4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 #include <sys/zfs_context.h>
29 #include <sys/dnode.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_zfs.h>
41 #include <sys/zfs_project.h>
43 dnode_stats_t dnode_stats
= {
44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64
},
45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64
},
46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64
},
47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64
},
48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64
},
49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64
},
50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64
},
51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64
},
52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64
},
53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64
},
54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64
},
55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64
},
56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64
},
57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64
},
58 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64
},
59 { "dnode_allocate", KSTAT_DATA_UINT64
},
60 { "dnode_reallocate", KSTAT_DATA_UINT64
},
61 { "dnode_buf_evict", KSTAT_DATA_UINT64
},
62 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64
},
63 { "dnode_alloc_race", KSTAT_DATA_UINT64
},
64 { "dnode_alloc_next_block", KSTAT_DATA_UINT64
},
65 { "dnode_move_invalid", KSTAT_DATA_UINT64
},
66 { "dnode_move_recheck1", KSTAT_DATA_UINT64
},
67 { "dnode_move_recheck2", KSTAT_DATA_UINT64
},
68 { "dnode_move_special", KSTAT_DATA_UINT64
},
69 { "dnode_move_handle", KSTAT_DATA_UINT64
},
70 { "dnode_move_rwlock", KSTAT_DATA_UINT64
},
71 { "dnode_move_active", KSTAT_DATA_UINT64
},
74 dnode_sums_t dnode_sums
;
76 static kstat_t
*dnode_ksp
;
77 static kmem_cache_t
*dnode_cache
;
79 static dnode_phys_t dnode_phys_zero __maybe_unused
;
81 int zfs_default_bs
= SPA_MINBLOCKSHIFT
;
82 int zfs_default_ibs
= DN_MAX_INDBLKSHIFT
;
85 static kmem_cbrc_t
dnode_move(void *, void *, size_t, void *);
89 dbuf_compare(const void *x1
, const void *x2
)
91 const dmu_buf_impl_t
*d1
= x1
;
92 const dmu_buf_impl_t
*d2
= x2
;
94 int cmp
= TREE_CMP(d1
->db_level
, d2
->db_level
);
98 cmp
= TREE_CMP(d1
->db_blkid
, d2
->db_blkid
);
102 if (d1
->db_state
== DB_MARKER
) {
103 ASSERT3S(d2
->db_state
, !=, DB_MARKER
);
104 return (TREE_PCMP(d1
->db_parent
, d2
));
105 } else if (d2
->db_state
== DB_MARKER
) {
106 ASSERT3S(d1
->db_state
, !=, DB_MARKER
);
107 return (TREE_PCMP(d1
, d2
->db_parent
));
110 if (d1
->db_state
== DB_SEARCH
) {
111 ASSERT3S(d2
->db_state
, !=, DB_SEARCH
);
113 } else if (d2
->db_state
== DB_SEARCH
) {
114 ASSERT3S(d1
->db_state
, !=, DB_SEARCH
);
118 return (TREE_PCMP(d1
, d2
));
122 dnode_cons(void *arg
, void *unused
, int kmflag
)
124 (void) unused
, (void) kmflag
;
127 rw_init(&dn
->dn_struct_rwlock
, NULL
, RW_NOLOCKDEP
, NULL
);
128 mutex_init(&dn
->dn_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
129 mutex_init(&dn
->dn_dbufs_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
130 cv_init(&dn
->dn_notxholds
, NULL
, CV_DEFAULT
, NULL
);
131 cv_init(&dn
->dn_nodnholds
, NULL
, CV_DEFAULT
, NULL
);
134 * Every dbuf has a reference, and dropping a tracked reference is
135 * O(number of references), so don't track dn_holds.
137 zfs_refcount_create_untracked(&dn
->dn_holds
);
138 zfs_refcount_create(&dn
->dn_tx_holds
);
139 list_link_init(&dn
->dn_link
);
141 memset(dn
->dn_next_type
, 0, sizeof (dn
->dn_next_type
));
142 memset(dn
->dn_next_nblkptr
, 0, sizeof (dn
->dn_next_nblkptr
));
143 memset(dn
->dn_next_nlevels
, 0, sizeof (dn
->dn_next_nlevels
));
144 memset(dn
->dn_next_indblkshift
, 0, sizeof (dn
->dn_next_indblkshift
));
145 memset(dn
->dn_next_bonustype
, 0, sizeof (dn
->dn_next_bonustype
));
146 memset(dn
->dn_rm_spillblk
, 0, sizeof (dn
->dn_rm_spillblk
));
147 memset(dn
->dn_next_bonuslen
, 0, sizeof (dn
->dn_next_bonuslen
));
148 memset(dn
->dn_next_blksz
, 0, sizeof (dn
->dn_next_blksz
));
149 memset(dn
->dn_next_maxblkid
, 0, sizeof (dn
->dn_next_maxblkid
));
151 for (int i
= 0; i
< TXG_SIZE
; i
++) {
152 multilist_link_init(&dn
->dn_dirty_link
[i
]);
153 dn
->dn_free_ranges
[i
] = NULL
;
154 list_create(&dn
->dn_dirty_records
[i
],
155 sizeof (dbuf_dirty_record_t
),
156 offsetof(dbuf_dirty_record_t
, dr_dirty_node
));
159 dn
->dn_allocated_txg
= 0;
161 dn
->dn_assigned_txg
= 0;
162 dn
->dn_dirty_txg
= 0;
164 dn
->dn_dirtyctx_firstset
= NULL
;
166 dn
->dn_have_spill
= B_FALSE
;
172 dn
->dn_oldprojid
= ZFS_DEFAULT_PROJID
;
175 dn
->dn_newprojid
= ZFS_DEFAULT_PROJID
;
178 dn
->dn_dbufs_count
= 0;
179 avl_create(&dn
->dn_dbufs
, dbuf_compare
, sizeof (dmu_buf_impl_t
),
180 offsetof(dmu_buf_impl_t
, db_link
));
187 dnode_dest(void *arg
, void *unused
)
192 rw_destroy(&dn
->dn_struct_rwlock
);
193 mutex_destroy(&dn
->dn_mtx
);
194 mutex_destroy(&dn
->dn_dbufs_mtx
);
195 cv_destroy(&dn
->dn_notxholds
);
196 cv_destroy(&dn
->dn_nodnholds
);
197 zfs_refcount_destroy(&dn
->dn_holds
);
198 zfs_refcount_destroy(&dn
->dn_tx_holds
);
199 ASSERT(!list_link_active(&dn
->dn_link
));
201 for (int i
= 0; i
< TXG_SIZE
; i
++) {
202 ASSERT(!multilist_link_active(&dn
->dn_dirty_link
[i
]));
203 ASSERT3P(dn
->dn_free_ranges
[i
], ==, NULL
);
204 list_destroy(&dn
->dn_dirty_records
[i
]);
205 ASSERT0(dn
->dn_next_nblkptr
[i
]);
206 ASSERT0(dn
->dn_next_nlevels
[i
]);
207 ASSERT0(dn
->dn_next_indblkshift
[i
]);
208 ASSERT0(dn
->dn_next_bonustype
[i
]);
209 ASSERT0(dn
->dn_rm_spillblk
[i
]);
210 ASSERT0(dn
->dn_next_bonuslen
[i
]);
211 ASSERT0(dn
->dn_next_blksz
[i
]);
212 ASSERT0(dn
->dn_next_maxblkid
[i
]);
215 ASSERT0(dn
->dn_allocated_txg
);
216 ASSERT0(dn
->dn_free_txg
);
217 ASSERT0(dn
->dn_assigned_txg
);
218 ASSERT0(dn
->dn_dirty_txg
);
219 ASSERT0(dn
->dn_dirtyctx
);
220 ASSERT3P(dn
->dn_dirtyctx_firstset
, ==, NULL
);
221 ASSERT3P(dn
->dn_bonus
, ==, NULL
);
222 ASSERT(!dn
->dn_have_spill
);
223 ASSERT3P(dn
->dn_zio
, ==, NULL
);
224 ASSERT0(dn
->dn_oldused
);
225 ASSERT0(dn
->dn_oldflags
);
226 ASSERT0(dn
->dn_olduid
);
227 ASSERT0(dn
->dn_oldgid
);
228 ASSERT0(dn
->dn_oldprojid
);
229 ASSERT0(dn
->dn_newuid
);
230 ASSERT0(dn
->dn_newgid
);
231 ASSERT0(dn
->dn_newprojid
);
232 ASSERT0(dn
->dn_id_flags
);
234 ASSERT0(dn
->dn_dbufs_count
);
235 avl_destroy(&dn
->dn_dbufs
);
239 dnode_kstats_update(kstat_t
*ksp
, int rw
)
241 dnode_stats_t
*ds
= ksp
->ks_data
;
243 if (rw
== KSTAT_WRITE
)
245 ds
->dnode_hold_dbuf_hold
.value
.ui64
=
246 wmsum_value(&dnode_sums
.dnode_hold_dbuf_hold
);
247 ds
->dnode_hold_dbuf_read
.value
.ui64
=
248 wmsum_value(&dnode_sums
.dnode_hold_dbuf_read
);
249 ds
->dnode_hold_alloc_hits
.value
.ui64
=
250 wmsum_value(&dnode_sums
.dnode_hold_alloc_hits
);
251 ds
->dnode_hold_alloc_misses
.value
.ui64
=
252 wmsum_value(&dnode_sums
.dnode_hold_alloc_misses
);
253 ds
->dnode_hold_alloc_interior
.value
.ui64
=
254 wmsum_value(&dnode_sums
.dnode_hold_alloc_interior
);
255 ds
->dnode_hold_alloc_lock_retry
.value
.ui64
=
256 wmsum_value(&dnode_sums
.dnode_hold_alloc_lock_retry
);
257 ds
->dnode_hold_alloc_lock_misses
.value
.ui64
=
258 wmsum_value(&dnode_sums
.dnode_hold_alloc_lock_misses
);
259 ds
->dnode_hold_alloc_type_none
.value
.ui64
=
260 wmsum_value(&dnode_sums
.dnode_hold_alloc_type_none
);
261 ds
->dnode_hold_free_hits
.value
.ui64
=
262 wmsum_value(&dnode_sums
.dnode_hold_free_hits
);
263 ds
->dnode_hold_free_misses
.value
.ui64
=
264 wmsum_value(&dnode_sums
.dnode_hold_free_misses
);
265 ds
->dnode_hold_free_lock_misses
.value
.ui64
=
266 wmsum_value(&dnode_sums
.dnode_hold_free_lock_misses
);
267 ds
->dnode_hold_free_lock_retry
.value
.ui64
=
268 wmsum_value(&dnode_sums
.dnode_hold_free_lock_retry
);
269 ds
->dnode_hold_free_refcount
.value
.ui64
=
270 wmsum_value(&dnode_sums
.dnode_hold_free_refcount
);
271 ds
->dnode_hold_free_overflow
.value
.ui64
=
272 wmsum_value(&dnode_sums
.dnode_hold_free_overflow
);
273 ds
->dnode_free_interior_lock_retry
.value
.ui64
=
274 wmsum_value(&dnode_sums
.dnode_free_interior_lock_retry
);
275 ds
->dnode_allocate
.value
.ui64
=
276 wmsum_value(&dnode_sums
.dnode_allocate
);
277 ds
->dnode_reallocate
.value
.ui64
=
278 wmsum_value(&dnode_sums
.dnode_reallocate
);
279 ds
->dnode_buf_evict
.value
.ui64
=
280 wmsum_value(&dnode_sums
.dnode_buf_evict
);
281 ds
->dnode_alloc_next_chunk
.value
.ui64
=
282 wmsum_value(&dnode_sums
.dnode_alloc_next_chunk
);
283 ds
->dnode_alloc_race
.value
.ui64
=
284 wmsum_value(&dnode_sums
.dnode_alloc_race
);
285 ds
->dnode_alloc_next_block
.value
.ui64
=
286 wmsum_value(&dnode_sums
.dnode_alloc_next_block
);
287 ds
->dnode_move_invalid
.value
.ui64
=
288 wmsum_value(&dnode_sums
.dnode_move_invalid
);
289 ds
->dnode_move_recheck1
.value
.ui64
=
290 wmsum_value(&dnode_sums
.dnode_move_recheck1
);
291 ds
->dnode_move_recheck2
.value
.ui64
=
292 wmsum_value(&dnode_sums
.dnode_move_recheck2
);
293 ds
->dnode_move_special
.value
.ui64
=
294 wmsum_value(&dnode_sums
.dnode_move_special
);
295 ds
->dnode_move_handle
.value
.ui64
=
296 wmsum_value(&dnode_sums
.dnode_move_handle
);
297 ds
->dnode_move_rwlock
.value
.ui64
=
298 wmsum_value(&dnode_sums
.dnode_move_rwlock
);
299 ds
->dnode_move_active
.value
.ui64
=
300 wmsum_value(&dnode_sums
.dnode_move_active
);
307 ASSERT(dnode_cache
== NULL
);
308 dnode_cache
= kmem_cache_create("dnode_t", sizeof (dnode_t
),
309 0, dnode_cons
, dnode_dest
, NULL
, NULL
, NULL
, KMC_RECLAIMABLE
);
310 kmem_cache_set_move(dnode_cache
, dnode_move
);
