2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
8 * This file is part of the SPL, Solaris Porting Layer.
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
24 #include <sys/debug.h>
25 #include <sys/sysmacros.h>
31 * As a general rule kmem_alloc() allocations should be small, preferably
32 * just a few pages since they must by physically contiguous. Therefore, a
33 * rate limited warning will be printed to the console for any kmem_alloc()
34 * which exceeds a reasonable threshold.
36 * The default warning threshold is set to sixteen pages but capped at 64K to
37 * accommodate systems using large pages. This value was selected to be small
38 * enough to ensure the largest allocations are quickly noticed and fixed.
39 * But large enough to avoid logging any warnings when a allocation size is
40 * larger than optimal but not a serious concern. Since this value is tunable,
41 * developers are encouraged to set it lower when testing so any new largish
42 * allocations are quickly caught. These warnings may be disabled by setting
43 * the threshold to zero.
45 unsigned int spl_kmem_alloc_warn
= MIN(16 * PAGE_SIZE
, 64 * 1024);
46 module_param(spl_kmem_alloc_warn
, uint
, 0644);
47 MODULE_PARM_DESC(spl_kmem_alloc_warn
,
48 "Warning threshold in bytes for a kmem_alloc()");
49 EXPORT_SYMBOL(spl_kmem_alloc_warn
);
52 * Large kmem_alloc() allocations will fail if they exceed KMALLOC_MAX_SIZE.
53 * Allocations which are marginally smaller than this limit may succeed but
54 * should still be avoided due to the expense of locating a contiguous range
55 * of free pages. Therefore, a maximum kmem size with reasonable safely
56 * margin of 4x is set. Kmem_alloc() allocations larger than this maximum
57 * will quickly fail. Vmem_alloc() allocations less than or equal to this
58 * value will use kmalloc(), but shift to vmalloc() when exceeding this value.
60 unsigned int spl_kmem_alloc_max
= (KMALLOC_MAX_SIZE
>> 2);
61 module_param(spl_kmem_alloc_max
, uint
, 0644);
62 MODULE_PARM_DESC(spl_kmem_alloc_max
,
63 "Maximum size in bytes for a kmem_alloc()");
64 EXPORT_SYMBOL(spl_kmem_alloc_max
);
72 EXPORT_SYMBOL(kmem_debugging
);
75 kmem_vasprintf(const char *fmt
, va_list ap
)
82 ptr
= kvasprintf(kmem_flags_convert(KM_SLEEP
), fmt
, aq
);
84 } while (ptr
== NULL
);
88 EXPORT_SYMBOL(kmem_vasprintf
);
91 kmem_asprintf(const char *fmt
, ...)
98 ptr
= kvasprintf(kmem_flags_convert(KM_SLEEP
), fmt
, ap
);
100 } while (ptr
== NULL
);
104 EXPORT_SYMBOL(kmem_asprintf
);
107 __strdup(const char *str
, int flags
)
113 ptr
= kmalloc(n
+ 1, kmem_flags_convert(flags
));
115 memcpy(ptr
, str
, n
+ 1);
121 kmem_strdup(const char *str
)
123 return (__strdup(str
, KM_SLEEP
));
125 EXPORT_SYMBOL(kmem_strdup
);
128 kmem_strfree(char *str
)
132 EXPORT_SYMBOL(kmem_strfree
);
135 spl_kvmalloc(size_t size
, gfp_t lflags
)
138 * GFP_KERNEL allocations can safely use kvmalloc which may
139 * improve performance by avoiding a) high latency caused by
140 * vmalloc's on-access allocation, b) performance loss due to
141 * MMU memory address mapping and c) vmalloc locking overhead.
