5739 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5740 ASSERT3U(zl_ints
, ==, ints
);
5742 VERIFY0(zap_lookup(os
, object
, propname
, zl_intsize
,
5745 for (i
= 0; i
< ints
; i
++) {
5746 ASSERT3U(value
[i
], ==, last_txg
+ object
+ i
);
5749 ASSERT3U(error
, ==, ENOENT
);
5753 * Atomically update two entries in our zap object.
5754 * The first is named txg_%llu, and contains the txg
5755 * in which the property was last updated. The second
5756 * is named prop_%llu, and the nth element of its value
5757 * should be txg + object + n.
5759 tx
= dmu_tx_create(os
);
5760 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5761 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5766 fatal(B_FALSE
, "zap future leak: old %"PRIu64
" new %"PRIu64
"",
5769 for (i
= 0; i
< ints
; i
++)
5770 value
[i
] = txg
+ object
+ i
;
5772 VERIFY0(zap_update(os
, object
, txgname
, sizeof (uint64_t),
5774 VERIFY0(zap_update(os
, object
, propname
, sizeof (uint64_t),
5780 * Remove a random pair of entries.
5782 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5783 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5784 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5786 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5788 if (error
== ENOENT
)
5793 tx
= dmu_tx_create(os
);
5794 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5795 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5798 VERIFY0(zap_remove(os
, object
, txgname
, tx
));
5799 VERIFY0(zap_remove(os
, object
, propname
, tx
));
5802 umem_free(od
, sizeof (ztest_od_t
));
5806 * Test case to test the upgrading of a microzap to fatzap.
5809 ztest_fzap(ztest_ds_t
*zd
, uint64_t id
)
5811 objset_t
*os
= zd
->zd_os
;
5813 uint64_t object
, txg
, value
;
5815 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5816 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5818 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5819 !ztest_random(2)) != 0)
5821 object
= od
->od_object
;
5824 * Add entries to this ZAP and make sure it spills over
5825 * and gets upgraded to a fatzap. Also, since we are adding
5826 * 2050 entries we should see ptrtbl growth and leaf-block split.
5828 for (value
= 0; value
< 2050; value
++) {
5829 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5833 (void) snprintf(name
, sizeof (name
), "fzap-%"PRIu64
"-%"PRIu64
"",
5836 tx
= dmu_tx_create(os
);
5837 dmu_tx_hold_zap(tx
, object
, B_TRUE
, name
);
5838 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5841 error
= zap_add(os
, object
, name
, sizeof (uint64_t), 1,
5843 ASSERT(error
== 0 || error
== EEXIST
);
5847 umem_free(od
, sizeof (ztest_od_t
));
5851 ztest_zap_parallel(ztest_ds_t
*zd
, uint64_t id
)
5854 objset_t
*os
= zd
->zd_os
;
5856 uint64_t txg
, object
, count
, wsize
, wc
, zl_wsize
, zl_wc
;
5858 int i
, namelen
, error
;
5859 int micro
= ztest_random(2);
5860 char name
[20], string_value
[20];
5863 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5864 ztest_od_init(od
, ID_PARALLEL
, FTAG
, micro
, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5866 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5867 umem_free(od
, sizeof (ztest_od_t
));
5871 object
= od
->od_object
;
5874 * Generate a random name of the form 'xxx.....' where each
5875 * x is a random printable character and the dots are dots.
5876 * There are 94 such characters, and the name length goes from
5877 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5879 namelen
= ztest_random(sizeof (name
) - 5) + 5 + 1;
5881 for (i
= 0; i
< 3; i
++)
5882 name
[i
] = '!' + ztest_random('~' - '!' + 1);
5883 for (; i
< namelen
- 1; i
++)
5887 if ((namelen
& 1) || micro
) {
5888 wsize
= sizeof (txg
);
5894 data
= string_value
;
5898 VERIFY0(zap_count(os
, object
, &count
));
5899 ASSERT3S(count
, !=, -1ULL);
5902 * Select an operation: length, lookup, add, update, remove.
5904 i
= ztest_random(5);
5907 tx
= dmu_tx_create(os
);
5908 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5909 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5911 umem_free(od
, sizeof (ztest_od_t
));
5914 memcpy(string_value
, name
, namelen
);
5918 memset(string_value
, 0, namelen
);
5924 error
= zap_length(os
, object
, name
, &zl_wsize
, &zl_wc
);
5926 ASSERT3U(wsize
, ==, zl_wsize
);
5927 ASSERT3U(wc
, ==, zl_wc
);
5929 ASSERT3U(error
, ==, ENOENT
);
5934 error
= zap_lookup(os
, object
, name
, wsize
, wc
, data
);
5936 if (data
== string_value
&&
5937 memcmp(name
, data
, namelen
) != 0)
5938 fatal(B_FALSE
, "name '%s' != val '%s' len %d",
5939 name
, (char *)data
, namelen
);
5941 ASSERT3U(error
, ==, ENOENT
);
5946 error
= zap_add(os
, object
, name
, wsize
, wc
, data
, tx
);
5947 ASSERT(error
== 0 || error
== EEXIST
);
5951 VERIFY0(zap_update(os
, object
, name
, wsize
, wc
, data
, tx
));
5955 error
= zap_remove(os
, object
, name
, tx
);
5956 ASSERT(error
== 0 || error
== ENOENT
);
5963 umem_free(od
, sizeof (ztest_od_t
));
5967 * Commit callback data.
5969 typedef struct ztest_cb_data
{
5970 list_node_t zcd_node
;
5972 int zcd_expected_err
;
5973 boolean_t zcd_added
;
5974 boolean_t zcd_called
;
5978 /* This is the actual commit callback function */
5980 ztest_commit_callback(void *arg
, int error
)
5982 ztest_cb_data_t
*data
= arg
;
5983 uint64_t synced_txg
;
5985 VERIFY3P(data
, !=, NULL
);
5986 VERIFY3S(data
->zcd_expected_err
, ==, error
);
5987 VERIFY(!data
->zcd_called
);
5989 synced_txg
= spa_last_synced_txg(data
->zcd_spa
);
5990 if (data
->zcd_txg
> synced_txg
)
5992 "commit callback of txg %"PRIu64
" called prematurely, "
5993 "last synced txg = %"PRIu64
"\n",
5994 data
->zcd_txg
, synced_txg
);
5996 data
->zcd_called
= B_TRUE
;
5998 if (error
== ECANCELED
) {
5999 ASSERT0(data
->zcd_txg
);
6000 ASSERT(!data
->zcd_added
);
6003 * The private callback data should be destroyed here, but
6004 * since we are going to check the zcd_called field after
6005 * dmu_tx_abort(), we will destroy it there.
6010 ASSERT(data
->zcd_added
);
6011 ASSERT3U(data
->zcd_txg
, !=, 0);
6013 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
6015 /* See if this cb was called more quickly */
6016 if ((synced_txg
- data
->zcd_txg
) < zc_min_txg_delay
)
6017 zc_min_txg_delay
= synced_txg
- data
->zcd_txg
;
6019 /* Remove our callback from the list */
6020 list_remove(&zcl
.zcl_callbacks
, data
);
6022 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
6024 umem_free(data
, sizeof (ztest_cb_data_t
));
6027 /* Allocate and initialize callback data structure */
6028 static ztest_cb_data_t
*
6029 ztest_create_cb_data(objset_t
*os
, uint64_t txg
)
6031 ztest_cb_data_t
*cb_data
;
6033 cb_data
= umem_zalloc(sizeof (ztest_cb_data_t
), UMEM_NOFAIL
);
6035 cb_data
->zcd_txg
= txg
;
6036 cb_data
->zcd_spa
= dmu_objset_spa(os
);
6037 list_link_init(&cb_data
->zcd_node
);
6043 * Commit callback test.
6046 ztest_dmu_commit_callbacks(ztest_ds_t
*zd
, uint64_t id
)
6048 objset_t
*os
= zd
->zd_os
;
6051 ztest_cb_data_t
*cb_data
[3], *tmp_cb
;
6052 uint64_t old_txg
, txg
;
6055 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
6056 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
6058 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
6059 umem_free(od
, sizeof (ztest_od_t
));
6063 tx
= dmu_tx_create(os
);
6065 cb_data
[0] = ztest_create_cb_data(os
, 0);
6066 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[0]);
6068 dmu_tx_hold_write(tx
, od
->od_object
, 0, sizeof (uint64_t));
6070 /* Every once in a while, abort the transaction on purpose */
6071 if (ztest_random(100) == 0)
6075 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
6077 txg
= error
? 0 : dmu_tx_get_txg(tx
);
6079 cb_data
[0]->zcd_txg
= txg
;
6080 cb_data
[1] = ztest_create_cb_data(os
, txg
);
6081 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[1]);
6085 * It's not a strict requirement to call the registered
6086 * callbacks from inside dmu_tx_abort(), but that's what
6087 * it's supposed to happen in the current implementation
6088 * so we will check for that.
6090 for (i
= 0; i
< 2; i
++) {
6091 cb_data
[i
]->zcd_expected_err
= ECANCELED
;
6092 VERIFY(!cb_data
[i
]->zcd_called
);
6097 for (i
= 0; i
< 2; i
++) {
6098 VERIFY(cb_data
[i
]->zcd_called
);
6099 umem_free(cb_data
[i
], sizeof (ztest_cb_data_t
));
6102 umem_free(od
, sizeof (ztest_od_t
));
6106 cb_data
[2] = ztest_create_cb_data(os
, txg
);
6107 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[2]);
6110 * Read existing data to make sure there isn't a future leak.
6112 VERIFY0(dmu_read(os
, od
->od_object
, 0, sizeof (uint64_t),
6113 &old_txg
, DMU_READ_PREFETCH
));
6117 "future leak: got %"PRIu64
", open txg is %"PRIu64
"",
6120 dmu_write(os
, od
->od_object
, 0, sizeof (uint64_t), &txg
, tx
);
6122 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
6125 * Since commit callbacks don't have any ordering requirement and since
6126 * it is theoretically possible for a commit callback to be called
6127 * after an arbitrary amount of time has elapsed since its txg has been
6128 * synced, it is difficult to reliably determine whether a commit
6129 * callback hasn't been called due to high load or due to a flawed
6132 * In practice, we will assume that if after a certain number of txgs a
6133 * commit callback hasn't been called, then most likely there's an
6134 * implementation bug..
6136 tmp_cb
= list_head(&zcl
.zcl_callbacks
);
6137 if (tmp_cb
!= NULL
&&
6138 tmp_cb
->zcd_txg
+ ZTEST_COMMIT_CB_THRESH
< txg
) {
6140 "Commit callback threshold exceeded, "
6141 "oldest txg: %"PRIu64
", open txg: %"PRIu64
"\n",
6142 tmp_cb
->zcd_txg
, txg
);
6146 * Let's find the place to insert our callbacks.
6148 * Even though the list is ordered by txg, it is possible for the
6149 * insertion point to not be the end because our txg may already be
6150 * quiescing at this point and other callbacks in the open txg
6151 * (from other objsets) may have sneaked in.
6153 tmp_cb
= list_tail(&zcl
.zcl_callbacks
);
6154 while (tmp_cb
!= NULL
&& tmp_cb
->zcd_txg
> txg
)
6155 tmp_cb
= list_prev(&zcl
.zcl_callbacks
, tmp_cb
);
6157 /* Add the 3 callbacks to the list */
6158 for (i
= 0; i
< 3; i
++) {
6160 list_insert_head(&zcl
.zcl_callbacks
, cb_data
[i
]);
6162 list_insert_after(&zcl
.zcl_callbacks
, tmp_cb
,
6165 cb_data
[i
]->zcd_added
= B_TRUE
;
6166 VERIFY(!cb_data
[i
]->zcd_called
);
6168 tmp_cb
= cb_data
[i
];
6173 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
6177 umem_free(od
, sizeof (ztest_od_t
));
6181 * Visit each object in the dataset. Verify that its properties
6182 * are consistent what was stored in the block tag when it was created,
6183 * and that its unused bonus buffer space has not been overwritten.
