4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2023, 2024, Klara Inc.
28 * See abd.c for a general overview of the arc buffered data (ABD).
30 * Linear buffers act exactly like normal buffers and are always mapped into the
31 * kernel's virtual memory space, while scattered ABD data chunks are allocated
32 * as physical pages and then mapped in only while they are actually being
33 * accessed through one of the abd_* library functions. Using scattered ABDs
34 * provides several benefits:
36 * (1) They avoid use of kmem_*, preventing performance problems where running
37 * kmem_reap on very large memory systems never finishes and causes
38 * constant TLB shootdowns.
40 * (2) Fragmentation is less of an issue since when we are at the limit of
41 * allocatable space, we won't have to search around for a long free
42 * hole in the VA space for large ARC allocations. Each chunk is mapped in
43 * individually, so even if we are using HIGHMEM (see next point) we
44 * wouldn't need to worry about finding a contiguous address range.
46 * (3) If we are not using HIGHMEM, then all physical memory is always
47 * mapped into the kernel's address space, so we also avoid the map /
48 * unmap costs on each ABD access.
50 * If we are not using HIGHMEM, scattered buffers which have only one chunk
51 * can be treated as linear buffers, because they are contiguous in the
52 * kernel's virtual address space. See abd_alloc_chunks() for details.
55 #include <sys/abd_impl.h>
56 #include <sys/param.h>
59 #include <sys/zfs_context.h>
60 #include <sys/zfs_znode.h>
61 #include <linux/kmap_compat.h>
62 #include <linux/mm_compat.h>
63 #include <linux/scatterlist.h>
64 #include <linux/version.h>
66 #if defined(MAX_ORDER)
67 #define ABD_MAX_ORDER (MAX_ORDER)
68 #elif defined(MAX_PAGE_ORDER)
69 #define ABD_MAX_ORDER (MAX_PAGE_ORDER)
72 typedef struct abd_stats
{
73 kstat_named_t abdstat_struct_size
;
74 kstat_named_t abdstat_linear_cnt
;
75 kstat_named_t abdstat_linear_data_size
;
76 kstat_named_t abdstat_scatter_cnt
;
77 kstat_named_t abdstat_scatter_data_size
;
78 kstat_named_t abdstat_scatter_chunk_waste
;
79 kstat_named_t abdstat_scatter_orders
[ABD_MAX_ORDER
];
80 kstat_named_t abdstat_scatter_page_multi_chunk
;
81 kstat_named_t abdstat_scatter_page_multi_zone
;
82 kstat_named_t abdstat_scatter_page_alloc_retry
;
83 kstat_named_t abdstat_scatter_sg_table_retry
;
86 static abd_stats_t abd_stats
= {
87 /* Amount of memory occupied by all of the abd_t struct allocations */
88 { "struct_size", KSTAT_DATA_UINT64
},
90 * The number of linear ABDs which are currently allocated, excluding
91 * ABDs which don't own their data (for instance the ones which were
92 * allocated through abd_get_offset() and abd_get_from_buf()). If an
93 * ABD takes ownership of its buf then it will become tracked.
95 { "linear_cnt", KSTAT_DATA_UINT64
},
96 /* Amount of data stored in all linear ABDs tracked by linear_cnt */
97 { "linear_data_size", KSTAT_DATA_UINT64
},
99 * The number of scatter ABDs which are currently allocated, excluding
100 * ABDs which don't own their data (for instance the ones which were
101 * allocated through abd_get_offset()).
103 { "scatter_cnt", KSTAT_DATA_UINT64
},
104 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
105 { "scatter_data_size", KSTAT_DATA_UINT64
},
107 * The amount of space wasted at the end of the last chunk across all
108 * scatter ABDs tracked by scatter_cnt.
110 { "scatter_chunk_waste", KSTAT_DATA_UINT64
},
112 * The number of compound allocations of a given order. These
113 * allocations are spread over all currently allocated ABDs, and
114 * act as a measure of memory fragmentation.
116 { { "scatter_order_N", KSTAT_DATA_UINT64
} },
118 * The number of scatter ABDs which contain multiple chunks.
119 * ABDs are preferentially allocated from the minimum number of
120 * contiguous multi-page chunks, a single chunk is optimal.
122 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64
},
124 * The number of scatter ABDs which are split across memory zones.
125 * ABDs are preferentially allocated using pages from a single zone.
127 { "scatter_page_multi_zone", KSTAT_DATA_UINT64
},
129 * The total number of retries encountered when attempting to
130 * allocate the pages to populate the scatter ABD.
132 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64
},
134 * The total number of retries encountered when attempting to
135 * allocate the sg table for an ABD.
137 { "scatter_sg_table_retry", KSTAT_DATA_UINT64
},
141 wmsum_t abdstat_struct_size
;
142 wmsum_t abdstat_linear_cnt
;
143 wmsum_t abdstat_linear_data_size
;
144 wmsum_t abdstat_scatter_cnt
;
145 wmsum_t abdstat_scatter_data_size
;
146 wmsum_t abdstat_scatter_chunk_waste
;
147 wmsum_t abdstat_scatter_orders
[ABD_MAX_ORDER
];
148 wmsum_t abdstat_scatter_page_multi_chunk
;
149 wmsum_t abdstat_scatter_page_multi_zone
;
150 wmsum_t abdstat_scatter_page_alloc_retry
;
151 wmsum_t abdstat_scatter_sg_table_retry
;
154 #define abd_for_each_sg(abd, sg, n, i) \
155 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
158 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
159 * ABD's. Smaller allocations will use linear ABD's which uses
160 * zio_[data_]buf_alloc().
162 * Scatter ABD's use at least one page each, so sub-page allocations waste
163 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
164 * half of each page). Using linear ABD's for small allocations means that
165 * they will be put on slabs which contain many allocations. This can
166 * improve memory efficiency, but it also makes it much harder for ARC
167 * evictions to actually free pages, because all the buffers on one slab need
168 * to be freed in order for the slab (and underlying pages) to be freed.
169 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
170 * possible for them to actually waste more memory than scatter (one page per
171 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
173 * Spill blocks are typically 512B and are heavily used on systems running
174 * selinux with the default dnode size and the `xattr=sa` property set.