142 * This has the side-effect that the slab statistics will
143 * incorrectly report this as a vmem allocation, but that is
146 if ((lflags
& GFP_KERNEL
) == GFP_KERNEL
)
147 return (kvmalloc(size
, lflags
));
149 gfp_t kmalloc_lflags
= lflags
;
151 if (size
> PAGE_SIZE
) {
153 * We need to set __GFP_NOWARN here since spl_kvmalloc is not
154 * only called by spl_kmem_alloc_impl but can be called
155 * directly with custom lflags, too. In that case
156 * kmem_flags_convert does not get called, which would
157 * implicitly set __GFP_NOWARN.
159 kmalloc_lflags
|= __GFP_NOWARN
;
162 * N.B. __GFP_RETRY_MAYFAIL is supported only for large
163 * e (>32kB) allocations.
165 * We have to override __GFP_RETRY_MAYFAIL by __GFP_NORETRY
166 * for !costly requests because there is no other way to tell
167 * the allocator that we want to fail rather than retry
170 if (!(kmalloc_lflags
& __GFP_RETRY_MAYFAIL
) ||
171 (size
<= PAGE_SIZE
<< PAGE_ALLOC_COSTLY_ORDER
)) {
172 kmalloc_lflags
|= __GFP_NORETRY
;
177 * We first try kmalloc - even for big sizes - and fall back to
178 * spl_vmalloc if that fails.
180 * For non-__GFP-RECLAIM allocations we always stick to
181 * kmalloc_node, and fail when kmalloc is not successful (returns
183 * We cannot fall back to spl_vmalloc in this case because spl_vmalloc
184 * internally uses GPF_KERNEL allocations.
186 void *ptr
= kmalloc_node(size
, kmalloc_lflags
, NUMA_NO_NODE
);
187 if (ptr
|| size
<= PAGE_SIZE
||
188 (lflags
& __GFP_RECLAIM
) != __GFP_RECLAIM
) {
192 return (spl_vmalloc(size
, lflags
| __GFP_HIGHMEM
));
196 * General purpose unified implementation of kmem_alloc(). It is an
197 * amalgamation of Linux and Illumos allocator design. It should never be
198 * exported to ensure that code using kmem_alloc()/kmem_zalloc() remains
199 * relatively portable. Consumers may only access this function through
200 * wrappers that enforce the common flags to ensure portability.
203 spl_kmem_alloc_impl(size_t size
, int flags
, int node
)
205 gfp_t lflags
= kmem_flags_convert(flags
);
209 * Log abnormally large allocations and rate limit the console output.
210 * Allocations larger than spl_kmem_alloc_warn should be performed
211 * through the vmem_alloc()/vmem_zalloc() interfaces.
213 if ((spl_kmem_alloc_warn
> 0) && (size
> spl_kmem_alloc_warn
) &&
214 !(flags
& KM_VMEM
)) {
216 "Large kmem_alloc(%lu, 0x%x), please file an issue at:\n"
217 "https://github.com/openzfs/zfs/issues/new\n",
218 (unsigned long)size
, flags
);
223 * Use a loop because kmalloc_node() can fail when GFP_KERNEL is used
224 * unlike kmem_alloc() with KM_SLEEP on Illumos.
228 * Calling kmalloc_node() when the size >= spl_kmem_alloc_max
229 * is unsafe. This must fail for all for kmem_alloc() and
230 * kmem_zalloc() callers.
232 * For vmem_alloc() and vmem_zalloc() callers it is permissible
233 * to use spl_vmalloc(). However, in general use of
234 * spl_vmalloc() is strongly discouraged because a global lock
235 * must be acquired. Contention on this lock can significantly
236 * impact performance so frequently manipulating the virtual
237 * address space is strongly discouraged.
239 if (size
> spl_kmem_alloc_max
) {
240 if (flags
& KM_VMEM
) {
241 ptr
= spl_vmalloc(size
, lflags
| __GFP_HIGHMEM
);
247 * We use kmalloc when doing kmem_alloc(KM_NOSLEEP),
248 * because kvmalloc/vmalloc may sleep. We also use
249 * kmalloc on systems with limited kernel VA space (e.g.
