feature: large_microzap
[zfs.git] / module / zcommon / zfs_fletcher.c
blob74b8c2a475a12c7a931f71f956a66df8fd48cef0
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2016 by Delphix. All rights reserved.
35 * Fletcher Checksums
36 * ------------------
38 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
39 * recurrence relations:
41 * a = a + f
42 * i i-1 i-1
44 * b = b + a
45 * i i-1 i
47 * c = c + b (fletcher-4 only)
48 * i i-1 i
50 * d = d + c (fletcher-4 only)
51 * i i-1 i
53 * Where
54 * a_0 = b_0 = c_0 = d_0 = 0
55 * and
56 * f_0 .. f_(n-1) are the input data.
58 * Using standard techniques, these translate into the following series:
60 * __n_ __n_
61 * \ | \ |
62 * a = > f b = > i * f
63 * n /___| n - i n /___| n - i
64 * i = 1 i = 1
67 * __n_ __n_
68 * \ | i*(i+1) \ | i*(i+1)*(i+2)
69 * c = > ------- f d = > ------------- f
70 * n /___| 2 n - i n /___| 6 n - i
71 * i = 1 i = 1
73 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
74 * Since the additions are done mod (2^64), errors in the high bits may not
75 * be noticed. For this reason, fletcher-2 is deprecated.
77 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
78 * A conservative estimate of how big the buffer can get before we overflow
79 * can be estimated using f_i = 0xffffffff for all i:
81 * % bc
82 * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
83 * 2264
84 * quit
85 * %
87 * So blocks of up to 2k will not overflow. Our largest block size is
88 * 128k, which has 32k 4-byte words, so we can compute the largest possible
89 * accumulators, then divide by 2^64 to figure the max amount of overflow:
91 * % bc
92 * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
93 * a/2^64;b/2^64;c/2^64;d/2^64
94 * 0
95 * 0
96 * 1365
97 * 11186858
98 * quit
99 * %
101 * So a and b cannot overflow. To make sure each bit of input has some
102 * effect on the contents of c and d, we can look at what the factors of
103 * the coefficients in the equations for c_n and d_n are. The number of 2s
104 * in the factors determines the lowest set bit in the multiplier. Running
105 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
106 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
107 * the 64-bit accumulators, every bit of every f_i effects every accumulator,
108 * even for 128k blocks.
110 * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
111 * we could do our calculations mod (2^32 - 1) by adding in the carries
112 * periodically, and store the number of carries in the top 32-bits.
114 * --------------------
115 * Checksum Performance
116 * --------------------
118 * There are two interesting components to checksum performance: cached and
119 * uncached performance. With cached data, fletcher-2 is about four times
120 * faster than fletcher-4. With uncached data, the performance difference is
121 * negligible, since the cost of a cache fill dominates the processing time.
122 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
123 * efficient pass over the data.
125 * In normal operation, the data which is being checksummed is in a buffer
126 * which has been filled either by:
128 * 1. a compression step, which will be mostly cached, or
129 * 2. a memcpy() or copyin(), which will be uncached
130 * (because the copy is cache-bypassing).
132 * For both cached and uncached data, both fletcher checksums are much faster
133 * than sha-256, and slower than 'off', which doesn't touch the data at all.
