4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2018, Intel Corporation.
24 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
26 * Copyright (c) 2024 by Delphix. All rights reserved.
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/dsl_scan.h>
32 #include <sys/spa_impl.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_rebuild.h>
36 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
42 * This file contains the sequential reconstruction implementation for
43 * resilvering. This form of resilvering is internally referred to as device
44 * rebuild to avoid conflating it with the traditional healing reconstruction
45 * performed by the dsl scan code.
47 * When replacing a device, or scrubbing the pool, ZFS has historically used
48 * a process called resilvering which is a form of healing reconstruction.
49 * This approach has the advantage that as blocks are read from disk their
50 * checksums can be immediately verified and the data repaired. Unfortunately,
51 * it also results in a random IO pattern to the disk even when extra care
52 * is taken to sequentialize the IO as much as possible. This substantially
53 * increases the time required to resilver the pool and restore redundancy.
55 * For mirrored devices it's possible to implement an alternate sequential
56 * reconstruction strategy when resilvering. Sequential reconstruction
57 * behaves like a traditional RAID rebuild and reconstructs a device in LBA
58 * order without verifying the checksum. After this phase completes a second
59 * scrub phase is started to verify all of the checksums. This two phase
60 * process will take longer than the healing reconstruction described above.
61 * However, it has that advantage that after the reconstruction first phase
62 * completes redundancy has been restored. At this point the pool can incur
63 * another device failure without risking data loss.
65 * There are a few noteworthy limitations and other advantages of resilvering
66 * using sequential reconstruction vs healing reconstruction.
70 * - Sequential reconstruction is not possible on RAIDZ due to its
71 * variable stripe width. Note dRAID uses a fixed stripe width which
72 * avoids this issue, but comes at the expense of some usable capacity.
74 * - Block checksums are not verified during sequential reconstruction.
75 * Similar to traditional RAID the parity/mirror data is reconstructed
76 * but cannot be immediately double checked. For this reason when the
77 * last active resilver completes the pool is automatically scrubbed
80 * - Deferred resilvers using sequential reconstruction are not currently
81 * supported. When adding another vdev to an active top-level resilver
82 * it must be restarted.
86 * - Sequential reconstruction is performed in LBA order which may be faster
87 * than healing reconstruction particularly when using HDDs (or
88 * especially with SMR devices). Only allocated capacity is resilvered.
90 * - Sequential reconstruction is not constrained by ZFS block boundaries.
91 * This allows it to issue larger IOs to disk which span multiple blocks
92 * allowing all of these logical blocks to be repaired with a single IO.
94 * - Unlike a healing resilver or scrub which are pool wide operations,
95 * sequential reconstruction is handled by the top-level vdevs. This
96 * allows for it to be started or canceled on a top-level vdev without
97 * impacting any other top-level vdevs in the pool.
99 * - Data only referenced by a pool checkpoint will be repaired because
100 * that space is reflected in the space maps. This differs for a
101 * healing resilver or scrub which will not repair that data.
106 * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
109 static uint64_t zfs_rebuild_max_segment
= 1024 * 1024;
112 * Maximum number of parallelly executed bytes per leaf vdev caused by a
113 * sequential resilver. We attempt to strike a balance here between keeping
114 * the vdev queues full of I/Os at all times and not overflowing the queues
115 * to cause long latency, which would cause long txg sync times.
117 * A large default value can be safely used here because the default target
118 * segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
119 * the queue depth short.
121 * 64MB was observed to deliver the best performance and set as the default.
122 * Testing was performed with a 106-drive dRAID HDD pool (draid2:11d:106c)
123 * and a rebuild rate of 1.2GB/s was measured to the distribute spare.
124 * Smaller values were unable to fully saturate the available pool I/O.
126 static uint64_t zfs_rebuild_vdev_limit
= 64 << 20;
129 * Automatically start a pool scrub when the last active sequential resilver
130 * completes in order to verify the checksums of all blocks which have been
131 * resilvered. This option is enabled by default and is strongly recommended.
133 static int zfs_rebuild_scrub_enabled
= 1;
136 * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
138 static __attribute__((noreturn
)) void vdev_rebuild_thread(void *arg
);
139 static void vdev_rebuild_reset_sync(void *arg
, dmu_tx_t
*tx
);
142 * Clear the per-vdev rebuild bytes value for a vdev tree.
145 clear_rebuild_bytes(vdev_t
*vd
)
147 vdev_stat_t
*vs
= &vd
->vdev_stat
;
149 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
150 clear_rebuild_bytes(vd
->vdev_child
[i
]);
152 mutex_enter(&vd
->vdev_stat_lock
);
153 vs
->vs_rebuild_processed
= 0;
154 mutex_exit(&vd
->vdev_stat_lock
);
158 * Determines whether a vdev_rebuild_thread() should be stopped.
161 vdev_rebuild_should_stop(vdev_t
*vd
)
163 return (!vdev_writeable(vd
) || vd
->vdev_removing
||
164 vd
->vdev_rebuild_exit_wanted
||
165 vd
->vdev_rebuild_cancel_wanted
||
166 vd
->vdev_rebuild_reset_wanted
);
170 * Determine if the rebuild should be canceled. This may happen when all
171 * vdevs with MISSING DTLs are detached.