6186 ztest_verify_dnode_bt(ztest_ds_t
*zd
, uint64_t id
)
6189 objset_t
*os
= zd
->zd_os
;
6193 for (obj
= 0; err
== 0; err
= dmu_object_next(os
, &obj
, FALSE
, 0)) {
6194 ztest_block_tag_t
*bt
= NULL
;
6195 dmu_object_info_t doi
;
6198 ztest_object_lock(zd
, obj
, ZTRL_READER
);
6199 if (dmu_bonus_hold(os
, obj
, FTAG
, &db
) != 0) {
6200 ztest_object_unlock(zd
, obj
);
6204 dmu_object_info_from_db(db
, &doi
);
6205 if (doi
.doi_bonus_size
>= sizeof (*bt
))
6206 bt
= ztest_bt_bonus(db
);
6208 if (bt
&& bt
->bt_magic
== BT_MAGIC
) {
6209 ztest_bt_verify(bt
, os
, obj
, doi
.doi_dnodesize
,
6210 bt
->bt_offset
, bt
->bt_gen
, bt
->bt_txg
,
6212 ztest_verify_unused_bonus(db
, bt
, obj
, os
, bt
->bt_gen
);
6215 dmu_buf_rele(db
, FTAG
);
6216 ztest_object_unlock(zd
, obj
);
6221 ztest_dsl_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
6224 zfs_prop_t proplist
[] = {
6226 ZFS_PROP_COMPRESSION
,
6231 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6233 for (int p
= 0; p
< sizeof (proplist
) / sizeof (proplist
[0]); p
++) {
6234 int error
= ztest_dsl_prop_set_uint64(zd
->zd_name
, proplist
[p
],
6235 ztest_random_dsl_prop(proplist
[p
]), (int)ztest_random(2));
6236 ASSERT(error
== 0 || error
== ENOSPC
);
6239 int error
= ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_RECORDSIZE
,
6240 ztest_random_blocksize(), (int)ztest_random(2));
6241 ASSERT(error
== 0 || error
== ENOSPC
);
6243 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6247 ztest_spa_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
6249 (void) zd
, (void) id
;
6251 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6253 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM
, ztest_random(2));
6255 nvlist_t
*props
= fnvlist_alloc();
6257 VERIFY0(spa_prop_get(ztest_spa
, props
));
6259 if (ztest_opts
.zo_verbose
>= 6)
6260 dump_nvlist(props
, 4);
6262 fnvlist_free(props
);
6264 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6268 user_release_one(const char *snapname
, const char *holdname
)
6270 nvlist_t
*snaps
, *holds
;
6273 snaps
= fnvlist_alloc();
6274 holds
= fnvlist_alloc();
6275 fnvlist_add_boolean(holds
, holdname
);
6276 fnvlist_add_nvlist(snaps
, snapname
, holds
);
6277 fnvlist_free(holds
);
6278 error
= dsl_dataset_user_release(snaps
, NULL
);
6279 fnvlist_free(snaps
);
6284 * Test snapshot hold/release and deferred destroy.
6287 ztest_dmu_snapshot_hold(ztest_ds_t
*zd
, uint64_t id
)
6290 objset_t
*os
= zd
->zd_os
;
6294 char clonename
[100];
6296 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
6299 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6301 dmu_objset_name(os
, osname
);
6303 (void) snprintf(snapname
, sizeof (snapname
), "sh1_%"PRIu64
"", id
);
6304 (void) snprintf(fullname
, sizeof (fullname
), "%s@%s", osname
, snapname
);
6305 (void) snprintf(clonename
, sizeof (clonename
), "%s/ch1_%"PRIu64
"",
6307 (void) snprintf(tag
, sizeof (tag
), "tag_%"PRIu64
"", id
);
6310 * Clean up from any previous run.
6312 error
= dsl_destroy_head(clonename
);
6313 if (error
!= ENOENT
)
6315 error
= user_release_one(fullname
, tag
);
6316 if (error
!= ESRCH
&& error
!= ENOENT
)
6318 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
6319 if (error
!= ENOENT
)
6323 * Create snapshot, clone it, mark snap for deferred destroy,
6324 * destroy clone, verify snap was also destroyed.
6326 error
= dmu_objset_snapshot_one(osname
, snapname
);
6328 if (error
== ENOSPC
) {
6329 ztest_record_enospc("dmu_objset_snapshot");
6332 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
6335 error
= dmu_objset_clone(clonename
, fullname
);
6337 if (error
== ENOSPC
) {
6338 ztest_record_enospc("dmu_objset_clone");
6341 fatal(B_FALSE
, "dmu_objset_clone(%s) = %d", clonename
, error
);
6344 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
6346 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6350 error
= dsl_destroy_head(clonename
);
6352 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clonename
, error
);
6354 error
= dmu_objset_hold(fullname
, FTAG
, &origin
);
6355 if (error
!= ENOENT
)
6356 fatal(B_FALSE
, "dmu_objset_hold(%s) = %d", fullname
, error
);
6359 * Create snapshot, add temporary hold, verify that we can't
6360 * destroy a held snapshot, mark for deferred destroy,
6361 * release hold, verify snapshot was destroyed.
6363 error
= dmu_objset_snapshot_one(osname
, snapname
);
6365 if (error
== ENOSPC
) {
6366 ztest_record_enospc("dmu_objset_snapshot");
6369 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
6372 holds
= fnvlist_alloc();
6373 fnvlist_add_string(holds
, fullname
, tag
);
6374 error
= dsl_dataset_user_hold(holds
, 0, NULL
);
6375 fnvlist_free(holds
);
6377 if (error
== ENOSPC
) {
6378 ztest_record_enospc("dsl_dataset_user_hold");
6381 fatal(B_FALSE
, "dsl_dataset_user_hold(%s, %s) = %u",
6382 fullname
, tag
, error
);
6385 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
6386 if (error
!= EBUSY
) {
6387 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6391 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
6393 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6397 error
= user_release_one(fullname
, tag
);
6399 fatal(B_FALSE
, "user_release_one(%s, %s) = %d",
6400 fullname
, tag
, error
);
6402 VERIFY3U(dmu_objset_hold(fullname
, FTAG
, &origin
), ==, ENOENT
);
6405 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6409 * Inject random faults into the on-disk data.
6412 ztest_fault_inject(ztest_ds_t
*zd
, uint64_t id
)
6414 (void) zd
, (void) id
;
6415 ztest_shared_t
*zs
= ztest_shared
;
6416 spa_t
*spa
= ztest_spa
;
6420 uint64_t bad
= 0x1990c0ffeedecadeull
;
6422 uint64_t raidz_children
;
6426 int bshift
= SPA_MAXBLOCKSHIFT
+ 2;
6432 boolean_t islog
= B_FALSE
;
6433 boolean_t injected
= B_FALSE
;
6435 path0
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6436 pathrand
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6438 mutex_enter(&ztest_vdev_lock
);
6441 * Device removal is in progress, fault injection must be disabled
6442 * until it completes and the pool is scrubbed. The fault injection
6443 * strategy for damaging blocks does not take in to account evacuated
6444 * blocks which may have already been damaged.
6446 if (ztest_device_removal_active
)
6450 * The fault injection strategy for damaging blocks cannot be used
6451 * if raidz expansion is in progress. The leaves value
6452 * (attached raidz children) is variable and strategy for damaging
6453 * blocks will corrupt same data blocks on different child vdevs
6454 * because of the reflow process.
6456 if (spa
->spa_raidz_expand
!= NULL
)
6459 maxfaults
= MAXFAULTS(zs
);
6460 raidz_children
= ztest_get_raidz_children(spa
);
6461 leaves
= MAX(zs
->zs_mirrors
, 1) * raidz_children
;
6462 mirror_save
= zs
->zs_mirrors
;
6464 ASSERT3U(leaves
, >=, 1);
6467 * While ztest is running the number of leaves will not change. This
6468 * is critical for the fault injection logic as it determines where
6469 * errors can be safely injected such that they are always repairable.
6471 * When restarting ztest a different number of leaves may be requested
6472 * which will shift the regions to be damaged. This is fine as long
6473 * as the pool has been scrubbed prior to using the new mapping.
6474 * Failure to do can result in non-repairable damage being injected.
6476 if (ztest_pool_scrubbed
== B_FALSE
)
6480 * Grab the name lock as reader. There are some operations
6481 * which don't like to have their vdevs changed while
6482 * they are in progress (i.e. spa_change_guid). Those
6483 * operations will have grabbed the name lock as writer.
6485 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6488 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6490 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
6492 if (ztest_random(2) == 0) {
6494 * Inject errors on a normal data device or slog device.
6496 top
= ztest_random_vdev_top(spa
, B_TRUE
);
6497 leaf
= ztest_random(leaves
) + zs
->zs_splits
;
6500 * Generate paths to the first leaf in this top-level vdev,
6501 * and to the random leaf we selected. We'll induce transient
6502 * write failures and random online/offline activity on leaf 0,
6503 * and we'll write random garbage to the randomly chosen leaf.
6505 (void) snprintf(path0
, MAXPATHLEN
, ztest_dev_template
,
6506 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6507 top
* leaves
+ zs
->zs_splits
);
6508 (void) snprintf(pathrand
, MAXPATHLEN
, ztest_dev_template
,
6509 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6510 top
* leaves
+ leaf
);
6512 vd0
= vdev_lookup_by_path(spa
->spa_root_vdev
, path0
);
6513 if (vd0
!= NULL
&& vd0
->vdev_top
->vdev_islog
)
6517 * If the top-level vdev needs to be resilvered
6518 * then we only allow faults on the device that is
6521 if (vd0
!= NULL
&& maxfaults
!= 1 &&
6522 (!vdev_resilver_needed(vd0
->vdev_top
, NULL
, NULL
) ||
6523 vd0
->vdev_resilver_txg
!= 0)) {
6525 * Make vd0 explicitly claim to be unreadable,
6526 * or unwritable, or reach behind its back
6527 * and close the underlying fd. We can do this if
6528 * maxfaults == 0 because we'll fail and reexecute,
6529 * and we can do it if maxfaults >= 2 because we'll
6530 * have enough redundancy. If maxfaults == 1, the
6531 * combination of this with injection of random data
6532 * corruption below exceeds the pool's fault tolerance.
6534 vdev_file_t
*vf
= vd0
->vdev_tsd
;
6536 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6537 (long long)vd0
->vdev_id
, (int)maxfaults
);
6539 if (vf
!= NULL
&& ztest_random(3) == 0) {
6540 (void) close(vf
->vf_file
->f_fd
);
6541 vf
->vf_file
->f_fd
= -1;
6542 } else if (ztest_random(2) == 0) {
6543 vd0
->vdev_cant_read
= B_TRUE
;
6545 vd0
->vdev_cant_write
= B_TRUE
;
6547 guid0
= vd0
->vdev_guid
;
6551 * Inject errors on an l2cache device.
6553 spa_aux_vdev_t
*sav
= &spa
->spa_l2cache
;
6555 if (sav
->sav_count
== 0) {
6556 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6557 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6560 vd0
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
6561 guid0
= vd0
->vdev_guid
;
6562 (void) strlcpy(path0
, vd0
->vdev_path
, MAXPATHLEN
);
6563 (void) strlcpy(pathrand
, vd0
->vdev_path
, MAXPATHLEN
);
6567 maxfaults
= INT_MAX
; /* no limit on cache devices */
6570 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6571 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6574 * If we can tolerate two or more faults, or we're dealing
6575 * with a slog, randomly online/offline vd0.
6577 if ((maxfaults
>= 2 || islog
) && guid0
!= 0) {
6578 if (ztest_random(10) < 6) {
6579 int flags
= (ztest_random(2) == 0 ?
6580 ZFS_OFFLINE_TEMPORARY
: 0);
6583 * We have to grab the zs_name_lock as writer to
6584 * prevent a race between offlining a slog and
6585 * destroying a dataset. Offlining the slog will
6586 * grab a reference on the dataset which may cause
6587 * dsl_destroy_head() to fail with EBUSY thus
6588 * leaving the dataset in an inconsistent state.
6591 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6593 VERIFY3U(vdev_offline(spa
, guid0
, flags
), !=, EBUSY
);
6596 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6599 * Ideally we would like to be able to randomly
6600 * call vdev_[on|off]line without holding locks
6601 * to force unpredictable failures but the side
6602 * effects of vdev_[on|off]line prevent us from
6605 (void) vdev_online(spa
, guid0
, 0, NULL
);
6613 * We have at least single-fault tolerance, so inject data corruption.
6615 fd
= open(pathrand
, O_RDWR
);
6617 if (fd
== -1) /* we hit a gap in the device namespace */
6620 fsize
= lseek(fd
, 0, SEEK_END
);
6622 while (--iters
!= 0) {
6624 * The offset must be chosen carefully to ensure that
6625 * we do not inject a given logical block with errors
6626 * on two different leaf devices, because ZFS can not
6627 * tolerate that (if maxfaults==1).
6629 * To achieve this we divide each leaf device into
6630 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6631 * Each chunk is further divided into error-injection
6632 * ranges (can accept errors) and clear ranges (we do
6633 * not inject errors in those). Each error-injection
6634 * range can accept errors only for a single leaf vdev.
6635 * Error-injection ranges are separated by clear ranges.
6637 * For example, with 3 leaves, each chunk looks like:
6638 * 0 to 32M: injection range for leaf 0
6639 * 32M to 64M: clear range - no injection allowed
6640 * 64M to 96M: injection range for leaf 1
6641 * 96M to 128M: clear range - no injection allowed
6642 * 128M to 160M: injection range for leaf 2
6643 * 160M to 192M: clear range - no injection allowed
6645 * Each clear range must be large enough such that a
6646 * single block cannot straddle it. This way a block
6647 * can't be a target in two different injection ranges
6648 * (on different leaf vdevs).
