module: unicode: remove unused uconv.c
[zfs.git] / module / zfs / dsl_scan.c
blob6cd0dbdea1954afed377435de6b1387de1bf62b2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
63 * Grand theory statement on scan queue sorting
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
74 * Queue management:
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
96 * Implementation Notes
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104 * algorithm.
106 * Backwards compatibility
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119 const zbookmark_phys_t *);
121 static scan_cb_t dsl_scan_scrub_cb;
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128 uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining. We define a pass to start when the scanning
141 * phase completes for a sequential resilver. Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
145 static uint_t zfs_scan_report_txgs = 0;
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
151 * block.
153 static int zfs_scan_strict_mem_lim = B_FALSE;
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
165 static uint_t zfs_scan_issue_strategy = 0;
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
215 /* Don't defer a resilver if the one in progress only got this far: */
216 static uint_t zfs_resilver_defer_percent = 10;
219 * We wait a few txgs after importing a pool to begin scanning so that
220 * the import / mounting code isn't held up by scrub / resilver IO.
221 * Unfortunately, it is a bit difficult to determine exactly how long
222 * this will take since userspace will trigger fs mounts asynchronously
223 * and the kernel will create zvol minors asynchronously. As a result,
224 * the value provided here is a bit arbitrary, but represents a
225 * reasonable estimate of how many txgs it will take to finish fully
226 * importing a pool
228 #define SCAN_IMPORT_WAIT_TXGS 5
230 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
231 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
232 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
235 * Enable/disable the processing of the free_bpobj object.
237 static int zfs_free_bpobj_enabled = 1;
239 /* Error blocks to be scrubbed in one txg. */
240 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
242 /* the order has to match pool_scan_type */
243 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
244 NULL,
245 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
246 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
249 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
250 typedef struct {
251 uint64_t sds_dsobj;
252 uint64_t sds_txg;
253 avl_node_t sds_node;
254 } scan_ds_t;
257 * This controls what conditions are placed on dsl_scan_sync_state():
258 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
259 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
260 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
261 * write out the scn_phys_cached version.
262 * See dsl_scan_sync_state for details.
264 typedef enum {
265 SYNC_OPTIONAL,
266 SYNC_MANDATORY,
267 SYNC_CACHED
268 } state_sync_type_t;
271 * This struct represents the minimum information needed to reconstruct a
272 * zio for sequential scanning. This is useful because many of these will
273 * accumulate in the sequential IO queues before being issued, so saving
274 * memory matters here.
276 typedef struct scan_io {
277 /* fields from blkptr_t */
278 uint64_t sio_blk_prop;
279 uint64_t sio_phys_birth;
280 uint64_t sio_birth;
281 zio_cksum_t sio_cksum;
282 uint32_t sio_nr_dvas;
284 /* fields from zio_t */
285 uint32_t sio_flags;
286 zbookmark_phys_t sio_zb;
288 /* members for queue sorting */
289 union {
290 avl_node_t sio_addr_node; /* link into issuing queue */
291 list_node_t sio_list_node; /* link for issuing to disk */
292 } sio_nodes;
295 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
296 * depending on how many were in the original bp. Only the
297 * first DVA is really used for sorting and issuing purposes.
298 * The other DVAs (if provided) simply exist so that the zio
299 * layer can find additional copies to repair from in the
300 * event of an error. This array must go at the end of the
301 * struct to allow this for the variable number of elements.
303 dva_t sio_dva[];
304 } scan_io_t;
306 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
307 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
308 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
309 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
310 #define SIO_GET_END_OFFSET(sio) \
311 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
312 #define SIO_GET_MUSED(sio) \
313 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
315 struct dsl_scan_io_queue {
316 dsl_scan_t *q_scn; /* associated dsl_scan_t */
317 vdev_t *q_vd; /* top-level vdev that this queue represents */
318 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
320 /* trees used for sorting I/Os and extents of I/Os */
321 range_tree_t *q_exts_by_addr;
322 zfs_btree_t q_exts_by_size;
323 avl_tree_t q_sios_by_addr;
324 uint64_t q_sio_memused;
325 uint64_t q_last_ext_addr;
327 /* members for zio rate limiting */
328 uint64_t q_maxinflight_bytes;
329 uint64_t q_inflight_bytes;
330 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
332 /* per txg statistics */
333 uint64_t q_total_seg_size_this_txg;
334 uint64_t q_segs_this_txg;
335 uint64_t q_total_zio_size_this_txg;
336 uint64_t q_zios_this_txg;
339 /* private data for dsl_scan_prefetch_cb() */
340 typedef struct scan_prefetch_ctx {
341 zfs_refcount_t spc_refcnt; /* refcount for memory management */
342 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
343 boolean_t spc_root; /* is this prefetch for an objset? */
344 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
345 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
346 } scan_prefetch_ctx_t;
348 /* private data for dsl_scan_prefetch() */
349 typedef struct scan_prefetch_issue_ctx {
350 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
351 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
352 blkptr_t spic_bp; /* bp to prefetch */
353 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
354 } scan_prefetch_issue_ctx_t;
356 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
357 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
358 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
359 scan_io_t *sio);
361 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
362 static void scan_io_queues_destroy(dsl_scan_t *scn);
364 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
366 /* sio->sio_nr_dvas must be set so we know which cache to free from */
367 static void
368 sio_free(scan_io_t *sio)
370 ASSERT3U(sio->sio_nr_dvas, >, 0);
371 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
373 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
376 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
377 static scan_io_t *
378 sio_alloc(unsigned short nr_dvas)
380 ASSERT3U(nr_dvas, >, 0);
381 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
383 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
386 void
387 scan_init(void)
390 * This is used in ext_size_compare() to weight segments
391 * based on how sparse they are. This cannot be changed
392 * mid-scan and the tree comparison functions don't currently
393 * have a mechanism for passing additional context to the
394 * compare functions. Thus we store this value globally and
395 * we only allow it to be set at module initialization time
397 fill_weight = zfs_scan_fill_weight;
399 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
400 char name[36];
402 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
403 sio_cache[i] = kmem_cache_create(name,
404 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
405 0, NULL, NULL, NULL, NULL, NULL, 0);
409 void
410 scan_fini(void)
412 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
413 kmem_cache_destroy(sio_cache[i]);
417 static inline boolean_t
418 dsl_scan_is_running(const dsl_scan_t *scn)
420 return (scn->scn_phys.scn_state == DSS_SCANNING);
423 boolean_t
424 dsl_scan_resilvering(dsl_pool_t *dp)
426 return (dsl_scan_is_running(dp->dp_scan) &&
427 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
430 static inline void
431 sio2bp(const scan_io_t *sio, blkptr_t *bp)
433 memset(bp, 0, sizeof (*bp));
434 bp->blk_prop = sio->sio_blk_prop;
435 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
436 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
437 bp->blk_fill = 1; /* we always only work with data pointers */
438 bp->blk_cksum = sio->sio_cksum;
440 ASSERT3U(sio->sio_nr_dvas, >, 0);
441 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
443 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
446 static inline void
447 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
449 sio->sio_blk_prop = bp->blk_prop;
450 sio->sio_phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
451 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
452 sio->sio_cksum = bp->blk_cksum;
453 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
456 * Copy the DVAs to the sio. We need all copies of the block so
457 * that the self healing code can use the alternate copies if the
458 * first is corrupted. We want the DVA at index dva_i to be first
459 * in the sio since this is the primary one that we want to issue.
461 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
462 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
467 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
469 int err;
470 dsl_scan_t *scn;
471 spa_t *spa = dp->dp_spa;
472 uint64_t f;
474 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
475 scn->scn_dp = dp;
478 * It's possible that we're resuming a scan after a reboot so
479 * make sure that the scan_async_destroying flag is initialized
480 * appropriately.
482 ASSERT(!scn->scn_async_destroying);
483 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
484 SPA_FEATURE_ASYNC_DESTROY);
487 * Calculate the max number of in-flight bytes for pool-wide
488 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
489 * Limits for the issuing phase are done per top-level vdev and
490 * are handled separately.
492 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
493 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
495 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
496 offsetof(scan_ds_t, sds_node));
497 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
498 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
499 sizeof (scan_prefetch_issue_ctx_t),
500 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
502 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
503 "scrub_func", sizeof (uint64_t), 1, &f);
504 if (err == 0) {
506 * There was an old-style scrub in progress. Restart a
507 * new-style scrub from the beginning.
509 scn->scn_restart_txg = txg;
510 zfs_dbgmsg("old-style scrub was in progress for %s; "
511 "restarting new-style scrub in txg %llu",
512 spa->spa_name,
513 (longlong_t)scn->scn_restart_txg);
516 * Load the queue obj from the old location so that it
517 * can be freed by dsl_scan_done().
519 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
520 "scrub_queue", sizeof (uint64_t), 1,
521 &scn->scn_phys.scn_queue_obj);
522 } else {
523 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
524 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
525 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
527 if (err != 0 && err != ENOENT)
528 return (err);
530 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
531 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
532 &scn->scn_phys);
535 * Detect if the pool contains the signature of #2094. If it
536 * does properly update the scn->scn_phys structure and notify
537 * the administrator by setting an errata for the pool.
539 if (err == EOVERFLOW) {
540 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
541 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
542 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
543 (23 * sizeof (uint64_t)));
545 err = zap_lookup(dp->dp_meta_objset,
546 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
547 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
548 if (err == 0) {
549 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
551 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
552 scn->scn_async_destroying) {
553 spa->spa_errata =
554 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
555 return (EOVERFLOW);
558 memcpy(&scn->scn_phys, zaptmp,
559 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
560 scn->scn_phys.scn_flags = overflow;
562 /* Required scrub already in progress. */
563 if (scn->scn_phys.scn_state == DSS_FINISHED ||
564 scn->scn_phys.scn_state == DSS_CANCELED)
565 spa->spa_errata =
566 ZPOOL_ERRATA_ZOL_2094_SCRUB;
570 if (err == ENOENT)
571 return (0);
572 else if (err)
573 return (err);
576 * We might be restarting after a reboot, so jump the issued
577 * counter to how far we've scanned. We know we're consistent
578 * up to here.
580 scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
581 scn->scn_phys.scn_skipped;
583 if (dsl_scan_is_running(scn) &&
584 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
586 * A new-type scrub was in progress on an old
587 * pool, and the pool was accessed by old
588 * software. Restart from the beginning, since
589 * the old software may have changed the pool in
590 * the meantime.
592 scn->scn_restart_txg = txg;
593 zfs_dbgmsg("new-style scrub for %s was modified "
594 "by old software; restarting in txg %llu",
595 spa->spa_name,
596 (longlong_t)scn->scn_restart_txg);
597 } else if (dsl_scan_resilvering(dp)) {
599 * If a resilver is in progress and there are already
600 * errors, restart it instead of finishing this scan and
601 * then restarting it. If there haven't been any errors
602 * then remember that the incore DTL is valid.
604 if (scn->scn_phys.scn_errors > 0) {
605 scn->scn_restart_txg = txg;
606 zfs_dbgmsg("resilver can't excise DTL_MISSING "
607 "when finished; restarting on %s in txg "
608 "%llu",
609 spa->spa_name,
610 (u_longlong_t)scn->scn_restart_txg);
611 } else {
612 /* it's safe to excise DTL when finished */
613 spa->spa_scrub_started = B_TRUE;
618 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
620 /* reload the queue into the in-core state */
621 if (scn->scn_phys.scn_queue_obj != 0) {
622 zap_cursor_t zc;
623 zap_attribute_t *za = zap_attribute_alloc();
625 for (zap_cursor_init(&zc, dp->dp_meta_objset,
626 scn->scn_phys.scn_queue_obj);
627 zap_cursor_retrieve(&zc, za) == 0;
628 (void) zap_cursor_advance(&zc)) {
629 scan_ds_queue_insert(scn,
630 zfs_strtonum(za->za_name, NULL),
631 za->za_first_integer);
633 zap_cursor_fini(&zc);
634 zap_attribute_free(za);
637 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
639 spa_scan_stat_init(spa);
640 vdev_scan_stat_init(spa->spa_root_vdev);
642 return (0);
645 void
646 dsl_scan_fini(dsl_pool_t *dp)
648 if (dp->dp_scan != NULL) {
649 dsl_scan_t *scn = dp->dp_scan;
651 if (scn->scn_taskq != NULL)
652 taskq_destroy(scn->scn_taskq);
654 scan_ds_queue_clear(scn);
655 avl_destroy(&scn->scn_queue);
656 mutex_destroy(&scn->scn_queue_lock);
657 scan_ds_prefetch_queue_clear(scn);
658 avl_destroy(&scn->scn_prefetch_queue);
660 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
661 dp->dp_scan = NULL;
665 static boolean_t
666 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
668 return (scn->scn_restart_txg != 0 &&
669 scn->scn_restart_txg <= tx->tx_txg);
672 boolean_t
673 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
675 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
676 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
679 boolean_t
680 dsl_scan_scrubbing(const dsl_pool_t *dp)
682 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
684 return (scn_phys->scn_state == DSS_SCANNING &&
685 scn_phys->scn_func == POOL_SCAN_SCRUB);
688 boolean_t
689 dsl_errorscrubbing(const dsl_pool_t *dp)
691 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
693 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
694 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
697 boolean_t
698 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
700 return (dsl_errorscrubbing(scn->scn_dp) &&
701 scn->errorscrub_phys.dep_paused_flags);
704 boolean_t
705 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
707 return (dsl_scan_scrubbing(scn->scn_dp) &&
708 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
711 static void
712 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
714 scn->errorscrub_phys.dep_cursor =
715 zap_cursor_serialize(&scn->errorscrub_cursor);
717 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
718 DMU_POOL_DIRECTORY_OBJECT,
719 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
720 &scn->errorscrub_phys, tx));
723 static void
724 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
726 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
727 pool_scan_func_t *funcp = arg;
728 dsl_pool_t *dp = scn->scn_dp;
729 spa_t *spa = dp->dp_spa;
731 ASSERT(!dsl_scan_is_running(scn));
732 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
733 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
735 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
736 scn->errorscrub_phys.dep_func = *funcp;
737 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
738 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
739 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
740 scn->errorscrub_phys.dep_examined = 0;
741 scn->errorscrub_phys.dep_errors = 0;
742 scn->errorscrub_phys.dep_cursor = 0;
743 zap_cursor_init_serialized(&scn->errorscrub_cursor,
744 spa->spa_meta_objset, spa->spa_errlog_last,
745 scn->errorscrub_phys.dep_cursor);
747 vdev_config_dirty(spa->spa_root_vdev);
748 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
750 dsl_errorscrub_sync_state(scn, tx);
752 spa_history_log_internal(spa, "error scrub setup", tx,
753 "func=%u mintxg=%u maxtxg=%llu",
754 *funcp, 0, (u_longlong_t)tx->tx_txg);
757 static int
758 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
760 (void) arg;
761 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
763 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
764 return (SET_ERROR(EBUSY));
767 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
768 return (ECANCELED);
770 return (0);
774 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
775 * Because we can be running in the block sorting algorithm, we do not always
776 * want to write out the record, only when it is "safe" to do so. This safety
777 * condition is achieved by making sure that the sorting queues are empty
778 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
779 * is inconsistent with how much actual scanning progress has been made. The
780 * kind of sync to be performed is specified by the sync_type argument. If the
781 * sync is optional, we only sync if the queues are empty. If the sync is
782 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
783 * third possible state is a "cached" sync. This is done in response to:
784 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
785 * destroyed, so we wouldn't be able to restart scanning from it.
786 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
787 * superseded by a newer snapshot.
788 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
789 * swapped with its clone.
790 * In all cases, a cached sync simply rewrites the last record we've written,
791 * just slightly modified. For the modifications that are performed to the
792 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
793 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
795 static void
796 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
798 int i;
799 spa_t *spa = scn->scn_dp->dp_spa;
801 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
802 if (scn->scn_queues_pending == 0) {
803 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
804 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
805 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
807 if (q == NULL)
808 continue;
810 mutex_enter(&vd->vdev_scan_io_queue_lock);
811 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
812 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
813 NULL);
814 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
815 mutex_exit(&vd->vdev_scan_io_queue_lock);
818 if (scn->scn_phys.scn_queue_obj != 0)
819 scan_ds_queue_sync(scn, tx);
820 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
821 DMU_POOL_DIRECTORY_OBJECT,
822 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
823 &scn->scn_phys, tx));
824 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
825 sizeof (scn->scn_phys));
827 if (scn->scn_checkpointing)
828 zfs_dbgmsg("finish scan checkpoint for %s",
829 spa->spa_name);
831 scn->scn_checkpointing = B_FALSE;
832 scn->scn_last_checkpoint = ddi_get_lbolt();
833 } else if (sync_type == SYNC_CACHED) {
834 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
835 DMU_POOL_DIRECTORY_OBJECT,
836 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
837 &scn->scn_phys_cached, tx));
842 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
844 (void) arg;
845 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
846 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
848 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
849 dsl_errorscrubbing(scn->scn_dp))
850 return (SET_ERROR(EBUSY));
852 return (0);
855 void
856 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
858 (void) arg;
859 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
860 pool_scan_func_t *funcp = arg;
861 dmu_object_type_t ot = 0;
862 dsl_pool_t *dp = scn->scn_dp;
863 spa_t *spa = dp->dp_spa;
865 ASSERT(!dsl_scan_is_running(scn));
866 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
867 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
870 * If we are starting a fresh scrub, we erase the error scrub
871 * information from disk.