174 vdev_rebuild_should_cancel(vdev_t
*vd
)
176 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
177 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
179 if (!vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
))
186 * The sync task for updating the on-disk state of a rebuild. This is
187 * scheduled by vdev_rebuild_range().
190 vdev_rebuild_update_sync(void *arg
, dmu_tx_t
*tx
)
192 int vdev_id
= (uintptr_t)arg
;
193 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
194 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
195 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
196 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
197 uint64_t txg
= dmu_tx_get_txg(tx
);
199 mutex_enter(&vd
->vdev_rebuild_lock
);
201 if (vr
->vr_scan_offset
[txg
& TXG_MASK
] > 0) {
202 vrp
->vrp_last_offset
= vr
->vr_scan_offset
[txg
& TXG_MASK
];
203 vr
->vr_scan_offset
[txg
& TXG_MASK
] = 0;
206 vrp
->vrp_scan_time_ms
= vr
->vr_prev_scan_time_ms
+
207 NSEC2MSEC(gethrtime() - vr
->vr_pass_start_time
);
209 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
210 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
211 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
213 mutex_exit(&vd
->vdev_rebuild_lock
);
217 * Initialize the on-disk state for a new rebuild, start the rebuild thread.
220 vdev_rebuild_initiate_sync(void *arg
, dmu_tx_t
*tx
)
222 int vdev_id
= (uintptr_t)arg
;
223 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
224 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
225 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
226 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
228 ASSERT(vd
->vdev_rebuilding
);
230 spa_feature_incr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
232 mutex_enter(&vd
->vdev_rebuild_lock
);
233 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
234 vrp
->vrp_rebuild_state
= VDEV_REBUILD_ACTIVE
;
235 vrp
->vrp_min_txg
= 0;
236 vrp
->vrp_max_txg
= dmu_tx_get_txg(tx
);
237 vrp
->vrp_start_time
= gethrestime_sec();
238 vrp
->vrp_scan_time_ms
= 0;
239 vr
->vr_prev_scan_time_ms
= 0;
242 * Rebuilds are currently only used when replacing a device, in which
243 * case there must be DTL_MISSING entries. In the future, we could
244 * allow rebuilds to be used in a way similar to a scrub. This would
245 * be useful because it would allow us to rebuild the space used by
248 VERIFY(vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
));
250 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
251 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
252 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
254 spa_history_log_internal(spa
, "rebuild", tx
,
255 "vdev_id=%llu vdev_guid=%llu started",
256 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
258 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
259 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
260 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
, maxclsyspri
);
262 mutex_exit(&vd
->vdev_rebuild_lock
);
266 vdev_rebuild_log_notify(spa_t
*spa
, vdev_t
*vd
, const char *name
)
268 nvlist_t
*aux
= fnvlist_alloc();
270 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
, "sequential");
271 spa_event_notify(spa
, vd
, aux
, name
);
276 * Called to request that a new rebuild be started. The feature will remain
277 * active for the duration of the rebuild, then revert to the enabled state.
280 vdev_rebuild_initiate(vdev_t
*vd
)
282 spa_t
*spa
= vd
->vdev_spa
;
284 ASSERT(vd
->vdev_top
== vd
);
285 ASSERT(MUTEX_HELD(&vd
->vdev_rebuild_lock
));
286 ASSERT(!vd
->vdev_rebuilding
);
288 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
289 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
291 vd
->vdev_rebuilding
= B_TRUE
;
293 dsl_sync_task_nowait(spa_get_dsl(spa
), vdev_rebuild_initiate_sync
,
294 (void *)(uintptr_t)vd
->vdev_id
, tx
);
297 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_START
);
301 * Update the on-disk state to completed when a rebuild finishes.
304 vdev_rebuild_complete_sync(void *arg
, dmu_tx_t
*tx
)
306 int vdev_id
= (uintptr_t)arg
;
307 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
308 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
309 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
310 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
312 mutex_enter(&vd
->vdev_rebuild_lock
);
315 * Handle a second device failure if it occurs after all rebuild I/O
316 * has completed but before this sync task has been executed.
318 if (vd
->vdev_rebuild_reset_wanted
) {
319 mutex_exit(&vd
->vdev_rebuild_lock
);
320 vdev_rebuild_reset_sync(arg
, tx
);
324 vrp
->vrp_rebuild_state
= VDEV_REBUILD_COMPLETE
;
325 vrp
->vrp_end_time
= gethrestime_sec();
327 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
328 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
329 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
331 vdev_dtl_reassess(vd
, tx
->tx_txg
, vrp
->vrp_max_txg
, B_TRUE
, B_TRUE
);
332 spa_feature_decr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
334 spa_history_log_internal(spa
, "rebuild", tx
,
335 "vdev_id=%llu vdev_guid=%llu complete",
336 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
337 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_FINISH
);
339 /* Handles detaching of spares */
340 spa_async_request(spa
, SPA_ASYNC_REBUILD_DONE
);
341 vd
->vdev_rebuilding
= B_FALSE
;
342 mutex_exit(&vd
->vdev_rebuild_lock
);
345 * While we're in syncing context take the opportunity to
346 * setup the scrub when there are no more active rebuilds.
