Linux 6.12 compat: META
[zfs.git] / lib / libefi / rdwr_efi.c
blob63c91059ae5fc37ad0c7bac307c83a297ed317b5
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2018 by Delphix. All rights reserved.
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <errno.h>
31 #include <string.h>
32 #include <unistd.h>
33 #include <uuid/uuid.h>
34 #include <zlib.h>
35 #include <libintl.h>
36 #include <sys/types.h>
37 #include <sys/dkio.h>
38 #include <sys/mhd.h>
39 #include <sys/param.h>
40 #include <sys/dktp/fdisk.h>
41 #include <sys/efi_partition.h>
42 #include <sys/byteorder.h>
43 #include <sys/vdev_disk.h>
44 #include <linux/fs.h>
45 #include <linux/blkpg.h>
47 static struct uuid_to_ptag {
48 struct uuid uuid;
49 } conversion_array[] = {
50 { EFI_UNUSED },
51 { EFI_BOOT },
52 { EFI_ROOT },
53 { EFI_SWAP },
54 { EFI_USR },
55 { EFI_BACKUP },
56 { EFI_UNUSED }, /* STAND is never used */
57 { EFI_VAR },
58 { EFI_HOME },
59 { EFI_ALTSCTR },
60 { EFI_UNUSED }, /* CACHE (cachefs) is never used */
61 { EFI_RESERVED },
62 { EFI_SYSTEM },
63 { EFI_LEGACY_MBR },
64 { EFI_SYMC_PUB },
65 { EFI_SYMC_CDS },
66 { EFI_MSFT_RESV },
67 { EFI_DELL_BASIC },
68 { EFI_DELL_RAID },
69 { EFI_DELL_SWAP },
70 { EFI_DELL_LVM },
71 { EFI_DELL_RESV },
72 { EFI_AAPL_HFS },
73 { EFI_AAPL_UFS },
74 { EFI_FREEBSD_BOOT },
75 { EFI_FREEBSD_SWAP },
76 { EFI_FREEBSD_UFS },
77 { EFI_FREEBSD_VINUM },
78 { EFI_FREEBSD_ZFS },
79 { EFI_BIOS_BOOT },
80 { EFI_INTC_RS },
81 { EFI_SNE_BOOT },
82 { EFI_LENOVO_BOOT },
83 { EFI_MSFT_LDMM },
84 { EFI_MSFT_LDMD },
85 { EFI_MSFT_RE },
86 { EFI_IBM_GPFS },
87 { EFI_MSFT_STORAGESPACES },
88 { EFI_HPQ_DATA },
89 { EFI_HPQ_SVC },
90 { EFI_RHT_DATA },
91 { EFI_RHT_HOME },
92 { EFI_RHT_SRV },
93 { EFI_RHT_DMCRYPT },
94 { EFI_RHT_LUKS },
95 { EFI_FREEBSD_DISKLABEL },
96 { EFI_AAPL_RAID },
97 { EFI_AAPL_RAIDOFFLINE },
98 { EFI_AAPL_BOOT },
99 { EFI_AAPL_LABEL },
100 { EFI_AAPL_TVRECOVERY },
101 { EFI_AAPL_CORESTORAGE },
102 { EFI_NETBSD_SWAP },
103 { EFI_NETBSD_FFS },
104 { EFI_NETBSD_LFS },
105 { EFI_NETBSD_RAID },
106 { EFI_NETBSD_CAT },
107 { EFI_NETBSD_CRYPT },
108 { EFI_GOOG_KERN },
109 { EFI_GOOG_ROOT },
110 { EFI_GOOG_RESV },
111 { EFI_HAIKU_BFS },
112 { EFI_MIDNIGHTBSD_BOOT },
113 { EFI_MIDNIGHTBSD_DATA },
114 { EFI_MIDNIGHTBSD_SWAP },
115 { EFI_MIDNIGHTBSD_UFS },
116 { EFI_MIDNIGHTBSD_VINUM },
117 { EFI_MIDNIGHTBSD_ZFS },
118 { EFI_CEPH_JOURNAL },
119 { EFI_CEPH_DMCRYPTJOURNAL },
120 { EFI_CEPH_OSD },
121 { EFI_CEPH_DMCRYPTOSD },
122 { EFI_CEPH_CREATE },
123 { EFI_CEPH_DMCRYPTCREATE },
124 { EFI_OPENBSD_DISKLABEL },
125 { EFI_BBRY_QNX },
126 { EFI_BELL_PLAN9 },
127 { EFI_VMW_KCORE },
128 { EFI_VMW_VMFS },
129 { EFI_VMW_RESV },
130 { EFI_RHT_ROOTX86 },
131 { EFI_RHT_ROOTAMD64 },
132 { EFI_RHT_ROOTARM },
133 { EFI_RHT_ROOTARM64 },
134 { EFI_ACRONIS_SECUREZONE },
135 { EFI_ONIE_BOOT },
136 { EFI_ONIE_CONFIG },
137 { EFI_IBM_PPRPBOOT },
138 { EFI_FREEDESKTOP_BOOT }
141 int efi_debug = 0;
143 static int efi_read(int, struct dk_gpt *);
146 * Return a 32-bit CRC of the contents of the buffer. Pre-and-post
147 * one's conditioning will be handled by crc32() internally.
149 static uint32_t
150 efi_crc32(const unsigned char *buf, unsigned int size)
152 uint32_t crc = crc32(0, Z_NULL, 0);
154 crc = crc32(crc, buf, size);
156 return (crc);
159 static int
160 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
162 int sector_size;
163 unsigned long long capacity_size;
165 if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
166 return (-1);
168 if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
169 return (-1);
171 *lbsize = (uint_t)sector_size;
172 *capacity = (diskaddr_t)(capacity_size / sector_size);
174 return (0);
178 * Return back the device name associated with the file descriptor. The
179 * caller is responsible for freeing the memory associated with the
180 * returned string.
182 static char *
183 efi_get_devname(int fd)
185 char path[32];
188 * The libefi API only provides the open fd and not the file path.