312 wmsum_init(&dnode_sums
.dnode_hold_dbuf_hold
, 0);
313 wmsum_init(&dnode_sums
.dnode_hold_dbuf_read
, 0);
314 wmsum_init(&dnode_sums
.dnode_hold_alloc_hits
, 0);
315 wmsum_init(&dnode_sums
.dnode_hold_alloc_misses
, 0);
316 wmsum_init(&dnode_sums
.dnode_hold_alloc_interior
, 0);
317 wmsum_init(&dnode_sums
.dnode_hold_alloc_lock_retry
, 0);
318 wmsum_init(&dnode_sums
.dnode_hold_alloc_lock_misses
, 0);
319 wmsum_init(&dnode_sums
.dnode_hold_alloc_type_none
, 0);
320 wmsum_init(&dnode_sums
.dnode_hold_free_hits
, 0);
321 wmsum_init(&dnode_sums
.dnode_hold_free_misses
, 0);
322 wmsum_init(&dnode_sums
.dnode_hold_free_lock_misses
, 0);
323 wmsum_init(&dnode_sums
.dnode_hold_free_lock_retry
, 0);
324 wmsum_init(&dnode_sums
.dnode_hold_free_refcount
, 0);
325 wmsum_init(&dnode_sums
.dnode_hold_free_overflow
, 0);
326 wmsum_init(&dnode_sums
.dnode_free_interior_lock_retry
, 0);
327 wmsum_init(&dnode_sums
.dnode_allocate
, 0);
328 wmsum_init(&dnode_sums
.dnode_reallocate
, 0);
329 wmsum_init(&dnode_sums
.dnode_buf_evict
, 0);
330 wmsum_init(&dnode_sums
.dnode_alloc_next_chunk
, 0);
331 wmsum_init(&dnode_sums
.dnode_alloc_race
, 0);
332 wmsum_init(&dnode_sums
.dnode_alloc_next_block
, 0);
333 wmsum_init(&dnode_sums
.dnode_move_invalid
, 0);
334 wmsum_init(&dnode_sums
.dnode_move_recheck1
, 0);
335 wmsum_init(&dnode_sums
.dnode_move_recheck2
, 0);
336 wmsum_init(&dnode_sums
.dnode_move_special
, 0);
337 wmsum_init(&dnode_sums
.dnode_move_handle
, 0);
338 wmsum_init(&dnode_sums
.dnode_move_rwlock
, 0);
339 wmsum_init(&dnode_sums
.dnode_move_active
, 0);
341 dnode_ksp
= kstat_create("zfs", 0, "dnodestats", "misc",
342 KSTAT_TYPE_NAMED
, sizeof (dnode_stats
) / sizeof (kstat_named_t
),
344 if (dnode_ksp
!= NULL
) {
345 dnode_ksp
->ks_data
= &dnode_stats
;
346 dnode_ksp
->ks_update
= dnode_kstats_update
;
347 kstat_install(dnode_ksp
);
354 if (dnode_ksp
!= NULL
) {
355 kstat_delete(dnode_ksp
);
359 wmsum_fini(&dnode_sums
.dnode_hold_dbuf_hold
);
360 wmsum_fini(&dnode_sums
.dnode_hold_dbuf_read
);
361 wmsum_fini(&dnode_sums
.dnode_hold_alloc_hits
);
362 wmsum_fini(&dnode_sums
.dnode_hold_alloc_misses
);
363 wmsum_fini(&dnode_sums
.dnode_hold_alloc_interior
);
364 wmsum_fini(&dnode_sums
.dnode_hold_alloc_lock_retry
);
365 wmsum_fini(&dnode_sums
.dnode_hold_alloc_lock_misses
);
366 wmsum_fini(&dnode_sums
.dnode_hold_alloc_type_none
);
367 wmsum_fini(&dnode_sums
.dnode_hold_free_hits
);
368 wmsum_fini(&dnode_sums
.dnode_hold_free_misses
);
369 wmsum_fini(&dnode_sums
.dnode_hold_free_lock_misses
);
370 wmsum_fini(&dnode_sums
.dnode_hold_free_lock_retry
);
371 wmsum_fini(&dnode_sums
.dnode_hold_free_refcount
);
372 wmsum_fini(&dnode_sums
.dnode_hold_free_overflow
);
373 wmsum_fini(&dnode_sums
.dnode_free_interior_lock_retry
);
374 wmsum_fini(&dnode_sums
.dnode_allocate
);
375 wmsum_fini(&dnode_sums
.dnode_reallocate
);
376 wmsum_fini(&dnode_sums
.dnode_buf_evict
);
377 wmsum_fini(&dnode_sums
.dnode_alloc_next_chunk
);
378 wmsum_fini(&dnode_sums
.dnode_alloc_race
);
379 wmsum_fini(&dnode_sums
.dnode_alloc_next_block
);
380 wmsum_fini(&dnode_sums
.dnode_move_invalid
);
381 wmsum_fini(&dnode_sums
.dnode_move_recheck1
);
382 wmsum_fini(&dnode_sums
.dnode_move_recheck2
);
383 wmsum_fini(&dnode_sums
.dnode_move_special
);
384 wmsum_fini(&dnode_sums
.dnode_move_handle
);
385 wmsum_fini(&dnode_sums
.dnode_move_rwlock
);
386 wmsum_fini(&dnode_sums
.dnode_move_active
);
388 kmem_cache_destroy(dnode_cache
);
395 dnode_verify(dnode_t
*dn
)
397 int drop_struct_lock
= FALSE
;
400 ASSERT(dn
->dn_objset
);
401 ASSERT(dn
->dn_handle
->dnh_dnode
== dn
);
403 ASSERT(DMU_OT_IS_VALID(dn
->dn_phys
->dn_type
));
405 if (!(zfs_flags
& ZFS_DEBUG_DNODE_VERIFY
))
408 if (!RW_WRITE_HELD(&dn
->dn_struct_rwlock
)) {
409 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
410 drop_struct_lock
= TRUE
;
412 if (dn
->dn_phys
->dn_type
!= DMU_OT_NONE
|| dn
->dn_allocated_txg
!= 0) {
414 int max_bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
415 ASSERT3U(dn
->dn_indblkshift
, <=, SPA_MAXBLOCKSHIFT
);
416 if (dn
->dn_datablkshift
) {
417 ASSERT3U(dn
->dn_datablkshift
, >=, SPA_MINBLOCKSHIFT
);
418 ASSERT3U(dn
->dn_datablkshift
, <=, SPA_MAXBLOCKSHIFT
);
419 ASSERT3U(1<<dn
->dn_datablkshift
, ==, dn
->dn_datablksz
);
421 ASSERT3U(dn
->dn_nlevels
, <=, 30);
422 ASSERT(DMU_OT_IS_VALID(dn
->dn_type
));
423 ASSERT3U(dn
->dn_nblkptr
, >=, 1);
424 ASSERT3U(dn
->dn_nblkptr
, <=, DN_MAX_NBLKPTR
);
425 ASSERT3U(dn
->dn_bonuslen
, <=, max_bonuslen
);
426 ASSERT3U(dn
->dn_datablksz
, ==,
427 dn
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
);
428 ASSERT3U(ISP2(dn
->dn_datablksz
), ==, dn
->dn_datablkshift
!= 0);
429 ASSERT3U((dn
->dn_nblkptr
- 1) * sizeof (blkptr_t
) +
430 dn
->dn_bonuslen
, <=, max_bonuslen
);
431 for (i
= 0; i
< TXG_SIZE
; i
++) {
432 ASSERT3U(dn
->dn_next_nlevels
[i
], <=, dn
->dn_nlevels
);
435 if (dn
->dn_phys
->dn_type
!= DMU_OT_NONE
)
436 ASSERT3U(dn
->dn_phys
->dn_nlevels
, <=, dn
->dn_nlevels
);
437 ASSERT(DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) || dn
->dn_dbuf
!= NULL
);
438 if (dn
->dn_dbuf
!= NULL
) {
439 ASSERT3P(dn
->dn_phys
, ==,
440 (dnode_phys_t
*)dn
->dn_dbuf
->db
.db_data
+
441 (dn
->dn_object
% (dn
->dn_dbuf
->db
.db_size
>> DNODE_SHIFT
)));
443 if (drop_struct_lock
)
444 rw_exit(&dn
->dn_struct_rwlock
);
449 dnode_byteswap(dnode_phys_t
*dnp
)
451 uint64_t *buf64
= (void*)&dnp
->dn_blkptr
;
454 if (dnp
->dn_type
== DMU_OT_NONE
) {
455 memset(dnp
, 0, sizeof (dnode_phys_t
));
459 dnp
->dn_datablkszsec
= BSWAP_16(dnp
->dn_datablkszsec
);
460 dnp
->dn_bonuslen
= BSWAP_16(dnp
->dn_bonuslen
);
461 dnp
->dn_extra_slots
= BSWAP_8(dnp
->dn_extra_slots
);
462 dnp
->dn_maxblkid
= BSWAP_64(dnp
->dn_maxblkid
);
463 dnp
->dn_used
= BSWAP_64(dnp
->dn_used
);
466 * dn_nblkptr is only one byte, so it's OK to read it in either
467 * byte order. We can't read dn_bouslen.
469 ASSERT(dnp
->dn_indblkshift
<= SPA_MAXBLOCKSHIFT
);
470 ASSERT(dnp
->dn_nblkptr
<= DN_MAX_NBLKPTR
);
471 for (i
= 0; i
< dnp
->dn_nblkptr
* sizeof (blkptr_t
)/8; i
++)
472 buf64
[i
] = BSWAP_64(buf64
[i
]);
475 * OK to check dn_bonuslen for zero, because it won't matter if
476 * we have the wrong byte order. This is necessary because the
477 * dnode dnode is smaller than a regular dnode.
479 if (dnp
->dn_bonuslen
!= 0) {
480 dmu_object_byteswap_t byteswap
;
481 ASSERT(DMU_OT_IS_VALID(dnp
->dn_bonustype
));
482 byteswap
= DMU_OT_BYTESWAP(dnp
->dn_bonustype
);
483 dmu_ot_byteswap
[byteswap
].ob_func(DN_BONUS(dnp
),
484 DN_MAX_BONUS_LEN(dnp
));
487 /* Swap SPILL block if we have one */
488 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
)
489 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp
), sizeof (blkptr_t
));
493 dnode_buf_byteswap(void *vbuf
, size_t size
)
497 ASSERT3U(sizeof (dnode_phys_t
), ==, (1<<DNODE_SHIFT
));
498 ASSERT((size
& (sizeof (dnode_phys_t
)-1)) == 0);
501 dnode_phys_t
*dnp
= (void *)(((char *)vbuf
) + i
);
505 if (dnp
->dn_type
!= DMU_OT_NONE
)
506 i
+= dnp
->dn_extra_slots
* DNODE_MIN_SIZE
;
511 dnode_setbonuslen(dnode_t
*dn
, int newsize
, dmu_tx_t
*tx
)
513 ASSERT3U(zfs_refcount_count(&dn
->dn_holds
), >=, 1);
515 dnode_setdirty(dn
, tx
);
516 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
517 ASSERT3U(newsize
, <=, DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
) -
518 (dn
->dn_nblkptr
-1) * sizeof (blkptr_t
));
520 if (newsize
< dn
->dn_bonuslen
) {
521 /* clear any data after the end of the new size */
522 size_t diff
= dn
->dn_bonuslen
- newsize
;
523 char *data_end
= ((char *)dn
->dn_bonus
->db
.db_data
) + newsize
;
524 memset(data_end
, 0, diff
);
527 dn
->dn_bonuslen
= newsize
;
529 dn
->dn_next_bonuslen
[tx
->tx_txg
& TXG_MASK
] = DN_ZERO_BONUSLEN
;
531 dn
->dn_next_bonuslen
[tx
->tx_txg
& TXG_MASK
] = dn
->dn_bonuslen
;
532 rw_exit(&dn
->dn_struct_rwlock
);
536 dnode_setbonus_type(dnode_t
*dn
, dmu_object_type_t newtype
, dmu_tx_t
*tx
)
538 ASSERT3U(zfs_refcount_count(&dn
->dn_holds
), >=, 1);
539 dnode_setdirty(dn
, tx
);
540 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
541 dn
->dn_bonustype
= newtype
;
542 dn
->dn_next_bonustype
[tx
->tx_txg
& TXG_MASK
] = dn
->dn_bonustype
;
543 rw_exit(&dn
->dn_struct_rwlock
);
547 dnode_set_storage_type(dnode_t
*dn
, dmu_object_type_t newtype
)
550 * This is not in the dnode_phys, but it should be, and perhaps one day
551 * will. For now we require it be set after taking a hold.
553 ASSERT3U(zfs_refcount_count(&dn
->dn_holds
), >=, 1);
554 dn
->dn_storage_type
= newtype
;
558 dnode_rm_spill(dnode_t
*dn
, dmu_tx_t
*tx
)
560 ASSERT3U(zfs_refcount_count(&dn
->dn_holds
), >=, 1);
561 ASSERT(RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
562 dnode_setdirty(dn
, tx
);
563 dn
->dn_rm_spillblk
[tx
->tx_txg
& TXG_MASK
] = DN_KILL_SPILLBLK
;
564 dn
->dn_have_spill
= B_FALSE
;
568 dnode_setdblksz(dnode_t
*dn
, int size
)
570 ASSERT0(P2PHASE(size
, SPA_MINBLOCKSIZE
));
571 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
572 ASSERT3U(size
, >=, SPA_MINBLOCKSIZE
);
573 ASSERT3U(size
>> SPA_MINBLOCKSHIFT
, <,
574 1<<(sizeof (dn
->dn_phys
->dn_datablkszsec
) * 8));
575 dn
->dn_datablksz
= size
;
576 dn
->dn_datablkszsec
= size
>> SPA_MINBLOCKSHIFT
;
577 dn
->dn_datablkshift
= ISP2(size
) ? highbit64(size
- 1) : 0;
581 dnode_create(objset_t
*os
, dnode_phys_t
*dnp
, dmu_buf_impl_t
*db
,
582 uint64_t object
, dnode_handle_t
*dnh
)
586 dn
= kmem_cache_alloc(dnode_cache
, KM_SLEEP
);
590 * Defer setting dn_objset until the dnode is ready to be a candidate
591 * for the dnode_move() callback.