348 pool_scan_func_t func
= POOL_SCAN_SCRUB
;
349 if (dsl_scan_setup_check(&func
, tx
) == 0 &&
350 zfs_rebuild_scrub_enabled
) {
351 dsl_scan_setup_sync(&func
, tx
);
354 cv_broadcast(&vd
->vdev_rebuild_cv
);
356 /* Clear recent error events (i.e. duplicate events tracking) */
357 zfs_ereport_clear(spa
, NULL
);
361 * Update the on-disk state to canceled when a rebuild finishes.
364 vdev_rebuild_cancel_sync(void *arg
, dmu_tx_t
*tx
)
366 int vdev_id
= (uintptr_t)arg
;
367 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
368 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
369 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
370 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
372 mutex_enter(&vd
->vdev_rebuild_lock
);
373 vrp
->vrp_rebuild_state
= VDEV_REBUILD_CANCELED
;
374 vrp
->vrp_end_time
= gethrestime_sec();
376 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
377 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
378 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
380 spa_feature_decr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
382 spa_history_log_internal(spa
, "rebuild", tx
,
383 "vdev_id=%llu vdev_guid=%llu canceled",
384 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
385 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_FINISH
);
387 vd
->vdev_rebuild_cancel_wanted
= B_FALSE
;
388 vd
->vdev_rebuilding
= B_FALSE
;
389 mutex_exit(&vd
->vdev_rebuild_lock
);
391 spa_notify_waiters(spa
);
392 cv_broadcast(&vd
->vdev_rebuild_cv
);
396 * Resets the progress of a running rebuild. This will occur when a new
397 * vdev is added to rebuild.
400 vdev_rebuild_reset_sync(void *arg
, dmu_tx_t
*tx
)
402 int vdev_id
= (uintptr_t)arg
;
403 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
404 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
405 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
406 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
408 mutex_enter(&vd
->vdev_rebuild_lock
);
410 ASSERT(vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
411 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
413 vrp
->vrp_last_offset
= 0;
414 vrp
->vrp_min_txg
= 0;
415 vrp
->vrp_max_txg
= dmu_tx_get_txg(tx
);
416 vrp
->vrp_bytes_scanned
= 0;
417 vrp
->vrp_bytes_issued
= 0;
418 vrp
->vrp_bytes_rebuilt
= 0;
419 vrp
->vrp_bytes_est
= 0;
420 vrp
->vrp_scan_time_ms
= 0;
421 vr
->vr_prev_scan_time_ms
= 0;
423 /* See vdev_rebuild_initiate_sync comment */
424 VERIFY(vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
));
426 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
427 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
428 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
430 spa_history_log_internal(spa
, "rebuild", tx
,
431 "vdev_id=%llu vdev_guid=%llu reset",
432 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
434 vd
->vdev_rebuild_reset_wanted
= B_FALSE
;
435 ASSERT(vd
->vdev_rebuilding
);
437 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
438 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
, maxclsyspri
);
440 mutex_exit(&vd
->vdev_rebuild_lock
);
444 * Clear the last rebuild status.
447 vdev_rebuild_clear_sync(void *arg
, dmu_tx_t
*tx
)
449 int vdev_id
= (uintptr_t)arg
;
450 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
451 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
452 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
453 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
454 objset_t
*mos
= spa_meta_objset(spa
);
456 mutex_enter(&vd
->vdev_rebuild_lock
);
458 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
) ||
459 vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
) {
460 mutex_exit(&vd
->vdev_rebuild_lock
);
464 clear_rebuild_bytes(vd
);
465 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
467 if (vd
->vdev_top_zap
!= 0 && zap_contains(mos
, vd
->vdev_top_zap
,
468 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
) == 0) {
469 VERIFY0(zap_update(mos
, vd
->vdev_top_zap
,
470 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
471 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
474 mutex_exit(&vd
->vdev_rebuild_lock
);
478 * The zio_done_func_t callback for each rebuild I/O issued. It's responsible
479 * for updating the rebuild stats and limiting the number of in flight I/Os.
482 vdev_rebuild_cb(zio_t
*zio
)
484 vdev_rebuild_t
*vr
= zio
->io_private
;
485 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
486 vdev_t
*vd
= vr
->vr_top_vdev
;
488 mutex_enter(&vr
->vr_io_lock
);
489 if (zio
->io_error
== ENXIO
&& !vdev_writeable(vd
)) {
491 * The I/O failed because the top-level vdev was unavailable.
492 * Attempt to roll back to the last completed offset, in order
493 * resume from the correct location if the pool is resumed.
494 * (This works because spa_sync waits on spa_txg_zio before
495 * it runs sync tasks.)