6650 offset
= ztest_random(fsize
/ (leaves
<< bshift
)) *
6651 (leaves
<< bshift
) + (leaf
<< bshift
) +
6652 (ztest_random(1ULL << (bshift
- 1)) & -8ULL);
6655 * Only allow damage to the labels at one end of the vdev.
6657 * If all labels are damaged, the device will be totally
6658 * inaccessible, which will result in loss of data,
6659 * because we also damage (parts of) the other side of
6662 * Additionally, we will always have both an even and an
6663 * odd label, so that we can handle crashes in the
6664 * middle of vdev_config_sync().
6666 if ((leaf
& 1) == 0 && offset
< VDEV_LABEL_START_SIZE
)
6670 * The two end labels are stored at the "end" of the disk, but
6671 * the end of the disk (vdev_psize) is aligned to
6672 * sizeof (vdev_label_t).
6674 uint64_t psize
= P2ALIGN_TYPED(fsize
, sizeof (vdev_label_t
),
6676 if ((leaf
& 1) == 1 &&
6677 offset
+ sizeof (bad
) > psize
- VDEV_LABEL_END_SIZE
)
6680 if (mirror_save
!= zs
->zs_mirrors
) {
6685 if (pwrite(fd
, &bad
, sizeof (bad
), offset
) != sizeof (bad
))
6687 "can't inject bad word at 0x%"PRIx64
" in %s",
6690 if (ztest_opts
.zo_verbose
>= 7)
6691 (void) printf("injected bad word into %s,"
6692 " offset 0x%"PRIx64
"\n", pathrand
, offset
);
6699 mutex_exit(&ztest_vdev_lock
);
6701 if (injected
&& ztest_opts
.zo_raid_do_expand
) {
6702 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6704 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6705 txg_wait_synced(spa_get_dsl(spa
), 0);
6709 umem_free(path0
, MAXPATHLEN
);
6710 umem_free(pathrand
, MAXPATHLEN
);
6714 * By design ztest will never inject uncorrectable damage in to the pool.
6715 * Issue a scrub, wait for it to complete, and verify there is never any
6716 * persistent damage.
6718 * Only after a full scrub has been completed is it safe to start injecting
6719 * data corruption. See the comment in zfs_fault_inject().
6721 * EBUSY may be returned for the following six cases. It's the callers
6722 * responsibility to handle them accordingly.
6724 * Current state Requested
6725 * 1. Normal Scrub Running Normal Scrub or Error Scrub
6726 * 2. Normal Scrub Paused Error Scrub
6727 * 3. Normal Scrub Paused Pause Normal Scrub
6728 * 4. Error Scrub Running Normal Scrub or Error Scrub
6729 * 5. Error Scrub Paused Pause Error Scrub
6730 * 6. Resilvering Anything else
6733 ztest_scrub_impl(spa_t
*spa
)
6735 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6739 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6740 txg_wait_synced(spa_get_dsl(spa
), 0);
6742 if (spa_approx_errlog_size(spa
) > 0)
6745 ztest_pool_scrubbed
= B_TRUE
;
6754 ztest_scrub(ztest_ds_t
*zd
, uint64_t id
)
6756 (void) zd
, (void) id
;
6757 spa_t
*spa
= ztest_spa
;
6761 * Scrub in progress by device removal.
6763 if (ztest_device_removal_active
)
6767 * Start a scrub, wait a moment, then force a restart.
6769 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
6770 (void) poll(NULL
, 0, 100);
6772 error
= ztest_scrub_impl(spa
);
6779 * Change the guid for the pool.
6782 ztest_reguid(ztest_ds_t
*zd
, uint64_t id
)
6784 (void) zd
, (void) id
;
6785 spa_t
*spa
= ztest_spa
;
6786 uint64_t orig
, load
;
6788 ztest_shared_t
*zs
= ztest_shared
;
6790 if (ztest_opts
.zo_mmp_test
)
6793 orig
= spa_guid(spa
);
6794 load
= spa_load_guid(spa
);
6796 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6797 error
= spa_change_guid(spa
, NULL
);
6798 zs
->zs_guid
= spa_guid(spa
);
6799 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6804 if (ztest_opts
.zo_verbose
>= 4) {
6805 (void) printf("Changed guid old %"PRIu64
" -> %"PRIu64
"\n",
6806 orig
, spa_guid(spa
));
6809 VERIFY3U(orig
, !=, spa_guid(spa
));
6810 VERIFY3U(load
, ==, spa_load_guid(spa
));
6814 ztest_blake3(ztest_ds_t
*zd
, uint64_t id
)
6816 (void) zd
, (void) id
;
6817 hrtime_t end
= gethrtime() + NANOSEC
;
6818 zio_cksum_salt_t salt
;
6819 void *salt_ptr
= &salt
.zcs_bytes
;
6820 struct abd
*abd_data
, *abd_meta
;
6825 const zfs_impl_t
*blake3
= zfs_impl_get_ops("blake3");
6827 size
= ztest_random_blocksize();
6828 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6829 abd_data
= abd_alloc(size
, B_FALSE
);
6830 abd_meta
= abd_alloc(size
, B_TRUE
);
6832 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6833 *ptr
= ztest_random(UINT_MAX
);
6834 memset(salt_ptr
, 'A', 32);
6836 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6837 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6839 while (gethrtime() <= end
) {
6840 int run_count
= 100;
6841 zio_cksum_t zc_ref1
, zc_ref2
;
6842 zio_cksum_t zc_res1
, zc_res2
;
6844 void *ref1
= &zc_ref1
;
6845 void *ref2
= &zc_ref2
;
6846 void *res1
= &zc_res1
;
6847 void *res2
= &zc_res2
;
6849 /* BLAKE3_KEY_LEN = 32 */
6850 VERIFY0(blake3
->setname("generic"));
6851 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6852 Blake3_InitKeyed(&ctx
, salt_ptr
);
6853 Blake3_Update(&ctx
, buf
, size
);
6854 Blake3_Final(&ctx
, ref1
);
6856 ZIO_CHECKSUM_BSWAP(&zc_ref2
);
6857 abd_checksum_blake3_tmpl_free(templ
);
6859 VERIFY0(blake3
->setname("cycle"));
6860 while (run_count
-- > 0) {
6862 /* Test current implementation */
6863 Blake3_InitKeyed(&ctx
, salt_ptr
);
6864 Blake3_Update(&ctx
, buf
, size
);
6865 Blake3_Final(&ctx
, res1
);
6867 ZIO_CHECKSUM_BSWAP(&zc_res2
);
6869 VERIFY0(memcmp(ref1
, res1
, 32));
6870 VERIFY0(memcmp(ref2
, res2
, 32));
6872 /* Test ABD - data */
6873 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6874 abd_checksum_blake3_native(abd_data
, size
,
6876 abd_checksum_blake3_byteswap(abd_data
, size
,
6879 VERIFY0(memcmp(ref1
, res1
, 32));
6880 VERIFY0(memcmp(ref2
, res2
, 32));
6882 /* Test ABD - metadata */
6883 abd_checksum_blake3_native(abd_meta
, size
,
6885 abd_checksum_blake3_byteswap(abd_meta
, size
,
6887 abd_checksum_blake3_tmpl_free(templ
);
6889 VERIFY0(memcmp(ref1
, res1
, 32));
6890 VERIFY0(memcmp(ref2
, res2
, 32));
6897 umem_free(buf
, size
);
6901 ztest_fletcher(ztest_ds_t
*zd
, uint64_t id
)
6903 (void) zd
, (void) id
;
6904 hrtime_t end
= gethrtime() + NANOSEC
;
6906 while (gethrtime() <= end
) {
6907 int run_count
= 100;
6909 struct abd
*abd_data
, *abd_meta
;
6914 zio_cksum_t zc_ref_byteswap
;
6916 size
= ztest_random_blocksize();
6918 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6919 abd_data
= abd_alloc(size
, B_FALSE
);
6920 abd_meta
= abd_alloc(size
, B_TRUE
);
6922 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6923 *ptr
= ztest_random(UINT_MAX
);
6925 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6926 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6928 VERIFY0(fletcher_4_impl_set("scalar"));
6929 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6930 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_byteswap
);
6932 VERIFY0(fletcher_4_impl_set("cycle"));
6933 while (run_count
-- > 0) {
6935 zio_cksum_t zc_byteswap
;
6937 fletcher_4_byteswap(buf
, size
, NULL
, &zc_byteswap
);
6938 fletcher_4_native(buf
, size
, NULL
, &zc
);
6940 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6941 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6942 sizeof (zc_byteswap
)));
6944 /* Test ABD - data */
6945 abd_fletcher_4_byteswap(abd_data
, size
, NULL
,
6947 abd_fletcher_4_native(abd_data
, size
, NULL
, &zc
);
6949 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6950 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6951 sizeof (zc_byteswap
)));
6953 /* Test ABD - metadata */
6954 abd_fletcher_4_byteswap(abd_meta
, size
, NULL
,
6956 abd_fletcher_4_native(abd_meta
, size
, NULL
, &zc
);
6958 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6959 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6960 sizeof (zc_byteswap
)));
6964 umem_free(buf
, size
);
6971 ztest_fletcher_incr(ztest_ds_t
*zd
, uint64_t id
)
6973 (void) zd
, (void) id
;
6979 zio_cksum_t zc_ref_bswap
;
6981 hrtime_t end
= gethrtime() + NANOSEC
;
6983 while (gethrtime() <= end
) {
6984 int run_count
= 100;
6986 size
= ztest_random_blocksize();
6987 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6989 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6990 *ptr
= ztest_random(UINT_MAX
);
6992 VERIFY0(fletcher_4_impl_set("scalar"));
6993 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6994 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_bswap
);
6996 VERIFY0(fletcher_4_impl_set("cycle"));
6998 while (run_count
-- > 0) {
7000 zio_cksum_t zc_bswap
;
7003 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
7004 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
7006 while (pos
< size
) {
7007 size_t inc
= 64 * ztest_random(size
/ 67);
7008 /* sometimes add few bytes to test non-simd */
7009 if (ztest_random(100) < 10)
7010 inc
+= P2ALIGN_TYPED(ztest_random(64),
7011 sizeof (uint32_t), uint64_t);
7013 if (inc
> (size
- pos
))
7016 fletcher_4_incremental_native(buf
+ pos
, inc
,
7018 fletcher_4_incremental_byteswap(buf
+ pos
, inc
,
7024 VERIFY3U(pos
, ==, size
);
7026 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
7027 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
7030 * verify if incremental on the whole buffer is
7031 * equivalent to non-incremental version
7033 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
7034 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
7036 fletcher_4_incremental_native(buf
, size
, &zc
);
7037 fletcher_4_incremental_byteswap(buf
, size
, &zc_bswap
);
7039 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
7040 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
7043 umem_free(buf
, size
);
7048 ztest_pool_prefetch_ddt(ztest_ds_t
*zd
, uint64_t id
)
7050 (void) zd
, (void) id
;
7053 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
7054 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7056 ddt_prefetch_all(spa
);
7058 spa_close(spa
, FTAG
);
7059 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7063 ztest_set_global_vars(void)
7065 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
7066 char *kv
= ztest_opts
.zo_gvars
[i
];
7067 VERIFY3U(strlen(kv
), <=, ZO_GVARS_MAX_ARGLEN
);
7068 VERIFY3U(strlen(kv
), >, 0);
7069 int err
= set_global_var(kv
);
7070 if (ztest_opts
.zo_verbose
> 0) {
7071 (void) printf("setting global var %s ... %s\n", kv
,
7072 err
? "failed" : "ok");
7075 (void) fprintf(stderr
,
7076 "failed to set global var '%s'\n", kv
);
7084 ztest_global_vars_to_zdb_args(void)
7086 char **args
= calloc(2*ztest_opts
.zo_gvars_count
+ 1, sizeof (char *));
7090 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
7091 *cur
++ = (char *)"-o";
7092 *cur
++ = ztest_opts
.zo_gvars
[i
];
7094 ASSERT3P(cur
, ==, &args
[2*ztest_opts
.zo_gvars_count
]);
7099 /* The end of strings is indicated by a NULL element */
7101 join_strings(char **strings
, const char *sep
)
7103 size_t totallen
= 0;
7104 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
7105 totallen
+= strlen(*sp
);
7106 totallen
+= strlen(sep
);
7109 ASSERT(totallen
>= strlen(sep
));
7110 totallen
-= strlen(sep
);
7113 size_t buflen
= totallen
+ 1;
7114 char *o
= umem_alloc(buflen
, UMEM_NOFAIL
); /* trailing 0 byte */
7116 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
7118 would
= strlcat(o
, *sp
, buflen
);
7119 VERIFY3U(would
, <, buflen
);
7120 if (*(sp
+1) == NULL
) {
7123 would
= strlcat(o
, sep
, buflen
);
7124 VERIFY3U(would
, <, buflen
);
7126 ASSERT3S(strlen(o
), ==, totallen
);
7131 ztest_check_path(char *path
)
7134 /* return true on success */
7135 return (!stat(path
, &s
));
7139 ztest_get_zdb_bin(char *bin
, int len
)
7143 * Try to use $ZDB and in-tree zdb path. If not successful, just
7144 * let popen to search through PATH.