873 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
874 dsl_errorscrub_sync_state(scn, tx);
876 scn->scn_phys.scn_func = *funcp;
877 scn->scn_phys.scn_state = DSS_SCANNING;
878 scn->scn_phys.scn_min_txg = 0;
879 scn->scn_phys.scn_max_txg = tx->tx_txg;
880 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
881 scn->scn_phys.scn_start_time = gethrestime_sec();
882 scn->scn_phys.scn_errors = 0;
883 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
884 scn->scn_issued_before_pass = 0;
885 scn->scn_restart_txg = 0;
886 scn->scn_done_txg = 0;
887 scn->scn_last_checkpoint = 0;
888 scn->scn_checkpointing = B_FALSE;
889 spa_scan_stat_init(spa);
890 vdev_scan_stat_init(spa->spa_root_vdev);
892 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
893 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
895 /* rewrite all disk labels */
896 vdev_config_dirty(spa->spa_root_vdev);
898 if (vdev_resilver_needed(spa->spa_root_vdev,
899 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
900 nvlist_t *aux = fnvlist_alloc();
901 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
902 "healing");
903 spa_event_notify(spa, NULL, aux,
904 ESC_ZFS_RESILVER_START);
905 nvlist_free(aux);
906 } else {
907 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
910 spa->spa_scrub_started = B_TRUE;
912 * If this is an incremental scrub, limit the DDT scrub phase
913 * to just the auto-ditto class (for correctness); the rest
914 * of the scrub should go faster using top-down pruning.
916 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
917 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
920 * When starting a resilver clear any existing rebuild state.
921 * This is required to prevent stale rebuild status from
922 * being reported when a rebuild is run, then a resilver and
923 * finally a scrub. In which case only the scrub status
924 * should be reported by 'zpool status'.
926 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
927 vdev_t *rvd = spa->spa_root_vdev;
928 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
929 vdev_t *vd = rvd->vdev_child[i];
930 vdev_rebuild_clear_sync(
931 (void *)(uintptr_t)vd->vdev_id, tx);
936 /* back to the generic stuff */
938 if (zfs_scan_blkstats) {
939 if (dp->dp_blkstats == NULL) {
940 dp->dp_blkstats =
941 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
943 memset(&dp->dp_blkstats->zab_type, 0,
944 sizeof (dp->dp_blkstats->zab_type));
945 } else {
946 if (dp->dp_blkstats) {
947 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
948 dp->dp_blkstats = NULL;
952 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
953 ot = DMU_OT_ZAP_OTHER;
955 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
956 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
958 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
960 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
962 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
964 spa_history_log_internal(spa, "scan setup", tx,
965 "func=%u mintxg=%llu maxtxg=%llu",
966 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
967 (u_longlong_t)scn->scn_phys.scn_max_txg);
971 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
972 * error scrub or resilver. Can also be called to resume a paused scrub or
973 * error scrub.
976 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
978 spa_t *spa = dp->dp_spa;
979 dsl_scan_t *scn = dp->dp_scan;
982 * Purge all vdev caches and probe all devices. We do this here
983 * rather than in sync context because this requires a writer lock
984 * on the spa_config lock, which we can't do from sync context. The
985 * spa_scrub_reopen flag indicates that vdev_open() should not
986 * attempt to start another scrub.
988 spa_vdev_state_enter(spa, SCL_NONE);
989 spa->spa_scrub_reopen = B_TRUE;
990 vdev_reopen(spa->spa_root_vdev);
991 spa->spa_scrub_reopen = B_FALSE;
992 (void) spa_vdev_state_exit(spa, NULL, 0);
994 if (func == POOL_SCAN_RESILVER) {
995 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
996 return (0);
999 if (func == POOL_SCAN_ERRORSCRUB) {
1000 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1002 * got error scrub start cmd, resume paused error scrub.
1004 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1005 POOL_SCRUB_NORMAL);
1006 if (err == 0) {
1007 spa_event_notify(spa, NULL, NULL,
1008 ESC_ZFS_ERRORSCRUB_RESUME);
1009 return (ECANCELED);
1011 return (SET_ERROR(err));
1014 return (dsl_sync_task(spa_name(dp->dp_spa),
1015 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1016 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1019 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1020 /* got scrub start cmd, resume paused scrub */
1021 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1022 POOL_SCRUB_NORMAL);
1023 if (err == 0) {
1024 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1025 return (SET_ERROR(ECANCELED));
1027 return (SET_ERROR(err));
1030 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1031 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
1034 static void
1035 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1037 dsl_pool_t *dp = scn->scn_dp;
1038 spa_t *spa = dp->dp_spa;
1040 if (complete) {
1041 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1042 spa_history_log_internal(spa, "error scrub done", tx,
1043 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1044 } else {
1045 spa_history_log_internal(spa, "error scrub canceled", tx,
1046 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1049 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1050 spa->spa_scrub_active = B_FALSE;
1051 spa_errlog_rotate(spa);
1052 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1053 zap_cursor_fini(&scn->errorscrub_cursor);
1055 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1056 spa->spa_errata = 0;
1058 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1061 static void
1062 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1064 static const char *old_names[] = {
1065 "scrub_bookmark",
1066 "scrub_ddt_bookmark",
1067 "scrub_ddt_class_max",
1068 "scrub_queue",
1069 "scrub_min_txg",
1070 "scrub_max_txg",
1071 "scrub_func",
1072 "scrub_errors",
1073 NULL
1076 dsl_pool_t *dp = scn->scn_dp;
1077 spa_t *spa = dp->dp_spa;
1078 int i;
1080 /* Remove any remnants of an old-style scrub. */
1081 for (i = 0; old_names[i]; i++) {
1082 (void) zap_remove(dp->dp_meta_objset,
1083 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1086 if (scn->scn_phys.scn_queue_obj != 0) {
1087 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1088 scn->scn_phys.scn_queue_obj, tx));
1089 scn->scn_phys.scn_queue_obj = 0;
1091 scan_ds_queue_clear(scn);
1092 scan_ds_prefetch_queue_clear(scn);
1094 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1097 * If we were "restarted" from a stopped state, don't bother
1098 * with anything else.
1100 if (!dsl_scan_is_running(scn)) {
1101 ASSERT(!scn->scn_is_sorted);
1102 return;
1105 if (scn->scn_is_sorted) {
1106 scan_io_queues_destroy(scn);
1107 scn->scn_is_sorted = B_FALSE;
1109 if (scn->scn_taskq != NULL) {
1110 taskq_destroy(scn->scn_taskq);
1111 scn->scn_taskq = NULL;
1115 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1117 spa_notify_waiters(spa);
1119 if (dsl_scan_restarting(scn, tx))
1120 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1121 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1122 else if (!complete)
1123 spa_history_log_internal(spa, "scan cancelled", tx,
1124 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1125 else
1126 spa_history_log_internal(spa, "scan done", tx,
1127 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1129 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1130 spa->spa_scrub_active = B_FALSE;
1133 * If the scrub/resilver completed, update all DTLs to
1134 * reflect this. Whether it succeeded or not, vacate
1135 * all temporary scrub DTLs.
1137 * As the scrub does not currently support traversing
1138 * data that have been freed but are part of a checkpoint,
1139 * we don't mark the scrub as done in the DTLs as faults
1140 * may still exist in those vdevs.
1142 if (complete &&
1143 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1144 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1145 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1147 if (scn->scn_phys.scn_min_txg) {
1148 nvlist_t *aux = fnvlist_alloc();
1149 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1150 "healing");
1151 spa_event_notify(spa, NULL, aux,
1152 ESC_ZFS_RESILVER_FINISH);
1153 nvlist_free(aux);
1154 } else {
1155 spa_event_notify(spa, NULL, NULL,
1156 ESC_ZFS_SCRUB_FINISH);
1158 } else {
1159 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1160 0, B_TRUE, B_FALSE);
1162 spa_errlog_rotate(spa);
1165 * Don't clear flag until after vdev_dtl_reassess to ensure that
1166 * DTL_MISSING will get updated when possible.
1168 spa->spa_scrub_started = B_FALSE;
1171 * We may have finished replacing a device.
1172 * Let the async thread assess this and handle the detach.
1174 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1177 * Clear any resilver_deferred flags in the config.
1178 * If there are drives that need resilvering, kick
1179 * off an asynchronous request to start resilver.
1180 * vdev_clear_resilver_deferred() may update the config
1181 * before the resilver can restart. In the event of
1182 * a crash during this period, the spa loading code
1183 * will find the drives that need to be resilvered
1184 * and start the resilver then.
1186 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1187 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1188 spa_history_log_internal(spa,
1189 "starting deferred resilver", tx, "errors=%llu",
1190 (u_longlong_t)spa_approx_errlog_size(spa));
1191 spa_async_request(spa, SPA_ASYNC_RESILVER);
1194 /* Clear recent error events (i.e. duplicate events tracking) */
1195 if (complete)
1196 zfs_ereport_clear(spa, NULL);
1199 scn->scn_phys.scn_end_time = gethrestime_sec();
1201 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1202 spa->spa_errata = 0;
1204 ASSERT(!dsl_scan_is_running(scn));
1207 static int
1208 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1210 pool_scrub_cmd_t *cmd = arg;
1211 dsl_pool_t *dp = dmu_tx_pool(tx);
1212 dsl_scan_t *scn = dp->dp_scan;
1214 if (*cmd == POOL_SCRUB_PAUSE) {
1216 * can't pause a error scrub when there is no in-progress
1217 * error scrub.
1219 if (!dsl_errorscrubbing(dp))
1220 return (SET_ERROR(ENOENT));
1222 /* can't pause a paused error scrub */
1223 if (dsl_errorscrub_is_paused(scn))
1224 return (SET_ERROR(EBUSY));
1225 } else if (*cmd != POOL_SCRUB_NORMAL) {
1226 return (SET_ERROR(ENOTSUP));
1229 return (0);
1232 static void
1233 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1235 pool_scrub_cmd_t *cmd = arg;
1236 dsl_pool_t *dp = dmu_tx_pool(tx);
1237 spa_t *spa = dp->dp_spa;
1238 dsl_scan_t *scn = dp->dp_scan;
1240 if (*cmd == POOL_SCRUB_PAUSE) {
1241 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1242 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1243 dsl_errorscrub_sync_state(scn, tx);
1244 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1245 } else {
1246 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1247 if (dsl_errorscrub_is_paused(scn)) {
1249 * We need to keep track of how much time we spend
1250 * paused per pass so that we can adjust the error scrub
1251 * rate shown in the output of 'zpool status'.
1253 spa->spa_scan_pass_errorscrub_spent_paused +=
1254 gethrestime_sec() -
1255 spa->spa_scan_pass_errorscrub_pause;
1257 spa->spa_scan_pass_errorscrub_pause = 0;
1258 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1260 zap_cursor_init_serialized(
1261 &scn->errorscrub_cursor,
1262 spa->spa_meta_objset, spa->spa_errlog_last,
1263 scn->errorscrub_phys.dep_cursor);
1265 dsl_errorscrub_sync_state(scn, tx);
1270 static int
1271 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1273 (void) arg;
1274 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1275 /* can't cancel a error scrub when there is no one in-progress */
1276 if (!dsl_errorscrubbing(scn->scn_dp))
1277 return (SET_ERROR(ENOENT));
1278 return (0);
1281 static void
1282 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1284 (void) arg;
1285 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1287 dsl_errorscrub_done(scn, B_FALSE, tx);
1288 dsl_errorscrub_sync_state(scn, tx);
1289 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1290 ESC_ZFS_ERRORSCRUB_ABORT);
1293 static int
1294 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1296 (void) arg;
1297 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1299 if (!dsl_scan_is_running(scn))
1300 return (SET_ERROR(ENOENT));
1301 return (0);
1304 static void
1305 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1307 (void) arg;
1308 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1310 dsl_scan_done(scn, B_FALSE, tx);
1311 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1312 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1316 dsl_scan_cancel(dsl_pool_t *dp)
1318 if (dsl_errorscrubbing(dp)) {
1319 return (dsl_sync_task(spa_name(dp->dp_spa),
1320 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1321 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1323 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1324 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1327 static int
1328 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1330 pool_scrub_cmd_t *cmd = arg;
1331 dsl_pool_t *dp = dmu_tx_pool(tx);
1332 dsl_scan_t *scn = dp->dp_scan;
1334 if (*cmd == POOL_SCRUB_PAUSE) {
1335 /* can't pause a scrub when there is no in-progress scrub */
1336 if (!dsl_scan_scrubbing(dp))
1337 return (SET_ERROR(ENOENT));
1339 /* can't pause a paused scrub */
1340 if (dsl_scan_is_paused_scrub(scn))
1341 return (SET_ERROR(EBUSY));
1342 } else if (*cmd != POOL_SCRUB_NORMAL) {
1343 return (SET_ERROR(ENOTSUP));
1346 return (0);
1349 static void
1350 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1352 pool_scrub_cmd_t *cmd = arg;
1353 dsl_pool_t *dp = dmu_tx_pool(tx);
1354 spa_t *spa = dp->dp_spa;
1355 dsl_scan_t *scn = dp->dp_scan;
1357 if (*cmd == POOL_SCRUB_PAUSE) {
1358 /* can't pause a scrub when there is no in-progress scrub */
1359 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1360 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1361 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1362 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1363 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1364 spa_notify_waiters(spa);
1365 } else {
1366 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1367 if (dsl_scan_is_paused_scrub(scn)) {
1369 * We need to keep track of how much time we spend
1370 * paused per pass so that we can adjust the scrub rate
1371 * shown in the output of 'zpool status'
1373 spa->spa_scan_pass_scrub_spent_paused +=
1374 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1375 spa->spa_scan_pass_scrub_pause = 0;
1376 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1377 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1378 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1384 * Set scrub pause/resume state if it makes sense to do so
1387 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1389 if (dsl_errorscrubbing(dp)) {
1390 return (dsl_sync_task(spa_name(dp->dp_spa),
1391 dsl_errorscrub_pause_resume_check,
1392 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1393 ZFS_SPACE_CHECK_RESERVED));
1395 return (dsl_sync_task(spa_name(dp->dp_spa),
1396 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1397 ZFS_SPACE_CHECK_RESERVED));
1401 /* start a new scan, or restart an existing one. */
1402 void
1403 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1405 if (txg == 0) {
1406 dmu_tx_t *tx;
1407 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1408 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1410 txg = dmu_tx_get_txg(tx);
1411 dp->dp_scan->scn_restart_txg = txg;
1412 dmu_tx_commit(tx);
1413 } else {
1414 dp->dp_scan->scn_restart_txg = txg;
1416 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1417 dp->dp_spa->spa_name, (longlong_t)txg);
1420 void
1421 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1423 zio_free(dp->dp_spa, txg, bp);
1426 void
1427 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1429 ASSERT(dsl_pool_sync_context(dp));
1430 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1433 static int
1434 scan_ds_queue_compare(const void *a, const void *b)
1436 const scan_ds_t *sds_a = a, *sds_b = b;
1438 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1439 return (-1);
1440 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1441 return (0);
1442 return (1);
1445 static void
1446 scan_ds_queue_clear(dsl_scan_t *scn)
1448 void *cookie = NULL;
1449 scan_ds_t *sds;
1450 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1451 kmem_free(sds, sizeof (*sds));
1455 static boolean_t
1456 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1458 scan_ds_t srch, *sds;
1460 srch.sds_dsobj = dsobj;
1461 sds = avl_find(&scn->scn_queue, &srch, NULL);
1462 if (sds != NULL && txg != NULL)
1463 *txg = sds->sds_txg;
1464 return (sds != NULL);
1467 static void
1468 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1470 scan_ds_t *sds;
1471 avl_index_t where;
1473 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1474 sds->sds_dsobj = dsobj;
1475 sds->sds_txg = txg;
1477 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1478 avl_insert(&scn->scn_queue, sds, where);
1481 static void
1482 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1484 scan_ds_t srch, *sds;
1486 srch.sds_dsobj = dsobj;
1488 sds = avl_find(&scn->scn_queue, &srch, NULL);
1489 VERIFY(sds != NULL);
1490 avl_remove(&scn->scn_queue, sds);
1491 kmem_free(sds, sizeof (*sds));
1494 static void
1495 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1497 dsl_pool_t *dp = scn->scn_dp;
1498 spa_t *spa = dp->dp_spa;
1499 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1500 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1502 ASSERT0(scn->scn_queues_pending);
1503 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1505 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1506 scn->scn_phys.scn_queue_obj, tx));
1507 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1508 DMU_OT_NONE, 0, tx);
1509 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1510 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1511 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1512 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1513 sds->sds_txg, tx));
1518 * Computes the memory limit state that we're currently in. A sorted scan
1519 * needs quite a bit of memory to hold the sorting queue, so we need to
1520 * reasonably constrain the size so it doesn't impact overall system
1521 * performance. We compute two limits:
1522 * 1) Hard memory limit: if the amount of memory used by the sorting
1523 * queues on a pool gets above this value, we stop the metadata
1524 * scanning portion and start issuing the queued up and sorted
1525 * I/Os to reduce memory usage.
1526 * This limit is calculated as a fraction of physmem (by default 5%).
1527 * We constrain the lower bound of the hard limit to an absolute
1528 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1529 * the upper bound to 5% of the total pool size - no chance we'll
1530 * ever need that much memory, but just to keep the value in check.
1531 * 2) Soft memory limit: once we hit the hard memory limit, we start
1532 * issuing I/O to reduce queue memory usage, but we don't want to
1533 * completely empty out the queues, since we might be able to find I/Os
1534 * that will fill in the gaps of our non-sequential IOs at some point
1535 * in the future. So we stop the issuing of I/Os once the amount of
1536 * memory used drops below the soft limit (at which point we stop issuing
1537 * I/O and start scanning metadata again).
