4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
40 #include <sys/arc_impl.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
56 #include <sys/range_tree.h>
59 #include <sys/zfs_vfsops.h>
63 * Grand theory statement on scan queue sorting
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
96 * Implementation Notes
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
106 * Backwards compatibility
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
118 typedef int (scan_cb_t
)(dsl_pool_t
*, const blkptr_t
*,
119 const zbookmark_phys_t
*);
121 static scan_cb_t dsl_scan_scrub_cb
;
123 static int scan_ds_queue_compare(const void *a
, const void *b
);
124 static int scan_prefetch_queue_compare(const void *a
, const void *b
);
125 static void scan_ds_queue_clear(dsl_scan_t
*scn
);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
);
127 static boolean_t
scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
,
129 static void scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
);
130 static void scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
);
131 static void scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
);
132 static uint64_t dsl_scan_count_data_disks(spa_t
*spa
);
133 static void read_by_block_level(dsl_scan_t
*scn
, zbookmark_phys_t zb
);
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent
;
136 static int zfs_scan_blkstats
= 0;
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining. We define a pass to start when the scanning
141 * phase completes for a sequential resilver. Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
145 static uint_t zfs_scan_report_txgs
= 0;
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
153 static int zfs_scan_strict_mem_lim
= B_FALSE
;
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
163 static uint64_t zfs_scan_vdev_limit
= 16 << 20;
165 static uint_t zfs_scan_issue_strategy
= 0;
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy
= B_FALSE
;
169 static uint64_t zfs_scan_max_ext_gap
= 2 << 20; /* in bytes */
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
176 static uint_t zfs_scan_fill_weight
= 3;
177 static uint64_t fill_weight
;
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min
= 16 << 20; /* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max
= 128 << 20; /* bytes */
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact
= 20;
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact
= 20;
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms
= 1000;
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms
= 500;
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms
= 1000;
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms
= 3000;
202 static uint_t zfs_scan_checkpoint_intval
= 7200; /* in seconds */
203 int zfs_scan_suspend_progress
= 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io
= B_FALSE
; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch
= B_FALSE
; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max
= DDT_CLASS_DUPLICATE
;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks
= UINT64_MAX
;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees
= 100000;
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer
= B_FALSE
;
215 /* Don't defer a resilver if the one in progress only got this far: */
216 static uint_t zfs_resilver_defer_percent
= 10;
219 * We wait a few txgs after importing a pool to begin scanning so that
220 * the import / mounting code isn't held up by scrub / resilver IO.
221 * Unfortunately, it is a bit difficult to determine exactly how long
222 * this will take since userspace will trigger fs mounts asynchronously
223 * and the kernel will create zvol minors asynchronously. As a result,
224 * the value provided here is a bit arbitrary, but represents a
225 * reasonable estimate of how many txgs it will take to finish fully
228 #define SCAN_IMPORT_WAIT_TXGS 5
230 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
231 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
232 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
235 * Enable/disable the processing of the free_bpobj object.
237 static int zfs_free_bpobj_enabled
= 1;
239 /* Error blocks to be scrubbed in one txg. */
240 static uint_t zfs_scrub_error_blocks_per_txg
= 1 << 12;
242 /* the order has to match pool_scan_type */
243 static scan_cb_t
*scan_funcs
[POOL_SCAN_FUNCS
] = {
245 dsl_scan_scrub_cb
, /* POOL_SCAN_SCRUB */
246 dsl_scan_scrub_cb
, /* POOL_SCAN_RESILVER */
249 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
257 * This controls what conditions are placed on dsl_scan_sync_state():
258 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
259 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
260 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
261 * write out the scn_phys_cached version.
262 * See dsl_scan_sync_state for details.
271 * This struct represents the minimum information needed to reconstruct a
272 * zio for sequential scanning. This is useful because many of these will
273 * accumulate in the sequential IO queues before being issued, so saving
274 * memory matters here.
276 typedef struct scan_io
{
277 /* fields from blkptr_t */
278 uint64_t sio_blk_prop
;
279 uint64_t sio_phys_birth
;
281 zio_cksum_t sio_cksum
;
282 uint32_t sio_nr_dvas
;
284 /* fields from zio_t */
286 zbookmark_phys_t sio_zb
;
288 /* members for queue sorting */
290 avl_node_t sio_addr_node
; /* link into issuing queue */
291 list_node_t sio_list_node
; /* link for issuing to disk */
295 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
296 * depending on how many were in the original bp. Only the
297 * first DVA is really used for sorting and issuing purposes.
298 * The other DVAs (if provided) simply exist so that the zio
299 * layer can find additional copies to repair from in the
300 * event of an error. This array must go at the end of the
301 * struct to allow this for the variable number of elements.
306 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
307 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
308 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
309 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
310 #define SIO_GET_END_OFFSET(sio) \
311 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
312 #define SIO_GET_MUSED(sio) \
313 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
315 struct dsl_scan_io_queue
{
316 dsl_scan_t
*q_scn
; /* associated dsl_scan_t */
317 vdev_t
*q_vd
; /* top-level vdev that this queue represents */
318 zio_t
*q_zio
; /* scn_zio_root child for waiting on IO */
320 /* trees used for sorting I/Os and extents of I/Os */
321 range_tree_t
*q_exts_by_addr
;
322 zfs_btree_t q_exts_by_size
;
323 avl_tree_t q_sios_by_addr
;
324 uint64_t q_sio_memused
;
325 uint64_t q_last_ext_addr
;
327 /* members for zio rate limiting */
328 uint64_t q_maxinflight_bytes
;
329 uint64_t q_inflight_bytes
;
330 kcondvar_t q_zio_cv
; /* used under vd->vdev_scan_io_queue_lock */
332 /* per txg statistics */
333 uint64_t q_total_seg_size_this_txg
;
334 uint64_t q_segs_this_txg
;
335 uint64_t q_total_zio_size_this_txg
;
336 uint64_t q_zios_this_txg
;
339 /* private data for dsl_scan_prefetch_cb() */
340 typedef struct scan_prefetch_ctx
{
341 zfs_refcount_t spc_refcnt
; /* refcount for memory management */
342 dsl_scan_t
*spc_scn
; /* dsl_scan_t for the pool */
343 boolean_t spc_root
; /* is this prefetch for an objset? */
344 uint8_t spc_indblkshift
; /* dn_indblkshift of current dnode */
345 uint16_t spc_datablkszsec
; /* dn_idatablkszsec of current dnode */
346 } scan_prefetch_ctx_t
;
348 /* private data for dsl_scan_prefetch() */
349 typedef struct scan_prefetch_issue_ctx
{
350 avl_node_t spic_avl_node
; /* link into scn->scn_prefetch_queue */
351 scan_prefetch_ctx_t
*spic_spc
; /* spc for the callback */
352 blkptr_t spic_bp
; /* bp to prefetch */
353 zbookmark_phys_t spic_zb
; /* bookmark to prefetch */
354 } scan_prefetch_issue_ctx_t
;
356 static void scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
357 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
);
358 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
,
361 static dsl_scan_io_queue_t
*scan_io_queue_create(vdev_t
*vd
);
362 static void scan_io_queues_destroy(dsl_scan_t
*scn
);
364 static kmem_cache_t
*sio_cache
[SPA_DVAS_PER_BP
];
366 /* sio->sio_nr_dvas must be set so we know which cache to free from */
368 sio_free(scan_io_t
*sio
)
370 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
371 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
373 kmem_cache_free(sio_cache
[sio
->sio_nr_dvas
- 1], sio
);
376 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
378 sio_alloc(unsigned short nr_dvas
)
380 ASSERT3U(nr_dvas
, >, 0);
381 ASSERT3U(nr_dvas
, <=, SPA_DVAS_PER_BP
);
383 return (kmem_cache_alloc(sio_cache
[nr_dvas
- 1], KM_SLEEP
));
390 * This is used in ext_size_compare() to weight segments
391 * based on how sparse they are. This cannot be changed
392 * mid-scan and the tree comparison functions don't currently
393 * have a mechanism for passing additional context to the
394 * compare functions. Thus we store this value globally and
395 * we only allow it to be set at module initialization time
397 fill_weight
= zfs_scan_fill_weight
;
399 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
402 (void) snprintf(name
, sizeof (name
), "sio_cache_%d", i
);
403 sio_cache
[i
] = kmem_cache_create(name
,
404 (sizeof (scan_io_t
) + ((i
+ 1) * sizeof (dva_t
))),
405 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
412 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
413 kmem_cache_destroy(sio_cache
[i
]);
417 static inline boolean_t
418 dsl_scan_is_running(const dsl_scan_t
*scn
)
420 return (scn
->scn_phys
.scn_state
== DSS_SCANNING
);
424 dsl_scan_resilvering(dsl_pool_t
*dp
)
426 return (dsl_scan_is_running(dp
->dp_scan
) &&
427 dp
->dp_scan
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
);
431 sio2bp(const scan_io_t
*sio
, blkptr_t
*bp
)
433 memset(bp
, 0, sizeof (*bp
));
434 bp
->blk_prop
= sio
->sio_blk_prop
;
435 BP_SET_PHYSICAL_BIRTH(bp
, sio
->sio_phys_birth
);
436 BP_SET_LOGICAL_BIRTH(bp
, sio
->sio_birth
);
437 bp
->blk_fill
= 1; /* we always only work with data pointers */
438 bp
->blk_cksum
= sio
->sio_cksum
;
440 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
441 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
443 memcpy(bp
->blk_dva
, sio
->sio_dva
, sio
->sio_nr_dvas
* sizeof (dva_t
));
447 bp2sio(const blkptr_t
*bp
, scan_io_t
*sio
, int dva_i
)
449 sio
->sio_blk_prop
= bp
->blk_prop
;
450 sio
->sio_phys_birth
= BP_GET_PHYSICAL_BIRTH(bp
);
451 sio
->sio_birth
= BP_GET_LOGICAL_BIRTH(bp
);
452 sio
->sio_cksum
= bp
->blk_cksum
;
453 sio
->sio_nr_dvas
= BP_GET_NDVAS(bp
);
456 * Copy the DVAs to the sio. We need all copies of the block so
457 * that the self healing code can use the alternate copies if the
458 * first is corrupted. We want the DVA at index dva_i to be first
459 * in the sio since this is the primary one that we want to issue.
461 for (int i
= 0, j
= dva_i
; i
< sio
->sio_nr_dvas
; i
++, j
++) {
462 sio
->sio_dva
[i
] = bp
->blk_dva
[j
% sio
->sio_nr_dvas
];
467 dsl_scan_init(dsl_pool_t
*dp
, uint64_t txg
)
471 spa_t
*spa
= dp
->dp_spa
;
474 scn
= dp
->dp_scan
= kmem_zalloc(sizeof (dsl_scan_t
), KM_SLEEP
);
478 * It's possible that we're resuming a scan after a reboot so
479 * make sure that the scan_async_destroying flag is initialized
482 ASSERT(!scn
->scn_async_destroying
);
483 scn
->scn_async_destroying
= spa_feature_is_active(dp
->dp_spa
,
484 SPA_FEATURE_ASYNC_DESTROY
);
487 * Calculate the max number of in-flight bytes for pool-wide
488 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
489 * Limits for the issuing phase are done per top-level vdev and
490 * are handled separately.
492 scn
->scn_maxinflight_bytes
= MIN(arc_c_max
/ 4, MAX(1ULL << 20,
493 zfs_scan_vdev_limit
* dsl_scan_count_data_disks(spa
)));
495 avl_create(&scn
->scn_queue
, scan_ds_queue_compare
, sizeof (scan_ds_t
),
496 offsetof(scan_ds_t
, sds_node
));
497 mutex_init(&scn
->scn_queue_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
498 avl_create(&scn
->scn_prefetch_queue
, scan_prefetch_queue_compare
,
499 sizeof (scan_prefetch_issue_ctx_t
),
500 offsetof(scan_prefetch_issue_ctx_t
, spic_avl_node
));
502 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
503 "scrub_func", sizeof (uint64_t), 1, &f
);
506 * There was an old-style scrub in progress. Restart a
507 * new-style scrub from the beginning.
509 scn
->scn_restart_txg
= txg
;
510 zfs_dbgmsg("old-style scrub was in progress for %s; "
511 "restarting new-style scrub in txg %llu",
513 (longlong_t
)scn
->scn_restart_txg
);
516 * Load the queue obj from the old location so that it
517 * can be freed by dsl_scan_done().
519 (void) zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
520 "scrub_queue", sizeof (uint64_t), 1,
521 &scn
->scn_phys
.scn_queue_obj
);
523 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
524 DMU_POOL_ERRORSCRUB
, sizeof (uint64_t),
525 ERRORSCRUB_PHYS_NUMINTS
, &scn
->errorscrub_phys
);
527 if (err
!= 0 && err
!= ENOENT
)
530 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
531 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
535 * Detect if the pool contains the signature of #2094. If it
536 * does properly update the scn->scn_phys structure and notify
537 * the administrator by setting an errata for the pool.
539 if (err
== EOVERFLOW
) {
540 uint64_t zaptmp
[SCAN_PHYS_NUMINTS
+ 1];
541 VERIFY3S(SCAN_PHYS_NUMINTS
, ==, 24);
542 VERIFY3S(offsetof(dsl_scan_phys_t
, scn_flags
), ==,
543 (23 * sizeof (uint64_t)));
545 err
= zap_lookup(dp
->dp_meta_objset
,
546 DMU_POOL_DIRECTORY_OBJECT
, DMU_POOL_SCAN
,
547 sizeof (uint64_t), SCAN_PHYS_NUMINTS
+ 1, &zaptmp
);
549 uint64_t overflow
= zaptmp
[SCAN_PHYS_NUMINTS
];
551 if (overflow
& ~DSL_SCAN_FLAGS_MASK
||
552 scn
->scn_async_destroying
) {
554 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY
;
558 memcpy(&scn
->scn_phys
, zaptmp
,
559 SCAN_PHYS_NUMINTS
* sizeof (uint64_t));
560 scn
->scn_phys
.scn_flags
= overflow
;
562 /* Required scrub already in progress. */
563 if (scn
->scn_phys
.scn_state
== DSS_FINISHED
||
564 scn
->scn_phys
.scn_state
== DSS_CANCELED
)
566 ZPOOL_ERRATA_ZOL_2094_SCRUB
;
576 * We might be restarting after a reboot, so jump the issued
577 * counter to how far we've scanned. We know we're consistent
580 scn
->scn_issued_before_pass
= scn
->scn_phys
.scn_examined
-
581 scn
->scn_phys
.scn_skipped
;
583 if (dsl_scan_is_running(scn
) &&
584 spa_prev_software_version(dp
->dp_spa
) < SPA_VERSION_SCAN
) {
586 * A new-type scrub was in progress on an old
587 * pool, and the pool was accessed by old
588 * software. Restart from the beginning, since
589 * the old software may have changed the pool in
592 scn
->scn_restart_txg
= txg
;
593 zfs_dbgmsg("new-style scrub for %s was modified "
594 "by old software; restarting in txg %llu",
596 (longlong_t
)scn
->scn_restart_txg
);
597 } else if (dsl_scan_resilvering(dp
)) {
599 * If a resilver is in progress and there are already
600 * errors, restart it instead of finishing this scan and
601 * then restarting it. If there haven't been any errors
602 * then remember that the incore DTL is valid.
604 if (scn
->scn_phys
.scn_errors
> 0) {
605 scn
->scn_restart_txg
= txg
;
606 zfs_dbgmsg("resilver can't excise DTL_MISSING "
607 "when finished; restarting on %s in txg "
610 (u_longlong_t
)scn
->scn_restart_txg
);
612 /* it's safe to excise DTL when finished */
613 spa
->spa_scrub_started
= B_TRUE
;
618 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
620 /* reload the queue into the in-core state */
621 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
623 zap_attribute_t
*za
= zap_attribute_alloc();
625 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
626 scn
->scn_phys
.scn_queue_obj
);
627 zap_cursor_retrieve(&zc
, za
) == 0;
628 (void) zap_cursor_advance(&zc
)) {
629 scan_ds_queue_insert(scn
,
630 zfs_strtonum(za
->za_name
, NULL
),
631 za
->za_first_integer
);
633 zap_cursor_fini(&zc
);
634 zap_attribute_free(za
);
637 ddt_walk_init(spa
, scn
->scn_phys
.scn_max_txg
);
639 spa_scan_stat_init(spa
);
640 vdev_scan_stat_init(spa
->spa_root_vdev
);
646 dsl_scan_fini(dsl_pool_t
*dp
)
648 if (dp
->dp_scan
!= NULL
) {
649 dsl_scan_t
*scn
= dp
->dp_scan
;
651 if (scn
->scn_taskq
!= NULL
)
652 taskq_destroy(scn
->scn_taskq
);
654 scan_ds_queue_clear(scn
);
655 avl_destroy(&scn
->scn_queue
);
656 mutex_destroy(&scn
->scn_queue_lock
);
657 scan_ds_prefetch_queue_clear(scn
);
658 avl_destroy(&scn
->scn_prefetch_queue
);
660 kmem_free(dp
->dp_scan
, sizeof (dsl_scan_t
));
666 dsl_scan_restarting(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
668 return (scn
->scn_restart_txg
!= 0 &&
669 scn
->scn_restart_txg
<= tx
->tx_txg
);
673 dsl_scan_resilver_scheduled(dsl_pool_t
*dp
)
675 return ((dp
->dp_scan
&& dp
->dp_scan
->scn_restart_txg
!= 0) ||
676 (spa_async_tasks(dp
->dp_spa
) & SPA_ASYNC_RESILVER
));
680 dsl_scan_scrubbing(const dsl_pool_t
*dp
)
682 dsl_scan_phys_t
*scn_phys
= &dp
->dp_scan
->scn_phys
;
684 return (scn_phys
->scn_state
== DSS_SCANNING
&&
685 scn_phys
->scn_func
== POOL_SCAN_SCRUB
);
689 dsl_errorscrubbing(const dsl_pool_t
*dp
)
691 dsl_errorscrub_phys_t
*errorscrub_phys
= &dp
->dp_scan
->errorscrub_phys
;
693 return (errorscrub_phys
->dep_state
== DSS_ERRORSCRUBBING
&&
694 errorscrub_phys
->dep_func
== POOL_SCAN_ERRORSCRUB
);
698 dsl_errorscrub_is_paused(const dsl_scan_t
*scn
)
700 return (dsl_errorscrubbing(scn
->scn_dp
) &&
701 scn
->errorscrub_phys
.dep_paused_flags
);
705 dsl_scan_is_paused_scrub(const dsl_scan_t
*scn
)
707 return (dsl_scan_scrubbing(scn
->scn_dp
) &&
708 scn
->scn_phys
.scn_flags
& DSF_SCRUB_PAUSED
);
712 dsl_errorscrub_sync_state(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
714 scn
->errorscrub_phys
.dep_cursor
=
715 zap_cursor_serialize(&scn
->errorscrub_cursor
);
717 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
718 DMU_POOL_DIRECTORY_OBJECT
,
719 DMU_POOL_ERRORSCRUB
, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS
,
720 &scn
->errorscrub_phys
, tx
));
724 dsl_errorscrub_setup_sync(void *arg
, dmu_tx_t
*tx
)
726 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
727 pool_scan_func_t
*funcp
= arg
;
728 dsl_pool_t
*dp
= scn
->scn_dp
;
729 spa_t
*spa
= dp
->dp_spa
;
731 ASSERT(!dsl_scan_is_running(scn
));
732 ASSERT(!dsl_errorscrubbing(scn
->scn_dp
));
733 ASSERT(*funcp
> POOL_SCAN_NONE
&& *funcp
< POOL_SCAN_FUNCS
);
735 memset(&scn
->errorscrub_phys
, 0, sizeof (scn
->errorscrub_phys
));
736 scn
->errorscrub_phys
.dep_func
= *funcp
;
737 scn
->errorscrub_phys
.dep_state
= DSS_ERRORSCRUBBING
;
738 scn
->errorscrub_phys
.dep_start_time
= gethrestime_sec();
739 scn
->errorscrub_phys
.dep_to_examine
= spa_get_last_errlog_size(spa
);
740 scn
->errorscrub_phys
.dep_examined
= 0;
741 scn
->errorscrub_phys
.dep_errors
= 0;
742 scn
->errorscrub_phys
.dep_cursor
= 0;
743 zap_cursor_init_serialized(&scn
->errorscrub_cursor
,
744 spa
->spa_meta_objset
, spa
->spa_errlog_last
,
745 scn
->errorscrub_phys
.dep_cursor
);
747 vdev_config_dirty(spa
->spa_root_vdev
);
748 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_START
);
750 dsl_errorscrub_sync_state(scn
, tx
);
752 spa_history_log_internal(spa
, "error scrub setup", tx
,
753 "func=%u mintxg=%u maxtxg=%llu",
754 *funcp
, 0, (u_longlong_t
)tx
->tx_txg
);
758 dsl_errorscrub_setup_check(void *arg
, dmu_tx_t
*tx
)
761 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
763 if (dsl_scan_is_running(scn
) || (dsl_errorscrubbing(scn
->scn_dp
))) {
764 return (SET_ERROR(EBUSY
));
767 if (spa_get_last_errlog_size(scn
->scn_dp
->dp_spa
) == 0) {
774 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
775 * Because we can be running in the block sorting algorithm, we do not always
776 * want to write out the record, only when it is "safe" to do so. This safety
777 * condition is achieved by making sure that the sorting queues are empty
778 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
779 * is inconsistent with how much actual scanning progress has been made. The
780 * kind of sync to be performed is specified by the sync_type argument. If the
781 * sync is optional, we only sync if the queues are empty. If the sync is
782 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
783 * third possible state is a "cached" sync. This is done in response to:
784 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
785 * destroyed, so we wouldn't be able to restart scanning from it.
786 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
787 * superseded by a newer snapshot.
788 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
789 * swapped with its clone.