497 uint64_t *off
= &vr
->vr_scan_offset
[zio
->io_txg
& TXG_MASK
];
498 *off
= MIN(*off
, zio
->io_offset
);
499 } else if (zio
->io_error
) {
503 abd_free(zio
->io_abd
);
505 ASSERT3U(vr
->vr_bytes_inflight
, >, 0);
506 vr
->vr_bytes_inflight
-= zio
->io_size
;
507 cv_broadcast(&vr
->vr_io_cv
);
508 mutex_exit(&vr
->vr_io_lock
);
510 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
514 * Initialize a block pointer that can be used to read the given segment
515 * for sequential rebuild.
518 vdev_rebuild_blkptr_init(blkptr_t
*bp
, vdev_t
*vd
, uint64_t start
,
521 ASSERT(vd
->vdev_ops
== &vdev_draid_ops
||
522 vd
->vdev_ops
== &vdev_mirror_ops
||
523 vd
->vdev_ops
== &vdev_replacing_ops
||
524 vd
->vdev_ops
== &vdev_spare_ops
);
526 uint64_t psize
= vd
->vdev_ops
== &vdev_draid_ops
?
527 vdev_draid_asize_to_psize(vd
, asize
) : asize
;
531 DVA_SET_VDEV(&bp
->blk_dva
[0], vd
->vdev_id
);
532 DVA_SET_OFFSET(&bp
->blk_dva
[0], start
);
533 DVA_SET_GANG(&bp
->blk_dva
[0], 0);
534 DVA_SET_ASIZE(&bp
->blk_dva
[0], asize
);
536 BP_SET_BIRTH(bp
, TXG_INITIAL
, TXG_INITIAL
);
537 BP_SET_LSIZE(bp
, psize
);
538 BP_SET_PSIZE(bp
, psize
);
539 BP_SET_COMPRESS(bp
, ZIO_COMPRESS_OFF
);
540 BP_SET_CHECKSUM(bp
, ZIO_CHECKSUM_OFF
);
541 BP_SET_TYPE(bp
, DMU_OT_NONE
);
544 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
548 * Issues a rebuild I/O and takes care of rate limiting the number of queued
549 * rebuild I/Os. The provided start and size must be properly aligned for the
550 * top-level vdev type being rebuilt.
553 vdev_rebuild_range(vdev_rebuild_t
*vr
, uint64_t start
, uint64_t size
)
555 uint64_t ms_id __maybe_unused
= vr
->vr_scan_msp
->ms_id
;
556 vdev_t
*vd
= vr
->vr_top_vdev
;
557 spa_t
*spa
= vd
->vdev_spa
;
560 ASSERT3U(ms_id
, ==, start
>> vd
->vdev_ms_shift
);
561 ASSERT3U(ms_id
, ==, (start
+ size
- 1) >> vd
->vdev_ms_shift
);
563 vr
->vr_pass_bytes_scanned
+= size
;
564 vr
->vr_rebuild_phys
.vrp_bytes_scanned
+= size
;
567 * Rebuild the data in this range by constructing a special block
568 * pointer. It has no relation to any existing blocks in the pool.
569 * However, by disabling checksum verification and issuing a scrub IO
570 * we can reconstruct and repair any children with missing data.
572 vdev_rebuild_blkptr_init(&blk
, vd
, start
, size
);
573 uint64_t psize
= BP_GET_PSIZE(&blk
);
575 if (!vdev_dtl_need_resilver(vd
, &blk
.blk_dva
[0], psize
, TXG_UNKNOWN
)) {
576 vr
->vr_pass_bytes_skipped
+= size
;
580 mutex_enter(&vr
->vr_io_lock
);
582 /* Limit in flight rebuild I/Os */
583 while (vr
->vr_bytes_inflight
>= vr
->vr_bytes_inflight_max
)
584 cv_wait(&vr
->vr_io_cv
, &vr
->vr_io_lock
);
586 vr
->vr_bytes_inflight
+= psize
;
587 mutex_exit(&vr
->vr_io_lock
);
589 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
590 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
591 uint64_t txg
= dmu_tx_get_txg(tx
);
593 spa_config_enter(spa
, SCL_STATE_ALL
, vd
, RW_READER
);
594 mutex_enter(&vd
->vdev_rebuild_lock
);
596 /* This is the first I/O for this txg. */
597 if (vr
->vr_scan_offset
[txg
& TXG_MASK
] == 0) {
598 vr
->vr_scan_offset
[txg
& TXG_MASK
] = start
;
599 dsl_sync_task_nowait(spa_get_dsl(spa
),
600 vdev_rebuild_update_sync
,
601 (void *)(uintptr_t)vd
->vdev_id
, tx
);
604 /* When exiting write out our progress. */
605 if (vdev_rebuild_should_stop(vd
)) {
606 mutex_enter(&vr
->vr_io_lock
);
607 vr
->vr_bytes_inflight
-= psize
;
608 mutex_exit(&vr
->vr_io_lock
);
609 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
610 mutex_exit(&vd
->vdev_rebuild_lock
);
612 return (SET_ERROR(EINTR
));
614 mutex_exit(&vd
->vdev_rebuild_lock
);
617 vr
->vr_scan_offset
[txg
& TXG_MASK
] = start
+ size
;
618 vr
->vr_pass_bytes_issued
+= size
;
619 vr
->vr_rebuild_phys
.vrp_bytes_issued
+= size
;
621 zio_nowait(zio_read(spa
->spa_txg_zio
[txg
& TXG_MASK
], spa
, &blk
,
622 abd_alloc(psize
, B_FALSE
), psize
, vdev_rebuild_cb
, vr
,
623 ZIO_PRIORITY_REBUILD
, ZIO_FLAG_RAW
| ZIO_FLAG_CANFAIL
|
624 ZIO_FLAG_RESILVER
, NULL
));
630 * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
633 vdev_rebuild_ranges(vdev_rebuild_t
*vr
)
635 vdev_t
*vd
= vr
->vr_top_vdev
;
636 zfs_btree_t
*t
= &vr
->vr_scan_tree
->rt_root
;
637 zfs_btree_index_t idx
;
640 for (range_seg_t
*rs
= zfs_btree_first(t
, &idx
); rs
!= NULL
;
641 rs
= zfs_btree_next(t
, &idx
, &idx
)) {
642 uint64_t start
= rs_get_start(rs
, vr
->vr_scan_tree
);
643 uint64_t size
= rs_get_end(rs
, vr
->vr_scan_tree
) - start
;
646 * zfs_scan_suspend_progress can be set to disable rebuild
647 * progress for testing. See comment in dsl_scan_sync().