1539 * This limit is calculated by subtracting a fraction of the hard
1540 * limit from the hard limit. By default this fraction is 5%, so
1541 * the soft limit is 95% of the hard limit. We cap the size of the
1542 * difference between the hard and soft limits at an absolute
1543 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1544 * sufficient to not cause too frequent switching between the
1545 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1546 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1547 * that should take at least a decent fraction of a second).
1549 static boolean_t
1550 dsl_scan_should_clear(dsl_scan_t *scn)
1552 spa_t *spa = scn->scn_dp->dp_spa;
1553 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1554 uint64_t alloc, mlim_hard, mlim_soft, mused;
1556 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1557 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1558 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1560 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1561 zfs_scan_mem_lim_min);
1562 mlim_hard = MIN(mlim_hard, alloc / 20);
1563 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1564 zfs_scan_mem_lim_soft_max);
1565 mused = 0;
1566 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1567 vdev_t *tvd = rvd->vdev_child[i];
1568 dsl_scan_io_queue_t *queue;
1570 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1571 queue = tvd->vdev_scan_io_queue;
1572 if (queue != NULL) {
1574 * # of extents in exts_by_addr = # in exts_by_size.
1575 * B-tree efficiency is ~75%, but can be as low as 50%.
1577 mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1578 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1579 3 / 2) + queue->q_sio_memused;
1581 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1584 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1586 if (mused == 0)
1587 ASSERT0(scn->scn_queues_pending);
1590 * If we are above our hard limit, we need to clear out memory.
1591 * If we are below our soft limit, we need to accumulate sequential IOs.
1592 * Otherwise, we should keep doing whatever we are currently doing.
1594 if (mused >= mlim_hard)
1595 return (B_TRUE);
1596 else if (mused < mlim_soft)
1597 return (B_FALSE);
1598 else
1599 return (scn->scn_clearing);
1602 static boolean_t
1603 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1605 /* we never skip user/group accounting objects */
1606 if (zb && (int64_t)zb->zb_object < 0)
1607 return (B_FALSE);
1609 if (scn->scn_suspending)
1610 return (B_TRUE); /* we're already suspending */
1612 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1613 return (B_FALSE); /* we're resuming */
1615 /* We only know how to resume from level-0 and objset blocks. */
1616 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1617 return (B_FALSE);
1620 * We suspend if:
1621 * - we have scanned for at least the minimum time (default 1 sec
1622 * for scrub, 3 sec for resilver), and either we have sufficient
1623 * dirty data that we are starting to write more quickly
1624 * (default 30%), someone is explicitly waiting for this txg
1625 * to complete, or we have used up all of the time in the txg
1626 * timeout (default 5 sec).
1627 * or
1628 * - the spa is shutting down because this pool is being exported
1629 * or the machine is rebooting.
1630 * or
1631 * - the scan queue has reached its memory use limit
1633 uint64_t curr_time_ns = gethrtime();
1634 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1635 uint64_t sync_time_ns = curr_time_ns -
1636 scn->scn_dp->dp_spa->spa_sync_starttime;
1637 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1638 zfs_vdev_async_write_active_min_dirty_percent / 100;
1639 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1640 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1642 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1643 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1644 txg_sync_waiting(scn->scn_dp) ||
1645 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1646 spa_shutting_down(scn->scn_dp->dp_spa) ||
1647 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1648 !ddt_walk_ready(scn->scn_dp->dp_spa)) {
1649 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1650 dprintf("suspending at first available bookmark "
1651 "%llx/%llx/%llx/%llx\n",
1652 (longlong_t)zb->zb_objset,
1653 (longlong_t)zb->zb_object,
1654 (longlong_t)zb->zb_level,
1655 (longlong_t)zb->zb_blkid);
1656 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1657 zb->zb_objset, 0, 0, 0);
1658 } else if (zb != NULL) {
1659 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1660 (longlong_t)zb->zb_objset,
1661 (longlong_t)zb->zb_object,
1662 (longlong_t)zb->zb_level,
1663 (longlong_t)zb->zb_blkid);
1664 scn->scn_phys.scn_bookmark = *zb;
1665 } else {
1666 #ifdef ZFS_DEBUG
1667 dsl_scan_phys_t *scnp = &scn->scn_phys;
1668 dprintf("suspending at at DDT bookmark "
1669 "%llx/%llx/%llx/%llx\n",
1670 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1671 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1672 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1673 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1674 #endif
1676 scn->scn_suspending = B_TRUE;
1677 return (B_TRUE);
1679 return (B_FALSE);
1682 static boolean_t
1683 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1686 * We suspend if:
1687 * - we have scrubbed for at least the minimum time (default 1 sec
1688 * for error scrub), someone is explicitly waiting for this txg
1689 * to complete, or we have used up all of the time in the txg
1690 * timeout (default 5 sec).
1691 * or
1692 * - the spa is shutting down because this pool is being exported
1693 * or the machine is rebooting.
1695 uint64_t curr_time_ns = gethrtime();
1696 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1697 uint64_t sync_time_ns = curr_time_ns -
1698 scn->scn_dp->dp_spa->spa_sync_starttime;
1699 int mintime = zfs_scrub_min_time_ms;
1701 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1702 (txg_sync_waiting(scn->scn_dp) ||
1703 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1704 spa_shutting_down(scn->scn_dp->dp_spa)) {
1705 if (zb) {
1706 dprintf("error scrub suspending at bookmark "
1707 "%llx/%llx/%llx/%llx\n",
1708 (longlong_t)zb->zb_objset,
1709 (longlong_t)zb->zb_object,
1710 (longlong_t)zb->zb_level,
1711 (longlong_t)zb->zb_blkid);
1713 return (B_TRUE);
1715 return (B_FALSE);
1718 typedef struct zil_scan_arg {
1719 dsl_pool_t *zsa_dp;
1720 zil_header_t *zsa_zh;
1721 } zil_scan_arg_t;
1723 static int
1724 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1725 uint64_t claim_txg)
1727 (void) zilog;
1728 zil_scan_arg_t *zsa = arg;
1729 dsl_pool_t *dp = zsa->zsa_dp;
1730 dsl_scan_t *scn = dp->dp_scan;
1731 zil_header_t *zh = zsa->zsa_zh;
1732 zbookmark_phys_t zb;
1734 ASSERT(!BP_IS_REDACTED(bp));
1735 if (BP_IS_HOLE(bp) ||
1736 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1737 return (0);
1740 * One block ("stubby") can be allocated a long time ago; we
1741 * want to visit that one because it has been allocated
1742 * (on-disk) even if it hasn't been claimed (even though for
1743 * scrub there's nothing to do to it).
1745 if (claim_txg == 0 &&
1746 BP_GET_LOGICAL_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1747 return (0);
1749 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1750 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1752 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1753 return (0);
1756 static int
1757 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1758 uint64_t claim_txg)
1760 (void) zilog;
1761 if (lrc->lrc_txtype == TX_WRITE) {
1762 zil_scan_arg_t *zsa = arg;
1763 dsl_pool_t *dp = zsa->zsa_dp;
1764 dsl_scan_t *scn = dp->dp_scan;
1765 zil_header_t *zh = zsa->zsa_zh;
1766 const lr_write_t *lr = (const lr_write_t *)lrc;
1767 const blkptr_t *bp = &lr->lr_blkptr;
1768 zbookmark_phys_t zb;
1770 ASSERT(!BP_IS_REDACTED(bp));
1771 if (BP_IS_HOLE(bp) ||
1772 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1773 return (0);
1776 * birth can be < claim_txg if this record's txg is
1777 * already txg sync'ed (but this log block contains
1778 * other records that are not synced)
1780 if (claim_txg == 0 || BP_GET_LOGICAL_BIRTH(bp) < claim_txg)
1781 return (0);
1783 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1784 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1785 lr->lr_foid, ZB_ZIL_LEVEL,
1786 lr->lr_offset / BP_GET_LSIZE(bp));
1788 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1790 return (0);
1793 static void
1794 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1796 uint64_t claim_txg = zh->zh_claim_txg;
1797 zil_scan_arg_t zsa = { dp, zh };
1798 zilog_t *zilog;
1800 ASSERT(spa_writeable(dp->dp_spa));
1803 * We only want to visit blocks that have been claimed but not yet
1804 * replayed (or, in read-only mode, blocks that *would* be claimed).
1806 if (claim_txg == 0)
1807 return;
1809 zilog = zil_alloc(dp->dp_meta_objset, zh);
1811 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1812 claim_txg, B_FALSE);
1814 zil_free(zilog);
1818 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1819 * here is to sort the AVL tree by the order each block will be needed.
1821 static int
1822 scan_prefetch_queue_compare(const void *a, const void *b)
1824 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1825 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1826 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1828 return (zbookmark_compare(spc_a->spc_datablkszsec,
1829 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1830 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1833 static void
1834 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1836 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1837 zfs_refcount_destroy(&spc->spc_refcnt);
1838 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1842 static scan_prefetch_ctx_t *
1843 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1845 scan_prefetch_ctx_t *spc;
1847 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1848 zfs_refcount_create(&spc->spc_refcnt);
1849 zfs_refcount_add(&spc->spc_refcnt, tag);
1850 spc->spc_scn = scn;
1851 if (dnp != NULL) {
1852 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1853 spc->spc_indblkshift = dnp->dn_indblkshift;
1854 spc->spc_root = B_FALSE;
1855 } else {
1856 spc->spc_datablkszsec = 0;
1857 spc->spc_indblkshift = 0;
1858 spc->spc_root = B_TRUE;
1861 return (spc);
1864 static void
1865 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1867 zfs_refcount_add(&spc->spc_refcnt, tag);
1870 static void
1871 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1873 spa_t *spa = scn->scn_dp->dp_spa;
1874 void *cookie = NULL;
1875 scan_prefetch_issue_ctx_t *spic = NULL;
1877 mutex_enter(&spa->spa_scrub_lock);
1878 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1879 &cookie)) != NULL) {
1880 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1881 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1883 mutex_exit(&spa->spa_scrub_lock);
1886 static boolean_t
1887 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1888 const zbookmark_phys_t *zb)
1890 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1891 dnode_phys_t tmp_dnp;
1892 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1894 if (zb->zb_objset != last_zb->zb_objset)
1895 return (B_TRUE);
1896 if ((int64_t)zb->zb_object < 0)
1897 return (B_FALSE);
1899 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1900 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1902 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1903 return (B_TRUE);
1905 return (B_FALSE);
1908 static void
1909 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1911 avl_index_t idx;
1912 dsl_scan_t *scn = spc->spc_scn;
1913 spa_t *spa = scn->scn_dp->dp_spa;
1914 scan_prefetch_issue_ctx_t *spic;
1916 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1917 return;
1919 if (BP_IS_HOLE(bp) ||
1920 BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1921 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1922 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1923 return;
1925 if (dsl_scan_check_prefetch_resume(spc, zb))
1926 return;
1928 scan_prefetch_ctx_add_ref(spc, scn);
1929 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1930 spic->spic_spc = spc;
1931 spic->spic_bp = *bp;
1932 spic->spic_zb = *zb;
1935 * Add the IO to the queue of blocks to prefetch. This allows us to
1936 * prioritize blocks that we will need first for the main traversal
1937 * thread.
1939 mutex_enter(&spa->spa_scrub_lock);
1940 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1941 /* this block is already queued for prefetch */
1942 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1943 scan_prefetch_ctx_rele(spc, scn);
1944 mutex_exit(&spa->spa_scrub_lock);
1945 return;
1948 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1949 cv_broadcast(&spa->spa_scrub_io_cv);
1950 mutex_exit(&spa->spa_scrub_lock);
1953 static void
1954 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1955 uint64_t objset, uint64_t object)
1957 int i;
1958 zbookmark_phys_t zb;
1959 scan_prefetch_ctx_t *spc;
1961 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1962 return;
1964 SET_BOOKMARK(&zb, objset, object, 0, 0);
1966 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1968 for (i = 0; i < dnp->dn_nblkptr; i++) {
1969 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1970 zb.zb_blkid = i;
1971 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1974 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1975 zb.zb_level = 0;
1976 zb.zb_blkid = DMU_SPILL_BLKID;
1977 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1980 scan_prefetch_ctx_rele(spc, FTAG);
1983 static void
1984 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1985 arc_buf_t *buf, void *private)
1987 (void) zio;
1988 scan_prefetch_ctx_t *spc = private;
1989 dsl_scan_t *scn = spc->spc_scn;
1990 spa_t *spa = scn->scn_dp->dp_spa;
1992 /* broadcast that the IO has completed for rate limiting purposes */
1993 mutex_enter(&spa->spa_scrub_lock);
1994 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1995 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1996 cv_broadcast(&spa->spa_scrub_io_cv);
1997 mutex_exit(&spa->spa_scrub_lock);
1999 /* if there was an error or we are done prefetching, just cleanup */
2000 if (buf == NULL || scn->scn_prefetch_stop)
2001 goto out;
2003 if (BP_GET_LEVEL(bp) > 0) {
2004 int i;
2005 blkptr_t *cbp;
2006 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2007 zbookmark_phys_t czb;
2009 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2010 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2011 zb->zb_level - 1, zb->zb_blkid * epb + i);
2012 dsl_scan_prefetch(spc, cbp, &czb);
2014 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2015 dnode_phys_t *cdnp;
2016 int i;
2017 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2019 for (i = 0, cdnp = buf->b_data; i < epb;
2020 i += cdnp->dn_extra_slots + 1,
2021 cdnp += cdnp->dn_extra_slots + 1) {
2022 dsl_scan_prefetch_dnode(scn, cdnp,
2023 zb->zb_objset, zb->zb_blkid * epb + i);
2025 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2026 objset_phys_t *osp = buf->b_data;
2028 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2029 zb->zb_objset, DMU_META_DNODE_OBJECT);
2031 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2032 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2033 dsl_scan_prefetch_dnode(scn,
2034 &osp->os_projectused_dnode, zb->zb_objset,
2035 DMU_PROJECTUSED_OBJECT);
2037 dsl_scan_prefetch_dnode(scn,
2038 &osp->os_groupused_dnode, zb->zb_objset,
2039 DMU_GROUPUSED_OBJECT);
2040 dsl_scan_prefetch_dnode(scn,
2041 &osp->os_userused_dnode, zb->zb_objset,
2042 DMU_USERUSED_OBJECT);
2046 out:
2047 if (buf != NULL)
2048 arc_buf_destroy(buf, private);
2049 scan_prefetch_ctx_rele(spc, scn);
2052 static void
2053 dsl_scan_prefetch_thread(void *arg)
2055 dsl_scan_t *scn = arg;
2056 spa_t *spa = scn->scn_dp->dp_spa;
2057 scan_prefetch_issue_ctx_t *spic;
2059 /* loop until we are told to stop */
2060 while (!scn->scn_prefetch_stop) {
2061 arc_flags_t flags = ARC_FLAG_NOWAIT |
2062 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2063 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2065 mutex_enter(&spa->spa_scrub_lock);
2068 * Wait until we have an IO to issue and are not above our
2069 * maximum in flight limit.
2071 while (!scn->scn_prefetch_stop &&
2072 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2073 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2074 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2077 /* recheck if we should stop since we waited for the cv */
2078 if (scn->scn_prefetch_stop) {
2079 mutex_exit(&spa->spa_scrub_lock);
2080 break;
2083 /* remove the prefetch IO from the tree */
2084 spic = avl_first(&scn->scn_prefetch_queue);
2085 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2086 avl_remove(&scn->scn_prefetch_queue, spic);
2088 mutex_exit(&spa->spa_scrub_lock);
2090 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2091 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2092 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2093 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2094 zio_flags |= ZIO_FLAG_RAW;
2097 /* We don't need data L1 buffer since we do not prefetch L0. */
2098 blkptr_t *bp = &spic->spic_bp;
2099 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2100 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2101 flags |= ARC_FLAG_NO_BUF;
2103 /* issue the prefetch asynchronously */
2104 (void) arc_read(scn->scn_zio_root, spa, bp,
2105 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2106 zio_flags, &flags, &spic->spic_zb);
2108 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2111 ASSERT(scn->scn_prefetch_stop);
2113 /* free any prefetches we didn't get to complete */
2114 mutex_enter(&spa->spa_scrub_lock);
2115 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2116 avl_remove(&scn->scn_prefetch_queue, spic);
2117 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2118 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2120 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2121 mutex_exit(&spa->spa_scrub_lock);
2124 static boolean_t
2125 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2126 const zbookmark_phys_t *zb)
2129 * We never skip over user/group accounting objects (obj<0)
2131 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2132 (int64_t)zb->zb_object >= 0) {
2134 * If we already visited this bp & everything below (in
2135 * a prior txg sync), don't bother doing it again.
2137 if (zbookmark_subtree_completed(dnp, zb,
2138 &scn->scn_phys.scn_bookmark))
2139 return (B_TRUE);
2142 * If we found the block we're trying to resume from, or
2143 * we went past it, zero it out to indicate that it's OK
2144 * to start checking for suspending again.
2146 if (zbookmark_subtree_tbd(dnp, zb,
2147 &scn->scn_phys.scn_bookmark)) {
2148 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2149 (longlong_t)zb->zb_objset,
2150 (longlong_t)zb->zb_object,
2151 (longlong_t)zb->zb_level,
2152 (longlong_t)zb->zb_blkid);
2153 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2156 return (B_FALSE);
2159 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2160 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2161 dmu_objset_type_t ostype, dmu_tx_t *tx);
2162 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2163 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2164 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2167 * Return nonzero on i/o error.