176 * By default we use linear allocations for 512B and 1KB, and scatter
177 * allocations for larger (1.5KB and up).
179 static int zfs_abd_scatter_min_size
= 512 * 3;
182 * We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
183 * just a single zero'd page. This allows us to conserve memory by
184 * only using a single zero page for the scatterlist.
186 abd_t
*abd_zero_scatter
= NULL
;
191 * abd_zero_page is assigned to each of the pages of abd_zero_scatter. It will
192 * point to ZERO_PAGE if it is available or it will be an allocated zero'd
195 static struct page
*abd_zero_page
= NULL
;
197 static kmem_cache_t
*abd_cache
= NULL
;
198 static kstat_t
*abd_ksp
;
201 abd_chunkcnt_for_bytes(size_t size
)
203 return (P2ROUNDUP(size
, PAGESIZE
) / PAGESIZE
);
207 abd_alloc_struct_impl(size_t size
)
210 * In Linux we do not use the size passed in during ABD
211 * allocation, so we just ignore it.
214 abd_t
*abd
= kmem_cache_alloc(abd_cache
, KM_PUSHPAGE
);
215 ASSERT3P(abd
, !=, NULL
);
216 ABDSTAT_INCR(abdstat_struct_size
, sizeof (abd_t
));
222 abd_free_struct_impl(abd_t
*abd
)
224 kmem_cache_free(abd_cache
, abd
);
225 ABDSTAT_INCR(abdstat_struct_size
, -(int)sizeof (abd_t
));
228 static unsigned zfs_abd_scatter_max_order
= ABD_MAX_ORDER
- 1;
231 * Mark zfs data pages so they can be excluded from kernel crash dumps
234 #define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
237 abd_mark_zfs_page(struct page
*page
)
240 SetPagePrivate(page
);
241 set_page_private(page
, ABD_FILE_CACHE_PAGE
);
245 abd_unmark_zfs_page(struct page
*page
)
247 set_page_private(page
, 0UL);
248 ClearPagePrivate(page
);
252 #define abd_mark_zfs_page(page)
253 #define abd_unmark_zfs_page(page)
256 #ifndef CONFIG_HIGHMEM
258 #ifndef __GFP_RECLAIM
259 #define __GFP_RECLAIM __GFP_WAIT
263 * The goal is to minimize fragmentation by preferentially populating ABDs
264 * with higher order compound pages from a single zone. Allocation size is
265 * progressively decreased until it can be satisfied without performing
266 * reclaim or compaction. When necessary this function will degenerate to
267 * allocating individual pages and allowing reclaim to satisfy allocations.
270 abd_alloc_chunks(abd_t
*abd
, size_t size
)
272 struct list_head pages
;
273 struct sg_table table
;
274 struct scatterlist
*sg
;
275 struct page
*page
, *tmp_page
= NULL
;
276 gfp_t gfp
= __GFP_RECLAIMABLE
| __GFP_NOWARN
| GFP_NOIO
;
277 gfp_t gfp_comp
= (gfp
| __GFP_NORETRY
| __GFP_COMP
) & ~__GFP_RECLAIM
;
278 unsigned int max_order
= MIN(zfs_abd_scatter_max_order
,
280 unsigned int nr_pages
= abd_chunkcnt_for_bytes(size
);
281 unsigned int chunks
= 0, zones
= 0;
282 size_t remaining_size
;
283 int nid
= NUMA_NO_NODE
;
284 unsigned int alloc_pages
= 0;
286 INIT_LIST_HEAD(&pages
);
288 ASSERT3U(alloc_pages
, <, nr_pages
);
290 while (alloc_pages
< nr_pages
) {
291 unsigned int chunk_pages
;
294 order
= MIN(highbit64(nr_pages
- alloc_pages
) - 1, max_order
);
295 chunk_pages
= (1U << order
);
297 page
= alloc_pages_node(nid
, order
? gfp_comp
: gfp
, order
);
300 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry
);
301 schedule_timeout_interruptible(1);
303 max_order
= MAX(0, order
- 1);
308 list_add_tail(&page
->lru
, &pages
);
310 if ((nid
!= NUMA_NO_NODE
) && (page_to_nid(page
) != nid
))
313 nid
= page_to_nid(page
);
314 ABDSTAT_BUMP(abdstat_scatter_orders
[order
]);
316 alloc_pages
+= chunk_pages
;
319 ASSERT3S(alloc_pages
, ==, nr_pages
);
321 while (sg_alloc_table(&table
, chunks
, gfp
)) {
322 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry
);
323 schedule_timeout_interruptible(1);
327 remaining_size
= size
;
328 list_for_each_entry_safe(page
, tmp_page
, &pages
, lru
) {
329 size_t sg_size
= MIN(PAGESIZE
<< compound_order(page
),
331 sg_set_page(sg
, page
, sg_size
, 0);
332 abd_mark_zfs_page(page
);
333 remaining_size
-= sg_size
;
336 list_del(&page
->lru
);
340 * These conditions ensure that a possible transformation to a linear
341 * ABD would be valid.
343 ASSERT(!PageHighMem(sg_page(table
.sgl
)));
344 ASSERT0(ABD_SCATTER(abd
).abd_offset
);
346 if (table
.nents
== 1) {
348 * Since there is only one entry, this ABD can be represented
349 * as a linear buffer. All single-page (4K) ABD's can be
350 * represented this way. Some multi-page ABD's can also be
351 * represented this way, if we were able to allocate a single
352 * "chunk" (higher-order "page" which represents a power-of-2
353 * series of physically-contiguous pages). This is often the
354 * case for 2-page (8K) ABD's.
356 * Representing a single-entry scatter ABD as a linear ABD
357 * has the performance advantage of avoiding the copy (and
358 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
359 * A performance increase of around 5% has been observed for
360 * ARC-cached reads (of small blocks which can take advantage
363 * Note that this optimization is only possible because the
364 * pages are always mapped into the kernel's address space.
365 * This is not the case for highmem pages, so the
366 * optimization can not be made there.