790 * In all cases, a cached sync simply rewrites the last record we've written,
791 * just slightly modified. For the modifications that are performed to the
792 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
793 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
796 dsl_scan_sync_state(dsl_scan_t
*scn
, dmu_tx_t
*tx
, state_sync_type_t sync_type
)
799 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
801 ASSERT(sync_type
!= SYNC_MANDATORY
|| scn
->scn_queues_pending
== 0);
802 if (scn
->scn_queues_pending
== 0) {
803 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
804 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
805 dsl_scan_io_queue_t
*q
= vd
->vdev_scan_io_queue
;
810 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
811 ASSERT3P(avl_first(&q
->q_sios_by_addr
), ==, NULL
);
812 ASSERT3P(zfs_btree_first(&q
->q_exts_by_size
, NULL
), ==,
814 ASSERT3P(range_tree_first(q
->q_exts_by_addr
), ==, NULL
);
815 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
818 if (scn
->scn_phys
.scn_queue_obj
!= 0)
819 scan_ds_queue_sync(scn
, tx
);
820 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
821 DMU_POOL_DIRECTORY_OBJECT
,
822 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
823 &scn
->scn_phys
, tx
));
824 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
,
825 sizeof (scn
->scn_phys
));
827 if (scn
->scn_checkpointing
)
828 zfs_dbgmsg("finish scan checkpoint for %s",
831 scn
->scn_checkpointing
= B_FALSE
;
832 scn
->scn_last_checkpoint
= ddi_get_lbolt();
833 } else if (sync_type
== SYNC_CACHED
) {
834 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
835 DMU_POOL_DIRECTORY_OBJECT
,
836 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
837 &scn
->scn_phys_cached
, tx
));
842 dsl_scan_setup_check(void *arg
, dmu_tx_t
*tx
)
845 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
846 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
848 if (dsl_scan_is_running(scn
) || vdev_rebuild_active(rvd
) ||
849 dsl_errorscrubbing(scn
->scn_dp
))
850 return (SET_ERROR(EBUSY
));
856 dsl_scan_setup_sync(void *arg
, dmu_tx_t
*tx
)
859 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
860 pool_scan_func_t
*funcp
= arg
;
861 dmu_object_type_t ot
= 0;
862 dsl_pool_t
*dp
= scn
->scn_dp
;
863 spa_t
*spa
= dp
->dp_spa
;
865 ASSERT(!dsl_scan_is_running(scn
));
866 ASSERT(*funcp
> POOL_SCAN_NONE
&& *funcp
< POOL_SCAN_FUNCS
);
867 memset(&scn
->scn_phys
, 0, sizeof (scn
->scn_phys
));
870 * If we are starting a fresh scrub, we erase the error scrub
871 * information from disk.
873 memset(&scn
->errorscrub_phys
, 0, sizeof (scn
->errorscrub_phys
));
874 dsl_errorscrub_sync_state(scn
, tx
);
876 scn
->scn_phys
.scn_func
= *funcp
;
877 scn
->scn_phys
.scn_state
= DSS_SCANNING
;
878 scn
->scn_phys
.scn_min_txg
= 0;
879 scn
->scn_phys
.scn_max_txg
= tx
->tx_txg
;
880 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASSES
- 1; /* the entire DDT */
881 scn
->scn_phys
.scn_start_time
= gethrestime_sec();
882 scn
->scn_phys
.scn_errors
= 0;
883 scn
->scn_phys
.scn_to_examine
= spa
->spa_root_vdev
->vdev_stat
.vs_alloc
;
884 scn
->scn_issued_before_pass
= 0;
885 scn
->scn_restart_txg
= 0;
886 scn
->scn_done_txg
= 0;
887 scn
->scn_last_checkpoint
= 0;
888 scn
->scn_checkpointing
= B_FALSE
;
889 spa_scan_stat_init(spa
);
890 vdev_scan_stat_init(spa
->spa_root_vdev
);
892 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
893 scn
->scn_phys
.scn_ddt_class_max
= zfs_scrub_ddt_class_max
;
895 /* rewrite all disk labels */
896 vdev_config_dirty(spa
->spa_root_vdev
);
898 if (vdev_resilver_needed(spa
->spa_root_vdev
,
899 &scn
->scn_phys
.scn_min_txg
, &scn
->scn_phys
.scn_max_txg
)) {
900 nvlist_t
*aux
= fnvlist_alloc();
901 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
903 spa_event_notify(spa
, NULL
, aux
,
904 ESC_ZFS_RESILVER_START
);
907 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_START
);
910 spa
->spa_scrub_started
= B_TRUE
;
912 * If this is an incremental scrub, limit the DDT scrub phase
913 * to just the auto-ditto class (for correctness); the rest
914 * of the scrub should go faster using top-down pruning.
916 if (scn
->scn_phys
.scn_min_txg
> TXG_INITIAL
)
917 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASS_DITTO
;
920 * When starting a resilver clear any existing rebuild state.
921 * This is required to prevent stale rebuild status from
922 * being reported when a rebuild is run, then a resilver and
923 * finally a scrub. In which case only the scrub status
924 * should be reported by 'zpool status'.
926 if (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) {
927 vdev_t
*rvd
= spa
->spa_root_vdev
;
928 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
929 vdev_t
*vd
= rvd
->vdev_child
[i
];
930 vdev_rebuild_clear_sync(
931 (void *)(uintptr_t)vd
->vdev_id
, tx
);
936 /* back to the generic stuff */
938 if (zfs_scan_blkstats
) {
939 if (dp
->dp_blkstats
== NULL
) {
941 vmem_alloc(sizeof (zfs_all_blkstats_t
), KM_SLEEP
);
943 memset(&dp
->dp_blkstats
->zab_type
, 0,
944 sizeof (dp
->dp_blkstats
->zab_type
));
946 if (dp
->dp_blkstats
) {
947 vmem_free(dp
->dp_blkstats
, sizeof (zfs_all_blkstats_t
));
948 dp
->dp_blkstats
= NULL
;
952 if (spa_version(spa
) < SPA_VERSION_DSL_SCRUB
)
953 ot
= DMU_OT_ZAP_OTHER
;
955 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
,
956 ot
? ot
: DMU_OT_SCAN_QUEUE
, DMU_OT_NONE
, 0, tx
);
958 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
960 ddt_walk_init(spa
, scn
->scn_phys
.scn_max_txg
);
962 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
964 spa_history_log_internal(spa
, "scan setup", tx
,
965 "func=%u mintxg=%llu maxtxg=%llu",
966 *funcp
, (u_longlong_t
)scn
->scn_phys
.scn_min_txg
,
967 (u_longlong_t
)scn
->scn_phys
.scn_max_txg
);
971 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
972 * error scrub or resilver. Can also be called to resume a paused scrub or
976 dsl_scan(dsl_pool_t
*dp
, pool_scan_func_t func
)
978 spa_t
*spa
= dp
->dp_spa
;
979 dsl_scan_t
*scn
= dp
->dp_scan
;
982 * Purge all vdev caches and probe all devices. We do this here
983 * rather than in sync context because this requires a writer lock
984 * on the spa_config lock, which we can't do from sync context. The
985 * spa_scrub_reopen flag indicates that vdev_open() should not
986 * attempt to start another scrub.
988 spa_vdev_state_enter(spa
, SCL_NONE
);
989 spa
->spa_scrub_reopen
= B_TRUE
;
990 vdev_reopen(spa
->spa_root_vdev
);
991 spa
->spa_scrub_reopen
= B_FALSE
;
992 (void) spa_vdev_state_exit(spa
, NULL
, 0);
994 if (func
== POOL_SCAN_RESILVER
) {
995 dsl_scan_restart_resilver(spa
->spa_dsl_pool
, 0);
999 if (func
== POOL_SCAN_ERRORSCRUB
) {
1000 if (dsl_errorscrub_is_paused(dp
->dp_scan
)) {
1002 * got error scrub start cmd, resume paused error scrub.
1004 int err
= dsl_scrub_set_pause_resume(scn
->scn_dp
,
1007 spa_event_notify(spa
, NULL
, NULL
,
1008 ESC_ZFS_ERRORSCRUB_RESUME
);
1011 return (SET_ERROR(err
));
1014 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1015 dsl_errorscrub_setup_check
, dsl_errorscrub_setup_sync
,
1016 &func
, 0, ZFS_SPACE_CHECK_RESERVED
));
1019 if (func
== POOL_SCAN_SCRUB
&& dsl_scan_is_paused_scrub(scn
)) {
1020 /* got scrub start cmd, resume paused scrub */
1021 int err
= dsl_scrub_set_pause_resume(scn
->scn_dp
,
1024 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_RESUME
);
1025 return (SET_ERROR(ECANCELED
));
1027 return (SET_ERROR(err
));
1030 return (dsl_sync_task(spa_name(spa
), dsl_scan_setup_check
,
1031 dsl_scan_setup_sync
, &func
, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED
));
1035 dsl_errorscrub_done(dsl_scan_t
*scn
, boolean_t complete
, dmu_tx_t
*tx
)
1037 dsl_pool_t
*dp
= scn
->scn_dp
;
1038 spa_t
*spa
= dp
->dp_spa
;
1041 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_FINISH
);
1042 spa_history_log_internal(spa
, "error scrub done", tx
,
1043 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1045 spa_history_log_internal(spa
, "error scrub canceled", tx
,
1046 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1049 scn
->errorscrub_phys
.dep_state
= complete
? DSS_FINISHED
: DSS_CANCELED
;
1050 spa
->spa_scrub_active
= B_FALSE
;
1051 spa_errlog_rotate(spa
);
1052 scn
->errorscrub_phys
.dep_end_time
= gethrestime_sec();
1053 zap_cursor_fini(&scn
->errorscrub_cursor
);
1055 if (spa
->spa_errata
== ZPOOL_ERRATA_ZOL_2094_SCRUB
)
1056 spa
->spa_errata
= 0;
1058 ASSERT(!dsl_errorscrubbing(scn
->scn_dp
));
1062 dsl_scan_done(dsl_scan_t
*scn
, boolean_t complete
, dmu_tx_t
*tx
)
1064 static const char *old_names
[] = {
1066 "scrub_ddt_bookmark",
1067 "scrub_ddt_class_max",
1076 dsl_pool_t
*dp
= scn
->scn_dp
;
1077 spa_t
*spa
= dp
->dp_spa
;
1080 /* Remove any remnants of an old-style scrub. */
1081 for (i
= 0; old_names
[i
]; i
++) {
1082 (void) zap_remove(dp
->dp_meta_objset
,
1083 DMU_POOL_DIRECTORY_OBJECT
, old_names
[i
], tx
);
1086 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
1087 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
1088 scn
->scn_phys
.scn_queue_obj
, tx
));
1089 scn
->scn_phys
.scn_queue_obj
= 0;
1091 scan_ds_queue_clear(scn
);
1092 scan_ds_prefetch_queue_clear(scn
);
1094 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1097 * If we were "restarted" from a stopped state, don't bother
1098 * with anything else.
1100 if (!dsl_scan_is_running(scn
)) {
1101 ASSERT(!scn
->scn_is_sorted
);
1105 if (scn
->scn_is_sorted
) {
1106 scan_io_queues_destroy(scn
);
1107 scn
->scn_is_sorted
= B_FALSE
;
1109 if (scn
->scn_taskq
!= NULL
) {
1110 taskq_destroy(scn
->scn_taskq
);
1111 scn
->scn_taskq
= NULL
;
1115 scn
->scn_phys
.scn_state
= complete
? DSS_FINISHED
: DSS_CANCELED
;
1117 spa_notify_waiters(spa
);
1119 if (dsl_scan_restarting(scn
, tx
))
1120 spa_history_log_internal(spa
, "scan aborted, restarting", tx
,
1121 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1123 spa_history_log_internal(spa
, "scan cancelled", tx
,
1124 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1126 spa_history_log_internal(spa
, "scan done", tx
,
1127 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1129 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
1130 spa
->spa_scrub_active
= B_FALSE
;
1133 * If the scrub/resilver completed, update all DTLs to
1134 * reflect this. Whether it succeeded or not, vacate
1135 * all temporary scrub DTLs.
1137 * As the scrub does not currently support traversing
1138 * data that have been freed but are part of a checkpoint,
1139 * we don't mark the scrub as done in the DTLs as faults
1140 * may still exist in those vdevs.
1143 !spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
)) {
1144 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
1145 scn
->scn_phys
.scn_max_txg
, B_TRUE
, B_FALSE
);
1147 if (scn
->scn_phys
.scn_min_txg
) {
1148 nvlist_t
*aux
= fnvlist_alloc();
1149 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
1151 spa_event_notify(spa
, NULL
, aux
,
1152 ESC_ZFS_RESILVER_FINISH
);
1155 spa_event_notify(spa
, NULL
, NULL
,
1156 ESC_ZFS_SCRUB_FINISH
);
1159 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
1160 0, B_TRUE
, B_FALSE
);
1162 spa_errlog_rotate(spa
);
1165 * Don't clear flag until after vdev_dtl_reassess to ensure that
1166 * DTL_MISSING will get updated when possible.
1168 spa
->spa_scrub_started
= B_FALSE
;
1171 * We may have finished replacing a device.
1172 * Let the async thread assess this and handle the detach.
1174 spa_async_request(spa
, SPA_ASYNC_RESILVER_DONE
);
1177 * Clear any resilver_deferred flags in the config.
1178 * If there are drives that need resilvering, kick
1179 * off an asynchronous request to start resilver.
1180 * vdev_clear_resilver_deferred() may update the config
1181 * before the resilver can restart. In the event of
1182 * a crash during this period, the spa loading code
1183 * will find the drives that need to be resilvered
1184 * and start the resilver then.
1186 if (spa_feature_is_enabled(spa
, SPA_FEATURE_RESILVER_DEFER
) &&
1187 vdev_clear_resilver_deferred(spa
->spa_root_vdev
, tx
)) {
1188 spa_history_log_internal(spa
,
1189 "starting deferred resilver", tx
, "errors=%llu",
1190 (u_longlong_t
)spa_approx_errlog_size(spa
));
1191 spa_async_request(spa
, SPA_ASYNC_RESILVER
);
1194 /* Clear recent error events (i.e. duplicate events tracking) */
1196 zfs_ereport_clear(spa
, NULL
);
1199 scn
->scn_phys
.scn_end_time
= gethrestime_sec();
1201 if (spa
->spa_errata
== ZPOOL_ERRATA_ZOL_2094_SCRUB
)
1202 spa
->spa_errata
= 0;
1204 ASSERT(!dsl_scan_is_running(scn
));
1208 dsl_errorscrub_pause_resume_check(void *arg
, dmu_tx_t
*tx
)
1210 pool_scrub_cmd_t
*cmd
= arg
;
1211 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1212 dsl_scan_t
*scn
= dp
->dp_scan
;
1214 if (*cmd
== POOL_SCRUB_PAUSE
) {
1216 * can't pause a error scrub when there is no in-progress
1219 if (!dsl_errorscrubbing(dp
))
1220 return (SET_ERROR(ENOENT
));
1222 /* can't pause a paused error scrub */
1223 if (dsl_errorscrub_is_paused(scn
))
1224 return (SET_ERROR(EBUSY
));
1225 } else if (*cmd
!= POOL_SCRUB_NORMAL
) {
1226 return (SET_ERROR(ENOTSUP
));
1233 dsl_errorscrub_pause_resume_sync(void *arg
, dmu_tx_t
*tx
)
1235 pool_scrub_cmd_t
*cmd
= arg
;
1236 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1237 spa_t
*spa
= dp
->dp_spa
;
1238 dsl_scan_t
*scn
= dp
->dp_scan
;
1240 if (*cmd
== POOL_SCRUB_PAUSE
) {
1241 spa
->spa_scan_pass_errorscrub_pause
= gethrestime_sec();
1242 scn
->errorscrub_phys
.dep_paused_flags
= B_TRUE
;
1243 dsl_errorscrub_sync_state(scn
, tx
);
1244 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_PAUSED
);
1246 ASSERT3U(*cmd
, ==, POOL_SCRUB_NORMAL
);
1247 if (dsl_errorscrub_is_paused(scn
)) {
1249 * We need to keep track of how much time we spend
1250 * paused per pass so that we can adjust the error scrub
1251 * rate shown in the output of 'zpool status'.
1253 spa
->spa_scan_pass_errorscrub_spent_paused
+=
1255 spa
->spa_scan_pass_errorscrub_pause
;
1257 spa
->spa_scan_pass_errorscrub_pause
= 0;
1258 scn
->errorscrub_phys
.dep_paused_flags
= B_FALSE
;
1260 zap_cursor_init_serialized(
1261 &scn
->errorscrub_cursor
,
1262 spa
->spa_meta_objset
, spa
->spa_errlog_last
,
1263 scn
->errorscrub_phys
.dep_cursor
);
1265 dsl_errorscrub_sync_state(scn
, tx
);
1271 dsl_errorscrub_cancel_check(void *arg
, dmu_tx_t
*tx
)
1274 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1275 /* can't cancel a error scrub when there is no one in-progress */
1276 if (!dsl_errorscrubbing(scn
->scn_dp
))
1277 return (SET_ERROR(ENOENT
));
1282 dsl_errorscrub_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1285 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1287 dsl_errorscrub_done(scn
, B_FALSE
, tx
);
1288 dsl_errorscrub_sync_state(scn
, tx
);
1289 spa_event_notify(scn
->scn_dp
->dp_spa
, NULL
, NULL
,
1290 ESC_ZFS_ERRORSCRUB_ABORT
);
1294 dsl_scan_cancel_check(void *arg
, dmu_tx_t
*tx
)
1297 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1299 if (!dsl_scan_is_running(scn
))
1300 return (SET_ERROR(ENOENT
));
1305 dsl_scan_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1308 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1310 dsl_scan_done(scn
, B_FALSE
, tx
);
1311 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
1312 spa_event_notify(scn
->scn_dp
->dp_spa
, NULL
, NULL
, ESC_ZFS_SCRUB_ABORT
);
1316 dsl_scan_cancel(dsl_pool_t
*dp
)
1318 if (dsl_errorscrubbing(dp
)) {
1319 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1320 dsl_errorscrub_cancel_check
, dsl_errorscrub_cancel_sync
,
1321 NULL
, 3, ZFS_SPACE_CHECK_RESERVED
));
1323 return (dsl_sync_task(spa_name(dp
->dp_spa
), dsl_scan_cancel_check
,
1324 dsl_scan_cancel_sync
, NULL
, 3, ZFS_SPACE_CHECK_RESERVED
));
1328 dsl_scrub_pause_resume_check(void *arg
, dmu_tx_t
*tx
)
1330 pool_scrub_cmd_t
*cmd
= arg
;
1331 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1332 dsl_scan_t
*scn
= dp
->dp_scan
;
1334 if (*cmd
== POOL_SCRUB_PAUSE
) {
1335 /* can't pause a scrub when there is no in-progress scrub */
1336 if (!dsl_scan_scrubbing(dp
))
1337 return (SET_ERROR(ENOENT
));
1339 /* can't pause a paused scrub */
1340 if (dsl_scan_is_paused_scrub(scn
))
1341 return (SET_ERROR(EBUSY
));
1342 } else if (*cmd
!= POOL_SCRUB_NORMAL
) {
1343 return (SET_ERROR(ENOTSUP
));
1350 dsl_scrub_pause_resume_sync(void *arg
, dmu_tx_t
*tx
)
1352 pool_scrub_cmd_t
*cmd
= arg
;
1353 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1354 spa_t
*spa
= dp
->dp_spa
;
1355 dsl_scan_t
*scn
= dp
->dp_scan
;
1357 if (*cmd
== POOL_SCRUB_PAUSE
) {
1358 /* can't pause a scrub when there is no in-progress scrub */
1359 spa
->spa_scan_pass_scrub_pause
= gethrestime_sec();
1360 scn
->scn_phys
.scn_flags
|= DSF_SCRUB_PAUSED
;
1361 scn
->scn_phys_cached
.scn_flags
|= DSF_SCRUB_PAUSED
;
1362 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1363 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_PAUSED
);
1364 spa_notify_waiters(spa
);
1366 ASSERT3U(*cmd
, ==, POOL_SCRUB_NORMAL
);
1367 if (dsl_scan_is_paused_scrub(scn
)) {
1369 * We need to keep track of how much time we spend
1370 * paused per pass so that we can adjust the scrub rate
1371 * shown in the output of 'zpool status'
1373 spa
->spa_scan_pass_scrub_spent_paused
+=
1374 gethrestime_sec() - spa
->spa_scan_pass_scrub_pause
;
1375 spa
->spa_scan_pass_scrub_pause
= 0;
1376 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1377 scn
->scn_phys_cached
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1378 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1384 * Set scrub pause/resume state if it makes sense to do so
1387 dsl_scrub_set_pause_resume(const dsl_pool_t
*dp
, pool_scrub_cmd_t cmd
)
1389 if (dsl_errorscrubbing(dp
)) {
1390 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1391 dsl_errorscrub_pause_resume_check
,
1392 dsl_errorscrub_pause_resume_sync
, &cmd
, 3,
1393 ZFS_SPACE_CHECK_RESERVED
));
1395 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1396 dsl_scrub_pause_resume_check
, dsl_scrub_pause_resume_sync
, &cmd
, 3,
1397 ZFS_SPACE_CHECK_RESERVED
));
1401 /* start a new scan, or restart an existing one. */
1403 dsl_scan_restart_resilver(dsl_pool_t
*dp
, uint64_t txg
)
1407 tx
= dmu_tx_create_dd(dp
->dp_mos_dir
);
1408 VERIFY(0 == dmu_tx_assign(tx
, TXG_WAIT
));
1410 txg
= dmu_tx_get_txg(tx
);
1411 dp
->dp_scan
->scn_restart_txg
= txg
;
1414 dp
->dp_scan
->scn_restart_txg
= txg
;
1416 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1417 dp
->dp_spa
->spa_name
, (longlong_t
)txg
);
1421 dsl_free(dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bp
)
1423 zio_free(dp
->dp_spa
, txg
, bp
);
1427 dsl_free_sync(zio_t
*pio
, dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bpp
)
1429 ASSERT(dsl_pool_sync_context(dp
));
1430 zio_nowait(zio_free_sync(pio
, dp
->dp_spa
, txg
, bpp
, pio
->io_flags
));
1434 scan_ds_queue_compare(const void *a
, const void *b
)
1436 const scan_ds_t
*sds_a
= a
, *sds_b
= b
;
1438 if (sds_a
->sds_dsobj
< sds_b
->sds_dsobj
)
1440 if (sds_a
->sds_dsobj
== sds_b
->sds_dsobj
)
1446 scan_ds_queue_clear(dsl_scan_t
*scn
)
1448 void *cookie
= NULL
;
1450 while ((sds
= avl_destroy_nodes(&scn
->scn_queue
, &cookie
)) != NULL
) {
1451 kmem_free(sds
, sizeof (*sds
));
1456 scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t *txg
)
1458 scan_ds_t srch
, *sds
;
1460 srch
.sds_dsobj
= dsobj
;
1461 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1462 if (sds
!= NULL
&& txg
!= NULL
)
1463 *txg
= sds
->sds_txg
;
1464 return (sds
!= NULL
);
1468 scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
)
1473 sds
= kmem_zalloc(sizeof (*sds
), KM_SLEEP
);
1474 sds
->sds_dsobj
= dsobj
;
1477 VERIFY3P(avl_find(&scn
->scn_queue
, sds
, &where
), ==, NULL
);
1478 avl_insert(&scn
->scn_queue
, sds
, where
);
1482 scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
)
1484 scan_ds_t srch
, *sds
;
1486 srch
.sds_dsobj
= dsobj
;
1488 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1489 VERIFY(sds
!= NULL
);
1490 avl_remove(&scn
->scn_queue
, sds
);
1491 kmem_free(sds
, sizeof (*sds
));
1495 scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
1497 dsl_pool_t
*dp
= scn
->scn_dp
;
1498 spa_t
*spa
= dp
->dp_spa
;
1499 dmu_object_type_t ot
= (spa_version(spa
) >= SPA_VERSION_DSL_SCRUB
) ?
