4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28 * Copyright (c) 2015, 2017, Intel Corporation.
29 * Copyright (c) 2020 Datto Inc.
30 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
34 * Copyright (c) 2021 Allan Jude
35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36 * Copyright (c) 2023, 2024, Klara Inc.
37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
48 #include <sys/spa_impl.h>
51 #include <sys/zap_impl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/zfs_znode.h>
54 #include <sys/zfs_sa.h>
56 #include <sys/sa_impl.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_dataset.h>
63 #include <sys/dsl_pool.h>
64 #include <sys/dsl_bookmark.h>
67 #include <sys/zil_impl.h>
69 #include <sys/resource.h>
70 #include <sys/dmu_send.h>
71 #include <sys/dmu_traverse.h>
72 #include <sys/zio_checksum.h>
73 #include <sys/zio_compress.h>
74 #include <sys/zfs_fuid.h>
76 #include <sys/arc_impl.h>
78 #include <sys/ddt_impl.h>
79 #include <sys/zfeature.h>
81 #include <sys/blkptr.h>
82 #include <sys/dsl_crypt.h>
83 #include <sys/dsl_scan.h>
84 #include <sys/btree.h>
86 #include <sys/brt_impl.h>
87 #include <zfs_comutil.h>
88 #include <sys/zstd/zstd.h>
89 #include <sys/backtrace.h>
91 #include <libnvpair.h>
93 #include <libzfs_core.h>
100 extern int reference_tracking_enable
;
101 extern int zfs_recover
;
102 extern uint_t zfs_vdev_async_read_max_active
;
103 extern boolean_t spa_load_verify_dryrun
;
104 extern boolean_t spa_mode_readable_spacemaps
;
105 extern uint_t zfs_reconstruct_indirect_combinations_max
;
106 extern uint_t zfs_btree_verify_intensity
;
108 static const char cmdname
[] = "zdb";
109 uint8_t dump_opt
[256];
111 typedef void object_viewer_t(objset_t
*, uint64_t, void *data
, size_t size
);
113 static uint64_t *zopt_metaslab
= NULL
;
114 static unsigned zopt_metaslab_args
= 0;
117 static zopt_object_range_t
*zopt_object_ranges
= NULL
;
118 static unsigned zopt_object_args
= 0;
120 static int flagbits
[256];
123 static uint64_t max_inflight_bytes
= 256 * 1024 * 1024; /* 256MB */
124 static int leaked_objects
= 0;
125 static range_tree_t
*mos_refd_objs
;
128 static boolean_t kernel_init_done
;
130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t
*,
132 static void mos_obj_refd(uint64_t);
133 static void mos_obj_refd_multiple(uint64_t);
134 static int dump_bpobj_cb(void *arg
, const blkptr_t
*bp
, boolean_t free
,
139 static void zdb_print_blkptr(const blkptr_t
*bp
, int flags
);
140 static void zdb_exit(int reason
);
142 typedef struct sublivelist_verify_block_refcnt
{
143 /* block pointer entry in livelist being verified */
147 * Refcount gets incremented to 1 when we encounter the first
148 * FREE entry for the svfbr block pointer and a node for it
149 * is created in our ZDB verification/tracking metadata.
151 * As we encounter more FREE entries we increment this counter
152 * and similarly decrement it whenever we find the respective
153 * ALLOC entries for this block.
155 * When the refcount gets to 0 it means that all the FREE and
156 * ALLOC entries of this block have paired up and we no longer
157 * need to track it in our verification logic (e.g. the node
158 * containing this struct in our verification data structure
161 * [refer to sublivelist_verify_blkptr() for the actual code]
163 uint32_t svbr_refcnt
;
164 } sublivelist_verify_block_refcnt_t
;
167 sublivelist_block_refcnt_compare(const void *larg
, const void *rarg
)
169 const sublivelist_verify_block_refcnt_t
*l
= larg
;
170 const sublivelist_verify_block_refcnt_t
*r
= rarg
;
171 return (livelist_compare(&l
->svbr_blk
, &r
->svbr_blk
));
175 sublivelist_verify_blkptr(void *arg
, const blkptr_t
*bp
, boolean_t free
,
178 ASSERT3P(tx
, ==, NULL
);
179 struct sublivelist_verify
*sv
= arg
;
180 sublivelist_verify_block_refcnt_t current
= {
184 * Start with 1 in case this is the first free entry.
185 * This field is not used for our B-Tree comparisons
191 zfs_btree_index_t where
;
192 sublivelist_verify_block_refcnt_t
*pair
=
193 zfs_btree_find(&sv
->sv_pair
, ¤t
, &where
);
196 /* first free entry for this block pointer */
197 zfs_btree_add(&sv
->sv_pair
, ¤t
);
203 /* block that is currently marked as allocated */
204 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
205 if (DVA_IS_EMPTY(&bp
->blk_dva
[i
]))
207 sublivelist_verify_block_t svb
= {
208 .svb_dva
= bp
->blk_dva
[i
],
210 BP_GET_LOGICAL_BIRTH(bp
)
213 if (zfs_btree_find(&sv
->sv_leftover
, &svb
,
215 zfs_btree_add_idx(&sv
->sv_leftover
,
220 /* alloc matches a free entry */
222 if (pair
->svbr_refcnt
== 0) {
223 /* all allocs and frees have been matched */
224 zfs_btree_remove_idx(&sv
->sv_pair
, &where
);
233 sublivelist_verify_func(void *args
, dsl_deadlist_entry_t
*dle
)
236 struct sublivelist_verify
*sv
= args
;
238 zfs_btree_create(&sv
->sv_pair
, sublivelist_block_refcnt_compare
, NULL
,
239 sizeof (sublivelist_verify_block_refcnt_t
));
241 err
= bpobj_iterate_nofree(&dle
->dle_bpobj
, sublivelist_verify_blkptr
,
244 sublivelist_verify_block_refcnt_t
*e
;
245 zfs_btree_index_t
*cookie
= NULL
;
246 while ((e
= zfs_btree_destroy_nodes(&sv
->sv_pair
, &cookie
)) != NULL
) {
247 char blkbuf
[BP_SPRINTF_LEN
];
248 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
),
249 &e
->svbr_blk
, B_TRUE
);
250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
251 e
->svbr_refcnt
, blkbuf
);
253 zfs_btree_destroy(&sv
->sv_pair
);
259 livelist_block_compare(const void *larg
, const void *rarg
)
261 const sublivelist_verify_block_t
*l
= larg
;
262 const sublivelist_verify_block_t
*r
= rarg
;
264 if (DVA_GET_VDEV(&l
->svb_dva
) < DVA_GET_VDEV(&r
->svb_dva
))
266 else if (DVA_GET_VDEV(&l
->svb_dva
) > DVA_GET_VDEV(&r
->svb_dva
))
269 if (DVA_GET_OFFSET(&l
->svb_dva
) < DVA_GET_OFFSET(&r
->svb_dva
))
271 else if (DVA_GET_OFFSET(&l
->svb_dva
) > DVA_GET_OFFSET(&r
->svb_dva
))
274 if (DVA_GET_ASIZE(&l
->svb_dva
) < DVA_GET_ASIZE(&r
->svb_dva
))
276 else if (DVA_GET_ASIZE(&l
->svb_dva
) > DVA_GET_ASIZE(&r
->svb_dva
))
283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
284 * sublivelist_verify_t: sv->sv_leftover
287 livelist_verify(dsl_deadlist_t
*dl
, void *arg
)
289 sublivelist_verify_t
*sv
= arg
;
290 dsl_deadlist_iterate(dl
, sublivelist_verify_func
, sv
);
294 * Check for errors in the livelist entry and discard the intermediary
298 sublivelist_verify_lightweight(void *args
, dsl_deadlist_entry_t
*dle
)
301 sublivelist_verify_t sv
;
302 zfs_btree_create(&sv
.sv_leftover
, livelist_block_compare
, NULL
,
303 sizeof (sublivelist_verify_block_t
));
304 int err
= sublivelist_verify_func(&sv
, dle
);
305 zfs_btree_clear(&sv
.sv_leftover
);
306 zfs_btree_destroy(&sv
.sv_leftover
);
310 typedef struct metaslab_verify
{
312 * Tree containing all the leftover ALLOCs from the livelists
313 * that are part of this metaslab.
315 zfs_btree_t mv_livelist_allocs
;
318 * Metaslab information.
326 * What's currently allocated for this metaslab.
328 range_tree_t
*mv_allocated
;
331 typedef void ll_iter_t(dsl_deadlist_t
*ll
, void *arg
);
333 typedef int (*zdb_log_sm_cb_t
)(spa_t
*spa
, space_map_entry_t
*sme
, uint64_t txg
,
336 typedef struct unflushed_iter_cb_arg
{
340 zdb_log_sm_cb_t uic_cb
;
341 } unflushed_iter_cb_arg_t
;
344 iterate_through_spacemap_logs_cb(space_map_entry_t
*sme
, void *arg
)
346 unflushed_iter_cb_arg_t
*uic
= arg
;
347 return (uic
->uic_cb(uic
->uic_spa
, sme
, uic
->uic_txg
, uic
->uic_arg
));
351 iterate_through_spacemap_logs(spa_t
*spa
, zdb_log_sm_cb_t cb
, void *arg
)
353 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
356 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
357 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
358 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
)) {
359 space_map_t
*sm
= NULL
;
360 VERIFY0(space_map_open(&sm
, spa_meta_objset(spa
),
361 sls
->sls_sm_obj
, 0, UINT64_MAX
, SPA_MINBLOCKSHIFT
));
363 unflushed_iter_cb_arg_t uic
= {
365 .uic_txg
= sls
->sls_txg
,
369 VERIFY0(space_map_iterate(sm
, space_map_length(sm
),
370 iterate_through_spacemap_logs_cb
, &uic
));
373 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
377 verify_livelist_allocs(metaslab_verify_t
*mv
, uint64_t txg
,
378 uint64_t offset
, uint64_t size
)
380 sublivelist_verify_block_t svb
= {{{0}}};
381 DVA_SET_VDEV(&svb
.svb_dva
, mv
->mv_vdid
);
382 DVA_SET_OFFSET(&svb
.svb_dva
, offset
);
383 DVA_SET_ASIZE(&svb
.svb_dva
, size
);
384 zfs_btree_index_t where
;
385 uint64_t end_offset
= offset
+ size
;
388 * Look for an exact match for spacemap entry in the livelist entries.
389 * Then, look for other livelist entries that fall within the range
390 * of the spacemap entry as it may have been condensed
392 sublivelist_verify_block_t
*found
=
393 zfs_btree_find(&mv
->mv_livelist_allocs
, &svb
, &where
);
395 found
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
);
397 for (; found
!= NULL
&& DVA_GET_VDEV(&found
->svb_dva
) == mv
->mv_vdid
&&
398 DVA_GET_OFFSET(&found
->svb_dva
) < end_offset
;
399 found
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
)) {
400 if (found
->svb_allocated_txg
<= txg
) {
401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
402 "from TXG %llx FREED at TXG %llx\n",
403 (u_longlong_t
)DVA_GET_OFFSET(&found
->svb_dva
),
404 (u_longlong_t
)DVA_GET_ASIZE(&found
->svb_dva
),
405 (u_longlong_t
)found
->svb_allocated_txg
,
412 metaslab_spacemap_validation_cb(space_map_entry_t
*sme
, void *arg
)
414 metaslab_verify_t
*mv
= arg
;
415 uint64_t offset
= sme
->sme_offset
;
416 uint64_t size
= sme
->sme_run
;
417 uint64_t txg
= sme
->sme_txg
;
419 if (sme
->sme_type
== SM_ALLOC
) {
420 if (range_tree_contains(mv
->mv_allocated
,
422 (void) printf("ERROR: DOUBLE ALLOC: "
424 "%llu:%llu LOG_SM\n",
425 (u_longlong_t
)txg
, (u_longlong_t
)offset
,
426 (u_longlong_t
)size
, (u_longlong_t
)mv
->mv_vdid
,
427 (u_longlong_t
)mv
->mv_msid
);
429 range_tree_add(mv
->mv_allocated
,
433 if (!range_tree_contains(mv
->mv_allocated
,
435 (void) printf("ERROR: DOUBLE FREE: "
437 "%llu:%llu LOG_SM\n",
438 (u_longlong_t
)txg
, (u_longlong_t
)offset
,
439 (u_longlong_t
)size
, (u_longlong_t
)mv
->mv_vdid
,
440 (u_longlong_t
)mv
->mv_msid
);
442 range_tree_remove(mv
->mv_allocated
,
447 if (sme
->sme_type
!= SM_ALLOC
) {
449 * If something is freed in the spacemap, verify that
450 * it is not listed as allocated in the livelist.
452 verify_livelist_allocs(mv
, txg
, offset
, size
);
458 spacemap_check_sm_log_cb(spa_t
*spa
, space_map_entry_t
*sme
,
459 uint64_t txg
, void *arg
)
461 metaslab_verify_t
*mv
= arg
;
462 uint64_t offset
= sme
->sme_offset
;
463 uint64_t vdev_id
= sme
->sme_vdev
;
465 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
467 /* skip indirect vdevs */
468 if (!vdev_is_concrete(vd
))
471 if (vdev_id
!= mv
->mv_vdid
)
474 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
475 if (ms
->ms_id
!= mv
->mv_msid
)
478 if (txg
< metaslab_unflushed_txg(ms
))
482 ASSERT3U(txg
, ==, sme
->sme_txg
);
483 return (metaslab_spacemap_validation_cb(sme
, mv
));
487 spacemap_check_sm_log(spa_t
*spa
, metaslab_verify_t
*mv
)
489 iterate_through_spacemap_logs(spa
, spacemap_check_sm_log_cb
, mv
);
493 spacemap_check_ms_sm(space_map_t
*sm
, metaslab_verify_t
*mv
)
498 VERIFY0(space_map_iterate(sm
, space_map_length(sm
),
499 metaslab_spacemap_validation_cb
, mv
));
502 static void iterate_deleted_livelists(spa_t
*spa
, ll_iter_t func
, void *arg
);
505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
506 * they are part of that metaslab (mv_msid).