189 * To handle this realpath(3) is used to resolve the block device
190 * name from /proc/self/fd/<fd>.
192 (void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
193 return (realpath(path, NULL));
196 static int
197 efi_get_info(int fd, struct dk_cinfo *dki_info)
199 char *dev_path;
200 int rval = 0;
202 memset(dki_info, 0, sizeof (*dki_info));
205 * The simplest way to get the partition number under linux is
206 * to parse it out of the /dev/<disk><partition> block device name.
207 * The kernel creates this using the partition number when it
208 * populates /dev/ so it may be trusted. The tricky bit here is
209 * that the naming convention is based on the block device type.
210 * So we need to take this in to account when parsing out the
211 * partition information. Aside from the partition number we collect
212 * some additional device info.
214 dev_path = efi_get_devname(fd);
215 if (dev_path == NULL)
216 goto error;
218 if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
219 strcpy(dki_info->dki_cname, "sd");
220 dki_info->dki_ctype = DKC_SCSI_CCS;
221 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
222 dki_info->dki_dname,
223 &dki_info->dki_partition);
224 } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
225 strcpy(dki_info->dki_cname, "hd");
226 dki_info->dki_ctype = DKC_DIRECT;
227 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
228 dki_info->dki_dname,
229 &dki_info->dki_partition);
230 } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
231 strcpy(dki_info->dki_cname, "pseudo");
232 dki_info->dki_ctype = DKC_MD;
233 strcpy(dki_info->dki_dname, "md");
234 rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
235 dki_info->dki_dname + 2,
236 &dki_info->dki_partition);
237 } else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
238 strcpy(dki_info->dki_cname, "vd");
239 dki_info->dki_ctype = DKC_MD;
240 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
241 dki_info->dki_dname,
242 &dki_info->dki_partition);
243 } else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
244 strcpy(dki_info->dki_cname, "xvd");
245 dki_info->dki_ctype = DKC_MD;
246 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
247 dki_info->dki_dname,
248 &dki_info->dki_partition);
249 } else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
250 strcpy(dki_info->dki_cname, "zd");
251 dki_info->dki_ctype = DKC_MD;
252 strcpy(dki_info->dki_dname, "zd");
253 rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
254 dki_info->dki_dname + 2,
255 &dki_info->dki_partition);
256 } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
257 strcpy(dki_info->dki_cname, "pseudo");
258 dki_info->dki_ctype = DKC_VBD;
259 strcpy(dki_info->dki_dname, "dm-");
260 rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
261 dki_info->dki_dname + 3,
262 &dki_info->dki_partition);
263 } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
264 strcpy(dki_info->dki_cname, "pseudo");
265 dki_info->dki_ctype = DKC_PCMCIA_MEM;
266 strcpy(dki_info->dki_dname, "ram");
267 rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
268 dki_info->dki_dname + 3,
269 &dki_info->dki_partition);
270 } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
271 strcpy(dki_info->dki_cname, "pseudo");
272 dki_info->dki_ctype = DKC_VBD;
273 strcpy(dki_info->dki_dname, "loop");
274 rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
275 dki_info->dki_dname + 4,
276 &dki_info->dki_partition);
277 } else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
278 strcpy(dki_info->dki_cname, "nvme");
279 dki_info->dki_ctype = DKC_SCSI_CCS;
280 strcpy(dki_info->dki_dname, "nvme");
281 (void) sscanf(dev_path, "/dev/nvme%[0-9]",
282 dki_info->dki_dname + 4);
283 size_t controller_length = strlen(
284 dki_info->dki_dname);
285 strcpy(dki_info->dki_dname + controller_length,
286 "n");
287 rval = sscanf(dev_path,
288 "/dev/nvme%*[0-9]n%[0-9]p%hu",
289 dki_info->dki_dname + controller_length + 1,
290 &dki_info->dki_partition);
291 } else {
292 strcpy(dki_info->dki_dname, "unknown");
293 strcpy(dki_info->dki_cname, "unknown");
294 dki_info->dki_ctype = DKC_UNKNOWN;
297 switch (rval) {
298 case 0:
299 errno = EINVAL;
300 goto error;
301 case 1:
302 dki_info->dki_partition = 0;
305 free(dev_path);
307 return (0);
308 error:
309 if (efi_debug)
310 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
312 switch (errno) {
313 case EIO:
314 return (VT_EIO);
315 case EINVAL:
316 return (VT_EINVAL);
317 default:
318 return (VT_ERROR);
323 * the number of blocks the EFI label takes up (round up to nearest
324 * block)
326 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
327 ((l) - 1)) / (l)))
328 /* number of partitions -- limited by what we can malloc */
329 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
330 sizeof (struct dk_part))
333 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
335 diskaddr_t capacity = 0;
336 uint_t lbsize = 0;
337 uint_t nblocks;
338 size_t length;
339 struct dk_gpt *vptr;
340 struct uuid uuid;
341 struct dk_cinfo dki_info;
343 if (read_disk_info(fd, &capacity, &lbsize) != 0)
344 return (-1);
346 if (efi_get_info(fd, &dki_info) != 0)
347 return (-1);
349 if (dki_info.dki_partition != 0)
350 return (-1);
352 if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
353 (dki_info.dki_ctype == DKC_VBD) ||
354 (dki_info.dki_ctype == DKC_UNKNOWN))
355 return (-1);
357 nblocks = NBLOCKS(nparts, lbsize);
358 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
359 /* 16K plus one block for the GPT */
360 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
363 if (nparts > MAX_PARTS) {
364 if (efi_debug) {
365 (void) fprintf(stderr,
366 "the maximum number of partitions supported is %lu\n",
367 MAX_PARTS);
369 return (-1);
372 length = sizeof (struct dk_gpt) +
373 sizeof (struct dk_part) * (nparts - 1);
375 vptr = calloc(1, length);
376 if (vptr == NULL)
377 return (-1);
379 *vtoc = vptr;
381 vptr->efi_version = EFI_VERSION_CURRENT;
382 vptr->efi_lbasize = lbsize;
383 vptr->efi_nparts = nparts;
385 * add one block here for the PMBR; on disks with a 512 byte
386 * block size and 128 or fewer partitions, efi_first_u_lba
387 * should work out to "34"
389 vptr->efi_first_u_lba = nblocks + 1;
390 vptr->efi_last_lba = capacity - 1;
391 vptr->efi_altern_lba = capacity -1;
392 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
394 (void) uuid_generate((uchar_t *)&uuid);
395 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
396 return (0);
400 * Read EFI - return partition number upon success.