593 dn
->dn_object
= object
;
598 if (dnp
->dn_datablkszsec
) {
599 dnode_setdblksz(dn
, dnp
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
);
601 dn
->dn_datablksz
= 0;
602 dn
->dn_datablkszsec
= 0;
603 dn
->dn_datablkshift
= 0;
605 dn
->dn_indblkshift
= dnp
->dn_indblkshift
;
606 dn
->dn_nlevels
= dnp
->dn_nlevels
;
607 dn
->dn_type
= dnp
->dn_type
;
608 dn
->dn_nblkptr
= dnp
->dn_nblkptr
;
609 dn
->dn_checksum
= dnp
->dn_checksum
;
610 dn
->dn_compress
= dnp
->dn_compress
;
611 dn
->dn_bonustype
= dnp
->dn_bonustype
;
612 dn
->dn_bonuslen
= dnp
->dn_bonuslen
;
613 dn
->dn_num_slots
= dnp
->dn_extra_slots
+ 1;
614 dn
->dn_maxblkid
= dnp
->dn_maxblkid
;
615 dn
->dn_have_spill
= ((dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) != 0);
618 dn
->dn_storage_type
= DMU_OT_NONE
;
620 dmu_zfetch_init(&dn
->dn_zfetch
, dn
);
622 ASSERT(DMU_OT_IS_VALID(dn
->dn_phys
->dn_type
));
623 ASSERT(zrl_is_locked(&dnh
->dnh_zrlock
));
624 ASSERT(!DN_SLOT_IS_PTR(dnh
->dnh_dnode
));
626 mutex_enter(&os
->os_lock
);
629 * Exclude special dnodes from os_dnodes so an empty os_dnodes
630 * signifies that the special dnodes have no references from
631 * their children (the entries in os_dnodes). This allows
632 * dnode_destroy() to easily determine if the last child has
633 * been removed and then complete eviction of the objset.
635 if (!DMU_OBJECT_IS_SPECIAL(object
))
636 list_insert_head(&os
->os_dnodes
, dn
);
640 * Everything else must be valid before assigning dn_objset
641 * makes the dnode eligible for dnode_move().
646 mutex_exit(&os
->os_lock
);
648 arc_space_consume(sizeof (dnode_t
), ARC_SPACE_DNODE
);
654 * Caller must be holding the dnode handle, which is released upon return.
657 dnode_destroy(dnode_t
*dn
)
659 objset_t
*os
= dn
->dn_objset
;
660 boolean_t complete_os_eviction
= B_FALSE
;
662 ASSERT((dn
->dn_id_flags
& DN_ID_NEW_EXIST
) == 0);
664 mutex_enter(&os
->os_lock
);
665 POINTER_INVALIDATE(&dn
->dn_objset
);
666 if (!DMU_OBJECT_IS_SPECIAL(dn
->dn_object
)) {
667 list_remove(&os
->os_dnodes
, dn
);
668 complete_os_eviction
=
669 list_is_empty(&os
->os_dnodes
) &&
670 list_link_active(&os
->os_evicting_node
);
672 mutex_exit(&os
->os_lock
);
674 /* the dnode can no longer move, so we can release the handle */
675 if (!zrl_is_locked(&dn
->dn_handle
->dnh_zrlock
))
676 zrl_remove(&dn
->dn_handle
->dnh_zrlock
);
678 dn
->dn_allocated_txg
= 0;
680 dn
->dn_assigned_txg
= 0;
681 dn
->dn_dirty_txg
= 0;
684 dn
->dn_dirtyctx_firstset
= NULL
;
685 if (dn
->dn_bonus
!= NULL
) {
686 mutex_enter(&dn
->dn_bonus
->db_mtx
);
687 dbuf_destroy(dn
->dn_bonus
);
692 dn
->dn_have_spill
= B_FALSE
;
697 dn
->dn_oldprojid
= ZFS_DEFAULT_PROJID
;
700 dn
->dn_newprojid
= ZFS_DEFAULT_PROJID
;
703 dn
->dn_storage_type
= DMU_OT_NONE
;
705 dmu_zfetch_fini(&dn
->dn_zfetch
);
706 kmem_cache_free(dnode_cache
, dn
);
707 arc_space_return(sizeof (dnode_t
), ARC_SPACE_DNODE
);
709 if (complete_os_eviction
)
710 dmu_objset_evict_done(os
);
714 dnode_allocate(dnode_t
*dn
, dmu_object_type_t ot
, int blocksize
, int ibs
,
715 dmu_object_type_t bonustype
, int bonuslen
, int dn_slots
, dmu_tx_t
*tx
)
719 ASSERT3U(dn_slots
, >, 0);
720 ASSERT3U(dn_slots
<< DNODE_SHIFT
, <=,
721 spa_maxdnodesize(dmu_objset_spa(dn
->dn_objset
)));
722 ASSERT3U(blocksize
, <=,
723 spa_maxblocksize(dmu_objset_spa(dn
->dn_objset
)));
725 blocksize
= 1 << zfs_default_bs
;
727 blocksize
= P2ROUNDUP(blocksize
, SPA_MINBLOCKSIZE
);
730 ibs
= zfs_default_ibs
;
732 ibs
= MIN(MAX(ibs
, DN_MIN_INDBLKSHIFT
), DN_MAX_INDBLKSHIFT
);
734 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
735 dn
->dn_objset
, (u_longlong_t
)dn
->dn_object
,
736 (u_longlong_t
)tx
->tx_txg
, blocksize
, ibs
, dn_slots
);
737 DNODE_STAT_BUMP(dnode_allocate
);
739 ASSERT(dn
->dn_type
== DMU_OT_NONE
);
740 ASSERT0(memcmp(dn
->dn_phys
, &dnode_phys_zero
, sizeof (dnode_phys_t
)));
741 ASSERT(dn
->dn_phys
->dn_type
== DMU_OT_NONE
);
742 ASSERT(ot
!= DMU_OT_NONE
);
743 ASSERT(DMU_OT_IS_VALID(ot
));
744 ASSERT((bonustype
== DMU_OT_NONE
&& bonuslen
== 0) ||
745 (bonustype
== DMU_OT_SA
&& bonuslen
== 0) ||
746 (bonustype
== DMU_OTN_UINT64_METADATA
&& bonuslen
== 0) ||
747 (bonustype
!= DMU_OT_NONE
&& bonuslen
!= 0));
748 ASSERT(DMU_OT_IS_VALID(bonustype
));
749 ASSERT3U(bonuslen
, <=, DN_SLOTS_TO_BONUSLEN(dn_slots
));
750 ASSERT(dn
->dn_type
== DMU_OT_NONE
);
751 ASSERT0(dn
->dn_maxblkid
);
752 ASSERT0(dn
->dn_allocated_txg
);
753 ASSERT0(dn
->dn_assigned_txg
);
754 ASSERT(zfs_refcount_is_zero(&dn
->dn_tx_holds
));
755 ASSERT3U(zfs_refcount_count(&dn
->dn_holds
), <=, 1);
756 ASSERT(avl_is_empty(&dn
->dn_dbufs
));
758 for (i
= 0; i
< TXG_SIZE
; i
++) {
759 ASSERT0(dn
->dn_next_nblkptr
[i
]);
760 ASSERT0(dn
->dn_next_nlevels
[i
]);
761 ASSERT0(dn
->dn_next_indblkshift
[i
]);
762 ASSERT0(dn
->dn_next_bonuslen
[i
]);
763 ASSERT0(dn
->dn_next_bonustype
[i
]);
764 ASSERT0(dn
->dn_rm_spillblk
[i
]);
765 ASSERT0(dn
->dn_next_blksz
[i
]);
766 ASSERT0(dn
->dn_next_maxblkid
[i
]);
767 ASSERT(!multilist_link_active(&dn
->dn_dirty_link
[i
]));
768 ASSERT3P(list_head(&dn
->dn_dirty_records
[i
]), ==, NULL
);
769 ASSERT3P(dn
->dn_free_ranges
[i
], ==, NULL
);
773 dnode_setdblksz(dn
, blocksize
);
774 dn
->dn_indblkshift
= ibs
;
776 dn
->dn_num_slots
= dn_slots
;
777 if (bonustype
== DMU_OT_SA
) /* Maximize bonus space for SA */
780 dn
->dn_nblkptr
= MIN(DN_MAX_NBLKPTR
,
781 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots
) - bonuslen
) >>
785 dn
->dn_bonustype
= bonustype
;
786 dn
->dn_bonuslen
= bonuslen
;
787 dn
->dn_checksum
= ZIO_CHECKSUM_INHERIT
;
788 dn
->dn_compress
= ZIO_COMPRESS_INHERIT
;
792 dn
->dn_dirtyctx_firstset
= NULL
;
793 dn
->dn_dirty_txg
= 0;
795 dn
->dn_allocated_txg
= tx
->tx_txg
;
798 dnode_setdirty(dn
, tx
);
799 dn
->dn_next_indblkshift
[tx
->tx_txg
& TXG_MASK
] = ibs
;
800 dn
->dn_next_bonuslen
[tx
->tx_txg
& TXG_MASK
] = dn
->dn_bonuslen
;
801 dn
->dn_next_bonustype
[tx
->tx_txg
& TXG_MASK
] = dn
->dn_bonustype
;
802 dn
->dn_next_blksz
[tx
->tx_txg
& TXG_MASK
] = dn
->dn_datablksz
;
806 dnode_reallocate(dnode_t
*dn
, dmu_object_type_t ot
, int blocksize
,
807 dmu_object_type_t bonustype
, int bonuslen
, int dn_slots
,
808 boolean_t keep_spill
, dmu_tx_t
*tx
)
812 ASSERT3U(blocksize
, >=, SPA_MINBLOCKSIZE
);
813 ASSERT3U(blocksize
, <=,
814 spa_maxblocksize(dmu_objset_spa(dn
->dn_objset
)));
815 ASSERT0(blocksize
% SPA_MINBLOCKSIZE
);
816 ASSERT(dn
->dn_object
!= DMU_META_DNODE_OBJECT
|| dmu_tx_private_ok(tx
));
817 ASSERT(tx
->tx_txg
!= 0);
818 ASSERT((bonustype
== DMU_OT_NONE
&& bonuslen
== 0) ||
819 (bonustype
!= DMU_OT_NONE
&& bonuslen
!= 0) ||
820 (bonustype
== DMU_OT_SA
&& bonuslen
== 0));
821 ASSERT(DMU_OT_IS_VALID(bonustype
));
822 ASSERT3U(bonuslen
, <=,
823 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn
->dn_objset
))));
824 ASSERT3U(bonuslen
, <=, DN_BONUS_SIZE(dn_slots
<< DNODE_SHIFT
));
826 dnode_free_interior_slots(dn
);
827 DNODE_STAT_BUMP(dnode_reallocate
);
829 /* clean up any unreferenced dbufs */
830 dnode_evict_dbufs(dn
);
834 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
835 dnode_setdirty(dn
, tx
);
836 if (dn
->dn_datablksz
!= blocksize
) {
837 /* change blocksize */
838 ASSERT0(dn
->dn_maxblkid
);
839 ASSERT(BP_IS_HOLE(&dn
->dn_phys
->dn_blkptr
[0]) ||
840 dnode_block_freed(dn
, 0));
842 dnode_setdblksz(dn
, blocksize
);
843 dn
->dn_next_blksz
[tx
->tx_txg
& TXG_MASK
] = blocksize
;
845 if (dn
->dn_bonuslen
!= bonuslen
)
846 dn
->dn_next_bonuslen
[tx
->tx_txg
& TXG_MASK
] = bonuslen
;
848 if (bonustype
== DMU_OT_SA
) /* Maximize bonus space for SA */
851 nblkptr
= MIN(DN_MAX_NBLKPTR
,
852 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots
) - bonuslen
) >>
854 if (dn
->dn_bonustype
!= bonustype
)
855 dn
->dn_next_bonustype
[tx
->tx_txg
& TXG_MASK
] = bonustype
;
856 if (dn
->dn_nblkptr
!= nblkptr
)
857 dn
->dn_next_nblkptr
[tx
->tx_txg
& TXG_MASK
] = nblkptr
;
858 if (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
&& !keep_spill
) {
859 dbuf_rm_spill(dn
, tx
);
860 dnode_rm_spill(dn
, tx
);
863 rw_exit(&dn
->dn_struct_rwlock
);
868 /* change bonus size and type */
869 mutex_enter(&dn
->dn_mtx
);
870 dn
->dn_bonustype
= bonustype
;
871 dn
->dn_bonuslen
= bonuslen
;
872 dn
->dn_num_slots
= dn_slots
;
873 dn
->dn_nblkptr
= nblkptr
;
874 dn
->dn_checksum
= ZIO_CHECKSUM_INHERIT
;
875 dn
->dn_compress
= ZIO_COMPRESS_INHERIT
;
876 ASSERT3U(dn
->dn_nblkptr
, <=, DN_MAX_NBLKPTR
);
878 /* fix up the bonus db_size */
880 dn
->dn_bonus
->db
.db_size
=
881 DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
) -
882 (dn
->dn_nblkptr
-1) * sizeof (blkptr_t
);
883 ASSERT(dn
->dn_bonuslen
<= dn
->dn_bonus
->db
.db_size
);
886 dn
->dn_allocated_txg
= tx
->tx_txg
;
887 mutex_exit(&dn
->dn_mtx
);
892 dnode_move_impl(dnode_t
*odn
, dnode_t
*ndn
)
894 ASSERT(!RW_LOCK_HELD(&odn
->dn_struct_rwlock
));
895 ASSERT(MUTEX_NOT_HELD(&odn
->dn_mtx
));
896 ASSERT(MUTEX_NOT_HELD(&odn
->dn_dbufs_mtx
));
899 ndn
->dn_objset
= odn
->dn_objset
;
900 ndn
->dn_object
= odn
->dn_object
;
901 ndn
->dn_dbuf
= odn
->dn_dbuf
;
902 ndn
->dn_handle
= odn
->dn_handle
;
903 ndn
->dn_phys
= odn
->dn_phys
;
904 ndn
->dn_type
= odn
->dn_type
;
905 ndn
->dn_bonuslen
= odn