509 mv_populate_livelist_allocs(metaslab_verify_t
*mv
, sublivelist_verify_t
*sv
)
511 zfs_btree_index_t where
;
512 sublivelist_verify_block_t
*svb
;
513 ASSERT3U(zfs_btree_numnodes(&mv
->mv_livelist_allocs
), ==, 0);
514 for (svb
= zfs_btree_first(&sv
->sv_leftover
, &where
);
516 svb
= zfs_btree_next(&sv
->sv_leftover
, &where
, &where
)) {
517 if (DVA_GET_VDEV(&svb
->svb_dva
) != mv
->mv_vdid
)
520 if (DVA_GET_OFFSET(&svb
->svb_dva
) < mv
->mv_start
&&
521 (DVA_GET_OFFSET(&svb
->svb_dva
) +
522 DVA_GET_ASIZE(&svb
->svb_dva
)) > mv
->mv_start
) {
523 (void) printf("ERROR: Found block that crosses "
524 "metaslab boundary: <%llu:%llx:%llx>\n",
525 (u_longlong_t
)DVA_GET_VDEV(&svb
->svb_dva
),
526 (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
527 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
));
531 if (DVA_GET_OFFSET(&svb
->svb_dva
) < mv
->mv_start
)
534 if (DVA_GET_OFFSET(&svb
->svb_dva
) >= mv
->mv_end
)
537 if ((DVA_GET_OFFSET(&svb
->svb_dva
) +
538 DVA_GET_ASIZE(&svb
->svb_dva
)) > mv
->mv_end
) {
539 (void) printf("ERROR: Found block that crosses "
540 "metaslab boundary: <%llu:%llx:%llx>\n",
541 (u_longlong_t
)DVA_GET_VDEV(&svb
->svb_dva
),
542 (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
543 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
));
547 zfs_btree_add(&mv
->mv_livelist_allocs
, svb
);
550 for (svb
= zfs_btree_first(&mv
->mv_livelist_allocs
, &where
);
552 svb
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
)) {
553 zfs_btree_remove(&sv
->sv_leftover
, svb
);
559 * Iterate through all the sublivelists and:
560 * - report leftover frees (**)
561 * - record leftover ALLOCs together with their TXG [see Cross Check]
563 * (**) Note: Double ALLOCs are valid in datasets that have dedup
564 * enabled. Similarly double FREEs are allowed as well but
565 * only if they pair up with a corresponding ALLOC entry once
566 * we our done with our sublivelist iteration.
570 * - iterate over spacemap and then the metaslab's entries in the
571 * spacemap log, then report any double FREEs and ALLOCs (do not
575 * After finishing the Livelist Check phase and while being in the
576 * Spacemap Check phase, we find all the recorded leftover ALLOCs
577 * of the livelist check that are part of the metaslab that we are
578 * currently looking at in the Spacemap Check. We report any entries
579 * that are marked as ALLOCs in the livelists but have been actually
580 * freed (and potentially allocated again) after their TXG stamp in
581 * the spacemaps. Also report any ALLOCs from the livelists that
582 * belong to indirect vdevs (e.g. their vdev completed removal).
584 * Note that this will miss Log Spacemap entries that cancelled each other
585 * out before being flushed to the metaslab, so we are not guaranteed
586 * to match all erroneous ALLOCs.
589 livelist_metaslab_validate(spa_t
*spa
)
591 (void) printf("Verifying deleted livelist entries\n");
593 sublivelist_verify_t sv
;
594 zfs_btree_create(&sv
.sv_leftover
, livelist_block_compare
, NULL
,
595 sizeof (sublivelist_verify_block_t
));
596 iterate_deleted_livelists(spa
, livelist_verify
, &sv
);
598 (void) printf("Verifying metaslab entries\n");
599 vdev_t
*rvd
= spa
->spa_root_vdev
;
600 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
601 vdev_t
*vd
= rvd
->vdev_child
[c
];
603 if (!vdev_is_concrete(vd
))
606 for (uint64_t mid
= 0; mid
< vd
->vdev_ms_count
; mid
++) {
607 metaslab_t
*m
= vd
->vdev_ms
[mid
];
609 (void) fprintf(stderr
,
610 "\rverifying concrete vdev %llu, "
611 "metaslab %llu of %llu ...",
612 (longlong_t
)vd
->vdev_id
,
614 (longlong_t
)vd
->vdev_ms_count
);
616 uint64_t shift
, start
;
617 range_seg_type_t type
=
618 metaslab_calculate_range_tree_type(vd
, m
,
620 metaslab_verify_t mv
;
621 mv
.mv_allocated
= range_tree_create(NULL
,
622 type
, NULL
, start
, shift
);
623 mv
.mv_vdid
= vd
->vdev_id
;
624 mv
.mv_msid
= m
->ms_id
;
625 mv
.mv_start
= m
->ms_start
;
626 mv
.mv_end
= m
->ms_start
+ m
->ms_size
;
627 zfs_btree_create(&mv
.mv_livelist_allocs
,
628 livelist_block_compare
, NULL
,
629 sizeof (sublivelist_verify_block_t
));
631 mv_populate_livelist_allocs(&mv
, &sv
);
633 spacemap_check_ms_sm(m
->ms_sm
, &mv
);
634 spacemap_check_sm_log(spa
, &mv
);
636 range_tree_vacate(mv
.mv_allocated
, NULL
, NULL
);
637 range_tree_destroy(mv
.mv_allocated
);
638 zfs_btree_clear(&mv
.mv_livelist_allocs
);
639 zfs_btree_destroy(&mv
.mv_livelist_allocs
);
642 (void) fprintf(stderr
, "\n");
645 * If there are any segments in the leftover tree after we walked
646 * through all the metaslabs in the concrete vdevs then this means
647 * that we have segments in the livelists that belong to indirect
648 * vdevs and are marked as allocated.
650 if (zfs_btree_numnodes(&sv
.sv_leftover
) == 0) {
651 zfs_btree_destroy(&sv
.sv_leftover
);
654 (void) printf("ERROR: Found livelist blocks marked as allocated "
655 "for indirect vdevs:\n");
657 zfs_btree_index_t
*where
= NULL
;
658 sublivelist_verify_block_t
*svb
;
659 while ((svb
= zfs_btree_destroy_nodes(&sv
.sv_leftover
, &where
)) !=
661 int vdev_id
= DVA_GET_VDEV(&svb
->svb_dva
);
662 ASSERT3U(vdev_id
, <, rvd
->vdev_children
);
663 vdev_t
*vd
= rvd
->vdev_child
[vdev_id
];
664 ASSERT(!vdev_is_concrete(vd
));
665 (void) printf("<%d:%llx:%llx> TXG %llx\n",
666 vdev_id
, (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
667 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
),
668 (u_longlong_t
)svb
->svb_allocated_txg
);
671 zfs_btree_destroy(&sv
.sv_leftover
);
675 * These libumem hooks provide a reasonable set of defaults for the allocator's
676 * debugging facilities.
679 _umem_debug_init(void)
681 return ("default,verbose"); /* $UMEM_DEBUG setting */
685 _umem_logging_init(void)
687 return ("fail,contents"); /* $UMEM_LOGGING setting */
693 (void) fprintf(stderr
,
694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
695 "[-I <inflight I/Os>]\n"
696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
704 "\t%s [-v] <bookmark>\n"
705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
706 "\t%s -l [-Aqu] <device>\n"
707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
709 "\t%s -O [-K <key>] <dataset> <path>\n"
710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
713 "\t%s -E [-A] word0:word1:...:word15\n"
714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
716 cmdname
, cmdname
, cmdname
, cmdname
, cmdname
, cmdname
, cmdname
,
717 cmdname
, cmdname
, cmdname
, cmdname
, cmdname
);
719 (void) fprintf(stderr
, " Dataset name must include at least one "
720 "separator character '/' or '@'\n");
721 (void) fprintf(stderr
, " If dataset name is specified, only that "
722 "dataset is dumped\n");
723 (void) fprintf(stderr
, " If object numbers or object number "
724 "ranges are specified, only those\n"
725 " objects or ranges are dumped.\n\n");
726 (void) fprintf(stderr
,
727 " Object ranges take the form <start>:<end>[:<flags>]\n"
728 " start Starting object number\n"
729 " end Ending object number, or -1 for no upper bound\n"
730 " flags Optional flags to select object types:\n"
731 " A All objects (this is the default)\n"
732 " d ZFS directories\n"
734 " m SPA space maps\n"
736 " - Negate effect of next flag\n\n");
737 (void) fprintf(stderr
, " Options to control amount of output:\n");
738 (void) fprintf(stderr
, " -b --block-stats "
739 "block statistics\n");
740 (void) fprintf(stderr
, " -B --backup "
742 (void) fprintf(stderr
, " -c --checksum "
743 "checksum all metadata (twice for all data) blocks\n");
744 (void) fprintf(stderr
, " -C --config "
745 "config (or cachefile if alone)\n");
746 (void) fprintf(stderr
, " -d --datasets "
748 (void) fprintf(stderr
, " -D --dedup-stats "
749 "dedup statistics\n");
750 (void) fprintf(stderr
, " -E --embedded-block-pointer=INTEGER\n"
751 " decode and display block "
752 "from an embedded block pointer\n");
753 (void) fprintf(stderr
, " -h --history "
755 (void) fprintf(stderr
, " -i --intent-logs "
757 (void) fprintf(stderr
, " -l --label "
758 "read label contents\n");
759 (void) fprintf(stderr
, " -k --checkpointed-state "
760 "examine the checkpointed state of the pool\n");
761 (void) fprintf(stderr
, " -L --disable-leak-tracking "
762 "disable leak tracking (do not load spacemaps)\n");
763 (void) fprintf(stderr
, " -m --metaslabs "
765 (void) fprintf(stderr
, " -M --metaslab-groups "
766 "metaslab groups\n");
767 (void) fprintf(stderr
, " -O --object-lookups "
768 "perform object lookups by path\n");
769 (void) fprintf(stderr
, " -r --copy-object "
770 "copy an object by path to file\n");
771 (void) fprintf(stderr
, " -R --read-block "
772 "read and display block from a device\n");
773 (void) fprintf(stderr
, " -s --io-stats "
774 "report stats on zdb's I/O\n");
775 (void) fprintf(stderr
, " -S --simulate-dedup "
776 "simulate dedup to measure effect\n");
777 (void) fprintf(stderr
, " -v --verbose "
778 "verbose (applies to all others)\n");
779 (void) fprintf(stderr
, " -y --livelist "
780 "perform livelist and metaslab validation on any livelists being "
782 (void) fprintf(stderr
, " Below options are intended for use "
783 "with other options:\n");
784 (void) fprintf(stderr
, " -A --ignore-assertions "
785 "ignore assertions (-A), enable panic recovery (-AA) or both "
787 (void) fprintf(stderr
, " -e --exported "
788 "pool is exported/destroyed/has altroot/not in a cachefile\n");
789 (void) fprintf(stderr
, " -F --automatic-rewind "
790 "attempt automatic rewind within safe range of transaction "
792 (void) fprintf(stderr
, " -G --dump-debug-msg "
793 "dump zfs_dbgmsg buffer before exiting\n");
794 (void) fprintf(stderr
, " -I --inflight=INTEGER "
795 "specify the maximum number of checksumming I/Os "
796 "[default is 200]\n");
797 (void) fprintf(stderr
, " -K --key=KEY "
798 "decryption key for encrypted dataset\n");
799 (void) fprintf(stderr
, " -o --option=\"OPTION=INTEGER\" "
800 "set global variable to an unsigned 32-bit integer\n");
801 (void) fprintf(stderr
, " -p --path==PATH "
802 "use one or more with -e to specify path to vdev dir\n");
803 (void) fprintf(stderr
, " -P --parseable "
804 "print numbers in parseable form\n");
805 (void) fprintf(stderr
, " -q --skip-label "
806 "don't print label contents\n");
807 (void) fprintf(stderr
, " -t --txg=INTEGER "
808 "highest txg to use when searching for uberblocks\n");
809 (void) fprintf(stderr
, " -T --brt-stats "
811 (void) fprintf(stderr
, " -u --uberblock "
813 (void) fprintf(stderr
, " -U --cachefile=PATH "
814 "use alternate cachefile\n");
815 (void) fprintf(stderr
, " -V --verbatim "
816 "do verbatim import\n");
817 (void) fprintf(stderr
, " -x --dump-blocks=PATH "
818 "dump all read blocks into specified directory\n");
819 (void) fprintf(stderr
, " -X --extreme-rewind "
820 "attempt extreme rewind (does not work with dataset)\n");
821 (void) fprintf(stderr
, " -Y --all-reconstruction "
822 "attempt all reconstruction combinations for split blocks\n");
823 (void) fprintf(stderr
, " -Z --zstd-headers "
824 "show ZSTD headers \n");
825 (void) fprintf(stderr
, "Specify an option more than once (e.g. -bb) "
826 "to make only that option verbose\n");
827 (void) fprintf(stderr
, "Default is to dump everything non-verbosely\n");
832 dump_debug_buffer(void)
834 ssize_t ret
__attribute__((unused
));
839 * We use write() instead of printf() so that this function
840 * is safe to call from a signal handler.
842 ret
= write(STDERR_FILENO
, "\n", 1);
843 zfs_dbgmsg_print(STDERR_FILENO
, "zdb");
846 static void sig_handler(int signo
)
848 struct sigaction action
;
850 libspl_backtrace(STDERR_FILENO
);
854 * Restore default action and re-raise signal so SIGSEGV and
855 * SIGABRT can trigger a core dump.
857 action
.sa_handler
= SIG_DFL
;
858 sigemptyset(&action
.sa_mask
);
860 (void) sigaction(signo
, &action
, NULL
);
865 * Called for usage errors that are discovered after a call to spa_open(),
866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
870 fatal(const char *fmt
, ...)