649 while (zfs_scan_suspend_progress
&&
650 !vdev_rebuild_should_stop(vd
)) {
658 * Split range into legally-sized logical chunks
659 * given the constraints of the top-level vdev
660 * being rebuilt (dRAID or mirror).
662 ASSERT3P(vd
->vdev_ops
, !=, NULL
);
663 chunk_size
= vd
->vdev_ops
->vdev_op_rebuild_asize(vd
,
664 start
, size
, zfs_rebuild_max_segment
);
666 error
= vdev_rebuild_range(vr
, start
, chunk_size
);
679 * Calculates the estimated capacity which remains to be scanned. Since
680 * we traverse the pool in metaslab order only allocated capacity beyond
681 * the vrp_last_offset need be considered. All lower offsets must have
682 * already been rebuilt and are thus already included in vrp_bytes_scanned.
685 vdev_rebuild_update_bytes_est(vdev_t
*vd
, uint64_t ms_id
)
687 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
688 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
689 uint64_t bytes_est
= vrp
->vrp_bytes_scanned
;
691 if (vrp
->vrp_last_offset
< vd
->vdev_ms
[ms_id
]->ms_start
)
694 for (uint64_t i
= ms_id
; i
< vd
->vdev_ms_count
; i
++) {
695 metaslab_t
*msp
= vd
->vdev_ms
[i
];
697 mutex_enter(&msp
->ms_lock
);
698 bytes_est
+= metaslab_allocated_space(msp
);
699 mutex_exit(&msp
->ms_lock
);
702 vrp
->vrp_bytes_est
= bytes_est
;
706 * Load from disk the top-level vdev's rebuild information.
709 vdev_rebuild_load(vdev_t
*vd
)
711 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
712 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
713 spa_t
*spa
= vd
->vdev_spa
;
716 mutex_enter(&vd
->vdev_rebuild_lock
);
717 vd
->vdev_rebuilding
= B_FALSE
;
719 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
)) {
720 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
721 mutex_exit(&vd
->vdev_rebuild_lock
);
722 return (SET_ERROR(ENOTSUP
));
725 ASSERT(vd
->vdev_top
== vd
);
727 err
= zap_lookup(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
728 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
729 REBUILD_PHYS_ENTRIES
, vrp
);
732 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
733 * not prevent a pool from being imported. Clear the rebuild
734 * status allowing a new resilver/rebuild to be started.
736 if (err
== ENOENT
|| err
== EOVERFLOW
|| err
== ECKSUM
) {
737 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
739 mutex_exit(&vd
->vdev_rebuild_lock
);
743 vr
->vr_prev_scan_time_ms
= vrp
->vrp_scan_time_ms
;
744 vr
->vr_top_vdev
= vd
;
746 mutex_exit(&vd
->vdev_rebuild_lock
);
752 * Each scan thread is responsible for rebuilding a top-level vdev. The
753 * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
755 static __attribute__((noreturn
)) void
756 vdev_rebuild_thread(void *arg
)
759 spa_t
*spa
= vd
->vdev_spa
;
760 vdev_t
*rvd
= spa
->spa_root_vdev
;
764 * If there's a scrub in process request that it be stopped. This
765 * is not required for a correct rebuild, but we do want rebuilds to
766 * emulate the resilver behavior as much as possible.