->dn_bonuslen
;
906 ndn
->dn_bonustype
= odn
->dn_bonustype
;
907 ndn
->dn_nblkptr
= odn
->dn_nblkptr
;
908 ndn
->dn_checksum
= odn
->dn_checksum
;
909 ndn
->dn_compress
= odn
->dn_compress
;
910 ndn
->dn_nlevels
= odn
->dn_nlevels
;
911 ndn
->dn_indblkshift
= odn
->dn_indblkshift
;
912 ndn
->dn_datablkshift
= odn
->dn_datablkshift
;
913 ndn
->dn_datablkszsec
= odn
->dn_datablkszsec
;
914 ndn
->dn_datablksz
= odn
->dn_datablksz
;
915 ndn
->dn_maxblkid
= odn
->dn_maxblkid
;
916 ndn
->dn_num_slots
= odn
->dn_num_slots
;
917 memcpy(ndn
->dn_next_type
, odn
->dn_next_type
,
918 sizeof (odn
->dn_next_type
));
919 memcpy(ndn
->dn_next_nblkptr
, odn
->dn_next_nblkptr
,
920 sizeof (odn
->dn_next_nblkptr
));
921 memcpy(ndn
->dn_next_nlevels
, odn
->dn_next_nlevels
,
922 sizeof (odn
->dn_next_nlevels
));
923 memcpy(ndn
->dn_next_indblkshift
, odn
->dn_next_indblkshift
,
924 sizeof (odn
->dn_next_indblkshift
));
925 memcpy(ndn
->dn_next_bonustype
, odn
->dn_next_bonustype
,
926 sizeof (odn
->dn_next_bonustype
));
927 memcpy(ndn
->dn_rm_spillblk
, odn
->dn_rm_spillblk
,
928 sizeof (odn
->dn_rm_spillblk
));
929 memcpy(ndn
->dn_next_bonuslen
, odn
->dn_next_bonuslen
,
930 sizeof (odn
->dn_next_bonuslen
));
931 memcpy(ndn
->dn_next_blksz
, odn
->dn_next_blksz
,
932 sizeof (odn
->dn_next_blksz
));
933 memcpy(ndn
->dn_next_maxblkid
, odn
->dn_next_maxblkid
,
934 sizeof (odn
->dn_next_maxblkid
));
935 for (int i
= 0; i
< TXG_SIZE
; i
++) {
936 list_move_tail(&ndn
->dn_dirty_records
[i
],
937 &odn
->dn_dirty_records
[i
]);
939 memcpy(ndn
->dn_free_ranges
, odn
->dn_free_ranges
,
940 sizeof (odn
->dn_free_ranges
));
941 ndn
->dn_allocated_txg
= odn
->dn_allocated_txg
;
942 ndn
->dn_free_txg
= odn
->dn_free_txg
;
943 ndn
->dn_assigned_txg
= odn
->dn_assigned_txg
;
944 ndn
->dn_dirty_txg
= odn
->dn_dirty_txg
;
945 ndn
->dn_dirtyctx
= odn
->dn_dirtyctx
;
946 ndn
->dn_dirtyctx_firstset
= odn
->dn_dirtyctx_firstset
;
947 ASSERT(zfs_refcount_count(&odn
->dn_tx_holds
) == 0);
948 zfs_refcount_transfer(&ndn
->dn_holds
, &odn
->dn_holds
);
949 ASSERT(avl_is_empty(&ndn
->dn_dbufs
));
950 avl_swap(&ndn
->dn_dbufs
, &odn
->dn_dbufs
);
951 ndn
->dn_dbufs_count
= odn
->dn_dbufs_count
;
952 ndn
->dn_bonus
= odn
->dn_bonus
;
953 ndn
->dn_have_spill
= odn
->dn_have_spill
;
954 ndn
->dn_zio
= odn
->dn_zio
;
955 ndn
->dn_oldused
= odn
->dn_oldused
;
956 ndn
->dn_oldflags
= odn
->dn_oldflags
;
957 ndn
->dn_olduid
= odn
->dn_olduid
;
958 ndn
->dn_oldgid
= odn
->dn_oldgid
;
959 ndn
->dn_oldprojid
= odn
->dn_oldprojid
;
960 ndn
->dn_newuid
= odn
->dn_newuid
;
961 ndn
->dn_newgid
= odn
->dn_newgid
;
962 ndn
->dn_newprojid
= odn
->dn_newprojid
;
963 ndn
->dn_id_flags
= odn
->dn_id_flags
;
964 ndn
->dn_storage_type
= odn
->dn_storage_type
;
965 dmu_zfetch_init(&ndn
->dn_zfetch
, ndn
);
968 * Update back pointers. Updating the handle fixes the back pointer of
969 * every descendant dbuf as well as the bonus dbuf.
971 ASSERT(ndn
->dn_handle
->dnh_dnode
== odn
);
972 ndn
->dn_handle
->dnh_dnode
= ndn
;
975 * Invalidate the original dnode by clearing all of its back pointers.
978 odn
->dn_handle
= NULL
;
979 avl_create(&odn
->dn_dbufs
, dbuf_compare
, sizeof (dmu_buf_impl_t
),
980 offsetof(dmu_buf_impl_t
, db_link
));
981 odn
->dn_dbufs_count
= 0;
982 odn
->dn_bonus
= NULL
;
983 dmu_zfetch_fini(&odn
->dn_zfetch
);
986 * Set the low bit of the objset pointer to ensure that dnode_move()
987 * recognizes the dnode as invalid in any subsequent callback.
989 POINTER_INVALIDATE(&odn
->dn_objset
);
992 * Satisfy the destructor.
994 for (int i
= 0; i
< TXG_SIZE
; i
++) {
995 list_create(&odn
->dn_dirty_records
[i
],
996 sizeof (dbuf_dirty_record_t
),
997 offsetof(dbuf_dirty_record_t
, dr_dirty_node
));
998 odn
->dn_free_ranges
[i
] = NULL
;
999 odn
->dn_next_nlevels
[i
] = 0;
1000 odn
->dn_next_indblkshift
[i
] = 0;
1001 odn
->dn_next_bonustype
[i
] = 0;
1002 odn
->dn_rm_spillblk
[i
] = 0;
1003 odn
->dn_next_bonuslen
[i
] = 0;
1004 odn
->dn_next_blksz
[i
] = 0;
1006 odn
->dn_allocated_txg
= 0;
1007 odn
->dn_free_txg
= 0;
1008 odn
->dn_assigned_txg
= 0;
1009 odn
->dn_dirty_txg
= 0;
1010 odn
->dn_dirtyctx
= 0;
1011 odn
->dn_dirtyctx_firstset
= NULL
;
1012 odn
->dn_have_spill
= B_FALSE
;
1014 odn
->dn_oldused
= 0;
1015 odn
->dn_oldflags
= 0;
1018 odn
->dn_oldprojid
= ZFS_DEFAULT_PROJID
;
1021 odn
->dn_newprojid
= ZFS_DEFAULT_PROJID
;
1022 odn
->dn_id_flags
= 0;
1023 odn
->dn_storage_type
= DMU_OT_NONE
;
1029 odn
->dn_moved
= (uint8_t)-1;
1033 dnode_move(void *buf
, void *newbuf
, size_t size
, void *arg
)
1035 dnode_t
*odn
= buf
, *ndn
= newbuf
;
1040 #ifndef USE_DNODE_HANDLE
1042 * We can't move dnodes if dbufs reference them directly without
1043 * using handles and respecitve locking. Unless USE_DNODE_HANDLE
1044 * is defined the code below is only to make sure it still builds,
1045 * but it should never be used, since it is unsafe.
1048 PANIC("dnode_move() called without USE_DNODE_HANDLE");
1050 return (KMEM_CBRC_NO
);
1054 * The dnode is on the objset's list of known dnodes if the objset
1055 * pointer is valid. We set the low bit of the objset pointer when
1056 * freeing the dnode to invalidate it, and the memory patterns written
1057 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
1058 * A newly created dnode sets the objset pointer last of all to indicate
1059 * that the dnode is known and in a valid state to be moved by this
1062 os
= odn
->dn_objset
;
1063 if (!POINTER_IS_VALID(os
)) {
1064 DNODE_STAT_BUMP(dnode_move_invalid
);
1065 return (KMEM_CBRC_DONT_KNOW
);
1069 * Ensure that the objset does not go away during the move.
1071 rw_enter(&os_lock
, RW_WRITER
);
1072 if (os
!= odn
->dn_objset
) {
1074 DNODE_STAT_BUMP(dnode_move_recheck1
);
1075 return (KMEM_CBRC_DONT_KNOW
);
1079 * If the dnode is still valid, then so is the objset. We know that no
1080 * valid objset can be freed while we hold os_lock, so we can safely
1081 * ensure that the objset remains in use.
1083 mutex_enter(&os
->os_lock
);
1086 * Recheck the objset pointer in case the dnode was removed just before
1087 * acquiring the lock.
1089 if (os
!= odn
->dn_objset
) {
1090 mutex_exit(&os
->os_lock
);
1092 DNODE_STAT_BUMP(dnode_move_recheck2
);
1093 return (KMEM_CBRC_DONT_KNOW
);
1097 * At this point we know that as long as we hold os->os_lock, the dnode
1098 * cannot be freed and fields within the dnode can be safely accessed.
1099 * The objset listing this dnode cannot go away as long as this dnode is
1103 if (DMU_OBJECT_IS_SPECIAL(odn
->dn_object
)) {
1104 mutex_exit(&os
->os_lock
);
1105 DNODE_STAT_BUMP(dnode_move_special
);
1106 return (KMEM_CBRC_NO
);
1108 ASSERT(odn
->dn_dbuf
!= NULL
); /* only "special" dnodes have no parent */
1111 * Lock the dnode handle to prevent the dnode from obtaining any new
1112 * holds. This also prevents the descendant dbufs and the bonus dbuf
1113 * from accessing the dnode, so that we can discount their holds. The
1114 * handle is safe to access because we know that while the dnode cannot
1115 * go away, neither can its handle. Once we hold dnh_zrlock, we can
1116 * safely move any dnode referenced only by dbufs.
1118 if (!zrl_tryenter(&odn
->dn_handle
->dnh_zrlock
)) {
1119 mutex_exit(&os
->os_lock
);
1120 DNODE_STAT_BUMP(dnode_move_handle
);
1121 return (KMEM_CBRC_LATER
);
1125 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
1126 * We need to guarantee that there is a hold for every dbuf in order to
1127 * determine whether the dnode is actively referenced. Falsely matching
1128 * a dbuf to an active hold would lead to an unsafe move. It's possible
1129 * that a thread already having an active dnode hold is about to add a
1130 * dbuf, and we can't compare hold and dbuf counts while the add is in
1133 if (!rw_tryenter(&odn
->dn_struct_rwlock
, RW_WRITER
)) {
1134 zrl_exit(&odn
->dn_handle
->dnh_zrlock
);
1135 mutex_exit(&os
->os_lock
);
1136 DNODE_STAT_BUMP(dnode_move_rwlock
);
1137 return (KMEM_CBRC_LATER
);
1141 * A dbuf may be removed (evicted) without an active dnode hold. In that
1142 * case, the dbuf count is decremented under the handle lock before the
1143 * dbuf's hold is released. This order ensures that if we count the hold
1144 * after the dbuf is removed but before its hold is released, we will
1145 * treat the unmatched hold as active and exit safely. If we count the
1146 * hold before the dbuf is removed, the hold is discounted, and the
1147 * removal is blocked until the move completes.
1149 refcount
= zfs_refcount_count(&odn
->dn_holds
);
1150 ASSERT(refcount
>= 0);
1151 dbufs
= DN_DBUFS_COUNT(odn
);
1153 /* We can't have more dbufs than dnode holds. */
1154 ASSERT3U(dbufs
, <=, refcount
);
1155 DTRACE_PROBE3(dnode__move
, dnode_t
*, odn
, int64_t, refcount
,
1158 if (refcount
> dbufs
) {
1159 rw_exit(&odn
->dn_struct_rwlock
);
1160 zrl_exit(&odn
->dn_handle
->dnh_zrlock
);
1161 mutex_exit(&os
->os_lock
);
1162 DNODE_STAT_BUMP(dnode_move_active
);
1163 return (KMEM_CBRC_LATER
);
1166 rw_exit(&odn
->dn_struct_rwlock
);
1169 * At this point we know that anyone with a hold on the dnode is not
1170 * actively referencing it. The dnode is known and in a valid state to
1171 * move. We're holding the locks needed to execute the critical section.