875 (void) fprintf(stderr
, "%s: ", cmdname
);
876 (void) vfprintf(stderr
, fmt
, ap
);
878 (void) fprintf(stderr
, "\n");
886 dump_packed_nvlist(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
890 size_t nvsize
= *(uint64_t *)data
;
891 char *packed
= umem_alloc(nvsize
, UMEM_NOFAIL
);
893 VERIFY(0 == dmu_read(os
, object
, 0, nvsize
, packed
, DMU_READ_PREFETCH
));
895 VERIFY(nvlist_unpack(packed
, nvsize
, &nv
, 0) == 0);
897 umem_free(packed
, nvsize
);
905 dump_history_offsets(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
907 (void) os
, (void) object
, (void) size
;
908 spa_history_phys_t
*shp
= data
;
913 (void) printf("\t\tpool_create_len = %llu\n",
914 (u_longlong_t
)shp
->sh_pool_create_len
);
915 (void) printf("\t\tphys_max_off = %llu\n",
916 (u_longlong_t
)shp
->sh_phys_max_off
);
917 (void) printf("\t\tbof = %llu\n",
918 (u_longlong_t
)shp
->sh_bof
);
919 (void) printf("\t\teof = %llu\n",
920 (u_longlong_t
)shp
->sh_eof
);
921 (void) printf("\t\trecords_lost = %llu\n",
922 (u_longlong_t
)shp
->sh_records_lost
);
926 zdb_nicenum(uint64_t num
, char *buf
, size_t buflen
)
929 (void) snprintf(buf
, buflen
, "%llu", (longlong_t
)num
);
931 nicenum(num
, buf
, buflen
);
935 zdb_nicebytes(uint64_t bytes
, char *buf
, size_t buflen
)
938 (void) snprintf(buf
, buflen
, "%llu", (longlong_t
)bytes
);
940 zfs_nicebytes(bytes
, buf
, buflen
);
943 static const char histo_stars
[] = "****************************************";
944 static const uint64_t histo_width
= sizeof (histo_stars
) - 1;
947 dump_histogram(const uint64_t *histo
, int size
, int offset
)
950 int minidx
= size
- 1;
954 for (i
= 0; i
< size
; i
++) {
965 if (max
< histo_width
)
968 for (i
= minidx
; i
<= maxidx
; i
++) {
969 (void) printf("\t\t\t%3u: %6llu %s\n",
970 i
+ offset
, (u_longlong_t
)histo
[i
],
971 &histo_stars
[(max
- histo
[i
]) * histo_width
/ max
]);
976 dump_zap_stats(objset_t
*os
, uint64_t object
)
981 error
= zap_get_stats(os
, object
, &zs
);
985 if (zs
.zs_ptrtbl_len
== 0) {
986 ASSERT(zs
.zs_num_blocks
== 1);
987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
988 (u_longlong_t
)zs
.zs_blocksize
,
989 (u_longlong_t
)zs
.zs_num_entries
);
993 (void) printf("\tFat ZAP stats:\n");
995 (void) printf("\t\tPointer table:\n");
996 (void) printf("\t\t\t%llu elements\n",
997 (u_longlong_t
)zs
.zs_ptrtbl_len
);
998 (void) printf("\t\t\tzt_blk: %llu\n",
999 (u_longlong_t
)zs
.zs_ptrtbl_zt_blk
);
1000 (void) printf("\t\t\tzt_numblks: %llu\n",
1001 (u_longlong_t
)zs
.zs_ptrtbl_zt_numblks
);
1002 (void) printf("\t\t\tzt_shift: %llu\n",
1003 (u_longlong_t
)zs
.zs_ptrtbl_zt_shift
);
1004 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1005 (u_longlong_t
)zs
.zs_ptrtbl_blks_copied
);
1006 (void) printf("\t\t\tzt_nextblk: %llu\n",
1007 (u_longlong_t
)zs
.zs_ptrtbl_nextblk
);
1009 (void) printf("\t\tZAP entries: %llu\n",
1010 (u_longlong_t
)zs
.zs_num_entries
);
1011 (void) printf("\t\tLeaf blocks: %llu\n",
1012 (u_longlong_t
)zs
.zs_num_leafs
);
1013 (void) printf("\t\tTotal blocks: %llu\n",
1014 (u_longlong_t
)zs
.zs_num_blocks
);
1015 (void) printf("\t\tzap_block_type: 0x%llx\n",
1016 (u_longlong_t
)zs
.zs_block_type
);
1017 (void) printf("\t\tzap_magic: 0x%llx\n",
1018 (u_longlong_t
)zs
.zs_magic
);
1019 (void) printf("\t\tzap_salt: 0x%llx\n",
1020 (u_longlong_t
)zs
.zs_salt
);
1022 (void) printf("\t\tLeafs with 2^n pointers:\n");
1023 dump_histogram(zs
.zs_leafs_with_2n_pointers
, ZAP_HISTOGRAM_SIZE
, 0);
1025 (void) printf("\t\tBlocks with n*5 entries:\n");
1026 dump_histogram(zs
.zs_blocks_with_n5_entries
, ZAP_HISTOGRAM_SIZE
, 0);
1028 (void) printf("\t\tBlocks n/10 full:\n");
1029 dump_histogram(zs
.zs_blocks_n_tenths_full
, ZAP_HISTOGRAM_SIZE
, 0);
1031 (void) printf("\t\tEntries with n chunks:\n");
1032 dump_histogram(zs
.zs_entries_using_n_chunks
, ZAP_HISTOGRAM_SIZE
, 0);
1034 (void) printf("\t\tBuckets with n entries:\n");
1035 dump_histogram(zs
.zs_buckets_with_n_entries
, ZAP_HISTOGRAM_SIZE
, 0);
1039 dump_none(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1041 (void) os
, (void) object
, (void) data
, (void) size
;
1045 dump_unknown(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1047 (void) os
, (void) object
, (void) data
, (void) size
;
1048 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1052 dump_uint8(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1054 (void) os
, (void) object
, (void) data
, (void) size
;
1058 dump_uint64(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1062 if (dump_opt
['d'] < 6)
1066 dmu_object_info_t doi
;
1068 VERIFY0(dmu_object_info(os
, object
, &doi
));
1069 size
= doi
.doi_max_offset
;
1071 * We cap the size at 1 mebibyte here to prevent
1072 * allocation failures and nigh-infinite printing if the
1073 * object is extremely large.
1075 oursize
= MIN(size
, 1 << 20);
1076 arr
= kmem_alloc(oursize
, KM_SLEEP
);
1078 int err
= dmu_read(os
, object
, 0, oursize
, arr
, 0);
1080 (void) printf("got error %u from dmu_read\n", err
);
1081 kmem_free(arr
, oursize
);
1086 * Even though the allocation is already done in this code path,
1087 * we still cap the size to prevent excessive printing.
1089 oursize
= MIN(size
, 1 << 20);
1095 kmem_free(arr
, oursize
);
1096 (void) printf("\t\t[]\n");
1100 (void) printf("\t\t[%0llx", (u_longlong_t
)arr
[0]);
1101 for (size_t i
= 1; i
* sizeof (uint64_t) < oursize
; i
++) {
1103 (void) printf(", %0llx", (u_longlong_t
)arr
[i
]);
1105 (void) printf(",\n\t\t%0llx", (u_longlong_t
)arr
[i
]);
1107 if (oursize
!= size
)
1108 (void) printf(", ... ");
1109 (void) printf("]\n");
1112 kmem_free(arr
, oursize
);
1116 dump_zap(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1118 (void) data
, (void) size
;
1120 zap_attribute_t
*attrp
= zap_attribute_long_alloc();
1124 dump_zap_stats(os
, object
);
1125 (void) printf("\n");
1127 for (zap_cursor_init(&zc
, os
, object
);
1128 zap_cursor_retrieve(&zc
, attrp
) == 0;
1129 zap_cursor_advance(&zc
)) {
1131 !!(zap_getflags(zc
.zc_zap
) & ZAP_FLAG_UINT64_KEY
);
1134 (void) printf("\t\t0x%010" PRIu64
"x = ",
1135 *(uint64_t *)attrp
->za_name
);
1137 (void) printf("\t\t%s = ", attrp
->za_name
);
1139 if (attrp
->za_num_integers
== 0) {
1140 (void) printf("\n");
1143 prop
= umem_zalloc(attrp
->za_num_integers
*
1144 attrp
->za_integer_length
, UMEM_NOFAIL
);
1147 (void) zap_lookup_uint64(os
, object
,
1148 (const uint64_t *)attrp
->za_name
, 1,
1149 attrp
->za_integer_length
, attrp
->za_num_integers
,
1152 (void) zap_lookup(os
, object
, attrp
->za_name
,
1153 attrp
->za_integer_length
, attrp
->za_num_integers
,
1156 if (attrp
->za_integer_length
== 1 && !key64
) {
1157 if (strcmp(attrp
->za_name
,
1158 DSL_CRYPTO_KEY_MASTER_KEY
) == 0 ||
1159 strcmp(attrp
->za_name
,
1160 DSL_CRYPTO_KEY_HMAC_KEY
) == 0 ||
1161 strcmp(attrp
->za_name
, DSL_CRYPTO_KEY_IV
) == 0 ||
1162 strcmp(attrp
->za_name
, DSL_CRYPTO_KEY_MAC
) == 0 ||
1163 strcmp(attrp
->za_name
,
1164 DMU_POOL_CHECKSUM_SALT
) == 0) {
1167 for (i
= 0; i
< attrp
->za_num_integers
; i
++) {
1168 (void) printf("%02x", u8
[i
]);
1171 (void) printf("%s", (char *)prop
);
1174 for (i
= 0; i
< attrp
->za_num_integers
; i
++) {
1175 switch (attrp
->za_integer_length
) {
1177 (void) printf("%u ",
1178 ((uint8_t *)prop
)[i
]);
1181 (void) printf("%u ",
1182 ((uint16_t *)prop
)[i
]);
1185 (void) printf("%u ",
1186 ((uint32_t *)prop
)[i
]);
1189 (void) printf("%lld ",
1190 (u_longlong_t
)((int64_t *)prop
)[i
]);
1195 (void) printf("\n");
1197 attrp
->za_num_integers
* attrp
->za_integer_length
);
1199 zap_cursor_fini(&zc
);
1200 zap_attribute_free(attrp
);
1204 dump_bpobj(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1206 bpobj_phys_t
*bpop
= data
;
1208 char bytes
[32], comp
[32], uncomp
[32];
1210 /* make sure the output won't get truncated */
1211 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
1212 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
1213 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
1218 zdb_nicenum(bpop
->bpo_bytes
, bytes
, sizeof (bytes
));
1219 zdb_nicenum(bpop
->bpo_comp
, comp
, sizeof (comp
));
1220 zdb_nicenum(bpop
->bpo_uncomp
, uncomp
, sizeof (uncomp
));
1222 (void) printf("\t\tnum_blkptrs = %llu\n",
1223 (u_longlong_t
)bpop
->bpo_num_blkptrs
);
1224 (void) printf("\t\tbytes = %s\n", bytes
);
1225 if (size
>= BPOBJ_SIZE_V1
) {
1226 (void) printf("\t\tcomp = %s\n", comp
);
1227 (void) printf("\t\tuncomp = %s\n", uncomp
);
1229 if (size
>= BPOBJ_SIZE_V2
) {
1230 (void) printf("\t\tsubobjs = %llu\n",
1231 (u_longlong_t
)bpop
->bpo_subobjs
);
1232 (void) printf("\t\tnum_subobjs = %llu\n",
1233 (u_longlong_t
)bpop
->bpo_num_subobjs
);
1235 if (size
>= sizeof (*bpop
)) {
1236 (void) printf("\t\tnum_freed = %llu\n",
1237 (u_longlong_t
)bpop
->bpo_num_freed
);
1240 if (dump_opt
['d'] < 5)
1243 for (i
= 0; i
< bpop
->bpo_num_blkptrs
; i
++) {
1244 char blkbuf
[BP_SPRINTF_LEN
];
1247 int err
= dmu_read(os
, object
,
1248 i
* sizeof (bp
), sizeof (bp
), &bp
, 0);
1250 (void) printf("got error %u from dmu_read\n", err
);
1253 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), &bp
,
1255 (void) printf("\t%s\n", blkbuf
);
1260 dump_bpobj_subobjs(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1262 (void) data
, (void) size
;
1263 dmu_object_info_t doi
;
1266 VERIFY0(dmu_object_info(os
, object
, &doi
));
1267 uint64_t *subobjs
= kmem_alloc(doi
.doi_max_offset
, KM_SLEEP
);
1269 int err
= dmu_read(os
, object
, 0, doi
.doi_max_offset
, subobjs
, 0);
1271 (void) printf("got error %u from dmu_read\n", err
);
1272 kmem_free(subobjs
, doi
.doi_max_offset
);
1276 int64_t last_nonzero
= -1;
1277 for (i
= 0; i
< doi
.doi_max_offset
/ 8; i
++) {
1278 if (subobjs
[i
] != 0)
1282 for (i
= 0; i
<= last_nonzero
; i
++) {
1283 (void) printf("\t%llu\n", (u_longlong_t
)subobjs
[i
]);
1285 kmem_free(subobjs
, doi
.doi_max_offset
);
1289 dump_ddt_zap(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1291 (void) data
, (void) size
;
1292 dump_zap_stats(os
, object
);
1293 /* contents are printed elsewhere, properly decoded */
1297 dump_sa_attrs(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1299 (void) data
, (void) size
;
1301 zap_attribute_t
*attrp
= zap_attribute_alloc();
1303 dump_zap_stats(os
, object
);
1304 (void) printf("\n");
1306 for (zap_cursor_init(&zc
, os
, object
);
1307 zap_cursor_retrieve(&zc
, attrp
) == 0;
1308 zap_cursor_advance(&zc
)) {
1309 (void) printf("\t\t%s = ", attrp
->za_name
);
1310 if (attrp
->za_num_integers
== 0) {
1311 (void) printf("\n");
1314 (void) printf(" %llx : [%d:%d:%d]\n",
1315 (u_longlong_t
)attrp
->za_first_integer
,
1316 (int)ATTR_LENGTH(attrp