768 dsl_pool_t
*dsl
= spa_get_dsl(spa
);
769 if (dsl_scan_scrubbing(dsl
))
770 dsl_scan_cancel(dsl
);
772 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
773 mutex_enter(&vd
->vdev_rebuild_lock
);
775 ASSERT3P(vd
->vdev_top
, ==, vd
);
776 ASSERT3P(vd
->vdev_rebuild_thread
, !=, NULL
);
777 ASSERT(vd
->vdev_rebuilding
);
778 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_DEVICE_REBUILD
));
779 ASSERT3B(vd
->vdev_rebuild_cancel_wanted
, ==, B_FALSE
);
781 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
782 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
783 vr
->vr_top_vdev
= vd
;
784 vr
->vr_scan_msp
= NULL
;
785 vr
->vr_scan_tree
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
786 mutex_init(&vr
->vr_io_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
787 cv_init(&vr
->vr_io_cv
, NULL
, CV_DEFAULT
, NULL
);
789 vr
->vr_pass_start_time
= gethrtime();
790 vr
->vr_pass_bytes_scanned
= 0;
791 vr
->vr_pass_bytes_issued
= 0;
792 vr
->vr_pass_bytes_skipped
= 0;
794 uint64_t update_est_time
= gethrtime();
795 vdev_rebuild_update_bytes_est(vd
, 0);
797 clear_rebuild_bytes(vr
->vr_top_vdev
);
799 mutex_exit(&vd
->vdev_rebuild_lock
);
802 * Systematically walk the metaslabs and issue rebuild I/Os for
803 * all ranges in the allocated space map.
805 for (uint64_t i
= 0; i
< vd
->vdev_ms_count
; i
++) {
806 metaslab_t
*msp
= vd
->vdev_ms
[i
];
807 vr
->vr_scan_msp
= msp
;
810 * Calculate the max number of in-flight bytes for top-level
811 * vdev scanning operations (minimum 1MB, maximum 1/2 of
812 * arc_c_max shared by all top-level vdevs). Limits for the
813 * issuing phase are done per top-level vdev and are handled
816 uint64_t limit
= (arc_c_max
/ 2) / MAX(rvd
->vdev_children
, 1);
817 vr
->vr_bytes_inflight_max
= MIN(limit
, MAX(1ULL << 20,
818 zfs_rebuild_vdev_limit
* vd
->vdev_children
));
821 * Removal of vdevs from the vdev tree may eliminate the need
822 * for the rebuild, in which case it should be canceled. The
823 * vdev_rebuild_cancel_wanted flag is set until the sync task
824 * completes. This may be after the rebuild thread exits.
826 if (vdev_rebuild_should_cancel(vd
)) {
827 vd
->vdev_rebuild_cancel_wanted
= B_TRUE
;
832 ASSERT0(range_tree_space(vr
->vr_scan_tree
));
834 /* Disable any new allocations to this metaslab */
835 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
836 metaslab_disable(msp
);
838 mutex_enter(&msp
->ms_sync_lock
);
839 mutex_enter(&msp
->ms_lock
);
842 * If there are outstanding allocations wait for them to be
843 * synced. This is needed to ensure all allocated ranges are
844 * on disk and therefore will be rebuilt.
846 for (int j
= 0; j
< TXG_SIZE
; j
++) {
847 if (range_tree_space(msp
->ms_allocating
[j
])) {
848 mutex_exit(&msp
->ms_lock
);
849 mutex_exit(&msp
->ms_sync_lock
);
850 txg_wait_synced(dsl
, 0);
851 mutex_enter(&msp
->ms_sync_lock
);
852 mutex_enter(&msp
->ms_lock
);
858 * When a metaslab has been allocated from read its allocated
859 * ranges from the space map object into the vr_scan_tree.
860 * Then add inflight / unflushed ranges and remove inflight /
861 * unflushed frees. This is the minimum range to be rebuilt.
863 if (msp
->ms_sm
!= NULL
) {
864 VERIFY0(space_map_load(msp
->ms_sm
,
865 vr
->vr_scan_tree
, SM_ALLOC
));
867 for (int i
= 0; i
< TXG_SIZE
; i
++) {
868 ASSERT0(range_tree_space(
869 msp
->ms_allocating
[i
]));
872 range_tree_walk(msp
->ms_unflushed_allocs
,
873 range_tree_add
, vr
->vr_scan_tree
);
874 range_tree_walk(msp
->ms_unflushed_frees
,
875 range_tree_remove
, vr
->vr_scan_tree
);
878 * Remove ranges which have already been rebuilt based
879 * on the last offset. This can happen when restarting
880 * a scan after exporting and re-importing the pool.
882 range_tree_clear(vr
->vr_scan_tree
, 0,
883 vrp
->vrp_last_offset
);
886 mutex_exit(&msp
->ms_lock
);
887 mutex_exit(&msp
->ms_sync_lock
);
890 * To provide an accurate estimate re-calculate the estimated
891 * size every 5 minutes to account for recent allocations and
892 * frees made to space maps which have not yet been rebuilt.
894 if (gethrtime() > update_est_time
+ SEC2NSEC(300)) {
895 update_est_time
= gethrtime();
896 vdev_rebuild_update_bytes_est(vd
, i
);
900 * Walk the allocated space map and issue the rebuild I/O.