250 * 32-bit), which have HIGHMEM. Otherwise we use
251 * kvmalloc, which tries to get contiguous physical
252 * memory (fast, like kmalloc) and falls back on using
253 * virtual memory to stitch together pages (slow, like
256 #ifdef CONFIG_HIGHMEM
257 if (flags
& KM_VMEM
) {
259 if ((flags
& KM_VMEM
) || !(flags
& KM_NOSLEEP
)) {
261 ptr
= spl_kvmalloc(size
, lflags
);
263 ptr
= kmalloc_node(size
, lflags
, node
);
267 if (likely(ptr
) || (flags
& KM_NOSLEEP
))
271 * Try hard to satisfy the allocation. However, when progress
272 * cannot be made, the allocation is allowed to fail.
274 if ((lflags
& GFP_KERNEL
) == GFP_KERNEL
)
275 lflags
|= __GFP_RETRY_MAYFAIL
;
278 * Use cond_resched() instead of congestion_wait() to avoid
279 * deadlocking systems where there are no block devices.
288 spl_kmem_free_impl(const void *buf
, size_t size
)
290 if (is_vmalloc_addr(buf
))
297 * Memory allocation and accounting for kmem_* * style allocations. When
298 * DEBUG_KMEM is enabled the total memory allocated will be tracked and
299 * any memory leaked will be reported during module unload.
301 * ./configure --enable-debug-kmem
305 /* Shim layer memory accounting */
306 #ifdef HAVE_ATOMIC64_T
307 atomic64_t kmem_alloc_used
= ATOMIC64_INIT(0);
308 unsigned long long kmem_alloc_max
= 0;
309 #else /* HAVE_ATOMIC64_T */
310 atomic_t kmem_alloc_used
= ATOMIC_INIT(0);
311 unsigned long long kmem_alloc_max
= 0;
312 #endif /* HAVE_ATOMIC64_T */
314 EXPORT_SYMBOL(kmem_alloc_used
);
315 EXPORT_SYMBOL(kmem_alloc_max
);
318 spl_kmem_alloc_debug(size_t size
, int flags
, int node
)
322 ptr
= spl_kmem_alloc_impl(size
, flags
, node
);
324 kmem_alloc_used_add(size
);
325 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max
))
326 kmem_alloc_max
= kmem_alloc_used_read();
333 spl_kmem_free_debug(const void *ptr
, size_t size
)
335 kmem_alloc_used_sub(size
);
336 spl_kmem_free_impl(ptr
, size
);
340 * When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
341 * but also the location of every alloc and free. When the SPL module is
342 * unloaded a list of all leaked addresses and where they were allocated
343 * will be dumped to the console. Enabling this feature has a significant
344 * impact on performance but it makes finding memory leaks straight forward.
346 * Not surprisingly with debugging enabled the xmem_locks are very highly
347 * contended particularly on xfree(). If we want to run with this detailed
348 * debugging enabled for anything other than debugging we need to minimize
349 * the contention by moving to a lock per xmem_table entry model.