7146 if ((zdb_path
= getenv("ZDB"))) {
7147 strlcpy(bin
, zdb_path
, len
); /* In env */
7148 if (!ztest_check_path(bin
)) {
7149 ztest_dump_core
= 0;
7150 fatal(B_TRUE
, "invalid ZDB '%s'", bin
);
7155 VERIFY3P(realpath(getexecname(), bin
), !=, NULL
);
7156 if (strstr(bin
, ".libs/ztest")) {
7157 strstr(bin
, ".libs/ztest")[0] = '\0'; /* In-tree */
7159 if (ztest_check_path(bin
))
7166 ztest_random_concrete_vdev_leaf(vdev_t
*vd
)
7171 if (vd
->vdev_children
== 0)
7174 vdev_t
*eligible
[vd
->vdev_children
];
7175 int eligible_idx
= 0, i
;
7176 for (i
= 0; i
< vd
->vdev_children
; i
++) {
7177 vdev_t
*cvd
= vd
->vdev_child
[i
];
7178 if (cvd
->vdev_top
->vdev_removing
)
7180 if (cvd
->vdev_children
> 0 ||
7181 (vdev_is_concrete(cvd
) && !cvd
->vdev_detached
)) {
7182 eligible
[eligible_idx
++] = cvd
;
7185 VERIFY3S(eligible_idx
, >, 0);
7187 uint64_t child_no
= ztest_random(eligible_idx
);
7188 return (ztest_random_concrete_vdev_leaf(eligible
[child_no
]));
7192 ztest_initialize(ztest_ds_t
*zd
, uint64_t id
)
7194 (void) zd
, (void) id
;
7195 spa_t
*spa
= ztest_spa
;
7198 mutex_enter(&ztest_vdev_lock
);
7200 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
7202 /* Random leaf vdev */
7203 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
7204 if (rand_vd
== NULL
) {
7205 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7206 mutex_exit(&ztest_vdev_lock
);
7211 * The random vdev we've selected may change as soon as we
7212 * drop the spa_config_lock. We create local copies of things
7213 * we're interested in.
7215 uint64_t guid
= rand_vd
->vdev_guid
;
7216 char *path
= strdup(rand_vd
->vdev_path
);
7217 boolean_t active
= rand_vd
->vdev_initialize_thread
!= NULL
;
7219 zfs_dbgmsg("vd %px, guid %llu", rand_vd
, (u_longlong_t
)guid
);
7220 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7222 uint64_t cmd
= ztest_random(POOL_INITIALIZE_FUNCS
);
7224 nvlist_t
*vdev_guids
= fnvlist_alloc();
7225 nvlist_t
*vdev_errlist
= fnvlist_alloc();
7226 fnvlist_add_uint64(vdev_guids
, path
, guid
);
7227 error
= spa_vdev_initialize(spa
, vdev_guids
, cmd
, vdev_errlist
);
7228 fnvlist_free(vdev_guids
);
7229 fnvlist_free(vdev_errlist
);
7232 case POOL_INITIALIZE_CANCEL
:
7233 if (ztest_opts
.zo_verbose
>= 4) {
7234 (void) printf("Cancel initialize %s", path
);
7236 (void) printf(" failed (no initialize active)");
7237 (void) printf("\n");
7240 case POOL_INITIALIZE_START
:
7241 if (ztest_opts
.zo_verbose
>= 4) {
7242 (void) printf("Start initialize %s", path
);
7243 if (active
&& error
== 0)
7244 (void) printf(" failed (already active)");
7245 else if (error
!= 0)
7246 (void) printf(" failed (error %d)", error
);
7247 (void) printf("\n");
7250 case POOL_INITIALIZE_SUSPEND
:
7251 if (ztest_opts
.zo_verbose
>= 4) {
7252 (void) printf("Suspend initialize %s", path
);
7254 (void) printf(" failed (no initialize active)");
7255 (void) printf("\n");
7260 mutex_exit(&ztest_vdev_lock
);
7264 ztest_trim(ztest_ds_t
*zd
, uint64_t id
)
7266 (void) zd
, (void) id
;
7267 spa_t
*spa
= ztest_spa
;
7270 mutex_enter(&ztest_vdev_lock
);
7272 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
7274 /* Random leaf vdev */
7275 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
7276 if (rand_vd
== NULL
) {
7277 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7278 mutex_exit(&ztest_vdev_lock
);
7283 * The random vdev we've selected may change as soon as we
7284 * drop the spa_config_lock. We create local copies of things
7285 * we're interested in.
7287 uint64_t guid
= rand_vd
->vdev_guid
;
7288 char *path
= strdup(rand_vd
->vdev_path
);
7289 boolean_t active
= rand_vd
->vdev_trim_thread
!= NULL
;
7291 zfs_dbgmsg("vd %p, guid %llu", rand_vd
, (u_longlong_t
)guid
);
7292 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7294 uint64_t cmd
= ztest_random(POOL_TRIM_FUNCS
);
7295 uint64_t rate
= 1 << ztest_random(30);
7296 boolean_t partial
= (ztest_random(5) > 0);
7297 boolean_t secure
= (ztest_random(5) > 0);
7299 nvlist_t
*vdev_guids
= fnvlist_alloc();
7300 nvlist_t
*vdev_errlist
= fnvlist_alloc();
7301 fnvlist_add_uint64(vdev_guids
, path
, guid
);
7302 error
= spa_vdev_trim(spa
, vdev_guids
, cmd
, rate
, partial
,
7303 secure
, vdev_errlist
);
7304 fnvlist_free(vdev_guids
);
7305 fnvlist_free(vdev_errlist
);
7308 case POOL_TRIM_CANCEL
:
7309 if (ztest_opts
.zo_verbose
>= 4) {
7310 (void) printf("Cancel TRIM %s", path
);
7312 (void) printf(" failed (no TRIM active)");
7313 (void) printf("\n");
7316 case POOL_TRIM_START
:
7317 if (ztest_opts
.zo_verbose
>= 4) {
7318 (void) printf("Start TRIM %s", path
);
7319 if (active
&& error
== 0)
7320 (void) printf(" failed (already active)");
7321 else if (error
!= 0)
7322 (void) printf(" failed (error %d)", error
);
7323 (void) printf("\n");
7326 case POOL_TRIM_SUSPEND
:
7327 if (ztest_opts
.zo_verbose
>= 4) {
7328 (void) printf("Suspend TRIM %s", path
);
7330 (void) printf(" failed (no TRIM active)");
7331 (void) printf("\n");
7336 mutex_exit(&ztest_vdev_lock
);
7340 ztest_ddt_prune(ztest_ds_t
*zd
, uint64_t id
)
7342 (void) zd
, (void) id
;
7344 spa_t
*spa
= ztest_spa
;
7345 uint64_t pct
= ztest_random(15) + 1;
7347 (void) ddt_prune_unique_entries(spa
, ZPOOL_DDT_PRUNE_PERCENTAGE
, pct
);
7351 * Verify pool integrity by running zdb.
7354 ztest_run_zdb(uint64_t guid
)
7360 const int len
= MAXPATHLEN
+ MAXNAMELEN
+ 20;
7363 bin
= umem_alloc(len
, UMEM_NOFAIL
);
7364 zdb
= umem_alloc(len
, UMEM_NOFAIL
);
7365 zbuf
= umem_alloc(1024, UMEM_NOFAIL
);
7367 ztest_get_zdb_bin(bin
, len
);
7369 char **set_gvars_args
= ztest_global_vars_to_zdb_args();
7370 if (set_gvars_args
== NULL
) {
7371 fatal(B_FALSE
, "Failed to allocate memory in "
7372 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7374 char *set_gvars_args_joined
= join_strings(set_gvars_args
, " ");
7375 free(set_gvars_args
);
7377 size_t would
= snprintf(zdb
, len
,
7378 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64
,
7380 ztest_opts
.zo_verbose
>= 3 ? "s" : "",
7381 ztest_opts
.zo_verbose
>= 4 ? "v" : "",
7382 set_gvars_args_joined
,
7385 ASSERT3U(would
, <, len
);
7387 umem_free(set_gvars_args_joined
, strlen(set_gvars_args_joined
) + 1);
7389 if (ztest_opts
.zo_verbose
>= 5)
7390 (void) printf("Executing %s\n", zdb
);
7392 fp
= popen(zdb
, "r");
7394 while (fgets(zbuf
, 1024, fp
) != NULL
)
7395 if (ztest_opts
.zo_verbose
>= 3)
7396 (void) printf("%s", zbuf
);
7398 status
= pclose(fp
);
7403 ztest_dump_core
= 0;
7404 if (WIFEXITED(status
))
7405 fatal(B_FALSE
, "'%s' exit code %d", zdb
, WEXITSTATUS(status
));
7407 fatal(B_FALSE
, "'%s' died with signal %d",
7408 zdb
, WTERMSIG(status
));
7410 umem_free(bin
, len
);
7411 umem_free(zdb
, len
);
7412 umem_free(zbuf
, 1024);
7416 ztest_walk_pool_directory(const char *header
)
7420 if (ztest_opts
.zo_verbose
>= 6)
7421 (void) puts(header
);
7423 mutex_enter(&spa_namespace_lock
);
7424 while ((spa
= spa_next(spa
)) != NULL
)
7425 if (ztest_opts
.zo_verbose
>= 6)
7426 (void) printf("\t%s\n", spa_name(spa
));
7427 mutex_exit(&spa_namespace_lock
);
7431 ztest_spa_import_export(char *oldname
, char *newname
)
7433 nvlist_t
*config
, *newconfig
;
7438 if (ztest_opts
.zo_verbose
>= 4) {
7439 (void) printf("import/export: old = %s, new = %s\n",
7444 * Clean up from previous runs.
7446 (void) spa_destroy(newname
);
7449 * Get the pool's configuration and guid.
7451 VERIFY0(spa_open(oldname
, &spa
, FTAG
));
7454 * Kick off a scrub to tickle scrub/export races.
7456 if (ztest_random(2) == 0)
7457 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
7459 pool_guid
= spa_guid(spa
);
7460 spa_close(spa
, FTAG
);
7462 ztest_walk_pool_directory("pools before export");
7467 VERIFY0(spa_export(oldname
, &config
, B_FALSE
, B_FALSE
));
7469 ztest_walk_pool_directory("pools after export");
7474 newconfig
= spa_tryimport(config
);
7475 ASSERT3P(newconfig
, !=, NULL
);
7476 fnvlist_free(newconfig
);
7479 * Import it under the new name.
7481 error
= spa_import(newname
, config
, NULL
, 0);
7483 dump_nvlist(config
, 0);
7484 fatal(B_FALSE
, "couldn't import pool %s as %s: error %u",
7485 oldname
, newname
, error
);
7488 ztest_walk_pool_directory("pools after import");
7491 * Try to import it again -- should fail with EEXIST.
7493 VERIFY3U(EEXIST
, ==, spa_import(newname
, config
, NULL
, 0));
7496 * Try to import it under a different name -- should fail with EEXIST.
7498 VERIFY3U(EEXIST
, ==, spa_import(oldname
, config
, NULL
, 0));
7501 * Verify that the pool is no longer visible under the old name.
7503 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
7506 * Verify that we can open and close the pool using the new name.
7508 VERIFY0(spa_open(newname
, &spa
, FTAG
));
7509 ASSERT3U(pool_guid
, ==, spa_guid(spa
));
7510 spa_close(spa
, FTAG
);
7512 fnvlist_free(config
);
7516 ztest_resume(spa_t
*spa
)
7518 if (spa_suspended(spa
) && ztest_opts
.zo_verbose
>= 6)
7519 (void) printf("resuming from suspended state\n");
7520 spa_vdev_state_enter(spa
, SCL_NONE
);
7521 vdev_clear(spa
, NULL
);
7522 (void) spa_vdev_state_exit(spa
, NULL
, 0);
7523 (void) zio_resume(spa
);
7526 static __attribute__((noreturn
)) void
7527 ztest_resume_thread(void *arg
)
7532 * Synthesize aged DDT entries for ddt prune testing
7534 ddt_prune_artificial_age
= B_TRUE
;
7535 if (ztest_opts
.zo_verbose
>= 3)
7536 ddt_dump_prune_histogram
= B_TRUE
;
7538 while (!ztest_exiting
) {
7539 if (spa_suspended(spa
))
7541 (void) poll(NULL
, 0, 100);
7544 * Periodically change the zfs_compressed_arc_enabled setting.