2168 * Return new buf to write out in *bufp.
2170 inline __attribute__((always_inline)) static int
2171 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2172 dnode_phys_t *dnp, const blkptr_t *bp,
2173 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2175 dsl_pool_t *dp = scn->scn_dp;
2176 spa_t *spa = dp->dp_spa;
2177 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2178 int err;
2180 ASSERT(!BP_IS_REDACTED(bp));
2183 * There is an unlikely case of encountering dnodes with contradicting
2184 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2185 * or modified before commit 4254acb was merged. As it is not possible
2186 * to know which of the two is correct, report an error.
2188 if (dnp != NULL &&
2189 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2190 scn->scn_phys.scn_errors++;
2191 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2192 return (SET_ERROR(EINVAL));
2195 if (BP_GET_LEVEL(bp) > 0) {
2196 arc_flags_t flags = ARC_FLAG_WAIT;
2197 int i;
2198 blkptr_t *cbp;
2199 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2200 arc_buf_t *buf;
2202 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2203 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2204 if (err) {
2205 scn->scn_phys.scn_errors++;
2206 return (err);
2208 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2209 zbookmark_phys_t czb;
2211 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2212 zb->zb_level - 1,
2213 zb->zb_blkid * epb + i);
2214 dsl_scan_visitbp(cbp, &czb, dnp,
2215 ds, scn, ostype, tx);
2217 arc_buf_destroy(buf, &buf);
2218 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2219 arc_flags_t flags = ARC_FLAG_WAIT;
2220 dnode_phys_t *cdnp;
2221 int i;
2222 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2223 arc_buf_t *buf;
2225 if (BP_IS_PROTECTED(bp)) {
2226 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2227 zio_flags |= ZIO_FLAG_RAW;
2230 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2231 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2232 if (err) {
2233 scn->scn_phys.scn_errors++;
2234 return (err);
2236 for (i = 0, cdnp = buf->b_data; i < epb;
2237 i += cdnp->dn_extra_slots + 1,
2238 cdnp += cdnp->dn_extra_slots + 1) {
2239 dsl_scan_visitdnode(scn, ds, ostype,
2240 cdnp, zb->zb_blkid * epb + i, tx);
2243 arc_buf_destroy(buf, &buf);
2244 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2245 arc_flags_t flags = ARC_FLAG_WAIT;
2246 objset_phys_t *osp;
2247 arc_buf_t *buf;
2249 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2250 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2251 if (err) {
2252 scn->scn_phys.scn_errors++;
2253 return (err);
2256 osp = buf->b_data;
2258 dsl_scan_visitdnode(scn, ds, osp->os_type,
2259 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2261 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2263 * We also always visit user/group/project accounting
2264 * objects, and never skip them, even if we are
2265 * suspending. This is necessary so that the
2266 * space deltas from this txg get integrated.
2268 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2269 dsl_scan_visitdnode(scn, ds, osp->os_type,
2270 &osp->os_projectused_dnode,
2271 DMU_PROJECTUSED_OBJECT, tx);
2272 dsl_scan_visitdnode(scn, ds, osp->os_type,
2273 &osp->os_groupused_dnode,
2274 DMU_GROUPUSED_OBJECT, tx);
2275 dsl_scan_visitdnode(scn, ds, osp->os_type,
2276 &osp->os_userused_dnode,
2277 DMU_USERUSED_OBJECT, tx);
2279 arc_buf_destroy(buf, &buf);
2280 } else if (!zfs_blkptr_verify(spa, bp,
2281 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2283 * Sanity check the block pointer contents, this is handled
2284 * by arc_read() for the cases above.
2286 scn->scn_phys.scn_errors++;
2287 spa_log_error(spa, zb, BP_GET_LOGICAL_BIRTH(bp));
2288 return (SET_ERROR(EINVAL));
2291 return (0);
2294 inline __attribute__((always_inline)) static void
2295 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2296 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2297 uint64_t object, dmu_tx_t *tx)
2299 int j;
2301 for (j = 0; j < dnp->dn_nblkptr; j++) {
2302 zbookmark_phys_t czb;
2304 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2305 dnp->dn_nlevels - 1, j);
2306 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2307 &czb, dnp, ds, scn, ostype, tx);
2310 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2311 zbookmark_phys_t czb;
2312 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2313 0, DMU_SPILL_BLKID);
2314 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2315 &czb, dnp, ds, scn, ostype, tx);
2320 * The arguments are in this order because mdb can only print the
2321 * first 5; we want them to be useful.
2323 static void
2324 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2325 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2326 dmu_objset_type_t ostype, dmu_tx_t *tx)
2328 dsl_pool_t *dp = scn->scn_dp;
2330 if (dsl_scan_check_suspend(scn, zb))
2331 return;
2333 if (dsl_scan_check_resume(scn, dnp, zb))
2334 return;
2336 scn->scn_visited_this_txg++;
2338 if (BP_IS_HOLE(bp)) {
2339 scn->scn_holes_this_txg++;
2340 return;
2343 if (BP_IS_REDACTED(bp)) {
2344 ASSERT(dsl_dataset_feature_is_active(ds,
2345 SPA_FEATURE_REDACTED_DATASETS));
2346 return;
2350 * Check if this block contradicts any filesystem flags.
2352 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2353 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2354 ASSERT(dsl_dataset_feature_is_active(ds, f));
2356 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2357 if (f != SPA_FEATURE_NONE)
2358 ASSERT(dsl_dataset_feature_is_active(ds, f));
2360 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2361 if (f != SPA_FEATURE_NONE)
2362 ASSERT(dsl_dataset_feature_is_active(ds, f));
2364 if (BP_GET_LOGICAL_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2365 scn->scn_lt_min_this_txg++;
2366 return;
2369 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2370 return;
2373 * If dsl_scan_ddt() has already visited this block, it will have
2374 * already done any translations or scrubbing, so don't call the
2375 * callback again.
2377 if (ddt_class_contains(dp->dp_spa,
2378 scn->scn_phys.scn_ddt_class_max, bp)) {
2379 scn->scn_ddt_contained_this_txg++;
2380 return;
2384 * If this block is from the future (after cur_max_txg), then we
2385 * are doing this on behalf of a deleted snapshot, and we will
2386 * revisit the future block on the next pass of this dataset.
2387 * Don't scan it now unless we need to because something
2388 * under it was modified.
2390 if (BP_GET_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2391 scn->scn_gt_max_this_txg++;
2392 return;
2395 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2398 static void
2399 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2400 dmu_tx_t *tx)
2402 zbookmark_phys_t zb;
2403 scan_prefetch_ctx_t *spc;
2405 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2406 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2408 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2409 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2410 zb.zb_objset, 0, 0, 0);
2411 } else {
2412 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2415 scn->scn_objsets_visited_this_txg++;
2417 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2418 dsl_scan_prefetch(spc, bp, &zb);
2419 scan_prefetch_ctx_rele(spc, FTAG);
2421 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2423 dprintf_ds(ds, "finished scan%s", "");
2426 static void
2427 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2429 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2430 if (ds->ds_is_snapshot) {
2432 * Note:
2433 * - scn_cur_{min,max}_txg stays the same.
2434 * - Setting the flag is not really necessary if
2435 * scn_cur_max_txg == scn_max_txg, because there
2436 * is nothing after this snapshot that we care
2437 * about. However, we set it anyway and then
2438 * ignore it when we retraverse it in
2439 * dsl_scan_visitds().
2441 scn_phys->scn_bookmark.zb_objset =
2442 dsl_dataset_phys(ds)->ds_next_snap_obj;
2443 zfs_dbgmsg("destroying ds %llu on %s; currently "
2444 "traversing; reset zb_objset to %llu",
2445 (u_longlong_t)ds->ds_object,
2446 ds->ds_dir->dd_pool->dp_spa->spa_name,
2447 (u_longlong_t)dsl_dataset_phys(ds)->
2448 ds_next_snap_obj);
2449 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2450 } else {
2451 SET_BOOKMARK(&scn_phys->scn_bookmark,
2452 ZB_DESTROYED_OBJSET, 0, 0, 0);
2453 zfs_dbgmsg("destroying ds %llu on %s; currently "
2454 "traversing; reset bookmark to -1,0,0,0",
2455 (u_longlong_t)ds->ds_object,
2456 ds->ds_dir->dd_pool->dp_spa->spa_name);
2462 * Invoked when a dataset is destroyed. We need to make sure that:
2464 * 1) If it is the dataset that was currently being scanned, we write
2465 * a new dsl_scan_phys_t and marking the objset reference in it
2466 * as destroyed.
2467 * 2) Remove it from the work queue, if it was present.
2469 * If the dataset was actually a snapshot, instead of marking the dataset
2470 * as destroyed, we instead substitute the next snapshot in line.
2472 void
2473 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2475 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2476 dsl_scan_t *scn = dp->dp_scan;
2477 uint64_t mintxg;
2479 if (!dsl_scan_is_running(scn))
2480 return;
2482 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2483 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2485 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2486 scan_ds_queue_remove(scn, ds->ds_object);
2487 if (ds->ds_is_snapshot)
2488 scan_ds_queue_insert(scn,
2489 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2492 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2493 ds->ds_object, &mintxg) == 0) {
2494 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2495 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2496 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2497 if (ds->ds_is_snapshot) {
2499 * We keep the same mintxg; it could be >
2500 * ds_creation_txg if the previous snapshot was
2501 * deleted too.
2503 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2504 scn->scn_phys.scn_queue_obj,
2505 dsl_dataset_phys(ds)->ds_next_snap_obj,
2506 mintxg, tx) == 0);
2507 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2508 "replacing with %llu",
2509 (u_longlong_t)ds->ds_object,
2510 dp->dp_spa->spa_name,
2511 (u_longlong_t)dsl_dataset_phys(ds)->
2512 ds_next_snap_obj);
2513 } else {
2514 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2515 "removing",
2516 (u_longlong_t)ds->ds_object,
2517 dp->dp_spa->spa_name);
2522 * dsl_scan_sync() should be called after this, and should sync
2523 * out our changed state, but just to be safe, do it here.
2525 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2528 static void
2529 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2531 if (scn_bookmark->zb_objset == ds->ds_object) {
2532 scn_bookmark->zb_objset =
2533 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2534 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2535 "reset zb_objset to %llu",
2536 (u_longlong_t)ds->ds_object,
2537 ds->ds_dir->dd_pool->dp_spa->spa_name,
2538 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2543 * Called when a dataset is snapshotted. If we were currently traversing
2544 * this snapshot, we reset our bookmark to point at the newly created
2545 * snapshot. We also modify our work queue to remove the old snapshot and
2546 * replace with the new one.
2548 void
2549 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2551 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2552 dsl_scan_t *scn = dp->dp_scan;
2553 uint64_t mintxg;
2555 if (!dsl_scan_is_running(scn))
2556 return;
2558 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2560 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2561 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2563 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2564 scan_ds_queue_remove(scn, ds->ds_object);
2565 scan_ds_queue_insert(scn,
2566 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2569 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2570 ds->ds_object, &mintxg) == 0) {
2571 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2572 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2573 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2574 scn->scn_phys.scn_queue_obj,
2575 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2576 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2577 "replacing with %llu",
2578 (u_longlong_t)ds->ds_object,
2579 dp->dp_spa->spa_name,
2580 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2583 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2586 static void
2587 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2588 zbookmark_phys_t *scn_bookmark)
2590 if (scn_bookmark->zb_objset == ds1->ds_object) {
2591 scn_bookmark->zb_objset = ds2->ds_object;
2592 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2593 "reset zb_objset to %llu",
2594 (u_longlong_t)ds1->ds_object,
2595 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2596 (u_longlong_t)ds2->ds_object);
2597 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2598 scn_bookmark->zb_objset = ds1->ds_object;
2599 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2600 "reset zb_objset to %llu",
2601 (u_longlong_t)ds2->ds_object,
2602 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2603 (u_longlong_t)ds1->ds_object);
2608 * Called when an origin dataset and its clone are swapped. If we were
2609 * currently traversing the dataset, we need to switch to traversing the
2610 * newly promoted clone.
2612 void
2613 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2615 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2616 dsl_scan_t *scn = dp->dp_scan;
2617 uint64_t mintxg1, mintxg2;
2618 boolean_t ds1_queued, ds2_queued;
2620 if (!dsl_scan_is_running(scn))
2621 return;
2623 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2624 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2627 * Handle the in-memory scan queue.
2629 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2630 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2632 /* Sanity checking. */
2633 if (ds1_queued) {
2634 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2635 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2637 if (ds2_queued) {
2638 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2639 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2642 if (ds1_queued && ds2_queued) {
2644 * If both are queued, we don't need to do anything.
2645 * The swapping code below would not handle this case correctly,
2646 * since we can't insert ds2 if it is already there. That's
2647 * because scan_ds_queue_insert() prohibits a duplicate insert
2648 * and panics.
2650 } else if (ds1_queued) {
2651 scan_ds_queue_remove(scn, ds1->ds_object);
2652 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2653 } else if (ds2_queued) {
2654 scan_ds_queue_remove(scn, ds2->ds_object);
2655 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2659 * Handle the on-disk scan queue.
2660 * The on-disk state is an out-of-date version of the in-memory state,
2661 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2662 * be different. Therefore we need to apply the swap logic to the
2663 * on-disk state independently of the in-memory state.
2665 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2666 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2667 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2668 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2670 /* Sanity checking. */
2671 if (ds1_queued) {
2672 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2673 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2675 if (ds2_queued) {
2676 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2677 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2680 if (ds1_queued && ds2_queued) {
2682 * If both are queued, we don't need to do anything.
2683 * Alternatively, we could check for EEXIST from
2684 * zap_add_int_key() and back out to the original state, but
2685 * that would be more work than checking for this case upfront.
2687 } else if (ds1_queued) {
2688 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2689 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2690 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2691 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2692 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2693 "replacing with %llu",
2694 (u_longlong_t)ds1->ds_object,
2695 dp->dp_spa->spa_name,
2696 (u_longlong_t)ds2->ds_object);
2697 } else if (ds2_queued) {
2698 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2699 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2700 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2701 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2702 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2703 "replacing with %llu",
2704 (u_longlong_t)ds2->ds_object,
2705 dp->dp_spa->spa_name,
2706 (u_longlong_t)ds1->ds_object);
2709 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2712 static int
2713 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2715 uint64_t originobj = *(uint64_t *)arg;
2716 dsl_dataset_t *ds;
2717 int err;
2718 dsl_scan_t *scn = dp->dp_scan;
2720 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2721 return (0);
2723 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2724 if (err)
2725 return (err);
2727 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2728 dsl_dataset_t *prev;
2729 err = dsl_dataset_hold_obj(dp,
2730 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2732 dsl_dataset_rele(ds, FTAG);
2733 if (err)
2734 return (err);
2735 ds = prev;
2737 mutex_enter(&scn->scn_queue_lock);
2738 scan_ds_queue_insert(scn, ds->ds_object,
2739 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2740 mutex_exit(&scn->scn_queue_lock);
2741 dsl_dataset_rele(ds, FTAG);
2742 return (0);
2745 static void
2746 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2748 dsl_pool_t *dp = scn->scn_dp;
2749 dsl_dataset_t *ds;
2751 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2753 if (scn->scn_phys.scn_cur_min_txg >=
2754 scn->scn_phys.scn_max_txg) {
2756 * This can happen if this snapshot was created after the
2757 * scan started, and we already completed a previous snapshot
2758 * that was created after the scan started. This snapshot
2759 * only references blocks with:
2761 * birth < our ds_creation_txg
2762 * cur_min_txg is no less than ds_creation_txg.
2763 * We have already visited these blocks.
2764 * or
2765 * birth > scn_max_txg
2766 * The scan requested not to visit these blocks.
2768 * Subsequent snapshots (and clones) can reference our
2769 * blocks, or blocks with even higher birth times.
2770 * Therefore we do not need to visit them either,
2771 * so we do not add them to the work queue.
2773 * Note that checking for cur_min_txg >= cur_max_txg
2774 * is not sufficient, because in that case we may need to
2775 * visit subsequent snapshots. This happens when min_txg > 0,
2776 * which raises cur_min_txg. In this case we will visit
2777 * this dataset but skip all of its blocks, because the
2778 * rootbp's birth time is < cur_min_txg. Then we will
2779 * add the next snapshots/clones to the work queue.
2781 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2782 dsl_dataset_name(ds, dsname);
2783 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2784 "cur_min_txg (%llu) >= max_txg (%llu)",
2785 (longlong_t)dsobj, dsname,
2786 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2787 (longlong_t)scn->scn_phys.scn_max_txg);
2788 kmem_free(dsname, MAXNAMELEN);
2790 goto out;
2794 * Only the ZIL in the head (non-snapshot) is valid. Even though
2795 * snapshots can have ZIL block pointers (which may be the same
2796 * BP as in the head), they must be ignored. In addition, $ORIGIN
2797 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2798 * need to look for a ZIL in it either. So we traverse the ZIL here,
2799 * rather than in scan_recurse(), because the regular snapshot
2800 * block-sharing rules don't apply to it.
2802 if (!dsl_dataset_is_snapshot(ds) &&
2803 (dp->dp_origin_snap == NULL ||
2804 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2805 objset_t *os;
2806 if (dmu_objset_from_ds(ds, &os) != 0) {
2807 goto out;
2809 dsl_scan_zil(dp, &os->os_zil_header);
2813 * Iterate over the bps in this ds.
2815 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2816 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2817 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2818 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2820 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2821 dsl_dataset_name(ds, dsname);
2822 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2823 "suspending=%u",
2824 (longlong_t)dsobj, dsname,
2825 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2826 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2827 (int)scn->scn_suspending);
2828 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2830 if (scn->scn_suspending)
2831 goto out;
2834 * We've finished this pass over this dataset.