1173 dnode_move_impl(odn
, ndn
);
1175 list_link_replace(&odn
->dn_link
, &ndn
->dn_link
);
1176 /* If the dnode was safe to move, the refcount cannot have changed. */
1177 ASSERT(refcount
== zfs_refcount_count(&ndn
->dn_holds
));
1178 ASSERT(dbufs
== DN_DBUFS_COUNT(ndn
));
1179 zrl_exit(&ndn
->dn_handle
->dnh_zrlock
); /* handle has moved */
1180 mutex_exit(&os
->os_lock
);
1182 return (KMEM_CBRC_YES
);
1184 #endif /* _KERNEL */
1187 dnode_slots_hold(dnode_children_t
*children
, int idx
, int slots
)
1189 ASSERT3S(idx
+ slots
, <=, DNODES_PER_BLOCK
);
1191 for (int i
= idx
; i
< idx
+ slots
; i
++) {
1192 dnode_handle_t
*dnh
= &children
->dnc_children
[i
];
1193 zrl_add(&dnh
->dnh_zrlock
);
1198 dnode_slots_rele(dnode_children_t
*children
, int idx
, int slots
)
1200 ASSERT3S(idx
+ slots
, <=, DNODES_PER_BLOCK
);
1202 for (int i
= idx
; i
< idx
+ slots
; i
++) {
1203 dnode_handle_t
*dnh
= &children
->dnc_children
[i
];
1205 if (zrl_is_locked(&dnh
->dnh_zrlock
))
1206 zrl_exit(&dnh
->dnh_zrlock
);
1208 zrl_remove(&dnh
->dnh_zrlock
);
1213 dnode_slots_tryenter(dnode_children_t
*children
, int idx
, int slots
)
1215 ASSERT3S(idx
+ slots
, <=, DNODES_PER_BLOCK
);
1217 for (int i
= idx
; i
< idx
+ slots
; i
++) {
1218 dnode_handle_t
*dnh
= &children
->dnc_children
[i
];
1220 if (!zrl_tryenter(&dnh
->dnh_zrlock
)) {
1221 for (int j
= idx
; j
< i
; j
++) {
1222 dnh
= &children
->dnc_children
[j
];
1223 zrl_exit(&dnh
->dnh_zrlock
);
1234 dnode_set_slots(dnode_children_t
*children
, int idx
, int slots
, void *ptr
)
1236 ASSERT3S(idx
+ slots
, <=, DNODES_PER_BLOCK
);
1238 for (int i
= idx
; i
< idx
+ slots
; i
++) {
1239 dnode_handle_t
*dnh
= &children
->dnc_children
[i
];
1240 dnh
->dnh_dnode
= ptr
;
1245 dnode_check_slots_free(dnode_children_t
*children
, int idx
, int slots
)
1247 ASSERT3S(idx
+ slots
, <=, DNODES_PER_BLOCK
);
1250 * If all dnode slots are either already free or
1251 * evictable return B_TRUE.
1253 for (int i
= idx
; i
< idx
+ slots
; i
++) {
1254 dnode_handle_t
*dnh
= &children
->dnc_children
[i
];
1255 dnode_t
*dn
= dnh
->dnh_dnode
;
1257 if (dn
== DN_SLOT_FREE
) {
1259 } else if (DN_SLOT_IS_PTR(dn
)) {
1260 mutex_enter(&dn
->dn_mtx
);
1261 boolean_t can_free
= (dn
->dn_type
== DMU_OT_NONE
&&
1262 zfs_refcount_is_zero(&dn
->dn_holds
) &&
1263 !DNODE_IS_DIRTY(dn
));
1264 mutex_exit(&dn
->dn_mtx
);
1279 dnode_reclaim_slots(dnode_children_t
*children
, int idx
, int slots
)
1281 uint_t reclaimed
= 0;
1283 ASSERT3S(idx
+ slots
, <=, DNODES_PER_BLOCK
);
1285 for (int i
= idx
; i
< idx
+ slots
; i
++) {
1286 dnode_handle_t
*dnh
= &children
->dnc_children
[i
];
1288 ASSERT(zrl_is_locked(&dnh
->dnh_zrlock
));
1290 if (DN_SLOT_IS_PTR(dnh
->dnh_dnode
)) {
1291 ASSERT3S(dnh
->dnh_dnode
->dn_type
, ==, DMU_OT_NONE
);
1292 dnode_destroy(dnh
->dnh_dnode
);
1293 dnh
->dnh_dnode
= DN_SLOT_FREE
;
1302 dnode_free_interior_slots(dnode_t
*dn
)
1304 dnode_children_t
*children
= dmu_buf_get_user(&dn
->dn_dbuf
->db
);
1305 int epb
= dn
->dn_dbuf
->db
.db_size
>> DNODE_SHIFT
;
1306 int idx
= (dn
->dn_object
& (epb
- 1)) + 1;
1307 int slots
= dn
->dn_num_slots
- 1;
1312 ASSERT3S(idx
+ slots
, <=, DNODES_PER_BLOCK
);
1314 while (!dnode_slots_tryenter(children
, idx
, slots
)) {
1315 DNODE_STAT_BUMP(dnode_free_interior_lock_retry
);
1316 kpreempt(KPREEMPT_SYNC
);
1319 dnode_set_slots(children
, idx
, slots
, DN_SLOT_FREE
);
1320 dnode_slots_rele(children
, idx
, slots
);
1324 dnode_special_close(dnode_handle_t
*dnh
)
1326 dnode_t
*dn
= dnh
->dnh_dnode
;
1329 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1330 * zfs_refcount_remove()
1332 mutex_enter(&dn
->dn_mtx
);
1333 if (zfs_refcount_count(&dn
->dn_holds
) > 0)
1334 cv_wait(&dn
->dn_nodnholds
, &dn
->dn_mtx
);
1335 mutex_exit(&dn
->dn_mtx
);
1336 ASSERT3U(zfs_refcount_count(&dn
->dn_holds
), ==, 0);
1338 ASSERT(dn
->dn_dbuf
== NULL
||
1339 dmu_buf_get_user(&dn
->dn_dbuf
->db
) == NULL
);
1340 zrl_add(&dnh
->dnh_zrlock
);
1341 dnode_destroy(dn
); /* implicit zrl_remove() */
1342 zrl_destroy(&dnh
->dnh_zrlock
);
1343 dnh
->dnh_dnode
= NULL
;
1347 dnode_special_open(objset_t
*os
, dnode_phys_t
*dnp
, uint64_t object
,
1348 dnode_handle_t
*dnh
)
1352 zrl_init(&dnh
->dnh_zrlock
);
1353 VERIFY3U(1, ==, zrl_tryenter(&dnh
->dnh_zrlock
));
1355 dn
= dnode_create(os
, dnp
, NULL
, object
, dnh
);
1358 zrl_exit(&dnh
->dnh_zrlock
);
1362 dnode_buf_evict_async(void *dbu
)
1364 dnode_children_t
*dnc
= dbu
;
1366 DNODE_STAT_BUMP(dnode_buf_evict
);
1368 for (int i
= 0; i
< dnc
->dnc_count
; i
++) {
1369 dnode_handle_t
*dnh
= &dnc
->dnc_children
[i
];
1373 * The dnode handle lock guards against the dnode moving to
1374 * another valid address, so there is no need here to guard
1375 * against changes to or from NULL.
1377 if (!DN_SLOT_IS_PTR(dnh
->dnh_dnode
)) {
1378 zrl_destroy(&dnh
->dnh_zrlock
);
1379 dnh
->dnh_dnode
= DN_SLOT_UNINIT
;
1383 zrl_add(&dnh
->dnh_zrlock
);
1384 dn
= dnh
->dnh_dnode
;
1386 * If there are holds on this dnode, then there should
1387 * be holds on the dnode's containing dbuf as well; thus
1388 * it wouldn't be eligible for eviction and this function
1389 * would not have been called.
1391 ASSERT(zfs_refcount_is_zero(&dn
->dn_holds
));
1392 ASSERT(zfs_refcount_is_zero(&dn
->dn_tx_holds
));
1394 dnode_destroy(dn
); /* implicit zrl_remove() for first slot */
1395 zrl_destroy(&dnh
->dnh_zrlock
);
1396 dnh
->dnh_dnode
= DN_SLOT_UNINIT
;
1398 kmem_free(dnc
, sizeof (dnode_children_t
) +
1399 dnc
->dnc_count
* sizeof (dnode_handle_t
));
1403 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1404 * to ensure the hole at the specified object offset is large enough to
1405 * hold the dnode being created. The slots parameter is also used to ensure
1406 * a dnode does not span multiple dnode blocks. In both of these cases, if
1407 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1408 * are only possible when using DNODE_MUST_BE_FREE.
1410 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1411 * dnode_hold_impl() will check if the requested dnode is already consumed
1412 * as an extra dnode slot by an large dnode, in which case it returns
1415 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1416 * return whether the hold would succeed or not. tag and dnp should set to
1417 * NULL in this case.
1420 * EINVAL - Invalid object number or flags.
1421 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1422 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1423 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1424 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1425 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1426 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1427 * EIO - I/O error when reading the meta dnode dbuf.
1429 * succeeds even for free dnodes.
1432 dnode_hold_impl(objset_t
*os
, uint64_t object
, int flag
, int slots
,
1433 const void *tag
, dnode_t
**dnp
)
1436 int drop_struct_lock
= FALSE
;
1441 dnode_children_t
*dnc
;
1442 dnode_phys_t
*dn_block
;
1443 dnode_handle_t
*dnh
;
1445 ASSERT(!(flag
& DNODE_MUST_BE_ALLOCATED
) || (slots
== 0));
1446 ASSERT(!(flag
& DNODE_MUST_BE_FREE
) || (slots
> 0));
1447 IMPLY(flag
& DNODE_DRY_RUN
, (tag
== NULL
) && (dnp
== NULL
));
1450 * If you are holding the spa config lock as writer, you shouldn't
1451 * be asking the DMU to do *anything* unless it's the root pool
1452 * which may require us to read from the root filesystem while
1453 * holding some (not all) of the locks as writer.
1455 ASSERT(spa_config_held(os
->os_spa
, SCL_ALL
, RW_WRITER
) == 0 ||
1456 (spa_is_root(os
->os_spa
) &&
1457 spa_config_held(os
->os_spa
, SCL_STATE
, RW_WRITER
)));
1459 ASSERT((flag
& DNODE_MUST_BE_ALLOCATED
) || (flag
& DNODE_MUST_BE_FREE
));
1461 if (object
== DMU_USERUSED_OBJECT
|| object
== DMU_GROUPUSED_OBJECT
||
1462 object
== DMU_PROJECTUSED_OBJECT
) {
1463 if (object
== DMU_USERUSED_OBJECT
)
1464 dn
= DMU_USERUSED_DNODE(os
);
1465 else if (object
== DMU_GROUPUSED_OBJECT
)
1466 dn
= DMU_GROUPUSED_DNODE(os
);
1468 dn
= DMU_PROJECTUSED_DNODE(os
);
1470 return (SET_ERROR(ENOENT
));
1472 if ((flag
& DNODE_MUST_BE_ALLOCATED
) && type
== DMU_OT_NONE
)
1473 return (SET_ERROR(ENOENT
));
1474 if ((flag
& DNODE_MUST_BE_FREE
) && type
!= DMU_OT_NONE
)
1475 return (SET_ERROR(EEXIST
));
1477 /* Don't actually hold if dry run, just return 0 */
1478 if (!(flag
& DNODE_DRY_RUN
)) {
1479 (void) zfs_refcount_add(&dn
->dn_holds
, tag
);
1485 if (object
== 0 || object
>= DN_MAX_OBJECT
)
1486 return (SET_ERROR(EINVAL
));
1488 mdn
= DMU_META_DNODE(os
);
1489 ASSERT(mdn
->dn_object
== DMU_META_DNODE_OBJECT
);
1493 if (!RW_WRITE_HELD(&mdn
->dn_struct_rwlock
)) {
1494 rw_enter(&mdn
->dn_struct_rwlock
, RW_READER
);
1495 drop_struct_lock
= TRUE
;
1498 blk
= dbuf_whichblock(mdn
, 0, object
* sizeof (dnode_phys_t
));
1499 db
= dbuf_hold(mdn
, blk
, FTAG
);
1500 if (drop_struct_lock
)
1501 rw_exit(&mdn
->dn_struct_rwlock
);
1503 DNODE_STAT_BUMP(dnode_hold_dbuf_hold
);
1504 return (SET_ERROR(EIO
));
1508 * We do not need to decrypt to read the dnode so it doesn't matter
1509 * if we get the encrypted or decrypted version.
1511 err
= dbuf_read(db
, NULL
, DB_RF_CANFAIL
|
1512 DB_RF_NO_DECRYPT
| DB_RF_NOPREFETCH
);
1514 DNODE_STAT_BUMP(dnode_hold_dbuf_read
);
1515 dbuf_rele(db
, FTAG
);
1519 ASSERT3U(db
->db
.db_size
, >=, 1<<DNODE_SHIFT
);
1520 epb
= db
->db
.db_size
>> DNODE_SHIFT
;
1522 idx
= object
& (epb
- 1);
1523 dn_block
= (dnode_phys_t
*)db
->db
.db_data
;
1525 ASSERT(DB_DNODE(db
)->dn_type
== DMU_OT_DNODE
);
1526 dnc
= dmu_buf_get_user(&db
->db
);
1529 dnode_children_t
*winner
;
1532 dnc
= kmem_zalloc(sizeof (dnode_children_t
) +
1533 epb
* sizeof (dnode_handle_t
), KM_SLEEP
);
1534 dnc
->dnc_count
= epb
;
1535 dnh
= &dnc
->dnc_children
[0];
1537 /* Initialize dnode slot status from dnode_phys_t */
1538 for (int i
= 0; i
< epb
; i
++) {
1539 zrl_init(&dnh
[i
].dnh_zrlock
);
1546 if (dn_block
[i
].dn_type
!= DMU_OT_NONE
) {
1547 int interior
= dn_block
[i
].dn_extra_slots
;
1549 dnode_set_slots(dnc
, i
, 1, DN_SLOT_ALLOCATED
);
1550 dnode_set_slots(dnc
, i
+ 1, interior
,
1554 dnh
[i
].dnh_dnode
= DN_SLOT_FREE
;
1559 dmu_buf_init_user(&dnc
->dnc_dbu
, NULL
,
1560 dnode_buf_evict_async
, NULL
);
1561 winner
= dmu_buf_set_user(&db
->db
, &dnc
->dnc_dbu
);
1562 if (winner
!= NULL
) {
1564 for (int i
= 0; i
< epb
; i
++)
1565 zrl_destroy(&dnh
[i
].dnh_zrlock
);
1567 kmem_free(dnc
, sizeof (dnode_children_t
) +
1568 epb
* sizeof (dnode_handle_t
));
1573 ASSERT(dnc
->dnc_count
== epb
);
1575 if (flag
& DNODE_MUST_BE_ALLOCATED
) {
1578 dnode_slots_hold(dnc
, idx
, slots
);
1579 dnh
= &dnc
->dnc_children
[idx
];
1581 if (DN_SLOT_IS_PTR(dnh
->dnh_dnode
)) {
1582 dn
= dnh
->dnh_dnode
;
1583 } else if (dnh
->dnh_dnode
== DN_SLOT_INTERIOR
) {
1584 DNODE_STAT_BUMP(dnode_hold_alloc_interior
);
1585 dnode_slots_rele(dnc
, idx
, slots
);
1586 dbuf_rele(db
, FTAG
);
1587 return (SET_ERROR(EEXIST
));
1588 } else if (dnh
->dnh_dnode
!= DN_SLOT_ALLOCATED
) {
1589 DNODE_STAT_BUMP(dnode_hold_alloc_misses
);
1590 dnode_slots_rele(dnc
, idx
, slots
);
1591 dbuf_rele(db
, FTAG
);
1592 return (SET_ERROR(ENOENT
));
1594 dnode_slots_rele(dnc
, idx
, slots
);
1595 while (!dnode_slots_tryenter(dnc
, idx
, slots
)) {
1596 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry
);
1597 kpreempt(KPREEMPT_SYNC
);
1601 * Someone else won the race and called dnode_create()
1602 * after we checked DN_SLOT_IS_PTR() above but before
1603 * we acquired the lock.