368 abd
->abd_flags
|= ABD_FLAG_LINEAR
;
369 abd
->abd_flags
|= ABD_FLAG_LINEAR_PAGE
;
370 abd
->abd_u
.abd_linear
.abd_sgl
= table
.sgl
;
371 ABD_LINEAR_BUF(abd
) = page_address(sg_page(table
.sgl
));
372 } else if (table
.nents
> 1) {
373 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk
);
374 abd
->abd_flags
|= ABD_FLAG_MULTI_CHUNK
;
377 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone
);
378 abd
->abd_flags
|= ABD_FLAG_MULTI_ZONE
;
381 ABD_SCATTER(abd
).abd_sgl
= table
.sgl
;
382 ABD_SCATTER(abd
).abd_nents
= table
.nents
;
388 * Allocate N individual pages to construct a scatter ABD. This function
389 * makes no attempt to request contiguous pages and requires the minimal
390 * number of kernel interfaces. It's designed for maximum compatibility.
393 abd_alloc_chunks(abd_t
*abd
, size_t size
)
395 struct scatterlist
*sg
= NULL
;
396 struct sg_table table
;
398 gfp_t gfp
= __GFP_RECLAIMABLE
| __GFP_NOWARN
| GFP_NOIO
;
399 int nr_pages
= abd_chunkcnt_for_bytes(size
);
402 while (sg_alloc_table(&table
, nr_pages
, gfp
)) {
403 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry
);
404 schedule_timeout_interruptible(1);
407 ASSERT3U(table
.nents
, ==, nr_pages
);
408 ABD_SCATTER(abd
).abd_sgl
= table
.sgl
;
409 ABD_SCATTER(abd
).abd_nents
= nr_pages
;
411 abd_for_each_sg(abd
, sg
, nr_pages
, i
) {
412 while ((page
= __page_cache_alloc(gfp
)) == NULL
) {
413 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry
);
414 schedule_timeout_interruptible(1);
417 ABDSTAT_BUMP(abdstat_scatter_orders
[0]);
418 sg_set_page(sg
, page
, PAGESIZE
, 0);
419 abd_mark_zfs_page(page
);
423 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk
);
424 abd
->abd_flags
|= ABD_FLAG_MULTI_CHUNK
;
427 #endif /* !CONFIG_HIGHMEM */
430 * This must be called if any of the sg_table allocation functions
434 abd_free_sg_table(abd_t
*abd
)
436 struct sg_table table
;
438 table
.sgl
= ABD_SCATTER(abd
).abd_sgl
;
439 table
.nents
= table
.orig_nents
= ABD_SCATTER(abd
).abd_nents
;
440 sg_free_table(&table
);
444 abd_free_chunks(abd_t
*abd
)
446 struct scatterlist
*sg
= NULL
;
448 int nr_pages
= ABD_SCATTER(abd
).abd_nents
;
451 if (abd
->abd_flags
& ABD_FLAG_MULTI_ZONE
)
452 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone
);
454 if (abd
->abd_flags
& ABD_FLAG_MULTI_CHUNK
)
455 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk
);
458 * Scatter ABDs may be constructed by abd_alloc_from_pages() from
459 * an array of pages. In which case they should not be freed.
461 if (!abd_is_from_pages(abd
)) {
462 abd_for_each_sg(abd
, sg
, nr_pages
, i
) {
464 abd_unmark_zfs_page(page
);
465 order
= compound_order(page
);
466 __free_pages(page
, order
);
467 ASSERT3U(sg
->length
, <=, PAGE_SIZE
<< order
);
468 ABDSTAT_BUMPDOWN(abdstat_scatter_orders
[order
]);
472 abd_free_sg_table(abd
);
476 * Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
477 * the scatterlist will be set to the zero'd out buffer abd_zero_page.
480 abd_alloc_zero_scatter(void)
482 struct scatterlist
*sg
= NULL
;
483 struct sg_table table
;
484 gfp_t gfp
= __GFP_NOWARN
| GFP_NOIO
;
485 int nr_pages
= abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE
);
488 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
489 gfp_t gfp_zero_page
= gfp
| __GFP_ZERO
;
490 while ((abd_zero_page
= __page_cache_alloc(gfp_zero_page
)) == NULL
) {
491 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry
);
492 schedule_timeout_interruptible(1);
494 abd_mark_zfs_page(abd_zero_page
);
496 abd_zero_page
= ZERO_PAGE(0);
497 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
499 while (sg_alloc_table(&table
, nr_pages
, gfp
)) {
500 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry
);
501 schedule_timeout_interruptible(1);
503 ASSERT3U(table
.nents
, ==, nr_pages
);
505 abd_zero_scatter
= abd_alloc_struct(SPA_MAXBLOCKSIZE
);
506 abd_zero_scatter
->abd_flags
|= ABD_FLAG_OWNER
;
507 ABD_SCATTER(abd_zero_scatter
).abd_offset
= 0;
508 ABD_SCATTER(abd_zero_scatter
).abd_sgl
= table
.sgl
;
509 ABD_SCATTER(abd_zero_scatter
).abd_nents
= nr_pages
;
510 abd_zero_scatter
->abd_size
= SPA_MAXBLOCKSIZE
;
511 abd_zero_scatter
->abd_flags
|= ABD_FLAG_MULTI_CHUNK
;
513 abd_for_each_sg(abd_zero_scatter
, sg
, nr_pages
, i
) {
514 sg_set_page(sg
, abd_zero_page
, PAGESIZE
, 0);
517 ABDSTAT_BUMP(abdstat_scatter_cnt
);
518 ABDSTAT_INCR(abdstat_scatter_data_size
, PAGESIZE
);
519 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk
);
523 abd_size_alloc_linear(size_t size
)
525 return (!zfs_abd_scatter_enabled
|| size