902 error
= vdev_rebuild_ranges(vr
);
903 range_tree_vacate(vr
->vr_scan_tree
, NULL
, NULL
);
905 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
906 metaslab_enable(msp
, B_FALSE
, B_FALSE
);
912 range_tree_destroy(vr
->vr_scan_tree
);
913 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
915 /* Wait for any remaining rebuild I/O to complete */
916 mutex_enter(&vr
->vr_io_lock
);
917 while (vr
->vr_bytes_inflight
> 0)
918 cv_wait(&vr
->vr_io_cv
, &vr
->vr_io_lock
);
920 mutex_exit(&vr
->vr_io_lock
);
922 mutex_destroy(&vr
->vr_io_lock
);
923 cv_destroy(&vr
->vr_io_cv
);
925 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
927 dsl_pool_t
*dp
= spa_get_dsl(spa
);
928 dmu_tx_t
*tx
= dmu_tx_create_dd(dp
->dp_mos_dir
);
929 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
931 mutex_enter(&vd
->vdev_rebuild_lock
);
934 * After a successful rebuild clear the DTLs of all ranges
935 * which were missing when the rebuild was started. These
936 * ranges must have been rebuilt as a consequence of rebuilding
937 * all allocated space. Note that unlike a scrub or resilver
938 * the rebuild operation will reconstruct data only referenced
939 * by a pool checkpoint. See the dsl_scan_done() comments.
941 dsl_sync_task_nowait(dp
, vdev_rebuild_complete_sync
,
942 (void *)(uintptr_t)vd
->vdev_id
, tx
);
943 } else if (vd
->vdev_rebuild_cancel_wanted
) {
945 * The rebuild operation was canceled. This will occur when
946 * a device participating in the rebuild is detached.
948 dsl_sync_task_nowait(dp
, vdev_rebuild_cancel_sync
,
949 (void *)(uintptr_t)vd
->vdev_id
, tx
);
950 } else if (vd
->vdev_rebuild_reset_wanted
) {
952 * Reset the running rebuild without canceling and restarting
953 * it. This will occur when a new device is attached and must
954 * participate in the rebuild.
956 dsl_sync_task_nowait(dp
, vdev_rebuild_reset_sync
,
957 (void *)(uintptr_t)vd
->vdev_id
, tx
);
960 * The rebuild operation should be suspended. This may occur
961 * when detaching a child vdev or when exporting the pool. The
962 * rebuild is left in the active state so it will be resumed.
964 ASSERT(vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
965 vd
->vdev_rebuilding
= B_FALSE
;
970 vd
->vdev_rebuild_thread
= NULL
;
971 mutex_exit(&vd
->vdev_rebuild_lock
);
972 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
974 cv_broadcast(&vd
->vdev_rebuild_cv
);
980 * Returns B_TRUE if any top-level vdev are rebuilding.
983 vdev_rebuild_active(vdev_t
*vd
)
985 spa_t
*spa
= vd
->vdev_spa
;
986 boolean_t ret
= B_FALSE
;
988 if (vd
== spa
->spa_root_vdev
) {
989 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
990 ret
= vdev_rebuild_active(vd
->vdev_child
[i
]);
994 } else if (vd
->vdev_top_zap
!= 0) {
995 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
996 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
998 mutex_enter(&vd
->vdev_rebuild_lock
);
999 ret
= (vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
1000 mutex_exit(&vd
->vdev_rebuild_lock
);
1007 * Start a rebuild operation. The rebuild may be restarted when the
1008 * top-level vdev is currently actively rebuilding.
1011 vdev_rebuild(vdev_t
*vd
)
1013 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
1014 vdev_rebuild_phys_t
*vrp __maybe_unused
= &vr
->vr_rebuild_phys
;
1016 ASSERT(vd
->vdev_top
== vd
);
1017 ASSERT(vdev_is_concrete(vd
));
1018 ASSERT(!vd
->vdev_removing
);
1019 ASSERT(spa_feature_is_enabled(vd
->vdev_spa
,
1020 SPA_FEATURE_DEVICE_REBUILD
));
1022 mutex_enter(&vd
->vdev_rebuild_lock
);
1023 if (vd
->vdev_rebuilding
) {
1024 ASSERT3U(vrp
->vrp_rebuild_state
, ==, VDEV_REBUILD_ACTIVE
);
1027 * Signal a running rebuild operation that it should restart
1028 * from the beginning because a new device was attached. The
1029 * vdev_rebuild_reset_wanted flag is set until the sync task
1030 * completes. This may be after the rebuild thread exits.
1032 if (!vd
->vdev_rebuild_reset_wanted
)
1033 vd
->vdev_rebuild_reset_wanted
= B_TRUE
;
1035 vdev_rebuild_initiate(vd
);
1037 mutex_exit(&vd
->vdev_rebuild_lock
);
1041 vdev_rebuild_restart_impl(vdev_t
*vd
)
1043 spa_t
*spa
= vd
->vdev_spa
;
1045 if (vd
== spa
->spa_root_vdev
) {
1046 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
1047 vdev_rebuild_restart_impl(vd
->vdev_child
[i
]);
1049 } else if (vd
->vdev_top_zap
!= 0) {
1050 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
1051 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
1053 mutex_enter(&vd
->vdev_rebuild_lock
);
1054 if (vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
&&
1055 vdev_writeable(vd
) && !vd
->vdev_rebuilding
) {
1056 ASSERT(spa_feature_is_active(spa
,
1057 SPA_FEATURE_DEVICE_REBUILD
));
1058 vd
->vdev_rebuilding
= B_TRUE
;
1059 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
1060 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
,
1063 mutex_exit(&vd
->vdev_rebuild_lock
);
1068 * Conditionally restart all of the vdev_rebuild_thread's for a pool. The
1069 * feature flag must be active and the rebuild in the active state. This
1070 * cannot be used to start a new rebuild.