7546 if (ztest_random(10) == 0)
7547 zfs_compressed_arc_enabled
= ztest_random(2);
7550 * Periodically change the zfs_abd_scatter_enabled setting.
7552 if (ztest_random(10) == 0)
7553 zfs_abd_scatter_enabled
= ztest_random(2);
7559 static __attribute__((noreturn
)) void
7560 ztest_deadman_thread(void *arg
)
7562 ztest_shared_t
*zs
= arg
;
7563 spa_t
*spa
= ztest_spa
;
7564 hrtime_t delay
, overdue
, last_run
= gethrtime();
7566 delay
= (zs
->zs_thread_stop
- zs
->zs_thread_start
) +
7567 MSEC2NSEC(zfs_deadman_synctime_ms
);
7569 while (!ztest_exiting
) {
7571 * Wait for the delay timer while checking occasionally
7572 * if we should stop.
7574 if (gethrtime() < last_run
+ delay
) {
7575 (void) poll(NULL
, 0, 1000);
7580 * If the pool is suspended then fail immediately. Otherwise,
7581 * check to see if the pool is making any progress. If
7582 * vdev_deadman() discovers that there hasn't been any recent
7583 * I/Os then it will end up aborting the tests.
7585 if (spa_suspended(spa
) || spa
->spa_root_vdev
== NULL
) {
7587 "aborting test after %llu seconds because "
7588 "pool has transitioned to a suspended state.",
7589 (u_longlong_t
)zfs_deadman_synctime_ms
/ 1000);
7591 vdev_deadman(spa
->spa_root_vdev
, FTAG
);
7594 * If the process doesn't complete within a grace period of
7595 * zfs_deadman_synctime_ms over the expected finish time,
7596 * then it may be hung and is terminated.
7598 overdue
= zs
->zs_proc_stop
+ MSEC2NSEC(zfs_deadman_synctime_ms
);
7599 if (gethrtime() > overdue
) {
7601 "aborting test after %llu seconds because "
7602 "the process is overdue for termination.",
7603 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7606 (void) printf("ztest has been running for %lld seconds\n",
7607 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7609 last_run
= gethrtime();
7610 delay
= MSEC2NSEC(zfs_deadman_checktime_ms
);
7617 ztest_execute(int test
, ztest_info_t
*zi
, uint64_t id
)
7619 ztest_ds_t
*zd
= &ztest_ds
[id
% ztest_opts
.zo_datasets
];
7620 ztest_shared_callstate_t
*zc
= ZTEST_GET_SHARED_CALLSTATE(test
);
7621 hrtime_t functime
= gethrtime();
7624 for (i
= 0; i
< zi
->zi_iters
; i
++)
7625 zi
->zi_func(zd
, id
);
7627 functime
= gethrtime() - functime
;
7629 atomic_add_64(&zc
->zc_count
, 1);
7630 atomic_add_64(&zc
->zc_time
, functime
);
7632 if (ztest_opts
.zo_verbose
>= 4)
7633 (void) printf("%6.2f sec in %s\n",
7634 (double)functime
/ NANOSEC
, zi
->zi_funcname
);
7637 typedef struct ztest_raidz_expand_io
{
7639 uint64_t rzx_amount
;
7640 uint64_t rzx_bufsize
;
7641 const void *rzx_buffer
;
7642 uint64_t rzx_alloc_max
;
7644 } ztest_expand_io_t
;
7646 #undef OD_ARRAY_SIZE
7647 #define OD_ARRAY_SIZE 10
7650 * Write a request amount of data to some dataset objects.
7651 * There will be ztest_opts.zo_threads count of these running in parallel.
7653 static __attribute__((noreturn
)) void
7654 ztest_rzx_thread(void *arg
)
7656 ztest_expand_io_t
*info
= (ztest_expand_io_t
*)arg
;
7660 ztest_ds_t
*zd
= &ztest_ds
[info
->rzx_id
% ztest_opts
.zo_datasets
];
7661 spa_t
*spa
= info
->rzx_spa
;
7663 od_size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
7664 od
= umem_alloc(od_size
, UMEM_NOFAIL
);
7665 batchsize
= OD_ARRAY_SIZE
;
7667 /* Create objects to write to */
7668 for (int b
= 0; b
< batchsize
; b
++) {
7669 ztest_od_init(od
+ b
, info
->rzx_id
, FTAG
, b
,
7670 DMU_OT_UINT64_OTHER
, 0, 0, 0);
7672 if (ztest_object_init(zd
, od
, od_size
, B_FALSE
) != 0) {
7673 umem_free(od
, od_size
);
7677 for (uint64_t offset
= 0, written
= 0; written
< info
->rzx_amount
;
7678 offset
+= info
->rzx_bufsize
) {
7679 /* write to 10 objects */
7680 for (int i
= 0; i
< batchsize
&& written
< info
->rzx_amount
;
7682 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
7683 ztest_write(zd
, od
[i
].od_object
, offset
,
7684 info
->rzx_bufsize
, info
->rzx_buffer
);
7685 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
7686 written
+= info
->rzx_bufsize
;
7688 txg_wait_synced(spa_get_dsl(spa
), 0);
7689 /* due to inflation, we'll typically bail here */
7690 if (metaslab_class_get_alloc(spa_normal_class(spa
)) >
7691 info
->rzx_alloc_max
) {
7696 /* Remove a few objects to leave some holes in allocation space */
7697 mutex_enter(&zd
->zd_dirobj_lock
);
7698 (void) ztest_remove(zd
, od
, 2);
7699 mutex_exit(&zd
->zd_dirobj_lock
);
7701 umem_free(od
, od_size
);
7706 static __attribute__((noreturn
)) void
7707 ztest_thread(void *arg
)
7710 uint64_t id
= (uintptr_t)arg
;
7711 ztest_shared_t
*zs
= ztest_shared
;
7715 ztest_shared_callstate_t
*zc
;
7717 while ((now
= gethrtime()) < zs
->zs_thread_stop
) {
7719 * See if it's time to force a crash.
7721 if (now
> zs
->zs_thread_kill
&&
7722 raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
) {
7727 * If we're getting ENOSPC with some regularity, stop.
7729 if (zs
->zs_enospc_count
> 10)
7733 * Pick a random function to execute.
7735 rand
= ztest_random(ZTEST_FUNCS
);
7736 zi
= &ztest_info
[rand
];
7737 zc
= ZTEST_GET_SHARED_CALLSTATE(rand
);
7738 call_next
= zc
->zc_next
;
7740 if (now
>= call_next
&&
7741 atomic_cas_64(&zc
->zc_next
, call_next
, call_next
+
7742 ztest_random(2 * zi
->zi_interval
[0] + 1)) == call_next
) {
7743 ztest_execute(rand
, zi
, id
);
7751 ztest_dataset_name(char *dsname
, const char *pool
, int d
)
7753 (void) snprintf(dsname
, ZFS_MAX_DATASET_NAME_LEN
, "%s/ds_%d", pool
, d
);
7757 ztest_dataset_destroy(int d
)
7759 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7762 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7764 if (ztest_opts
.zo_verbose
>= 3)
7765 (void) printf("Destroying %s to free up space\n", name
);
7768 * Cleanup any non-standard clones and snapshots. In general,
7769 * ztest thread t operates on dataset (t % zopt_datasets),
7770 * so there may be more than one thing to clean up.
7772 for (t
= d
; t
< ztest_opts
.zo_threads
;
7773 t
+= ztest_opts
.zo_datasets
)
7774 ztest_dsl_dataset_cleanup(name
, t
);
7776 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
7777 DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
7781 ztest_dataset_dirobj_verify(ztest_ds_t
*zd
)
7783 uint64_t usedobjs
, dirobjs
, scratch
;
7786 * ZTEST_DIROBJ is the object directory for the entire dataset.
7787 * Therefore, the number of objects in use should equal the
7788 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7789 * If not, we have an object leak.
7791 * Note that we can only check this in ztest_dataset_open(),
7792 * when the open-context and syncing-context values agree.
7793 * That's because zap_count() returns the open-context value,
7794 * while dmu_objset_space() returns the rootbp fill count.
7796 VERIFY0(zap_count(zd
->zd_os
, ZTEST_DIROBJ
, &dirobjs
));
7797 dmu_objset_space(zd
->zd_os
, &scratch
, &scratch
, &usedobjs
, &scratch
);
7798 ASSERT3U(dirobjs
+ 1, ==, usedobjs
);
7802 ztest_dataset_open(int d
)
7804 ztest_ds_t
*zd
= &ztest_ds
[d
];
7805 uint64_t committed_seq
= ZTEST_GET_SHARED_DS(d
)->zd_seq
;
7808 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7811 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7813 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
7815 error
= ztest_dataset_create(name
);
7816 if (error
== ENOSPC
) {
7817 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7818 ztest_record_enospc(FTAG
);
7821 ASSERT(error
== 0 || error
== EEXIST
);
7823 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
7825 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7827 ztest_zd_init(zd
, ZTEST_GET_SHARED_DS(d
), os
);
7829 zilog
= zd
->zd_zilog
;
7831 if (zilog
->zl_header
->zh_claim_lr_seq
!= 0 &&
7832 zilog
->zl_header
->zh_claim_lr_seq
< committed_seq
)
7833 fatal(B_FALSE
, "missing log records: "
7834 "claimed %"PRIu64
" < committed %"PRIu64
"",
7835 zilog
->zl_header
->zh_claim_lr_seq
, committed_seq
);
7837 ztest_dataset_dirobj_verify(zd
);
7839 zil_replay(os
, zd
, ztest_replay_vector
);
7841 ztest_dataset_dirobj_verify(zd
);
7843 if (ztest_opts
.zo_verbose
>= 6)
7844 (void) printf("%s replay %"PRIu64
" blocks, "
7845 "%"PRIu64
" records, seq %"PRIu64
"\n",
7847 zilog
->zl_parse_blk_count
,
7848 zilog
->zl_parse_lr_count
,
7849 zilog
->zl_replaying_seq
);
7851 zilog
= zil_open(os
, ztest_get_data
, NULL
);
7853 if (zilog
->zl_replaying_seq
!= 0 &&
7854 zilog
->zl_replaying_seq
< committed_seq
)
7855 fatal(B_FALSE
, "missing log records: "
7856 "replayed %"PRIu64
" < committed %"PRIu64
"",
7857 zilog
->zl_replaying_seq
, committed_seq
);
7863 ztest_dataset_close(int d
)
7865 ztest_ds_t
*zd
= &ztest_ds
[d
];
7867 zil_close(zd
->zd_zilog
);
7868 dmu_objset_disown(zd
->zd_os
, B_TRUE
, zd
);
7874 ztest_replay_zil_cb(const char *name
, void *arg
)
7880 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_ANY
, B_TRUE
,
7881 B_TRUE
, FTAG
, &os
));
7883 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
7885 ztest_zd_init(zdtmp
, NULL
, os
);
7886 zil_replay(os
, zdtmp
, ztest_replay_vector
);
7887 ztest_zd_fini(zdtmp
);
7889 if (dmu_objset_zil(os
)->zl_parse_lr_count
!= 0 &&
7890 ztest_opts
.zo_verbose
>= 6) {
7891 zilog_t
*zilog
= dmu_objset_zil(os
);
7893 (void) printf("%s replay %"PRIu64
" blocks, "
7894 "%"PRIu64
" records, seq %"PRIu64
"\n",
7896 zilog
->zl_parse_blk_count
,
7897 zilog
->zl_parse_lr_count
,
7898 zilog
->zl_replaying_seq
);
7901 umem_free(zdtmp
, sizeof (ztest_ds_t
));
7903 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7910 ztest_ds_t
*zd
= &ztest_ds
[0];
7914 /* freeze not supported during RAIDZ expansion */
7915 if (ztest_opts
.zo_raid_do_expand
)
7918 if (ztest_opts
.zo_verbose
>= 3)
7919 (void) printf("testing spa_freeze()...\n");
7921 raidz_scratch_verify();
7922 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7923 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7924 VERIFY0(ztest_dataset_open(0));
7928 * Force the first log block to be transactionally allocated.
7929 * We have to do this before we freeze the pool -- otherwise
7930 * the log chain won't be anchored.
7932 while (BP_IS_HOLE(&zd
->zd_zilog
->zl_header
->zh_log
)) {
7933 ztest_dmu_object_alloc_free(zd
, 0);
7934 zil_commit(zd
->zd_zilog
, 0);
7937 txg_wait_synced(spa_get_dsl(spa
), 0);
7940 * Freeze the pool. This stops spa_sync() from doing anything,
7941 * so that the only way to record changes from now on is the ZIL.