1500 DMU_OT_SCAN_QUEUE
: DMU_OT_ZAP_OTHER
;
1502 ASSERT0(scn
->scn_queues_pending
);
1503 ASSERT(scn
->scn_phys
.scn_queue_obj
!= 0);
1505 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
1506 scn
->scn_phys
.scn_queue_obj
, tx
));
1507 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
, ot
,
1508 DMU_OT_NONE
, 0, tx
);
1509 for (scan_ds_t
*sds
= avl_first(&scn
->scn_queue
);
1510 sds
!= NULL
; sds
= AVL_NEXT(&scn
->scn_queue
, sds
)) {
1511 VERIFY0(zap_add_int_key(dp
->dp_meta_objset
,
1512 scn
->scn_phys
.scn_queue_obj
, sds
->sds_dsobj
,
1518 * Computes the memory limit state that we're currently in. A sorted scan
1519 * needs quite a bit of memory to hold the sorting queue, so we need to
1520 * reasonably constrain the size so it doesn't impact overall system
1521 * performance. We compute two limits:
1522 * 1) Hard memory limit: if the amount of memory used by the sorting
1523 * queues on a pool gets above this value, we stop the metadata
1524 * scanning portion and start issuing the queued up and sorted
1525 * I/Os to reduce memory usage.
1526 * This limit is calculated as a fraction of physmem (by default 5%).
1527 * We constrain the lower bound of the hard limit to an absolute
1528 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1529 * the upper bound to 5% of the total pool size - no chance we'll
1530 * ever need that much memory, but just to keep the value in check.
1531 * 2) Soft memory limit: once we hit the hard memory limit, we start
1532 * issuing I/O to reduce queue memory usage, but we don't want to
1533 * completely empty out the queues, since we might be able to find I/Os
1534 * that will fill in the gaps of our non-sequential IOs at some point
1535 * in the future. So we stop the issuing of I/Os once the amount of
1536 * memory used drops below the soft limit (at which point we stop issuing
1537 * I/O and start scanning metadata again).
1539 * This limit is calculated by subtracting a fraction of the hard
1540 * limit from the hard limit. By default this fraction is 5%, so
1541 * the soft limit is 95% of the hard limit. We cap the size of the
1542 * difference between the hard and soft limits at an absolute
1543 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1544 * sufficient to not cause too frequent switching between the
1545 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1546 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1547 * that should take at least a decent fraction of a second).
1550 dsl_scan_should_clear(dsl_scan_t
*scn
)
1552 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1553 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
1554 uint64_t alloc
, mlim_hard
, mlim_soft
, mused
;
1556 alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
1557 alloc
+= metaslab_class_get_alloc(spa_special_class(spa
));
1558 alloc
+= metaslab_class_get_alloc(spa_dedup_class(spa
));
1560 mlim_hard
= MAX((physmem
/ zfs_scan_mem_lim_fact
) * PAGESIZE
,
1561 zfs_scan_mem_lim_min
);
1562 mlim_hard
= MIN(mlim_hard
, alloc
/ 20);
1563 mlim_soft
= mlim_hard
- MIN(mlim_hard
/ zfs_scan_mem_lim_soft_fact
,
1564 zfs_scan_mem_lim_soft_max
);
1566 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
1567 vdev_t
*tvd
= rvd
->vdev_child
[i
];
1568 dsl_scan_io_queue_t
*queue
;
1570 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
1571 queue
= tvd
->vdev_scan_io_queue
;
1572 if (queue
!= NULL
) {
1574 * # of extents in exts_by_addr = # in exts_by_size.
1575 * B-tree efficiency is ~75%, but can be as low as 50%.
1577 mused
+= zfs_btree_numnodes(&queue
->q_exts_by_size
) *
1578 ((sizeof (range_seg_gap_t
) + sizeof (uint64_t)) *
1579 3 / 2) + queue
->q_sio_memused
;
1581 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
1584 dprintf("current scan memory usage: %llu bytes\n", (longlong_t
)mused
);
1587 ASSERT0(scn
->scn_queues_pending
);
1590 * If we are above our hard limit, we need to clear out memory.
1591 * If we are below our soft limit, we need to accumulate sequential IOs.
1592 * Otherwise, we should keep doing whatever we are currently doing.
1594 if (mused
>= mlim_hard
)
1596 else if (mused
< mlim_soft
)
1599 return (scn
->scn_clearing
);
1603 dsl_scan_check_suspend(dsl_scan_t
*scn
, const zbookmark_phys_t
*zb
)
1605 /* we never skip user/group accounting objects */
1606 if (zb
&& (int64_t)zb
->zb_object
< 0)
1609 if (scn
->scn_suspending
)
1610 return (B_TRUE
); /* we're already suspending */
1612 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
))
1613 return (B_FALSE
); /* we're resuming */
1615 /* We only know how to resume from level-0 and objset blocks. */
1616 if (zb
&& (zb
->zb_level
!= 0 && zb
->zb_level
!= ZB_ROOT_LEVEL
))
1621 * - we have scanned for at least the minimum time (default 1 sec
1622 * for scrub, 3 sec for resilver), and either we have sufficient
1623 * dirty data that we are starting to write more quickly
1624 * (default 30%), someone is explicitly waiting for this txg
1625 * to complete, or we have used up all of the time in the txg
1626 * timeout (default 5 sec).
1628 * - the spa is shutting down because this pool is being exported
1629 * or the machine is rebooting.
1631 * - the scan queue has reached its memory use limit
1633 uint64_t curr_time_ns
= gethrtime();
1634 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
1635 uint64_t sync_time_ns
= curr_time_ns
-
1636 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
1637 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
1638 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
1639 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
1640 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
1642 if ((NSEC2MSEC(scan_time_ns
) > mintime
&&
1643 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
1644 txg_sync_waiting(scn
->scn_dp
) ||
1645 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
1646 spa_shutting_down(scn
->scn_dp
->dp_spa
) ||
1647 (zfs_scan_strict_mem_lim
&& dsl_scan_should_clear(scn
)) ||
1648 !ddt_walk_ready(scn
->scn_dp
->dp_spa
)) {
1649 if (zb
&& zb
->zb_level
== ZB_ROOT_LEVEL
) {
1650 dprintf("suspending at first available bookmark "
1651 "%llx/%llx/%llx/%llx\n",
1652 (longlong_t
)zb
->zb_objset
,
1653 (longlong_t
)zb
->zb_object
,
1654 (longlong_t
)zb
->zb_level
,
1655 (longlong_t
)zb
->zb_blkid
);
1656 SET_BOOKMARK(&scn
->scn_phys
.scn_bookmark
,
1657 zb
->zb_objset
, 0, 0, 0);
1658 } else if (zb
!= NULL
) {
1659 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1660 (longlong_t
)zb
->zb_objset
,
1661 (longlong_t
)zb
->zb_object
,
1662 (longlong_t
)zb
->zb_level
,
1663 (longlong_t
)zb
->zb_blkid
);
1664 scn
->scn_phys
.scn_bookmark
= *zb
;
1667 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
1668 dprintf("suspending at at DDT bookmark "
1669 "%llx/%llx/%llx/%llx\n",
1670 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
1671 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
1672 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
1673 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
1676 scn
->scn_suspending
= B_TRUE
;
1683 dsl_error_scrub_check_suspend(dsl_scan_t
*scn
, const zbookmark_phys_t
*zb
)
1687 * - we have scrubbed for at least the minimum time (default 1 sec
1688 * for error scrub), someone is explicitly waiting for this txg
1689 * to complete, or we have used up all of the time in the txg
1690 * timeout (default 5 sec).
1692 * - the spa is shutting down because this pool is being exported
1693 * or the machine is rebooting.
1695 uint64_t curr_time_ns
= gethrtime();
1696 uint64_t error_scrub_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
1697 uint64_t sync_time_ns
= curr_time_ns
-
1698 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
1699 int mintime
= zfs_scrub_min_time_ms
;
1701 if ((NSEC2MSEC(error_scrub_time_ns
) > mintime
&&
1702 (txg_sync_waiting(scn
->scn_dp
) ||
1703 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
1704 spa_shutting_down(scn
->scn_dp
->dp_spa
)) {
1706 dprintf("error scrub suspending at bookmark "
1707 "%llx/%llx/%llx/%llx\n",
1708 (longlong_t
)zb
->zb_objset
,
1709 (longlong_t
)zb
->zb_object
,
1710 (longlong_t
)zb
->zb_level
,
1711 (longlong_t
)zb
->zb_blkid
);
1718 typedef struct zil_scan_arg
{
1720 zil_header_t
*zsa_zh
;
1724 dsl_scan_zil_block(zilog_t
*zilog
, const blkptr_t
*bp
, void *arg
,
1728 zil_scan_arg_t
*zsa
= arg
;
1729 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1730 dsl_scan_t
*scn
= dp
->dp_scan
;
1731 zil_header_t
*zh
= zsa
->zsa_zh
;
1732 zbookmark_phys_t zb
;
1734 ASSERT(!BP_IS_REDACTED(bp
));
1735 if (BP_IS_HOLE(bp
) ||
1736 BP_GET_LOGICAL_BIRTH(bp
) <= scn
->scn_phys
.scn_cur_min_txg
)
1740 * One block ("stubby") can be allocated a long time ago; we
1741 * want to visit that one because it has been allocated
1742 * (on-disk) even if it hasn't been claimed (even though for
1743 * scrub there's nothing to do to it).
1745 if (claim_txg
== 0 &&
1746 BP_GET_LOGICAL_BIRTH(bp
) >= spa_min_claim_txg(dp
->dp_spa
))
1749 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1750 ZB_ZIL_OBJECT
, ZB_ZIL_LEVEL
, bp
->blk_cksum
.zc_word
[ZIL_ZC_SEQ
]);
1752 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1757 dsl_scan_zil_record(zilog_t
*zilog
, const lr_t
*lrc
, void *arg
,
1761 if (lrc
->lrc_txtype
== TX_WRITE
) {
1762 zil_scan_arg_t
*zsa
= arg
;
1763 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1764 dsl_scan_t
*scn
= dp
->dp_scan
;
1765 zil_header_t
*zh
= zsa
->zsa_zh
;
1766 const lr_write_t
*lr
= (const lr_write_t
*)lrc
;
1767 const blkptr_t
*bp
= &lr
->lr_blkptr
;
1768 zbookmark_phys_t zb
;
1770 ASSERT(!BP_IS_REDACTED(bp
));
1771 if (BP_IS_HOLE(bp
) ||
1772 BP_GET_LOGICAL_BIRTH(bp
) <= scn
->scn_phys
.scn_cur_min_txg
)
1776 * birth can be < claim_txg if this record's txg is
1777 * already txg sync'ed (but this log block contains
1778 * other records that are not synced)
1780 if (claim_txg
== 0 || BP_GET_LOGICAL_BIRTH(bp
) < claim_txg
)
1783 ASSERT3U(BP_GET_LSIZE(bp
), !=, 0);
1784 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1785 lr
->lr_foid
, ZB_ZIL_LEVEL
,
1786 lr
->lr_offset
/ BP_GET_LSIZE(bp
));
1788 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1794 dsl_scan_zil(dsl_pool_t
*dp
, zil_header_t
*zh
)
1796 uint64_t claim_txg
= zh
->zh_claim_txg
;
1797 zil_scan_arg_t zsa
= { dp
, zh
};
1800 ASSERT(spa_writeable(dp
->dp_spa
));
1803 * We only want to visit blocks that have been claimed but not yet
1804 * replayed (or, in read-only mode, blocks that *would* be claimed).
1809 zilog
= zil_alloc(dp
->dp_meta_objset
, zh
);
1811 (void) zil_parse(zilog
, dsl_scan_zil_block
, dsl_scan_zil_record
, &zsa
,
1812 claim_txg
, B_FALSE
);
1818 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1819 * here is to sort the AVL tree by the order each block will be needed.
1822 scan_prefetch_queue_compare(const void *a
, const void *b
)
1824 const scan_prefetch_issue_ctx_t
*spic_a
= a
, *spic_b
= b
;
1825 const scan_prefetch_ctx_t
*spc_a
= spic_a
->spic_spc
;
1826 const scan_prefetch_ctx_t
*spc_b
= spic_b
->spic_spc
;
1828 return (zbookmark_compare(spc_a
->spc_datablkszsec
,
1829 spc_a
->spc_indblkshift
, spc_b
->spc_datablkszsec
,
1830 spc_b
->spc_indblkshift
, &spic_a
->spic_zb
, &spic_b
->spic_zb
));
1834 scan_prefetch_ctx_rele(scan_prefetch_ctx_t
*spc
, const void *tag
)
1836 if (zfs_refcount_remove(&spc
->spc_refcnt
, tag
) == 0) {
1837 zfs_refcount_destroy(&spc
->spc_refcnt
);
1838 kmem_free(spc
, sizeof (scan_prefetch_ctx_t
));
1842 static scan_prefetch_ctx_t
*
1843 scan_prefetch_ctx_create(dsl_scan_t
*scn
, dnode_phys_t
*dnp
, const void *tag
)
1845 scan_prefetch_ctx_t
*spc
;
1847 spc
= kmem_alloc(sizeof (scan_prefetch_ctx_t
), KM_SLEEP
);
1848 zfs_refcount_create(&spc
->spc_refcnt
);
1849 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1852 spc
->spc_datablkszsec
= dnp
->dn_datablkszsec
;
1853 spc
->spc_indblkshift
= dnp
->dn_indblkshift
;
1854 spc
->spc_root
= B_FALSE
;
1856 spc
->spc_datablkszsec
= 0;
1857 spc
->spc_indblkshift
= 0;
1858 spc
->spc_root
= B_TRUE
;
1865 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t
*spc
, const void *tag
)
1867 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1871 scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
)
1873 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1874 void *cookie
= NULL
;
1875 scan_prefetch_issue_ctx_t
*spic
= NULL
;
1877 mutex_enter(&spa
->spa_scrub_lock
);
1878 while ((spic
= avl_destroy_nodes(&scn
->scn_prefetch_queue
,
1879 &cookie
)) != NULL
) {
1880 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
1881 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1883 mutex_exit(&spa
->spa_scrub_lock
);
1887 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t
*spc
,
1888 const zbookmark_phys_t
*zb
)
1890 zbookmark_phys_t
*last_zb
= &spc
->spc_scn
->scn_prefetch_bookmark
;
1891 dnode_phys_t tmp_dnp
;
1892 dnode_phys_t
*dnp
= (spc
->spc_root
) ? NULL
: &tmp_dnp
;
1894 if (zb
->zb_objset
!= last_zb
->zb_objset
)
1896 if ((int64_t)zb
->zb_object
< 0)
1899 tmp_dnp
.dn_datablkszsec
= spc
->spc_datablkszsec
;
1900 tmp_dnp
.dn_indblkshift
= spc
->spc_indblkshift
;
1902 if (zbookmark_subtree_completed(dnp
, zb
, last_zb
))
1909 dsl_scan_prefetch(scan_prefetch_ctx_t
*spc
, blkptr_t
*bp
, zbookmark_phys_t
*zb
)
1912 dsl_scan_t
*scn
= spc
->spc_scn
;
1913 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1914 scan_prefetch_issue_ctx_t
*spic
;
1916 if (zfs_no_scrub_prefetch
|| BP_IS_REDACTED(bp
))
1919 if (BP_IS_HOLE(bp
) ||
1920 BP_GET_LOGICAL_BIRTH(bp
) <= scn
->scn_phys
.scn_cur_min_txg
||
1921 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_DNODE
&&
1922 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
))
1925 if (dsl_scan_check_prefetch_resume(spc
, zb
))
1928 scan_prefetch_ctx_add_ref(spc
, scn
);
1929 spic
= kmem_alloc(sizeof (scan_prefetch_issue_ctx_t
), KM_SLEEP
);
1930 spic
->spic_spc
= spc
;
1931 spic
->spic_bp
= *bp
;
1932 spic
->spic_zb
= *zb
;
1935 * Add the IO to the queue of blocks to prefetch. This allows us to
1936 * prioritize blocks that we will need first for the main traversal
1939 mutex_enter(&spa
->spa_scrub_lock
);
1940 if (avl_find(&scn
->scn_prefetch_queue
, spic
, &idx
) != NULL
) {
1941 /* this block is already queued for prefetch */
1942 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1943 scan_prefetch_ctx_rele(spc
, scn
);
1944 mutex_exit(&spa
->spa_scrub_lock
);
1948 avl_insert(&scn
->scn_prefetch_queue
, spic
, idx
);
1949 cv_broadcast(&spa
->spa_scrub_io_cv
);
1950 mutex_exit(&spa
->spa_scrub_lock
);
1954 dsl_scan_prefetch_dnode(dsl_scan_t
*scn
, dnode_phys_t
*dnp
,
1955 uint64_t objset
, uint64_t object
)
1958 zbookmark_phys_t zb
;
1959 scan_prefetch_ctx_t
*spc
;
1961 if (dnp
->dn_nblkptr
== 0 && !(dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
1964 SET_BOOKMARK(&zb
, objset
, object
, 0, 0);
1966 spc
= scan_prefetch_ctx_create(scn
, dnp
, FTAG
);
1968 for (i
= 0; i
< dnp
->dn_nblkptr
; i
++) {
1969 zb
.zb_level
= BP_GET_LEVEL(&dnp
->dn_blkptr
[i
]);
1971 dsl_scan_prefetch(spc
, &dnp
->dn_blkptr
[i
], &zb
);
1974 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
1976 zb
.zb_blkid
= DMU_SPILL_BLKID
;
1977 dsl_scan_prefetch(spc
, DN_SPILL_BLKPTR(dnp
), &zb
);
1980 scan_prefetch_ctx_rele(spc
, FTAG
);
1984 dsl_scan_prefetch_cb(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
1985 arc_buf_t
*buf
, void *private)
1988 scan_prefetch_ctx_t
*spc
= private;
1989 dsl_scan_t
*scn
= spc
->spc_scn
;
1990 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1992 /* broadcast that the IO has completed for rate limiting purposes */
1993 mutex_enter(&spa
->spa_scrub_lock
);
1994 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
1995 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
1996 cv_broadcast(&spa
->spa_scrub_io_cv
);
1997 mutex_exit(&spa
->spa_scrub_lock
);
1999 /* if there was an error or we are done prefetching, just cleanup */
2000 if (buf
== NULL
|| scn
->scn_prefetch_stop
)
2003 if (BP_GET_LEVEL(bp
) > 0) {
2006 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
2007 zbookmark_phys_t czb
;
2009 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
2010 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
2011 zb
->zb_level
- 1, zb
->zb_blkid
* epb
+ i
);
2012 dsl_scan_prefetch(spc
, cbp
, &czb
);
2014 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
2017 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
2019 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
2020 i
+= cdnp
->dn_extra_slots
+ 1,
2021 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
2022 dsl_scan_prefetch_dnode(scn
, cdnp
,
2023 zb
->zb_objset
, zb
->zb_blkid
* epb
+ i
);
2025 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
2026 objset_phys_t
*osp
= buf
->b_data
;
2028 dsl_scan_prefetch_dnode(scn
, &osp
->os_meta_dnode
,
2029 zb
->zb_objset
, DMU_META_DNODE_OBJECT
);
2031 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
2032 if (OBJSET_BUF_HAS_PROJECTUSED(buf
)) {
2033 dsl_scan_prefetch_dnode(scn
,
2034 &osp
->os_projectused_dnode
, zb
->zb_objset
,
2035 DMU_PROJECTUSED_OBJECT
);
2037 dsl_scan_prefetch_dnode(scn
,
2038 &osp
->os_groupused_dnode
, zb
->zb_objset
,
2039 DMU_GROUPUSED_OBJECT
);
2040 dsl_scan_prefetch_dnode(scn
,
2041 &osp
->os_userused_dnode
, zb
->zb_objset
,
2042 DMU_USERUSED_OBJECT
);
2048 arc_buf_destroy(buf
, private);
2049 scan_prefetch_ctx_rele(spc
, scn
);
2053 dsl_scan_prefetch_thread(void *arg
)
2055 dsl_scan_t
*scn
= arg
;
2056 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
2057 scan_prefetch_issue_ctx_t
*spic
;
2059 /* loop until we are told to stop */
2060 while (!scn
->scn_prefetch_stop
) {
2061 arc_flags_t flags
= ARC_FLAG_NOWAIT
|
2062 ARC_FLAG_PRESCIENT_PREFETCH
| ARC_FLAG_PREFETCH
;
2063 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
2065 mutex_enter(&spa
->spa_scrub_lock
);
2068 * Wait until we have an IO to issue and are not above our
2069 * maximum in flight limit.