403 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
405 int rval;
406 uint32_t nparts;
407 int length;
408 struct dk_gpt *vptr;
410 /* figure out the number of entries that would fit into 16K */
411 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
412 length = (int) sizeof (struct dk_gpt) +
413 (int) sizeof (struct dk_part) * (nparts - 1);
414 vptr = calloc(1, length);
416 if (vptr == NULL)
417 return (VT_ERROR);
419 vptr->efi_nparts = nparts;
420 rval = efi_read(fd, vptr);
422 if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
423 void *tmp;
424 length = (int) sizeof (struct dk_gpt) +
425 (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
426 if ((tmp = realloc(vptr, length)) == NULL) {
427 /* cppcheck-suppress doubleFree */
428 free(vptr);
429 *vtoc = NULL;
430 return (VT_ERROR);
431 } else {
432 vptr = tmp;
433 rval = efi_read(fd, vptr);
437 if (rval < 0) {
438 if (efi_debug) {
439 (void) fprintf(stderr,
440 "read of EFI table failed, rval=%d\n", rval);
442 free(vptr);
443 *vtoc = NULL;
444 } else {
445 *vtoc = vptr;
448 return (rval);
451 static int
452 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
454 void *data = dk_ioc->dki_data;
455 int error;
456 diskaddr_t capacity;
457 uint_t lbsize;
460 * When the IO is not being performed in kernel as an ioctl we need
461 * to know the sector size so we can seek to the proper byte offset.
463 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
464 if (efi_debug)
465 fprintf(stderr, "unable to read disk info: %d", errno);
467 errno = EIO;
468 return (-1);
471 switch (cmd) {
472 case DKIOCGETEFI:
473 if (lbsize == 0) {
474 if (efi_debug)
475 (void) fprintf(stderr, "DKIOCGETEFI assuming "
476 "LBA %d bytes\n", DEV_BSIZE);
478 lbsize = DEV_BSIZE;
481 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
482 if (error == -1) {
483 if (efi_debug)
484 (void) fprintf(stderr, "DKIOCGETEFI lseek "
485 "error: %d\n", errno);
486 return (error);
489 error = read(fd, data, dk_ioc->dki_length);
490 if (error == -1) {
491 if (efi_debug)
492 (void) fprintf(stderr, "DKIOCGETEFI read "
493 "error: %d\n", errno);
494 return (error);
497 if (error != dk_ioc->dki_length) {
498 if (efi_debug)
499 (void) fprintf(stderr, "DKIOCGETEFI short "
500 "read of %d bytes\n", error);
501 errno = EIO;
502 return (-1);
504 error = 0;
505 break;
507 case DKIOCSETEFI:
508 if (lbsize == 0) {
509 if (efi_debug)
510 (void) fprintf(stderr, "DKIOCSETEFI unknown "
511 "LBA size\n");
512 errno = EIO;
513 return (-1);
516 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
517 if (error == -1) {
518 if (efi_debug)
519 (void) fprintf(stderr, "DKIOCSETEFI lseek "
520 "error: %d\n", errno);
521 return (error);
524 error = write(fd, data, dk_ioc->dki_length);
525 if (error == -1) {
526 if (efi_debug)
527 (void) fprintf(stderr, "DKIOCSETEFI write "
528 "error: %d\n", errno);
529 return (error);
532 if (error != dk_ioc->dki_length) {
533 if (efi_debug)
534 (void) fprintf(stderr, "DKIOCSETEFI short "
535 "write of %d bytes\n", error);
536 errno = EIO;
537 return (-1);
540 /* Sync the new EFI table to disk */
541 error = fsync(fd);
542 if (error == -1)
543 return (error);
545 /* Ensure any local disk cache is also flushed */
546 if (ioctl(fd, BLKFLSBUF, 0) == -1)
547 return (error);
549 error = 0;
550 break;
552 default:
553 if (efi_debug)
554 (void) fprintf(stderr, "unsupported ioctl()\n");
556 errno = EIO;
557 return (-1);
560 return (error);
564 efi_rescan(int fd)
566 int retry = 10;
568 /* Notify the kernel a devices partition table has been updated */
569 while (ioctl(fd, BLKRRPART) != 0) {
570 if ((--retry == 0) || (errno != EBUSY)) {
571 (void) fprintf(stderr, "the kernel failed to rescan "
572 "the partition table: %d\n", errno);
573 return (-1);
575 usleep(50000);
578 return (0);
581 static int
582 check_label(int fd, dk_efi_t *dk_ioc)
584 efi_gpt_t *efi;
585 uint_t crc;
587 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
588 switch (errno) {
589 case EIO:
590 return (VT_EIO);
591 default:
592 return (VT_ERROR);
595 efi = dk_ioc->dki_data;
596 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
597 if (efi_debug)
598 (void) fprintf(stderr,
599 "Bad EFI signature: 0x%llx != 0x%llx\n",
600 (long long)efi->efi_gpt_Signature,
601 (long long)LE_64(EFI_SIGNATURE));
602 return (VT_EINVAL);
606 * check CRC of the header; the size of the header should
607 * never be larger than one block
609 crc = efi->efi_gpt_HeaderCRC32;
610 efi->efi_gpt_HeaderCRC32 = 0;
611 len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
613 if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
614 if (efi_debug)
615 (void) fprintf(stderr,
616 "Invalid EFI HeaderSize %llu. Assuming %d.\n",
617 headerSize, EFI_MIN_LABEL_SIZE);
620 if ((headerSize > dk_ioc->dki_length) ||
621 crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
622 if (efi_debug)
623 (void) fprintf(stderr,
624 "Bad EFI CRC: 0x%x != 0x%x\n",
625 crc, LE_32(efi_crc32((unsigned char *)efi,
626 headerSize)));
627 return (VT_EINVAL);
630 return (0);
633 static int
634 efi_read(int fd, struct dk_gpt *vtoc)
636 int i, j;
637 int label_len;
638 int rval = 0;
639 int md_flag = 0;
640 int vdc_flag = 0;
641 diskaddr_t capacity = 0;
642 uint_t lbsize = 0;
643 struct dk_minfo disk_info;
644 dk_efi_t dk_ioc;
645 efi_gpt_t *efi;
646 efi_gpe_t *efi_parts;
647 struct dk_cinfo dki_info;
648 uint32_t user_length;
649 boolean_t legacy_label = B_FALSE;
652 * get the partition number for this file descriptor.