7946 * Because it is hard to predict how much space a write will actually
7947 * require beforehand, we leave ourselves some fudge space to write over
7950 uint64_t capacity
= metaslab_class_get_space(spa_normal_class(spa
)) / 2;
7953 * Run tests that generate log records but don't alter the pool config
7954 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7955 * We do a txg_wait_synced() after each iteration to force the txg
7956 * to increase well beyond the last synced value in the uberblock.
7957 * The ZIL should be OK with that.
7959 * Run a random number of times less than zo_maxloops and ensure we do
7960 * not run out of space on the pool.
7962 while (ztest_random(10) != 0 &&
7963 numloops
++ < ztest_opts
.zo_maxloops
&&
7964 metaslab_class_get_alloc(spa_normal_class(spa
)) < capacity
) {
7966 ztest_od_init(&od
, 0, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
7967 VERIFY0(ztest_object_init(zd
, &od
, sizeof (od
), B_FALSE
));
7968 ztest_io(zd
, od
.od_object
,
7969 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
7970 txg_wait_synced(spa_get_dsl(spa
), 0);
7974 * Commit all of the changes we just generated.
7976 zil_commit(zd
->zd_zilog
, 0);
7977 txg_wait_synced(spa_get_dsl(spa
), 0);
7980 * Close our dataset and close the pool.
7982 ztest_dataset_close(0);
7983 spa_close(spa
, FTAG
);
7987 * Open and close the pool and dataset to induce log replay.
7989 raidz_scratch_verify();
7990 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7991 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7992 ASSERT3U(spa_freeze_txg(spa
), ==, UINT64_MAX
);
7993 VERIFY0(ztest_dataset_open(0));
7995 txg_wait_synced(spa_get_dsl(spa
), 0);
7996 ztest_dataset_close(0);
7997 ztest_reguid(NULL
, 0);
7999 spa_close(spa
, FTAG
);
8004 ztest_import_impl(void)
8006 importargs_t args
= { 0 };
8007 nvlist_t
*cfg
= NULL
;
8009 char *searchdirs
[nsearch
];
8010 int flags
= ZFS_IMPORT_MISSING_LOG
;
8012 searchdirs
[0] = ztest_opts
.zo_dir
;
8013 args
.paths
= nsearch
;
8014 args
.path
= searchdirs
;
8015 args
.can_be_active
= B_FALSE
;
8017 libpc_handle_t lpch
= {
8018 .lpc_lib_handle
= NULL
,
8019 .lpc_ops
= &libzpool_config_ops
,
8020 .lpc_printerr
= B_TRUE
8022 VERIFY0(zpool_find_config(&lpch
, ztest_opts
.zo_pool
, &cfg
, &args
));
8023 VERIFY0(spa_import(ztest_opts
.zo_pool
, cfg
, NULL
, flags
));
8028 * Import a storage pool with the given name.
8031 ztest_import(ztest_shared_t
*zs
)
8035 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8036 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8037 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
8039 raidz_scratch_verify();
8040 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
8042 ztest_import_impl();
8044 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
8045 zs
->zs_metaslab_sz
=
8046 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
8047 zs
->zs_guid
= spa_guid(spa
);
8048 spa_close(spa
, FTAG
);
8052 if (!ztest_opts
.zo_mmp_test
) {
8053 ztest_run_zdb(zs
->zs_guid
);
8055 ztest_run_zdb(zs
->zs_guid
);
8058 (void) pthread_rwlock_destroy(&ztest_name_lock
);
8059 mutex_destroy(&ztest_vdev_lock
);
8060 mutex_destroy(&ztest_checkpoint_lock
);
8064 * After the expansion was killed, check that the pool is healthy
8067 ztest_raidz_expand_check(spa_t
*spa
)
8069 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, ==, RAIDZ_EXPAND_KILLED
);
8071 * Set pool check done flag, main program will run a zdb check
8072 * of the pool when we exit.
8074 ztest_shared_opts
->zo_raidz_expand_test
= RAIDZ_EXPAND_CHECKED
;
8076 /* Wait for reflow to finish */
8077 if (ztest_opts
.zo_verbose
>= 1) {
8078 (void) printf("\nwaiting for reflow to finish ...\n");
8080 pool_raidz_expand_stat_t rzx_stats
;
8081 pool_raidz_expand_stat_t
*pres
= &rzx_stats
;
8083 txg_wait_synced(spa_get_dsl(spa
), 0);
8084 (void) poll(NULL
, 0, 500); /* wait 1/2 second */
8086 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8087 (void) spa_raidz_expand_get_stats(spa
, pres
);
8088 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8089 } while (pres
->pres_state
!= DSS_FINISHED
&&
8090 pres
->pres_reflowed
< pres
->pres_to_reflow
);
8092 if (ztest_opts
.zo_verbose
>= 1) {
8093 (void) printf("verifying an interrupted raidz "
8094 "expansion using a pool scrub ...\n");
8097 /* Will fail here if there is non-recoverable corruption detected */
8098 int error
= ztest_scrub_impl(spa
);
8104 if (ztest_opts
.zo_verbose
>= 1) {
8105 (void) printf("raidz expansion scrub check complete\n");
8110 * Start a raidz expansion test. We run some I/O on the pool for a while
8111 * to get some data in the pool. Then we grow the raidz and
8112 * kill the test at the requested offset into the reflow, verifying that
8113 * doing such does not lead to pool corruption.
8116 ztest_raidz_expand_run(ztest_shared_t
*zs
, spa_t
*spa
)
8119 pool_raidz_expand_stat_t rzx_stats
;
8120 pool_raidz_expand_stat_t
*pres
= &rzx_stats
;
8121 kthread_t
**run_threads
;
8122 vdev_t
*cvd
, *rzvd
= spa
->spa_root_vdev
->vdev_child
[0];
8123 int total_disks
= rzvd
->vdev_children
;
8124 int data_disks
= total_disks
- vdev_get_nparity(rzvd
);
8125 uint64_t alloc_goal
;
8128 int threads
= ztest_opts
.zo_threads
;
8129 ztest_expand_io_t
*thread_args
;
8131 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, !=, RAIDZ_EXPAND_NONE
);
8132 ASSERT3P(rzvd
->vdev_ops
, ==, &vdev_raidz_ops
);
8133 ztest_opts
.zo_raidz_expand_test
= RAIDZ_EXPAND_STARTED
;
8135 /* Setup a 1 MiB buffer of random data */
8136 uint64_t bufsize
= 1024 * 1024;
8137 void *buffer
= umem_alloc(bufsize
, UMEM_NOFAIL
);
8139 if (read(ztest_fd_rand
, buffer
, bufsize
) != bufsize
) {
8140 fatal(B_TRUE
, "short read from /dev/urandom");
8143 * Put some data in the pool and then attach a vdev to initiate
8146 run_threads
= umem_zalloc(threads
* sizeof (kthread_t
*), UMEM_NOFAIL
);
8147 thread_args
= umem_zalloc(threads
* sizeof (ztest_expand_io_t
),
8149 /* Aim for roughly 25% of allocatable space up to 1GB */
8150 alloc_goal
= (vdev_get_min_asize(rzvd
) * data_disks
) / total_disks
;
8151 alloc_goal
= MIN(alloc_goal
>> 2, 1024*1024*1024);
8152 if (ztest_opts
.zo_verbose
>= 1) {
8153 (void) printf("adding data to pool '%s', goal %llu bytes\n",
8154 ztest_opts
.zo_pool
, (u_longlong_t
)alloc_goal
);
8158 * Kick off all the I/O generators that run in parallel.
8160 for (t
= 0; t
< threads
; t
++) {
8161 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
8162 umem_free(run_threads
, threads
* sizeof (kthread_t
*));
8163 umem_free(buffer
, bufsize
);
8166 thread_args
[t
].rzx_id
= t
;
8167 thread_args
[t
].rzx_amount
= alloc_goal
/ threads
;
8168 thread_args
[t
].rzx_bufsize
= bufsize
;
8169 thread_args
[t
].rzx_buffer
= buffer
;
8170 thread_args
[t
].rzx_alloc_max
= alloc_goal
;
8171 thread_args
[t
].rzx_spa
= spa
;
8172 run_threads
[t
] = thread_create(NULL
, 0, ztest_rzx_thread
,
8173 &thread_args
[t
], 0, NULL
, TS_RUN
| TS_JOINABLE
,
8178 * Wait for all of the writers to complete.
8180 for (t
= 0; t
< threads
; t
++)
8181 VERIFY0(thread_join(run_threads
[t
]));
8184 * Close all datasets. This must be done after all the threads
8185 * are joined so we can be sure none of the datasets are in-use
8186 * by any of the threads.
8188 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8189 if (t
< ztest_opts
.zo_datasets
)
8190 ztest_dataset_close(t
);
8193 txg_wait_synced(spa_get_dsl(spa
), 0);
8195 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
8196 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
8198 umem_free(buffer
, bufsize
);
8199 umem_free(run_threads
, threads
* sizeof (kthread_t
*));
8200 umem_free(thread_args
, threads
* sizeof (ztest_expand_io_t
));
8202 /* Set our reflow target to 25%, 50% or 75% of allocated size */
8203 uint_t multiple
= ztest_random(3) + 1;
8204 uint64_t reflow_max
= (rzvd
->vdev_stat
.vs_alloc
* multiple
) / 4;
8205 raidz_expand_max_reflow_bytes
= reflow_max
;
8207 if (ztest_opts
.zo_verbose
>= 1) {
8208 (void) printf("running raidz expansion test, killing when "
8209 "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8210 (u_longlong_t
)reflow_max
, multiple
);
8213 /* XXX - do we want some I/O load during the reflow? */
8216 * Use a disk size that is larger than existing ones
8218 cvd
= rzvd
->vdev_child
[0];
8219 csize
= vdev_get_min_asize(cvd
);
8220 csize
+= csize
/ 10;
8222 * Path to vdev to be attached
8224 char *newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
8225 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
8226 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, rzvd
->vdev_children
);
8228 * Build the nvlist describing newpath.
8230 root
= make_vdev_root(newpath
, NULL
, NULL
, csize
, ztest_get_ashift(),
8233 * Expand the raidz vdev by attaching the new disk
8235 if (ztest_opts
.zo_verbose
>= 1) {
8236 (void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8237 (int)rzvd
->vdev_children
, (int)rzvd
->vdev_children
+ 1,
8240 error
= spa_vdev_attach(spa
, rzvd
->vdev_guid
, root
, B_FALSE
, B_FALSE
);
8243 fatal(0, "raidz expand: attach (%s %llu) returned %d",
8244 newpath
, (long long)csize
, error
);
8248 * Wait for reflow to begin
8250 while (spa
->spa_raidz_expand
== NULL
) {
8251 txg_wait_synced(spa_get_dsl(spa
), 0);
8252 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8254 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8255 (void) spa_raidz_expand_get_stats(spa
, pres
);
8256 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8257 while (pres
->pres_state
!= DSS_SCANNING
) {
8258 txg_wait_synced(spa_get_dsl(spa
), 0);
8259 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8260 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8261 (void) spa_raidz_expand_get_stats(spa
, pres
);
8262 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8265 ASSERT3U(pres
->pres_state
, ==, DSS_SCANNING
);
8266 ASSERT3U(pres
->pres_to_reflow
, !=, 0);
8268 * Set so when we are killed we go to raidz checking rather than
8271 ztest_shared_opts
->zo_raidz_expand_test
= RAIDZ_EXPAND_KILLED
;
8272 if (ztest_opts
.zo_verbose
>= 1) {
8273 (void) printf("raidz expansion reflow started, waiting for "
8274 "%llu bytes to be copied\n", (u_longlong_t
)reflow_max
);
8278 * Wait for reflow maximum to be reached and then kill the test
8280 while (pres
->pres_reflowed
< reflow_max
) {
8281 txg_wait_synced(spa_get_dsl(spa
), 0);
8282 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8283 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8284 (void) spa_raidz_expand_get_stats(spa
, pres
);
8285 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8288 /* Reset the reflow pause before killing */
8289 raidz_expand_max_reflow_bytes
= 0;
8291 if (ztest_opts
.zo_verbose
>= 1) {
8292 (void) printf("killing raidz expansion test after reflow "
8293 "reached %llu bytes\n", (u_longlong_t
)pres
->pres_reflowed
);
8297 * Kill ourself to simulate a panic during a reflow. Our parent will
8298 * restart the test and the changed flag value will drive the test
8299 * through the scrub/check code to verify the pool is not corrupted.
8305 ztest_generic_run(ztest_shared_t
*zs
, spa_t
*spa
)
8307 kthread_t
**run_threads
;
8310 run_threads
= umem_zalloc(ztest_opts
.zo_threads
* sizeof (kthread_t
*),
8314 * Kick off all the tests that run in parallel.