2071 while (!scn
->scn_prefetch_stop
&&
2072 (avl_numnodes(&scn
->scn_prefetch_queue
) == 0 ||
2073 spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)) {
2074 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
2077 /* recheck if we should stop since we waited for the cv */
2078 if (scn
->scn_prefetch_stop
) {
2079 mutex_exit(&spa
->spa_scrub_lock
);
2083 /* remove the prefetch IO from the tree */
2084 spic
= avl_first(&scn
->scn_prefetch_queue
);
2085 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(&spic
->spic_bp
);
2086 avl_remove(&scn
->scn_prefetch_queue
, spic
);
2088 mutex_exit(&spa
->spa_scrub_lock
);
2090 if (BP_IS_PROTECTED(&spic
->spic_bp
)) {
2091 ASSERT(BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_DNODE
||
2092 BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_OBJSET
);
2093 ASSERT3U(BP_GET_LEVEL(&spic
->spic_bp
), ==, 0);
2094 zio_flags
|= ZIO_FLAG_RAW
;
2097 /* We don't need data L1 buffer since we do not prefetch L0. */
2098 blkptr_t
*bp
= &spic
->spic_bp
;
2099 if (BP_GET_LEVEL(bp
) == 1 && BP_GET_TYPE(bp
) != DMU_OT_DNODE
&&
2100 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)
2101 flags
|= ARC_FLAG_NO_BUF
;
2103 /* issue the prefetch asynchronously */
2104 (void) arc_read(scn
->scn_zio_root
, spa
, bp
,
2105 dsl_scan_prefetch_cb
, spic
->spic_spc
, ZIO_PRIORITY_SCRUB
,
2106 zio_flags
, &flags
, &spic
->spic_zb
);
2108 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
2111 ASSERT(scn
->scn_prefetch_stop
);
2113 /* free any prefetches we didn't get to complete */
2114 mutex_enter(&spa
->spa_scrub_lock
);
2115 while ((spic
= avl_first(&scn
->scn_prefetch_queue
)) != NULL
) {
2116 avl_remove(&scn
->scn_prefetch_queue
, spic
);
2117 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
2118 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
2120 ASSERT0(avl_numnodes(&scn
->scn_prefetch_queue
));
2121 mutex_exit(&spa
->spa_scrub_lock
);
2125 dsl_scan_check_resume(dsl_scan_t
*scn
, const dnode_phys_t
*dnp
,
2126 const zbookmark_phys_t
*zb
)
2129 * We never skip over user/group accounting objects (obj<0)
2131 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
) &&
2132 (int64_t)zb
->zb_object
>= 0) {
2134 * If we already visited this bp & everything below (in
2135 * a prior txg sync), don't bother doing it again.
2137 if (zbookmark_subtree_completed(dnp
, zb
,
2138 &scn
->scn_phys
.scn_bookmark
))
2142 * If we found the block we're trying to resume from, or
2143 * we went past it, zero it out to indicate that it's OK
2144 * to start checking for suspending again.
2146 if (zbookmark_subtree_tbd(dnp
, zb
,
2147 &scn
->scn_phys
.scn_bookmark
)) {
2148 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2149 (longlong_t
)zb
->zb_objset
,
2150 (longlong_t
)zb
->zb_object
,
2151 (longlong_t
)zb
->zb_level
,
2152 (longlong_t
)zb
->zb_blkid
);
2153 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (*zb
));
2159 static void dsl_scan_visitbp(const blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2160 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
2161 dmu_objset_type_t ostype
, dmu_tx_t
*tx
);
2162 inline __attribute__((always_inline
)) static void dsl_scan_visitdnode(
2163 dsl_scan_t
*, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2164 dnode_phys_t
*dnp
, uint64_t object
, dmu_tx_t
*tx
);
2167 * Return nonzero on i/o error.
2168 * Return new buf to write out in *bufp.
2170 inline __attribute__((always_inline
)) static int
2171 dsl_scan_recurse(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2172 dnode_phys_t
*dnp
, const blkptr_t
*bp
,
2173 const zbookmark_phys_t
*zb
, dmu_tx_t
*tx
)
2175 dsl_pool_t
*dp
= scn
->scn_dp
;
2176 spa_t
*spa
= dp
->dp_spa
;
2177 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
2180 ASSERT(!BP_IS_REDACTED(bp
));
2183 * There is an unlikely case of encountering dnodes with contradicting
2184 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2185 * or modified before commit 4254acb was merged. As it is not possible
2186 * to know which of the two is correct, report an error.
2189 dnp
->dn_bonuslen
> DN_MAX_BONUS_LEN(dnp
)) {
2190 scn
->scn_phys
.scn_errors
++;
2191 spa_log_error(spa
, zb
, BP_GET_LOGICAL_BIRTH(bp
));
2192 return (SET_ERROR(EINVAL
));
2195 if (BP_GET_LEVEL(bp
) > 0) {
2196 arc_flags_t flags
= ARC_FLAG_WAIT
;
2199 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
2202 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2203 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2205 scn
->scn_phys
.scn_errors
++;
2208 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
2209 zbookmark_phys_t czb
;
2211 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
2213 zb
->zb_blkid
* epb
+ i
);
2214 dsl_scan_visitbp(cbp
, &czb
, dnp
,
2215 ds
, scn
, ostype
, tx
);
2217 arc_buf_destroy(buf
, &buf
);
2218 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
2219 arc_flags_t flags
= ARC_FLAG_WAIT
;
2222 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
2225 if (BP_IS_PROTECTED(bp
)) {
2226 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
2227 zio_flags
|= ZIO_FLAG_RAW
;
2230 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2231 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2233 scn
->scn_phys
.scn_errors
++;
2236 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
2237 i
+= cdnp
->dn_extra_slots
+ 1,
2238 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
2239 dsl_scan_visitdnode(scn
, ds
, ostype
,
2240 cdnp
, zb
->zb_blkid
* epb
+ i
, tx
);
2243 arc_buf_destroy(buf
, &buf
);
2244 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
2245 arc_flags_t flags
= ARC_FLAG_WAIT
;
2249 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2250 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2252 scn
->scn_phys
.scn_errors
++;
2258 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2259 &osp
->os_meta_dnode
, DMU_META_DNODE_OBJECT
, tx
);
2261 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
2263 * We also always visit user/group/project accounting
2264 * objects, and never skip them, even if we are
2265 * suspending. This is necessary so that the
2266 * space deltas from this txg get integrated.
2268 if (OBJSET_BUF_HAS_PROJECTUSED(buf
))
2269 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2270 &osp
->os_projectused_dnode
,
2271 DMU_PROJECTUSED_OBJECT
, tx
);
2272 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2273 &osp
->os_groupused_dnode
,
2274 DMU_GROUPUSED_OBJECT
, tx
);
2275 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2276 &osp
->os_userused_dnode
,
2277 DMU_USERUSED_OBJECT
, tx
);
2279 arc_buf_destroy(buf
, &buf
);
2280 } else if (!zfs_blkptr_verify(spa
, bp
,
2281 BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
)) {
2283 * Sanity check the block pointer contents, this is handled
2284 * by arc_read() for the cases above.
2286 scn
->scn_phys
.scn_errors
++;
2287 spa_log_error(spa
, zb
, BP_GET_LOGICAL_BIRTH(bp
));
2288 return (SET_ERROR(EINVAL
));
2294 inline __attribute__((always_inline
)) static void
2295 dsl_scan_visitdnode(dsl_scan_t
*scn
, dsl_dataset_t
*ds
,
2296 dmu_objset_type_t ostype
, dnode_phys_t
*dnp
,
2297 uint64_t object
, dmu_tx_t
*tx
)
2301 for (j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
2302 zbookmark_phys_t czb
;
2304 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
2305 dnp
->dn_nlevels
- 1, j
);
2306 dsl_scan_visitbp(&dnp
->dn_blkptr
[j
],
2307 &czb
, dnp
, ds
, scn
, ostype
, tx
);
2310 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
2311 zbookmark_phys_t czb
;
2312 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
2313 0, DMU_SPILL_BLKID
);
2314 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp
),
2315 &czb
, dnp
, ds
, scn
, ostype
, tx
);
2320 * The arguments are in this order because mdb can only print the
2321 * first 5; we want them to be useful.
2324 dsl_scan_visitbp(const blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2325 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
2326 dmu_objset_type_t ostype
, dmu_tx_t
*tx
)
2328 dsl_pool_t
*dp
= scn
->scn_dp
;
2330 if (dsl_scan_check_suspend(scn
, zb
))
2333 if (dsl_scan_check_resume(scn
, dnp
, zb
))
2336 scn
->scn_visited_this_txg
++;
2338 if (BP_IS_HOLE(bp
)) {
2339 scn
->scn_holes_this_txg
++;
2343 if (BP_IS_REDACTED(bp
)) {
2344 ASSERT(dsl_dataset_feature_is_active(ds
,
2345 SPA_FEATURE_REDACTED_DATASETS
));
2350 * Check if this block contradicts any filesystem flags.
2352 spa_feature_t f
= SPA_FEATURE_LARGE_BLOCKS
;
2353 if (BP_GET_LSIZE(bp
) > SPA_OLD_MAXBLOCKSIZE
)
2354 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2356 f
= zio_checksum_to_feature(BP_GET_CHECKSUM(bp
));
2357 if (f
!= SPA_FEATURE_NONE
)
2358 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2360 f
= zio_compress_to_feature(BP_GET_COMPRESS(bp
));
2361 if (f
!= SPA_FEATURE_NONE
)
2362 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2364 if (BP_GET_LOGICAL_BIRTH(bp
) <= scn
->scn_phys
.scn_cur_min_txg
) {
2365 scn
->scn_lt_min_this_txg
++;
2369 if (dsl_scan_recurse(scn
, ds
, ostype
, dnp
, bp
, zb
, tx
) != 0)
2373 * If dsl_scan_ddt() has already visited this block, it will have
2374 * already done any translations or scrubbing, so don't call the
2377 if (ddt_class_contains(dp
->dp_spa
,
2378 scn
->scn_phys
.scn_ddt_class_max
, bp
)) {
2379 scn
->scn_ddt_contained_this_txg
++;
2384 * If this block is from the future (after cur_max_txg), then we
2385 * are doing this on behalf of a deleted snapshot, and we will
2386 * revisit the future block on the next pass of this dataset.
2387 * Don't scan it now unless we need to because something
2388 * under it was modified.
2390 if (BP_GET_BIRTH(bp
) > scn
->scn_phys
.scn_cur_max_txg
) {
2391 scn
->scn_gt_max_this_txg
++;
2395 scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, zb
);
2399 dsl_scan_visit_rootbp(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, blkptr_t
*bp
,
2402 zbookmark_phys_t zb
;
2403 scan_prefetch_ctx_t
*spc
;
2405 SET_BOOKMARK(&zb
, ds
? ds
->ds_object
: DMU_META_OBJSET
,
2406 ZB_ROOT_OBJECT
, ZB_ROOT_LEVEL
, ZB_ROOT_BLKID
);
2408 if (ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
)) {
2409 SET_BOOKMARK(&scn
->scn_prefetch_bookmark
,
2410 zb
.zb_objset
, 0, 0, 0);
2412 scn
->scn_prefetch_bookmark
= scn
->scn_phys
.scn_bookmark
;
2415 scn
->scn_objsets_visited_this_txg
++;
2417 spc
= scan_prefetch_ctx_create(scn
, NULL
, FTAG
);
2418 dsl_scan_prefetch(spc
, bp
, &zb
);
2419 scan_prefetch_ctx_rele(spc
, FTAG
);
2421 dsl_scan_visitbp(bp
, &zb
, NULL
, ds
, scn
, DMU_OST_NONE
, tx
);
2423 dprintf_ds(ds
, "finished scan%s", "");
2427 ds_destroyed_scn_phys(dsl_dataset_t
*ds
, dsl_scan_phys_t
*scn_phys
)
2429 if (scn_phys
->scn_bookmark
.zb_objset
== ds
->ds_object
) {
2430 if (ds
->ds_is_snapshot
) {
2433 * - scn_cur_{min,max}_txg stays the same.
2434 * - Setting the flag is not really necessary if
2435 * scn_cur_max_txg == scn_max_txg, because there
2436 * is nothing after this snapshot that we care
2437 * about. However, we set it anyway and then
2438 * ignore it when we retraverse it in
2439 * dsl_scan_visitds().
2441 scn_phys
->scn_bookmark
.zb_objset
=
2442 dsl_dataset_phys(ds
)->ds_next_snap_obj
;
2443 zfs_dbgmsg("destroying ds %llu on %s; currently "
2444 "traversing; reset zb_objset to %llu",
2445 (u_longlong_t
)ds
->ds_object
,
2446 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2447 (u_longlong_t
)dsl_dataset_phys(ds
)->
2449 scn_phys
->scn_flags
|= DSF_VISIT_DS_AGAIN
;
2451 SET_BOOKMARK(&scn_phys
->scn_bookmark
,
2452 ZB_DESTROYED_OBJSET
, 0, 0, 0);
2453 zfs_dbgmsg("destroying ds %llu on %s; currently "
2454 "traversing; reset bookmark to -1,0,0,0",
2455 (u_longlong_t
)ds
->ds_object
,
2456 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
);
2462 * Invoked when a dataset is destroyed. We need to make sure that:
2464 * 1) If it is the dataset that was currently being scanned, we write
2465 * a new dsl_scan_phys_t and marking the objset reference in it
2467 * 2) Remove it from the work queue, if it was present.
2469 * If the dataset was actually a snapshot, instead of marking the dataset
2470 * as destroyed, we instead substitute the next snapshot in line.
2473 dsl_scan_ds_destroyed(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2475 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2476 dsl_scan_t
*scn
= dp
->dp_scan
;
2479 if (!dsl_scan_is_running(scn
))
2482 ds_destroyed_scn_phys(ds
, &scn
->scn_phys
);
2483 ds_destroyed_scn_phys(ds
, &scn
->scn_phys_cached
);
2485 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2486 scan_ds_queue_remove(scn
, ds
->ds_object
);
2487 if (ds
->ds_is_snapshot
)
2488 scan_ds_queue_insert(scn
,
2489 dsl_dataset_phys(ds
)->ds_next_snap_obj
, mintxg
);
2492 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2493 ds
->ds_object
, &mintxg
) == 0) {
2494 ASSERT3U(dsl_dataset_phys(ds
)->ds_num_children
, <=, 1);
2495 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2496 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2497 if (ds
->ds_is_snapshot
) {
2499 * We keep the same mintxg; it could be >
2500 * ds_creation_txg if the previous snapshot was
2503 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2504 scn
->scn_phys
.scn_queue_obj
,
2505 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2507 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2508 "replacing with %llu",
2509 (u_longlong_t
)ds
->ds_object
,
2510 dp
->dp_spa
->spa_name
,
2511 (u_longlong_t
)dsl_dataset_phys(ds
)->
2514 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2516 (u_longlong_t
)ds
->ds_object
,
2517 dp
->dp_spa
->spa_name
);
2522 * dsl_scan_sync() should be called after this, and should sync
2523 * out our changed state, but just to be safe, do it here.
2525 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2529 ds_snapshotted_bookmark(dsl_dataset_t
*ds
, zbookmark_phys_t
*scn_bookmark
)
2531 if (scn_bookmark
->zb_objset
== ds
->ds_object
) {
2532 scn_bookmark
->zb_objset
=
2533 dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
2534 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2535 "reset zb_objset to %llu",
2536 (u_longlong_t
)ds
->ds_object
,
2537 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2538 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2543 * Called when a dataset is snapshotted. If we were currently traversing
2544 * this snapshot, we reset our bookmark to point at the newly created
2545 * snapshot. We also modify our work queue to remove the old snapshot and
2546 * replace with the new one.
2549 dsl_scan_ds_snapshotted(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2551 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2552 dsl_scan_t
*scn
= dp
->dp_scan
;
2555 if (!dsl_scan_is_running(scn
))
2558 ASSERT(dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0);
2560 ds_snapshotted_bookmark(ds
, &scn
->scn_phys
.scn_bookmark
);
2561 ds_snapshotted_bookmark(ds
, &scn
->scn_phys_cached
.scn_bookmark
);
2563 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2564 scan_ds_queue_remove(scn
, ds
->ds_object
);
2565 scan_ds_queue_insert(scn
,
2566 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
);
2569 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2570 ds
->ds_object
, &mintxg
) == 0) {
2571 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2572 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2573 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2574 scn
->scn_phys
.scn_queue_obj
,
2575 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
, tx
) == 0);
2576 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2577 "replacing with %llu",
2578 (u_longlong_t
)ds
->ds_object
,
2579 dp
->dp_spa
->spa_name
,
2580 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2583 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2587 ds_clone_swapped_bookmark(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
,
2588 zbookmark_phys_t
*scn_bookmark
)
2590 if (scn_bookmark
->zb_objset
== ds1
->ds_object
) {
2591 scn_bookmark
->zb_objset
= ds2
->ds_object
;
2592 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2593 "reset zb_objset to %llu",
2594 (u_longlong_t
)ds1
->ds_object
,
2595 ds1
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2596 (u_longlong_t
)ds2
->ds_object
);
2597 } else if (scn_bookmark
->zb_objset
== ds2
->ds_object
) {
2598 scn_bookmark
->zb_objset
= ds1
->ds_object
;
2599 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2600 "reset zb_objset to %llu",
2601 (u_longlong_t
)ds2
->ds_object
,
2602 ds2
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2603 (u_longlong_t
)ds1
->ds_object
);
2608 * Called when an origin dataset and its clone are swapped. If we were
2609 * currently traversing the dataset, we need to switch to traversing the
2610 * newly promoted clone.
2613 dsl_scan_ds_clone_swapped(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
, dmu_tx_t
*tx
)
2615 dsl_pool_t
*dp
= ds1
->ds_dir
->dd_pool
;
2616 dsl_scan_t
*scn
= dp
->dp_scan
;
2617 uint64_t mintxg1
, mintxg2
;
2618 boolean_t ds1_queued
, ds2_queued
;
2620 if (!dsl_scan_is_running(scn
))
2623 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys
.scn_bookmark
);
2624 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys_cached
.scn_bookmark
);
2627 * Handle the in-memory scan queue.
2629 ds1_queued
= scan_ds_queue_contains(scn
, ds1
->ds_object
, &mintxg1
);
2630 ds2_queued
= scan_ds_queue_contains(scn
, ds2
->ds_object
, &mintxg2
);
2632 /* Sanity checking. */
2634 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2635 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2638 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2639 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2642 if (ds1_queued
&& ds2_queued
) {
2644 * If both are queued, we don't need to do anything.
2645 * The swapping code below would not handle this case correctly,
2646 * since we can't insert ds2 if it is already there. That's
2647 * because scan_ds_queue_insert() prohibits a duplicate insert
2650 } else if (ds1_queued
) {
2651 scan_ds_queue_remove(scn
, ds1
->ds_object
);
2652 scan_ds_queue_insert(scn
, ds2
->ds_object
, mintxg1
);
2653 } else if (ds2_queued
) {
2654 scan_ds_queue_remove(scn
, ds2
->ds_object
);
2655 scan_ds_queue_insert(scn
, ds1
->ds_object
, mintxg2
);
2659 * Handle the on-disk scan queue.
2660 * The on-disk state is an out-of-date version of the in-memory state,
2661 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2662 * be different. Therefore we need to apply the swap logic to the
2663 * on-disk state independently of the in-memory state.
2665 ds1_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2666 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, &mintxg1
) == 0;
2667 ds2_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2668 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, &mintxg2
) == 0;
2670 /* Sanity checking. */
2672 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2673 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2676 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2677 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2680 if (ds1_queued
&& ds2_queued
) {
2682 * If both are queued, we don't need to do anything.
2683 * Alternatively, we could check for EEXIST from
2684 * zap_add_int_key() and back out to the original state, but
2685 * that would be more work than checking for this case upfront.
2687 } else if (ds1_queued
) {
2688 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2689 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, tx
));
2690 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2691 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, mintxg1
, tx
));
2692 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2693 "replacing with %llu",
2694 (u_longlong_t
)ds1
->ds_object
,
2695 dp
->dp_spa
->spa_name
,
2696 (u_longlong_t
)ds2
->ds_object
);
2697 } else if (ds2_queued
) {
2698 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2699 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, tx
));
2700 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2701 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, mintxg2
, tx
));
2702 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2703 "replacing with %llu",
2704 (u_longlong_t
)ds2
->ds_object
,
2705 dp
->dp_spa
->spa_name
,
2706 (u_longlong_t
)ds1
->ds_object
);
2709 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2713 enqueue_clones_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2715 uint64_t originobj
= *(uint64_t *)arg
;
2718 dsl_scan_t
*scn
= dp
->dp_scan
;
2720 if (dsl_dir_phys(hds
->ds_dir
)->dd_origin_obj
!= originobj
)
2723 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2727 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= originobj
) {
2728 dsl_dataset_t
*prev
;
2729 err
= dsl_dataset_hold_obj(dp
,
2730 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2732 dsl_dataset_rele(ds
, FTAG
);
2737 mutex_enter(&scn
->scn_queue_lock
);
2738 scan_ds_queue_insert(scn
, ds
->ds_object
,
2739 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2740 mutex_exit(&scn
->scn_queue_lock
);
2741 dsl_dataset_rele(ds
, FTAG
);
2746 dsl_scan_visitds(dsl_scan_t
*scn
, uint64_t dsobj
, dmu_tx_t
*tx
)
2748 dsl_pool_t
*dp
= scn
->scn_dp
;
2751 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
2753 if (scn
->scn_phys
.scn_cur_min_txg
>=
2754 scn
->scn_phys
.scn_max_txg
) {
2756 * This can happen if this snapshot was created after the
2757 * scan started, and we already completed a previous snapshot
2758 * that was created after the scan started. This snapshot
2759 * only references blocks with:
2761 * birth < our ds_creation_txg
2762 * cur_min_txg is no less than ds_creation_txg.
2763 * We have already visited these blocks.
2765 * birth > scn_max_txg
2766 * The scan requested not to visit these blocks.
2768 * Subsequent snapshots (and clones) can reference our
2769 * blocks, or blocks with even higher birth times.
2770 * Therefore we do not need to visit them either,
2771 * so we do not add them to the work queue.
2773 * Note that checking for cur_min_txg >= cur_max_txg
2774 * is not sufficient, because in that case we may need to
2775 * visit subsequent snapshots. This happens when min_txg > 0,
2776 * which raises cur_min_txg. In this case we will visit
2777 * this dataset but skip all of its blocks, because the
2778 * rootbp's birth time is < cur_min_txg. Then we will
2779 * add the next snapshots/clones to the work queue.