654 if ((rval = efi_get_info(fd, &dki_info)) != 0)
655 return (rval);
657 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
658 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
659 md_flag++;
660 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
661 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
663 * The controller and drive name "vdc" (virtual disk client)
664 * indicates a LDoms virtual disk.
666 vdc_flag++;
669 /* get the LBA size */
670 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
671 if (efi_debug) {
672 (void) fprintf(stderr,
673 "unable to read disk info: %d",
674 errno);
676 return (VT_EINVAL);
679 disk_info.dki_lbsize = lbsize;
680 disk_info.dki_capacity = capacity;
682 if (disk_info.dki_lbsize == 0) {
683 if (efi_debug) {
684 (void) fprintf(stderr,
685 "efi_read: assuming LBA 512 bytes\n");
687 disk_info.dki_lbsize = DEV_BSIZE;
690 * Read the EFI GPT to figure out how many partitions we need
691 * to deal with.
693 dk_ioc.dki_lba = 1;
694 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
695 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
696 } else {
697 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
698 disk_info.dki_lbsize;
699 if (label_len % disk_info.dki_lbsize) {
700 /* pad to physical sector size */
701 label_len += disk_info.dki_lbsize;
702 label_len &= ~(disk_info.dki_lbsize - 1);
706 if (posix_memalign((void **)&dk_ioc.dki_data,
707 disk_info.dki_lbsize, label_len))
708 return (VT_ERROR);
710 memset(dk_ioc.dki_data, 0, label_len);
711 dk_ioc.dki_length = disk_info.dki_lbsize;
712 user_length = vtoc->efi_nparts;
713 efi = dk_ioc.dki_data;
714 if (md_flag) {
715 dk_ioc.dki_length = label_len;
716 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
717 switch (errno) {
718 case EIO:
719 return (VT_EIO);
720 default:
721 return (VT_ERROR);
724 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
726 * No valid label here; try the alternate. Note that here
727 * we just read GPT header and save it into dk_ioc.data,
728 * Later, we will read GUID partition entry array if we
729 * can get valid GPT header.
733 * This is a workaround for legacy systems. In the past, the
734 * last sector of SCSI disk was invisible on x86 platform. At
735 * that time, backup label was saved on the next to the last
736 * sector. It is possible for users to move a disk from previous
737 * solaris system to present system. Here, we attempt to search
738 * legacy backup EFI label first.
740 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
741 dk_ioc.dki_length = disk_info.dki_lbsize;
742 rval = check_label(fd, &dk_ioc);
743 if (rval == VT_EINVAL) {
745 * we didn't find legacy backup EFI label, try to
746 * search backup EFI label in the last block.
748 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
749 dk_ioc.dki_length = disk_info.dki_lbsize;
750 rval = check_label(fd, &dk_ioc);
751 if (rval == 0) {
752 legacy_label = B_TRUE;
753 if (efi_debug)
754 (void) fprintf(stderr,
755 "efi_read: primary label corrupt; "
756 "using EFI backup label located on"
757 " the last block\n");
759 } else {
760 if ((efi_debug) && (rval == 0))
761 (void) fprintf(stderr, "efi_read: primary label"
762 " corrupt; using legacy EFI backup label "
763 " located on the next to last block\n");
766 if (rval == 0) {
767 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
768 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
769 vtoc->efi_nparts =
770 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
772 * Partition tables are between backup GPT header
773 * table and ParitionEntryLBA (the starting LBA of
774 * the GUID partition entries array). Now that we
775 * already got valid GPT header and saved it in
776 * dk_ioc.dki_data, we try to get GUID partition
777 * entry array here.
779 /* LINTED */
780 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
781 + disk_info.dki_lbsize);
782 if (legacy_label)
783 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
784 dk_ioc.dki_lba;
785 else
786 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
787 dk_ioc.dki_lba;
788 dk_ioc.dki_length *= disk_info.dki_lbsize;
789 if (dk_ioc.dki_length >
790 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
791 rval = VT_EINVAL;
792 } else {
794 * read GUID partition entry array
796 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
800 } else if (rval == 0) {
802 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
803 /* LINTED */
804 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
805 + disk_info.dki_lbsize);
806 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
807 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
809 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
811 * When the device is a LDoms virtual disk, the DKIOCGETEFI
812 * ioctl can fail with EINVAL if the virtual disk backend
813 * is a ZFS volume serviced by a domain running an old version
814 * of Solaris. This is because the DKIOCGETEFI ioctl was
815 * initially incorrectly implemented for a ZFS volume and it
816 * expected the GPT and GPE to be retrieved with a single ioctl.
817 * So we try to read the GPT and the GPE using that old style
818 * ioctl.
820 dk_ioc.dki_lba = 1;
821 dk_ioc.dki_length = label_len;
822 rval = check_label(fd, &dk_ioc);
825 if (rval < 0) {
826 free(efi);
827 return (rval);
830 /* LINTED -- always longlong aligned */
831 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
834 * Assemble this into a "dk_gpt" struct for easier
835 * digestibility by applications.