< zfs_abd_scatter_min_size
);
529 abd_update_scatter_stats(abd_t
*abd
, abd_stats_op_t op
)
531 ASSERT(op
== ABDSTAT_INCR
|| op
== ABDSTAT_DECR
);
532 int waste
= P2ROUNDUP(abd
->abd_size
, PAGESIZE
) - abd
->abd_size
;
533 if (op
== ABDSTAT_INCR
) {
534 ABDSTAT_BUMP(abdstat_scatter_cnt
);
535 ABDSTAT_INCR(abdstat_scatter_data_size
, abd
->abd_size
);
536 ABDSTAT_INCR(abdstat_scatter_chunk_waste
, waste
);
537 arc_space_consume(waste
, ARC_SPACE_ABD_CHUNK_WASTE
);
539 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt
);
540 ABDSTAT_INCR(abdstat_scatter_data_size
, -(int)abd
->abd_size
);
541 ABDSTAT_INCR(abdstat_scatter_chunk_waste
, -waste
);
542 arc_space_return(waste
, ARC_SPACE_ABD_CHUNK_WASTE
);
547 abd_update_linear_stats(abd_t
*abd
, abd_stats_op_t op
)
549 ASSERT(op
== ABDSTAT_INCR
|| op
== ABDSTAT_DECR
);
550 if (op
== ABDSTAT_INCR
) {
551 ABDSTAT_BUMP(abdstat_linear_cnt
);
552 ABDSTAT_INCR(abdstat_linear_data_size
, abd
->abd_size
);
554 ABDSTAT_BUMPDOWN(abdstat_linear_cnt
);
555 ABDSTAT_INCR(abdstat_linear_data_size
, -(int)abd
->abd_size
);
560 abd_verify_scatter(abd_t
*abd
)
562 ASSERT3U(ABD_SCATTER(abd
).abd_nents
, >, 0);
563 ASSERT3U(ABD_SCATTER(abd
).abd_offset
, <,
564 ABD_SCATTER(abd
).abd_sgl
->length
);
567 struct scatterlist
*sg
= NULL
;
568 size_t n
= ABD_SCATTER(abd
).abd_nents
;
571 abd_for_each_sg(abd
, sg
, n
, i
) {
572 ASSERT3P(sg_page(sg
), !=, NULL
);
578 abd_free_zero_scatter(void)
580 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt
);
581 ABDSTAT_INCR(abdstat_scatter_data_size
, -(int)PAGESIZE
);
582 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk
);
584 abd_free_sg_table(abd_zero_scatter
);
585 abd_free_struct(abd_zero_scatter
);
586 abd_zero_scatter
= NULL
;
587 ASSERT3P(abd_zero_page
, !=, NULL
);
588 #if defined(HAVE_ZERO_PAGE_GPL_ONLY)
589 abd_unmark_zfs_page(abd_zero_page
);
590 __free_page(abd_zero_page
);
591 #endif /* HAVE_ZERO_PAGE_GPL_ONLY */
595 abd_kstats_update(kstat_t
*ksp
, int rw
)
597 abd_stats_t
*as
= ksp
->ks_data
;
599 if (rw
== KSTAT_WRITE
)
601 as
->abdstat_struct_size
.value
.ui64
=
602 wmsum_value(&abd_sums
.abdstat_struct_size
);
603 as
->abdstat_linear_cnt
.value
.ui64
=
604 wmsum_value(&abd_sums
.abdstat_linear_cnt
);
605 as
->abdstat_linear_data_size
.value
.ui64
=
606 wmsum_value(&abd_sums
.abdstat_linear_data_size
);
607 as
->abdstat_scatter_cnt
.value
.ui64
=
608 wmsum_value(&abd_sums
.abdstat_scatter_cnt
);
609 as
->abdstat_scatter_data_size
.value
.ui64
=
610 wmsum_value(&abd_sums
.abdstat_scatter_data_size
);
611 as
->abdstat_scatter_chunk_waste
.value
.ui64
=
612 wmsum_value(&abd_sums
.abdstat_scatter_chunk_waste
);
613 for (int i
= 0; i
< ABD_MAX_ORDER
; i
++) {
614 as
->abdstat_scatter_orders
[i
].value
.ui64
=
615 wmsum_value(&abd_sums
.abdstat_scatter_orders
[i
]);
617 as
->abdstat_scatter_page_multi_chunk
.value
.ui64
=
618 wmsum_value(&abd_sums
.abdstat_scatter_page_multi_chunk
);
619 as
->abdstat_scatter_page_multi_zone
.value
.ui64
=
620 wmsum_value(&abd_sums
.abdstat_scatter_page_multi_zone
);
621 as
->abdstat_scatter_page_alloc_retry
.value
.ui64
=
622 wmsum_value(&abd_sums
.abdstat_scatter_page_alloc_retry
);
623 as
->abdstat_scatter_sg_table_retry
.value
.ui64
=
624 wmsum_value(&abd_sums
.abdstat_scatter_sg_table_retry
);
633 abd_cache
= kmem_cache_create("abd_t", sizeof (abd_t
),
634 0, NULL
, NULL
, NULL
, NULL
, NULL
, KMC_RECLAIMABLE
);
636 wmsum_init(&abd_sums
.abdstat_struct_size
, 0);
637 wmsum_init(&abd_sums
.abdstat_linear_cnt
, 0);
638 wmsum_init(&abd_sums
.abdstat_linear_data_size
, 0);
639 wmsum_init(&abd_sums
.abdstat_scatter_cnt
, 0);
640 wmsum_init(&abd_sums
.abdstat_scatter_data_size
, 0);
641 wmsum_init(&abd_sums
.abdstat_scatter_chunk_waste
, 0);
642 for (i
= 0; i
< ABD_MAX_ORDER
; i
++)
643 wmsum_init(&abd_sums
.abdstat_scatter_orders
[i
], 0);
644 wmsum_init(&abd_sums
.abdstat_scatter_page_multi_chunk
, 0);
645 wmsum_init(&abd_sums
.abdstat_scatter_page_multi_zone
, 0);
646 wmsum_init(&abd_sums
.abdstat_scatter_page_alloc_retry
, 0);
647 wmsum_init(&abd_sums
.abdstat_scatter_sg_table_retry
, 0);
649 abd_ksp
= kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED
,
650 sizeof (abd_stats
) / sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
651 if (abd_ksp
!= NULL
) {
652 for (i
= 0; i
< ABD_MAX_ORDER
; i
++) {
653 snprintf(abd_stats
.abdstat_scatter_orders
[i
].name
,
654 KSTAT_STRLEN
, "scatter_order_%d", i
);
655 abd_stats
.abdstat_scatter_orders
[i
].data_type
=
658 abd_ksp
->ks_data
= &abd_stats
;
659 abd_ksp
->ks_update