2781 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2782 dsl_dataset_name(ds
, dsname
);
2783 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2784 "cur_min_txg (%llu) >= max_txg (%llu)",
2785 (longlong_t
)dsobj
, dsname
,
2786 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2787 (longlong_t
)scn
->scn_phys
.scn_max_txg
);
2788 kmem_free(dsname
, MAXNAMELEN
);
2794 * Only the ZIL in the head (non-snapshot) is valid. Even though
2795 * snapshots can have ZIL block pointers (which may be the same
2796 * BP as in the head), they must be ignored. In addition, $ORIGIN
2797 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2798 * need to look for a ZIL in it either. So we traverse the ZIL here,
2799 * rather than in scan_recurse(), because the regular snapshot
2800 * block-sharing rules don't apply to it.
2802 if (!dsl_dataset_is_snapshot(ds
) &&
2803 (dp
->dp_origin_snap
== NULL
||
2804 ds
->ds_dir
!= dp
->dp_origin_snap
->ds_dir
)) {
2806 if (dmu_objset_from_ds(ds
, &os
) != 0) {
2809 dsl_scan_zil(dp
, &os
->os_zil_header
);
2813 * Iterate over the bps in this ds.
2815 dmu_buf_will_dirty(ds
->ds_dbuf
, tx
);
2816 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2817 dsl_scan_visit_rootbp(scn
, ds
, &dsl_dataset_phys(ds
)->ds_bp
, tx
);
2818 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2820 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2821 dsl_dataset_name(ds
, dsname
);
2822 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2824 (longlong_t
)dsobj
, dsname
,
2825 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2826 (longlong_t
)scn
->scn_phys
.scn_cur_max_txg
,
2827 (int)scn
->scn_suspending
);
2828 kmem_free(dsname
, ZFS_MAX_DATASET_NAME_LEN
);
2830 if (scn
->scn_suspending
)
2834 * We've finished this pass over this dataset.
2838 * If we did not completely visit this dataset, do another pass.
2840 if (scn
->scn_phys
.scn_flags
& DSF_VISIT_DS_AGAIN
) {
2841 zfs_dbgmsg("incomplete pass on %s; visiting again",
2842 dp
->dp_spa
->spa_name
);
2843 scn
->scn_phys
.scn_flags
&= ~DSF_VISIT_DS_AGAIN
;
2844 scan_ds_queue_insert(scn
, ds
->ds_object
,
2845 scn
->scn_phys
.scn_cur_max_txg
);
2850 * Add descendant datasets to work queue.
2852 if (dsl_dataset_phys(ds
)->ds_next_snap_obj
!= 0) {
2853 scan_ds_queue_insert(scn
,
2854 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2855 dsl_dataset_phys(ds
)->ds_creation_txg
);
2857 if (dsl_dataset_phys(ds
)->ds_num_children
> 1) {
2858 boolean_t usenext
= B_FALSE
;
2859 if (dsl_dataset_phys(ds
)->ds_next_clones_obj
!= 0) {
2862 * A bug in a previous version of the code could
2863 * cause upgrade_clones_cb() to not set
2864 * ds_next_snap_obj when it should, leading to a
2865 * missing entry. Therefore we can only use the
2866 * next_clones_obj when its count is correct.
2868 int err
= zap_count(dp
->dp_meta_objset
,
2869 dsl_dataset_phys(ds
)->ds_next_clones_obj
, &count
);
2871 count
== dsl_dataset_phys(ds
)->ds_num_children
- 1)
2877 zap_attribute_t
*za
= zap_attribute_alloc();
2878 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
2879 dsl_dataset_phys(ds
)->ds_next_clones_obj
);
2880 zap_cursor_retrieve(&zc
, za
) == 0;
2881 (void) zap_cursor_advance(&zc
)) {
2882 scan_ds_queue_insert(scn
,
2883 zfs_strtonum(za
->za_name
, NULL
),
2884 dsl_dataset_phys(ds
)->ds_creation_txg
);
2886 zap_cursor_fini(&zc
);
2887 zap_attribute_free(za
);
2889 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
2890 enqueue_clones_cb
, &ds
->ds_object
,
2896 dsl_dataset_rele(ds
, FTAG
);
2900 enqueue_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2905 dsl_scan_t
*scn
= dp
->dp_scan
;
2907 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2911 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0) {
2912 dsl_dataset_t
*prev
;
2913 err
= dsl_dataset_hold_obj(dp
,
2914 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2916 dsl_dataset_rele(ds
, FTAG
);
2921 * If this is a clone, we don't need to worry about it for now.
2923 if (dsl_dataset_phys(prev
)->ds_next_snap_obj
!= ds
->ds_object
) {
2924 dsl_dataset_rele(ds
, FTAG
);
2925 dsl_dataset_rele(prev
, FTAG
);
2928 dsl_dataset_rele(ds
, FTAG
);
2932 mutex_enter(&scn
->scn_queue_lock
);
2933 scan_ds_queue_insert(scn
, ds
->ds_object
,
2934 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2935 mutex_exit(&scn
->scn_queue_lock
);
2936 dsl_dataset_rele(ds
, FTAG
);
2941 dsl_scan_ddt_entry(dsl_scan_t
*scn
, enum zio_checksum checksum
,
2942 ddt_t
*ddt
, ddt_lightweight_entry_t
*ddlwe
, dmu_tx_t
*tx
)
2945 const ddt_key_t
*ddk
= &ddlwe
->ddlwe_key
;
2947 zbookmark_phys_t zb
= { 0 };
2949 if (!dsl_scan_is_running(scn
))
2953 * This function is special because it is the only thing
2954 * that can add scan_io_t's to the vdev scan queues from
2955 * outside dsl_scan_sync(). For the most part this is ok
2956 * as long as it is called from within syncing context.
2957 * However, dsl_scan_sync() expects that no new sio's will
2958 * be added between when all the work for a scan is done
2959 * and the next txg when the scan is actually marked as
2960 * completed. This check ensures we do not issue new sio's
2961 * during this period.
2963 if (scn
->scn_done_txg
!= 0)
2966 for (int p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
2967 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
2968 uint64_t phys_birth
= ddt_phys_birth(&ddlwe
->ddlwe_phys
, v
);
2970 if (phys_birth
== 0 || phys_birth
> scn
->scn_phys
.scn_max_txg
)
2972 ddt_bp_create(checksum
, ddk
, &ddlwe
->ddlwe_phys
, v
, &bp
);
2974 scn
->scn_visited_this_txg
++;
2975 scan_funcs
[scn
->scn_phys
.scn_func
](scn
->scn_dp
, &bp
, &zb
);
2980 * Scrub/dedup interaction.
2982 * If there are N references to a deduped block, we don't want to scrub it
2983 * N times -- ideally, we should scrub it exactly once.
2985 * We leverage the fact that the dde's replication class (ddt_class_t)
2986 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2987 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2989 * To prevent excess scrubbing, the scrub begins by walking the DDT
2990 * to find all blocks with refcnt > 1, and scrubs each of these once.
2991 * Since there are two replication classes which contain blocks with
2992 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2993 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2995 * There would be nothing more to say if a block's refcnt couldn't change
2996 * during a scrub, but of course it can so we must account for changes
2997 * in a block's replication class.
2999 * Here's an example of what can occur:
3001 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3002 * when visited during the top-down scrub phase, it will be scrubbed twice.
3003 * This negates our scrub optimization, but is otherwise harmless.
3005 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3006 * on each visit during the top-down scrub phase, it will never be scrubbed.
3007 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3008 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3009 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3010 * while a scrub is in progress, it scrubs the block right then.
3013 dsl_scan_ddt(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
3015 ddt_bookmark_t
*ddb
= &scn
->scn_phys
.scn_ddt_bookmark
;
3016 ddt_lightweight_entry_t ddlwe
= {0};
3020 while ((error
= ddt_walk(scn
->scn_dp
->dp_spa
, ddb
, &ddlwe
)) == 0) {
3023 if (ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
)
3025 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3026 (longlong_t
)ddb
->ddb_class
,
3027 (longlong_t
)ddb
->ddb_type
,
3028 (longlong_t
)ddb
->ddb_checksum
,
3029 (longlong_t
)ddb
->ddb_cursor
);
3031 /* There should be no pending changes to the dedup table */
3032 ddt
= scn
->scn_dp
->dp_spa
->spa_ddt
[ddb
->ddb_checksum
];
3033 ASSERT(avl_first(&ddt
->ddt_tree
) == NULL
);
3035 dsl_scan_ddt_entry(scn
, ddb
->ddb_checksum
, ddt
, &ddlwe
, tx
);
3038 if (dsl_scan_check_suspend(scn
, NULL
))
3042 if (error
== EAGAIN
) {
3043 dsl_scan_check_suspend(scn
, NULL
);
3046 zfs_dbgmsg("waiting for ddt to become ready for scan "
3047 "on %s with class_max = %u; suspending=%u",
3048 scn
->scn_dp
->dp_spa
->spa_name
,
3049 (int)scn
->scn_phys
.scn_ddt_class_max
,
3050 (int)scn
->scn_suspending
);
3052 zfs_dbgmsg("scanned %llu ddt entries on %s with "
3053 "class_max = %u; suspending=%u", (longlong_t
)n
,
3054 scn
->scn_dp
->dp_spa
->spa_name
,
3055 (int)scn
->scn_phys
.scn_ddt_class_max
,
3056 (int)scn
->scn_suspending
);
3058 ASSERT(error
== 0 || error
== ENOENT
);
3059 ASSERT(error
!= ENOENT
||
3060 ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
);
3064 dsl_scan_ds_maxtxg(dsl_dataset_t
*ds
)
3066 uint64_t smt
= ds
->ds_dir
->dd_pool
->dp_scan
->scn_phys
.scn_max_txg
;
3067 if (ds
->ds_is_snapshot
)
3068 return (MIN(smt
, dsl_dataset_phys(ds
)->ds_creation_txg
));
3073 dsl_scan_visit(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
3076 dsl_pool_t
*dp
= scn
->scn_dp
;
3078 if (scn
->scn_phys
.scn_ddt_bookmark
.ddb_class
<=
3079 scn
->scn_phys
.scn_ddt_class_max
) {
3080 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
3081 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
3082 dsl_scan_ddt(scn
, tx
);
3083 if (scn
->scn_suspending
)
3087 if (scn
->scn_phys
.scn_bookmark
.zb_objset
== DMU_META_OBJSET
) {
3088 /* First do the MOS & ORIGIN */
3090 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
3091 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
3092 dsl_scan_visit_rootbp(scn
, NULL
,
3093 &dp
->dp_meta_rootbp
, tx
);
3094 if (scn
->scn_suspending
)
3097 if (spa_version(dp
->dp_spa
) < SPA_VERSION_DSL_SCRUB
) {
3098 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
3099 enqueue_cb
, NULL
, DS_FIND_CHILDREN
));
3101 dsl_scan_visitds(scn
,
3102 dp
->dp_origin_snap
->ds_object
, tx
);
3104 ASSERT(!scn
->scn_suspending
);
3105 } else if (scn
->scn_phys
.scn_bookmark
.zb_objset
!=
3106 ZB_DESTROYED_OBJSET
) {
3107 uint64_t dsobj
= scn
->scn_phys
.scn_bookmark
.zb_objset
;
3109 * If we were suspended, continue from here. Note if the
3110 * ds we were suspended on was deleted, the zb_objset may
3111 * be -1, so we will skip this and find a new objset
3114 dsl_scan_visitds(scn
, dsobj
, tx
);
3115 if (scn
->scn_suspending
)
3120 * In case we suspended right at the end of the ds, zero the
3121 * bookmark so we don't think that we're still trying to resume.
3123 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (zbookmark_phys_t
));
3126 * Keep pulling things out of the dataset avl queue. Updates to the
3127 * persistent zap-object-as-queue happen only at checkpoints.
3129 while ((sds
= avl_first(&scn
->scn_queue
)) != NULL
) {
3131 uint64_t dsobj
= sds
->sds_dsobj
;
3132 uint64_t txg
= sds
->sds_txg
;
3134 /* dequeue and free the ds from the queue */
3135 scan_ds_queue_remove(scn
, dsobj
);
3138 /* set up min / max txg */
3139 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
3141 scn
->scn_phys
.scn_cur_min_txg
=
3142 MAX(scn
->scn_phys
.scn_min_txg
, txg
);
3144 scn
->scn_phys
.scn_cur_min_txg
=
3145 MAX(scn
->scn_phys
.scn_min_txg
,
3146 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
3148 scn
->scn_phys
.scn_cur_max_txg
= dsl_scan_ds_maxtxg(ds
);
3149 dsl_dataset_rele(ds
, FTAG
);
3151 dsl_scan_visitds(scn
, dsobj
, tx
);
3152 if (scn
->scn_suspending
)
3156 /* No more objsets to fetch, we're done */
3157 scn
->scn_phys
.scn_bookmark
.zb_objset
= ZB_DESTROYED_OBJSET
;
3158 ASSERT0(scn
->scn_suspending
);
3162 dsl_scan_count_data_disks(spa_t
*spa
)
3164 vdev_t
*rvd
= spa
->spa_root_vdev
;
3165 uint64_t i
, leaves
= 0;
3167 for (i
= 0; i
< rvd
->vdev_children
; i
++) {
3168 vdev_t
*vd
= rvd
->vdev_child
[i
];
3169 if (vd
->vdev_islog
|| vd
->vdev_isspare
|| vd
->vdev_isl2cache
)
3171 leaves
+= vdev_get_ndisks(vd
) - vdev_get_nparity(vd
);
3177 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t
*q
, const blkptr_t
*bp
)
3180 uint64_t cur_size
= 0;
3182 for (i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
3183 cur_size
+= DVA_GET_ASIZE(&bp
->blk_dva
[i
]);
3186 q
->q_total_zio_size_this_txg
+= cur_size
;
3187 q
->q_zios_this_txg
++;
3191 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t
*q
, uint64_t start
,
3194 q
->q_total_seg_size_this_txg
+= end
- start
;
3195 q
->q_segs_this_txg
++;
3199 scan_io_queue_check_suspend(dsl_scan_t
*scn
)
3201 /* See comment in dsl_scan_check_suspend() */
3202 uint64_t curr_time_ns
= gethrtime();
3203 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
3204 uint64_t sync_time_ns
= curr_time_ns
-
3205 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
3206 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
3207 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
3208 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
3209 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
3211 return ((NSEC2MSEC(scan_time_ns
) > mintime
&&
3212 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
3213 txg_sync_waiting(scn
->scn_dp
) ||
3214 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
3215 spa_shutting_down(scn
->scn_dp
->dp_spa
));
3219 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3220 * disk. This consumes the io_list and frees the scan_io_t's. This is
3221 * called when emptying queues, either when we're up against the memory
3222 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3223 * processing the list before we finished. Any sios that were not issued
3224 * will remain in the io_list.
3227 scan_io_queue_issue(dsl_scan_io_queue_t
*queue
, list_t
*io_list
)
3229 dsl_scan_t
*scn
= queue
->q_scn
;
3231 boolean_t suspended
= B_FALSE
;
3233 while ((sio
= list_head(io_list
)) != NULL
) {
3236 if (scan_io_queue_check_suspend(scn
)) {
3242 scan_exec_io(scn
->scn_dp
, &bp
, sio
->sio_flags
,
3243 &sio
->sio_zb
, queue
);
3244 (void) list_remove_head(io_list
);
3245 scan_io_queues_update_zio_stats(queue
, &bp
);
3252 * This function removes sios from an IO queue which reside within a given
3253 * range_seg_t and inserts them (in offset order) into a list. Note that
3254 * we only ever return a maximum of 32 sios at once. If there are more sios
3255 * to process within this segment that did not make it onto the list we
3256 * return B_TRUE and otherwise B_FALSE.
3259 scan_io_queue_gather(dsl_scan_io_queue_t
*queue
, range_seg_t
*rs
, list_t
*list
)
3261 scan_io_t
*srch_sio
, *sio
, *next_sio
;
3263 uint_t num_sios
= 0;
3264 int64_t bytes_issued
= 0;
3267 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3269 srch_sio
= sio_alloc(1);
3270 srch_sio
->sio_nr_dvas
= 1;
3271 SIO_SET_OFFSET(srch_sio
, rs_get_start(rs
, queue
->q_exts_by_addr
));
3274 * The exact start of the extent might not contain any matching zios,
3275 * so if that's the case, examine the next one in the tree.
3277 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
3281 sio
= avl_nearest(&queue
->q_sios_by_addr
, idx
, AVL_AFTER
);
3283 while (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
3284 queue
->q_exts_by_addr
) && num_sios
<= 32) {
3285 ASSERT3U(SIO_GET_OFFSET(sio
), >=, rs_get_start(rs
,
3286 queue
->q_exts_by_addr
));
3287 ASSERT3U(SIO_GET_END_OFFSET(sio
), <=, rs_get_end(rs
,
3288 queue
->q_exts_by_addr
));
3290 next_sio
= AVL_NEXT(&queue
->q_sios_by_addr
, sio
);
3291 avl_remove(&queue
->q_sios_by_addr
, sio
);
3292 if (avl_is_empty(&queue
->q_sios_by_addr
))
3293 atomic_add_64(&queue
->q_scn
->scn_queues_pending
, -1);
3294 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
3296 bytes_issued
+= SIO_GET_ASIZE(sio
);
3298 list_insert_tail(list
, sio
);
3303 * We limit the number of sios we process at once to 32 to avoid
3304 * biting off more than we can chew. If we didn't take everything
3305 * in the segment we update it to reflect the work we were able to
3306 * complete. Otherwise, we remove it from the range tree entirely.
3308 if (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
3309 queue
->q_exts_by_addr
)) {
3310 range_tree_adjust_fill(queue
->q_exts_by_addr
, rs
,
3312 range_tree_resize_segment(queue
->q_exts_by_addr
, rs
,
3313 SIO_GET_OFFSET(sio
), rs_get_end(rs
,
3314 queue
->q_exts_by_addr
) - SIO_GET_OFFSET(sio
));
3315 queue
->q_last_ext_addr
= SIO_GET_OFFSET(sio
);
3318 uint64_t rstart
= rs_get_start(rs
, queue
->q_exts_by_addr
);
3319 uint64_t rend
= rs_get_end(rs
, queue
->q_exts_by_addr
);
3320 range_tree_remove(queue
->q_exts_by_addr
, rstart
, rend
- rstart
);
3321 queue
->q_last_ext_addr
= -1;
3327 * This is called from the queue emptying thread and selects the next
3328 * extent from which we are to issue I/Os. The behavior of this function
3329 * depends on the state of the scan, the current memory consumption and
3330 * whether or not we are performing a scan shutdown.
3331 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3332 * needs to perform a checkpoint
3333 * 2) We select the largest available extent if we are up against the
3335 * 3) Otherwise we don't select any extents.
3337 static range_seg_t
*
3338 scan_io_queue_fetch_ext(dsl_scan_io_queue_t
*queue
)
3340 dsl_scan_t
*scn
= queue
->q_scn
;
3341 range_tree_t
*rt
= queue
->q_exts_by_addr
;
3343 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3344 ASSERT(scn
->scn_is_sorted
);
3346 if (!scn
->scn_checkpointing
&& !scn
->scn_clearing
)
3350 * During normal clearing, we want to issue our largest segments
3351 * first, keeping IO as sequential as possible, and leaving the
3352 * smaller extents for later with the hope that they might eventually
3353 * grow to larger sequential segments. However, when the scan is
3354 * checkpointing, no new extents will be added to the sorting queue,
3355 * so the way we are sorted now is as good as it will ever get.
3356 * In this case, we instead switch to issuing extents in LBA order.
3358 if ((zfs_scan_issue_strategy
< 1 && scn
->scn_checkpointing
) ||
3359 zfs_scan_issue_strategy
== 1)
3360 return (range_tree_first(rt
));
3363 * Try to continue previous extent if it is not completed yet. After
3364 * shrink in scan_io_queue_gather() it may no longer be the best, but
3365 * otherwise we leave shorter remnant every txg.
3368 uint64_t size
= 1ULL << rt
->rt_shift
;
3369 range_seg_t
*addr_rs
;
3370 if (queue
->q_last_ext_addr
!= -1) {
3371 start
= queue
->q_last_ext_addr
;
3372 addr_rs
= range_tree_find(rt
, start
, size
);
3373 if (addr_rs
!= NULL
)
3378 * Nothing to continue, so find new best extent.
3380 uint64_t *v
= zfs_btree_first(&queue
->q_exts_by_size
, NULL
);
3383 queue
->q_last_ext_addr
= start
= *v
<< rt
->rt_shift
;
3386 * We need to get the original entry in the by_addr tree so we can
3389 addr_rs
= range_tree_find(rt
, start
, size
);
3390 ASSERT3P(addr_rs
, !=, NULL
);
3391 ASSERT3U(rs_get_start(addr_rs
, rt
), ==, start
);
3392 ASSERT3U(rs_get_end(addr_rs
, rt
), >, start
);
3397 scan_io_queues_run_one(void *arg
)
3399 dsl_scan_io_queue_t
*queue
= arg
;
3400 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
3401 boolean_t suspended
= B_FALSE
;
3407 ASSERT(queue
->q_scn
->scn_is_sorted
);
3409 list_create(&sio_list
, sizeof (scan_io_t
),
3410 offsetof(scan_io_t
, sio_nodes
.sio_list_node
));
3411 zio
= zio_null(queue
->q_scn
->scn_zio_root
, queue
->q_scn
->scn_dp
->dp_spa
,
3412 NULL
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
3413 mutex_enter(q_lock
);
3416 /* Calculate maximum in-flight bytes for this vdev. */
3417 queue
->q_maxinflight_bytes
= MAX(1, zfs_scan_vdev_limit
*
3418 (vdev_get_ndisks(queue
->q_vd
) - vdev_get_nparity(queue
->q_vd
)));
3420 /* reset per-queue scan statistics for this txg */
3421 queue
->q_total_seg_size_this_txg
= 0;
3422 queue
->q_segs_this_txg
= 0;
3423 queue
->q_total_zio_size_this_txg
= 0;
3424 queue
->q_zios_this_txg
= 0;
3426 /* loop until we run out of time or sios */
3427 while ((rs
= scan_io_queue_fetch_ext(queue
)) != NULL
) {
3428 uint64_t seg_start
= 0, seg_end
= 0;
3429 boolean_t more_left
;
3431 ASSERT(list_is_empty(&sio_list
));
3433 /* loop while we still have sios left to process in this rs */
3435 scan_io_t
*first_sio
, *last_sio
;
3438 * We have selected which extent needs to be
3439 * processed next. Gather up the corresponding sios.