136 #include <sys/types.h>
137 #include <sys/sysmacros.h>
138 #include <sys/byteorder.h>
139 #include <sys/simd.h>
140 #include <sys/spa.h>
141 #include <sys/zio_checksum.h>
142 #include <sys/zfs_context.h>
143 #include <zfs_fletcher.h>
145 #define FLETCHER_MIN_SIMD_SIZE 64
147 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
148 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
149 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
150 const void *buf, uint64_t size);
151 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
152 const void *buf, uint64_t size);
153 static boolean_t fletcher_4_scalar_valid(void);
155 static const fletcher_4_ops_t fletcher_4_scalar_ops = {
156 .init_native = fletcher_4_scalar_init,
157 .fini_native = fletcher_4_scalar_fini,
158 .compute_native = fletcher_4_scalar_native,
159 .init_byteswap = fletcher_4_scalar_init,
160 .fini_byteswap = fletcher_4_scalar_fini,
161 .compute_byteswap = fletcher_4_scalar_byteswap,
162 .valid = fletcher_4_scalar_valid,
163 .uses_fpu = B_FALSE,
164 .name = "scalar"
167 static fletcher_4_ops_t fletcher_4_fastest_impl = {
168 .name = "fastest",
169 .valid = fletcher_4_scalar_valid
172 static const fletcher_4_ops_t *fletcher_4_impls[] = {
173 &fletcher_4_scalar_ops,
174 &fletcher_4_superscalar_ops,
175 &fletcher_4_superscalar4_ops,
176 #if defined(HAVE_SSE2)
177 &fletcher_4_sse2_ops,
178 #endif
179 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
180 &fletcher_4_ssse3_ops,
181 #endif
182 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
183 &fletcher_4_avx2_ops,
184 #endif
185 #if defined(__x86_64) && defined(HAVE_AVX512F)
186 &fletcher_4_avx512f_ops,
187 #endif
188 #if defined(__x86_64) && defined(HAVE_AVX512BW)
189 &fletcher_4_avx512bw_ops,
190 #endif
191 #if defined(__aarch64__) && !defined(__FreeBSD__)
192 &fletcher_4_aarch64_neon_ops,
193 #endif
196 /* Hold all supported implementations */
197 static uint32_t fletcher_4_supp_impls_cnt = 0;
198 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
200 /* Select fletcher4 implementation */
201 #define IMPL_FASTEST (UINT32_MAX)
202 #define IMPL_CYCLE (UINT32_MAX - 1)
203 #define IMPL_SCALAR (0)
205 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
207 #define IMPL_READ(i) (*(volatile uint32_t *) &(i))
209 static struct fletcher_4_impl_selector {
210 const char *fis_name;
211 uint32_t fis_sel;
212 } fletcher_4_impl_selectors[] = {
213 { "cycle", IMPL_CYCLE },
214 { "fastest", IMPL_FASTEST },
215 { "scalar", IMPL_SCALAR }
218 #if defined(_KERNEL)
219 static kstat_t *fletcher_4_kstat;
221 static struct fletcher_4_kstat {
222 uint64_t native;
223 uint64_t byteswap;
224 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
225 #endif
227 /* Indicate that benchmark has been completed */
228 static boolean_t fletcher_4_initialized = B_FALSE;
230 void
231 fletcher_init(zio_cksum_t *zcp)
233 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
237 fletcher_2_incremental_native(void *buf, size_t size, void *data)
239 zio_cksum_t *zcp = data;
241 const uint64_t *ip = buf;
242 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
243 uint64_t a0, b0, a1, b1;
245 a0 = zcp->zc_word[0];
246 a1 = zcp->zc_word[1];
247 b0 = zcp->zc_word[2];
248 b1 = zcp->zc_word[3];
250 for (; ip < ipend; ip += 2) {
251 a0 += ip[0];
252 a1 += ip[1];
253 b0 += a0;
254 b1 += a1;
257 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
258 return (0);
261 void
262 fletcher_2_native(const void *buf, uint64_t size,
263 const void *ctx_template, zio_cksum_t *zcp)
265 (void) ctx_template;
266 fletcher_init(zcp);
267 (void) fletcher_2_incremental_native((void *) buf, size, zcp);
271 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
273 zio_cksum_t *zcp = data;
275 const uint64_t *ip = buf;
276 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
277 uint64_t a0, b0, a1, b1;
279 a0 = zcp->zc_word[0];
280 a1 = zcp->zc_word[1];
281 b0 = zcp->zc_word[2];
282 b1 = zcp->zc_word[3];
284 for (; ip < ipend; ip += 2) {
285 a0 += BSWAP_64(ip[0]);
286 a1 += BSWAP_64(ip[1]);
287 b0 += a0;
288 b1 += a1;
291 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
292 return (0);
295 void
296 fletcher_2_byteswap(const void *buf, uint64_t size,
297 const void *ctx_template, zio_cksum_t *zcp)
299 (void) ctx_template;
300 fletcher_init(zcp);
301 (void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
304 static void
305 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
307 ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
310 static void
311 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
313 memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
316 static void
317 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
318 uint64_t size)
320 const uint32_t *ip = buf;