->za_first_integer
),
1317 (int)ATTR_BSWAP(attrp
->za_first_integer
),
1318 (int)ATTR_NUM(attrp
->za_first_integer
));
1320 zap_cursor_fini(&zc
);
1321 zap_attribute_free(attrp
);
1325 dump_sa_layouts(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1327 (void) data
, (void) size
;
1329 zap_attribute_t
*attrp
= zap_attribute_alloc();
1330 uint16_t *layout_attrs
;
1333 dump_zap_stats(os
, object
);
1334 (void) printf("\n");
1336 for (zap_cursor_init(&zc
, os
, object
);
1337 zap_cursor_retrieve(&zc
, attrp
) == 0;
1338 zap_cursor_advance(&zc
)) {
1339 (void) printf("\t\t%s = [", attrp
->za_name
);
1340 if (attrp
->za_num_integers
== 0) {
1341 (void) printf("\n");
1345 VERIFY(attrp
->za_integer_length
== 2);
1346 layout_attrs
= umem_zalloc(attrp
->za_num_integers
*
1347 attrp
->za_integer_length
, UMEM_NOFAIL
);
1349 VERIFY(zap_lookup(os
, object
, attrp
->za_name
,
1350 attrp
->za_integer_length
,
1351 attrp
->za_num_integers
, layout_attrs
) == 0);
1353 for (i
= 0; i
!= attrp
->za_num_integers
; i
++)
1354 (void) printf(" %d ", (int)layout_attrs
[i
]);
1355 (void) printf("]\n");
1356 umem_free(layout_attrs
,
1357 attrp
->za_num_integers
* attrp
->za_integer_length
);
1359 zap_cursor_fini(&zc
);
1360 zap_attribute_free(attrp
);
1364 dump_zpldir(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1366 (void) data
, (void) size
;
1368 zap_attribute_t
*attrp
= zap_attribute_long_alloc();
1369 const char *typenames
[] = {
1370 /* 0 */ "not specified",
1372 /* 2 */ "Character Device",
1373 /* 3 */ "3 (invalid)",
1374 /* 4 */ "Directory",
1375 /* 5 */ "5 (invalid)",
1376 /* 6 */ "Block Device",
1377 /* 7 */ "7 (invalid)",
1378 /* 8 */ "Regular File",
1379 /* 9 */ "9 (invalid)",
1380 /* 10 */ "Symbolic Link",
1381 /* 11 */ "11 (invalid)",
1384 /* 14 */ "Event Port",
1385 /* 15 */ "15 (invalid)",
1388 dump_zap_stats(os
, object
);
1389 (void) printf("\n");
1391 for (zap_cursor_init(&zc
, os
, object
);
1392 zap_cursor_retrieve(&zc
, attrp
) == 0;
1393 zap_cursor_advance(&zc
)) {
1394 (void) printf("\t\t%s = %lld (type: %s)\n",
1395 attrp
->za_name
, ZFS_DIRENT_OBJ(attrp
->za_first_integer
),
1396 typenames
[ZFS_DIRENT_TYPE(attrp
->za_first_integer
)]);
1398 zap_cursor_fini(&zc
);
1399 zap_attribute_free(attrp
);
1403 get_dtl_refcount(vdev_t
*vd
)
1407 if (vd
->vdev_ops
->vdev_op_leaf
) {
1408 space_map_t
*sm
= vd
->vdev_dtl_sm
;
1411 sm
->sm_dbuf
->db_size
== sizeof (space_map_phys_t
))
1416 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
1417 refcount
+= get_dtl_refcount(vd
->vdev_child
[c
]);
1422 get_metaslab_refcount(vdev_t
*vd
)
1426 if (vd
->vdev_top
== vd
) {
1427 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
1428 space_map_t
*sm
= vd
->vdev_ms
[m
]->ms_sm
;
1431 sm
->sm_dbuf
->db_size
== sizeof (space_map_phys_t
))
1435 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
1436 refcount
+= get_metaslab_refcount(vd
->vdev_child
[c
]);
1442 get_obsolete_refcount(vdev_t
*vd
)
1444 uint64_t obsolete_sm_object
;
1447 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
1448 if (vd
->vdev_top
== vd
&& obsolete_sm_object
!= 0) {
1449 dmu_object_info_t doi
;
1450 VERIFY0(dmu_object_info(vd
->vdev_spa
->spa_meta_objset
,
1451 obsolete_sm_object
, &doi
));
1452 if (doi
.doi_bonus_size
== sizeof (space_map_phys_t
)) {
1456 ASSERT3P(vd
->vdev_obsolete_sm
, ==, NULL
);
1457 ASSERT3U(obsolete_sm_object
, ==, 0);
1459 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++) {
1460 refcount
+= get_obsolete_refcount(vd
->vdev_child
[c
]);
1467 get_prev_obsolete_spacemap_refcount(spa_t
*spa
)
1470 spa
->spa_condensing_indirect_phys
.scip_prev_obsolete_sm_object
;
1471 if (prev_obj
!= 0) {
1472 dmu_object_info_t doi
;
1473 VERIFY0(dmu_object_info(spa
->spa_meta_objset
, prev_obj
, &doi
));
1474 if (doi
.doi_bonus_size
== sizeof (space_map_phys_t
)) {
1482 get_checkpoint_refcount(vdev_t
*vd
)
1486 if (vd
->vdev_top
== vd
&& vd
->vdev_top_zap
!= 0 &&
1487 zap_contains(spa_meta_objset(vd
->vdev_spa
),
1488 vd
->vdev_top_zap
, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) == 0)
1491 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++)
1492 refcount
+= get_checkpoint_refcount(vd
->vdev_child
[c
]);
1498 get_log_spacemap_refcount(spa_t
*spa
)
1500 return (avl_numnodes(&spa
->spa_sm_logs_by_txg
));
1504 verify_spacemap_refcounts(spa_t
*spa
)
1506 uint64_t expected_refcount
= 0;
1507 uint64_t actual_refcount
;
1509 (void) feature_get_refcount(spa
,
1510 &spa_feature_table
[SPA_FEATURE_SPACEMAP_HISTOGRAM
],
1511 &expected_refcount
);
1512 actual_refcount
= get_dtl_refcount(spa
->spa_root_vdev
);
1513 actual_refcount
+= get_metaslab_refcount(spa
->spa_root_vdev
);
1514 actual_refcount
+= get_obsolete_refcount(spa
->spa_root_vdev
);
1515 actual_refcount
+= get_prev_obsolete_spacemap_refcount(spa
);
1516 actual_refcount
+= get_checkpoint_refcount(spa
->spa_root_vdev
);
1517 actual_refcount
+= get_log_spacemap_refcount(spa
);
1519 if (expected_refcount
!= actual_refcount
) {
1520 (void) printf("space map refcount mismatch: expected %lld != "
1522 (longlong_t
)expected_refcount
,
1523 (longlong_t
)actual_refcount
);
1530 dump_spacemap(objset_t
*os
, space_map_t
*sm
)
1532 const char *ddata
[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1533 "INVALID", "INVALID", "INVALID", "INVALID" };
1538 (void) printf("space map object %llu:\n",
1539 (longlong_t
)sm
->sm_object
);
1540 (void) printf(" smp_length = 0x%llx\n",
1541 (longlong_t
)sm
->sm_phys
->smp_length
);
1542 (void) printf(" smp_alloc = 0x%llx\n",
1543 (longlong_t
)sm
->sm_phys
->smp_alloc
);
1545 if (dump_opt
['d'] < 6 && dump_opt
['m'] < 4)
1549 * Print out the freelist entries in both encoded and decoded form.
1551 uint8_t mapshift
= sm
->sm_shift
;
1553 uint64_t word
, entry_id
= 0;
1554 for (uint64_t offset
= 0; offset
< space_map_length(sm
);
1555 offset
+= sizeof (word
)) {
1557 VERIFY0(dmu_read(os
, space_map_object(sm
), offset
,
1558 sizeof (word
), &word
, DMU_READ_PREFETCH
));
1560 if (sm_entry_is_debug(word
)) {
1561 uint64_t de_txg
= SM_DEBUG_TXG_DECODE(word
);
1562 uint64_t de_sync_pass
= SM_DEBUG_SYNCPASS_DECODE(word
);
1565 "\t [%6llu] PADDING\n",
1566 (u_longlong_t
)entry_id
);
1569 "\t [%6llu] %s: txg %llu pass %llu\n",
1570 (u_longlong_t
)entry_id
,
1571 ddata
[SM_DEBUG_ACTION_DECODE(word
)],
1572 (u_longlong_t
)de_txg
,
1573 (u_longlong_t
)de_sync_pass
);
1581 uint64_t entry_off
, entry_run
, entry_vdev
= SM_NO_VDEVID
;
1583 if (sm_entry_is_single_word(word
)) {
1584 entry_type
= (SM_TYPE_DECODE(word
) == SM_ALLOC
) ?
1586 entry_off
= (SM_OFFSET_DECODE(word
) << mapshift
) +
1588 entry_run
= SM_RUN_DECODE(word
) << mapshift
;
1591 /* it is a two-word entry so we read another word */
1592 ASSERT(sm_entry_is_double_word(word
));
1594 uint64_t extra_word
;
1595 offset
+= sizeof (extra_word
);
1596 VERIFY0(dmu_read(os
, space_map_object(sm
), offset
,
1597 sizeof (extra_word
), &extra_word
,
1598 DMU_READ_PREFETCH
));
1600 ASSERT3U(offset
, <=, space_map_length(sm
));
1602 entry_run
= SM2_RUN_DECODE(word
) << mapshift
;
1603 entry_vdev
= SM2_VDEV_DECODE(word
);
1604 entry_type
= (SM2_TYPE_DECODE(extra_word
) == SM_ALLOC
) ?
1606 entry_off
= (SM2_OFFSET_DECODE(extra_word
) <<
1607 mapshift
) + sm
->sm_start
;
1611 (void) printf("\t [%6llu] %c range:"
1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
1613 (u_longlong_t
)entry_id
,
1614 entry_type
, (u_longlong_t
)entry_off
,
1615 (u_longlong_t
)(entry_off
+ entry_run
),
1616 (u_longlong_t
)entry_run
,
1617 (u_longlong_t
)entry_vdev
, words
);
1619 if (entry_type
== 'A')
1625 if (alloc
!= space_map_allocated(sm
)) {
1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1627 "with space map summary (%lld)\n",
1628 (longlong_t
)space_map_allocated(sm
), (longlong_t
)alloc
);
1633 dump_metaslab_stats(metaslab_t
*msp
)
1636 range_tree_t
*rt
= msp
->ms_allocatable
;
1637 zfs_btree_t
*t
= &msp
->ms_allocatable_by_size
;
1638 int free_pct
= range_tree_space(rt
) * 100 / msp
->ms_size
;
1640 /* max sure nicenum has enough space */
1641 _Static_assert(sizeof (maxbuf
) >= NN_NUMBUF_SZ
, "maxbuf truncated");
1643 zdb_nicenum(metaslab_largest_allocatable(msp
), maxbuf
, sizeof (maxbuf
));
1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1646 "segments", zfs_btree_numnodes(t
), "maxsize", maxbuf
,
1647 "freepct", free_pct
);
1648 (void) printf("\tIn-memory histogram:\n");
1649 dump_histogram(rt
->rt_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1653 dump_metaslab(metaslab_t
*msp
)
1655 vdev_t
*vd
= msp
->ms_group
->mg_vd
;
1656 spa_t
*spa
= vd
->vdev_spa
;
1657 space_map_t
*sm
= msp
->ms_sm
;
1660 zdb_nicenum(msp
->ms_size
- space_map_allocated(sm
), freebuf
,
1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1665 (u_longlong_t
)msp
->ms_id
, (u_longlong_t
)msp
->ms_start
,
1666 (u_longlong_t
)space_map_object(sm
), freebuf
);
1668 if (dump_opt
['m'] > 2 && !dump_opt
['L']) {
1669 mutex_enter(&msp
->ms_lock
);
1670 VERIFY0(metaslab_load(msp
));
1671 range_tree_stat_verify(msp
->ms_allocatable
);
1672 dump_metaslab_stats(msp
);
1673 metaslab_unload(msp
);
1674 mutex_exit(&msp
->ms_lock
);
1677 if (dump_opt
['m'] > 1 && sm
!= NULL
&&
1678 spa_feature_is_active(spa
, SPA_FEATURE_SPACEMAP_HISTOGRAM
)) {
1680 * The space map histogram represents free space in chunks
1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1684 (u_longlong_t
)msp
->ms_fragmentation
);
1685 dump_histogram(sm
->sm_phys
->smp_histogram
,
1686 SPACE_MAP_HISTOGRAM_SIZE
, sm
->sm_shift
);
1689 if (vd
->vdev_ops
== &vdev_draid_ops
)
1690 ASSERT3U(msp
->ms_size
, <=, 1ULL << vd
->vdev_ms_shift
);
1692 ASSERT3U(msp
->ms_size
, ==, 1ULL << vd
->vdev_ms_shift
);
1694 dump_spacemap(spa
->spa_meta_objset
, msp
->ms_sm
);
1696 if (spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
)) {
1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1698 (u_longlong_t
)metaslab_unflushed_txg(msp
));
1703 print_vdev_metaslab_header(vdev_t
*vd
)
1705 vdev_alloc_bias_t alloc_bias
= vd
->vdev_alloc_bias
;
1706 const char *bias_str
= "";
1707 if (alloc_bias
== VDEV_BIAS_LOG
|| vd
->vdev_islog
) {
1708 bias_str
= VDEV_ALLOC_BIAS_LOG
;
1709 } else if (alloc_bias
== VDEV_BIAS_SPECIAL
) {
1710 bias_str
= VDEV_ALLOC_BIAS_SPECIAL
;
1711 } else if (alloc_bias
== VDEV_BIAS_DEDUP
) {
1712 bias_str
= VDEV_ALLOC_BIAS_DEDUP
;
1715 uint64_t ms_flush_data_obj
= 0;
1716 if (vd
->vdev_top_zap
!= 0) {
1717 int error
= zap_lookup(spa_meta_objset(vd
->vdev_spa
),
1718 vd
->vdev_top_zap
, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
,
1719 sizeof (uint64_t), 1, &ms_flush_data_obj
);
1720 if (error
!= ENOENT
) {