3441 more_left
= scan_io_queue_gather(queue
, rs
, &sio_list
);
3442 ASSERT(!list_is_empty(&sio_list
));
3443 first_sio
= list_head(&sio_list
);
3444 last_sio
= list_tail(&sio_list
);
3446 seg_end
= SIO_GET_END_OFFSET(last_sio
);
3448 seg_start
= SIO_GET_OFFSET(first_sio
);
3451 * Issuing sios can take a long time so drop the
3452 * queue lock. The sio queue won't be updated by
3453 * other threads since we're in syncing context so
3454 * we can be sure that our trees will remain exactly
3458 suspended
= scan_io_queue_issue(queue
, &sio_list
);
3459 mutex_enter(q_lock
);
3463 } while (more_left
);
3465 /* update statistics for debugging purposes */
3466 scan_io_queues_update_seg_stats(queue
, seg_start
, seg_end
);
3473 * If we were suspended in the middle of processing,
3474 * requeue any unfinished sios and exit.
3476 while ((sio
= list_remove_head(&sio_list
)) != NULL
)
3477 scan_io_queue_insert_impl(queue
, sio
);
3479 queue
->q_zio
= NULL
;
3482 list_destroy(&sio_list
);
3486 * Performs an emptying run on all scan queues in the pool. This just
3487 * punches out one thread per top-level vdev, each of which processes
3488 * only that vdev's scan queue. We can parallelize the I/O here because
3489 * we know that each queue's I/Os only affect its own top-level vdev.
3491 * This function waits for the queue runs to complete, and must be
3492 * called from dsl_scan_sync (or in general, syncing context).
3495 scan_io_queues_run(dsl_scan_t
*scn
)
3497 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3499 ASSERT(scn
->scn_is_sorted
);
3500 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_READER
));
3502 if (scn
->scn_queues_pending
== 0)
3505 if (scn
->scn_taskq
== NULL
) {
3506 int nthreads
= spa
->spa_root_vdev
->vdev_children
;
3509 * We need to make this taskq *always* execute as many
3510 * threads in parallel as we have top-level vdevs and no
3511 * less, otherwise strange serialization of the calls to
3512 * scan_io_queues_run_one can occur during spa_sync runs
3513 * and that significantly impacts performance.
3515 scn
->scn_taskq
= taskq_create("dsl_scan_iss", nthreads
,
3516 minclsyspri
, nthreads
, nthreads
, TASKQ_PREPOPULATE
);
3519 for (uint64_t i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3520 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3522 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
3523 if (vd
->vdev_scan_io_queue
!= NULL
) {
3524 VERIFY(taskq_dispatch(scn
->scn_taskq
,
3525 scan_io_queues_run_one
, vd
->vdev_scan_io_queue
,
3526 TQ_SLEEP
) != TASKQID_INVALID
);
3528 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
3532 * Wait for the queues to finish issuing their IOs for this run
3533 * before we return. There may still be IOs in flight at this
3536 taskq_wait(scn
->scn_taskq
);
3540 dsl_scan_async_block_should_pause(dsl_scan_t
*scn
)
3542 uint64_t elapsed_nanosecs
;
3547 if (zfs_async_block_max_blocks
!= 0 &&
3548 scn
->scn_visited_this_txg
>= zfs_async_block_max_blocks
) {
3552 if (zfs_max_async_dedup_frees
!= 0 &&
3553 scn
->scn_dedup_frees_this_txg
>= zfs_max_async_dedup_frees
) {
3557 elapsed_nanosecs
= gethrtime() - scn
->scn_sync_start_time
;
3558 return (elapsed_nanosecs
/ NANOSEC
> zfs_txg_timeout
||
3559 (NSEC2MSEC(elapsed_nanosecs
) > scn
->scn_async_block_min_time_ms
&&
3560 txg_sync_waiting(scn
->scn_dp
)) ||
3561 spa_shutting_down(scn
->scn_dp
->dp_spa
));
3565 dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
3567 dsl_scan_t
*scn
= arg
;
3569 if (!scn
->scn_is_bptree
||
3570 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)) {
3571 if (dsl_scan_async_block_should_pause(scn
))
3572 return (SET_ERROR(ERESTART
));
3575 zio_nowait(zio_free_sync(scn
->scn_zio_root
, scn
->scn_dp
->dp_spa
,
3576 dmu_tx_get_txg(tx
), bp
, 0));
3577 dsl_dir_diduse_space(tx
->tx_pool
->dp_free_dir
, DD_USED_HEAD
,
3578 -bp_get_dsize_sync(scn
->scn_dp
->dp_spa
, bp
),
3579 -BP_GET_PSIZE(bp
), -BP_GET_UCSIZE(bp
), tx
);
3580 scn
->scn_visited_this_txg
++;
3581 if (BP_GET_DEDUP(bp
))
3582 scn
->scn_dedup_frees_this_txg
++;
3587 dsl_scan_update_stats(dsl_scan_t
*scn
)
3589 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3591 uint64_t seg_size_total
= 0, zio_size_total
= 0;
3592 uint64_t seg_count_total
= 0, zio_count_total
= 0;
3594 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3595 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3596 dsl_scan_io_queue_t
*queue
= vd
->vdev_scan_io_queue
;
3601 seg_size_total
+= queue
->q_total_seg_size_this_txg
;
3602 zio_size_total
+= queue
->q_total_zio_size_this_txg
;
3603 seg_count_total
+= queue
->q_segs_this_txg
;
3604 zio_count_total
+= queue
->q_zios_this_txg
;
3607 if (seg_count_total
== 0 || zio_count_total
== 0) {
3608 scn
->scn_avg_seg_size_this_txg
= 0;
3609 scn
->scn_avg_zio_size_this_txg
= 0;
3610 scn
->scn_segs_this_txg
= 0;
3611 scn
->scn_zios_this_txg
= 0;
3615 scn
->scn_avg_seg_size_this_txg
= seg_size_total
/ seg_count_total
;
3616 scn
->scn_avg_zio_size_this_txg
= zio_size_total
/ zio_count_total
;
3617 scn
->scn_segs_this_txg
= seg_count_total
;
3618 scn
->scn_zios_this_txg
= zio_count_total
;
3622 bpobj_dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3626 return (dsl_scan_free_block_cb(arg
, bp
, tx
));
3630 dsl_scan_obsolete_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3634 dsl_scan_t
*scn
= arg
;
3635 const dva_t
*dva
= &bp
->blk_dva
[0];
3637 if (dsl_scan_async_block_should_pause(scn
))
3638 return (SET_ERROR(ERESTART
));
3640 spa_vdev_indirect_mark_obsolete(scn
->scn_dp
->dp_spa
,
3641 DVA_GET_VDEV(dva
), DVA_GET_OFFSET(dva
),
3642 DVA_GET_ASIZE(dva
), tx
);
3643 scn
->scn_visited_this_txg
++;
3648 dsl_scan_active(dsl_scan_t
*scn
)
3650 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3651 uint64_t used
= 0, comp
, uncomp
;
3652 boolean_t clones_left
;
3654 if (spa
->spa_load_state
!= SPA_LOAD_NONE
)
3656 if (spa_shutting_down(spa
))
3658 if ((dsl_scan_is_running(scn
) && !dsl_scan_is_paused_scrub(scn
)) ||
3659 (scn
->scn_async_destroying
&& !scn
->scn_async_stalled
))
3662 if (spa_version(scn
->scn_dp
->dp_spa
) >= SPA_VERSION_DEADLISTS
) {
3663 (void) bpobj_space(&scn
->scn_dp
->dp_free_bpobj
,
3664 &used
, &comp
, &uncomp
);
3666 clones_left
= spa_livelist_delete_check(spa
);
3667 return ((used
!= 0) || (clones_left
));
3671 dsl_errorscrub_active(dsl_scan_t
*scn
)
3673 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3674 if (spa
->spa_load_state
!= SPA_LOAD_NONE
)
3676 if (spa_shutting_down(spa
))
3678 if (dsl_errorscrubbing(scn
->scn_dp
))
3684 dsl_scan_check_deferred(vdev_t
*vd
)
3686 boolean_t need_resilver
= B_FALSE
;
3688 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3690 dsl_scan_check_deferred(vd
->vdev_child
[c
]);
3693 if (!vdev_is_concrete(vd
) || vd
->vdev_aux
||
3694 !vd
->vdev_ops
->vdev_op_leaf
)
3695 return (need_resilver
);
3697 if (!vd
->vdev_resilver_deferred
)
3698 need_resilver
= B_TRUE
;
3700 return (need_resilver
);
3704 dsl_scan_need_resilver(spa_t
*spa
, const dva_t
*dva
, size_t psize
,
3705 uint64_t phys_birth
)
3709 vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
3711 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
3713 * The indirect vdev can point to multiple
3714 * vdevs. For simplicity, always create
3715 * the resilver zio_t. zio_vdev_io_start()
3716 * will bypass the child resilver i/o's if
3717 * they are on vdevs that don't have DTL's.
3722 if (DVA_GET_GANG(dva
)) {
3724 * Gang members may be spread across multiple
3725 * vdevs, so the best estimate we have is the
3726 * scrub range, which has already been checked.
3727 * XXX -- it would be better to change our
3728 * allocation policy to ensure that all
3729 * gang members reside on the same vdev.
3735 * Check if the top-level vdev must resilver this offset.
3736 * When the offset does not intersect with a dirty leaf DTL
3737 * then it may be possible to skip the resilver IO. The psize
3738 * is provided instead of asize to simplify the check for RAIDZ.
3740 if (!vdev_dtl_need_resilver(vd
, dva
, psize
, phys_birth
))
3744 * Check that this top-level vdev has a device under it which
3745 * is resilvering and is not deferred.
3747 if (!dsl_scan_check_deferred(vd
))
3754 dsl_process_async_destroys(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
3756 dsl_scan_t
*scn
= dp
->dp_scan
;
3757 spa_t
*spa
= dp
->dp_spa
;
3760 if (spa_suspend_async_destroy(spa
))
3763 if (zfs_free_bpobj_enabled
&&
3764 spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
3765 scn
->scn_is_bptree
= B_FALSE
;
3766 scn
->scn_async_block_min_time_ms
= zfs_free_min_time_ms
;
3767 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3768 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3769 err
= bpobj_iterate(&dp
->dp_free_bpobj
,
3770 bpobj_dsl_scan_free_block_cb
, scn
, tx
);
3771 VERIFY0(zio_wait(scn
->scn_zio_root
));
3772 scn
->scn_zio_root
= NULL
;
3774 if (err
!= 0 && err
!= ERESTART
)
3775 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3778 if (err
== 0 && spa_feature_is_active(spa
, SPA_FEATURE_ASYNC_DESTROY
)) {
3779 ASSERT(scn
->scn_async_destroying
);
3780 scn
->scn_is_bptree
= B_TRUE
;
3781 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3782 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3783 err
= bptree_iterate(dp
->dp_meta_objset
,
3784 dp
->dp_bptree_obj
, B_TRUE
, dsl_scan_free_block_cb
, scn
, tx
);
3785 VERIFY0(zio_wait(scn
->scn_zio_root
));
3786 scn
->scn_zio_root
= NULL
;
3788 if (err
== EIO
|| err
== ECKSUM
) {
3790 } else if (err
!= 0 && err
!= ERESTART
) {
3791 zfs_panic_recover("error %u from "
3792 "traverse_dataset_destroyed()", err
);
3795 if (bptree_is_empty(dp
->dp_meta_objset
, dp
->dp_bptree_obj
)) {
3796 /* finished; deactivate async destroy feature */
3797 spa_feature_decr(spa
, SPA_FEATURE_ASYNC_DESTROY
, tx
);
3798 ASSERT(!spa_feature_is_active(spa
,
3799 SPA_FEATURE_ASYNC_DESTROY
));
3800 VERIFY0(zap_remove(dp
->dp_meta_objset
,
3801 DMU_POOL_DIRECTORY_OBJECT
,
3802 DMU_POOL_BPTREE_OBJ
, tx
));
3803 VERIFY0(bptree_free(dp
->dp_meta_objset
,
3804 dp
->dp_bptree_obj
, tx
));
3805 dp
->dp_bptree_obj
= 0;
3806 scn
->scn_async_destroying
= B_FALSE
;
3807 scn
->scn_async_stalled
= B_FALSE
;
3810 * If we didn't make progress, mark the async
3811 * destroy as stalled, so that we will not initiate
3812 * a spa_sync() on its behalf. Note that we only
3813 * check this if we are not finished, because if the
3814 * bptree had no blocks for us to visit, we can
3815 * finish without "making progress".
3817 scn
->scn_async_stalled
=
3818 (scn
->scn_visited_this_txg
== 0);
3821 if (scn
->scn_visited_this_txg
) {
3822 zfs_dbgmsg("freed %llu blocks in %llums from "
3823 "free_bpobj/bptree on %s in txg %llu; err=%u",
3824 (longlong_t
)scn
->scn_visited_this_txg
,
3826 NSEC2MSEC(gethrtime() - scn
->scn_sync_start_time
),
3827 spa
->spa_name
, (longlong_t
)tx
->tx_txg
, err
);
3828 scn
->scn_visited_this_txg
= 0;
3829 scn
->scn_dedup_frees_this_txg
= 0;
3832 * Write out changes to the DDT and the BRT that may be required
3833 * as a result of the blocks freed. This ensures that the DDT
3834 * and the BRT are clean when a scrub/resilver runs.
3836 ddt_sync(spa
, tx
->tx_txg
);
3837 brt_sync(spa
, tx
->tx_txg
);
3841 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3842 zfs_free_leak_on_eio
&&
3843 (dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
!= 0 ||
3844 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
!= 0 ||
3845 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
!= 0)) {
3847 * We have finished background destroying, but there is still
3848 * some space left in the dp_free_dir. Transfer this leaked
3849 * space to the dp_leak_dir.
3851 if (dp
->dp_leak_dir
== NULL
) {
3852 rrw_enter(&dp
->dp_config_rwlock
, RW_WRITER
, FTAG
);
3853 (void) dsl_dir_create_sync(dp
, dp
->dp_root_dir
,
3855 VERIFY0(dsl_pool_open_special_dir(dp
,
3856 LEAK_DIR_NAME
, &dp
->dp_leak_dir
));
3857 rrw_exit(&dp
->dp_config_rwlock
, FTAG
);
3859 dsl_dir_diduse_space(dp
->dp_leak_dir
, DD_USED_HEAD
,
3860 dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3861 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3862 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3863 dsl_dir_diduse_space(dp
->dp_free_dir
, DD_USED_HEAD
,
3864 -dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3865 -dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3866 -dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3869 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3870 !spa_livelist_delete_check(spa
)) {
3871 /* finished; verify that space accounting went to zero */
3872 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
);
3873 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
);
3874 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
);
3877 spa_notify_waiters(spa
);
3879 EQUIV(bpobj_is_open(&dp
->dp_obsolete_bpobj
),
3880 0 == zap_contains(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
3881 DMU_POOL_OBSOLETE_BPOBJ
));
3882 if (err
== 0 && bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
3883 ASSERT(spa_feature_is_active(dp
->dp_spa
,
3884 SPA_FEATURE_OBSOLETE_COUNTS
));
3886 scn
->scn_is_bptree
= B_FALSE
;
3887 scn
->scn_async_block_min_time_ms
= zfs_obsolete_min_time_ms
;
3888 err
= bpobj_iterate(&dp
->dp_obsolete_bpobj
,
3889 dsl_scan_obsolete_block_cb
, scn
, tx
);
3890 if (err
!= 0 && err
!= ERESTART
)
3891 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3893 if (bpobj_is_empty(&dp
->dp_obsolete_bpobj
))
3894 dsl_pool_destroy_obsolete_bpobj(dp
, tx
);
3900 name_to_bookmark(char *buf
, zbookmark_phys_t
*zb
)
3902 zb
->zb_objset
= zfs_strtonum(buf
, &buf
);
3903 ASSERT(*buf
== ':');
3904 zb
->zb_object
= zfs_strtonum(buf
+ 1, &buf
);
3905 ASSERT(*buf
== ':');
3906 zb
->zb_level
= (int)zfs_strtonum(buf
+ 1, &buf
);
3907 ASSERT(*buf
== ':');
3908 zb
->zb_blkid
= zfs_strtonum(buf
+ 1, &buf
);
3909 ASSERT(*buf
== '\0');
3913 name_to_object(char *buf
, uint64_t *obj
)
3915 *obj
= zfs_strtonum(buf
, &buf
);
3916 ASSERT(*buf
== '\0');
3920 read_by_block_level(dsl_scan_t
*scn
, zbookmark_phys_t zb
)
3922 dsl_pool_t
*dp
= scn
->scn_dp
;
3925 if (dsl_dataset_hold_obj(dp
, zb
.zb_objset
, FTAG
, &ds
) != 0)
3928 if (dmu_objset_from_ds(ds
, &os
) != 0) {
3929 dsl_dataset_rele(ds
, FTAG
);
3934 * If the key is not loaded dbuf_dnode_findbp() will error out with
3935 * EACCES. However in that case dnode_hold() will eventually call
3936 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3937 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3938 * Avoid this by checking here if the keys are loaded, if not return.
3939 * If the keys are not loaded the head_errlog feature is meaningless
3940 * as we cannot figure out the birth txg of the block pointer.
3942 if (dsl_dataset_get_keystatus(ds
->ds_dir
) ==
3943 ZFS_KEYSTATUS_UNAVAILABLE
) {
3944 dsl_dataset_rele(ds
, FTAG
);
3951 if (dnode_hold(os
, zb
.zb_object
, FTAG
, &dn
) != 0) {
3952 dsl_dataset_rele(ds
, FTAG
);
3956 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
3957 int error
= dbuf_dnode_findbp(dn
, zb
.zb_level
, zb
.zb_blkid
, &bp
, NULL
,
3961 rw_exit(&dn
->dn_struct_rwlock
);
3962 dnode_rele(dn
, FTAG
);
3963 dsl_dataset_rele(ds
, FTAG
);
3967 if (!error
&& BP_IS_HOLE(&bp
)) {
3968 rw_exit(&dn
->dn_struct_rwlock
);
3969 dnode_rele(dn
, FTAG
);
3970 dsl_dataset_rele(ds
, FTAG
);
3974 int zio_flags
= ZIO_FLAG_SCAN_THREAD
| ZIO_FLAG_RAW
|
3975 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCRUB
;
3977 /* If it's an intent log block, failure is expected. */
3978 if (zb
.zb_level
== ZB_ZIL_LEVEL
)
3979 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
3981 ASSERT(!BP_IS_EMBEDDED(&bp
));
3982 scan_exec_io(dp
, &bp
, zio_flags
, &zb
, NULL
);
3983 rw_exit(&dn
->dn_struct_rwlock
);
3984 dnode_rele(dn
, FTAG
);
3985 dsl_dataset_rele(ds
, FTAG
);
3989 * We keep track of the scrubbed error blocks in "count". This will be used
3990 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3991 * function is modelled after check_filesystem().
3994 scrub_filesystem(spa_t
*spa
, uint64_t fs
, zbookmark_err_phys_t
*zep
,
3998 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
3999 dsl_scan_t
*scn
= dp
->dp_scan
;
4001 int error
= dsl_dataset_hold_obj(dp
, fs
, FTAG
, &ds
);
4005 uint64_t latest_txg
;
4006 uint64_t txg_to_consider
= spa
->spa_syncing_txg
;
4007 boolean_t check_snapshot
= B_TRUE
;
4009 error
= find_birth_txg(ds
, zep
, &latest_txg
);
4012 * If find_birth_txg() errors out, then err on the side of caution and
4013 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4014 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4015 * scrub all objects.
4017 if (error
== 0 && zep
->zb_birth
== latest_txg
) {
4018 /* Block neither free nor re written. */
4019 zbookmark_phys_t zb
;
4020 zep_to_zb(fs
, zep
, &zb
);
4021 scn
->scn_zio_root
= zio_root(spa
, NULL
, NULL
,
4023 /* We have already acquired the config lock for spa */
4024 read_by_block_level(scn
, zb
);
4026 (void) zio_wait(scn
->scn_zio_root
);
4027 scn
->scn_zio_root
= NULL
;
4029 scn
->errorscrub_phys
.dep_examined
++;
4030 scn
->errorscrub_phys
.dep_to_examine
--;
4032 if ((*count
) == zfs_scrub_error_blocks_per_txg
||
4033 dsl_error_scrub_check_suspend(scn
, &zb
)) {
4034 dsl_dataset_rele(ds
, FTAG
);
4035 return (SET_ERROR(EFAULT
));
4038 check_snapshot
= B_FALSE
;
4039 } else if (error
== 0) {
4040 txg_to_consider
= latest_txg
;
4044 * Retrieve the number of snapshots if the dataset is not a snapshot.
4046 uint64_t snap_count
= 0;
4047 if (dsl_dataset_phys(ds
)->ds_snapnames_zapobj
!= 0) {
4049 error
= zap_count(spa
->spa_meta_objset
,
4050 dsl_dataset_phys(ds
)->ds_snapnames_zapobj
, &snap_count
);
4053 dsl_dataset_rele(ds
, FTAG
);
4058 if (snap_count
== 0) {
4059 /* Filesystem without snapshots. */
4060 dsl_dataset_rele(ds
, FTAG
);
4064 uint64_t snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4065 uint64_t snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4067 dsl_dataset_rele(ds
, FTAG
);
4069 /* Check only snapshots created from this file system. */
4070 while (snap_obj
!= 0 && zep
->zb_birth
< snap_obj_txg
&&
4071 snap_obj_txg
<= txg_to_consider
) {
4073 error
= dsl_dataset_hold_obj(dp
, snap_obj
, FTAG
, &ds
);
4077 if (dsl_dir_phys(ds
->ds_dir
)->dd_head_dataset_obj
!= fs
) {
4078 snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4079 snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4080 dsl_dataset_rele(ds
, FTAG
);
4084 boolean_t affected
= B_TRUE
;
4085 if (check_snapshot
) {
4087 error
= find_birth_txg(ds
, zep
, &blk_txg
);
4090 * Scrub the snapshot also when zb_birth == 0 or when
4091 * find_birth_txg() returns an error.