1605 if (DN_SLOT_IS_PTR(dnh
->dnh_dnode
)) {
1606 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses
);
1607 dn
= dnh
->dnh_dnode
;
1609 dn
= dnode_create(os
, dn_block
+ idx
, db
,
1611 dmu_buf_add_user_size(&db
->db
,
1616 mutex_enter(&dn
->dn_mtx
);
1617 if (dn
->dn_type
== DMU_OT_NONE
|| dn
->dn_free_txg
!= 0) {
1618 DNODE_STAT_BUMP(dnode_hold_alloc_type_none
);
1619 mutex_exit(&dn
->dn_mtx
);
1620 dnode_slots_rele(dnc
, idx
, slots
);
1621 dbuf_rele(db
, FTAG
);
1622 return (SET_ERROR(ENOENT
));
1625 /* Don't actually hold if dry run, just return 0 */
1626 if (flag
& DNODE_DRY_RUN
) {
1627 mutex_exit(&dn
->dn_mtx
);
1628 dnode_slots_rele(dnc
, idx
, slots
);
1629 dbuf_rele(db
, FTAG
);
1633 DNODE_STAT_BUMP(dnode_hold_alloc_hits
);
1634 } else if (flag
& DNODE_MUST_BE_FREE
) {
1636 if (idx
+ slots
- 1 >= DNODES_PER_BLOCK
) {
1637 DNODE_STAT_BUMP(dnode_hold_free_overflow
);
1638 dbuf_rele(db
, FTAG
);
1639 return (SET_ERROR(ENOSPC
));
1642 dnode_slots_hold(dnc
, idx
, slots
);
1644 if (!dnode_check_slots_free(dnc
, idx
, slots
)) {
1645 DNODE_STAT_BUMP(dnode_hold_free_misses
);
1646 dnode_slots_rele(dnc
, idx
, slots
);
1647 dbuf_rele(db
, FTAG
);
1648 return (SET_ERROR(ENOSPC
));
1651 dnode_slots_rele(dnc
, idx
, slots
);
1652 while (!dnode_slots_tryenter(dnc
, idx
, slots
)) {
1653 DNODE_STAT_BUMP(dnode_hold_free_lock_retry
);
1654 kpreempt(KPREEMPT_SYNC
);
1657 if (!dnode_check_slots_free(dnc
, idx
, slots
)) {
1658 DNODE_STAT_BUMP(dnode_hold_free_lock_misses
);
1659 dnode_slots_rele(dnc
, idx
, slots
);
1660 dbuf_rele(db
, FTAG
);
1661 return (SET_ERROR(ENOSPC
));
1665 * Allocated but otherwise free dnodes which would
1666 * be in the interior of a multi-slot dnodes need
1667 * to be freed. Single slot dnodes can be safely
1668 * re-purposed as a performance optimization.
1672 dnode_reclaim_slots(dnc
, idx
+ 1, slots
- 1);
1674 dmu_buf_sub_user_size(&db
->db
,
1675 reclaimed
* sizeof (dnode_t
));
1678 dnh
= &dnc
->dnc_children
[idx
];
1679 if (DN_SLOT_IS_PTR(dnh
->dnh_dnode
)) {
1680 dn
= dnh
->dnh_dnode
;
1682 dn
= dnode_create(os
, dn_block
+ idx
, db
,
1684 dmu_buf_add_user_size(&db
->db
, sizeof (dnode_t
));
1687 mutex_enter(&dn
->dn_mtx
);
1688 if (!zfs_refcount_is_zero(&dn
->dn_holds
) || dn
->dn_free_txg
) {
1689 DNODE_STAT_BUMP(dnode_hold_free_refcount
);
1690 mutex_exit(&dn
->dn_mtx
);
1691 dnode_slots_rele(dnc
, idx
, slots
);
1692 dbuf_rele(db
, FTAG
);
1693 return (SET_ERROR(EEXIST
));
1696 /* Don't actually hold if dry run, just return 0 */
1697 if (flag
& DNODE_DRY_RUN
) {
1698 mutex_exit(&dn
->dn_mtx
);
1699 dnode_slots_rele(dnc
, idx
, slots
);
1700 dbuf_rele(db
, FTAG
);
1704 dnode_set_slots(dnc
, idx
+ 1, slots
- 1, DN_SLOT_INTERIOR
);
1705 DNODE_STAT_BUMP(dnode_hold_free_hits
);
1707 dbuf_rele(db
, FTAG
);
1708 return (SET_ERROR(EINVAL
));
1711 ASSERT0(dn
->dn_free_txg
);
1713 if (zfs_refcount_add(&dn
->dn_holds
, tag
) == 1)
1714 dbuf_add_ref(db
, dnh
);
1716 mutex_exit(&dn
->dn_mtx
);
1718 /* Now we can rely on the hold to prevent the dnode from moving. */
1719 dnode_slots_rele(dnc
, idx
, slots
);
1722 ASSERT3P(dnp
, !=, NULL
);
1723 ASSERT3P(dn
->dn_dbuf
, ==, db
);
1724 ASSERT3U(dn
->dn_object
, ==, object
);
1725 dbuf_rele(db
, FTAG
);
1732 * Return held dnode if the object is allocated, NULL if not.
1735 dnode_hold(objset_t
*os
, uint64_t object
, const void *tag
, dnode_t
**dnp
)
1737 return (dnode_hold_impl(os
, object
, DNODE_MUST_BE_ALLOCATED
, 0, tag
,
1742 * Can only add a reference if there is already at least one
1743 * reference on the dnode. Returns FALSE if unable to add a
1747 dnode_add_ref(dnode_t
*dn
, const void *tag
)
1749 mutex_enter(&dn
->dn_mtx
);
1750 if (zfs_refcount_is_zero(&dn
->dn_holds
)) {
1751 mutex_exit(&dn
->dn_mtx
);
1754 VERIFY(1 < zfs_refcount_add(&dn
->dn_holds
, tag
));
1755 mutex_exit(&dn
->dn_mtx
);
1760 dnode_rele(dnode_t
*dn
, const void *tag
)
1762 mutex_enter(&dn
->dn_mtx
);
1763 dnode_rele_and_unlock(dn
, tag
, B_FALSE
);
1767 dnode_rele_and_unlock(dnode_t
*dn
, const void *tag
, boolean_t evicting
)
1770 /* Get while the hold prevents the dnode from moving. */
1771 dmu_buf_impl_t
*db
= dn
->dn_dbuf
;
1772 dnode_handle_t
*dnh
= dn
->dn_handle
;
1774 refs
= zfs_refcount_remove(&dn
->dn_holds
, tag
);
1776 cv_broadcast(&dn
->dn_nodnholds
);
1777 mutex_exit(&dn
->dn_mtx
);
1778 /* dnode could get destroyed at this point, so don't use it anymore */
1781 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1782 * indirectly by dbuf_rele() while relying on the dnode handle to
1783 * prevent the dnode from moving, since releasing the last hold could
1784 * result in the dnode's parent dbuf evicting its dnode handles. For
1785 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1786 * other direct or indirect hold on the dnode must first drop the dnode
1790 ASSERT(refs
> 0 || zrl_owner(&dnh
->dnh_zrlock
) != curthread
);
1793 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1794 if (refs
== 0 && db
!= NULL
) {
1796 * Another thread could add a hold to the dnode handle in
1797 * dnode_hold_impl() while holding the parent dbuf. Since the
1798 * hold on the parent dbuf prevents the handle from being
1799 * destroyed, the hold on the handle is OK. We can't yet assert
1800 * that the handle has zero references, but that will be
1801 * asserted anyway when the handle gets destroyed.
1803 mutex_enter(&db
->db_mtx
);
1804 dbuf_rele_and_unlock(db
, dnh
, evicting
);
1809 * Test whether we can create a dnode at the specified location.
1812 dnode_try_claim(objset_t
*os
, uint64_t object
, int slots
)
1814 return (dnode_hold_impl(os
, object
, DNODE_MUST_BE_FREE
| DNODE_DRY_RUN
,
1815 slots
, NULL
, NULL
));
1819 * Checks if the dnode itself is dirty, or is carrying any uncommitted records.
1820 * It is important to check both conditions, as some operations (eg appending
1821 * to a file) can dirty both as a single logical unit, but they are not synced
1822 * out atomically, so checking one and not the other can result in an object
1823 * appearing to be clean mid-way through a commit.
1825 * Do not change this lightly! If you get it wrong, dmu_offset_next() can
1826 * detect a hole where there is really data, leading to silent corruption.
1829 dnode_is_dirty(dnode_t
*dn
)
1831 mutex_enter(&dn
->dn_mtx
);
1833 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1834 if (multilist_link_active(&dn
->dn_dirty_link
[i
]) ||
1835 !list_is_empty(&dn
->dn_dirty_records
[i
])) {
1836 mutex_exit(&dn
->dn_mtx
);
1841 mutex_exit(&dn
->dn_mtx
);
1847 dnode_setdirty(dnode_t
*dn
, dmu_tx_t
*tx
)
1849 objset_t
*os
= dn
->dn_objset
;
1850 uint64_t txg
= tx
->tx_txg
;
1852 if (DMU_OBJECT_IS_SPECIAL(dn
->dn_object
)) {
1853 dsl_dataset_dirty(os
->os_dsl_dataset
, tx
);
1860 mutex_enter(&dn
->dn_mtx
);
1861 ASSERT(dn
->dn_phys
->dn_type
|| dn
->dn_allocated_txg
);
1862 ASSERT(dn
->dn_free_txg
== 0 || dn
->dn_free_txg
>= txg
);
1863 mutex_exit(&dn
->dn_mtx
);
1867 * Determine old uid/gid when necessary
1869 dmu_objset_userquota_get_ids(dn
, B_TRUE
, tx
);
1871 multilist_t
*dirtylist
= &os
->os_dirty_dnodes
[txg
& TXG_MASK
];
1872 multilist_sublist_t
*mls
= multilist_sublist_lock_obj(dirtylist
, dn
);
1875 * If we are already marked dirty, we're done.