2838 * If we did not completely visit this dataset, do another pass.
2840 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2841 zfs_dbgmsg("incomplete pass on %s; visiting again",
2842 dp->dp_spa->spa_name);
2843 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2844 scan_ds_queue_insert(scn, ds->ds_object,
2845 scn->scn_phys.scn_cur_max_txg);
2846 goto out;
2850 * Add descendant datasets to work queue.
2852 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2853 scan_ds_queue_insert(scn,
2854 dsl_dataset_phys(ds)->ds_next_snap_obj,
2855 dsl_dataset_phys(ds)->ds_creation_txg);
2857 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2858 boolean_t usenext = B_FALSE;
2859 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2860 uint64_t count;
2862 * A bug in a previous version of the code could
2863 * cause upgrade_clones_cb() to not set
2864 * ds_next_snap_obj when it should, leading to a
2865 * missing entry. Therefore we can only use the
2866 * next_clones_obj when its count is correct.
2868 int err = zap_count(dp->dp_meta_objset,
2869 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2870 if (err == 0 &&
2871 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2872 usenext = B_TRUE;
2875 if (usenext) {
2876 zap_cursor_t zc;
2877 zap_attribute_t *za = zap_attribute_alloc();
2878 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2879 dsl_dataset_phys(ds)->ds_next_clones_obj);
2880 zap_cursor_retrieve(&zc, za) == 0;
2881 (void) zap_cursor_advance(&zc)) {
2882 scan_ds_queue_insert(scn,
2883 zfs_strtonum(za->za_name, NULL),
2884 dsl_dataset_phys(ds)->ds_creation_txg);
2886 zap_cursor_fini(&zc);
2887 zap_attribute_free(za);
2888 } else {
2889 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2890 enqueue_clones_cb, &ds->ds_object,
2891 DS_FIND_CHILDREN));
2895 out:
2896 dsl_dataset_rele(ds, FTAG);
2899 static int
2900 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2902 (void) arg;
2903 dsl_dataset_t *ds;
2904 int err;
2905 dsl_scan_t *scn = dp->dp_scan;
2907 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2908 if (err)
2909 return (err);
2911 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2912 dsl_dataset_t *prev;
2913 err = dsl_dataset_hold_obj(dp,
2914 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2915 if (err) {
2916 dsl_dataset_rele(ds, FTAG);
2917 return (err);
2921 * If this is a clone, we don't need to worry about it for now.
2923 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2924 dsl_dataset_rele(ds, FTAG);
2925 dsl_dataset_rele(prev, FTAG);
2926 return (0);
2928 dsl_dataset_rele(ds, FTAG);
2929 ds = prev;
2932 mutex_enter(&scn->scn_queue_lock);
2933 scan_ds_queue_insert(scn, ds->ds_object,
2934 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2935 mutex_exit(&scn->scn_queue_lock);
2936 dsl_dataset_rele(ds, FTAG);
2937 return (0);
2940 void
2941 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2942 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2944 (void) tx;
2945 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2946 blkptr_t bp;
2947 zbookmark_phys_t zb = { 0 };
2949 if (!dsl_scan_is_running(scn))
2950 return;
2953 * This function is special because it is the only thing
2954 * that can add scan_io_t's to the vdev scan queues from
2955 * outside dsl_scan_sync(). For the most part this is ok
2956 * as long as it is called from within syncing context.
2957 * However, dsl_scan_sync() expects that no new sio's will
2958 * be added between when all the work for a scan is done
2959 * and the next txg when the scan is actually marked as
2960 * completed. This check ensures we do not issue new sio's
2961 * during this period.
2963 if (scn->scn_done_txg != 0)
2964 return;
2966 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
2967 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2968 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
2970 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
2971 continue;
2972 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
2974 scn->scn_visited_this_txg++;
2975 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2980 * Scrub/dedup interaction.
2982 * If there are N references to a deduped block, we don't want to scrub it
2983 * N times -- ideally, we should scrub it exactly once.
2985 * We leverage the fact that the dde's replication class (ddt_class_t)
2986 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2987 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2989 * To prevent excess scrubbing, the scrub begins by walking the DDT
2990 * to find all blocks with refcnt > 1, and scrubs each of these once.
2991 * Since there are two replication classes which contain blocks with
2992 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2993 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2995 * There would be nothing more to say if a block's refcnt couldn't change
2996 * during a scrub, but of course it can so we must account for changes
2997 * in a block's replication class.
2999 * Here's an example of what can occur:
3001 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3002 * when visited during the top-down scrub phase, it will be scrubbed twice.
3003 * This negates our scrub optimization, but is otherwise harmless.
3005 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3006 * on each visit during the top-down scrub phase, it will never be scrubbed.
3007 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3008 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3009 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3010 * while a scrub is in progress, it scrubs the block right then.
3012 static void
3013 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3015 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3016 ddt_lightweight_entry_t ddlwe = {0};
3017 int error;
3018 uint64_t n = 0;
3020 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3021 ddt_t *ddt;
3023 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3024 break;
3025 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3026 (longlong_t)ddb->ddb_class,
3027 (longlong_t)ddb->ddb_type,
3028 (longlong_t)ddb->ddb_checksum,
3029 (longlong_t)ddb->ddb_cursor);
3031 /* There should be no pending changes to the dedup table */
3032 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3033 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3035 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3036 n++;
3038 if (dsl_scan_check_suspend(scn, NULL))
3039 break;
3042 if (error == EAGAIN) {
3043 dsl_scan_check_suspend(scn, NULL);
3044 error = 0;
3046 zfs_dbgmsg("waiting for ddt to become ready for scan "
3047 "on %s with class_max = %u; suspending=%u",
3048 scn->scn_dp->dp_spa->spa_name,
3049 (int)scn->scn_phys.scn_ddt_class_max,
3050 (int)scn->scn_suspending);
3051 } else
3052 zfs_dbgmsg("scanned %llu ddt entries on %s with "
3053 "class_max = %u; suspending=%u", (longlong_t)n,
3054 scn->scn_dp->dp_spa->spa_name,
3055 (int)scn->scn_phys.scn_ddt_class_max,
3056 (int)scn->scn_suspending);
3058 ASSERT(error == 0 || error == ENOENT);
3059 ASSERT(error != ENOENT ||
3060 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3063 static uint64_t
3064 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3066 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3067 if (ds->ds_is_snapshot)
3068 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3069 return (smt);
3072 static void
3073 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3075 scan_ds_t *sds;
3076 dsl_pool_t *dp = scn->scn_dp;
3078 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3079 scn->scn_phys.scn_ddt_class_max) {
3080 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3081 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3082 dsl_scan_ddt(scn, tx);
3083 if (scn->scn_suspending)
3084 return;
3087 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3088 /* First do the MOS & ORIGIN */
3090 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3091 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3092 dsl_scan_visit_rootbp(scn, NULL,
3093 &dp->dp_meta_rootbp, tx);
3094 if (scn->scn_suspending)
3095 return;
3097 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3098 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3099 enqueue_cb, NULL, DS_FIND_CHILDREN));
3100 } else {
3101 dsl_scan_visitds(scn,
3102 dp->dp_origin_snap->ds_object, tx);
3104 ASSERT(!scn->scn_suspending);
3105 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3106 ZB_DESTROYED_OBJSET) {
3107 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3109 * If we were suspended, continue from here. Note if the
3110 * ds we were suspended on was deleted, the zb_objset may
3111 * be -1, so we will skip this and find a new objset
3112 * below.
3114 dsl_scan_visitds(scn, dsobj, tx);
3115 if (scn->scn_suspending)
3116 return;
3120 * In case we suspended right at the end of the ds, zero the
3121 * bookmark so we don't think that we're still trying to resume.
3123 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3126 * Keep pulling things out of the dataset avl queue. Updates to the
3127 * persistent zap-object-as-queue happen only at checkpoints.
3129 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3130 dsl_dataset_t *ds;
3131 uint64_t dsobj = sds->sds_dsobj;
3132 uint64_t txg = sds->sds_txg;
3134 /* dequeue and free the ds from the queue */
3135 scan_ds_queue_remove(scn, dsobj);
3136 sds = NULL;
3138 /* set up min / max txg */
3139 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3140 if (txg != 0) {
3141 scn->scn_phys.scn_cur_min_txg =
3142 MAX(scn->scn_phys.scn_min_txg, txg);
3143 } else {
3144 scn->scn_phys.scn_cur_min_txg =
3145 MAX(scn->scn_phys.scn_min_txg,
3146 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3148 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3149 dsl_dataset_rele(ds, FTAG);
3151 dsl_scan_visitds(scn, dsobj, tx);
3152 if (scn->scn_suspending)
3153 return;
3156 /* No more objsets to fetch, we're done */
3157 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3158 ASSERT0(scn->scn_suspending);
3161 static uint64_t
3162 dsl_scan_count_data_disks(spa_t *spa)
3164 vdev_t *rvd = spa->spa_root_vdev;
3165 uint64_t i, leaves = 0;
3167 for (i = 0; i < rvd->vdev_children; i++) {
3168 vdev_t *vd = rvd->vdev_child[i];
3169 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3170 continue;
3171 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3173 return (leaves);
3176 static void
3177 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3179 int i;
3180 uint64_t cur_size = 0;
3182 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3183 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3186 q->q_total_zio_size_this_txg += cur_size;
3187 q->q_zios_this_txg++;
3190 static void
3191 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3192 uint64_t end)
3194 q->q_total_seg_size_this_txg += end - start;
3195 q->q_segs_this_txg++;
3198 static boolean_t
3199 scan_io_queue_check_suspend(dsl_scan_t *scn)
3201 /* See comment in dsl_scan_check_suspend() */
3202 uint64_t curr_time_ns = gethrtime();
3203 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3204 uint64_t sync_time_ns = curr_time_ns -
3205 scn->scn_dp->dp_spa->spa_sync_starttime;
3206 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3207 zfs_vdev_async_write_active_min_dirty_percent / 100;
3208 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3209 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3211 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3212 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3213 txg_sync_waiting(scn->scn_dp) ||
3214 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3215 spa_shutting_down(scn->scn_dp->dp_spa));
3219 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3220 * disk. This consumes the io_list and frees the scan_io_t's. This is
3221 * called when emptying queues, either when we're up against the memory
3222 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3223 * processing the list before we finished. Any sios that were not issued
3224 * will remain in the io_list.
3226 static boolean_t
3227 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3229 dsl_scan_t *scn = queue->q_scn;
3230 scan_io_t *sio;
3231 boolean_t suspended = B_FALSE;
3233 while ((sio = list_head(io_list)) != NULL) {
3234 blkptr_t bp;
3236 if (scan_io_queue_check_suspend(scn)) {
3237 suspended = B_TRUE;
3238 break;
3241 sio2bp(sio, &bp);
3242 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3243 &sio->sio_zb, queue);
3244 (void) list_remove_head(io_list);
3245 scan_io_queues_update_zio_stats(queue, &bp);
3246 sio_free(sio);
3248 return (suspended);
3252 * This function removes sios from an IO queue which reside within a given
3253 * range_seg_t and inserts them (in offset order) into a list. Note that
3254 * we only ever return a maximum of 32 sios at once. If there are more sios
3255 * to process within this segment that did not make it onto the list we
3256 * return B_TRUE and otherwise B_FALSE.
3258 static boolean_t
3259 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
3261 scan_io_t *srch_sio, *sio, *next_sio;
3262 avl_index_t idx;
3263 uint_t num_sios = 0;
3264 int64_t bytes_issued = 0;
3266 ASSERT(rs != NULL);
3267 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3269 srch_sio = sio_alloc(1);
3270 srch_sio->sio_nr_dvas = 1;
3271 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
3274 * The exact start of the extent might not contain any matching zios,
3275 * so if that's the case, examine the next one in the tree.
3277 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3278 sio_free(srch_sio);
3280 if (sio == NULL)
3281 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3283 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3284 queue->q_exts_by_addr) && num_sios <= 32) {
3285 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
3286 queue->q_exts_by_addr));
3287 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
3288 queue->q_exts_by_addr));
3290 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3291 avl_remove(&queue->q_sios_by_addr, sio);
3292 if (avl_is_empty(&queue->q_sios_by_addr))
3293 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3294 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3296 bytes_issued += SIO_GET_ASIZE(sio);
3297 num_sios++;
3298 list_insert_tail(list, sio);
3299 sio = next_sio;
3303 * We limit the number of sios we process at once to 32 to avoid
3304 * biting off more than we can chew. If we didn't take everything
3305 * in the segment we update it to reflect the work we were able to
3306 * complete. Otherwise, we remove it from the range tree entirely.
3308 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3309 queue->q_exts_by_addr)) {
3310 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3311 -bytes_issued);
3312 range_tree_resize_segment(queue->q_exts_by_addr, rs,
3313 SIO_GET_OFFSET(sio), rs_get_end(rs,
3314 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3315 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3316 return (B_TRUE);
3317 } else {
3318 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3319 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3320 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3321 queue->q_last_ext_addr = -1;
3322 return (B_FALSE);
3327 * This is called from the queue emptying thread and selects the next
3328 * extent from which we are to issue I/Os. The behavior of this function
3329 * depends on the state of the scan, the current memory consumption and
3330 * whether or not we are performing a scan shutdown.
3331 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3332 * needs to perform a checkpoint
3333 * 2) We select the largest available extent if we are up against the
3334 * memory limit.
3335 * 3) Otherwise we don't select any extents.
3337 static range_seg_t *
3338 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3340 dsl_scan_t *scn = queue->q_scn;
3341 range_tree_t *rt = queue->q_exts_by_addr;
3343 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3344 ASSERT(scn->scn_is_sorted);
3346 if (!scn->scn_checkpointing && !scn->scn_clearing)
3347 return (NULL);
3350 * During normal clearing, we want to issue our largest segments
3351 * first, keeping IO as sequential as possible, and leaving the
3352 * smaller extents for later with the hope that they might eventually
3353 * grow to larger sequential segments. However, when the scan is
3354 * checkpointing, no new extents will be added to the sorting queue,
3355 * so the way we are sorted now is as good as it will ever get.
3356 * In this case, we instead switch to issuing extents in LBA order.
3358 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3359 zfs_scan_issue_strategy == 1)
3360 return (range_tree_first(rt));
3363 * Try to continue previous extent if it is not completed yet. After
3364 * shrink in scan_io_queue_gather() it may no longer be the best, but
3365 * otherwise we leave shorter remnant every txg.
3367 uint64_t start;
3368 uint64_t size = 1ULL << rt->rt_shift;
3369 range_seg_t *addr_rs;
3370 if (queue->q_last_ext_addr != -1) {
3371 start = queue->q_last_ext_addr;
3372 addr_rs = range_tree_find(rt, start, size);
3373 if (addr_rs != NULL)
3374 return (addr_rs);
3378 * Nothing to continue, so find new best extent.
3380 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3381 if (v == NULL)
3382 return (NULL);
3383 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3386 * We need to get the original entry in the by_addr tree so we can
3387 * modify it.
3389 addr_rs = range_tree_find(rt, start, size);
3390 ASSERT3P(addr_rs, !=, NULL);
3391 ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3392 ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3393 return (addr_rs);
3396 static void
3397 scan_io_queues_run_one(void *arg)
3399 dsl_scan_io_queue_t *queue = arg;
3400 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3401 boolean_t suspended = B_FALSE;
3402 range_seg_t *rs;
3403 scan_io_t *sio;
3404 zio_t *zio;
3405 list_t sio_list;
3407 ASSERT(queue->q_scn->scn_is_sorted);
3409 list_create(&sio_list, sizeof (scan_io_t),
3410 offsetof(scan_io_t, sio_nodes.sio_list_node));
3411 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3412 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3413 mutex_enter(q_lock);
3414 queue->q_zio = zio;
3416 /* Calculate maximum in-flight bytes for this vdev. */
3417 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3418 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3420 /* reset per-queue scan statistics for this txg */
3421 queue->q_total_seg_size_this_txg = 0;
3422 queue->q_segs_this_txg = 0;
3423 queue->q_total_zio_size_this_txg = 0;
3424 queue->q_zios_this_txg = 0;
3426 /* loop until we run out of time or sios */
3427 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3428 uint64_t seg_start = 0, seg_end = 0;
3429 boolean_t more_left;
3431 ASSERT(list_is_empty(&sio_list));
3433 /* loop while we still have sios left to process in this rs */
3434 do {
3435 scan_io_t *first_sio, *last_sio;
3438 * We have selected which extent needs to be
3439 * processed next. Gather up the corresponding sios.
3441 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3442 ASSERT(!list_is_empty(&sio_list));
3443 first_sio = list_head(&sio_list);
3444 last_sio = list_tail(&sio_list);
3446 seg_end = SIO_GET_END_OFFSET(last_sio);
3447 if (seg_start == 0)
3448 seg_start = SIO_GET_OFFSET(first_sio);
3451 * Issuing sios can take a long time so drop the
3452 * queue lock. The sio queue won't be updated by
3453 * other threads since we're in syncing context so
3454 * we can be sure that our trees will remain exactly
3455 * as we left them.
3457 mutex_exit(q_lock);
3458 suspended = scan_io_queue_issue(queue, &sio_list);
3459 mutex_enter(q_lock);
3461 if (suspended)
3462 break;
3463 } while (more_left);
3465 /* update statistics for debugging purposes */
3466 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3468 if (suspended)
3469 break;
3473 * If we were suspended in the middle of processing,
3474 * requeue any unfinished sios and exit.