321 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
322 uint64_t a, b, c, d;
324 a = ctx->scalar.zc_word[0];
325 b = ctx->scalar.zc_word[1];
326 c = ctx->scalar.zc_word[2];
327 d = ctx->scalar.zc_word[3];
329 for (; ip < ipend; ip++) {
330 a += ip[0];
331 b += a;
332 c += b;
333 d += c;
336 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
339 static void
340 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
341 uint64_t size)
343 const uint32_t *ip = buf;
344 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
345 uint64_t a, b, c, d;
347 a = ctx->scalar.zc_word[0];
348 b = ctx->scalar.zc_word[1];
349 c = ctx->scalar.zc_word[2];
350 d = ctx->scalar.zc_word[3];
352 for (; ip < ipend; ip++) {
353 a += BSWAP_32(ip[0]);
354 b += a;
355 c += b;
356 d += c;
359 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
362 static boolean_t
363 fletcher_4_scalar_valid(void)
365 return (B_TRUE);
369 fletcher_4_impl_set(const char *val)
371 int err = -EINVAL;
372 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
373 size_t i, val_len;
375 val_len = strlen(val);
376 while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
377 val_len--;
379 /* check mandatory implementations */
380 for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
381 const char *name = fletcher_4_impl_selectors[i].fis_name;
383 if (val_len == strlen(name) &&
384 strncmp(val, name, val_len) == 0) {
385 impl = fletcher_4_impl_selectors[i].fis_sel;
386 err = 0;
387 break;
391 if (err != 0 && fletcher_4_initialized) {
392 /* check all supported implementations */
393 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
394 const char *name = fletcher_4_supp_impls[i]->name;
396 if (val_len == strlen(name) &&
397 strncmp(val, name, val_len) == 0) {
398 impl = i;
399 err = 0;
400 break;
405 if (err == 0) {
406 atomic_swap_32(&fletcher_4_impl_chosen, impl);
407 membar_producer();
410 return (err);
414 * Returns the Fletcher 4 operations for checksums. When a SIMD
415 * implementation is not allowed in the current context, then fallback
416 * to the fastest generic implementation.
418 static inline const fletcher_4_ops_t *
419 fletcher_4_impl_get(void)
421 if (!kfpu_allowed())
422 return (&fletcher_4_superscalar4_ops);
424 const fletcher_4_ops_t *ops = NULL;
425 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
427 switch (impl) {
428 case IMPL_FASTEST:
429 ASSERT(fletcher_4_initialized);
430 ops = &fletcher_4_fastest_impl;
431 break;
432 case IMPL_CYCLE:
433 /* Cycle through supported implementations */
434 ASSERT(fletcher_4_initialized);
435 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
436 static uint32_t cycle_count = 0;
437 uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
438 ops = fletcher_4_supp_impls[idx];
439 break;
440 default:
441 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
442 ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
443 ops = fletcher_4_supp_impls[impl];
444 break;
447 ASSERT3P(ops, !=, NULL);
449 return (ops);
452 static inline void
453 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
455 fletcher_4_ctx_t ctx;
456 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
458 if (ops->uses_fpu == B_TRUE) {
459 kfpu_begin();
461 ops->init_native(&ctx);
462 ops->compute_native(&ctx, buf, size);
463 ops->fini_native(&ctx, zcp);
464 if (ops->uses_fpu == B_TRUE) {
465 kfpu_end();
469 void
470 fletcher_4_native(const void *buf, uint64_t size,
471 const void *ctx_template, zio_cksum_t *zcp)
473 (void) ctx_template;
474 const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE,
475 uint64_t);
477 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
479 if (size == 0 || p2size == 0) {
480 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
482 if (size > 0)
483 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
484 buf, size);
485 } else {
486 fletcher_4_native_impl(buf, p2size, zcp);
488 if (p2size < size)
489 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
490 (char *)buf + p2size, size - p2size);
494 void
495 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
497 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
498 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
501 static inline void
502 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
504 fletcher_4_ctx_t ctx;
505 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
507 if (ops->uses_fpu == B_TRUE) {
508 kfpu_begin();
510 ops->init_byteswap(&ctx);
511 ops->compute_byteswap(&ctx, buf, size);
512 ops->fini_byteswap(&ctx, zcp);
513 if (ops->uses_fpu == B_TRUE) {
514 kfpu_end();
518 void
519 fletcher_4_byteswap(const void *buf, uint64_t size,
520 const void *ctx_template, zio_cksum_t *zcp)
522 (void) ctx_template;
523 const uint64_t p2size = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE,
524 uint64_t);