1725 (void) printf("\tvdev %10llu %s",
1726 (u_longlong_t
)vd
->vdev_id
, bias_str
);
1728 if (ms_flush_data_obj
!= 0) {
1729 (void) printf(" ms_unflushed_phys object %llu",
1730 (u_longlong_t
)ms_flush_data_obj
);
1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1734 "metaslabs", (u_longlong_t
)vd
->vdev_ms_count
,
1735 "offset", "spacemap", "free");
1736 (void) printf("\t%15s %19s %15s %12s\n",
1737 "---------------", "-------------------",
1738 "---------------", "------------");
1742 dump_metaslab_groups(spa_t
*spa
, boolean_t show_special
)
1744 vdev_t
*rvd
= spa
->spa_root_vdev
;
1745 metaslab_class_t
*mc
= spa_normal_class(spa
);
1746 metaslab_class_t
*smc
= spa_special_class(spa
);
1747 uint64_t fragmentation
;
1749 metaslab_class_histogram_verify(mc
);
1751 for (unsigned c
= 0; c
< rvd
->vdev_children
; c
++) {
1752 vdev_t
*tvd
= rvd
->vdev_child
[c
];
1753 metaslab_group_t
*mg
= tvd
->vdev_mg
;
1755 if (mg
== NULL
|| (mg
->mg_class
!= mc
&&
1756 (!show_special
|| mg
->mg_class
!= smc
)))
1759 metaslab_group_histogram_verify(mg
);
1760 mg
->mg_fragmentation
= metaslab_group_fragmentation(mg
);
1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1764 (u_longlong_t
)tvd
->vdev_id
,
1765 (u_longlong_t
)tvd
->vdev_ms_count
);
1766 if (mg
->mg_fragmentation
== ZFS_FRAG_INVALID
) {
1767 (void) printf("%3s\n", "-");
1769 (void) printf("%3llu%%\n",
1770 (u_longlong_t
)mg
->mg_fragmentation
);
1772 dump_histogram(mg
->mg_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1775 (void) printf("\tpool %s\tfragmentation", spa_name(spa
));
1776 fragmentation
= metaslab_class_fragmentation(mc
);
1777 if (fragmentation
== ZFS_FRAG_INVALID
)
1778 (void) printf("\t%3s\n", "-");
1780 (void) printf("\t%3llu%%\n", (u_longlong_t
)fragmentation
);
1781 dump_histogram(mc
->mc_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1785 print_vdev_indirect(vdev_t
*vd
)
1787 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
1788 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1789 vdev_indirect_births_t
*vib
= vd
->vdev_indirect_births
;
1792 ASSERT3P(vib
, ==, NULL
);
1796 ASSERT3U(vdev_indirect_mapping_object(vim
), ==,
1797 vic
->vic_mapping_object
);
1798 ASSERT3U(vdev_indirect_births_object(vib
), ==,
1799 vic
->vic_births_object
);
1801 (void) printf("indirect births obj %llu:\n",
1802 (longlong_t
)vic
->vic_births_object
);
1803 (void) printf(" vib_count = %llu\n",
1804 (longlong_t
)vdev_indirect_births_count(vib
));
1805 for (uint64_t i
= 0; i
< vdev_indirect_births_count(vib
); i
++) {
1806 vdev_indirect_birth_entry_phys_t
*cur_vibe
=
1807 &vib
->vib_entries
[i
];
1808 (void) printf("\toffset %llx -> txg %llu\n",
1809 (longlong_t
)cur_vibe
->vibe_offset
,
1810 (longlong_t
)cur_vibe
->vibe_phys_birth_txg
);
1812 (void) printf("\n");
1814 (void) printf("indirect mapping obj %llu:\n",
1815 (longlong_t
)vic
->vic_mapping_object
);
1816 (void) printf(" vim_max_offset = 0x%llx\n",
1817 (longlong_t
)vdev_indirect_mapping_max_offset(vim
));
1818 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1819 (longlong_t
)vdev_indirect_mapping_bytes_mapped(vim
));
1820 (void) printf(" vim_count = %llu\n",
1821 (longlong_t
)vdev_indirect_mapping_num_entries(vim
));
1823 if (dump_opt
['d'] <= 5 && dump_opt
['m'] <= 3)
1826 uint32_t *counts
= vdev_indirect_mapping_load_obsolete_counts(vim
);
1828 for (uint64_t i
= 0; i
< vdev_indirect_mapping_num_entries(vim
); i
++) {
1829 vdev_indirect_mapping_entry_phys_t
*vimep
=
1830 &vim
->vim_entries
[i
];
1831 (void) printf("\t<%llx:%llx:%llx> -> "
1832 "<%llx:%llx:%llx> (%x obsolete)\n",
1833 (longlong_t
)vd
->vdev_id
,
1834 (longlong_t
)DVA_MAPPING_GET_SRC_OFFSET(vimep
),
1835 (longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
1836 (longlong_t
)DVA_GET_VDEV(&vimep
->vimep_dst
),
1837 (longlong_t
)DVA_GET_OFFSET(&vimep
->vimep_dst
),
1838 (longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
1841 (void) printf("\n");
1843 uint64_t obsolete_sm_object
;
1844 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
1845 if (obsolete_sm_object
!= 0) {
1846 objset_t
*mos
= vd
->vdev_spa
->spa_meta_objset
;
1847 (void) printf("obsolete space map object %llu:\n",
1848 (u_longlong_t
)obsolete_sm_object
);
1849 ASSERT(vd
->vdev_obsolete_sm
!= NULL
);
1850 ASSERT3U(space_map_object(vd
->vdev_obsolete_sm
), ==,
1851 obsolete_sm_object
);
1852 dump_spacemap(mos
, vd
->vdev_obsolete_sm
);
1853 (void) printf("\n");
1858 dump_metaslabs(spa_t
*spa
)
1860 vdev_t
*vd
, *rvd
= spa
->spa_root_vdev
;
1861 uint64_t m
, c
= 0, children
= rvd
->vdev_children
;
1863 (void) printf("\nMetaslabs:\n");
1865 if (!dump_opt
['d'] && zopt_metaslab_args
> 0) {
1866 c
= zopt_metaslab
[0];
1869 (void) fatal("bad vdev id: %llu", (u_longlong_t
)c
);
1871 if (zopt_metaslab_args
> 1) {
1872 vd
= rvd
->vdev_child
[c
];
1873 print_vdev_metaslab_header(vd
);
1875 for (m
= 1; m
< zopt_metaslab_args
; m
++) {
1876 if (zopt_metaslab
[m
] < vd
->vdev_ms_count
)
1878 vd
->vdev_ms
[zopt_metaslab
[m
]]);
1880 (void) fprintf(stderr
, "bad metaslab "
1882 (u_longlong_t
)zopt_metaslab
[m
]);
1884 (void) printf("\n");
1889 for (; c
< children
; c
++) {
1890 vd
= rvd
->vdev_child
[c
];
1891 print_vdev_metaslab_header(vd
);
1893 print_vdev_indirect(vd
);
1895 for (m
= 0; m
< vd
->vdev_ms_count
; m
++)
1896 dump_metaslab(vd
->vdev_ms
[m
]);
1897 (void) printf("\n");
1902 dump_log_spacemaps(spa_t
*spa
)
1904 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
1907 (void) printf("\nLog Space Maps in Pool:\n");
1908 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
1909 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
)) {
1910 space_map_t
*sm
= NULL
;
1911 VERIFY0(space_map_open(&sm
, spa_meta_objset(spa
),
1912 sls
->sls_sm_obj
, 0, UINT64_MAX
, SPA_MINBLOCKSHIFT
));
1914 (void) printf("Log Spacemap object %llu txg %llu\n",
1915 (u_longlong_t
)sls
->sls_sm_obj
, (u_longlong_t
)sls
->sls_txg
);
1916 dump_spacemap(spa
->spa_meta_objset
, sm
);
1917 space_map_close(sm
);
1919 (void) printf("\n");
1923 dump_ddt_entry(const ddt_t
*ddt
, const ddt_lightweight_entry_t
*ddlwe
,
1926 const ddt_key_t
*ddk
= &ddlwe
->ddlwe_key
;
1927 char blkbuf
[BP_SPRINTF_LEN
];
1931 for (p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
1932 const ddt_univ_phys_t
*ddp
= &ddlwe
->ddlwe_phys
;
1933 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
1935 if (ddt_phys_birth(ddp
, v
) == 0)
1937 ddt_bp_create(ddt
->ddt_checksum
, ddk
, ddp
, v
, &blk
);
1938 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &blk
);
1939 (void) printf("index %llx refcnt %llu phys %d %s\n",
1940 (u_longlong_t
)index
, (u_longlong_t
)ddt_phys_refcnt(ddp
, v
),
1946 dump_dedup_ratio(const ddt_stat_t
*dds
)
1948 double rL
, rP
, rD
, D
, dedup
, compress
, copies
;
1950 if (dds
->dds_blocks
== 0)
1953 rL
= (double)dds
->dds_ref_lsize
;
1954 rP
= (double)dds
->dds_ref_psize
;
1955 rD
= (double)dds
->dds_ref_dsize
;
1956 D
= (double)dds
->dds_dsize
;
1962 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1963 "dedup * compress / copies = %.2f\n\n",
1964 dedup
, compress
, copies
, dedup
* compress
/ copies
);
1968 dump_ddt_log(ddt_t
*ddt
)
1970 for (int n
= 0; n
< 2; n
++) {
1971 ddt_log_t
*ddl
= &ddt
->ddt_log
[n
];
1973 uint64_t count
= avl_numnodes(&ddl
->ddl_tree
);
1977 printf(DMU_POOL_DDT_LOG
": %lu log entries\n",
1978 zio_checksum_table
[ddt
->ddt_checksum
].ci_name
, n
, count
);
1980 if (dump_opt
['D'] < 4)
1983 ddt_lightweight_entry_t ddlwe
;
1985 for (ddt_log_entry_t
*ddle
= avl_first(&ddl
->ddl_tree
);
1986 ddle
; ddle
= AVL_NEXT(&ddl
->ddl_tree
, ddle
)) {
1987 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt
, ddle
, &ddlwe
);
1988 dump_ddt_entry(ddt
, &ddlwe
, index
++);
1994 dump_ddt(ddt_t
*ddt
, ddt_type_t type
, ddt_class_t
class)
1996 char name
[DDT_NAMELEN
];
1997 ddt_lightweight_entry_t ddlwe
;
1999 dmu_object_info_t doi
;
2000 uint64_t count
, dspace
, mspace
;
2003 error
= ddt_object_info(ddt
, type
, class, &doi
);
2005 if (error
== ENOENT
)
2009 error
= ddt_object_count(ddt
, type
, class, &count
);
2014 dspace
= doi
.doi_physical_blocks_512
<< 9;
2015 mspace
= doi
.doi_fill_count
* doi
.doi_data_block_size
;
2017 ddt_object_name(ddt
, type
, class, name
);
2019 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2021 (u_longlong_t
)count
,
2022 (u_longlong_t
)dspace
,
2023 (u_longlong_t
)mspace
);
2025 if (dump_opt
['D'] < 3)
2028 zpool_dump_ddt(NULL
, &ddt
->ddt_histogram
[type
][class]);
2030 if (dump_opt
['D'] < 4)
2033 if (dump_opt
['D'] < 5 && class == DDT_CLASS_UNIQUE
)
2036 (void) printf("%s contents:\n\n", name
);
2038 while ((error
= ddt_object_walk(ddt
, type
, class, &walk
, &ddlwe
)) == 0)
2039 dump_ddt_entry(ddt
, &ddlwe
, walk
);
2041 ASSERT3U(error
, ==, ENOENT
);
2043 (void) printf("\n");
2047 dump_all_ddts(spa_t
*spa
)
2049 ddt_histogram_t ddh_total
= {{{0}}};
2050 ddt_stat_t dds_total
= {0};
2052 for (enum zio_checksum c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++) {
2053 ddt_t
*ddt
= spa
->spa_ddt
[c
];
2054 if (!ddt
|| ddt
->ddt_version
== DDT_VERSION_UNCONFIGURED
)
2056 for (ddt_type_t type
= 0; type
< DDT_TYPES
; type
++) {
2057 for (ddt_class_t
class = 0; class < DDT_CLASSES
;
2059 dump_ddt(ddt
, type
, class);
2065 ddt_get_dedup_stats(spa
, &dds_total
);
2067 if (dds_total
.dds_blocks
== 0) {
2068 (void) printf("All DDTs are empty\n");
2072 (void) printf("\n");
2074 if (dump_opt
['D'] > 1) {
2075 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2076 ddt_get_dedup_histogram(spa
, &ddh_total
);
2077 zpool_dump_ddt(&dds_total
, &ddh_total
);
2080 dump_dedup_ratio(&dds_total
);
2083 * Dump a histogram of unique class entry age
2085 if (dump_opt
['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL
) {
2086 ddt_age_histo_t histogram
;
2088 (void) printf("DDT walk unique, building age histogram...\n");
2089 ddt_prune_walk(spa
, 0, &histogram
);
2092 * print out histogram for unique entry class birth
2094 if (histogram
.dah_entries
> 0) {
2095 (void) printf("%5s %9s %4s\n",
2096 "age", "blocks", "amnt");
2097 (void) printf("%5s %9s %4s\n",
2098 "-----", "---------", "----");
2099 for (int i
= 0; i
< HIST_BINS
; i
++) {
2100 (void) printf("%5d %9d %4d%%\n", 1 << i
,
2101 (int)histogram
.dah_age_histo
[i
],
2102 (int)((histogram
.dah_age_histo
[i
] * 100) /
2103 histogram
.dah_entries
));
2110 dump_brt(spa_t
*spa
)
2112 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
2113 printf("BRT: unsupported on this pool\n");
2117 if (!spa_feature_is_active(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
2118 printf("BRT: empty\n");
2122 brt_t
*brt
= spa
->spa_brt
;
2125 char count
[32], used