3476 while ((sio = list_remove_head(&sio_list)) != NULL)
3477 scan_io_queue_insert_impl(queue, sio);
3479 queue->q_zio = NULL;
3480 mutex_exit(q_lock);
3481 zio_nowait(zio);
3482 list_destroy(&sio_list);
3486 * Performs an emptying run on all scan queues in the pool. This just
3487 * punches out one thread per top-level vdev, each of which processes
3488 * only that vdev's scan queue. We can parallelize the I/O here because
3489 * we know that each queue's I/Os only affect its own top-level vdev.
3491 * This function waits for the queue runs to complete, and must be
3492 * called from dsl_scan_sync (or in general, syncing context).
3494 static void
3495 scan_io_queues_run(dsl_scan_t *scn)
3497 spa_t *spa = scn->scn_dp->dp_spa;
3499 ASSERT(scn->scn_is_sorted);
3500 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3502 if (scn->scn_queues_pending == 0)
3503 return;
3505 if (scn->scn_taskq == NULL) {
3506 int nthreads = spa->spa_root_vdev->vdev_children;
3509 * We need to make this taskq *always* execute as many
3510 * threads in parallel as we have top-level vdevs and no
3511 * less, otherwise strange serialization of the calls to
3512 * scan_io_queues_run_one can occur during spa_sync runs
3513 * and that significantly impacts performance.
3515 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3516 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3519 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3520 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3522 mutex_enter(&vd->vdev_scan_io_queue_lock);
3523 if (vd->vdev_scan_io_queue != NULL) {
3524 VERIFY(taskq_dispatch(scn->scn_taskq,
3525 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3526 TQ_SLEEP) != TASKQID_INVALID);
3528 mutex_exit(&vd->vdev_scan_io_queue_lock);
3532 * Wait for the queues to finish issuing their IOs for this run
3533 * before we return. There may still be IOs in flight at this
3534 * point.
3536 taskq_wait(scn->scn_taskq);
3539 static boolean_t
3540 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3542 uint64_t elapsed_nanosecs;
3544 if (zfs_recover)
3545 return (B_FALSE);
3547 if (zfs_async_block_max_blocks != 0 &&
3548 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3549 return (B_TRUE);
3552 if (zfs_max_async_dedup_frees != 0 &&
3553 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3554 return (B_TRUE);
3557 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3558 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3559 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3560 txg_sync_waiting(scn->scn_dp)) ||
3561 spa_shutting_down(scn->scn_dp->dp_spa));
3564 static int
3565 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3567 dsl_scan_t *scn = arg;
3569 if (!scn->scn_is_bptree ||
3570 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3571 if (dsl_scan_async_block_should_pause(scn))
3572 return (SET_ERROR(ERESTART));
3575 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3576 dmu_tx_get_txg(tx), bp, 0));
3577 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3578 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3579 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3580 scn->scn_visited_this_txg++;
3581 if (BP_GET_DEDUP(bp))
3582 scn->scn_dedup_frees_this_txg++;
3583 return (0);
3586 static void
3587 dsl_scan_update_stats(dsl_scan_t *scn)
3589 spa_t *spa = scn->scn_dp->dp_spa;
3590 uint64_t i;
3591 uint64_t seg_size_total = 0, zio_size_total = 0;
3592 uint64_t seg_count_total = 0, zio_count_total = 0;
3594 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3595 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3596 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3598 if (queue == NULL)
3599 continue;
3601 seg_size_total += queue->q_total_seg_size_this_txg;
3602 zio_size_total += queue->q_total_zio_size_this_txg;
3603 seg_count_total += queue->q_segs_this_txg;
3604 zio_count_total += queue->q_zios_this_txg;
3607 if (seg_count_total == 0 || zio_count_total == 0) {
3608 scn->scn_avg_seg_size_this_txg = 0;
3609 scn->scn_avg_zio_size_this_txg = 0;
3610 scn->scn_segs_this_txg = 0;
3611 scn->scn_zios_this_txg = 0;
3612 return;
3615 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3616 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3617 scn->scn_segs_this_txg = seg_count_total;
3618 scn->scn_zios_this_txg = zio_count_total;
3621 static int
3622 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3623 dmu_tx_t *tx)
3625 ASSERT(!bp_freed);
3626 return (dsl_scan_free_block_cb(arg, bp, tx));
3629 static int
3630 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3631 dmu_tx_t *tx)
3633 ASSERT(!bp_freed);
3634 dsl_scan_t *scn = arg;
3635 const dva_t *dva = &bp->blk_dva[0];
3637 if (dsl_scan_async_block_should_pause(scn))
3638 return (SET_ERROR(ERESTART));
3640 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3641 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3642 DVA_GET_ASIZE(dva), tx);
3643 scn->scn_visited_this_txg++;
3644 return (0);
3647 boolean_t
3648 dsl_scan_active(dsl_scan_t *scn)
3650 spa_t *spa = scn->scn_dp->dp_spa;
3651 uint64_t used = 0, comp, uncomp;
3652 boolean_t clones_left;
3654 if (spa->spa_load_state != SPA_LOAD_NONE)
3655 return (B_FALSE);
3656 if (spa_shutting_down(spa))
3657 return (B_FALSE);
3658 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3659 (scn->scn_async_destroying && !scn->scn_async_stalled))
3660 return (B_TRUE);
3662 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3663 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3664 &used, &comp, &uncomp);
3666 clones_left = spa_livelist_delete_check(spa);
3667 return ((used != 0) || (clones_left));
3670 boolean_t
3671 dsl_errorscrub_active(dsl_scan_t *scn)
3673 spa_t *spa = scn->scn_dp->dp_spa;
3674 if (spa->spa_load_state != SPA_LOAD_NONE)
3675 return (B_FALSE);
3676 if (spa_shutting_down(spa))
3677 return (B_FALSE);
3678 if (dsl_errorscrubbing(scn->scn_dp))
3679 return (B_TRUE);
3680 return (B_FALSE);
3683 static boolean_t
3684 dsl_scan_check_deferred(vdev_t *vd)
3686 boolean_t need_resilver = B_FALSE;
3688 for (int c = 0; c < vd->vdev_children; c++) {
3689 need_resilver |=
3690 dsl_scan_check_deferred(vd->vdev_child[c]);
3693 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3694 !vd->vdev_ops->vdev_op_leaf)
3695 return (need_resilver);
3697 if (!vd->vdev_resilver_deferred)
3698 need_resilver = B_TRUE;
3700 return (need_resilver);
3703 static boolean_t
3704 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3705 uint64_t phys_birth)
3707 vdev_t *vd;
3709 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3711 if (vd->vdev_ops == &vdev_indirect_ops) {
3713 * The indirect vdev can point to multiple
3714 * vdevs. For simplicity, always create
3715 * the resilver zio_t. zio_vdev_io_start()
3716 * will bypass the child resilver i/o's if
3717 * they are on vdevs that don't have DTL's.
3719 return (B_TRUE);
3722 if (DVA_GET_GANG(dva)) {
3724 * Gang members may be spread across multiple
3725 * vdevs, so the best estimate we have is the
3726 * scrub range, which has already been checked.
3727 * XXX -- it would be better to change our
3728 * allocation policy to ensure that all
3729 * gang members reside on the same vdev.
3731 return (B_TRUE);
3735 * Check if the top-level vdev must resilver this offset.
3736 * When the offset does not intersect with a dirty leaf DTL
3737 * then it may be possible to skip the resilver IO. The psize
3738 * is provided instead of asize to simplify the check for RAIDZ.
3740 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3741 return (B_FALSE);
3744 * Check that this top-level vdev has a device under it which
3745 * is resilvering and is not deferred.
3747 if (!dsl_scan_check_deferred(vd))
3748 return (B_FALSE);
3750 return (B_TRUE);
3753 static int
3754 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3756 dsl_scan_t *scn = dp->dp_scan;
3757 spa_t *spa = dp->dp_spa;
3758 int err = 0;
3760 if (spa_suspend_async_destroy(spa))
3761 return (0);
3763 if (zfs_free_bpobj_enabled &&
3764 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3765 scn->scn_is_bptree = B_FALSE;
3766 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3767 scn->scn_zio_root = zio_root(spa, NULL,
3768 NULL, ZIO_FLAG_MUSTSUCCEED);
3769 err = bpobj_iterate(&dp->dp_free_bpobj,
3770 bpobj_dsl_scan_free_block_cb, scn, tx);
3771 VERIFY0(zio_wait(scn->scn_zio_root));
3772 scn->scn_zio_root = NULL;
3774 if (err != 0 && err != ERESTART)
3775 zfs_panic_recover("error %u from bpobj_iterate()", err);
3778 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3779 ASSERT(scn->scn_async_destroying);
3780 scn->scn_is_bptree = B_TRUE;
3781 scn->scn_zio_root = zio_root(spa, NULL,
3782 NULL, ZIO_FLAG_MUSTSUCCEED);
3783 err = bptree_iterate(dp->dp_meta_objset,
3784 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3785 VERIFY0(zio_wait(scn->scn_zio_root));
3786 scn->scn_zio_root = NULL;
3788 if (err == EIO || err == ECKSUM) {
3789 err = 0;
3790 } else if (err != 0 && err != ERESTART) {
3791 zfs_panic_recover("error %u from "
3792 "traverse_dataset_destroyed()", err);
3795 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3796 /* finished; deactivate async destroy feature */
3797 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3798 ASSERT(!spa_feature_is_active(spa,
3799 SPA_FEATURE_ASYNC_DESTROY));
3800 VERIFY0(zap_remove(dp->dp_meta_objset,
3801 DMU_POOL_DIRECTORY_OBJECT,
3802 DMU_POOL_BPTREE_OBJ, tx));
3803 VERIFY0(bptree_free(dp->dp_meta_objset,
3804 dp->dp_bptree_obj, tx));
3805 dp->dp_bptree_obj = 0;
3806 scn->scn_async_destroying = B_FALSE;
3807 scn->scn_async_stalled = B_FALSE;
3808 } else {
3810 * If we didn't make progress, mark the async
3811 * destroy as stalled, so that we will not initiate
3812 * a spa_sync() on its behalf. Note that we only
3813 * check this if we are not finished, because if the
3814 * bptree had no blocks for us to visit, we can
3815 * finish without "making progress".
3817 scn->scn_async_stalled =
3818 (scn->scn_visited_this_txg == 0);
3821 if (scn->scn_visited_this_txg) {
3822 zfs_dbgmsg("freed %llu blocks in %llums from "
3823 "free_bpobj/bptree on %s in txg %llu; err=%u",
3824 (longlong_t)scn->scn_visited_this_txg,
3825 (longlong_t)
3826 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3827 spa->spa_name, (longlong_t)tx->tx_txg, err);
3828 scn->scn_visited_this_txg = 0;
3829 scn->scn_dedup_frees_this_txg = 0;
3832 * Write out changes to the DDT and the BRT that may be required
3833 * as a result of the blocks freed. This ensures that the DDT
3834 * and the BRT are clean when a scrub/resilver runs.
3836 ddt_sync(spa, tx->tx_txg);
3837 brt_sync(spa, tx->tx_txg);
3839 if (err != 0)
3840 return (err);
3841 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3842 zfs_free_leak_on_eio &&
3843 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3844 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3845 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3847 * We have finished background destroying, but there is still
3848 * some space left in the dp_free_dir. Transfer this leaked
3849 * space to the dp_leak_dir.
3851 if (dp->dp_leak_dir == NULL) {
3852 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3853 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3854 LEAK_DIR_NAME, tx);
3855 VERIFY0(dsl_pool_open_special_dir(dp,
3856 LEAK_DIR_NAME, &dp->dp_leak_dir));
3857 rrw_exit(&dp->dp_config_rwlock, FTAG);
3859 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3860 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3861 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3862 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3863 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3864 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3865 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3866 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3869 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3870 !spa_livelist_delete_check(spa)) {
3871 /* finished; verify that space accounting went to zero */
3872 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3873 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3874 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3877 spa_notify_waiters(spa);
3879 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3880 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3881 DMU_POOL_OBSOLETE_BPOBJ));
3882 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3883 ASSERT(spa_feature_is_active(dp->dp_spa,
3884 SPA_FEATURE_OBSOLETE_COUNTS));
3886 scn->scn_is_bptree = B_FALSE;
3887 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3888 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3889 dsl_scan_obsolete_block_cb, scn, tx);
3890 if (err != 0 && err != ERESTART)
3891 zfs_panic_recover("error %u from bpobj_iterate()", err);
3893 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3894 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3896 return (0);
3899 static void
3900 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3902 zb->zb_objset = zfs_strtonum(buf, &buf);
3903 ASSERT(*buf == ':');
3904 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3905 ASSERT(*buf == ':');
3906 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3907 ASSERT(*buf == ':');
3908 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3909 ASSERT(*buf == '\0');
3912 static void
3913 name_to_object(char *buf, uint64_t *obj)
3915 *obj = zfs_strtonum(buf, &buf);
3916 ASSERT(*buf == '\0');
3919 static void
3920 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3922 dsl_pool_t *dp = scn->scn_dp;
3923 dsl_dataset_t *ds;
3924 objset_t *os;
3925 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3926 return;
3928 if (dmu_objset_from_ds(ds, &os) != 0) {
3929 dsl_dataset_rele(ds, FTAG);
3930 return;
3934 * If the key is not loaded dbuf_dnode_findbp() will error out with
3935 * EACCES. However in that case dnode_hold() will eventually call
3936 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3937 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3938 * Avoid this by checking here if the keys are loaded, if not return.
3939 * If the keys are not loaded the head_errlog feature is meaningless
3940 * as we cannot figure out the birth txg of the block pointer.
3942 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3943 ZFS_KEYSTATUS_UNAVAILABLE) {
3944 dsl_dataset_rele(ds, FTAG);
3945 return;
3948 dnode_t *dn;
3949 blkptr_t bp;
3951 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3952 dsl_dataset_rele(ds, FTAG);
3953 return;
3956 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3957 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3958 NULL);
3960 if (error) {
3961 rw_exit(&dn->dn_struct_rwlock);
3962 dnode_rele(dn, FTAG);
3963 dsl_dataset_rele(ds, FTAG);
3964 return;
3967 if (!error && BP_IS_HOLE(&bp)) {
3968 rw_exit(&dn->dn_struct_rwlock);
3969 dnode_rele(dn, FTAG);
3970 dsl_dataset_rele(ds, FTAG);
3971 return;
3974 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
3975 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
3977 /* If it's an intent log block, failure is expected. */
3978 if (zb.zb_level == ZB_ZIL_LEVEL)
3979 zio_flags |= ZIO_FLAG_SPECULATIVE;
3981 ASSERT(!BP_IS_EMBEDDED(&bp));
3982 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
3983 rw_exit(&dn->dn_struct_rwlock);
3984 dnode_rele(dn, FTAG);
3985 dsl_dataset_rele(ds, FTAG);
3989 * We keep track of the scrubbed error blocks in "count". This will be used
3990 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3991 * function is modelled after check_filesystem().
3993 static int
3994 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
3995 int *count)
3997 dsl_dataset_t *ds;
3998 dsl_pool_t *dp = spa->spa_dsl_pool;
3999 dsl_scan_t *scn = dp->dp_scan;
4001 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4002 if (error != 0)
4003 return (error);
4005 uint64_t latest_txg;
4006 uint64_t txg_to_consider = spa->spa_syncing_txg;
4007 boolean_t check_snapshot = B_TRUE;
4009 error = find_birth_txg(ds, zep, &latest_txg);
4012 * If find_birth_txg() errors out, then err on the side of caution and
4013 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4014 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4015 * scrub all objects.
4017 if (error == 0 && zep->zb_birth == latest_txg) {
4018 /* Block neither free nor re written. */
4019 zbookmark_phys_t zb;
4020 zep_to_zb(fs, zep, &zb);
4021 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4022 ZIO_FLAG_CANFAIL);
4023 /* We have already acquired the config lock for spa */
4024 read_by_block_level(scn, zb);
4026 (void) zio_wait(scn->scn_zio_root);
4027 scn->scn_zio_root = NULL;
4029 scn->errorscrub_phys.dep_examined++;
4030 scn->errorscrub_phys.dep_to_examine--;
4031 (*count)++;
4032 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4033 dsl_error_scrub_check_suspend(scn, &zb)) {
4034 dsl_dataset_rele(ds, FTAG);
4035 return (SET_ERROR(EFAULT));
4038 check_snapshot = B_FALSE;
4039 } else if (error == 0) {
4040 txg_to_consider = latest_txg;
4044 * Retrieve the number of snapshots if the dataset is not a snapshot.
4046 uint64_t snap_count = 0;
4047 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4049 error = zap_count(spa->spa_meta_objset,
4050 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4052 if (error != 0) {
4053 dsl_dataset_rele(ds, FTAG);
4054 return (error);
4058 if (snap_count == 0) {
4059 /* Filesystem without snapshots. */
4060 dsl_dataset_rele(ds, FTAG);
4061 return (0);
4064 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4065 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4067 dsl_dataset_rele(ds, FTAG);
4069 /* Check only snapshots created from this file system. */
4070 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4071 snap_obj_txg <= txg_to_consider) {
4073 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4074 if (error != 0)
4075 return (error);
4077 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4078 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4079 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4080 dsl_dataset_rele(ds, FTAG);
4081 continue;
4084 boolean_t affected = B_TRUE;
4085 if (check_snapshot) {
4086 uint64_t blk_txg;
4087 error = find_birth_txg(ds, zep, &blk_txg);
4090 * Scrub the snapshot also when zb_birth == 0 or when
4091 * find_birth_txg() returns an error.