4093 affected
= (error
== 0 && zep
->zb_birth
== blk_txg
) ||
4094 (error
!= 0) || (zep
->zb_birth
== 0);
4097 /* Scrub snapshots. */
4099 zbookmark_phys_t zb
;
4100 zep_to_zb(snap_obj
, zep
, &zb
);
4101 scn
->scn_zio_root
= zio_root(spa
, NULL
, NULL
,
4103 /* We have already acquired the config lock for spa */
4104 read_by_block_level(scn
, zb
);
4106 (void) zio_wait(scn
->scn_zio_root
);
4107 scn
->scn_zio_root
= NULL
;
4109 scn
->errorscrub_phys
.dep_examined
++;
4110 scn
->errorscrub_phys
.dep_to_examine
--;
4112 if ((*count
) == zfs_scrub_error_blocks_per_txg
||
4113 dsl_error_scrub_check_suspend(scn
, &zb
)) {
4114 dsl_dataset_rele(ds
, FTAG
);
4118 snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4119 snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4120 dsl_dataset_rele(ds
, FTAG
);
4126 dsl_errorscrub_sync(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
4128 spa_t
*spa
= dp
->dp_spa
;
4129 dsl_scan_t
*scn
= dp
->dp_scan
;
4132 * Only process scans in sync pass 1.
4135 if (spa_sync_pass(spa
) > 1)
4139 * If the spa is shutting down, then stop scanning. This will
4140 * ensure that the scan does not dirty any new data during the
4143 if (spa_shutting_down(spa
))
4146 if (!dsl_errorscrub_active(scn
) || dsl_errorscrub_is_paused(scn
)) {
4150 if (dsl_scan_resilvering(scn
->scn_dp
)) {
4151 /* cancel the error scrub if resilver started */
4152 dsl_scan_cancel(scn
->scn_dp
);
4156 spa
->spa_scrub_active
= B_TRUE
;
4157 scn
->scn_sync_start_time
= gethrtime();
4160 * zfs_scan_suspend_progress can be set to disable scrub progress.
4161 * See more detailed comment in dsl_scan_sync().
4163 if (zfs_scan_suspend_progress
) {
4164 uint64_t scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4165 int mintime
= zfs_scrub_min_time_ms
;
4167 while (zfs_scan_suspend_progress
&&
4168 !txg_sync_waiting(scn
->scn_dp
) &&
4169 !spa_shutting_down(scn
->scn_dp
->dp_spa
) &&
4170 NSEC2MSEC(scan_time_ns
) < mintime
) {
4172 scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4178 zap_attribute_t
*za
;
4179 zbookmark_phys_t
*zb
;
4180 boolean_t limit_exceeded
= B_FALSE
;
4182 za
= zap_attribute_alloc();
4183 zb
= kmem_zalloc(sizeof (zbookmark_phys_t
), KM_SLEEP
);
4185 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_HEAD_ERRLOG
)) {
4186 for (; zap_cursor_retrieve(&scn
->errorscrub_cursor
, za
) == 0;
4187 zap_cursor_advance(&scn
->errorscrub_cursor
)) {
4188 name_to_bookmark(za
->za_name
, zb
);
4190 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4191 NULL
, ZIO_FLAG_CANFAIL
);
4192 dsl_pool_config_enter(dp
, FTAG
);
4193 read_by_block_level(scn
, *zb
);
4194 dsl_pool_config_exit(dp
, FTAG
);
4196 (void) zio_wait(scn
->scn_zio_root
);
4197 scn
->scn_zio_root
= NULL
;
4199 scn
->errorscrub_phys
.dep_examined
+= 1;
4200 scn
->errorscrub_phys
.dep_to_examine
-= 1;
4202 if (i
== zfs_scrub_error_blocks_per_txg
||
4203 dsl_error_scrub_check_suspend(scn
, zb
)) {
4204 limit_exceeded
= B_TRUE
;
4209 if (!limit_exceeded
)
4210 dsl_errorscrub_done(scn
, B_TRUE
, tx
);
4212 dsl_errorscrub_sync_state(scn
, tx
);
4213 zap_attribute_free(za
);
4214 kmem_free(zb
, sizeof (*zb
));
4219 for (; zap_cursor_retrieve(&scn
->errorscrub_cursor
, za
) == 0;
4220 zap_cursor_advance(&scn
->errorscrub_cursor
)) {
4222 zap_cursor_t
*head_ds_cursor
;
4223 zap_attribute_t
*head_ds_attr
;
4224 zbookmark_err_phys_t head_ds_block
;
4226 head_ds_cursor
= kmem_zalloc(sizeof (zap_cursor_t
), KM_SLEEP
);
4227 head_ds_attr
= zap_attribute_alloc();
4229 uint64_t head_ds_err_obj
= za
->za_first_integer
;
4231 name_to_object(za
->za_name
, &head_ds
);
4232 boolean_t config_held
= B_FALSE
;
4233 uint64_t top_affected_fs
;
4235 for (zap_cursor_init(head_ds_cursor
, spa
->spa_meta_objset
,
4236 head_ds_err_obj
); zap_cursor_retrieve(head_ds_cursor
,
4237 head_ds_attr
) == 0; zap_cursor_advance(head_ds_cursor
)) {
4239 name_to_errphys(head_ds_attr
->za_name
, &head_ds_block
);
4242 * In case we are called from spa_sync the pool
4243 * config is already held.
4245 if (!dsl_pool_config_held(dp
)) {
4246 dsl_pool_config_enter(dp
, FTAG
);
4247 config_held
= B_TRUE
;
4250 error
= find_top_affected_fs(spa
,
4251 head_ds
, &head_ds_block
, &top_affected_fs
);
4255 error
= scrub_filesystem(spa
, top_affected_fs
,
4256 &head_ds_block
, &i
);
4258 if (error
== SET_ERROR(EFAULT
)) {
4259 limit_exceeded
= B_TRUE
;
4264 zap_cursor_fini(head_ds_cursor
);
4265 kmem_free(head_ds_cursor
, sizeof (*head_ds_cursor
));
4266 zap_attribute_free(head_ds_attr
);
4269 dsl_pool_config_exit(dp
, FTAG
);
4272 zap_attribute_free(za
);
4273 kmem_free(zb
, sizeof (*zb
));
4274 if (!limit_exceeded
)
4275 dsl_errorscrub_done(scn
, B_TRUE
, tx
);
4277 dsl_errorscrub_sync_state(scn
, tx
);
4281 * This is the primary entry point for scans that is called from syncing
4282 * context. Scans must happen entirely during syncing context so that we
4283 * can guarantee that blocks we are currently scanning will not change out
4284 * from under us. While a scan is active, this function controls how quickly
4285 * transaction groups proceed, instead of the normal handling provided by
4286 * txg_sync_thread().
4289 dsl_scan_sync(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
4292 dsl_scan_t
*scn
= dp
->dp_scan
;
4293 spa_t
*spa
= dp
->dp_spa
;
4294 state_sync_type_t sync_type
= SYNC_OPTIONAL
;
4295 int restart_early
= 0;
4297 if (spa
->spa_resilver_deferred
) {
4298 uint64_t to_issue
, issued
;
4300 if (!spa_feature_is_active(dp
->dp_spa
,
4301 SPA_FEATURE_RESILVER_DEFER
))
4302 spa_feature_incr(spa
, SPA_FEATURE_RESILVER_DEFER
, tx
);
4305 * See print_scan_scrub_resilver_status() issued/total_i
4306 * @ cmd/zpool/zpool_main.c
4309 scn
->scn_phys
.scn_to_examine
- scn
->scn_phys
.scn_skipped
;
4311 scn
->scn_issued_before_pass
+ spa
->spa_scan_pass_issued
;
4313 zfs_resilver_disable_defer
||
4314 (issued
< (to_issue
* zfs_resilver_defer_percent
/ 100));
4318 * Only process scans in sync pass 1.
4320 if (spa_sync_pass(spa
) > 1)
4325 * Check for scn_restart_txg before checking spa_load_state, so
4326 * that we can restart an old-style scan while the pool is being
4327 * imported (see dsl_scan_init). We also restart scans if there
4328 * is a deferred resilver and the user has manually disabled
4329 * deferred resilvers via zfs_resilver_disable_defer, or if the
4330 * current scan progress is below zfs_resilver_defer_percent.
4332 if (dsl_scan_restarting(scn
, tx
) || restart_early
) {
4333 pool_scan_func_t func
= POOL_SCAN_SCRUB
;
4334 dsl_scan_done(scn
, B_FALSE
, tx
);
4335 if (vdev_resilver_needed(spa
->spa_root_vdev
, NULL
, NULL
))
4336 func
= POOL_SCAN_RESILVER
;
4337 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4338 func
, dp
->dp_spa
->spa_name
, (longlong_t
)tx
->tx_txg
,
4340 dsl_scan_setup_sync(&func
, tx
);
4344 * If the spa is shutting down, then stop scanning. This will
4345 * ensure that the scan does not dirty any new data during the
4348 if (spa_shutting_down(spa
))
4352 * If the scan is inactive due to a stalled async destroy, try again.
4354 if (!scn
->scn_async_stalled
&& !dsl_scan_active(scn
))
4357 /* reset scan statistics */
4358 scn
->scn_visited_this_txg
= 0;
4359 scn
->scn_dedup_frees_this_txg
= 0;
4360 scn
->scn_holes_this_txg
= 0;
4361 scn
->scn_lt_min_this_txg
= 0;
4362 scn
->scn_gt_max_this_txg
= 0;
4363 scn
->scn_ddt_contained_this_txg
= 0;
4364 scn
->scn_objsets_visited_this_txg
= 0;
4365 scn
->scn_avg_seg_size_this_txg
= 0;
4366 scn
->scn_segs_this_txg
= 0;
4367 scn
->scn_avg_zio_size_this_txg
= 0;
4368 scn
->scn_zios_this_txg
= 0;
4369 scn
->scn_suspending
= B_FALSE
;
4370 scn
->scn_sync_start_time
= gethrtime();
4371 spa
->spa_scrub_active
= B_TRUE
;
4374 * First process the async destroys. If we suspend, don't do
4375 * any scrubbing or resilvering. This ensures that there are no
4376 * async destroys while we are scanning, so the scan code doesn't
4377 * have to worry about traversing it. It is also faster to free the
4378 * blocks than to scrub them.
4380 err
= dsl_process_async_destroys(dp
, tx
);
4384 if (!dsl_scan_is_running(scn
) || dsl_scan_is_paused_scrub(scn
))
4388 * Wait a few txgs after importing to begin scanning so that
4389 * we can get the pool imported quickly.
4391 if (spa
->spa_syncing_txg
< spa
->spa_first_txg
+ SCAN_IMPORT_WAIT_TXGS
)
4395 * zfs_scan_suspend_progress can be set to disable scan progress.
4396 * We don't want to spin the txg_sync thread, so we add a delay
4397 * here to simulate the time spent doing a scan. This is mostly
4398 * useful for testing and debugging.
4400 if (zfs_scan_suspend_progress
) {
4401 uint64_t scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4402 uint_t mintime
= (scn
->scn_phys
.scn_func
==
4403 POOL_SCAN_RESILVER
) ? zfs_resilver_min_time_ms
:
4404 zfs_scrub_min_time_ms
;
4406 while (zfs_scan_suspend_progress
&&
4407 !txg_sync_waiting(scn
->scn_dp
) &&
4408 !spa_shutting_down(scn
->scn_dp
->dp_spa
) &&
4409 NSEC2MSEC(scan_time_ns
) < mintime
) {
4411 scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4417 * Disabled by default, set zfs_scan_report_txgs to report
4418 * average performance over the last zfs_scan_report_txgs TXGs.
4420 if (zfs_scan_report_txgs
!= 0 &&
4421 tx
->tx_txg
% zfs_scan_report_txgs
== 0) {
4422 scn
->scn_issued_before_pass
+= spa
->spa_scan_pass_issued
;
4423 spa_scan_stat_init(spa
);
4427 * It is possible to switch from unsorted to sorted at any time,
4428 * but afterwards the scan will remain sorted unless reloaded from
4429 * a checkpoint after a reboot.
4431 if (!zfs_scan_legacy
) {
4432 scn
->scn_is_sorted
= B_TRUE
;
4433 if (scn
->scn_last_checkpoint
== 0)
4434 scn
->scn_last_checkpoint
= ddi_get_lbolt();
4438 * For sorted scans, determine what kind of work we will be doing
4439 * this txg based on our memory limitations and whether or not we
4440 * need to perform a checkpoint.
4442 if (scn
->scn_is_sorted
) {
4444 * If we are over our checkpoint interval, set scn_clearing
4445 * so that we can begin checkpointing immediately. The
4446 * checkpoint allows us to save a consistent bookmark
4447 * representing how much data we have scrubbed so far.
4448 * Otherwise, use the memory limit to determine if we should
4449 * scan for metadata or start issue scrub IOs. We accumulate
4450 * metadata until we hit our hard memory limit at which point
4451 * we issue scrub IOs until we are at our soft memory limit.
4453 if (scn
->scn_checkpointing
||
4454 ddi_get_lbolt() - scn
->scn_last_checkpoint
>
4455 SEC_TO_TICK(zfs_scan_checkpoint_intval
)) {
4456 if (!scn
->scn_checkpointing
)
4457 zfs_dbgmsg("begin scan checkpoint for %s",
4460 scn
->scn_checkpointing
= B_TRUE
;
4461 scn
->scn_clearing
= B_TRUE
;
4463 boolean_t should_clear
= dsl_scan_should_clear(scn
);
4464 if (should_clear
&& !scn
->scn_clearing
) {
4465 zfs_dbgmsg("begin scan clearing for %s",
4467 scn
->scn_clearing
= B_TRUE
;
4468 } else if (!should_clear
&& scn
->scn_clearing
) {
4469 zfs_dbgmsg("finish scan clearing for %s",
4471 scn
->scn_clearing
= B_FALSE
;
4475 ASSERT0(scn
->scn_checkpointing
);
4476 ASSERT0(scn
->scn_clearing
);
4479 if (!scn
->scn_clearing
&& scn
->scn_done_txg
== 0) {
4480 /* Need to scan metadata for more blocks to scrub */
4481 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
4482 taskqid_t prefetch_tqid
;
4485 * Calculate the max number of in-flight bytes for pool-wide
4486 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4487 * Limits for the issuing phase are done per top-level vdev and
4488 * are handled separately.
4490 scn
->scn_maxinflight_bytes
= MIN(arc_c_max
/ 4, MAX(1ULL << 20,
4491 zfs_scan_vdev_limit
* dsl_scan_count_data_disks(spa
)));
4493 if (scnp
->scn_ddt_bookmark
.ddb_class
<=
4494 scnp
->scn_ddt_class_max
) {
4495 ASSERT(ZB_IS_ZERO(&scnp
->scn_bookmark
));
4496 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4497 "ddt bm=%llu/%llu/%llu/%llx",
4499 (longlong_t
)tx
->tx_txg
,
4500 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
4501 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
4502 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
4503 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
4505 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4506 "bm=%llu/%llu/%llu/%llu",
4508 (longlong_t
)tx
->tx_txg
,
4509 (longlong_t
)scnp
->scn_bookmark
.zb_objset
,
4510 (longlong_t
)scnp
->scn_bookmark
.zb_object
,
4511 (longlong_t
)scnp
->scn_bookmark
.zb_level
,
4512 (longlong_t
)scnp
->scn_bookmark
.zb_blkid
);
4515 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4516 NULL
, ZIO_FLAG_CANFAIL
);
4518 scn
->scn_prefetch_stop
= B_FALSE
;
4519 prefetch_tqid
= taskq_dispatch(dp
->dp_sync_taskq
,
4520 dsl_scan_prefetch_thread
, scn
, TQ_SLEEP
);
4521 ASSERT(prefetch_tqid
!= TASKQID_INVALID
);
4523 dsl_pool_config_enter(dp
, FTAG
);
4524 dsl_scan_visit(scn
, tx
);
4525 dsl_pool_config_exit(dp
, FTAG
);
4527 mutex_enter(&dp
->dp_spa
->spa_scrub_lock
);
4528 scn
->scn_prefetch_stop
= B_TRUE
;
4529 cv_broadcast(&spa
->spa_scrub_io_cv
);
4530 mutex_exit(&dp
->dp_spa
->spa_scrub_lock
);
4532 taskq_wait_id(dp
->dp_sync_taskq
, prefetch_tqid
);
4533 (void) zio_wait(scn
->scn_zio_root
);
4534 scn
->scn_zio_root
= NULL
;
4536 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4537 "(%llu os's, %llu holes, %llu < mintxg, "
4538 "%llu in ddt, %llu > maxtxg)",
4539 (longlong_t
)scn
->scn_visited_this_txg
,
4541 (longlong_t
)NSEC2MSEC(gethrtime() -
4542 scn
->scn_sync_start_time
),
4543 (longlong_t
)scn
->scn_objsets_visited_this_txg
,
4544 (longlong_t
)scn
->scn_holes_this_txg
,
4545 (longlong_t
)scn
->scn_lt_min_this_txg
,
4546 (longlong_t
)scn
->scn_ddt_contained_this_txg
,
4547 (longlong_t
)scn
->scn_gt_max_this_txg
);
4549 if (!scn
->scn_suspending
) {
4550 ASSERT0(avl_numnodes(&scn
->scn_queue
));
4551 scn
->scn_done_txg
= tx
->tx_txg
+ 1;
4552 if (scn
->scn_is_sorted
) {
4553 scn
->scn_checkpointing
= B_TRUE
;
4554 scn
->scn_clearing
= B_TRUE
;
4555 scn
->scn_issued_before_pass
+=
4556 spa
->spa_scan_pass_issued
;
4557 spa_scan_stat_init(spa
);
4559 zfs_dbgmsg("scan complete for %s txg %llu",
4561 (longlong_t
)tx
->tx_txg
);
4563 } else if (scn
->scn_is_sorted
&& scn
->scn_queues_pending
!= 0) {
4564 ASSERT(scn
->scn_clearing
);
4566 /* need to issue scrubbing IOs from per-vdev queues */
4567 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4568 NULL
, ZIO_FLAG_CANFAIL
);
4569 scan_io_queues_run(scn
);
4570 (void) zio_wait(scn
->scn_zio_root
);
4571 scn
->scn_zio_root
= NULL
;
4573 /* calculate and dprintf the current memory usage */
4574 (void) dsl_scan_should_clear(scn
);
4575 dsl_scan_update_stats(scn
);
4577 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4578 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4579 (longlong_t
)scn
->scn_zios_this_txg
,
4581 (longlong_t
)scn
->scn_segs_this_txg
,
4582 (longlong_t
)NSEC2MSEC(gethrtime() -
4583 scn
->scn_sync_start_time
),
4584 (longlong_t
)scn
->scn_avg_zio_size_this_txg
,
4585 (longlong_t
)scn
->scn_avg_seg_size_this_txg
);
4586 } else if (scn
->scn_done_txg
!= 0 && scn
->scn_done_txg
<= tx
->tx_txg
) {
4587 /* Finished with everything. Mark the scrub as complete */
4588 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4589 (longlong_t
)tx
->tx_txg
,
4591 ASSERT3U(scn
->scn_done_txg
, !=, 0);
4592 ASSERT0(spa
->spa_scrub_inflight
);
4593 ASSERT0(scn
->scn_queues_pending
);
4594 dsl_scan_done(scn
, B_TRUE
, tx
);
4595 sync_type
= SYNC_MANDATORY
;
4598 dsl_scan_sync_state(scn
, tx
, sync_type
);
4602 count_block_issued(spa_t
*spa
, const blkptr_t
*bp
, boolean_t all
)
4605 * Don't count embedded bp's, since we already did the work of
4606 * scanning these when we scanned the containing block.
4608 if (BP_IS_EMBEDDED(bp
))
4612 * Update the spa's stats on how many bytes we have issued.
4613 * Sequential scrubs create a zio for each DVA of the bp. Each
4614 * of these will include all DVAs for repair purposes, but the
4615 * zio code will only try the first one unless there is an issue.
4616 * Therefore, we should only count the first DVA for these IOs.
4618 atomic_add_64(&spa
->spa_scan_pass_issued
,
4619 all
? BP_GET_ASIZE(bp
) : DVA_GET_ASIZE(&bp
->blk_dva
[0]));
4623 count_block_skipped(dsl_scan_t
*scn
, const blkptr_t
*bp
, boolean_t all
)
4625 if (BP_IS_EMBEDDED(bp
))
4627 atomic_add_64(&scn
->scn_phys
.scn_skipped
,
4628 all
? BP_GET_ASIZE(bp
) : DVA_GET_ASIZE(&bp
->blk_dva
[0]));
4632 count_block(zfs_all_blkstats_t
*zab
, const blkptr_t
*bp
)
4635 * If we resume after a reboot, zab will be NULL; don't record
4636 * incomplete stats in that case.
4641 for (int i
= 0; i
< 4; i
++) {
4642 int l
= (i
< 2) ? BP_GET_LEVEL(bp
) : DN_MAX_LEVELS
;
4643 int t
= (i
& 1) ? BP_GET_TYPE(bp
) : DMU_OT_TOTAL
;
4645 if (t
& DMU_OT_NEWTYPE
)
4647 zfs_blkstat_t
*zb
= &zab
->zab_type
[l
][t
];
4651 zb
->zb_asize
+= BP_GET_ASIZE(bp
);
4652 zb
->zb_lsize
+= BP_GET_LSIZE(bp
);
4653 zb
->zb_psize
+= BP_GET_PSIZE(bp
);
4654 zb
->zb_gangs
+= BP_COUNT_GANG(bp
);
4656 switch (BP_GET_NDVAS(bp
)) {
4658 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4659 DVA_GET_VDEV(&bp
->blk_dva
[1]))
4660 zb
->zb_ditto_2_of_2_samevdev
++;
4663 equal
= (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4664 DVA_GET_VDEV(&bp
->blk_dva
[1])) +
4665 (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4666 DVA_GET_VDEV(&bp
->blk_dva
[2])) +
4667 (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
4668 DVA_GET_VDEV(&bp
->blk_dva
[2]));
4670 zb
->zb_ditto_2_of_3_samevdev
++;
4671 else if (equal
== 3)
4672 zb
->zb_ditto_3_of_3_samevdev
++;
4679 scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
, scan_io_t
*sio
)
4682 dsl_scan_t
*scn
= queue
->q_scn
;
4684 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
4686 if (unlikely(avl_is_empty(&queue
->q_sios_by_addr
)))
4687 atomic_add_64(&scn
->scn_queues_pending
, 1);
4688 if (avl_find(&queue
->q_sios_by_addr
, sio
, &idx
) != NULL
) {
4689 /* block is already scheduled for reading */
4693 avl_insert(&queue
->q_sios_by_addr
, sio
, idx
);
4694 queue
->q_sio_memused
+= SIO_GET_MUSED(sio
);
4695 range_tree_add(queue
->q_exts_by_addr
, SIO_GET_OFFSET(sio
),
4696 SIO_GET_ASIZE(sio
));
4700 * Given all the info we got from our metadata scanning process, we
4701 * construct a scan_io_t and insert it into the scan sorting queue. The
4702 * I/O must already be suitable for us to process. This is controlled
4703 * by dsl_scan_enqueue().