8316 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8317 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
8318 umem_free(run_threads
, ztest_opts
.zo_threads
*
8319 sizeof (kthread_t
*));
8323 run_threads
[t
] = thread_create(NULL
, 0, ztest_thread
,
8324 (void *)(uintptr_t)t
, 0, NULL
, TS_RUN
| TS_JOINABLE
,
8329 * Wait for all of the tests to complete.
8331 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++)
8332 VERIFY0(thread_join(run_threads
[t
]));
8335 * Close all datasets. This must be done after all the threads
8336 * are joined so we can be sure none of the datasets are in-use
8337 * by any of the threads.
8339 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8340 if (t
< ztest_opts
.zo_datasets
)
8341 ztest_dataset_close(t
);
8344 txg_wait_synced(spa_get_dsl(spa
), 0);
8346 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
8347 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
8349 umem_free(run_threads
, ztest_opts
.zo_threads
* sizeof (kthread_t
*));
8353 * Setup our test context and kick off threads to run tests on all datasets
8357 ztest_run(ztest_shared_t
*zs
)
8361 kthread_t
*resume_thread
, *deadman_thread
;
8366 ztest_exiting
= B_FALSE
;
8369 * Initialize parent/child shared state.
8371 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8372 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8373 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
8375 zs
->zs_thread_start
= gethrtime();
8376 zs
->zs_thread_stop
=
8377 zs
->zs_thread_start
+ ztest_opts
.zo_passtime
* NANOSEC
;
8378 zs
->zs_thread_stop
= MIN(zs
->zs_thread_stop
, zs
->zs_proc_stop
);
8379 zs
->zs_thread_kill
= zs
->zs_thread_stop
;
8380 if (ztest_random(100) < ztest_opts
.zo_killrate
) {
8381 zs
->zs_thread_kill
-=
8382 ztest_random(ztest_opts
.zo_passtime
* NANOSEC
);
8385 mutex_init(&zcl
.zcl_callbacks_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8387 list_create(&zcl
.zcl_callbacks
, sizeof (ztest_cb_data_t
),
8388 offsetof(ztest_cb_data_t
, zcd_node
));
8391 * Open our pool. It may need to be imported first depending on
8392 * what tests were running when the previous pass was terminated.
8394 raidz_scratch_verify();
8395 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
8396 error
= spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
);
8398 VERIFY3S(error
, ==, ENOENT
);
8399 ztest_import_impl();
8400 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
8401 zs
->zs_metaslab_sz
=
8402 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
8405 metaslab_preload_limit
= ztest_random(20) + 1;
8409 * XXX - BUGBUG raidz expansion do not run this for generic for now
8411 if (ztest_opts
.zo_raidz_expand_test
!= RAIDZ_EXPAND_NONE
)
8412 VERIFY0(vdev_raidz_impl_set("cycle"));
8414 dmu_objset_stats_t dds
;
8415 VERIFY0(ztest_dmu_objset_own(ztest_opts
.zo_pool
,
8416 DMU_OST_ANY
, B_TRUE
, B_TRUE
, FTAG
, &os
));
8417 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
8418 dmu_objset_fast_stat(os
, &dds
);
8419 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
8420 dmu_objset_disown(os
, B_TRUE
, FTAG
);
8422 /* Give the dedicated raidz expansion test more grace time */
8423 if (ztest_opts
.zo_raidz_expand_test
!= RAIDZ_EXPAND_NONE
)
8424 zfs_deadman_synctime_ms
*= 2;
8427 * Create a thread to periodically resume suspended I/O.
8429 resume_thread
= thread_create(NULL
, 0, ztest_resume_thread
,
8430 spa
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
8433 * Create a deadman thread and set to panic if we hang.
8435 deadman_thread
= thread_create(NULL
, 0, ztest_deadman_thread
,
8436 zs
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
8438 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_PANIC
;
8441 * Verify that we can safely inquire about any object,
8442 * whether it's allocated or not. To make it interesting,
8443 * we probe a 5-wide window around each power of two.
8444 * This hits all edge cases, including zero and the max.
8446 for (t
= 0; t
< 64; t
++) {
8447 for (d
= -5; d
<= 5; d
++) {
8448 error
= dmu_object_info(spa
->spa_meta_objset
,
8449 (1ULL << t
) + d
, NULL
);
8450 ASSERT(error
== 0 || error
== ENOENT
||
8456 * If we got any ENOSPC errors on the previous run, destroy something.
8458 if (zs
->zs_enospc_count
!= 0) {
8459 /* Not expecting ENOSPC errors during raidz expansion tests */
8460 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, ==,
8463 int d
= ztest_random(ztest_opts
.zo_datasets
);
8464 ztest_dataset_destroy(d
);
8466 zs
->zs_enospc_count
= 0;
8469 * If we were in the middle of ztest_device_removal() and were killed
8470 * we need to ensure the removal and scrub complete before running
8471 * any tests that check ztest_device_removal_active. The removal will
8472 * be restarted automatically when the spa is opened, but we need to
8473 * initiate the scrub manually if it is not already in progress. Note
8474 * that we always run the scrub whenever an indirect vdev exists
8475 * because we have no way of knowing for sure if ztest_device_removal()
8476 * fully completed its scrub before the pool was reimported.
8478 * Does not apply for the RAIDZ expansion specific test runs
8480 if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_NONE
&&
8481 (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
||
8482 spa
->spa_removing_phys
.sr_prev_indirect_vdev
!= -1)) {
8483 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
8484 txg_wait_synced(spa_get_dsl(spa
), 0);
8486 error
= ztest_scrub_impl(spa
);
8492 if (ztest_opts
.zo_verbose
>= 4)
8493 (void) printf("starting main threads...\n");
8496 * Replay all logs of all datasets in the pool. This is primarily for
8497 * temporary datasets which wouldn't otherwise get replayed, which
8498 * can trigger failures when attempting to offline a SLOG in
8499 * ztest_fault_inject().
8501 (void) dmu_objset_find(ztest_opts
.zo_pool
, ztest_replay_zil_cb
,
8502 NULL
, DS_FIND_CHILDREN
);
8504 if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_REQUESTED
)
8505 ztest_raidz_expand_run(zs
, spa
);
8506 else if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_KILLED
)
8507 ztest_raidz_expand_check(spa
);
8509 ztest_generic_run(zs
, spa
);
8511 /* Kill the resume and deadman threads */
8512 ztest_exiting
= B_TRUE
;
8513 VERIFY0(thread_join(resume_thread
));
8514 VERIFY0(thread_join(deadman_thread
));
8518 * Right before closing the pool, kick off a bunch of async I/O;
8519 * spa_close() should wait for it to complete.
8521 for (object
= 1; object
< 50; object
++) {
8522 dmu_prefetch(spa
->spa_meta_objset
, object
, 0, 0, 1ULL << 20,
8523 ZIO_PRIORITY_SYNC_READ
);
8526 /* Verify that at least one commit cb was called in a timely fashion */
8527 if (zc_cb_counter
>= ZTEST_COMMIT_CB_MIN_REG
)
8528 VERIFY0(zc_min_txg_delay
);
8530 spa_close(spa
, FTAG
);
8533 * Verify that we can loop over all pools.
8535 mutex_enter(&spa_namespace_lock
);
8536 for (spa
= spa_next(NULL
); spa
!= NULL
; spa
= spa_next(spa
))
8537 if (ztest_opts
.zo_verbose
> 3)
8538 (void) printf("spa_next: found %s\n", spa_name(spa
));
8539 mutex_exit(&spa_namespace_lock
);
8542 * Verify that we can export the pool and reimport it under a
8545 if ((ztest_random(2) == 0) && !ztest_opts
.zo_mmp_test
) {
8546 char name
[ZFS_MAX_DATASET_NAME_LEN
];
8547 (void) snprintf(name
, sizeof (name
), "%s_import",
8548 ztest_opts
.zo_pool
);
8549 ztest_spa_import_export(ztest_opts
.zo_pool
, name
);
8550 ztest_spa_import_export(name
, ztest_opts
.zo_pool
);
8555 list_destroy(&zcl
.zcl_callbacks
);
8556 mutex_destroy(&zcl
.zcl_callbacks_lock
);
8557 (void) pthread_rwlock_destroy(&ztest_name_lock
);
8558 mutex_destroy(&ztest_vdev_lock
);
8559 mutex_destroy(&ztest_checkpoint_lock
);
8563 print_time(hrtime_t t
, char *timebuf
)
8565 hrtime_t s
= t
/ NANOSEC
;
8566 hrtime_t m
= s
/ 60;
8567 hrtime_t h
= m
/ 60;
8568 hrtime_t d
= h
/ 24;
8577 (void) sprintf(timebuf
,
8578 "%llud%02lluh%02llum%02llus", d
, h
, m
, s
);
8580 (void) sprintf(timebuf
, "%lluh%02llum%02llus", h
, m
, s
);
8582 (void) sprintf(timebuf
, "%llum%02llus", m
, s
);
8584 (void) sprintf(timebuf
, "%llus", s
);
8588 make_random_pool_props(void)
8592 props
= fnvlist_alloc();
8594 /* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8595 if (ztest_random(5) == 0) {
8596 fnvlist_add_uint64(props
,
8597 zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA
),
8601 /* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8602 if (ztest_random(2) == 0) {
8603 fnvlist_add_uint64(props
,
8604 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE
), 1);
8611 * Create a storage pool with the given name and initial vdev size.
8612 * Then test spa_freeze() functionality.
8615 ztest_init(ztest_shared_t
*zs
)
8618 nvlist_t
*nvroot
, *props
;
8621 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8622 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8623 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
8625 raidz_scratch_verify();
8626 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
8629 * Create the storage pool.
8631 (void) spa_destroy(ztest_opts
.zo_pool
);
8632 ztest_shared
->zs_vdev_next_leaf
= 0;
8634 zs
->zs_mirrors
= ztest_opts
.zo_mirrors
;
8635 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
8636 NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
8637 props
= make_random_pool_props();
8640 * We don't expect the pool to suspend unless maxfaults == 0,
8641 * in which case ztest_fault_inject() temporarily takes away
8642 * the only valid replica.
8644 fnvlist_add_uint64(props
,
8645 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE
),
8646 MAXFAULTS(zs
) ? ZIO_FAILURE_MODE_PANIC
: ZIO_FAILURE_MODE_WAIT
);
8648 for (i
= 0; i
< SPA_FEATURES
; i
++) {
8651 if (!spa_feature_table
[i
].fi_zfs_mod_supported
)
8655 * 75% chance of using the log space map feature. We want ztest
8656 * to exercise both the code paths that use the log space map
8657 * feature and the ones that don't.