837 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
838 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
839 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
840 vtoc->efi_lbasize = disk_info.dki_lbsize;
841 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
842 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
843 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
844 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
845 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
848 * If the array the user passed in is too small, set the length
849 * to what it needs to be and return
851 if (user_length < vtoc->efi_nparts) {
852 return (VT_EINVAL);
855 for (i = 0; i < vtoc->efi_nparts; i++) {
856 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
857 efi_parts[i].efi_gpe_PartitionTypeGUID);
859 for (j = 0;
860 j < sizeof (conversion_array)
861 / sizeof (struct uuid_to_ptag); j++) {
863 if (memcmp(&vtoc->efi_parts[i].p_guid,
864 &conversion_array[j].uuid,
865 sizeof (struct uuid)) == 0) {
866 vtoc->efi_parts[i].p_tag = j;
867 break;
870 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
871 continue;
872 vtoc->efi_parts[i].p_flag =
873 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
874 vtoc->efi_parts[i].p_start =
875 LE_64(efi_parts[i].efi_gpe_StartingLBA);
876 vtoc->efi_parts[i].p_size =
877 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
878 vtoc->efi_parts[i].p_start + 1;
879 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
880 vtoc->efi_parts[i].p_name[j] =
881 (uchar_t)LE_16(
882 efi_parts[i].efi_gpe_PartitionName[j]);
885 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
886 efi_parts[i].efi_gpe_UniquePartitionGUID);
888 free(efi);
890 return (dki_info.dki_partition);
893 /* writes a "protective" MBR */
894 static int
895 write_pmbr(int fd, struct dk_gpt *vtoc)
897 dk_efi_t dk_ioc;
898 struct mboot mb;
899 uchar_t *cp;
900 diskaddr_t size_in_lba;
901 uchar_t *buf;
902 int len;
904 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
905 if (posix_memalign((void **)&buf, len, len))
906 return (VT_ERROR);
909 * Preserve any boot code and disk signature if the first block is
910 * already an MBR.
912 memset(buf, 0, len);
913 dk_ioc.dki_lba = 0;
914 dk_ioc.dki_length = len;
915 /* LINTED -- always longlong aligned */
916 dk_ioc.dki_data = (efi_gpt_t *)buf;
917 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
918 memset(&mb, 0, sizeof (mb));
919 mb.signature = LE_16(MBB_MAGIC);
920 } else {
921 (void) memcpy(&mb, buf, sizeof (mb));
922 if (mb.signature != LE_16(MBB_MAGIC)) {
923 memset(&mb, 0, sizeof (mb));
924 mb.signature = LE_16(MBB_MAGIC);
928 memset(&mb.parts, 0, sizeof (mb.parts));
929 cp = (uchar_t *)&mb.parts[0];
930 /* bootable or not */
931 *cp++ = 0;
932 /* beginning CHS; 0xffffff if not representable */
933 *cp++ = 0xff;
934 *cp++ = 0xff;
935 *cp++ = 0xff;
936 /* OS type */
937 *cp++ = EFI_PMBR;
938 /* ending CHS; 0xffffff if not representable */
939 *cp++ = 0xff;
940 *cp++ = 0xff;
941 *cp++ = 0xff;
942 /* starting LBA: 1 (little endian format) by EFI definition */
943 *cp++ = 0x01;
944 *cp++ = 0x00;
945 *cp++ = 0x00;
946 *cp++ = 0x00;
947 /* ending LBA: last block on the disk (little endian format) */
948 size_in_lba = vtoc->efi_last_lba;
949 if (size_in_lba < 0xffffffff) {
950 *cp++ = (size_in_lba & 0x000000ff);
951 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
952 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
953 *cp++ = (size_in_lba & 0xff000000) >> 24;
954 } else {
955 *cp++ = 0xff;
956 *cp++ = 0xff;
957 *cp++ = 0xff;
958 *cp++ = 0xff;
961 (void) memcpy(buf, &mb, sizeof (mb));
962 /* LINTED -- always longlong aligned */
963 dk_ioc.dki_data = (efi_gpt_t *)buf;
964 dk_ioc.dki_lba = 0;
965 dk_ioc.dki_length = len;
966 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
967 free(buf);
968 switch (errno) {
969 case EIO:
970 return (VT_EIO);
971 case EINVAL:
972 return (VT_EINVAL);
973 default:
974 return (VT_ERROR);
977 free(buf);
978 return (0);
981 /* make sure the user specified something reasonable */
982 static int
983 check_input(struct dk_gpt *vtoc)
985 int resv_part = -1;
986 int i, j;
987 diskaddr_t istart, jstart, isize, jsize, endsect;
990 * Sanity-check the input (make sure no partitions overlap)
992 for (i = 0; i < vtoc->efi_nparts; i++) {
993 /* It can't be unassigned and have an actual size */
994 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
995 (vtoc->efi_parts[i].p_size != 0)) {
996 if (efi_debug) {
997 (void) fprintf(stderr, "partition %d is "
998 "\"unassigned\" but has a size of %llu",
999 i, vtoc->efi_parts[i].p_size);
1001 return (VT_EINVAL);
1003 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1004 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
1005 continue;
1006 /* we have encountered an unknown uuid */
1007 vtoc->efi_parts[i].p_tag = 0xff;
1009 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1010 if (resv_part != -1) {
1011 if (efi_debug) {
1012 (void) fprintf(stderr, "found "
1013 "duplicate reserved partition "
1014 "at %d\n", i);
1016 return (VT_EINVAL);
1018 resv_part = i;
1020 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1021 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1022 if (efi_debug) {