4706 scan_io_queue_insert(dsl_scan_io_queue_t
*queue
, const blkptr_t
*bp
, int dva_i
,
4707 int zio_flags
, const zbookmark_phys_t
*zb
)
4709 scan_io_t
*sio
= sio_alloc(BP_GET_NDVAS(bp
));
4711 ASSERT0(BP_IS_GANG(bp
));
4712 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
4714 bp2sio(bp
, sio
, dva_i
);
4715 sio
->sio_flags
= zio_flags
;
4718 queue
->q_last_ext_addr
= -1;
4719 scan_io_queue_insert_impl(queue
, sio
);
4723 * Given a set of I/O parameters as discovered by the metadata traversal
4724 * process, attempts to place the I/O into the sorted queues (if allowed),
4725 * or immediately executes the I/O.
4728 dsl_scan_enqueue(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
4729 const zbookmark_phys_t
*zb
)
4731 spa_t
*spa
= dp
->dp_spa
;
4733 ASSERT(!BP_IS_EMBEDDED(bp
));
4736 * Gang blocks are hard to issue sequentially, so we just issue them
4737 * here immediately instead of queuing them.
4739 if (!dp
->dp_scan
->scn_is_sorted
|| BP_IS_GANG(bp
)) {
4740 scan_exec_io(dp
, bp
, zio_flags
, zb
, NULL
);
4744 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
4748 dva
= bp
->blk_dva
[i
];
4749 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&dva
));
4750 ASSERT(vdev
!= NULL
);
4752 mutex_enter(&vdev
->vdev_scan_io_queue_lock
);
4753 if (vdev
->vdev_scan_io_queue
== NULL
)
4754 vdev
->vdev_scan_io_queue
= scan_io_queue_create(vdev
);
4755 ASSERT(dp
->dp_scan
!= NULL
);
4756 scan_io_queue_insert(vdev
->vdev_scan_io_queue
, bp
,
4758 mutex_exit(&vdev
->vdev_scan_io_queue_lock
);
4763 dsl_scan_scrub_cb(dsl_pool_t
*dp
,
4764 const blkptr_t
*bp
, const zbookmark_phys_t
*zb
)
4766 dsl_scan_t
*scn
= dp
->dp_scan
;
4767 spa_t
*spa
= dp
->dp_spa
;
4768 uint64_t phys_birth
= BP_GET_BIRTH(bp
);
4769 size_t psize
= BP_GET_PSIZE(bp
);
4770 boolean_t needs_io
= B_FALSE
;
4771 int zio_flags
= ZIO_FLAG_SCAN_THREAD
| ZIO_FLAG_RAW
| ZIO_FLAG_CANFAIL
;
4773 count_block(dp
->dp_blkstats
, bp
);
4774 if (phys_birth
<= scn
->scn_phys
.scn_min_txg
||
4775 phys_birth
>= scn
->scn_phys
.scn_max_txg
) {
4776 count_block_skipped(scn
, bp
, B_TRUE
);
4780 /* Embedded BP's have phys_birth==0, so we reject them above. */
4781 ASSERT(!BP_IS_EMBEDDED(bp
));
4783 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn
));
4784 if (scn
->scn_phys
.scn_func
== POOL_SCAN_SCRUB
) {
4785 zio_flags
|= ZIO_FLAG_SCRUB
;
4788 ASSERT3U(scn
->scn_phys
.scn_func
, ==, POOL_SCAN_RESILVER
);
4789 zio_flags
|= ZIO_FLAG_RESILVER
;
4793 /* If it's an intent log block, failure is expected. */
4794 if (zb
->zb_level
== ZB_ZIL_LEVEL
)
4795 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
4797 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++) {
4798 const dva_t
*dva
= &bp
->blk_dva
[d
];
4801 * Keep track of how much data we've examined so that
4802 * zpool(8) status can make useful progress reports.
4804 uint64_t asize
= DVA_GET_ASIZE(dva
);
4805 scn
->scn_phys
.scn_examined
+= asize
;
4806 spa
->spa_scan_pass_exam
+= asize
;
4808 /* if it's a resilver, this may not be in the target range */
4810 needs_io
= dsl_scan_need_resilver(spa
, dva
, psize
,
4814 if (needs_io
&& !zfs_no_scrub_io
) {
4815 dsl_scan_enqueue(dp
, bp
, zio_flags
, zb
);
4817 count_block_skipped(scn
, bp
, B_TRUE
);
4820 /* do not relocate this block */
4825 dsl_scan_scrub_done(zio_t
*zio
)
4827 spa_t
*spa
= zio
->io_spa
;
4828 blkptr_t
*bp
= zio
->io_bp
;
4829 dsl_scan_io_queue_t
*queue
= zio
->io_private
;
4831 abd_free(zio
->io_abd
);
4833 if (queue
== NULL
) {
4834 mutex_enter(&spa
->spa_scrub_lock
);
4835 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
4836 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
4837 cv_broadcast(&spa
->spa_scrub_io_cv
);
4838 mutex_exit(&spa
->spa_scrub_lock
);
4840 mutex_enter(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4841 ASSERT3U(queue
->q_inflight_bytes
, >=, BP_GET_PSIZE(bp
));
4842 queue
->q_inflight_bytes
-= BP_GET_PSIZE(bp
);
4843 cv_broadcast(&queue
->q_zio_cv
);
4844 mutex_exit(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4847 if (zio
->io_error
&& (zio
->io_error
!= ECKSUM
||
4848 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
))) {
4849 if (dsl_errorscrubbing(spa
->spa_dsl_pool
) &&
4850 !dsl_errorscrub_is_paused(spa
->spa_dsl_pool
->dp_scan
)) {
4851 atomic_inc_64(&spa
->spa_dsl_pool
->dp_scan
4852 ->errorscrub_phys
.dep_errors
);
4854 atomic_inc_64(&spa
->spa_dsl_pool
->dp_scan
->scn_phys
4861 * Given a scanning zio's information, executes the zio. The zio need
4862 * not necessarily be only sortable, this function simply executes the
4863 * zio, no matter what it is. The optional queue argument allows the
4864 * caller to specify that they want per top level vdev IO rate limiting
4865 * instead of the legacy global limiting.
4868 scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
4869 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
)
4871 spa_t
*spa
= dp
->dp_spa
;
4872 dsl_scan_t
*scn
= dp
->dp_scan
;
4873 size_t size
= BP_GET_PSIZE(bp
);
4874 abd_t
*data
= abd_alloc_for_io(size
, B_FALSE
);
4877 if (queue
== NULL
) {
4878 ASSERT3U(scn
->scn_maxinflight_bytes
, >, 0);
4879 mutex_enter(&spa
->spa_scrub_lock
);
4880 while (spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)
4881 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
4882 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(bp
);
4883 mutex_exit(&spa
->spa_scrub_lock
);
4884 pio
= scn
->scn_zio_root
;
4886 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
4888 ASSERT3U(queue
->q_maxinflight_bytes
, >, 0);
4889 mutex_enter(q_lock
);
4890 while (queue
->q_inflight_bytes
>= queue
->q_maxinflight_bytes
)
4891 cv_wait(&queue
->q_zio_cv
, q_lock
);
4892 queue
->q_inflight_bytes
+= BP_GET_PSIZE(bp
);
4897 ASSERT(pio
!= NULL
);
4898 count_block_issued(spa
, bp
, queue
== NULL
);
4899 zio_nowait(zio_read(pio
, spa
, bp
, data
, size
, dsl_scan_scrub_done
,
4900 queue
, ZIO_PRIORITY_SCRUB
, zio_flags
, zb
));
4904 * This is the primary extent sorting algorithm. We balance two parameters:
4905 * 1) how many bytes of I/O are in an extent
4906 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4907 * Since we allow extents to have gaps between their constituent I/Os, it's
4908 * possible to have a fairly large extent that contains the same amount of
4909 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4910 * The algorithm sorts based on a score calculated from the extent's size,
4911 * the relative fill volume (in %) and a "fill weight" parameter that controls
4912 * the split between whether we prefer larger extents or more well populated
4915 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4918 * 1) assume extsz = 64 MiB
4919 * 2) assume fill = 32 MiB (extent is half full)
4920 * 3) assume fill_weight = 3
4921 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4922 * SCORE = 32M + (50 * 3 * 32M) / 100
4923 * SCORE = 32M + (4800M / 100)
4926 * | +--- final total relative fill-based score
4927 * +--------- final total fill-based score
4930 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4931 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4932 * Note that as an optimization, we replace multiplication and division by
4933 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4935 * Since we do not care if one extent is only few percent better than another,
4936 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4937 * put into otherwise unused due to ashift high bits of offset. This allows
4938 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4939 * with single operation. Plus it makes scrubs more sequential and reduces
4940 * chances that minor extent change move it within the B-tree.
4942 __attribute__((always_inline
)) inline
4944 ext_size_compare(const void *x
, const void *y
)
4946 const uint64_t *a
= x
, *b
= y
;
4948 return (TREE_CMP(*a
, *b
));
4951 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf
, uint64_t,
4955 ext_size_create(range_tree_t
*rt
, void *arg
)
4958 zfs_btree_t
*size_tree
= arg
;
4960 zfs_btree_create(size_tree
, ext_size_compare
, ext_size_find_in_buf
,
4965 ext_size_destroy(range_tree_t
*rt
, void *arg
)
4968 zfs_btree_t
*size_tree
= arg
;
4969 ASSERT0(zfs_btree_numnodes(size_tree
));
4971 zfs_btree_destroy(size_tree
);
4975 ext_size_value(range_tree_t
*rt
, range_seg_gap_t
*rsg
)
4978 uint64_t size
= rsg
->rs_end
- rsg
->rs_start
;
4979 uint64_t score
= rsg
->rs_fill
+ ((((rsg
->rs_fill
<< 7) / size
) *
4980 fill_weight
* rsg
->rs_fill
) >> 7);
4981 ASSERT3U(rt
->rt_shift
, >=, 8);
4982 return (((uint64_t)(64 - highbit64(score
)) << 56) | rsg
->rs_start
);
4986 ext_size_add(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
4988 zfs_btree_t
*size_tree
= arg
;
4989 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
4990 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
4991 zfs_btree_add(size_tree
, &v
);
4995 ext_size_remove(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
4997 zfs_btree_t
*size_tree
= arg
;
4998 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
4999 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
5000 zfs_btree_remove(size_tree
, &v
);
5004 ext_size_vacate(range_tree_t
*rt
, void *arg
)
5006 zfs_btree_t
*size_tree
= arg
;
5007 zfs_btree_clear(size_tree
);
5008 zfs_btree_destroy(size_tree
);
5010 ext_size_create(rt
, arg
);
5013 static const range_tree_ops_t ext_size_ops
= {
5014 .rtop_create
= ext_size_create
,
5015 .rtop_destroy
= ext_size_destroy
,
5016 .rtop_add
= ext_size_add
,
5017 .rtop_remove
= ext_size_remove
,
5018 .rtop_vacate
= ext_size_vacate
5022 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5023 * based on LBA-order (from lowest to highest).
5026 sio_addr_compare(const void *x
, const void *y
)
5028 const scan_io_t
*a
= x
, *b
= y
;
5030 return (TREE_CMP(SIO_GET_OFFSET(a
), SIO_GET_OFFSET(b
)));
5033 /* IO queues are created on demand when they are needed. */
5034 static dsl_scan_io_queue_t
*
5035 scan_io_queue_create(vdev_t
*vd
)
5037 dsl_scan_t
*scn
= vd
->vdev_spa
->spa_dsl_pool
->dp_scan
;
5038 dsl_scan_io_queue_t
*q
= kmem_zalloc(sizeof (*q
), KM_SLEEP
);
5042 q
->q_sio_memused
= 0;
5043 q
->q_last_ext_addr
= -1;
5044 cv_init(&q
->q_zio_cv
, NULL
, CV_DEFAULT
, NULL
);
5045 q
->q_exts_by_addr
= range_tree_create_gap(&ext_size_ops
, RANGE_SEG_GAP
,
5046 &q
->q_exts_by_size
, 0, vd
->vdev_ashift
, zfs_scan_max_ext_gap
);
5047 avl_create(&q
->q_sios_by_addr
, sio_addr_compare
,
5048 sizeof (scan_io_t
), offsetof(scan_io_t
, sio_nodes
.sio_addr_node
));
5054 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5055 * No further execution of I/O occurs, anything pending in the queue is
5056 * simply freed without being executed.
5059 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t
*queue
)
5061 dsl_scan_t
*scn
= queue
->q_scn
;
5063 void *cookie
= NULL
;
5065 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
5067 if (!avl_is_empty(&queue
->q_sios_by_addr
))
5068 atomic_add_64(&scn
->scn_queues_pending
, -1);
5069 while ((sio
= avl_destroy_nodes(&queue
->q_sios_by_addr
, &cookie
)) !=
5071 ASSERT(range_tree_contains(queue
->q_exts_by_addr
,
5072 SIO_GET_OFFSET(sio
), SIO_GET_ASIZE(sio
)));
5073 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
5077 ASSERT0(queue
->q_sio_memused
);
5078 range_tree_vacate(queue
->q_exts_by_addr
, NULL
, queue
);
5079 range_tree_destroy(queue
->q_exts_by_addr
);
5080 avl_destroy(&queue
->q_sios_by_addr
);
5081 cv_destroy(&queue
->q_zio_cv
);
5083 kmem_free(queue
, sizeof (*queue
));
5087 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5088 * called on behalf of vdev_top_transfer when creating or destroying
5089 * a mirror vdev due to zpool attach/detach.
5092 dsl_scan_io_queue_vdev_xfer(vdev_t
*svd
, vdev_t
*tvd
)
5094 mutex_enter(&svd
->vdev_scan_io_queue_lock
);
5095 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
5097 VERIFY3P(tvd
->vdev_scan_io_queue
, ==, NULL
);
5098 tvd
->vdev_scan_io_queue
= svd
->vdev_scan_io_queue
;
5099 svd
->vdev_scan_io_queue
= NULL
;
5100 if (tvd
->vdev_scan_io_queue
!= NULL
)
5101 tvd
->vdev_scan_io_queue
->q_vd
= tvd
;
5103 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
5104 mutex_exit(&svd
->vdev_scan_io_queue_lock
);
5108 scan_io_queues_destroy(dsl_scan_t
*scn
)
5110 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
5112 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
5113 vdev_t
*tvd
= rvd
->vdev_child
[i
];
5115 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
5116 if (tvd
->vdev_scan_io_queue
!= NULL
)
5117 dsl_scan_io_queue_destroy(tvd
->vdev_scan_io_queue
);
5118 tvd
->vdev_scan_io_queue
= NULL
;
5119 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
5124 dsl_scan_freed_dva(spa_t
*spa
, const blkptr_t
*bp
, int dva_i
)
5126 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
5127 dsl_scan_t
*scn
= dp
->dp_scan
;
5130 dsl_scan_io_queue_t
*queue
;
5131 scan_io_t
*srch_sio
, *sio
;
5133 uint64_t start
, size
;
5135 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&bp
->blk_dva
[dva_i
]));
5136 ASSERT(vdev
!= NULL
);
5137 q_lock
= &vdev
->vdev_scan_io_queue_lock
;
5138 queue
= vdev
->vdev_scan_io_queue
;
5140 mutex_enter(q_lock
);
5141 if (queue
== NULL
) {
5146 srch_sio
= sio_alloc(BP_GET_NDVAS(bp
));
5147 bp2sio(bp
, srch_sio
, dva_i
);
5148 start
= SIO_GET_OFFSET(srch_sio
);
5149 size
= SIO_GET_ASIZE(srch_sio
);
5152 * We can find the zio in two states:
5153 * 1) Cold, just sitting in the queue of zio's to be issued at
5154 * some point in the future. In this case, all we do is
5155 * remove the zio from the q_sios_by_addr tree, decrement
5156 * its data volume from the containing range_seg_t and
5157 * resort the q_exts_by_size tree to reflect that the
5158 * range_seg_t has lost some of its 'fill'. We don't shorten
5159 * the range_seg_t - this is usually rare enough not to be
5160 * worth the extra hassle of trying keep track of precise
5161 * extent boundaries.
5162 * 2) Hot, where the zio is currently in-flight in
5163 * dsl_scan_issue_ios. In this case, we can't simply
5164 * reach in and stop the in-flight zio's, so we instead
5165 * block the caller. Eventually, dsl_scan_issue_ios will
5166 * be done with issuing the zio's it gathered and will
5169 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
5175 /* Got it while it was cold in the queue */
5176 ASSERT3U(start
, ==, SIO_GET_OFFSET(sio
));
5177 ASSERT3U(size
, ==, SIO_GET_ASIZE(sio
));
5178 avl_remove(&queue
->q_sios_by_addr
, sio
);
5179 if (avl_is_empty(&queue
->q_sios_by_addr
))
5180 atomic_add_64(&scn
->scn_queues_pending
, -1);
5181 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
5183 ASSERT(range_tree_contains(queue
->q_exts_by_addr
, start
, size
));
5184 range_tree_remove_fill(queue
->q_exts_by_addr
, start
, size
);
5186 /* count the block as though we skipped it */
5187 sio2bp(sio
, &tmpbp
);
5188 count_block_skipped(scn
, &tmpbp
, B_FALSE
);
5196 * Callback invoked when a zio_free() zio is executing. This needs to be
5197 * intercepted to prevent the zio from deallocating a particular portion
5198 * of disk space and it then getting reallocated and written to, while we
5199 * still have it queued up for processing.
5202 dsl_scan_freed(spa_t
*spa
, const blkptr_t
*bp
)
5204 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
5205 dsl_scan_t
*scn
= dp
->dp_scan
;
5207 ASSERT(!BP_IS_EMBEDDED(bp
));
5208 ASSERT(scn
!= NULL
);
5209 if (!dsl_scan_is_running(scn
))
5212 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++)
5213 dsl_scan_freed_dva(spa
, bp
, i
);
5217 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5218 * not started, start it. Otherwise, only restart if max txg in DTL range is
5219 * greater than the max txg in the current scan. If the DTL max is less than
5220 * the scan max, then the vdev has not missed any new data since the resilver
5221 * started, so a restart is not needed.
5224 dsl_scan_assess_vdev(dsl_pool_t
*dp
, vdev_t
*vd
)
5228 if (!vdev_resilver_needed(vd
, &min
, &max
))
5231 if (!dsl_scan_resilvering(dp
)) {
5232 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
5236 if (max
<= dp
->dp_scan
->scn_phys
.scn_max_txg
)
5239 /* restart is needed, check if it can be deferred */
5240 if (spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_RESILVER_DEFER
))
5241 vdev_defer_resilver(vd
);
5243 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
5246 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_vdev_limit
, U64
, ZMOD_RW
,
5247 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5249 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_min_time_ms
, UINT
, ZMOD_RW
,
5250 "Min millisecs to scrub per txg");
5252 ZFS_MODULE_PARAM(zfs
, zfs_
, obsolete_min_time_ms
, UINT
, ZMOD_RW
,
5253 "Min millisecs to obsolete per txg");
5255 ZFS_MODULE_PARAM(zfs
, zfs_
, free_min_time_ms
, UINT
, ZMOD_RW
,
5256 "Min millisecs to free per txg");
5258 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_min_time_ms
, UINT
, ZMOD_RW
,
5259 "Min millisecs to resilver per txg");
5261 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_suspend_progress
, INT
, ZMOD_RW
,
5262 "Set to prevent scans from progressing");
5264 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_io
, INT
, ZMOD_RW
,
5265 "Set to disable scrub I/O");
5267 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_prefetch
, INT
, ZMOD_RW
,
5268 "Set to disable scrub prefetching");
5270 ZFS_MODULE_PARAM(zfs
, zfs_
, async_block_max_blocks
, U64
, ZMOD_RW
,
5271 "Max number of blocks freed in one txg");
5273 ZFS_MODULE_PARAM(zfs
, zfs_
, max_async_dedup_frees
, U64
, ZMOD_RW
,
5274 "Max number of dedup blocks freed in one txg");
5276 ZFS_MODULE_PARAM(zfs
, zfs_
, free_bpobj_enabled
, INT
, ZMOD_RW
,
5277 "Enable processing of the free_bpobj");
5279 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_blkstats
, INT
, ZMOD_RW
,
5280 "Enable block statistics calculation during scrub");
5282 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_fact
, UINT
, ZMOD_RW
,
5283 "Fraction of RAM for scan hard limit");
5285 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_issue_strategy
, UINT
, ZMOD_RW
,
5286 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5288 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_legacy
, INT
, ZMOD_RW
,
5289 "Scrub using legacy non-sequential method");
5291 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_checkpoint_intval
, UINT
, ZMOD_RW
,
5292 "Scan progress on-disk checkpointing interval");
5294 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_max_ext_gap
, U64
, ZMOD_RW
,
5295 "Max gap in bytes between sequential scrub / resilver I/Os");
5297 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_soft_fact
, UINT
, ZMOD_RW
,
5298 "Fraction of hard limit used as soft limit");
5300 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_strict_mem_lim
, INT
, ZMOD_RW
,
5301 "Tunable to attempt to reduce lock contention");
5303 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_fill_weight
, UINT
, ZMOD_RW
,
5304 "Tunable to adjust bias towards more filled segments during scans");
5306 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_report_txgs
, UINT
, ZMOD_RW
,
5307 "Tunable to report resilver performance over the last N txgs");
5309 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_disable_defer
, INT
, ZMOD_RW
,
5310 "Process all resilvers immediately");
5312 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_defer_percent
, UINT
, ZMOD_RW
,
5313 "Issued IO percent complete after which resilvers are deferred");
5315 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_error_blocks_per_txg
, UINT
, ZMOD_RW
,
5316 "Error blocks to be scrubbed in one txg");