[32], saved
[32];
2126 zdb_nicebytes(brt_get_used(spa
), used
, sizeof (used
));
2127 zdb_nicebytes(brt_get_saved(spa
), saved
, sizeof (saved
));
2128 uint64_t ratio
= brt_get_ratio(spa
);
2129 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used
, saved
,
2130 (u_longlong_t
)(ratio
/ 100), (u_longlong_t
)(ratio
% 100));
2132 if (dump_opt
['T'] < 2)
2135 for (uint64_t vdevid
= 0; vdevid
< brt
->brt_nvdevs
; vdevid
++) {
2136 brt_vdev_t
*brtvd
= &brt
->brt_vdevs
[vdevid
];
2140 if (!brtvd
->bv_initiated
) {
2141 printf("BRT: vdev %" PRIu64
": empty\n", vdevid
);
2145 zdb_nicenum(brtvd
->bv_totalcount
, count
, sizeof (count
));
2146 zdb_nicebytes(brtvd
->bv_usedspace
, used
, sizeof (used
));
2147 zdb_nicebytes(brtvd
->bv_savedspace
, saved
, sizeof (saved
));
2148 printf("BRT: vdev %" PRIu64
": refcnt %s; used %s; saved %s\n",
2149 vdevid
, count
, used
, saved
);
2152 if (dump_opt
['T'] < 3)
2156 printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2158 for (uint64_t vdevid
= 0; vdevid
< brt
->brt_nvdevs
; vdevid
++) {
2159 brt_vdev_t
*brtvd
= &brt
->brt_vdevs
[vdevid
];
2160 if (brtvd
== NULL
|| !brtvd
->bv_initiated
)
2164 zap_attribute_t
*za
= zap_attribute_alloc();
2165 for (zap_cursor_init(&zc
, brt
->brt_mos
, brtvd
->bv_mos_entries
);
2166 zap_cursor_retrieve(&zc
, za
) == 0;
2167 zap_cursor_advance(&zc
)) {
2169 VERIFY0(zap_lookup_uint64(brt
->brt_mos
,
2170 brtvd
->bv_mos_entries
,
2171 (const uint64_t *)za
->za_name
, 1,
2172 za
->za_integer_length
, za
->za_num_integers
,
2175 uint64_t offset
= *(const uint64_t *)za
->za_name
;
2177 snprintf(dva
, sizeof (dva
), "%" PRIu64
":%llx", vdevid
,
2178 (u_longlong_t
)offset
);
2179 printf("%-16s %-10llu\n", dva
, (u_longlong_t
)refcnt
);
2181 zap_cursor_fini(&zc
);
2182 zap_attribute_free(za
);
2187 dump_dtl_seg(void *arg
, uint64_t start
, uint64_t size
)
2191 (void) printf("%s [%llu,%llu) length %llu\n",
2193 (u_longlong_t
)start
,
2194 (u_longlong_t
)(start
+ size
),
2195 (u_longlong_t
)(size
));
2199 dump_dtl(vdev_t
*vd
, int indent
)
2201 spa_t
*spa
= vd
->vdev_spa
;
2203 const char *name
[DTL_TYPES
] = { "missing", "partial", "scrub",
2207 spa_vdev_state_enter(spa
, SCL_NONE
);
2208 required
= vdev_dtl_required(vd
);
2209 (void) spa_vdev_state_exit(spa
, NULL
, 0);
2212 (void) printf("\nDirty time logs:\n\n");
2214 (void) printf("\t%*s%s [%s]\n", indent
, "",
2215 vd
->vdev_path
? vd
->vdev_path
:
2216 vd
->vdev_parent
? vd
->vdev_ops
->vdev_op_type
: spa_name(spa
),
2217 required
? "DTL-required" : "DTL-expendable");
2219 for (int t
= 0; t
< DTL_TYPES
; t
++) {
2220 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
2221 if (range_tree_space(rt
) == 0)
2223 (void) snprintf(prefix
, sizeof (prefix
), "\t%*s%s",
2224 indent
+ 2, "", name
[t
]);
2225 range_tree_walk(rt
, dump_dtl_seg
, prefix
);
2226 if (dump_opt
['d'] > 5 && vd
->vdev_children
== 0)
2227 dump_spacemap(spa
->spa_meta_objset
,
2231 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
2232 dump_dtl(vd
->vdev_child
[c
], indent
+ 4);
2236 dump_history(spa_t
*spa
)
2238 nvlist_t
**events
= NULL
;
2240 uint64_t resid
, len
, off
= 0;
2245 if ((buf
= malloc(SPA_OLD_MAXBLOCKSIZE
)) == NULL
) {
2246 (void) fprintf(stderr
, "%s: unable to allocate I/O buffer\n",
2252 len
= SPA_OLD_MAXBLOCKSIZE
;
2254 if ((error
= spa_history_get(spa
, &off
, &len
, buf
)) != 0) {
2255 (void) fprintf(stderr
, "Unable to read history: "
2256 "error %d\n", error
);
2261 if (zpool_history_unpack(buf
, len
, &resid
, &events
, &num
) != 0)
2267 (void) printf("\nHistory:\n");
2268 for (unsigned i
= 0; i
< num
; i
++) {
2269 boolean_t printed
= B_FALSE
;
2271 if (nvlist_exists(events
[i
], ZPOOL_HIST_TIME
)) {
2275 tsec
= fnvlist_lookup_uint64(events
[i
],
2277 (void) localtime_r(&tsec
, &t
);
2278 (void) strftime(tbuf
, sizeof (tbuf
), "%F.%T", &t
);
2283 if (nvlist_exists(events
[i
], ZPOOL_HIST_CMD
)) {
2284 (void) printf("%s %s\n", tbuf
,
2285 fnvlist_lookup_string(events
[i
], ZPOOL_HIST_CMD
));
2286 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_INT_EVENT
)) {
2289 ievent
= fnvlist_lookup_uint64(events
[i
],
2290 ZPOOL_HIST_INT_EVENT
);
2291 if (ievent
>= ZFS_NUM_LEGACY_HISTORY_EVENTS
)
2294 (void) printf(" %s [internal %s txg:%ju] %s\n",
2296 zfs_history_event_names
[ievent
],
2297 fnvlist_lookup_uint64(events
[i
],
2299 fnvlist_lookup_string(events
[i
],
2300 ZPOOL_HIST_INT_STR
));
2301 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_INT_NAME
)) {
2302 (void) printf("%s [txg:%ju] %s", tbuf
,
2303 fnvlist_lookup_uint64(events
[i
],
2305 fnvlist_lookup_string(events
[i
],
2306 ZPOOL_HIST_INT_NAME
));
2308 if (nvlist_exists(events
[i
], ZPOOL_HIST_DSNAME
)) {
2309 (void) printf(" %s (%llu)",
2310 fnvlist_lookup_string(events
[i
],
2312 (u_longlong_t
)fnvlist_lookup_uint64(
2317 (void) printf(" %s\n", fnvlist_lookup_string(events
[i
],
2318 ZPOOL_HIST_INT_STR
));
2319 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_IOCTL
)) {
2320 (void) printf("%s ioctl %s\n", tbuf
,
2321 fnvlist_lookup_string(events
[i
],
2324 if (nvlist_exists(events
[i
], ZPOOL_HIST_INPUT_NVL
)) {
2325 (void) printf(" input:\n");
2326 dump_nvlist(fnvlist_lookup_nvlist(events
[i
],
2327 ZPOOL_HIST_INPUT_NVL
), 8);
2329 if (nvlist_exists(events
[i
], ZPOOL_HIST_OUTPUT_NVL
)) {
2330 (void) printf(" output:\n");
2331 dump_nvlist(fnvlist_lookup_nvlist(events
[i
],
2332 ZPOOL_HIST_OUTPUT_NVL
), 8);
2334 if (nvlist_exists(events
[i
], ZPOOL_HIST_ERRNO
)) {
2335 (void) printf(" errno: %lld\n",
2336 (longlong_t
)fnvlist_lookup_int64(events
[i
],
2345 if (dump_opt
['h'] > 1) {
2347 (void) printf("unrecognized record:\n");
2348 dump_nvlist(events
[i
], 2);
2355 dump_dnode(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2357 (void) os
, (void) object
, (void) data
, (void) size
;
2361 blkid2offset(const dnode_phys_t
*dnp
, const blkptr_t
*bp
,
2362 const zbookmark_phys_t
*zb
)
2365 ASSERT(zb
->zb_level
< 0);
2366 if (zb
->zb_object
== 0)
2367 return (zb
->zb_blkid
);
2368 return (zb
->zb_blkid
* BP_GET_LSIZE(bp
));
2371 ASSERT(zb
->zb_level
>= 0);
2373 return ((zb
->zb_blkid
<<
2374 (zb
->zb_level
* (dnp
->dn_indblkshift
- SPA_BLKPTRSHIFT
))) *
2375 dnp
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
);
2379 snprintf_zstd_header(spa_t
*spa
, char *blkbuf
, size_t buflen
,
2382 static abd_t
*pabd
= NULL
;
2385 zfs_zstdhdr_t zstd_hdr
;
2388 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_ZSTD
)
2394 if (BP_IS_EMBEDDED(bp
)) {
2395 buf
= malloc(SPA_MAXBLOCKSIZE
);
2397 (void) fprintf(stderr
, "out of memory\n");
2400 decode_embedded_bp_compressed(bp
, buf
);
2401 memcpy(&zstd_hdr
, buf
, sizeof (zstd_hdr
));
2403 zstd_hdr
.c_len
= BE_32(zstd_hdr
.c_len
);
2404 zstd_hdr
.raw_version_level
= BE_32(zstd_hdr
.raw_version_level
);
2405 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2406 buflen
- strlen(blkbuf
),
2407 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2408 zstd_hdr
.c_len
, zfs_get_hdrversion(&zstd_hdr
),
2409 zfs_get_hdrlevel(&zstd_hdr
));
2414 pabd
= abd_alloc_for_io(SPA_MAXBLOCKSIZE
, B_FALSE
);
2415 zio
= zio_root(spa
, NULL
, NULL
, 0);
2417 /* Decrypt but don't decompress so we can read the compression header */
2418 zio_nowait(zio_read(zio
, spa
, bp
, pabd
, BP_GET_PSIZE(bp
), NULL
, NULL
,
2419 ZIO_PRIORITY_SYNC_READ
, ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW_COMPRESS
,
2421 error
= zio_wait(zio
);
2423 (void) fprintf(stderr
, "read failed: %d\n", error
);
2426 buf
= abd_borrow_buf_copy(pabd
, BP_GET_LSIZE(bp
));
2427 memcpy(&zstd_hdr
, buf
, sizeof (zstd_hdr
));
2428 zstd_hdr
.c_len
= BE_32(zstd_hdr
.c_len
);
2429 zstd_hdr
.raw_version_level
= BE_32(zstd_hdr
.raw_version_level
);
2431 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2432 buflen
- strlen(blkbuf
),
2433 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2434 zstd_hdr
.c_len
, zfs_get_hdrversion(&zstd_hdr
),
2435 zfs_get_hdrlevel(&zstd_hdr
));
2437 abd_return_buf_copy(pabd
, buf
, BP_GET_LSIZE(bp
));
2441 snprintf_blkptr_compact(char *blkbuf
, size_t buflen
, const blkptr_t
*bp
,
2444 const dva_t
*dva
= bp
->blk_dva
;
2445 int ndvas
= dump_opt
['d'] > 5 ? BP_GET_NDVAS(bp
) : 1;
2448 if (dump_opt
['b'] >= 6) {
2449 snprintf_blkptr(blkbuf
, buflen
, bp
);
2451 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2452 buflen
- strlen(blkbuf
), " %s", "FREE");
2457 if (BP_IS_EMBEDDED(bp
)) {
2458 (void) sprintf(blkbuf
,
2459 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2460 (int)BPE_GET_ETYPE(bp
),
2461 (u_longlong_t
)BPE_GET_LSIZE(bp
),
2462 (u_longlong_t
)BPE_GET_PSIZE(bp
),
2463 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
));
2469 for (i
= 0; i
< ndvas
; i
++)
2470 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2471 buflen
- strlen(blkbuf
), "%llu:%llx:%llx ",
2472 (u_longlong_t
)DVA_GET_VDEV(&dva
[i
]),
2473 (u_longlong_t
)DVA_GET_OFFSET(&dva
[i
]),
2474 (u_longlong_t
)DVA_GET_ASIZE(&dva
[i
]));
2476 if (BP_IS_HOLE(bp
)) {
2477 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2478 buflen
- strlen(blkbuf
),
2480 (u_longlong_t
)BP_GET_LSIZE(bp
),
2481 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
));
2483 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2484 buflen
- strlen(blkbuf
),
2485 "%llxL/%llxP F=%llu B=%llu/%llu",
2486 (u_longlong_t
)BP_GET_LSIZE(bp
),
2487 (u_longlong_t
)BP_GET_PSIZE(bp
),
2488 (u_longlong_t
)BP_GET_FILL(bp
),
2489 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
),
2490 (u_longlong_t
)BP_GET_BIRTH(bp
));
2492 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2493 buflen
- strlen(blkbuf
), " %s", "FREE");
2494 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2495 buflen
- strlen(blkbuf
),
2496 " cksum=%016llx:%016llx:%016llx:%016llx",
2497 (u_longlong_t
)bp
->blk_cksum
.zc_word
[0],
2498 (u_longlong_t
)bp
->blk_cksum
.zc_word
[1],
2499 (u_longlong_t
)bp
->blk_cksum
.zc_word
[2],
2500 (u_longlong_t
)bp
->blk_cksum
.zc_word
[3]);
2505 print_indirect(spa_t
*spa
, blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2506 const dnode_phys_t
*dnp
)
2508 char blkbuf
[BP_SPRINTF_LEN
];
2511 if (!BP_IS_EMBEDDED(bp
)) {
2512 ASSERT3U(BP_GET_TYPE(bp
), ==, dnp
->dn_type
);
2513 ASSERT3U(BP_GET_LEVEL(bp
), ==, zb
->zb_level
);
2516 (void) printf("%16llx ", (u_longlong_t
)blkid2offset(dnp
, bp
, zb
));
2518 ASSERT(zb
->zb_level
>= 0);
2520 for (l
= dnp
->dn_nlevels
- 1; l
>= -1; l
--) {
2521 if (l
== zb
->zb_level
) {
2522 (void) printf("L%llx", (u_longlong_t
)zb
->zb_level
);
2528 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), bp
, B_FALSE
);
2529 if (dump_opt
['Z'] && BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_ZSTD