= abd_kstats_update
;
660 kstat_install(abd_ksp
);
663 abd_alloc_zero_scatter();
669 abd_free_zero_scatter();
671 if (abd_ksp
!= NULL
) {
672 kstat_delete(abd_ksp
);
676 wmsum_fini(&abd_sums
.abdstat_struct_size
);
677 wmsum_fini(&abd_sums
.abdstat_linear_cnt
);
678 wmsum_fini(&abd_sums
.abdstat_linear_data_size
);
679 wmsum_fini(&abd_sums
.abdstat_scatter_cnt
);
680 wmsum_fini(&abd_sums
.abdstat_scatter_data_size
);
681 wmsum_fini(&abd_sums
.abdstat_scatter_chunk_waste
);
682 for (int i
= 0; i
< ABD_MAX_ORDER
; i
++)
683 wmsum_fini(&abd_sums
.abdstat_scatter_orders
[i
]);
684 wmsum_fini(&abd_sums
.abdstat_scatter_page_multi_chunk
);
685 wmsum_fini(&abd_sums
.abdstat_scatter_page_multi_zone
);
686 wmsum_fini(&abd_sums
.abdstat_scatter_page_alloc_retry
);
687 wmsum_fini(&abd_sums
.abdstat_scatter_sg_table_retry
);
690 kmem_cache_destroy(abd_cache
);
696 abd_free_linear_page(abd_t
*abd
)
698 /* Transform it back into a scatter ABD for freeing */
699 struct scatterlist
*sg
= abd
->abd_u
.abd_linear
.abd_sgl
;
701 /* When backed by user page unmap it */
702 if (abd_is_from_pages(abd
))
703 zfs_kunmap(sg_page(sg
));
705 abd_update_scatter_stats(abd
, ABDSTAT_DECR
);
707 abd
->abd_flags
&= ~ABD_FLAG_LINEAR
;
708 abd
->abd_flags
&= ~ABD_FLAG_LINEAR_PAGE
;
709 ABD_SCATTER(abd
).abd_nents
= 1;
710 ABD_SCATTER(abd
).abd_offset
= 0;
711 ABD_SCATTER(abd
).abd_sgl
= sg
;
712 abd_free_chunks(abd
);
716 * Allocate a scatter ABD structure from user pages. The pages must be
717 * pinned with get_user_pages, or similiar, but need not be mapped via
718 * the kmap interfaces.
721 abd_alloc_from_pages(struct page
**pages
, unsigned long offset
, uint64_t size
)
723 uint_t npages
= DIV_ROUND_UP(size
, PAGE_SIZE
);
724 struct sg_table table
;
726 VERIFY3U(size
, <=, DMU_MAX_ACCESS
);
727 ASSERT3U(offset
, <, PAGE_SIZE
);
728 ASSERT3P(pages
, !=, NULL
);
731 * Even if this buf is filesystem metadata, we only track that we
732 * own the underlying data buffer, which is not true in this case.
733 * Therefore, we don't ever use ABD_FLAG_META here.
735 abd_t
*abd
= abd_alloc_struct(0);
736 abd
->abd_flags
|= ABD_FLAG_FROM_PAGES
| ABD_FLAG_OWNER
;
737 abd
->abd_size
= size
;
739 while (sg_alloc_table_from_pages(&table
, pages
, npages
, offset
,
740 size
, __GFP_NOWARN
| GFP_NOIO
) != 0) {
741 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry
);
742 schedule_timeout_interruptible(1);
745 if ((offset
+ size
) <= PAGE_SIZE
) {
747 * Since there is only one entry, this ABD can be represented
748 * as a linear buffer. All single-page (4K) ABD's constructed
749 * from a user page can be represented this way as long as the
750 * page is mapped to a virtual address. This allows us to
751 * apply an offset in to the mapped page.
753 * Note that kmap() must be used, not kmap_atomic(), because
754 * the mapping needs to bet set up on all CPUs. Using kmap()
755 * also enables the user of highmem pages when required.
757 abd
->abd_flags
|= ABD_FLAG_LINEAR
| ABD_FLAG_LINEAR_PAGE
;
758 abd
->abd_u
.abd_linear
.abd_sgl
= table
.sgl
;
759 zfs_kmap(sg_page(table
.sgl
));
760 ABD_LINEAR_BUF(abd
) = sg_virt(table
.sgl
);
762 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk
);
763 abd
->abd_flags
|= ABD_FLAG_MULTI_CHUNK
;
765 ABD_SCATTER(abd
).abd_offset
= offset
;
766 ABD_SCATTER(abd
).abd_sgl
= table
.sgl
;
767 ABD_SCATTER(abd
).abd_nents
= table
.nents
;
769 ASSERT0(ABD_SCATTER(abd
).abd_offset
);
776 * If we're going to use this ABD for doing I/O using the block layer, the
777 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
778 * plan to store this ABD in memory for a long period of time, we should
779 * allocate the ABD type that requires the least data copying to do the I/O.
781 * On Linux the optimal thing to do would be to use abd_get_offset() and
782 * construct a new ABD which shares the original pages thereby eliminating
783 * the copy. But for the moment a new linear ABD is allocated until this
784 * performance optimization can be implemented.
787 abd_alloc_for_io(size_t size
, boolean_t is_metadata
)
789 return (abd_alloc(size
, is_metadata
));
793 abd_get_offset_scatter(abd_t
*abd
, abd_t
*sabd
, size_t off
,
798 struct scatterlist
*sg
= NULL
;
801 ASSERT3U(off
, <=, sabd
->abd_size
);
803 size_t new_offset
= ABD_SCATTER(sabd
).abd_offset
+ off
;
806 abd
= abd_alloc_struct(0);
809 * Even if this buf is filesystem metadata, we only track that
810 * if we own the underlying data buffer, which is not true in
811 * this case. Therefore, we don't ever use ABD_FLAG_META here.