1877 if (multilist_link_active(&dn
->dn_dirty_link
[txg
& TXG_MASK
])) {
1878 multilist_sublist_unlock(mls
);
1882 ASSERT(!zfs_refcount_is_zero(&dn
->dn_holds
) ||
1883 !avl_is_empty(&dn
->dn_dbufs
));
1884 ASSERT(dn
->dn_datablksz
!= 0);
1885 ASSERT0(dn
->dn_next_bonuslen
[txg
& TXG_MASK
]);
1886 ASSERT0(dn
->dn_next_blksz
[txg
& TXG_MASK
]);
1887 ASSERT0(dn
->dn_next_bonustype
[txg
& TXG_MASK
]);
1889 dprintf_ds(os
->os_dsl_dataset
, "obj=%llu txg=%llu\n",
1890 (u_longlong_t
)dn
->dn_object
, (u_longlong_t
)txg
);
1892 multilist_sublist_insert_head(mls
, dn
);
1894 multilist_sublist_unlock(mls
);
1897 * The dnode maintains a hold on its containing dbuf as
1898 * long as there are holds on it. Each instantiated child
1899 * dbuf maintains a hold on the dnode. When the last child
1900 * drops its hold, the dnode will drop its hold on the
1901 * containing dbuf. We add a "dirty hold" here so that the
1902 * dnode will hang around after we finish processing its
1905 VERIFY(dnode_add_ref(dn
, (void *)(uintptr_t)tx
->tx_txg
));
1907 (void) dbuf_dirty(dn
->dn_dbuf
, tx
);
1909 dsl_dataset_dirty(os
->os_dsl_dataset
, tx
);
1913 dnode_free(dnode_t
*dn
, dmu_tx_t
*tx
)
1915 mutex_enter(&dn
->dn_mtx
);
1916 if (dn
->dn_type
== DMU_OT_NONE
|| dn
->dn_free_txg
) {
1917 mutex_exit(&dn
->dn_mtx
);
1920 dn
->dn_free_txg
= tx
->tx_txg
;
1921 mutex_exit(&dn
->dn_mtx
);
1923 dnode_setdirty(dn
, tx
);
1927 * Try to change the block size for the indicated dnode. This can only
1928 * succeed if there are no blocks allocated or dirty beyond first block
1931 dnode_set_blksz(dnode_t
*dn
, uint64_t size
, int ibs
, dmu_tx_t
*tx
)
1936 ASSERT3U(size
, <=, spa_maxblocksize(dmu_objset_spa(dn
->dn_objset
)));
1938 size
= SPA_MINBLOCKSIZE
;
1940 size
= P2ROUNDUP(size
, SPA_MINBLOCKSIZE
);
1942 if (ibs
== dn
->dn_indblkshift
)
1945 if (size
== dn
->dn_datablksz
&& ibs
== 0)
1948 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
1950 /* Check for any allocated blocks beyond the first */
1951 if (dn
->dn_maxblkid
!= 0)
1954 mutex_enter(&dn
->dn_dbufs_mtx
);
1955 for (db
= avl_first(&dn
->dn_dbufs
); db
!= NULL
;
1956 db
= AVL_NEXT(&dn
->dn_dbufs
, db
)) {
1957 if (db
->db_blkid
!= 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
1958 db
->db_blkid
!= DMU_SPILL_BLKID
) {
1959 mutex_exit(&dn
->dn_dbufs_mtx
);
1963 mutex_exit(&dn
->dn_dbufs_mtx
);
1965 if (ibs
&& dn
->dn_nlevels
!= 1)
1968 dnode_setdirty(dn
, tx
);
1969 if (size
!= dn
->dn_datablksz
) {
1970 /* resize the old block */
1971 err
= dbuf_hold_impl(dn
, 0, 0, TRUE
, FALSE
, FTAG
, &db
);
1973 dbuf_new_size(db
, size
, tx
);
1974 } else if (err
!= ENOENT
) {
1978 dnode_setdblksz(dn
, size
);
1979 dn
->dn_next_blksz
[tx
->tx_txg
& TXG_MASK
] = size
;
1981 dbuf_rele(db
, FTAG
);
1984 dn
->dn_indblkshift
= ibs
;
1985 dn
->dn_next_indblkshift
[tx
->tx_txg
& TXG_MASK
] = ibs
;
1988 rw_exit(&dn
->dn_struct_rwlock
);
1992 rw_exit(&dn
->dn_struct_rwlock
);
1993 return (SET_ERROR(ENOTSUP
));
1997 dnode_set_nlevels_impl(dnode_t
*dn
, int new_nlevels
, dmu_tx_t
*tx
)
1999 uint64_t txgoff
= tx
->tx_txg
& TXG_MASK
;
2000 int old_nlevels
= dn
->dn_nlevels
;
2003 dbuf_dirty_record_t
*new, *dr
, *dr_next
;
2005 ASSERT(RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
2007 ASSERT3U(new_nlevels
, >, dn
->dn_nlevels
);
2008 dn
->dn_nlevels
= new_nlevels
;
2010 ASSERT3U(new_nlevels
, >, dn
->dn_next_nlevels
[txgoff
]);
2011 dn
->dn_next_nlevels
[txgoff
] = new_nlevels
;
2013 /* dirty the left indirects */
2014 db
= dbuf_hold_level(dn
, old_nlevels
, 0, FTAG
);
2016 new = dbuf_dirty(db
, tx
);
2017 dbuf_rele(db
, FTAG
);
2019 /* transfer the dirty records to the new indirect */
2020 mutex_enter(&dn
->dn_mtx
);
2021 mutex_enter(&new->dt
.di
.dr_mtx
);
2022 list
= &dn
->dn_dirty_records
[txgoff
];
2023 for (dr
= list_head(list
); dr
; dr
= dr_next
) {
2024 dr_next
= list_next(&dn
->dn_dirty_records
[txgoff
], dr
);
2026 IMPLY(dr
->dr_dbuf
== NULL
, old_nlevels
== 1);
2027 if (dr
->dr_dbuf
== NULL
||
2028 (dr
->dr_dbuf
->db_level
== old_nlevels
- 1 &&
2029 dr
->dr_dbuf
->db_blkid
!= DMU_BONUS_BLKID
&&
2030 dr
->dr_dbuf
->db_blkid
!= DMU_SPILL_BLKID
)) {
2031 list_remove(&dn
->dn_dirty_records
[txgoff
], dr
);
2032 list_insert_tail(&new->dt
.di
.dr_children
, dr
);
2033 dr
->dr_parent
= new;
2036 mutex_exit(&new->dt
.di
.dr_mtx
);
2037 mutex_exit(&dn
->dn_mtx
);
2041 dnode_set_nlevels(dnode_t
*dn
, int nlevels
, dmu_tx_t
*tx
)
2045 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
2047 if (dn
->dn_nlevels
== nlevels
) {
2050 } else if (nlevels
< dn
->dn_nlevels
) {
2051 ret
= SET_ERROR(EINVAL
);
2055 dnode_set_nlevels_impl(dn
, nlevels
, tx
);
2058 rw_exit(&dn
->dn_struct_rwlock
);
2062 /* read-holding callers must not rely on the lock being continuously held */
2064 dnode_new_blkid(dnode_t
*dn
, uint64_t blkid
, dmu_tx_t
*tx
, boolean_t have_read
,
2067 int epbs
, new_nlevels
;
2070 ASSERT(blkid
!= DMU_BONUS_BLKID
);
2073 RW_READ_HELD(&dn
->dn_struct_rwlock
) :
2074 RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
2077 * if we have a read-lock, check to see if we need to do any work
2078 * before upgrading to a write-lock.
2081 if (blkid
<= dn
->dn_maxblkid
)
2084 if (!rw_tryupgrade(&dn
->dn_struct_rwlock
)) {
2085 rw_exit(&dn
->dn_struct_rwlock
);
2086 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
2091 * Raw sends (indicated by the force flag) require that we take the
2092 * given blkid even if the value is lower than the current value.
2094 if (!force
&& blkid
<= dn
->dn_maxblkid
)
2098 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
2099 * to indicate that this field is set. This allows us to set the
2100 * maxblkid to 0 on an existing object in dnode_sync().
2102 dn
->dn_maxblkid
= blkid
;
2103 dn
->dn_next_maxblkid
[tx
->tx_txg
& TXG_MASK
] =
2104 blkid
| DMU_NEXT_MAXBLKID_SET
;
2107 * Compute the number of levels necessary to support the new maxblkid.
2108 * Raw sends will ensure nlevels is set correctly for us.
2111 epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2112 for (sz
= dn
->dn_nblkptr
;
2113 sz
<= blkid
&& sz
>= dn
->dn_nblkptr
; sz
<<= epbs
)
2116 ASSERT3U(new_nlevels
, <=, DN_MAX_LEVELS
);
2119 if (new_nlevels
> dn
->dn_nlevels
)
2120 dnode_set_nlevels_impl(dn
, new_nlevels
, tx
);
2122 ASSERT3U(dn
->dn_nlevels
, >=, new_nlevels
);
2127 rw_downgrade(&dn
->dn_struct_rwlock
);
2131 dnode_dirty_l1(dnode_t
*dn
, uint64_t l1blkid
, dmu_tx_t
*tx
)
2133 dmu_buf_impl_t
*db
= dbuf_hold_level(dn
, 1, l1blkid
, FTAG
);
2135 dmu_buf_will_dirty(&db
->db
, tx
);
2136 dbuf_rele(db
, FTAG
);
2141 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
2145 dnode_dirty_l1range(dnode_t
*dn
, uint64_t start_blkid
, uint64_t end_blkid
,
2148 dmu_buf_impl_t
*db_search
;
2152 db_search
= kmem_zalloc(sizeof (dmu_buf_impl_t
), KM_SLEEP
);
2154 mutex_enter(&dn
->dn_dbufs_mtx
);
2156 db_search
->db_level
= 1;
2157 db_search
->db_blkid
= start_blkid
+ 1;
2158 db_search
->db_state
= DB_SEARCH
;
2161 db
= avl_find(&dn
->dn_dbufs
, db_search
, &where
);
2163 db
= avl_nearest(&dn
->dn_dbufs
, where
, AVL_AFTER
);
2165 if (db
== NULL
|| db
->db_level
!= 1 ||
2166 db
->db_blkid
>= end_blkid
) {
2171 * Setup the next blkid we want to search for.
2173 db_search
->db_blkid
= db
->db_blkid
+ 1;
2174 ASSERT3U(db
->db_blkid
, >=, start_blkid
);
2177 * If the dbuf transitions to DB_EVICTING while we're trying
2178 * to dirty it, then we will be unable to discover it in
2179 * the dbuf hash table. This will result in a call to
2180 * dbuf_create() which needs to acquire the dn_dbufs_mtx
2181 * lock. To avoid a deadlock, we drop the lock before
2182 * dirtying the level-1 dbuf.
2184 mutex_exit(&dn
->dn_dbufs_mtx
);
2185 dnode_dirty_l1(dn
, db
->db_blkid
, tx
);
2186 mutex_enter(&dn
->dn_dbufs_mtx
);
2191 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
2193 db_search
->db_level
= 1;
2194 db_search
->db_blkid
= start_blkid
+ 1;
2195 db_search
->db_state
= DB_SEARCH
;
2196 db
= avl_find(&dn
->dn_dbufs
, db_search
, &where
);
2198 db
= avl_nearest(&dn
->dn_dbufs
, where
, AVL_AFTER
);
2199 for (; db
!= NULL
; db
= AVL_NEXT(&dn
->dn_dbufs
, db
)) {
2200 if (db
->db_level
!= 1 || db
->db_blkid
>= end_blkid
)
2202 if (db
->db_state
!= DB_EVICTING
)
2203 ASSERT(db
->db_dirtycnt
> 0);
2206 kmem_free(db_search
, sizeof (dmu_buf_impl_t
));
2207 mutex_exit(&dn
->dn_dbufs_mtx
);
2211 dnode_set_dirtyctx(dnode_t
*dn
, dmu_tx_t
*tx
, const void *tag
)
2214 * Don't set dirtyctx to SYNC if we're just modifying this as we
2215 * initialize the objset.
2217 if (dn
->dn_dirtyctx
== DN_UNDIRTIED
) {
2218 dsl_dataset_t
*ds
= dn
->dn_objset
->os_dsl_dataset
;
2221 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, tag
);
2223 if (!BP_IS_HOLE(dn
->dn_objset
->os_rootbp
)) {
2224 if (dmu_tx_is_syncing(tx
))
2225 dn
->dn_dirtyctx
= DN_DIRTY_SYNC
;
2227 dn
->dn_dirtyctx
= DN_DIRTY_OPEN
;
2228 dn
->dn_dirtyctx_firstset
= tag
;
2231 rrw_exit(&ds
->ds_bp_rwlock
, tag
);
2237 dnode_partial_zero(dnode_t
*dn
, uint64_t off
, uint64_t blkoff
, uint64_t len
,
2243 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2244 res
= dbuf_hold_impl(dn
, 0, dbuf_whichblock(dn
, 0, off
), TRUE
, FALSE
,
2246 rw_exit(&dn
->dn_struct_rwlock
);
2248 db_lock_type_t dblt
;
2251 dblt
= dmu_buf_lock_parent(db
, RW_READER
, FTAG
);
2252 /* don't dirty if not on disk and not dirty */
2253 dirty
= !list_is_empty(&db
->db_dirty_records
) ||
2254 (db
->db_blkptr
&& !BP_IS_HOLE(db
->db_blkptr
));
2255 dmu_buf_unlock_parent(db
, dblt
, FTAG
);
2259 dmu_buf_will_dirty(&db
->db
, tx
);
2260 data
= db
->db
.db_data
;
2261 memset(data
+ blkoff
, 0, len
);
2263 dbuf_rele(db
, FTAG
);
2268 dnode_free_range(dnode_t
*dn
, uint64_t off
, uint64_t len
, dmu_tx_t
*tx
)
2270 uint64_t blkoff
, blkid
, nblks
;
2271 int blksz
, blkshift
, head
, tail
;
2275 blksz
= dn
->dn_datablksz
;
2276 blkshift
= dn
->dn_datablkshift
;
2277 epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2279 if (len
== DMU_OBJECT_END
) {
2280 len
= UINT64_MAX
- off
;
2285 * First, block align the region to free:
2288 head
= P2NPHASE(off
, blksz
);
2289 blkoff
= P2PHASE(off
, blksz
);
2290 if ((off
>> blkshift
) > dn
->dn_maxblkid
)
2293 ASSERT(dn
->dn_maxblkid
== 0);
2294 if (off
== 0 && len
>= blksz
) {
2296 * Freeing the whole block; fast-track this request.
2300 if (dn
->dn_nlevels
> 1) {
2301 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
2302 dnode_dirty_l1(dn
, 0, tx
);
2303 rw_exit(&dn
->dn_struct_rwlock
);
2306 } else if (off
>= blksz
) {
2307 /* Freeing past end-of-data */
2310 /* Freeing part of the block. */
2312 ASSERT3U(head
, >, 0);
2316 /* zero out any partial block data at the start of the range */
2318 ASSERT3U(blkoff
+ head
, ==, blksz
);
2321 dnode_partial_zero(dn
, off
, blkoff
, head
, tx
);
2326 /* If the range was less than one block, we're done */
2330 /* If the remaining range is past end of file, we're done */
2331 if ((off
>> blkshift
) > dn
->dn_maxblkid
)
2334 ASSERT(ISP2(blksz
));
2338 tail
= P2PHASE(len
, blksz
);
2340 ASSERT0(P2PHASE(off
, blksz
));
2341 /* zero out any partial block data at the end of the range */
2345 dnode_partial_zero(dn
, off
+ len
, 0, tail
, tx
);
2349 /* If the range did not include a full block, we are done */
2353 ASSERT(IS_P2ALIGNED(off
, blksz
));
2354 ASSERT(trunc
|| IS_P2ALIGNED(len
, blksz
));
2355 blkid
= off
>> blkshift
;
2356 nblks
= len
>> blkshift
;
2361 * Dirty all the indirect blocks in this range. Note that only
2362 * the first and last indirect blocks can actually be written
2363 * (if they were partially freed) -- they must be dirtied, even if
2364 * they do not exist on disk yet. The interior blocks will
2365 * be freed by free_children(), so they will not actually be written.
2366 * Even though these interior blocks will not be written, we
2367 * dirty them for two reasons:
2369 * - It ensures that the indirect blocks remain in memory until
2370 * syncing context. (They have already been prefetched by
2371 * dmu_tx_hold_free(), so we don't have to worry about reading
2372 * them serially here.)