1023 (void) fprintf(stderr,
1024 "Partition %d starts at %llu. ",
1026 vtoc->efi_parts[i].p_start);
1027 (void) fprintf(stderr,
1028 "It must be between %llu and %llu.\n",
1029 vtoc->efi_first_u_lba,
1030 vtoc->efi_last_u_lba);
1032 return (VT_EINVAL);
1034 if ((vtoc->efi_parts[i].p_start +
1035 vtoc->efi_parts[i].p_size <
1036 vtoc->efi_first_u_lba) ||
1037 (vtoc->efi_parts[i].p_start +
1038 vtoc->efi_parts[i].p_size >
1039 vtoc->efi_last_u_lba + 1)) {
1040 if (efi_debug) {
1041 (void) fprintf(stderr,
1042 "Partition %d ends at %llu. ",
1044 vtoc->efi_parts[i].p_start +
1045 vtoc->efi_parts[i].p_size);
1046 (void) fprintf(stderr,
1047 "It must be between %llu and %llu.\n",
1048 vtoc->efi_first_u_lba,
1049 vtoc->efi_last_u_lba);
1051 return (VT_EINVAL);
1054 for (j = 0; j < vtoc->efi_nparts; j++) {
1055 isize = vtoc->efi_parts[i].p_size;
1056 jsize = vtoc->efi_parts[j].p_size;
1057 istart = vtoc->efi_parts[i].p_start;
1058 jstart = vtoc->efi_parts[j].p_start;
1059 if ((i != j) && (isize != 0) && (jsize != 0)) {
1060 endsect = jstart + jsize -1;
1061 if ((jstart <= istart) &&
1062 (istart <= endsect)) {
1063 if (efi_debug) {
1064 (void) fprintf(stderr,
1065 "Partition %d overlaps "
1066 "partition %d.", i, j);
1068 return (VT_EINVAL);
1073 /* just a warning for now */
1074 if ((resv_part == -1) && efi_debug) {
1075 (void) fprintf(stderr,
1076 "no reserved partition found\n");
1078 return (0);
1081 static int
1082 call_blkpg_ioctl(int fd, int command, diskaddr_t start,
1083 diskaddr_t size, uint_t pno)
1085 struct blkpg_ioctl_arg ioctl_arg;
1086 struct blkpg_partition linux_part;
1087 memset(&linux_part, 0, sizeof (linux_part));
1089 char *path = efi_get_devname(fd);
1090 if (path == NULL) {
1091 (void) fprintf(stderr, "failed to retrieve device name\n");
1092 return (VT_EINVAL);
1095 linux_part.start = start;
1096 linux_part.length = size;
1097 linux_part.pno = pno;
1098 snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
1099 linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
1100 free(path);
1102 ioctl_arg.op = command;
1103 ioctl_arg.flags = 0;
1104 ioctl_arg.datalen = sizeof (struct blkpg_partition);
1105 ioctl_arg.data = &linux_part;
1107 return (ioctl(fd, BLKPG, &ioctl_arg));
1111 * add all the unallocated space to the current label
1114 efi_use_whole_disk(int fd)
1116 struct dk_gpt *efi_label = NULL;
1117 int rval;
1118 int i;
1119 uint_t resv_index = 0, data_index = 0;
1120 diskaddr_t resv_start = 0, data_start = 0;
1121 diskaddr_t data_size, limit, difference;
1122 boolean_t sync_needed = B_FALSE;
1123 uint_t nblocks;
1125 rval = efi_alloc_and_read(fd, &efi_label);
1126 if (rval < 0) {
1127 if (efi_label != NULL)
1128 efi_free(efi_label);
1129 return (rval);
1133 * Find the last physically non-zero partition.
1134 * This should be the reserved partition.
1136 for (i = 0; i < efi_label->efi_nparts; i ++) {
1137 if (resv_start < efi_label->efi_parts[i].p_start) {
1138 resv_start = efi_label->efi_parts[i].p_start;
1139 resv_index = i;
1144 * Find the last physically non-zero partition before that.
1145 * This is the data partition.
1147 for (i = 0; i < resv_index; i ++) {
1148 if (data_start < efi_label->efi_parts[i].p_start) {
1149 data_start = efi_label->efi_parts[i].p_start;
1150 data_index = i;
1153 data_size = efi_label->efi_parts[data_index].p_size;
1156 * See the "efi_alloc_and_init" function for more information
1157 * about where this "nblocks" value comes from.
1159 nblocks = efi_label->efi_first_u_lba - 1;
1162 * Determine if the EFI label is out of sync. We check that:
1164 * 1. the data partition ends at the limit we set, and
1165 * 2. the reserved partition starts at the limit we set.
1167 * If either of these conditions is not met, then we need to
1168 * resync the EFI label.
1170 * The limit is the last usable LBA, determined by the last LBA
1171 * and the first usable LBA fields on the EFI label of the disk
1172 * (see the lines directly above). Additionally, we factor in
1173 * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
1174 * P2ALIGN it to ensure the partition boundaries are aligned
1175 * (for performance reasons). The alignment should match the
1176 * alignment used by the "zpool_label_disk" function.
1178 limit = P2ALIGN_TYPED(efi_label->efi_last_lba - nblocks -
1179 EFI_MIN_RESV_SIZE, PARTITION_END_ALIGNMENT, diskaddr_t);
1180 if (data_start + data_size != limit || resv_start != limit)
1181 sync_needed = B_TRUE;
1183 if (efi_debug && sync_needed)
1184 (void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
1187 * If alter_lba is 1, we are using the backup label.
1188 * Since we can locate the backup label by disk capacity,
1189 * there must be no unallocated space.
1191 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1192 >= efi_label->efi_last_lba && !sync_needed)) {
1193 if (efi_debug) {
1194 (void) fprintf(stderr,
1195 "efi_use_whole_disk: requested space not found\n");
1197 efi_free(efi_label);
1198 return (VT_ENOSPC);
1202 * Verify that we've found the reserved partition by checking
1203 * that it looks the way it did when we created it in zpool_label_disk.
1204 * If we've found the incorrect partition, then we know that this
1205 * device was reformatted and no longer is solely used by ZFS.