814 abd_for_each_sg(sabd
, sg
, ABD_SCATTER(sabd
).abd_nents
, i
) {
815 if (new_offset
< sg
->length
)
817 new_offset
-= sg
->length
;
820 ABD_SCATTER(abd
).abd_sgl
= sg
;
821 ABD_SCATTER(abd
).abd_offset
= new_offset
;
822 ABD_SCATTER(abd
).abd_nents
= ABD_SCATTER(sabd
).abd_nents
- i
;
824 if (abd_is_from_pages(sabd
))
825 abd
->abd_flags
|= ABD_FLAG_FROM_PAGES
;
831 * Initialize the abd_iter.
834 abd_iter_init(struct abd_iter
*aiter
, abd_t
*abd
)
836 ASSERT(!abd_is_gang(abd
));
838 memset(aiter
, 0, sizeof (struct abd_iter
));
839 aiter
->iter_abd
= abd
;
840 if (!abd_is_linear(abd
)) {
841 aiter
->iter_offset
= ABD_SCATTER(abd
).abd_offset
;
842 aiter
->iter_sg
= ABD_SCATTER(abd
).abd_sgl
;
847 * This is just a helper function to see if we have exhausted the
848 * abd_iter and reached the end.
851 abd_iter_at_end(struct abd_iter
*aiter
)
853 ASSERT3U(aiter
->iter_pos
, <=, aiter
->iter_abd
->abd_size
);
854 return (aiter
->iter_pos
== aiter
->iter_abd
->abd_size
);
858 * Advance the iterator by a certain amount. Cannot be called when a chunk is
859 * in use. This can be safely called when the aiter has already exhausted, in
860 * which case this does nothing.
863 abd_iter_advance(struct abd_iter
*aiter
, size_t amount
)
866 * Ensure that last chunk is not in use. abd_iterate_*() must clear
867 * this state (directly or abd_iter_unmap()) before advancing.
869 ASSERT3P(aiter
->iter_mapaddr
, ==, NULL
);
870 ASSERT0(aiter
->iter_mapsize
);
871 ASSERT3P(aiter
->iter_page
, ==, NULL
);
872 ASSERT0(aiter
->iter_page_doff
);
873 ASSERT0(aiter
->iter_page_dsize
);
875 /* There's nothing left to advance to, so do nothing */
876 if (abd_iter_at_end(aiter
))
879 aiter
->iter_pos
+= amount
;
880 aiter
->iter_offset
+= amount
;
881 if (!abd_is_linear(aiter
->iter_abd
)) {
882 while (aiter
->iter_offset
>= aiter
->iter_sg
->length
) {
883 aiter
->iter_offset
-= aiter
->iter_sg
->length
;
884 aiter
->iter_sg
= sg_next(aiter
->iter_sg
);
885 if (aiter
->iter_sg
== NULL
) {
886 ASSERT0(aiter
->iter_offset
);
894 * Map the current chunk into aiter. This can be safely called when the aiter
895 * has already exhausted, in which case this does nothing.
898 abd_iter_map(struct abd_iter
*aiter
)
903 ASSERT3P(aiter
->iter_mapaddr
, ==, NULL
);
904 ASSERT0(aiter
->iter_mapsize
);
906 /* There's nothing left to iterate over, so do nothing */
907 if (abd_iter_at_end(aiter
))
910 if (abd_is_linear(aiter
->iter_abd
)) {
911 ASSERT3U(aiter
->iter_pos
, ==, aiter
->iter_offset
);
912 offset
= aiter
->iter_offset
;
913 aiter
->iter_mapsize
= aiter
->iter_abd
->abd_size
- offset
;
914 paddr
= ABD_LINEAR_BUF(aiter
->iter_abd
);
916 offset
= aiter
->iter_offset
;
917 aiter
->iter_mapsize
= MIN(aiter
->iter_sg
->length
- offset
,
918 aiter
->iter_abd
->abd_size
- aiter
->iter_pos
);
920 paddr
= zfs_kmap_local(sg_page(aiter
->iter_sg
));
923 aiter
->iter_mapaddr
= (char *)paddr
+ offset
;
927 * Unmap the current chunk from aiter. This can be safely called when the aiter
928 * has already exhausted, in which case this does nothing.
931 abd_iter_unmap(struct abd_iter
*aiter
)
933 /* There's nothing left to unmap, so do nothing */
934 if (abd_iter_at_end(aiter
))
937 if (!abd_is_linear(aiter
->iter_abd
)) {
938 /* LINTED E_FUNC_SET_NOT_USED */
939 zfs_kunmap_local(aiter
->iter_mapaddr
- aiter
->iter_offset
);
942 ASSERT3P(aiter
->iter_mapaddr
, !=, NULL
);
943 ASSERT3U(aiter
->iter_mapsize
, >, 0);
945 aiter
->iter_mapaddr
= NULL
;
946 aiter
->iter_mapsize
= 0;
950 abd_cache_reap_now(void)
955 * Borrow a raw buffer from an ABD without copying the contents of the ABD
956 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
957 * whose contents are undefined. To copy over the existing data in the ABD, use
958 * abd_borrow_buf_copy() instead.
961 abd_borrow_buf(abd_t
*abd
, size_t n
)
965 ASSERT3U(abd
->abd_size
, >=, 0);
967 * In the event the ABD is composed of a single user page from Direct
968 * I/O we can not direclty return the raw buffer. This is a consequence
969 * of not being able to write protect the page and the contents of the
970 * page can be changed at any time by the user.
972 if (abd_is_from_pages(abd
)) {
973 buf
= zio_buf_alloc(n
);
974 } else if (abd_is_linear(abd
)) {
975 buf
= abd_to_buf(abd
);
977 buf
= zio_buf_alloc(n
);
981 (void) zfs_refcount_add_many(&abd
->abd_children
, n
, buf
);
987 abd_borrow_buf_copy(abd_t
*abd
, size_t n
)
989 void *buf
= abd_borrow_buf(abd
, n
);
992 * In the event the ABD is composed of a single user page from Direct
993 * I/O we must make sure copy the data over into the newly allocated
994 * buffer. This is a consequence of the fact that we can not write
995 * protect the user page and there is a risk the contents of the page
996 * could be changed by the user at any moment.