)
2530 snprintf_zstd_header(spa
, blkbuf
, sizeof (blkbuf
), bp
);
2531 (void) printf("%s\n", blkbuf
);
2535 visit_indirect(spa_t
*spa
, const dnode_phys_t
*dnp
,
2536 blkptr_t
*bp
, const zbookmark_phys_t
*zb
)
2540 if (BP_GET_LOGICAL_BIRTH(bp
) == 0)
2543 print_indirect(spa
, bp
, zb
, dnp
);
2545 if (BP_GET_LEVEL(bp
) > 0 && !BP_IS_HOLE(bp
)) {
2546 arc_flags_t flags
= ARC_FLAG_WAIT
;
2549 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
2552 ASSERT(!BP_IS_REDACTED(bp
));
2554 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2555 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_CANFAIL
, &flags
, zb
);
2558 ASSERT(buf
->b_data
);
2560 /* recursively visit blocks below this */
2562 for (i
= 0; i
< epb
; i
++, cbp
++) {
2563 zbookmark_phys_t czb
;
2565 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
2567 zb
->zb_blkid
* epb
+ i
);
2568 err
= visit_indirect(spa
, dnp
, cbp
, &czb
);
2571 fill
+= BP_GET_FILL(cbp
);
2574 ASSERT3U(fill
, ==, BP_GET_FILL(bp
));
2575 arc_buf_destroy(buf
, &buf
);
2582 dump_indirect(dnode_t
*dn
)
2584 dnode_phys_t
*dnp
= dn
->dn_phys
;
2585 zbookmark_phys_t czb
;
2587 (void) printf("Indirect blocks:\n");
2589 SET_BOOKMARK(&czb
, dmu_objset_id(dn
->dn_objset
),
2590 dn
->dn_object
, dnp
->dn_nlevels
- 1, 0);
2591 for (int j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
2593 (void) visit_indirect(dmu_objset_spa(dn
->dn_objset
), dnp
,
2594 &dnp
->dn_blkptr
[j
], &czb
);
2597 (void) printf("\n");
2601 dump_dsl_dir(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2603 (void) os
, (void) object
;
2604 dsl_dir_phys_t
*dd
= data
;
2608 /* make sure nicenum has enough space */
2609 _Static_assert(sizeof (nice
) >= NN_NUMBUF_SZ
, "nice truncated");
2614 ASSERT3U(size
, >=, sizeof (dsl_dir_phys_t
));
2616 crtime
= dd
->dd_creation_time
;
2617 (void) printf("\t\tcreation_time = %s", ctime(&crtime
));
2618 (void) printf("\t\thead_dataset_obj = %llu\n",
2619 (u_longlong_t
)dd
->dd_head_dataset_obj
);
2620 (void) printf("\t\tparent_dir_obj = %llu\n",
2621 (u_longlong_t
)dd
->dd_parent_obj
);
2622 (void) printf("\t\torigin_obj = %llu\n",
2623 (u_longlong_t
)dd
->dd_origin_obj
);
2624 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2625 (u_longlong_t
)dd
->dd_child_dir_zapobj
);
2626 zdb_nicenum(dd
->dd_used_bytes
, nice
, sizeof (nice
));
2627 (void) printf("\t\tused_bytes = %s\n", nice
);
2628 zdb_nicenum(dd
->dd_compressed_bytes
, nice
, sizeof (nice
));
2629 (void) printf("\t\tcompressed_bytes = %s\n", nice
);
2630 zdb_nicenum(dd
->dd_uncompressed_bytes
, nice
, sizeof (nice
));
2631 (void) printf("\t\tuncompressed_bytes = %s\n", nice
);
2632 zdb_nicenum(dd
->dd_quota
, nice
, sizeof (nice
));
2633 (void) printf("\t\tquota = %s\n", nice
);
2634 zdb_nicenum(dd
->dd_reserved
, nice
, sizeof (nice
));
2635 (void) printf("\t\treserved = %s\n", nice
);
2636 (void) printf("\t\tprops_zapobj = %llu\n",
2637 (u_longlong_t
)dd
->dd_props_zapobj
);
2638 (void) printf("\t\tdeleg_zapobj = %llu\n",
2639 (u_longlong_t
)dd
->dd_deleg_zapobj
);
2640 (void) printf("\t\tflags = %llx\n",
2641 (u_longlong_t
)dd
->dd_flags
);
2644 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2646 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2653 (void) printf("\t\tclones = %llu\n",
2654 (u_longlong_t
)dd
->dd_clones
);
2658 dump_dsl_dataset(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2660 (void) os
, (void) object
;
2661 dsl_dataset_phys_t
*ds
= data
;
2663 char used
[32], compressed
[32], uncompressed
[32], unique
[32];
2664 char blkbuf
[BP_SPRINTF_LEN
];
2666 /* make sure nicenum has enough space */
2667 _Static_assert(sizeof (used
) >= NN_NUMBUF_SZ
, "used truncated");
2668 _Static_assert(sizeof (compressed
) >= NN_NUMBUF_SZ
,
2669 "compressed truncated");
2670 _Static_assert(sizeof (uncompressed
) >= NN_NUMBUF_SZ
,
2671 "uncompressed truncated");
2672 _Static_assert(sizeof (unique
) >= NN_NUMBUF_SZ
, "unique truncated");
2677 ASSERT(size
== sizeof (*ds
));
2678 crtime
= ds
->ds_creation_time
;
2679 zdb_nicenum(ds
->ds_referenced_bytes
, used
, sizeof (used
));
2680 zdb_nicenum(ds
->ds_compressed_bytes
, compressed
, sizeof (compressed
));
2681 zdb_nicenum(ds
->ds_uncompressed_bytes
, uncompressed
,
2682 sizeof (uncompressed
));
2683 zdb_nicenum(ds
->ds_unique_bytes
, unique
, sizeof (unique
));
2684 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ds
->ds_bp
);
2686 (void) printf("\t\tdir_obj = %llu\n",
2687 (u_longlong_t
)ds
->ds_dir_obj
);
2688 (void) printf("\t\tprev_snap_obj = %llu\n",
2689 (u_longlong_t
)ds
->ds_prev_snap_obj
);
2690 (void) printf("\t\tprev_snap_txg = %llu\n",
2691 (u_longlong_t
)ds
->ds_prev_snap_txg
);
2692 (void) printf("\t\tnext_snap_obj = %llu\n",
2693 (u_longlong_t
)ds
->ds_next_snap_obj
);
2694 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2695 (u_longlong_t
)ds
->ds_snapnames_zapobj
);
2696 (void) printf("\t\tnum_children = %llu\n",
2697 (u_longlong_t
)ds
->ds_num_children
);
2698 (void) printf("\t\tuserrefs_obj = %llu\n",
2699 (u_longlong_t
)ds
->ds_userrefs_obj
);
2700 (void) printf("\t\tcreation_time = %s", ctime(&crtime
));
2701 (void) printf("\t\tcreation_txg = %llu\n",
2702 (u_longlong_t
)ds
->ds_creation_txg
);
2703 (void) printf("\t\tdeadlist_obj = %llu\n",
2704 (u_longlong_t
)ds
->ds_deadlist_obj
);
2705 (void) printf("\t\tused_bytes = %s\n", used
);
2706 (void) printf("\t\tcompressed_bytes = %s\n", compressed
);
2707 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed
);
2708 (void) printf("\t\tunique = %s\n", unique
);
2709 (void) printf("\t\tfsid_guid = %llu\n",
2710 (u_longlong_t
)ds
->ds_fsid_guid
);
2711 (void) printf("\t\tguid = %llu\n",
2712 (u_longlong_t
)ds
->ds_guid
);
2713 (void) printf("\t\tflags = %llx\n",
2714 (u_longlong_t
)ds
->ds_flags
);
2715 (void) printf("\t\tnext_clones_obj = %llu\n",
2716 (u_longlong_t
)ds
->ds_next_clones_obj
);
2717 (void) printf("\t\tprops_obj = %llu\n",
2718 (u_longlong_t
)ds
->ds_props_obj
);
2719 (void) printf("\t\tbp = %s\n", blkbuf
);
2723 dump_bptree_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
2725 (void) arg
, (void) tx
;
2726 char blkbuf
[BP_SPRINTF_LEN
];
2728 if (BP_GET_LOGICAL_BIRTH(bp
) != 0) {
2729 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
2730 (void) printf("\t%s\n", blkbuf
);
2736 dump_bptree(objset_t
*os
, uint64_t obj
, const char *name
)
2742 /* make sure nicenum has enough space */
2743 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
2745 if (dump_opt
['d'] < 3)
2748 VERIFY3U(0, ==, dmu_bonus_hold(os
, obj
, FTAG
, &db
));
2750 zdb_nicenum(bt
->bt_bytes
, bytes
, sizeof (bytes
));
2751 (void) printf("\n %s: %llu datasets, %s\n",
2752 name
, (unsigned long long)(bt
->bt_end
- bt
->bt_begin
), bytes
);
2753 dmu_buf_rele(db
, FTAG
);
2755 if (dump_opt
['d'] < 5)
2758 (void) printf("\n");
2760 (void) bptree_iterate(os
, obj
, B_FALSE
, dump_bptree_cb
, NULL
, NULL
);
2764 dump_bpobj_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
, dmu_tx_t
*tx
)
2766 (void) arg
, (void) tx
;
2767 char blkbuf
[BP_SPRINTF_LEN
];
2769 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) != 0);
2770 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), bp
, bp_freed
);
2771 (void) printf("\t%s\n", blkbuf
);
2776 dump_full_bpobj(bpobj_t
*bpo
, const char *name
, int indent
)
2783 /* make sure nicenum has enough space */
2784 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
2785 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
2786 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
2788 if (dump_opt
['d'] < 3)
2791 zdb_nicenum(bpo
->bpo_phys
->bpo_bytes
, bytes
, sizeof (bytes
));
2792 if (bpo
->bpo_havesubobj
&& bpo
->bpo_phys
->bpo_subobjs
!= 0) {
2793 zdb_nicenum(bpo
->bpo_phys
->bpo_comp
, comp
, sizeof (comp
));
2794 zdb_nicenum(bpo
->bpo_phys
->bpo_uncomp
, uncomp
, sizeof (uncomp
));
2795 if (bpo
->bpo_havefreed
) {
2796 (void) printf(" %*s: object %llu, %llu local "
2797 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2798 "%s (%s/%s comp)\n",
2800 (u_longlong_t
)bpo
->bpo_object
,
2801 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2802 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_freed
,
2803 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_subobjs
,
2804 (u_longlong_t
)bpo
->bpo_phys
->bpo_subobjs
,
2805 bytes
, comp
, uncomp
);
2807 (void) printf(" %*s: object %llu, %llu local "
2808 "blkptrs, %llu subobjs in object %llu, "
2809 "%s (%s/%s comp)\n",
2811 (u_longlong_t
)bpo
->bpo_object
,
2812 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2813 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_subobjs
,
2814 (u_longlong_t
)bpo
->bpo_phys
->bpo_subobjs
,
2815 bytes
, comp
, uncomp
);
2818 for (i
= 0; i
< bpo
->bpo_phys
->bpo_num_subobjs
; i
++) {
2822 VERIFY0(dmu_read(bpo
->bpo_os
,
2823 bpo
->bpo_phys
->bpo_subobjs
,
2824 i
* sizeof (subobj
), sizeof (subobj
), &subobj
, 0));
2825 error
= bpobj_open(&subbpo
, bpo
->bpo_os
, subobj
);
2827 (void) printf("ERROR %u while trying to open "
2829 error
, (u_longlong_t
)subobj
);
2832 dump_full_bpobj(&subbpo
, "subobj", indent
+ 1);
2833 bpobj_close(&subbpo
);
2836 if (bpo
->bpo_havefreed
) {
2837 (void) printf(" %*s: object %llu, %llu blkptrs, "
2840 (u_longlong_t
)bpo
->bpo_object
,
2841 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2842 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_freed
,
2845 (void) printf(" %*s: object %llu, %llu blkptrs, "
2848 (u_longlong_t
)bpo
->bpo_object
,
2849 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2854 if (dump_opt
['d'] < 5)
2859 (void) bpobj_iterate_nofree(bpo
, dump_bpobj_cb
, NULL
, NULL
);
2860 (void) printf("\n");
2865 dump_bookmark(dsl_pool_t
*dp
, char *name
, boolean_t print_redact
,
2866 boolean_t print_list
)
2869 zfs_bookmark_phys_t prop
;
2870 objset_t
*mos
= dp
->dp_spa
->spa_meta_objset
;
2871 err
= dsl_bookmark_lookup(dp
, name
, NULL
, &prop
);
2877 (void) printf("\t#%s: ", strchr(name
, '#') + 1);
2878 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
2879 "%llu redaction_obj: %llu}\n", (u_longlong_t
)prop
.zbm_guid
,
2880 (u_longlong_t
)prop
.zbm_creation_txg
,
2881 (u_longlong_t
)prop
.zbm_creation_time
,
2882 (u_longlong_t
)prop
.zbm_redaction_obj
);
2884 IMPLY(print_list
, print_redact
);
2885 if (!print_redact
|| prop
.zbm_redaction_obj
== 0)
2888 redaction_list_t
*rl
;
2889 VERIFY0(dsl_redaction_list_hold_obj(dp
,
2890 prop
.zbm_redaction_obj
, FTAG
, &rl
));
2892 redaction_list_phys_t
*rlp
= rl
->rl_phys
;
2893 (void) printf("\tRedacted:\n\t\tProgress: ");
2894 if (rlp
->rlp_last_object
!= UINT64_MAX
||
2895 rlp
->rlp_last_blkid
!= UINT64_MAX