351 * ./configure --enable-debug-kmem-tracking
353 #ifdef DEBUG_KMEM_TRACKING
355 #include <linux/hash.h>
356 #include <linux/ctype.h>
358 #define KMEM_HASH_BITS 10
359 #define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
361 typedef struct kmem_debug
{
362 struct hlist_node kd_hlist
; /* Hash node linkage */
363 struct list_head kd_list
; /* List of all allocations */
364 void *kd_addr
; /* Allocation pointer */
365 size_t kd_size
; /* Allocation size */
366 const char *kd_func
; /* Allocation function */
367 int kd_line
; /* Allocation line */
370 static spinlock_t kmem_lock
;
371 static struct hlist_head kmem_table
[KMEM_TABLE_SIZE
];
372 static struct list_head kmem_list
;
374 static kmem_debug_t
*
375 kmem_del_init(spinlock_t
*lock
, struct hlist_head
*table
,
376 int bits
, const void *addr
)
378 struct hlist_head
*head
;
379 struct hlist_node
*node
= NULL
;
380 struct kmem_debug
*p
;
383 spin_lock_irqsave(lock
, flags
);
385 head
= &table
[hash_ptr((void *)addr
, bits
)];
386 hlist_for_each(node
, head
) {
387 p
= list_entry(node
, struct kmem_debug
, kd_hlist
);
388 if (p
->kd_addr
== addr
) {
389 hlist_del_init(&p
->kd_hlist
);
390 list_del_init(&p
->kd_list
);
391 spin_unlock_irqrestore(lock
, flags
);
396 spin_unlock_irqrestore(lock
, flags
);
402 spl_kmem_alloc_track(size_t size
, int flags
,
403 const char *func
, int line
, int node
)
407 unsigned long irq_flags
;
409 dptr
= kmalloc(sizeof (kmem_debug_t
), kmem_flags_convert(flags
));
413 dptr
->kd_func
= __strdup(func
, flags
);
414 if (dptr
->kd_func
== NULL
) {
419 ptr
= spl_kmem_alloc_debug(size
, flags
, node
);
421 kfree(dptr
->kd_func
);
426 INIT_HLIST_NODE(&dptr
->kd_hlist
);
427 INIT_LIST_HEAD(&dptr
->kd_list
);
430 dptr
->kd_size
= size
;
431 dptr
->kd_line
= line
;
433 spin_lock_irqsave(&kmem_lock
, irq_flags
);
434 hlist_add_head(&dptr
->kd_hlist
,
435 &kmem_table
[hash_ptr(ptr
, KMEM_HASH_BITS
)]);
436 list_add_tail(&dptr
->kd_list
, &kmem_list
);
437 spin_unlock_irqrestore(&kmem_lock
, irq_flags
);
443 spl_kmem_free_track(const void *ptr
, size_t size
)
447 /* Ignore NULL pointer since we haven't tracked it at all */
451 /* Must exist in hash due to kmem_alloc() */
452 dptr
= kmem_del_init(&kmem_lock
, kmem_table
, KMEM_HASH_BITS
, ptr
);
453 ASSERT3P(dptr
, !=, NULL
);
454 ASSERT3S(dptr
->kd_size
, ==, size
);
456 kfree(dptr
->kd_func
);
459 spl_kmem_free_debug(ptr
, size
);
461 #endif /* DEBUG_KMEM_TRACKING */
462 #endif /* DEBUG_KMEM */
465 * Public kmem_alloc(), kmem_zalloc() and kmem_free() interfaces.
468 spl_kmem_alloc(size_t size
, int flags
, const char *func
, int line
)
470 ASSERT0(flags
& ~KM_PUBLIC_MASK
);
472 #if !defined(DEBUG_KMEM)
473 return (spl_kmem_alloc_impl(size
, flags
, NUMA_NO_NODE
));
474 #elif !defined(DEBUG_KMEM_TRACKING)
475 return (spl_kmem_alloc_debug(size
, flags
, NUMA_NO_NODE
));
477 return (spl_kmem_alloc_track(size
, flags
, func
, line
, NUMA_NO_NODE
));
480 EXPORT_SYMBOL(spl_kmem_alloc
);
483 spl_kmem_zalloc(size_t size
, int flags
, const char *func
, int line
)
485 ASSERT0(flags
& ~KM_PUBLIC_MASK
);
489 #if !defined(DEBUG_KMEM)
490 return (spl_kmem_alloc_impl(size
, flags
, NUMA_NO_NODE
));
491 #elif !defined(DEBUG_KMEM_TRACKING)
492 return (spl_kmem_alloc_debug(size
, flags
, NUMA_NO_NODE
));
494 return (spl_kmem_alloc_track(size
, flags
, func
, line
, NUMA_NO_NODE
));
497 EXPORT_SYMBOL(spl_kmem_zalloc
);
500 spl_kmem_free(const void *buf
, size_t size
)
502 #if !defined(DEBUG_KMEM)
503 return (spl_kmem_free_impl(buf
, size
));
504 #elif !defined(DEBUG_KMEM_TRACKING)
505 return (spl_kmem_free_debug(buf
, size
));
507 return (spl_kmem_free_track(buf
, size
));
510 EXPORT_SYMBOL(spl_kmem_free
);
512 #if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
514 spl_sprintf_addr(kmem_debug_t
*kd
, char *str
, int len
, int min
)
516 int size
= ((len
- 1) < kd
->kd_size
) ? (len
- 1) : kd
->kd_size
;
519 ASSERT(str
!= NULL
&& len
>= 17);
523 * Check for a fully printable string, and while we are at
524 * it place the printable characters in the passed buffer.