1207 if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
1208 (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
1209 (resv_index != 8)) {
1210 if (efi_debug) {
1211 (void) fprintf(stderr,
1212 "efi_use_whole_disk: wholedisk not available\n");
1214 efi_free(efi_label);
1215 return (VT_ENOSPC);
1218 if (data_start + data_size != resv_start) {
1219 if (efi_debug) {
1220 (void) fprintf(stderr,
1221 "efi_use_whole_disk: "
1222 "data_start (%lli) + "
1223 "data_size (%lli) != "
1224 "resv_start (%lli)\n",
1225 data_start, data_size, resv_start);
1228 return (VT_EINVAL);
1231 if (limit < resv_start) {
1232 if (efi_debug) {
1233 (void) fprintf(stderr,
1234 "efi_use_whole_disk: "
1235 "limit (%lli) < resv_start (%lli)\n",
1236 limit, resv_start);
1239 return (VT_EINVAL);
1242 difference = limit - resv_start;
1244 if (efi_debug)
1245 (void) fprintf(stderr,
1246 "efi_use_whole_disk: difference is %lli\n", difference);
1249 * Move the reserved partition. There is currently no data in
1250 * here except fabricated devids (which get generated via
1251 * efi_write()). So there is no need to copy data.
1253 efi_label->efi_parts[data_index].p_size += difference;
1254 efi_label->efi_parts[resv_index].p_start += difference;
1255 efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
1258 * Rescanning the partition table in the kernel can result
1259 * in the device links to be removed (see comment in vdev_disk_open).
1260 * If BLKPG_RESIZE_PARTITION is available, then we can resize
1261 * the partition table online and avoid having to remove the device
1262 * links used by the pool. This provides a very deterministic
1263 * approach to resizing devices and does not require any
1264 * loops waiting for devices to reappear.
1266 #ifdef BLKPG_RESIZE_PARTITION
1268 * Delete the reserved partition since we're about to expand
1269 * the data partition and it would overlap with the reserved
1270 * partition.
1271 * NOTE: The starting index for the ioctl is 1 while for the
1272 * EFI partitions it's 0. For that reason we have to add one
1273 * whenever we make an ioctl call.
1275 rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
1276 if (rval != 0)
1277 goto out;
1280 * Expand the data partition
1282 rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
1283 efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
1284 efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
1285 data_index + 1);
1286 if (rval != 0) {
1287 (void) fprintf(stderr, "Unable to resize data "
1288 "partition: %d\n", rval);
1290 * Since we failed to resize, we need to reset the start
1291 * of the reserve partition and re-create it.
1293 efi_label->efi_parts[resv_index].p_start -= difference;
1297 * Re-add the reserved partition. If we've expanded the data partition
1298 * then we'll move the reserve partition to the end of the data
1299 * partition. Otherwise, we'll recreate the partition in its original
1300 * location. Note that we do this as best-effort and ignore any
1301 * errors that may arise here. This will ensure that we finish writing
1302 * the EFI label.
1304 (void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
1305 efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
1306 efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
1307 resv_index + 1);
1308 #endif
1311 * We're now ready to write the EFI label.
1313 if (rval == 0) {
1314 rval = efi_write(fd, efi_label);
1315 if (rval < 0 && efi_debug) {
1316 (void) fprintf(stderr, "efi_use_whole_disk:fail "
1317 "to write label, rval=%d\n", rval);
1321 out:
1322 efi_free(efi_label);
1323 return (rval);
1327 * write EFI label and backup label
1330 efi_write(int fd, struct dk_gpt *vtoc)
1332 dk_efi_t dk_ioc;
1333 efi_gpt_t *efi;
1334 efi_gpe_t *efi_parts;
1335 int i, j;
1336 struct dk_cinfo dki_info;
1337 int rval;
1338 int md_flag = 0;
1339 int nblocks;
1340 diskaddr_t lba_backup_gpt_hdr;
1342 if ((rval = efi_get_info(fd, &dki_info)) != 0)
1343 return (rval);
1345 /* check if we are dealing with a metadevice */
1346 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1347 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1348 md_flag = 1;
1351 if (check_input(vtoc)) {
1353 * not valid; if it's a metadevice just pass it down
1354 * because SVM will do its own checking
1356 if (md_flag == 0) {
1357 return (VT_EINVAL);
1361 dk_ioc.dki_lba = 1;
1362 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1363 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1364 } else {
1365 dk_ioc.dki_length = (len_t)NBLOCKS(vtoc->efi_nparts,
1366 vtoc->efi_lbasize) *
1367 vtoc->efi_lbasize;
1371 * the number of blocks occupied by GUID partition entry array
1373 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1376 * Backup GPT header is located on the block after GUID
1377 * partition entry array. Here, we calculate the address
1378 * for backup GPT header.
1380 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1381 if (posix_memalign((void **)&dk_ioc.dki_data,
1382 vtoc->efi_lbasize, dk_ioc.dki_length))
1383 return (VT_ERROR);
1385 memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1386 efi = dk_ioc.dki_data;
1388 /* stuff user's input into EFI struct */
1389 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1390 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1391 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
1392 efi->efi_gpt_Reserved1 = 0;
1393 efi->efi_gpt_MyLBA = LE_64(1ULL);
1394 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1395 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1396 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1397 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1398 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1399 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1400 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1402 /* LINTED -- always longlong aligned */
1403 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1405 for (i = 0; i < vtoc->efi_nparts; i++) {
1406 for (j = 0;
1407 j < sizeof (conversion_array) /
1408 sizeof (struct uuid_to_ptag); j++) {
1410 if (vtoc->efi_parts[i].p_tag == j) {
1411 UUID_LE_CONVERT(
1412 efi_parts[i].efi_gpe_PartitionTypeGUID,
1413 conversion_array[j].uuid);
1414 break;
1418 if (j == sizeof (conversion_array) /
1419 sizeof (struct uuid_to_ptag)) {
1421 * If we didn't have a matching uuid match, bail here.
1422 * Don't write a label with unknown uuid.