526 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
528 if (size == 0 || p2size == 0) {
529 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
531 if (size > 0)
532 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
533 buf, size);
534 } else {
535 fletcher_4_byteswap_impl(buf, p2size, zcp);
537 if (p2size < size)
538 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
539 (char *)buf + p2size, size - p2size);
543 /* Incremental Fletcher 4 */
545 #define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20)
547 static inline void
548 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
549 const zio_cksum_t *nzcp)
551 const uint64_t c1 = size / sizeof (uint32_t);
552 const uint64_t c2 = c1 * (c1 + 1) / 2;
553 const uint64_t c3 = c2 * (c1 + 2) / 3;
556 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
557 * reason we split incremental fletcher4 computation of large buffers
558 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
560 ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
562 zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
563 c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
564 zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
565 c2 * zcp->zc_word[0];
566 zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
567 zcp->zc_word[0] += nzcp->zc_word[0];
570 static inline void
571 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
572 zio_cksum_t *zcp)
574 while (size > 0) {
575 zio_cksum_t nzc;
576 uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
578 if (native)
579 fletcher_4_native(buf, len, NULL, &nzc);
580 else
581 fletcher_4_byteswap(buf, len, NULL, &nzc);
583 fletcher_4_incremental_combine(zcp, len, &nzc);
585 size -= len;
586 buf += len;
591 fletcher_4_incremental_native(void *buf, size_t size, void *data)
593 zio_cksum_t *zcp = data;
594 /* Use scalar impl to directly update cksum of small blocks */
595 if (size < SPA_MINBLOCKSIZE)
596 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
597 else
598 fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
599 return (0);
603 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
605 zio_cksum_t *zcp = data;
606 /* Use scalar impl to directly update cksum of small blocks */
607 if (size < SPA_MINBLOCKSIZE)
608 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
609 else
610 fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
611 return (0);
614 #if defined(_KERNEL)
616 * Fletcher 4 kstats
618 static int
619 fletcher_4_kstat_headers(char *buf, size_t size)
621 ssize_t off = 0;
623 off += snprintf(buf + off, size, "%-17s", "implementation");
624 off += snprintf(buf + off, size - off, "%-15s", "native");
625 (void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
627 return (0);
630 static int
631 fletcher_4_kstat_data(char *buf, size_t size, void *data)
633 struct fletcher_4_kstat *fastest_stat =
634 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
635 struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
636 ssize_t off = 0;
638 if (curr_stat == fastest_stat) {
639 off += snprintf(buf + off, size - off, "%-17s", "fastest");
640 off += snprintf(buf + off, size - off, "%-15s",
641 fletcher_4_supp_impls[fastest_stat->native]->name);
642 (void) snprintf(buf + off, size - off, "%-15s\n",
643 fletcher_4_supp_impls[fastest_stat->byteswap]->name);
644 } else {
645 ptrdiff_t id = curr_stat - fletcher_4_stat_data;
647 off += snprintf(buf + off, size - off, "%-17s",
648 fletcher_4_supp_impls[id]->name);
649 off += snprintf(buf + off, size - off, "%-15llu",
650 (u_longlong_t)curr_stat->native);
651 (void) snprintf(buf + off, size - off, "%-15llu\n",
652 (u_longlong_t)curr_stat->byteswap);
655 return (0);
658 static void *
659 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
661 if (n <= fletcher_4_supp_impls_cnt)
662 ksp->ks_private = (void *) (fletcher_4_stat_data + n);
663 else
664 ksp->ks_private = NULL;
666 return (ksp->ks_private);
668 #endif
670 #define FLETCHER_4_FASTEST_FN_COPY(type, src) \
672 fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \
673 fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \
674 fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
675 fletcher_4_fastest_impl.uses_fpu = src->uses_fpu; \
678 #define FLETCHER_4_BENCH_NS (MSEC2NSEC(1)) /* 1ms */
680 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
681 zio_cksum_t *);
683 #if defined(_KERNEL)
684 static void
685 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
688 struct fletcher_4_kstat *fastest_stat =
689 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
690 hrtime_t start;
691 uint64_t run_bw, run_time_ns, best_run = 0;
692 zio_cksum_t zc;
693 uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
695 fletcher_checksum_func_t *fletcher_4_test = native ?