2374 * - The dirty space accounting will put pressure on the txg sync
2375 * mechanism to begin syncing, and to delay transactions if there
2376 * is a large amount of freeing. Even though these indirect
2377 * blocks will not be written, we could need to write the same
2378 * amount of space if we copy the freed BPs into deadlists.
2380 if (dn
->dn_nlevels
> 1) {
2381 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
2382 uint64_t first
, last
;
2384 first
= blkid
>> epbs
;
2385 dnode_dirty_l1(dn
, first
, tx
);
2387 last
= dn
->dn_maxblkid
>> epbs
;
2389 last
= (blkid
+ nblks
- 1) >> epbs
;
2391 dnode_dirty_l1(dn
, last
, tx
);
2393 dnode_dirty_l1range(dn
, first
, last
, tx
);
2395 int shift
= dn
->dn_datablkshift
+ dn
->dn_indblkshift
-
2397 for (uint64_t i
= first
+ 1; i
< last
; i
++) {
2399 * Set i to the blockid of the next non-hole
2400 * level-1 indirect block at or after i. Note
2401 * that dnode_next_offset() operates in terms of
2402 * level-0-equivalent bytes.
2404 uint64_t ibyte
= i
<< shift
;
2405 int err
= dnode_next_offset(dn
, DNODE_FIND_HAVELOCK
,
2412 * Normally we should not see an error, either
2413 * from dnode_next_offset() or dbuf_hold_level()
2414 * (except for ESRCH from dnode_next_offset).
2415 * If there is an i/o error, then when we read
2416 * this block in syncing context, it will use
2417 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2418 * to the "failmode" property. dnode_next_offset()
2419 * doesn't have a flag to indicate MUSTSUCCEED.
2424 dnode_dirty_l1(dn
, i
, tx
);
2426 rw_exit(&dn
->dn_struct_rwlock
);
2431 * Add this range to the dnode range list.
2432 * We will finish up this free operation in the syncing phase.
2434 mutex_enter(&dn
->dn_mtx
);
2436 int txgoff
= tx
->tx_txg
& TXG_MASK
;
2437 if (dn
->dn_free_ranges
[txgoff
] == NULL
) {
2438 dn
->dn_free_ranges
[txgoff
] = range_tree_create(NULL
,
2439 RANGE_SEG64
, NULL
, 0, 0);
2441 range_tree_clear(dn
->dn_free_ranges
[txgoff
], blkid
, nblks
);
2442 range_tree_add(dn
->dn_free_ranges
[txgoff
], blkid
, nblks
);
2444 dprintf_dnode(dn
, "blkid=%llu nblks=%llu txg=%llu\n",
2445 (u_longlong_t
)blkid
, (u_longlong_t
)nblks
,
2446 (u_longlong_t
)tx
->tx_txg
);
2447 mutex_exit(&dn
->dn_mtx
);
2449 dbuf_free_range(dn
, blkid
, blkid
+ nblks
- 1, tx
);
2450 dnode_setdirty(dn
, tx
);
2454 dnode_spill_freed(dnode_t
*dn
)
2458 mutex_enter(&dn
->dn_mtx
);
2459 for (i
= 0; i
< TXG_SIZE
; i
++) {
2460 if (dn
->dn_rm_spillblk
[i
] == DN_KILL_SPILLBLK
)
2463 mutex_exit(&dn
->dn_mtx
);
2464 return (i
< TXG_SIZE
);
2467 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2469 dnode_block_freed(dnode_t
*dn
, uint64_t blkid
)
2473 if (blkid
== DMU_BONUS_BLKID
)
2476 if (dn
->dn_free_txg
)
2479 if (blkid
== DMU_SPILL_BLKID
)
2480 return (dnode_spill_freed(dn
));
2482 mutex_enter(&dn
->dn_mtx
);
2483 for (i
= 0; i
< TXG_SIZE
; i
++) {
2484 if (dn
->dn_free_ranges
[i
] != NULL
&&
2485 range_tree_contains(dn
->dn_free_ranges
[i
], blkid
, 1))
2488 mutex_exit(&dn
->dn_mtx
);
2489 return (i
< TXG_SIZE
);
2492 /* call from syncing context when we actually write/free space for this dnode */
2494 dnode_diduse_space(dnode_t
*dn
, int64_t delta
)
2497 dprintf_dnode(dn
, "dn=%p dnp=%p used=%llu delta=%lld\n",
2499 (u_longlong_t
)dn
->dn_phys
->dn_used
,
2502 mutex_enter(&dn
->dn_mtx
);
2503 space
= DN_USED_BYTES(dn
->dn_phys
);
2505 ASSERT3U(space
+ delta
, >=, space
); /* no overflow */
2507 ASSERT3U(space
, >=, -delta
); /* no underflow */
2510 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_DNODE_BYTES
) {
2511 ASSERT((dn
->dn_phys
->dn_flags
& DNODE_FLAG_USED_BYTES
) == 0);
2512 ASSERT0(P2PHASE(space
, 1<<DEV_BSHIFT
));
2513 dn
->dn_phys
->dn_used
= space
>> DEV_BSHIFT
;
2515 dn
->dn_phys
->dn_used
= space
;
2516 dn
->dn_phys
->dn_flags
|= DNODE_FLAG_USED_BYTES
;
2518 mutex_exit(&dn
->dn_mtx
);
2522 * Scans a block at the indicated "level" looking for a hole or data,
2523 * depending on 'flags'.
2525 * If level > 0, then we are scanning an indirect block looking at its
2526 * pointers. If level == 0, then we are looking at a block of dnodes.
2528 * If we don't find what we are looking for in the block, we return ESRCH.
2529 * Otherwise, return with *offset pointing to the beginning (if searching
2530 * forwards) or end (if searching backwards) of the range covered by the
2531 * block pointer we matched on (or dnode).
2533 * The basic search algorithm used below by dnode_next_offset() is to
2534 * use this function to search up the block tree (widen the search) until
2535 * we find something (i.e., we don't return ESRCH) and then search back
2536 * down the tree (narrow the search) until we reach our original search
2540 dnode_next_offset_level(dnode_t
*dn
, int flags
, uint64_t *offset
,
2541 int lvl
, uint64_t blkfill
, uint64_t txg
)
2543 dmu_buf_impl_t
*db
= NULL
;
2545 uint64_t epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2546 uint64_t epb
= 1ULL << epbs
;
2547 uint64_t minfill
, maxfill
;
2549 int i
, inc
, error
, span
;
2551 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
2553 hole
= ((flags
& DNODE_FIND_HOLE
) != 0);
2554 inc
= (flags
& DNODE_FIND_BACKWARDS
) ? -1 : 1;
2555 ASSERT(txg
== 0 || !hole
);
2557 if (lvl
== dn
->dn_phys
->dn_nlevels
) {
2559 epb
= dn
->dn_phys
->dn_nblkptr
;
2560 data
= dn
->dn_phys
->dn_blkptr
;
2562 uint64_t blkid
= dbuf_whichblock(dn
, lvl
, *offset
);
2563 error
= dbuf_hold_impl(dn
, lvl
, blkid
, TRUE
, FALSE
, FTAG
, &db
);
2565 if (error
!= ENOENT
)
2570 * This can only happen when we are searching up
2571 * the block tree for data. We don't really need to
2572 * adjust the offset, as we will just end up looking
2573 * at the pointer to this block in its parent, and its
2574 * going to be unallocated, so we will skip over it.
2576 return (SET_ERROR(ESRCH
));
2578 error
= dbuf_read(db
, NULL
,
2579 DB_RF_CANFAIL
| DB_RF_HAVESTRUCT
|
2580 DB_RF_NO_DECRYPT
| DB_RF_NOPREFETCH
);
2582 dbuf_rele(db
, FTAG
);
2585 data
= db
->db
.db_data
;
2586 rw_enter(&db
->db_rwlock
, RW_READER
);
2589 if (db
!= NULL
&& txg
!= 0 && (db
->db_blkptr
== NULL
||
2590 BP_GET_LOGICAL_BIRTH(db
->db_blkptr
) <= txg
||
2591 BP_IS_HOLE(db
->db_blkptr
))) {
2593 * This can only happen when we are searching up the tree
2594 * and these conditions mean that we need to keep climbing.
2596 error
= SET_ERROR(ESRCH
);
2597 } else if (lvl
== 0) {
2598 dnode_phys_t
*dnp
= data
;
2600 ASSERT(dn
->dn_type
== DMU_OT_DNODE
);
2601 ASSERT(!(flags
& DNODE_FIND_BACKWARDS
));
2603 for (i
= (*offset
>> DNODE_SHIFT
) & (blkfill
- 1);
2604 i
< blkfill
; i
+= dnp
[i
].dn_extra_slots
+ 1) {
2605 if ((dnp
[i
].dn_type
== DMU_OT_NONE
) == hole
)
2610 error
= SET_ERROR(ESRCH
);
2612 *offset
= (*offset
& ~(DNODE_BLOCK_SIZE
- 1)) +
2615 blkptr_t
*bp
= data
;
2616 uint64_t start
= *offset
;
2617 span
= (lvl
- 1) * epbs
+ dn
->dn_datablkshift
;
2619 maxfill
= blkfill
<< ((lvl
- 1) * epbs
);
2626 if (span
>= 8 * sizeof (*offset
)) {
2627 /* This only happens on the highest indirection level */
2628 ASSERT3U((lvl
- 1), ==, dn
->dn_phys
->dn_nlevels
- 1);
2631 *offset
= *offset
>> span
;
2634 for (i
= BF64_GET(*offset
, 0, epbs
);
2635 i
>= 0 && i
< epb
; i
+= inc
) {
2636 if (BP_GET_FILL(&bp
[i
]) >= minfill
&&
2637 BP_GET_FILL(&bp
[i
]) <= maxfill
&&
2638 (hole
|| BP_GET_LOGICAL_BIRTH(&bp
[i
]) > txg
))
2640 if (inc
> 0 || *offset
> 0)
2644 if (span
>= 8 * sizeof (*offset
)) {
2647 *offset
= *offset
<< span
;
2651 /* traversing backwards; position offset at the end */
2652 if (span
< 8 * sizeof (*offset
))
2653 *offset
= MIN(*offset
+ (1ULL << span
) - 1,
2655 } else if (*offset
< start
) {
2658 if (i
< 0 || i
>= epb
)
2659 error
= SET_ERROR(ESRCH
);
2663 rw_exit(&db
->db_rwlock
);
2664 dbuf_rele(db
, FTAG
);
2671 * Find the next hole, data, or sparse region at or after *offset.
2672 * The value 'blkfill' tells us how many items we expect to find
2673 * in an L0 data block; this value is 1 for normal objects,
2674 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2675 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2679 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2680 * Finds the next/previous hole/data in a file.
2681 * Used in dmu_offset_next().
2683 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2684 * Finds the next free/allocated dnode an objset's meta-dnode.
2685 * Only finds objects that have new contents since txg (ie.
2686 * bonus buffer changes and content removal are ignored).
2687 * Used in dmu_object_next().
2689 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2690 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2691 * Used in dmu_object_alloc().
2694 dnode_next_offset(dnode_t
*dn
, int flags
, uint64_t *offset
,
2695 int minlvl
, uint64_t blkfill
, uint64_t txg
)
2697 uint64_t initial_offset
= *offset
;
2701 if (!(flags
& DNODE_FIND_HAVELOCK
))
2702 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2704 if (dn
->dn_phys
->dn_nlevels
== 0) {
2705 error
= SET_ERROR(ESRCH
);
2709 if (dn
->dn_datablkshift
== 0) {
2710 if (*offset
< dn
->dn_datablksz
) {
2711 if (flags
& DNODE_FIND_HOLE
)
2712 *offset
= dn
->dn_datablksz
;
2714 error
= SET_ERROR(ESRCH
);
2719 maxlvl
= dn
->dn_phys
->dn_nlevels
;
2721 for (lvl
= minlvl
; lvl
<= maxlvl
; lvl
++) {
2722 error
= dnode_next_offset_level(dn
,
2723 flags
, offset
, lvl
, blkfill
, txg
);
2728 while (error
== 0 && --lvl
>= minlvl
) {
2729 error
= dnode_next_offset_level(dn
,
2730 flags
, offset
, lvl
, blkfill
, txg
);
2734 * There's always a "virtual hole" at the end of the object, even
2735 * if all BP's which physically exist are non-holes.
2737 if ((flags
& DNODE_FIND_HOLE
) && error
== ESRCH
&& txg
== 0 &&
2738 minlvl
== 1 && blkfill
== 1 && !(flags
& DNODE_FIND_BACKWARDS
)) {
2742 if (error
== 0 && (flags
& DNODE_FIND_BACKWARDS
?
2743 initial_offset
< *offset
: initial_offset
> *offset
))
2744 error
= SET_ERROR(ESRCH
);
2746 if (!(flags
& DNODE_FIND_HAVELOCK
))
2747 rw_exit(&dn
->dn_struct_rwlock
);
2752 #if defined(_KERNEL)
2753 EXPORT_SYMBOL(dnode_hold
);
2754 EXPORT_SYMBOL(dnode_rele
);
2755 EXPORT_SYMBOL(dnode_set_nlevels
);
2756 EXPORT_SYMBOL(dnode_set_blksz
);
2757 EXPORT_SYMBOL(dnode_free_range
);
2758 EXPORT_SYMBOL(dnode_evict_dbufs
);
2759 EXPORT_SYMBOL(dnode_evict_bonus
);
2762 ZFS_MODULE_PARAM(zfs
, zfs_
, default_bs
, INT
, ZMOD_RW
,
2763 "Default dnode block shift");
2764 ZFS_MODULE_PARAM(zfs
, zfs_
, default_ibs
, INT
, ZMOD_RW
,
2765 "Default dnode indirect block shift");