526 for (i
= 0; i
< size
; i
++) {
527 str
[i
] = ((char *)(kd
->kd_addr
))[i
];
528 if (isprint(str
[i
])) {
532 * Minimum number of printable characters found
533 * to make it worthwhile to print this as ascii.
544 sprintf(str
, "%02x%02x%02x%02x%02x%02x%02x%02x",
545 *((uint8_t *)kd
->kd_addr
),
546 *((uint8_t *)kd
->kd_addr
+ 2),
547 *((uint8_t *)kd
->kd_addr
+ 4),
548 *((uint8_t *)kd
->kd_addr
+ 6),
549 *((uint8_t *)kd
->kd_addr
+ 8),
550 *((uint8_t *)kd
->kd_addr
+ 10),
551 *((uint8_t *)kd
->kd_addr
+ 12),
552 *((uint8_t *)kd
->kd_addr
+ 14));
559 spl_kmem_init_tracking(struct list_head
*list
, spinlock_t
*lock
, int size
)
563 spin_lock_init(lock
);
564 INIT_LIST_HEAD(list
);
566 for (i
= 0; i
< size
; i
++)
567 INIT_HLIST_HEAD(&kmem_table
[i
]);
573 spl_kmem_fini_tracking(struct list_head
*list
, spinlock_t
*lock
)
576 kmem_debug_t
*kd
= NULL
;
579 spin_lock_irqsave(lock
, flags
);
580 if (!list_empty(list
))
581 printk(KERN_WARNING
"%-16s %-5s %-16s %s:%s\n", "address",
582 "size", "data", "func", "line");
584 list_for_each_entry(kd
, list
, kd_list
) {
585 printk(KERN_WARNING
"%p %-5d %-16s %s:%d\n", kd
->kd_addr
,
586 (int)kd
->kd_size
, spl_sprintf_addr(kd
, str
, 17, 8),
587 kd
->kd_func
, kd
->kd_line
);
590 spin_unlock_irqrestore(lock
, flags
);
592 #endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
599 kmem_alloc_used_set(0);
603 #ifdef DEBUG_KMEM_TRACKING
604 spl_kmem_init_tracking(&kmem_list
, &kmem_lock
, KMEM_TABLE_SIZE
);
605 #endif /* DEBUG_KMEM_TRACKING */
606 #endif /* DEBUG_KMEM */
616 * Display all unreclaimed memory addresses, including the
617 * allocation size and the first few bytes of what's located
618 * at that address to aid in debugging. Performance is not
619 * a serious concern here since it is module unload time.
621 if (kmem_alloc_used_read() != 0)
622 printk(KERN_WARNING
"kmem leaked %ld/%llu bytes\n",
623 (unsigned long)kmem_alloc_used_read(), kmem_alloc_max
);
625 #ifdef DEBUG_KMEM_TRACKING
626 spl_kmem_fini_tracking(&kmem_list
, &kmem_lock
);
627 #endif /* DEBUG_KMEM_TRACKING */
628 #endif /* DEBUG_KMEM */