696 fletcher_4_native : fletcher_4_byteswap;
698 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
699 struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
700 uint64_t run_count = 0;
702 /* temporary set an implementation */
703 fletcher_4_impl_chosen = i;
705 kpreempt_disable();
706 start = gethrtime();
707 do {
708 for (l = 0; l < 32; l++, run_count++)
709 fletcher_4_test(data, data_size, NULL, &zc);
711 run_time_ns = gethrtime() - start;
712 } while (run_time_ns < FLETCHER_4_BENCH_NS);
713 kpreempt_enable();
715 run_bw = data_size * run_count * NANOSEC;
716 run_bw /= run_time_ns; /* B/s */
718 if (native)
719 stat->native = run_bw;
720 else
721 stat->byteswap = run_bw;
723 if (run_bw > best_run) {
724 best_run = run_bw;
726 if (native) {
727 fastest_stat->native = i;
728 FLETCHER_4_FASTEST_FN_COPY(native,
729 fletcher_4_supp_impls[i]);
730 } else {
731 fastest_stat->byteswap = i;
732 FLETCHER_4_FASTEST_FN_COPY(byteswap,
733 fletcher_4_supp_impls[i]);
738 /* restore original selection */
739 atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
741 #endif /* _KERNEL */
744 * Initialize and benchmark all supported implementations.
746 static void
747 fletcher_4_benchmark(void)
749 fletcher_4_ops_t *curr_impl;
750 int i, c;
752 /* Move supported implementations into fletcher_4_supp_impls */
753 for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
754 curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
756 if (curr_impl->valid && curr_impl->valid())
757 fletcher_4_supp_impls[c++] = curr_impl;
759 membar_producer(); /* complete fletcher_4_supp_impls[] init */
760 fletcher_4_supp_impls_cnt = c; /* number of supported impl */
762 #if defined(_KERNEL)
763 static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
764 char *databuf = vmem_alloc(data_size, KM_SLEEP);
766 for (i = 0; i < data_size / sizeof (uint64_t); i++)
767 ((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
769 fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
770 fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
772 vmem_free(databuf, data_size);
773 #else
775 * Skip the benchmark in user space to avoid impacting libzpool
776 * consumers (zdb, zhack, zinject, ztest). The last implementation
777 * is assumed to be the fastest and used by default.
779 memcpy(&fletcher_4_fastest_impl,
780 fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
781 sizeof (fletcher_4_fastest_impl));
782 fletcher_4_fastest_impl.name = "fastest";
783 membar_producer();
784 #endif /* _KERNEL */
787 void
788 fletcher_4_init(void)
790 /* Determine the fastest available implementation. */
791 fletcher_4_benchmark();
793 #if defined(_KERNEL)
794 /* Install kstats for all implementations */
795 fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
796 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
797 if (fletcher_4_kstat != NULL) {
798 fletcher_4_kstat->ks_data = NULL;
799 fletcher_4_kstat->ks_ndata = UINT32_MAX;
800 kstat_set_raw_ops(fletcher_4_kstat,
801 fletcher_4_kstat_headers,
802 fletcher_4_kstat_data,
803 fletcher_4_kstat_addr);
804 kstat_install(fletcher_4_kstat);
806 #endif
808 /* Finish initialization */
809 fletcher_4_initialized = B_TRUE;
812 void
813 fletcher_4_fini(void)
815 #if defined(_KERNEL)
816 if (fletcher_4_kstat != NULL) {
817 kstat_delete(fletcher_4_kstat);
818 fletcher_4_kstat = NULL;
820 #endif
823 /* ABD adapters */
825 static void
826 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
828 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
829 cdp->acd_private = (void *) ops;
831 if (ops->uses_fpu == B_TRUE) {
832 kfpu_begin();
834 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
835 ops->init_native(cdp->acd_ctx);
836 else
837 ops->init_byteswap(cdp->acd_ctx);
841 static void
842 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
844 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
846 ASSERT(ops);
848 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
849 ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
850 else
851 ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