4093 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4094 (error != 0) || (zep->zb_birth == 0);
4097 /* Scrub snapshots. */
4098 if (affected) {
4099 zbookmark_phys_t zb;
4100 zep_to_zb(snap_obj, zep, &zb);
4101 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4102 ZIO_FLAG_CANFAIL);
4103 /* We have already acquired the config lock for spa */
4104 read_by_block_level(scn, zb);
4106 (void) zio_wait(scn->scn_zio_root);
4107 scn->scn_zio_root = NULL;
4109 scn->errorscrub_phys.dep_examined++;
4110 scn->errorscrub_phys.dep_to_examine--;
4111 (*count)++;
4112 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4113 dsl_error_scrub_check_suspend(scn, &zb)) {
4114 dsl_dataset_rele(ds, FTAG);
4115 return (EFAULT);
4118 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4119 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4120 dsl_dataset_rele(ds, FTAG);
4122 return (0);
4125 void
4126 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4128 spa_t *spa = dp->dp_spa;
4129 dsl_scan_t *scn = dp->dp_scan;
4132 * Only process scans in sync pass 1.
4135 if (spa_sync_pass(spa) > 1)
4136 return;
4139 * If the spa is shutting down, then stop scanning. This will
4140 * ensure that the scan does not dirty any new data during the
4141 * shutdown phase.
4143 if (spa_shutting_down(spa))
4144 return;
4146 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4147 return;
4150 if (dsl_scan_resilvering(scn->scn_dp)) {
4151 /* cancel the error scrub if resilver started */
4152 dsl_scan_cancel(scn->scn_dp);
4153 return;
4156 spa->spa_scrub_active = B_TRUE;
4157 scn->scn_sync_start_time = gethrtime();
4160 * zfs_scan_suspend_progress can be set to disable scrub progress.
4161 * See more detailed comment in dsl_scan_sync().
4163 if (zfs_scan_suspend_progress) {
4164 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4165 int mintime = zfs_scrub_min_time_ms;
4167 while (zfs_scan_suspend_progress &&
4168 !txg_sync_waiting(scn->scn_dp) &&
4169 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4170 NSEC2MSEC(scan_time_ns) < mintime) {
4171 delay(hz);
4172 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4174 return;
4177 int i = 0;
4178 zap_attribute_t *za;
4179 zbookmark_phys_t *zb;
4180 boolean_t limit_exceeded = B_FALSE;
4182 za = zap_attribute_alloc();
4183 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4185 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4186 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4187 zap_cursor_advance(&scn->errorscrub_cursor)) {
4188 name_to_bookmark(za->za_name, zb);
4190 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4191 NULL, ZIO_FLAG_CANFAIL);
4192 dsl_pool_config_enter(dp, FTAG);
4193 read_by_block_level(scn, *zb);
4194 dsl_pool_config_exit(dp, FTAG);
4196 (void) zio_wait(scn->scn_zio_root);
4197 scn->scn_zio_root = NULL;
4199 scn->errorscrub_phys.dep_examined += 1;
4200 scn->errorscrub_phys.dep_to_examine -= 1;
4201 i++;
4202 if (i == zfs_scrub_error_blocks_per_txg ||
4203 dsl_error_scrub_check_suspend(scn, zb)) {
4204 limit_exceeded = B_TRUE;
4205 break;
4209 if (!limit_exceeded)
4210 dsl_errorscrub_done(scn, B_TRUE, tx);
4212 dsl_errorscrub_sync_state(scn, tx);
4213 zap_attribute_free(za);
4214 kmem_free(zb, sizeof (*zb));
4215 return;
4218 int error = 0;
4219 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4220 zap_cursor_advance(&scn->errorscrub_cursor)) {
4222 zap_cursor_t *head_ds_cursor;
4223 zap_attribute_t *head_ds_attr;
4224 zbookmark_err_phys_t head_ds_block;
4226 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4227 head_ds_attr = zap_attribute_alloc();
4229 uint64_t head_ds_err_obj = za->za_first_integer;
4230 uint64_t head_ds;
4231 name_to_object(za->za_name, &head_ds);
4232 boolean_t config_held = B_FALSE;
4233 uint64_t top_affected_fs;
4235 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4236 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4237 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4239 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4242 * In case we are called from spa_sync the pool
4243 * config is already held.
4245 if (!dsl_pool_config_held(dp)) {
4246 dsl_pool_config_enter(dp, FTAG);
4247 config_held = B_TRUE;
4250 error = find_top_affected_fs(spa,
4251 head_ds, &head_ds_block, &top_affected_fs);
4252 if (error)
4253 break;
4255 error = scrub_filesystem(spa, top_affected_fs,
4256 &head_ds_block, &i);
4258 if (error == SET_ERROR(EFAULT)) {
4259 limit_exceeded = B_TRUE;
4260 break;
4264 zap_cursor_fini(head_ds_cursor);
4265 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4266 zap_attribute_free(head_ds_attr);
4268 if (config_held)
4269 dsl_pool_config_exit(dp, FTAG);
4272 zap_attribute_free(za);
4273 kmem_free(zb, sizeof (*zb));
4274 if (!limit_exceeded)
4275 dsl_errorscrub_done(scn, B_TRUE, tx);
4277 dsl_errorscrub_sync_state(scn, tx);
4281 * This is the primary entry point for scans that is called from syncing
4282 * context. Scans must happen entirely during syncing context so that we
4283 * can guarantee that blocks we are currently scanning will not change out
4284 * from under us. While a scan is active, this function controls how quickly
4285 * transaction groups proceed, instead of the normal handling provided by
4286 * txg_sync_thread().
4288 void
4289 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4291 int err = 0;
4292 dsl_scan_t *scn = dp->dp_scan;
4293 spa_t *spa = dp->dp_spa;
4294 state_sync_type_t sync_type = SYNC_OPTIONAL;
4295 int restart_early = 0;
4297 if (spa->spa_resilver_deferred) {
4298 uint64_t to_issue, issued;
4300 if (!spa_feature_is_active(dp->dp_spa,
4301 SPA_FEATURE_RESILVER_DEFER))
4302 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4305 * See print_scan_scrub_resilver_status() issued/total_i
4306 * @ cmd/zpool/zpool_main.c
4308 to_issue =
4309 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4310 issued =
4311 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4312 restart_early =
4313 zfs_resilver_disable_defer ||
4314 (issued < (to_issue * zfs_resilver_defer_percent / 100));
4318 * Only process scans in sync pass 1.
4320 if (spa_sync_pass(spa) > 1)
4321 return;
4325 * Check for scn_restart_txg before checking spa_load_state, so
4326 * that we can restart an old-style scan while the pool is being
4327 * imported (see dsl_scan_init). We also restart scans if there
4328 * is a deferred resilver and the user has manually disabled
4329 * deferred resilvers via zfs_resilver_disable_defer, or if the
4330 * current scan progress is below zfs_resilver_defer_percent.
4332 if (dsl_scan_restarting(scn, tx) || restart_early) {
4333 pool_scan_func_t func = POOL_SCAN_SCRUB;
4334 dsl_scan_done(scn, B_FALSE, tx);
4335 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4336 func = POOL_SCAN_RESILVER;
4337 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4338 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg,
4339 restart_early);
4340 dsl_scan_setup_sync(&func, tx);
4344 * If the spa is shutting down, then stop scanning. This will
4345 * ensure that the scan does not dirty any new data during the
4346 * shutdown phase.
4348 if (spa_shutting_down(spa))
4349 return;
4352 * If the scan is inactive due to a stalled async destroy, try again.
4354 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4355 return;
4357 /* reset scan statistics */
4358 scn->scn_visited_this_txg = 0;
4359 scn->scn_dedup_frees_this_txg = 0;
4360 scn->scn_holes_this_txg = 0;
4361 scn->scn_lt_min_this_txg = 0;
4362 scn->scn_gt_max_this_txg = 0;
4363 scn->scn_ddt_contained_this_txg = 0;
4364 scn->scn_objsets_visited_this_txg = 0;
4365 scn->scn_avg_seg_size_this_txg = 0;
4366 scn->scn_segs_this_txg = 0;
4367 scn->scn_avg_zio_size_this_txg = 0;
4368 scn->scn_zios_this_txg = 0;
4369 scn->scn_suspending = B_FALSE;
4370 scn->scn_sync_start_time = gethrtime();
4371 spa->spa_scrub_active = B_TRUE;
4374 * First process the async destroys. If we suspend, don't do
4375 * any scrubbing or resilvering. This ensures that there are no
4376 * async destroys while we are scanning, so the scan code doesn't
4377 * have to worry about traversing it. It is also faster to free the
4378 * blocks than to scrub them.
4380 err = dsl_process_async_destroys(dp, tx);
4381 if (err != 0)
4382 return;
4384 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4385 return;
4388 * Wait a few txgs after importing to begin scanning so that
4389 * we can get the pool imported quickly.
4391 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4392 return;
4395 * zfs_scan_suspend_progress can be set to disable scan progress.
4396 * We don't want to spin the txg_sync thread, so we add a delay
4397 * here to simulate the time spent doing a scan. This is mostly
4398 * useful for testing and debugging.
4400 if (zfs_scan_suspend_progress) {
4401 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4402 uint_t mintime = (scn->scn_phys.scn_func ==
4403 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4404 zfs_scrub_min_time_ms;
4406 while (zfs_scan_suspend_progress &&
4407 !txg_sync_waiting(scn->scn_dp) &&
4408 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4409 NSEC2MSEC(scan_time_ns) < mintime) {
4410 delay(hz);
4411 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4413 return;
4417 * Disabled by default, set zfs_scan_report_txgs to report
4418 * average performance over the last zfs_scan_report_txgs TXGs.
4420 if (zfs_scan_report_txgs != 0 &&
4421 tx->tx_txg % zfs_scan_report_txgs == 0) {
4422 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4423 spa_scan_stat_init(spa);
4427 * It is possible to switch from unsorted to sorted at any time,
4428 * but afterwards the scan will remain sorted unless reloaded from
4429 * a checkpoint after a reboot.
4431 if (!zfs_scan_legacy) {
4432 scn->scn_is_sorted = B_TRUE;
4433 if (scn->scn_last_checkpoint == 0)
4434 scn->scn_last_checkpoint = ddi_get_lbolt();
4438 * For sorted scans, determine what kind of work we will be doing
4439 * this txg based on our memory limitations and whether or not we
4440 * need to perform a checkpoint.
4442 if (scn->scn_is_sorted) {
4444 * If we are over our checkpoint interval, set scn_clearing
4445 * so that we can begin checkpointing immediately. The
4446 * checkpoint allows us to save a consistent bookmark
4447 * representing how much data we have scrubbed so far.
4448 * Otherwise, use the memory limit to determine if we should
4449 * scan for metadata or start issue scrub IOs. We accumulate
4450 * metadata until we hit our hard memory limit at which point
4451 * we issue scrub IOs until we are at our soft memory limit.
4453 if (scn->scn_checkpointing ||
4454 ddi_get_lbolt() - scn->scn_last_checkpoint >
4455 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4456 if (!scn->scn_checkpointing)
4457 zfs_dbgmsg("begin scan checkpoint for %s",
4458 spa->spa_name);
4460 scn->scn_checkpointing = B_TRUE;
4461 scn->scn_clearing = B_TRUE;
4462 } else {
4463 boolean_t should_clear = dsl_scan_should_clear(scn);
4464 if (should_clear && !scn->scn_clearing) {
4465 zfs_dbgmsg("begin scan clearing for %s",
4466 spa->spa_name);
4467 scn->scn_clearing = B_TRUE;
4468 } else if (!should_clear && scn->scn_clearing) {
4469 zfs_dbgmsg("finish scan clearing for %s",
4470 spa->spa_name);
4471 scn->scn_clearing = B_FALSE;
4474 } else {
4475 ASSERT0(scn->scn_checkpointing);
4476 ASSERT0(scn->scn_clearing);
4479 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4480 /* Need to scan metadata for more blocks to scrub */
4481 dsl_scan_phys_t *scnp = &scn->scn_phys;
4482 taskqid_t prefetch_tqid;
4485 * Calculate the max number of in-flight bytes for pool-wide
4486 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4487 * Limits for the issuing phase are done per top-level vdev and
4488 * are handled separately.
4490 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4491 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4493 if (scnp->scn_ddt_bookmark.ddb_class <=
4494 scnp->scn_ddt_class_max) {
4495 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4496 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4497 "ddt bm=%llu/%llu/%llu/%llx",
4498 spa->spa_name,
4499 (longlong_t)tx->tx_txg,
4500 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4501 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4502 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4503 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4504 } else {
4505 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4506 "bm=%llu/%llu/%llu/%llu",
4507 spa->spa_name,
4508 (longlong_t)tx->tx_txg,
4509 (longlong_t)scnp->scn_bookmark.zb_objset,
4510 (longlong_t)scnp->scn_bookmark.zb_object,
4511 (longlong_t)scnp->scn_bookmark.zb_level,
4512 (longlong_t)scnp->scn_bookmark.zb_blkid);
4515 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4516 NULL, ZIO_FLAG_CANFAIL);
4518 scn->scn_prefetch_stop = B_FALSE;
4519 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4520 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4521 ASSERT(prefetch_tqid != TASKQID_INVALID);
4523 dsl_pool_config_enter(dp, FTAG);
4524 dsl_scan_visit(scn, tx);
4525 dsl_pool_config_exit(dp, FTAG);
4527 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4528 scn->scn_prefetch_stop = B_TRUE;
4529 cv_broadcast(&spa->spa_scrub_io_cv);
4530 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4532 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4533 (void) zio_wait(scn->scn_zio_root);
4534 scn->scn_zio_root = NULL;
4536 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4537 "(%llu os's, %llu holes, %llu < mintxg, "
4538 "%llu in ddt, %llu > maxtxg)",
4539 (longlong_t)scn->scn_visited_this_txg,
4540 spa->spa_name,
4541 (longlong_t)NSEC2MSEC(gethrtime() -
4542 scn->scn_sync_start_time),
4543 (longlong_t)scn->scn_objsets_visited_this_txg,
4544 (longlong_t)scn->scn_holes_this_txg,
4545 (longlong_t)scn->scn_lt_min_this_txg,
4546 (longlong_t)scn->scn_ddt_contained_this_txg,
4547 (longlong_t)scn->scn_gt_max_this_txg);
4549 if (!scn->scn_suspending) {
4550 ASSERT0(avl_numnodes(&scn->scn_queue));
4551 scn->scn_done_txg = tx->tx_txg + 1;
4552 if (scn->scn_is_sorted) {
4553 scn->scn_checkpointing = B_TRUE;
4554 scn->scn_clearing = B_TRUE;
4555 scn->scn_issued_before_pass +=
4556 spa->spa_scan_pass_issued;
4557 spa_scan_stat_init(spa);
4559 zfs_dbgmsg("scan complete for %s txg %llu",
4560 spa->spa_name,
4561 (longlong_t)tx->tx_txg);
4563 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4564 ASSERT(scn->scn_clearing);
4566 /* need to issue scrubbing IOs from per-vdev queues */
4567 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4568 NULL, ZIO_FLAG_CANFAIL);
4569 scan_io_queues_run(scn);
4570 (void) zio_wait(scn->scn_zio_root);
4571 scn->scn_zio_root = NULL;
4573 /* calculate and dprintf the current memory usage */
4574 (void) dsl_scan_should_clear(scn);
4575 dsl_scan_update_stats(scn);
4577 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4578 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4579 (longlong_t)scn->scn_zios_this_txg,
4580 spa->spa_name,
4581 (longlong_t)scn->scn_segs_this_txg,
4582 (longlong_t)NSEC2MSEC(gethrtime() -
4583 scn->scn_sync_start_time),
4584 (longlong_t)scn->scn_avg_zio_size_this_txg,
4585 (longlong_t)scn->scn_avg_seg_size_this_txg);
4586 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4587 /* Finished with everything. Mark the scrub as complete */
4588 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4589 (longlong_t)tx->tx_txg,
4590 spa->spa_name);
4591 ASSERT3U(scn->scn_done_txg, !=, 0);
4592 ASSERT0(spa->spa_scrub_inflight);
4593 ASSERT0(scn->scn_queues_pending);
4594 dsl_scan_done(scn, B_TRUE, tx);
4595 sync_type = SYNC_MANDATORY;
4598 dsl_scan_sync_state(scn, tx, sync_type);
4601 static void
4602 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4605 * Don't count embedded bp's, since we already did the work of
4606 * scanning these when we scanned the containing block.
4608 if (BP_IS_EMBEDDED(bp))
4609 return;
4612 * Update the spa's stats on how many bytes we have issued.
4613 * Sequential scrubs create a zio for each DVA of the bp. Each
4614 * of these will include all DVAs for repair purposes, but the
4615 * zio code will only try the first one unless there is an issue.
4616 * Therefore, we should only count the first DVA for these IOs.
4618 atomic_add_64(&spa->spa_scan_pass_issued,
4619 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4622 static void
4623 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4625 if (BP_IS_EMBEDDED(bp))
4626 return;
4627 atomic_add_64(&scn->scn_phys.scn_skipped,
4628 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4631 static void
4632 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4635 * If we resume after a reboot, zab will be NULL; don't record
4636 * incomplete stats in that case.