998 if (!abd_is_linear(abd
) || abd_is_from_pages(abd
)) {
999 abd_copy_to_buf(buf
, abd
, n
);
1005 * Return a borrowed raw buffer to an ABD. If the ABD is scatterd, this will
1006 * not change the contents of the ABD. If you want any changes you made to
1007 * buf to be copied back to abd, use abd_return_buf_copy() instead. If the
1008 * ABD is not constructed from user pages for Direct I/O then an ASSERT
1009 * checks to make sure the contents of buffer have not changed since it was
1010 * borrowed. We can not ASSERT that the contents of the buffer have not changed
1011 * if it is composed of user pages because the pages can not be placed under
1012 * write protection and the user could have possibly changed the contents in
1013 * the pages at any time. This is also an issue for Direct I/O reads. Checksum
1014 * verifications in the ZIO pipeline check for this issue and handle it by
1015 * returning an error on checksum verification failure.
1018 abd_return_buf(abd_t
*abd
, void *buf
, size_t n
)
1021 ASSERT3U(abd
->abd_size
, >=, n
);
1023 (void) zfs_refcount_remove_many(&abd
->abd_children
, n
, buf
);
1025 if (abd_is_from_pages(abd
)) {
1026 zio_buf_free(buf
, n
);
1027 } else if (abd_is_linear(abd
)) {
1028 ASSERT3P(buf
, ==, abd_to_buf(abd
));
1029 } else if (abd_is_gang(abd
)) {
1032 * We have to be careful with gang ABD's that we do not ASSERT0
1033 * for any ABD's that contain user pages from Direct I/O. In
1034 * order to handle this, we just iterate through the gang ABD
1035 * and only verify ABDs that are not from user pages.
1037 void *cmp_buf
= buf
;
1039 for (abd_t
*cabd
= list_head(&ABD_GANG(abd
).abd_gang_chain
);
1041 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
)) {
1042 if (!abd_is_from_pages(cabd
)) {
1043 ASSERT0(abd_cmp_buf(cabd
, cmp_buf
,
1046 cmp_buf
= (char *)cmp_buf
+ cabd
->abd_size
;
1049 zio_buf_free(buf
, n
);
1051 ASSERT0(abd_cmp_buf(abd
, buf
, n
));
1052 zio_buf_free(buf
, n
);
1057 abd_return_buf_copy(abd_t
*abd
, void *buf
, size_t n
)
1059 if (!abd_is_linear(abd
) || abd_is_from_pages(abd
)) {
1060 abd_copy_from_buf(abd
, buf
, n
);
1062 abd_return_buf(abd
, buf
, n
);
1066 * This is abd_iter_page(), the function underneath abd_iterate_page_func().
1067 * It yields the next page struct and data offset and size within it, without
1068 * mapping it into the address space.
1072 * "Compound pages" are a group of pages that can be referenced from a single
1073 * struct page *. Its organised as a "head" page, followed by a series of
1076 * In OpenZFS, compound pages are allocated using the __GFP_COMP flag, which we
1077 * get from scatter ABDs and SPL vmalloc slabs (ie >16K allocations). So a
1078 * great many of the IO buffers we get are going to be of this type.
1080 * The tail pages are just regular PAGESIZE pages, and can be safely used
1081 * as-is. However, the head page has length covering itself and all the tail
1082 * pages. If the ABD chunk spans multiple pages, then we can use the head page
1083 * and a >PAGESIZE length, which is far more efficient.
1085 * Before kernel 4.5 however, compound page heads were refcounted separately
1086 * from tail pages, such that moving back to the head page would require us to
1087 * take a reference to it and releasing it once we're completely finished with
1088 * it. In practice, that meant when our caller is done with the ABD, which we
1089 * have no insight into from here. Rather than contort this API to track head
1090 * page references on such ancient kernels, we disabled this special compound
1091 * page handling on kernels before 4.5, instead just using treating each page
1092 * within it as a regular PAGESIZE page (which it is). This is slightly less
1093 * efficient, but makes everything far simpler.
1095 * We no longer support kernels before 4.5, so in theory none of this is
1096 * necessary. However, this code is still relatively new in the grand scheme of
1097 * things, so I'm leaving the ability to compile this out for the moment.
1099 * Setting/clearing ABD_ITER_COMPOUND_PAGES below enables/disables the special
1100 * handling, by defining the ABD_ITER_PAGE_SIZE(page) macro to understand
1101 * compound pages, or not, and compiling in/out the support to detect compound
1102 * tail pages and move back to the start.
1106 #define ABD_ITER_COMPOUND_PAGES
1108 #ifdef ABD_ITER_COMPOUND_PAGES
1109 #define ABD_ITER_PAGE_SIZE(page) \
1110 (PageCompound(page) ? page_size(page) : PAGESIZE)
1112 #define ABD_ITER_PAGE_SIZE(page) (PAGESIZE)
1116 abd_iter_page(struct abd_iter
*aiter
)
1118 if (abd_iter_at_end(aiter
)) {
1119 aiter
->iter_page
= NULL
;
1120 aiter
->iter_page_doff
= 0;
1121 aiter
->iter_page_dsize
= 0;
1129 * Find the page, and the start of the data within it. This is computed
1130 * differently for linear and scatter ABDs; linear is referenced by
1131 * virtual memory location, while scatter is referenced by page
1134 if (abd_is_linear(aiter
->iter_abd
)) {
1135 ASSERT3U(aiter
->iter_pos
, ==, aiter
->iter_offset
);
1137 /* memory address at iter_pos */
1138 void *paddr
= ABD_LINEAR_BUF(aiter
->iter_abd
) + aiter
->iter_pos
;
1140 /* struct page for address */
1141 page
= is_vmalloc_addr(paddr
) ?
1142 vmalloc_to_page(paddr
) : virt_to_page(paddr
);
1144 /* offset of address within the page */
1145 doff
= offset_in_page(paddr
);
1147 ASSERT(!abd_is_gang(aiter
->iter_abd
));
1149 /* current scatter page */
1150 page
= nth_page(sg_page(aiter
->iter_sg
),
1151 aiter
->iter_offset
>> PAGE_SHIFT
);
1153 /* position within page */
1154 doff
= aiter
->iter_offset
& (PAGESIZE
- 1);
1157 #ifdef ABD_ITER_COMPOUND_PAGES
1158 if (PageTail(page
)) {
1160 * If this is a compound tail page, move back to the head, and
1161 * adjust the offset to match. This may let us yield a much
1162 * larger amount of data from a single logical page, and so
1163 * leave our caller with fewer pages to process.