853 if (ops->uses_fpu == B_TRUE) {
854 kfpu_end();
859 static void
860 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
861 zio_abd_checksum_data_t *cdp)
863 zio_cksum_t *zcp = cdp->acd_zcp;
865 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
867 abd_fletcher_4_fini(cdp);
868 cdp->acd_private = (void *)&fletcher_4_scalar_ops;
870 if (native)
871 fletcher_4_incremental_native(data, size, zcp);
872 else
873 fletcher_4_incremental_byteswap(data, size, zcp);
876 static int
877 abd_fletcher_4_iter(void *data, size_t size, void *private)
879 zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
880 fletcher_4_ctx_t *ctx = cdp->acd_ctx;
881 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
882 boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
883 uint64_t asize = P2ALIGN_TYPED(size, FLETCHER_MIN_SIMD_SIZE, uint64_t);
885 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
887 if (asize > 0) {
888 if (native)
889 ops->compute_native(ctx, data, asize);
890 else
891 ops->compute_byteswap(ctx, data, asize);
893 size -= asize;
894 data = (char *)data + asize;
897 if (size > 0) {
898 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
899 /* At this point we have to switch to scalar impl */
900 abd_fletcher_4_simd2scalar(native, data, size, cdp);
903 return (0);
906 zio_abd_checksum_func_t fletcher_4_abd_ops = {
907 .acf_init = abd_fletcher_4_init,
908 .acf_fini = abd_fletcher_4_fini,
909 .acf_iter = abd_fletcher_4_iter
912 #if defined(_KERNEL)
914 #define IMPL_FMT(impl, i) (((impl) == (i)) ? "[%s] " : "%s ")
916 #if defined(__linux__)
918 static int
919 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
921 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
922 char *fmt;
923 int cnt = 0;
925 /* list fastest */
926 fmt = IMPL_FMT(impl, IMPL_FASTEST);
927 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, "fastest");
929 /* list all supported implementations */
930 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
931 fmt = IMPL_FMT(impl, i);
932 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
933 fletcher_4_supp_impls[i]->name);
936 return (cnt);
939 static int
940 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
942 return (fletcher_4_impl_set(val));
945 #else
947 #include <sys/sbuf.h>
949 static int
950 fletcher_4_param(ZFS_MODULE_PARAM_ARGS)
952 int err;
954 if (req->newptr == NULL) {
955 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
956 const int init_buflen = 64;
957 const char *fmt;
958 struct sbuf *s;
960 s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req);
962 /* list fastest */
963 fmt = IMPL_FMT(impl, IMPL_FASTEST);
964 (void) sbuf_printf(s, fmt, "fastest");
966 /* list all supported implementations */
967 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
968 fmt = IMPL_FMT(impl, i);
969 (void) sbuf_printf(s, fmt,
970 fletcher_4_supp_impls[i]->name);
973 err = sbuf_finish(s);
974 sbuf_delete(s);
976 return (err);
979 char buf[16];
981 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
982 if (err)
983 return (err);
984 return (-fletcher_4_impl_set(buf));
987 #endif
989 #undef IMPL_FMT
992 * Choose a fletcher 4 implementation in ZFS.
993 * Users can choose "cycle" to exercise all implementations, but this is
994 * for testing purpose therefore it can only be set in user space.
996 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl,
997 fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW,
998 "Select fletcher 4 implementation.");
1000 EXPORT_SYMBOL(fletcher_init);
1001 EXPORT_SYMBOL(fletcher_2_incremental_native);
1002 EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
1003 EXPORT_SYMBOL(fletcher_4_init);
1004 EXPORT_SYMBOL(fletcher_4_fini);
1005 EXPORT_SYMBOL(fletcher_2_native);
1006 EXPORT_SYMBOL(fletcher_2_byteswap);
1007 EXPORT_SYMBOL(fletcher_4_native);
1008 EXPORT_SYMBOL(fletcher_4_native_varsize);
1009 EXPORT_SYMBOL(fletcher_4_byteswap);
1010 EXPORT_SYMBOL(fletcher_4_incremental_native);
1011 EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
1012 EXPORT_SYMBOL(fletcher_4_abd_ops);
1013 #endif