1073 vdev_rebuild_restart(spa_t
*spa
)
1075 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1076 spa
->spa_load_thread
== curthread
);
1078 vdev_rebuild_restart_impl(spa
->spa_root_vdev
);
1082 * Stop and wait for all of the vdev_rebuild_thread's associated with the
1083 * vdev tree provide to be terminated (canceled or stopped).
1086 vdev_rebuild_stop_wait(vdev_t
*vd
)
1088 spa_t
*spa
= vd
->vdev_spa
;
1090 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1091 spa
->spa_export_thread
== curthread
);
1093 if (vd
== spa
->spa_root_vdev
) {
1094 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
1095 vdev_rebuild_stop_wait(vd
->vdev_child
[i
]);
1097 } else if (vd
->vdev_top_zap
!= 0) {
1098 ASSERT(vd
== vd
->vdev_top
);
1100 mutex_enter(&vd
->vdev_rebuild_lock
);
1101 if (vd
->vdev_rebuild_thread
!= NULL
) {
1102 vd
->vdev_rebuild_exit_wanted
= B_TRUE
;
1103 while (vd
->vdev_rebuilding
) {
1104 cv_wait(&vd
->vdev_rebuild_cv
,
1105 &vd
->vdev_rebuild_lock
);
1107 vd
->vdev_rebuild_exit_wanted
= B_FALSE
;
1109 mutex_exit(&vd
->vdev_rebuild_lock
);
1114 * Stop all rebuild operations but leave them in the active state so they
1115 * will be resumed when importing the pool.
1118 vdev_rebuild_stop_all(spa_t
*spa
)
1120 vdev_rebuild_stop_wait(spa
->spa_root_vdev
);
1124 * Rebuild statistics reported per top-level vdev.
1127 vdev_rebuild_get_stats(vdev_t
*tvd
, vdev_rebuild_stat_t
*vrs
)
1129 spa_t
*spa
= tvd
->vdev_spa
;
1131 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
))
1132 return (SET_ERROR(ENOTSUP
));
1134 if (tvd
!= tvd
->vdev_top
|| tvd
->vdev_top_zap
== 0)
1135 return (SET_ERROR(EINVAL
));
1137 int error
= zap_contains(spa_meta_objset(spa
),
1138 tvd
->vdev_top_zap
, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
);
1140 if (error
== ENOENT
) {
1141 memset(vrs
, 0, sizeof (vdev_rebuild_stat_t
));
1142 vrs
->vrs_state
= VDEV_REBUILD_NONE
;
1144 } else if (error
== 0) {
1145 vdev_rebuild_t
*vr
= &tvd
->vdev_rebuild_config
;
1146 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
1148 mutex_enter(&tvd
->vdev_rebuild_lock
);
1149 vrs
->vrs_state
= vrp
->vrp_rebuild_state
;
1150 vrs
->vrs_start_time
= vrp
->vrp_start_time
;
1151 vrs
->vrs_end_time
= vrp
->vrp_end_time
;
1152 vrs
->vrs_scan_time_ms
= vrp
->vrp_scan_time_ms
;
1153 vrs
->vrs_bytes_scanned
= vrp
->vrp_bytes_scanned
;
1154 vrs
->vrs_bytes_issued
= vrp
->vrp_bytes_issued
;
1155 vrs
->vrs_bytes_rebuilt
= vrp
->vrp_bytes_rebuilt
;
1156 vrs
->vrs_bytes_est
= vrp
->vrp_bytes_est
;
1157 vrs
->vrs_errors
= vrp
->vrp_errors
;
1158 vrs
->vrs_pass_time_ms
= NSEC2MSEC(gethrtime() -
1159 vr
->vr_pass_start_time
);
1160 vrs
->vrs_pass_bytes_scanned
= vr
->vr_pass_bytes_scanned
;
1161 vrs
->vrs_pass_bytes_issued
= vr
->vr_pass_bytes_issued
;
1162 vrs
->vrs_pass_bytes_skipped
= vr
->vr_pass_bytes_skipped
;
1163 mutex_exit(&tvd
->vdev_rebuild_lock
);
1169 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_max_segment
, U64
, ZMOD_RW
,
1170 "Max segment size in bytes of rebuild reads");
1172 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_vdev_limit
, U64
, ZMOD_RW
,
1173 "Max bytes in flight per leaf vdev for sequential resilvers");
1175 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_scrub_enabled
, INT
, ZMOD_RW
,
1176 "Automatically scrub after sequential resilver completes");