1165 struct page
*head
= compound_head(page
);
1166 doff
+= ((page
- head
) * PAGESIZE
);
1174 * Compute the maximum amount of data we can take from this page. This
1175 * is the smaller of:
1176 * - the remaining space in the page
1177 * - the remaining space in this scatterlist entry (which may not cover
1179 * - the remaining space in the abd (which may not cover the entire
1180 * scatterlist entry)
1182 dsize
= MIN(ABD_ITER_PAGE_SIZE(page
) - doff
,
1183 aiter
->iter_abd
->abd_size
- aiter
->iter_pos
);
1184 if (!abd_is_linear(aiter
->iter_abd
))
1185 dsize
= MIN(dsize
, aiter
->iter_sg
->length
- aiter
->iter_offset
);
1186 ASSERT3U(dsize
, >, 0);
1188 /* final iterator outputs */
1189 aiter
->iter_page
= page
;
1190 aiter
->iter_page_doff
= doff
;
1191 aiter
->iter_page_dsize
= dsize
;
1195 * Note: ABD BIO functions only needed to support vdev_classic. See comments in
1200 * bio_nr_pages for ABD.
1201 * @off is the offset in @abd
1204 abd_nr_pages_off(abd_t
*abd
, unsigned int size
, size_t off
)
1208 if (abd_is_gang(abd
)) {
1209 unsigned long count
= 0;
1211 for (abd_t
*cabd
= abd_gang_get_offset(abd
, &off
);
1212 cabd
!= NULL
&& size
!= 0;
1213 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
)) {
1214 ASSERT3U(off
, <, cabd
->abd_size
);
1215 int mysize
= MIN(size
, cabd
->abd_size
- off
);
1216 count
+= abd_nr_pages_off(cabd
, mysize
, off
);
1223 if (abd_is_linear(abd
))
1224 pos
= (unsigned long)abd_to_buf(abd
) + off
;
1226 pos
= ABD_SCATTER(abd
).abd_offset
+ off
;
1228 return (((pos
+ size
+ PAGESIZE
- 1) >> PAGE_SHIFT
) -
1229 (pos
>> PAGE_SHIFT
));
1233 bio_map(struct bio
*bio
, void *buf_ptr
, unsigned int bio_size
)
1235 unsigned int offset
, size
, i
;
1238 offset
= offset_in_page(buf_ptr
);
1239 for (i
= 0; i
< bio
->bi_max_vecs
; i
++) {
1240 size
= PAGE_SIZE
- offset
;
1245 if (size
> bio_size
)
1248 if (is_vmalloc_addr(buf_ptr
))
1249 page
= vmalloc_to_page(buf_ptr
);
1251 page
= virt_to_page(buf_ptr
);
1254 * Some network related block device uses tcp_sendpage, which
1255 * doesn't behave well when using 0-count page, this is a
1256 * safety net to catch them.
1258 ASSERT3S(page_count(page
), >, 0);
1260 if (bio_add_page(bio
, page
, size
, offset
) != size
)
1272 * bio_map for gang ABD.
1275 abd_gang_bio_map_off(struct bio
*bio
, abd_t
*abd
,
1276 unsigned int io_size
, size_t off
)
1278 ASSERT(abd_is_gang(abd
));
1280 for (abd_t
*cabd
= abd_gang_get_offset(abd
, &off
);
1282 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
)) {
1283 ASSERT3U(off
, <, cabd
->abd_size
);
1284 int size
= MIN(io_size
, cabd
->abd_size
- off
);
1285 int remainder
= abd_bio_map_off(bio
, cabd
, size
, off
);
1286 io_size
-= (size
- remainder
);
1287 if (io_size
== 0 || remainder
> 0)
1297 * @off is the offset in @abd
1298 * Remaining IO size is returned
1301 abd_bio_map_off(struct bio
*bio
, abd_t
*abd
,
1302 unsigned int io_size
, size_t off
)
1304 struct abd_iter aiter
;
1306 ASSERT3U(io_size
, <=, abd
->abd_size
- off
);
1307 if (abd_is_linear(abd
))
1308 return (bio_map(bio
, ((char *)abd_to_buf(abd
)) + off
, io_size
));
1310 ASSERT(!abd_is_linear(abd
));
1311 if (abd_is_gang(abd
))
1312 return (abd_gang_bio_map_off(bio
, abd
, io_size
, off
));
1314 abd_iter_init(&aiter
, abd
);
1315 abd_iter_advance(&aiter
, off
);
1317 for (int i
= 0; i
< bio
->bi_max_vecs
; i
++) {
1319 size_t len
, sgoff
, pgoff
;
1320 struct scatterlist
*sg
;
1326 sgoff
= aiter
.iter_offset
;
1327 pgoff
= sgoff
& (PAGESIZE
- 1);
1328 len
= MIN(io_size
, PAGESIZE
- pgoff
);
1331 pg
= nth_page(sg_page(sg
), sgoff
>> PAGE_SHIFT
);
1332 if (bio_add_page(bio
, pg
, len
, pgoff
) != len
)
1336 abd_iter_advance(&aiter
, len
);
1342 /* Tunable Parameters */
1343 module_param(zfs_abd_scatter_enabled
, int, 0644);
1344 MODULE_PARM_DESC(zfs_abd_scatter_enabled
,
1345 "Toggle whether ABD allocations must be linear.");
1346 module_param(zfs_abd_scatter_min_size
, int, 0644);
1347 MODULE_PARM_DESC(zfs_abd_scatter_min_size
,
1348 "Minimum size of scatter allocations.");
1350 module_param(zfs_abd_scatter_max_order
, uint
, 0644);
1351 MODULE_PARM_DESC(zfs_abd_scatter_max_order
,
1352 "Maximum order allocation used for a scatter ABD.");