8659 if (i
== SPA_FEATURE_LOG_SPACEMAP
&& ztest_random(4) == 0)
8663 * split 50/50 between legacy and fast dedup
8665 if (i
== SPA_FEATURE_FAST_DEDUP
&& ztest_random(2) != 0)
8668 VERIFY3S(-1, !=, asprintf(&buf
, "feature@%s",
8669 spa_feature_table
[i
].fi_uname
));
8670 fnvlist_add_uint64(props
, buf
, 0);
8674 VERIFY0(spa_create(ztest_opts
.zo_pool
, nvroot
, props
, NULL
, NULL
));
8675 fnvlist_free(nvroot
);
8676 fnvlist_free(props
);
8678 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
8679 zs
->zs_metaslab_sz
=
8680 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
8681 zs
->zs_guid
= spa_guid(spa
);
8682 spa_close(spa
, FTAG
);
8686 if (!ztest_opts
.zo_mmp_test
) {
8687 ztest_run_zdb(zs
->zs_guid
);
8689 ztest_run_zdb(zs
->zs_guid
);
8692 (void) pthread_rwlock_destroy(&ztest_name_lock
);
8693 mutex_destroy(&ztest_vdev_lock
);
8694 mutex_destroy(&ztest_checkpoint_lock
);
8700 static char ztest_name_data
[] = "/tmp/ztest.data.XXXXXX";
8702 ztest_fd_data
= mkstemp(ztest_name_data
);
8703 ASSERT3S(ztest_fd_data
, >=, 0);
8704 (void) unlink(ztest_name_data
);
8708 shared_data_size(ztest_shared_hdr_t
*hdr
)
8712 size
= hdr
->zh_hdr_size
;
8713 size
+= hdr
->zh_opts_size
;
8714 size
+= hdr
->zh_size
;
8715 size
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
8716 size
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
8717 size
+= hdr
->zh_scratch_state_size
;
8726 ztest_shared_hdr_t
*hdr
;
8728 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
8729 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
8730 ASSERT3P(hdr
, !=, MAP_FAILED
);
8732 VERIFY0(ftruncate(ztest_fd_data
, sizeof (ztest_shared_hdr_t
)));
8734 hdr
->zh_hdr_size
= sizeof (ztest_shared_hdr_t
);
8735 hdr
->zh_opts_size
= sizeof (ztest_shared_opts_t
);
8736 hdr
->zh_size
= sizeof (ztest_shared_t
);
8737 hdr
->zh_stats_size
= sizeof (ztest_shared_callstate_t
);
8738 hdr
->zh_stats_count
= ZTEST_FUNCS
;
8739 hdr
->zh_ds_size
= sizeof (ztest_shared_ds_t
);
8740 hdr
->zh_ds_count
= ztest_opts
.zo_datasets
;
8741 hdr
->zh_scratch_state_size
= sizeof (ztest_shared_scratch_state_t
);
8743 size
= shared_data_size(hdr
);
8744 VERIFY0(ftruncate(ztest_fd_data
, size
));
8746 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
8753 ztest_shared_hdr_t
*hdr
;
8756 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
8757 PROT_READ
, MAP_SHARED
, ztest_fd_data
, 0);
8758 ASSERT3P(hdr
, !=, MAP_FAILED
);
8760 size
= shared_data_size(hdr
);
8762 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
8763 hdr
= ztest_shared_hdr
= (void *)mmap(0, P2ROUNDUP(size
, getpagesize()),
8764 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
8765 ASSERT3P(hdr
, !=, MAP_FAILED
);
8766 buf
= (uint8_t *)hdr
;
8768 offset
= hdr
->zh_hdr_size
;
8769 ztest_shared_opts
= (void *)&buf
[offset
];
8770 offset
+= hdr
->zh_opts_size
;
8771 ztest_shared
= (void *)&buf
[offset
];
8772 offset
+= hdr
->zh_size
;
8773 ztest_shared_callstate
= (void *)&buf
[offset
];
8774 offset
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
8775 ztest_shared_ds
= (void *)&buf
[offset
];
8776 offset
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
8777 ztest_scratch_state
= (void *)&buf
[offset
];
8781 exec_child(char *cmd
, char *libpath
, boolean_t ignorekill
, int *statusp
)
8785 char *cmdbuf
= NULL
;
8790 cmdbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
8791 (void) strlcpy(cmdbuf
, getexecname(), MAXPATHLEN
);
8796 fatal(B_TRUE
, "fork failed");
8798 if (pid
== 0) { /* child */
8799 char fd_data_str
[12];
8802 snprintf(fd_data_str
, 12, "%d", ztest_fd_data
));
8803 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str
, 1));
8805 if (libpath
!= NULL
) {
8806 const char *curlp
= getenv("LD_LIBRARY_PATH");
8808 VERIFY0(setenv("LD_LIBRARY_PATH", libpath
, 1));
8812 asprintf(&newlp
, "%s:%s", libpath
, curlp
));
8813 VERIFY0(setenv("LD_LIBRARY_PATH", newlp
, 1));
8817 (void) execl(cmd
, cmd
, (char *)NULL
);
8818 ztest_dump_core
= B_FALSE
;
8819 fatal(B_TRUE
, "exec failed: %s", cmd
);
8822 if (cmdbuf
!= NULL
) {
8823 umem_free(cmdbuf
, MAXPATHLEN
);
8827 while (waitpid(pid
, &status
, 0) != pid
)
8829 if (statusp
!= NULL
)
8832 if (WIFEXITED(status
)) {
8833 if (WEXITSTATUS(status
) != 0) {
8834 (void) fprintf(stderr
, "child exited with code %d\n",
8835 WEXITSTATUS(status
));
8839 } else if (WIFSIGNALED(status
)) {
8840 if (!ignorekill
|| WTERMSIG(status
) != SIGKILL
) {
8841 (void) fprintf(stderr
, "child died with signal %d\n",
8847 (void) fprintf(stderr
, "something strange happened to child\n");
8853 ztest_run_init(void)
8857 ztest_shared_t
*zs
= ztest_shared
;
8860 * Blow away any existing copy of zpool.cache
8862 (void) remove(spa_config_path
);
8864 if (ztest_opts
.zo_init
== 0) {
8865 if (ztest_opts
.zo_verbose
>= 1)
8866 (void) printf("Importing pool %s\n",
8867 ztest_opts
.zo_pool
);
8873 * Create and initialize our storage pool.
8875 for (i
= 1; i
<= ztest_opts
.zo_init
; i
++) {
8876 memset(zs
, 0, sizeof (*zs
));
8877 if (ztest_opts
.zo_verbose
>= 3 &&
8878 ztest_opts
.zo_init
!= 1) {
8879 (void) printf("ztest_init(), pass %d\n", i
);
8886 main(int argc
, char **argv
)
8894 ztest_shared_callstate_t
*zc
;
8896 char numbuf
[NN_NUMBUF_SZ
];
8900 char *fd_data_str
= getenv("ZTEST_FD_DATA");
8901 struct sigaction action
;
8903 (void) setvbuf(stdout
, NULL
, _IOLBF
, 0);
8905 dprintf_setup(&argc
, argv
);
8906 zfs_deadman_synctime_ms
= 300000;
8907 zfs_deadman_checktime_ms
= 30000;
8909 * As two-word space map entries may not come up often (especially
8910 * if pool and vdev sizes are small) we want to force at least some
8911 * of them so the feature get tested.
8913 zfs_force_some_double_word_sm_entries
= B_TRUE
;
8916 * Verify that even extensively damaged split blocks with many
8917 * segments can be reconstructed in a reasonable amount of time
8918 * when reconstruction is known to be possible.
8920 * Note: the lower this value is, the more damage we inflict, and
8921 * the more time ztest spends in recovering that damage. We chose
8922 * to induce damage 1/100th of the time so recovery is tested but
8923 * not so frequently that ztest doesn't get to test other code paths.
8925 zfs_reconstruct_indirect_damage_fraction
= 100;
8927 action
.sa_handler
= sig_handler
;
8928 sigemptyset(&action
.sa_mask
);
8929 action
.sa_flags
= 0;
8931 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
8932 (void) fprintf(stderr
, "ztest: cannot catch SIGSEGV: %s.\n",
8937 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
8938 (void) fprintf(stderr
, "ztest: cannot catch SIGABRT: %s.\n",
8944 * Force random_get_bytes() to use /dev/urandom in order to prevent
8945 * ztest from needlessly depleting the system entropy pool.
8947 random_path
= "/dev/urandom";
8948 ztest_fd_rand
= open(random_path
, O_RDONLY
| O_CLOEXEC
);
8949 ASSERT3S(ztest_fd_rand
, >=, 0);
8952 process_options(argc
, argv
);
8957 memcpy(ztest_shared_opts
, &ztest_opts
,
8958 sizeof (*ztest_shared_opts
));
8960 ztest_fd_data
= atoi(fd_data_str
);
8962 memcpy(&ztest_opts
, ztest_shared_opts
, sizeof (ztest_opts
));
8964 ASSERT3U(ztest_opts
.zo_datasets
, ==, ztest_shared_hdr
->zh_ds_count
);
8966 err
= ztest_set_global_vars();
8967 if (err
!= 0 && !fd_data_str
) {
8968 /* error message done by ztest_set_global_vars */
8971 /* children should not be spawned if setting gvars fails */
8972 VERIFY3S(err
, ==, 0);
8975 /* Override location of zpool.cache */
8976 VERIFY3S(asprintf((char **)&spa_config_path
, "%s/zpool.cache",
8977 ztest_opts
.zo_dir
), !=, -1);
8979 ztest_ds
= umem_alloc(ztest_opts
.zo_datasets
* sizeof (ztest_ds_t
),
8984 metaslab_force_ganging
= ztest_opts
.zo_metaslab_force_ganging
;
8985 metaslab_df_alloc_threshold
=
8986 zs
->zs_metaslab_df_alloc_threshold
;
8995 hasalt
= (strlen(ztest_opts
.zo_alt_ztest
) != 0);
8997 if (ztest_opts
.zo_verbose
>= 1) {
8998 (void) printf("%"PRIu64
" vdevs, %d datasets, %d threads, "
8999 "%d %s disks, parity %d, %"PRIu64
" seconds...\n\n",
9000 ztest_opts
.zo_vdevs
,
9001 ztest_opts
.zo_datasets
,
9002 ztest_opts
.zo_threads
,
9003 ztest_opts
.zo_raid_children
,
9004 ztest_opts
.zo_raid_type
,
9005 ztest_opts
.zo_raid_parity
,
9006 ztest_opts
.zo_time
);
9009 cmd
= umem_alloc(MAXNAMELEN
, UMEM_NOFAIL
);
9010 (void) strlcpy(cmd
, getexecname(), MAXNAMELEN
);
9012 zs
->zs_do_init
= B_TRUE
;
9013 if (strlen(ztest_opts
.zo_alt_ztest
) != 0) {
9014 if (ztest_opts
.zo_verbose
>= 1) {
9015 (void) printf("Executing older ztest for "
9016 "initialization: %s\n", ztest_opts
.zo_alt_ztest
);
9018 VERIFY(!exec_child(ztest_opts
.zo_alt_ztest
,
9019 ztest_opts
.zo_alt_libpath
, B_FALSE
, NULL
));
9021 VERIFY(!exec_child(NULL
, NULL
, B_FALSE
, NULL
));
9023 zs
->zs_do_init
= B_FALSE
;
9025 zs
->zs_proc_start
= gethrtime();
9026 zs
->zs_proc_stop
= zs
->zs_proc_start
+ ztest_opts
.zo_time
* NANOSEC
;
9028 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
9029 zi
= &ztest_info
[f
];
9030 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
9031 if (zs
->zs_proc_start
+ zi
->zi_interval
[0] > zs
->zs_proc_stop
)
9032 zc
->zc_next
= UINT64_MAX
;
9034 zc
->zc_next
= zs
->zs_proc_start
+
9035 ztest_random(2 * zi
->zi_interval
[0] + 1);
9039 * Run the tests in a loop. These tests include fault injection
9040 * to verify that self-healing data works, and forced crashes
9041 * to verify that we never lose on-disk consistency.
9043 while (gethrtime() < zs
->zs_proc_stop
) {
9048 * Initialize the workload counters for each function.
9050 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
9051 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
9056 /* Set the allocation switch size */
9057 zs
->zs_metaslab_df_alloc_threshold
=
9058 ztest_random(zs
->zs_metaslab_sz
/ 4) + 1;
9060 if (!hasalt
|| ztest_random(2) == 0) {
9061 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
9062 (void) printf("Executing newer ztest: %s\n",
9066 killed
= exec_child(cmd
, NULL
, B_TRUE
, &status
);
9068 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
9069 (void) printf("Executing older ztest: %s\n",
9070 ztest_opts
.zo_alt_ztest
);
9073 killed
= exec_child(ztest_opts
.zo_alt_ztest
,
9074 ztest_opts
.zo_alt_libpath
, B_TRUE
, &status
);
9081 if (ztest_opts
.zo_verbose
>= 1) {
9082 hrtime_t now
= gethrtime();
9084 now
= MIN(now
, zs
->zs_proc_stop
);
9085 print_time(zs
->zs_proc_stop
- now
, timebuf
);
9086 nicenum(zs
->zs_space
, numbuf
, sizeof (numbuf
));
9088 (void) printf("Pass %3d, %8s, %3"PRIu64
" ENOSPC, "
9089 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9091 WIFEXITED(status
) ? "Complete" : "SIGKILL",
9092 zs
->zs_enospc_count
,
9093 100.0 * zs
->zs_alloc
/ zs
->zs_space
,
9095 100.0 * (now
- zs
->zs_proc_start
) /
9096 (ztest_opts
.zo_time
* NANOSEC
), timebuf
);
9099 if (ztest_opts
.zo_verbose
>= 2) {
9100 (void) printf("\nWorkload summary:\n\n");
9101 (void) printf("%7s %9s %s\n",
9102 "Calls", "Time", "Function");
9103 (void) printf("%7s %9s %s\n",
9104 "-----", "----", "--------");
9105 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
9106 zi
= &ztest_info
[f
];
9107 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
9108 print_time(zc
->zc_time
, timebuf
);
9109 (void) printf("%7"PRIu64
" %9s %s\n",
9110 zc
->zc_count
, timebuf
,
9113 (void) printf("\n");
9116 if (!ztest_opts
.zo_mmp_test
)
9117 ztest_run_zdb(zs
->zs_guid
);
9118 if (ztest_shared_opts
->zo_raidz_expand_test
==
9119 RAIDZ_EXPAND_CHECKED
)
9120 break; /* raidz expand test complete */
9123 if (ztest_opts
.zo_verbose
>= 1) {
9125 (void) printf("%d runs of older ztest: %s\n", older
,
9126 ztest_opts
.zo_alt_ztest
);
9127 (void) printf("%d runs of newer ztest: %s\n", newer
,
9130 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9131 kills
, iters
- kills
, (100.0 * kills
) / MAX(1, iters
));
9134 umem_free(cmd
, MAXNAMELEN
);