4638 if (zab == NULL)
4639 return;
4641 for (int i = 0; i < 4; i++) {
4642 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4643 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4645 if (t & DMU_OT_NEWTYPE)
4646 t = DMU_OT_OTHER;
4647 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4648 int equal;
4650 zb->zb_count++;
4651 zb->zb_asize += BP_GET_ASIZE(bp);
4652 zb->zb_lsize += BP_GET_LSIZE(bp);
4653 zb->zb_psize += BP_GET_PSIZE(bp);
4654 zb->zb_gangs += BP_COUNT_GANG(bp);
4656 switch (BP_GET_NDVAS(bp)) {
4657 case 2:
4658 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4659 DVA_GET_VDEV(&bp->blk_dva[1]))
4660 zb->zb_ditto_2_of_2_samevdev++;
4661 break;
4662 case 3:
4663 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4664 DVA_GET_VDEV(&bp->blk_dva[1])) +
4665 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4666 DVA_GET_VDEV(&bp->blk_dva[2])) +
4667 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4668 DVA_GET_VDEV(&bp->blk_dva[2]));
4669 if (equal == 1)
4670 zb->zb_ditto_2_of_3_samevdev++;
4671 else if (equal == 3)
4672 zb->zb_ditto_3_of_3_samevdev++;
4673 break;
4678 static void
4679 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4681 avl_index_t idx;
4682 dsl_scan_t *scn = queue->q_scn;
4684 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4686 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4687 atomic_add_64(&scn->scn_queues_pending, 1);
4688 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4689 /* block is already scheduled for reading */
4690 sio_free(sio);
4691 return;
4693 avl_insert(&queue->q_sios_by_addr, sio, idx);
4694 queue->q_sio_memused += SIO_GET_MUSED(sio);
4695 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4696 SIO_GET_ASIZE(sio));
4700 * Given all the info we got from our metadata scanning process, we
4701 * construct a scan_io_t and insert it into the scan sorting queue. The
4702 * I/O must already be suitable for us to process. This is controlled
4703 * by dsl_scan_enqueue().
4705 static void
4706 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4707 int zio_flags, const zbookmark_phys_t *zb)
4709 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4711 ASSERT0(BP_IS_GANG(bp));
4712 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4714 bp2sio(bp, sio, dva_i);
4715 sio->sio_flags = zio_flags;
4716 sio->sio_zb = *zb;
4718 queue->q_last_ext_addr = -1;
4719 scan_io_queue_insert_impl(queue, sio);
4723 * Given a set of I/O parameters as discovered by the metadata traversal
4724 * process, attempts to place the I/O into the sorted queues (if allowed),
4725 * or immediately executes the I/O.
4727 static void
4728 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4729 const zbookmark_phys_t *zb)
4731 spa_t *spa = dp->dp_spa;
4733 ASSERT(!BP_IS_EMBEDDED(bp));
4736 * Gang blocks are hard to issue sequentially, so we just issue them
4737 * here immediately instead of queuing them.
4739 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4740 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4741 return;
4744 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4745 dva_t dva;
4746 vdev_t *vdev;
4748 dva = bp->blk_dva[i];
4749 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4750 ASSERT(vdev != NULL);
4752 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4753 if (vdev->vdev_scan_io_queue == NULL)
4754 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4755 ASSERT(dp->dp_scan != NULL);
4756 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4757 i, zio_flags, zb);
4758 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4762 static int
4763 dsl_scan_scrub_cb(dsl_pool_t *dp,
4764 const blkptr_t *bp, const zbookmark_phys_t *zb)
4766 dsl_scan_t *scn = dp->dp_scan;
4767 spa_t *spa = dp->dp_spa;
4768 uint64_t phys_birth = BP_GET_BIRTH(bp);
4769 size_t psize = BP_GET_PSIZE(bp);
4770 boolean_t needs_io = B_FALSE;
4771 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4773 count_block(dp->dp_blkstats, bp);
4774 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4775 phys_birth >= scn->scn_phys.scn_max_txg) {
4776 count_block_skipped(scn, bp, B_TRUE);
4777 return (0);
4780 /* Embedded BP's have phys_birth==0, so we reject them above. */
4781 ASSERT(!BP_IS_EMBEDDED(bp));
4783 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4784 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4785 zio_flags |= ZIO_FLAG_SCRUB;
4786 needs_io = B_TRUE;
4787 } else {
4788 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4789 zio_flags |= ZIO_FLAG_RESILVER;
4790 needs_io = B_FALSE;
4793 /* If it's an intent log block, failure is expected. */
4794 if (zb->zb_level == ZB_ZIL_LEVEL)
4795 zio_flags |= ZIO_FLAG_SPECULATIVE;
4797 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4798 const dva_t *dva = &bp->blk_dva[d];
4801 * Keep track of how much data we've examined so that
4802 * zpool(8) status can make useful progress reports.
4804 uint64_t asize = DVA_GET_ASIZE(dva);
4805 scn->scn_phys.scn_examined += asize;
4806 spa->spa_scan_pass_exam += asize;
4808 /* if it's a resilver, this may not be in the target range */
4809 if (!needs_io)
4810 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4811 phys_birth);
4814 if (needs_io && !zfs_no_scrub_io) {
4815 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4816 } else {
4817 count_block_skipped(scn, bp, B_TRUE);
4820 /* do not relocate this block */
4821 return (0);
4824 static void
4825 dsl_scan_scrub_done(zio_t *zio)
4827 spa_t *spa = zio->io_spa;
4828 blkptr_t *bp = zio->io_bp;
4829 dsl_scan_io_queue_t *queue = zio->io_private;
4831 abd_free(zio->io_abd);
4833 if (queue == NULL) {
4834 mutex_enter(&spa->spa_scrub_lock);
4835 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4836 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4837 cv_broadcast(&spa->spa_scrub_io_cv);
4838 mutex_exit(&spa->spa_scrub_lock);
4839 } else {
4840 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4841 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4842 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4843 cv_broadcast(&queue->q_zio_cv);
4844 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4847 if (zio->io_error && (zio->io_error != ECKSUM ||
4848 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4849 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4850 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4851 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4852 ->errorscrub_phys.dep_errors);
4853 } else {
4854 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4855 .scn_errors);
4861 * Given a scanning zio's information, executes the zio. The zio need
4862 * not necessarily be only sortable, this function simply executes the
4863 * zio, no matter what it is. The optional queue argument allows the
4864 * caller to specify that they want per top level vdev IO rate limiting
4865 * instead of the legacy global limiting.
4867 static void
4868 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4869 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4871 spa_t *spa = dp->dp_spa;
4872 dsl_scan_t *scn = dp->dp_scan;
4873 size_t size = BP_GET_PSIZE(bp);
4874 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4875 zio_t *pio;
4877 if (queue == NULL) {
4878 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4879 mutex_enter(&spa->spa_scrub_lock);
4880 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4881 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4882 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4883 mutex_exit(&spa->spa_scrub_lock);
4884 pio = scn->scn_zio_root;
4885 } else {
4886 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4888 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4889 mutex_enter(q_lock);
4890 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4891 cv_wait(&queue->q_zio_cv, q_lock);
4892 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4893 pio = queue->q_zio;
4894 mutex_exit(q_lock);
4897 ASSERT(pio != NULL);
4898 count_block_issued(spa, bp, queue == NULL);
4899 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4900 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4904 * This is the primary extent sorting algorithm. We balance two parameters:
4905 * 1) how many bytes of I/O are in an extent
4906 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4907 * Since we allow extents to have gaps between their constituent I/Os, it's
4908 * possible to have a fairly large extent that contains the same amount of
4909 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4910 * The algorithm sorts based on a score calculated from the extent's size,
4911 * the relative fill volume (in %) and a "fill weight" parameter that controls
4912 * the split between whether we prefer larger extents or more well populated
4913 * extents:
4915 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4917 * Example:
4918 * 1) assume extsz = 64 MiB
4919 * 2) assume fill = 32 MiB (extent is half full)
4920 * 3) assume fill_weight = 3
4921 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4922 * SCORE = 32M + (50 * 3 * 32M) / 100
4923 * SCORE = 32M + (4800M / 100)
4924 * SCORE = 32M + 48M
4925 * ^ ^
4926 * | +--- final total relative fill-based score
4927 * +--------- final total fill-based score
4928 * SCORE = 80M
4930 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4931 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4932 * Note that as an optimization, we replace multiplication and division by
4933 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4935 * Since we do not care if one extent is only few percent better than another,
4936 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4937 * put into otherwise unused due to ashift high bits of offset. This allows
4938 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4939 * with single operation. Plus it makes scrubs more sequential and reduces
4940 * chances that minor extent change move it within the B-tree.
4942 __attribute__((always_inline)) inline
4943 static int
4944 ext_size_compare(const void *x, const void *y)
4946 const uint64_t *a = x, *b = y;
4948 return (TREE_CMP(*a, *b));
4951 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4952 ext_size_compare)
4954 static void
4955 ext_size_create(range_tree_t *rt, void *arg)
4957 (void) rt;
4958 zfs_btree_t *size_tree = arg;
4960 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4961 sizeof (uint64_t));
4964 static void
4965 ext_size_destroy(range_tree_t *rt, void *arg)
4967 (void) rt;
4968 zfs_btree_t *size_tree = arg;
4969 ASSERT0(zfs_btree_numnodes(size_tree));
4971 zfs_btree_destroy(size_tree);
4974 static uint64_t
4975 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4977 (void) rt;
4978 uint64_t size = rsg->rs_end - rsg->rs_start;
4979 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4980 fill_weight * rsg->rs_fill) >> 7);
4981 ASSERT3U(rt->rt_shift, >=, 8);
4982 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4985 static void
4986 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4988 zfs_btree_t *size_tree = arg;
4989 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4990 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4991 zfs_btree_add(size_tree, &v);
4994 static void
4995 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4997 zfs_btree_t *size_tree = arg;
4998 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4999 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
5000 zfs_btree_remove(size_tree, &v);
5003 static void
5004 ext_size_vacate(range_tree_t *rt, void *arg)
5006 zfs_btree_t *size_tree = arg;
5007 zfs_btree_clear(size_tree);
5008 zfs_btree_destroy(size_tree);
5010 ext_size_create(rt, arg);
5013 static const range_tree_ops_t ext_size_ops = {
5014 .rtop_create = ext_size_create,
5015 .rtop_destroy = ext_size_destroy,
5016 .rtop_add = ext_size_add,
5017 .rtop_remove = ext_size_remove,
5018 .rtop_vacate = ext_size_vacate
5022 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5023 * based on LBA-order (from lowest to highest).
5025 static int
5026 sio_addr_compare(const void *x, const void *y)
5028 const scan_io_t *a = x, *b = y;
5030 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5033 /* IO queues are created on demand when they are needed. */
5034 static dsl_scan_io_queue_t *
5035 scan_io_queue_create(vdev_t *vd)
5037 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5038 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5040 q->q_scn = scn;
5041 q->q_vd = vd;
5042 q->q_sio_memused = 0;
5043 q->q_last_ext_addr = -1;
5044 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5045 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
5046 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
5047 avl_create(&q->q_sios_by_addr, sio_addr_compare,
5048 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5050 return (q);
5054 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5055 * No further execution of I/O occurs, anything pending in the queue is
5056 * simply freed without being executed.
5058 void
5059 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5061 dsl_scan_t *scn = queue->q_scn;
5062 scan_io_t *sio;
5063 void *cookie = NULL;
5065 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5067 if (!avl_is_empty(&queue->q_sios_by_addr))
5068 atomic_add_64(&scn->scn_queues_pending, -1);
5069 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5070 NULL) {
5071 ASSERT(range_tree_contains(queue->q_exts_by_addr,
5072 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5073 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5074 sio_free(sio);
5077 ASSERT0(queue->q_sio_memused);
5078 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5079 range_tree_destroy(queue->q_exts_by_addr);
5080 avl_destroy(&queue->q_sios_by_addr);
5081 cv_destroy(&queue->q_zio_cv);
5083 kmem_free(queue, sizeof (*queue));
5087 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5088 * called on behalf of vdev_top_transfer when creating or destroying
5089 * a mirror vdev due to zpool attach/detach.
5091 void
5092 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5094 mutex_enter(&svd->vdev_scan_io_queue_lock);
5095 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5097 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5098 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5099 svd->vdev_scan_io_queue = NULL;
5100 if (tvd->vdev_scan_io_queue != NULL)
5101 tvd->vdev_scan_io_queue->q_vd = tvd;
5103 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5104 mutex_exit(&svd->vdev_scan_io_queue_lock);
5107 static void
5108 scan_io_queues_destroy(dsl_scan_t *scn)
5110 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5112 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5113 vdev_t *tvd = rvd->vdev_child[i];
5115 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5116 if (tvd->vdev_scan_io_queue != NULL)
5117 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5118 tvd->vdev_scan_io_queue = NULL;
5119 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5123 static void
5124 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5126 dsl_pool_t *dp = spa->spa_dsl_pool;
5127 dsl_scan_t *scn = dp->dp_scan;
5128 vdev_t *vdev;
5129 kmutex_t *q_lock;
5130 dsl_scan_io_queue_t *queue;
5131 scan_io_t *srch_sio, *sio;
5132 avl_index_t idx;
5133 uint64_t start, size;
5135 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5136 ASSERT(vdev != NULL);
5137 q_lock = &vdev->vdev_scan_io_queue_lock;
5138 queue = vdev->vdev_scan_io_queue;
5140 mutex_enter(q_lock);
5141 if (queue == NULL) {
5142 mutex_exit(q_lock);
5143 return;
5146 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5147 bp2sio(bp, srch_sio, dva_i);
5148 start = SIO_GET_OFFSET(srch_sio);
5149 size = SIO_GET_ASIZE(srch_sio);
5152 * We can find the zio in two states:
5153 * 1) Cold, just sitting in the queue of zio's to be issued at
5154 * some point in the future. In this case, all we do is
5155 * remove the zio from the q_sios_by_addr tree, decrement
5156 * its data volume from the containing range_seg_t and
5157 * resort the q_exts_by_size tree to reflect that the
5158 * range_seg_t has lost some of its 'fill'. We don't shorten
5159 * the range_seg_t - this is usually rare enough not to be
5160 * worth the extra hassle of trying keep track of precise
5161 * extent boundaries.
5162 * 2) Hot, where the zio is currently in-flight in
5163 * dsl_scan_issue_ios. In this case, we can't simply
5164 * reach in and stop the in-flight zio's, so we instead
5165 * block the caller. Eventually, dsl_scan_issue_ios will
5166 * be done with issuing the zio's it gathered and will
5167 * signal us.
5169 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5170 sio_free(srch_sio);
5172 if (sio != NULL) {
5173 blkptr_t tmpbp;
5175 /* Got it while it was cold in the queue */
5176 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5177 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5178 avl_remove(&queue->q_sios_by_addr, sio);
5179 if (avl_is_empty(&queue->q_sios_by_addr))
5180 atomic_add_64(&scn->scn_queues_pending, -1);
5181 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5183 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
5184 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5186 /* count the block as though we skipped it */
5187 sio2bp(sio, &tmpbp);
5188 count_block_skipped(scn, &tmpbp, B_FALSE);
5190 sio_free(sio);
5192 mutex_exit(q_lock);
5196 * Callback invoked when a zio_free() zio is executing. This needs to be
5197 * intercepted to prevent the zio from deallocating a particular portion
5198 * of disk space and it then getting reallocated and written to, while we
5199 * still have it queued up for processing.
5201 void
5202 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5204 dsl_pool_t *dp = spa->spa_dsl_pool;
5205 dsl_scan_t *scn = dp->dp_scan;
5207 ASSERT(!BP_IS_EMBEDDED(bp));
5208 ASSERT(scn != NULL);
5209 if (!dsl_scan_is_running(scn))
5210 return;
5212 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5213 dsl_scan_freed_dva(spa, bp, i);
5217 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5218 * not started, start it. Otherwise, only restart if max txg in DTL range is
5219 * greater than the max txg in the current scan. If the DTL max is less than
5220 * the scan max, then the vdev has not missed any new data since the resilver
5221 * started, so a restart is not needed.
5223 void
5224 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5226 uint64_t min, max;
5228 if (!vdev_resilver_needed(vd, &min, &max))
5229 return;
5231 if (!dsl_scan_resilvering(dp)) {
5232 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5233 return;
5236 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5237 return;
5239 /* restart is needed, check if it can be deferred */
5240 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5241 vdev_defer_resilver(vd);
5242 else
5243 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5246 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5247 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5249 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5250 "Min millisecs to scrub per txg");
5252 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5253 "Min millisecs to obsolete per txg");
5255 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5256 "Min millisecs to free per txg");
5258 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5259 "Min millisecs to resilver per txg");
5261 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5262 "Set to prevent scans from progressing");
5264 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5265 "Set to disable scrub I/O");
5267 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5268 "Set to disable scrub prefetching");
5270 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5271 "Max number of blocks freed in one txg");
5273 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5274 "Max number of dedup blocks freed in one txg");
5276 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5277 "Enable processing of the free_bpobj");
5279 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5280 "Enable block statistics calculation during scrub");
5282 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5283 "Fraction of RAM for scan hard limit");
5285 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5286 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5288 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5289 "Scrub using legacy non-sequential method");
5291 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5292 "Scan progress on-disk checkpointing interval");
5294 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5295 "Max gap in bytes between sequential scrub / resilver I/Os");
5297 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5298 "Fraction of hard limit used as soft limit");
5300 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5301 "Tunable to attempt to reduce lock contention");
5303 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5304 "Tunable to adjust bias towards more filled segments during scans");
5306 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5307 "Tunable to report resilver performance over the last N txgs");
5309 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5310 "Process all resilvers immediately");
5312 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5313 "Issued IO percent complete after which resilvers are deferred");
5315 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5316 "Error blocks to be scrubbed in one txg");
5317 /* END CSTYLED */