1424 if (efi_debug) {
1425 (void) fprintf(stderr,
1426 "Unknown uuid for p_tag %d\n",
1427 vtoc->efi_parts[i].p_tag);
1429 return (VT_EINVAL);
1432 /* Zero's should be written for empty partitions */
1433 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1434 continue;
1436 efi_parts[i].efi_gpe_StartingLBA =
1437 LE_64(vtoc->efi_parts[i].p_start);
1438 efi_parts[i].efi_gpe_EndingLBA =
1439 LE_64(vtoc->efi_parts[i].p_start +
1440 vtoc->efi_parts[i].p_size - 1);
1441 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1442 LE_16(vtoc->efi_parts[i].p_flag);
1443 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1444 efi_parts[i].efi_gpe_PartitionName[j] =
1445 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1447 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1448 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1449 (void) uuid_generate((uchar_t *)
1450 &vtoc->efi_parts[i].p_uguid);
1452 memcpy(&efi_parts[i].efi_gpe_UniquePartitionGUID,
1453 &vtoc->efi_parts[i].p_uguid,
1454 sizeof (uuid_t));
1456 efi->efi_gpt_PartitionEntryArrayCRC32 =
1457 LE_32(efi_crc32((unsigned char *)efi_parts,
1458 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1459 efi->efi_gpt_HeaderCRC32 =
1460 LE_32(efi_crc32((unsigned char *)efi,
1461 LE_32(efi->efi_gpt_HeaderSize)));
1463 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1464 free(dk_ioc.dki_data);
1465 switch (errno) {
1466 case EIO:
1467 return (VT_EIO);
1468 case EINVAL:
1469 return (VT_EINVAL);
1470 default:
1471 return (VT_ERROR);
1474 /* if it's a metadevice we're done */
1475 if (md_flag) {
1476 free(dk_ioc.dki_data);
1477 return (0);
1480 /* write backup partition array */
1481 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1482 dk_ioc.dki_length -= vtoc->efi_lbasize;
1483 /* LINTED */
1484 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1485 vtoc->efi_lbasize);
1487 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1489 * we wrote the primary label okay, so don't fail
1491 if (efi_debug) {
1492 (void) fprintf(stderr,
1493 "write of backup partitions to block %llu "
1494 "failed, errno %d\n",
1495 vtoc->efi_last_u_lba + 1,
1496 errno);
1500 * now swap MyLBA and AlternateLBA fields and write backup
1501 * partition table header
1503 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1504 dk_ioc.dki_length = vtoc->efi_lbasize;
1505 /* LINTED */
1506 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1507 vtoc->efi_lbasize);
1508 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1509 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1510 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1511 efi->efi_gpt_HeaderCRC32 = 0;
1512 efi->efi_gpt_HeaderCRC32 =
1513 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1514 LE_32(efi->efi_gpt_HeaderSize)));
1516 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1517 if (efi_debug) {
1518 (void) fprintf(stderr,
1519 "write of backup header to block %llu failed, "
1520 "errno %d\n",
1521 lba_backup_gpt_hdr,
1522 errno);
1525 /* write the PMBR */
1526 (void) write_pmbr(fd, vtoc);
1527 free(dk_ioc.dki_data);
1529 return (0);
1532 void
1533 efi_free(struct dk_gpt *ptr)
1535 free(ptr);
1538 void
1539 efi_err_check(struct dk_gpt *vtoc)
1541 int resv_part = -1;
1542 int i, j;
1543 diskaddr_t istart, jstart, isize, jsize, endsect;
1544 int overlap = 0;
1547 * make sure no partitions overlap
1549 for (i = 0; i < vtoc->efi_nparts; i++) {
1550 /* It can't be unassigned and have an actual size */
1551 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1552 (vtoc->efi_parts[i].p_size != 0)) {
1553 (void) fprintf(stderr,
1554 "partition %d is \"unassigned\" but has a size "
1555 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1557 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1558 continue;
1560 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1561 if (resv_part != -1) {
1562 (void) fprintf(stderr,
1563 "found duplicate reserved partition at "
1564 "%d\n", i);
1566 resv_part = i;
1567 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1568 (void) fprintf(stderr,
1569 "Warning: reserved partition size must "
1570 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1572 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1573 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1574 (void) fprintf(stderr,
1575 "Partition %d starts at %llu\n",
1577 vtoc->efi_parts[i].p_start);
1578 (void) fprintf(stderr,
1579 "It must be between %llu and %llu.\n",
1580 vtoc->efi_first_u_lba,
1581 vtoc->efi_last_u_lba);
1583 if ((vtoc->efi_parts[i].p_start +
1584 vtoc->efi_parts[i].p_size <
1585 vtoc->efi_first_u_lba) ||
1586 (vtoc->efi_parts[i].p_start +
1587 vtoc->efi_parts[i].p_size >
1588 vtoc->efi_last_u_lba + 1)) {
1589 (void) fprintf(stderr,
1590 "Partition %d ends at %llu\n",
1592 vtoc->efi_parts[i].p_start +
1593 vtoc->efi_parts[i].p_size);
1594 (void) fprintf(stderr,
1595 "It must be between %llu and %llu.\n",
1596 vtoc->efi_first_u_lba,
1597 vtoc->efi_last_u_lba);
1600 for (j = 0; j < vtoc->efi_nparts; j++) {
1601 isize = vtoc->efi_parts[i].p_size;
1602 jsize = vtoc->efi_parts[j].p_size;
1603 istart = vtoc->efi_parts[i].p_start;
1604 jstart = vtoc->efi_parts[j].p_start;
1605 if ((i != j) && (isize != 0) && (jsize != 0)) {
1606 endsect = jstart + jsize -1;
1607 if ((jstart <= istart) &&
1608 (istart <= endsect)) {
1609 if (!overlap) {
1610 (void) fprintf(stderr,
1611 "label error: EFI Labels do not "
1612 "support overlapping partitions\n");
1614 (void) fprintf(stderr,
1615 "Partition %d overlaps partition "
1616 "%d.\n", i, j);
1617 overlap = 1;
1622 /* make sure there is a reserved partition */
1623 if (resv_part == -1) {
1624 (void) fprintf(stderr,
1625 "no reserved partition found\n");