) {
2896 (void) printf("%llu %llu (incomplete)\n",
2897 (u_longlong_t
)rlp
->rlp_last_object
,
2898 (u_longlong_t
)rlp
->rlp_last_blkid
);
2900 (void) printf("complete\n");
2902 (void) printf("\t\tSnapshots: [");
2903 for (unsigned int i
= 0; i
< rlp
->rlp_num_snaps
; i
++) {
2905 (void) printf(", ");
2906 (void) printf("%0llu",
2907 (u_longlong_t
)rlp
->rlp_snaps
[i
]);
2909 (void) printf("]\n\t\tLength: %llu\n",
2910 (u_longlong_t
)rlp
->rlp_num_entries
);
2913 dsl_redaction_list_rele(rl
, FTAG
);
2917 if (rlp
->rlp_num_entries
== 0) {
2918 dsl_redaction_list_rele(rl
, FTAG
);
2919 (void) printf("\t\tRedaction List: []\n\n");
2923 redact_block_phys_t
*rbp_buf
;
2925 dmu_object_info_t doi
;
2927 VERIFY0(dmu_object_info(mos
, prop
.zbm_redaction_obj
, &doi
));
2928 size
= doi
.doi_max_offset
;
2929 rbp_buf
= kmem_alloc(size
, KM_SLEEP
);
2931 err
= dmu_read(mos
, prop
.zbm_redaction_obj
, 0, size
,
2934 dsl_redaction_list_rele(rl
, FTAG
);
2935 kmem_free(rbp_buf
, size
);
2939 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
2940 "%llx, blksz: %x, count: %llx}",
2941 (u_longlong_t
)rbp_buf
[0].rbp_object
,
2942 (u_longlong_t
)rbp_buf
[0].rbp_blkid
,
2943 (uint_t
)(redact_block_get_size(&rbp_buf
[0])),
2944 (u_longlong_t
)redact_block_get_count(&rbp_buf
[0]));
2946 for (size_t i
= 1; i
< rlp
->rlp_num_entries
; i
++) {
2947 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
2948 "blksz: %x, count: %llx}",
2949 (u_longlong_t
)rbp_buf
[i
].rbp_object
,
2950 (u_longlong_t
)rbp_buf
[i
].rbp_blkid
,
2951 (uint_t
)(redact_block_get_size(&rbp_buf
[i
])),
2952 (u_longlong_t
)redact_block_get_count(&rbp_buf
[i
]));
2954 dsl_redaction_list_rele(rl
, FTAG
);
2955 kmem_free(rbp_buf
, size
);
2956 (void) printf("]\n\n");
2961 dump_bookmarks(objset_t
*os
, int verbosity
)
2964 zap_attribute_t
*attrp
;
2965 dsl_dataset_t
*ds
= dmu_objset_ds(os
);
2966 dsl_pool_t
*dp
= spa_get_dsl(os
->os_spa
);
2967 objset_t
*mos
= os
->os_spa
->spa_meta_objset
;
2970 attrp
= zap_attribute_alloc();
2971 dsl_pool_config_enter(dp
, FTAG
);
2973 for (zap_cursor_init(&zc
, mos
, ds
->ds_bookmarks_obj
);
2974 zap_cursor_retrieve(&zc
, attrp
) == 0;
2975 zap_cursor_advance(&zc
)) {
2976 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
2977 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
2979 dmu_objset_name(os
, osname
);
2980 len
= snprintf(buf
, sizeof (buf
), "%s#%s", osname
,
2982 VERIFY3S(len
, <, ZFS_MAX_DATASET_NAME_LEN
);
2983 (void) dump_bookmark(dp
, buf
, verbosity
>= 5, verbosity
>= 6);
2985 zap_cursor_fini(&zc
);
2986 dsl_pool_config_exit(dp
, FTAG
);
2987 zap_attribute_free(attrp
);
2991 bpobj_count_refd(bpobj_t
*bpo
)
2993 mos_obj_refd(bpo
->bpo_object
);
2995 if (bpo
->bpo_havesubobj
&& bpo
->bpo_phys
->bpo_subobjs
!= 0) {
2996 mos_obj_refd(bpo
->bpo_phys
->bpo_subobjs
);
2997 for (uint64_t i
= 0; i
< bpo
->bpo_phys
->bpo_num_subobjs
; i
++) {
3001 VERIFY0(dmu_read(bpo
->bpo_os
,
3002 bpo
->bpo_phys
->bpo_subobjs
,
3003 i
* sizeof (subobj
), sizeof (subobj
), &subobj
, 0));
3004 error
= bpobj_open(&subbpo
, bpo
->bpo_os
, subobj
);
3006 (void) printf("ERROR %u while trying to open "
3008 error
, (u_longlong_t
)subobj
);
3011 bpobj_count_refd(&subbpo
);
3012 bpobj_close(&subbpo
);
3018 dsl_deadlist_entry_count_refd(void *arg
, dsl_deadlist_entry_t
*dle
)
3021 uint64_t empty_bpobj
= spa
->spa_dsl_pool
->dp_empty_bpobj
;
3022 if (dle
->dle_bpobj
.bpo_object
!= empty_bpobj
)
3023 bpobj_count_refd(&dle
->dle_bpobj
);
3028 dsl_deadlist_entry_dump(void *arg
, dsl_deadlist_entry_t
*dle
)
3030 ASSERT(arg
== NULL
);
3031 if (dump_opt
['d'] >= 5) {
3033 (void) snprintf(buf
, sizeof (buf
),
3034 "mintxg %llu -> obj %llu",
3035 (longlong_t
)dle
->dle_mintxg
,
3036 (longlong_t
)dle
->dle_bpobj
.bpo_object
);
3038 dump_full_bpobj(&dle
->dle_bpobj
, buf
, 0);
3040 (void) printf("mintxg %llu -> obj %llu\n",
3041 (longlong_t
)dle
->dle_mintxg
,
3042 (longlong_t
)dle
->dle_bpobj
.bpo_object
);
3048 dump_blkptr_list(dsl_deadlist_t
*dl
, const char *name
)
3054 spa_t
*spa
= dmu_objset_spa(dl
->dl_os
);
3055 uint64_t empty_bpobj
= spa
->spa_dsl_pool
->dp_empty_bpobj
;
3057 if (dl
->dl_oldfmt
) {
3058 if (dl
->dl_bpobj
.bpo_object
!= empty_bpobj
)
3059 bpobj_count_refd(&dl
->dl_bpobj
);
3061 mos_obj_refd(dl
->dl_object
);
3062 dsl_deadlist_iterate(dl
, dsl_deadlist_entry_count_refd
, spa
);
3065 /* make sure nicenum has enough space */
3066 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
3067 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
3068 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
3069 _Static_assert(sizeof (entries
) >= NN_NUMBUF_SZ
, "entries truncated");
3071 if (dump_opt
['d'] < 3)
3074 if (dl
->dl_oldfmt
) {
3075 dump_full_bpobj(&dl
->dl_bpobj
, "old-format deadlist", 0);
3079 zdb_nicenum(dl
->dl_phys
->dl_used
, bytes
, sizeof (bytes
));
3080 zdb_nicenum(dl
->dl_phys
->dl_comp
, comp
, sizeof (comp
));
3081 zdb_nicenum(dl
->dl_phys
->dl_uncomp
, uncomp
, sizeof (uncomp
));
3082 zdb_nicenum(avl_numnodes(&dl
->dl_tree
), entries
, sizeof (entries
));
3083 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3084 name
, bytes
, comp
, uncomp
, entries
);
3086 if (dump_opt
['d'] < 4)
3089 (void) putchar('\n');
3091 dsl_deadlist_iterate(dl
, dsl_deadlist_entry_dump
, NULL
);
3095 verify_dd_livelist(objset_t
*os
)
3097 uint64_t ll_used
, used
, ll_comp
, comp
, ll_uncomp
, uncomp
;
3098 dsl_pool_t
*dp
= spa_get_dsl(os
->os_spa
);
3099 dsl_dir_t
*dd
= os
->os_dsl_dataset
->ds_dir
;
3101 ASSERT(!dmu_objset_is_snapshot(os
));
3102 if (!dsl_deadlist_is_open(&dd
->dd_livelist
))
3105 /* Iterate through the livelist to check for duplicates */
3106 dsl_deadlist_iterate(&dd
->dd_livelist
, sublivelist_verify_lightweight
,
3109 dsl_pool_config_enter(dp
, FTAG
);
3110 dsl_deadlist_space(&dd
->dd_livelist
, &ll_used
,
3111 &ll_comp
, &ll_uncomp
);
3113 dsl_dataset_t
*origin_ds
;
3114 ASSERT(dsl_pool_config_held(dp
));
3115 VERIFY0(dsl_dataset_hold_obj(dp
,
3116 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
, &origin_ds
));
3117 VERIFY0(dsl_dataset_space_written(origin_ds
, os
->os_dsl_dataset
,
3118 &used
, &comp
, &uncomp
));
3119 dsl_dataset_rele(origin_ds
, FTAG
);
3120 dsl_pool_config_exit(dp
, FTAG
);
3122 * It's possible that the dataset's uncomp space is larger than the
3123 * livelist's because livelists do not track embedded block pointers
3125 if (used
!= ll_used
|| comp
!= ll_comp
|| uncomp
< ll_uncomp
) {
3126 char nice_used
[32], nice_comp
[32], nice_uncomp
[32];
3127 (void) printf("Discrepancy in space accounting:\n");
3128 zdb_nicenum(used
, nice_used
, sizeof (nice_used
));
3129 zdb_nicenum(comp
, nice_comp
, sizeof (nice_comp
));
3130 zdb_nicenum(uncomp
, nice_uncomp
, sizeof (nice_uncomp
));
3131 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3132 nice_used
, nice_comp
, nice_uncomp
);
3133 zdb_nicenum(ll_used
, nice_used
, sizeof (nice_used
));
3134 zdb_nicenum(ll_comp
, nice_comp
, sizeof (nice_comp
));
3135 zdb_nicenum(ll_uncomp
, nice_uncomp
, sizeof (nice_uncomp
));
3136 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3137 nice_used
, nice_comp
, nice_uncomp
);
3143 static char *key_material
= NULL
;
3146 zdb_derive_key(dsl_dir_t
*dd
, uint8_t *key_out
)
3148 uint64_t keyformat
, salt
, iters
;
3152 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
3153 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), sizeof (uint64_t),
3156 switch (keyformat
) {
3157 case ZFS_KEYFORMAT_HEX
:
3158 for (i
= 0; i
< WRAPPING_KEY_LEN
* 2; i
+= 2) {
3159 if (!isxdigit(key_material
[i
]) ||
3160 !isxdigit(key_material
[i
+1]))
3162 if (sscanf(&key_material
[i
], "%02hhx", &c
) != 1)
3168 case ZFS_KEYFORMAT_PASSPHRASE
:
3169 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
,
3170 dd
->dd_crypto_obj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
3171 sizeof (uint64_t), 1, &salt
));
3172 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
,
3173 dd
->dd_crypto_obj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
3174 sizeof (uint64_t), 1, &iters
));
3176 if (PKCS5_PBKDF2_HMAC_SHA1(key_material
, strlen(key_material
),
3177 ((uint8_t *)&salt
), sizeof (uint64_t), iters
,
3178 WRAPPING_KEY_LEN
, key_out
) != 1)
3184 fatal("no support for key format %u\n",
3185 (unsigned int) keyformat
);
3191 static char encroot
[ZFS_MAX_DATASET_NAME_LEN
];
3192 static boolean_t key_loaded
= B_FALSE
;
3195 zdb_load_key(objset_t
*os
)
3198 dsl_dir_t
*dd
, *rdd
;
3199 uint8_t key
[WRAPPING_KEY_LEN
];
3203 dp
= spa_get_dsl(os
->os_spa
);
3204 dd
= os
->os_dsl_dataset
->ds_dir
;
3206 dsl_pool_config_enter(dp
, FTAG
);
3207 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
3208 DSL_CRYPTO_KEY_ROOT_DDOBJ
, sizeof (uint64_t), 1, &rddobj
));
3209 VERIFY0(dsl_dir_hold_obj(dd
->dd_pool
, rddobj
, NULL
, FTAG
, &rdd
));
3210 dsl_dir_name(rdd
, encroot
);
3211 dsl_dir_rele(rdd
, FTAG
);
3213 if (!zdb_derive_key(dd
, key
))
3214 fatal("couldn't derive encryption key");
3216 dsl_pool_config_exit(dp
, FTAG
);
3218 ASSERT3U(dsl_dataset_get_keystatus(dd
), ==, ZFS_KEYSTATUS_UNAVAILABLE
);
3220 dsl_crypto_params_t
*dcp
;
3221 nvlist_t
*crypto_args
;
3223 crypto_args
= fnvlist_alloc();
3224 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
3225 (uint8_t *)key
, WRAPPING_KEY_LEN
);
3226 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
,
3227 NULL
, crypto_args
, &dcp
));
3228 err
= spa_keystore_load_wkey(encroot
, dcp
, B_FALSE
);
3230 dsl_crypto_params_free(dcp
, (err
!= 0));
3231 fnvlist_free(crypto_args
);
3235 "couldn't load encryption key for %s: %s",
3236 encroot
, err
== ZFS_ERR_CRYPTO_NOTSUP
?
3237 "crypto params not supported" : strerror(err
));
3239 ASSERT3U(dsl_dataset_get_keystatus(dd
), ==, ZFS_KEYSTATUS_AVAILABLE
);
3241 printf("Unlocked encryption root: %s\n", encroot
);
3242 key_loaded
= B_TRUE
;
3246 zdb_unload_key(void)
3251 VERIFY0(spa_keystore_unload_wkey(encroot
));
3252 key_loaded
= B_FALSE
;
3255 static avl_tree_t idx_tree
;
3256 static avl_tree_t domain_tree
;
3257 static boolean_t fuid_table_loaded
;
3258 static objset_t
*sa_os
= NULL
;
3259 static sa_attr_type_t
*sa_attr_table
= NULL
;
3262 open_objset(const char *path
, const void *tag
, objset_t
**osp
)
3265 uint64_t sa_attrs
= 0;
3266 uint64_t version
= 0;
3268 VERIFY3P(sa_os
, ==, NULL
);
3271 * We can't own an objset if it's redacted. Therefore, we do this
3272 * dance: hold the objset, then acquire a long hold on its dataset, then
3273 * release the pool (which is held as part of holding the objset).
3276 if (dump_opt
['K']) {
3277 /* decryption requested, try to load keys */
3278 err
= dmu_objset_hold(path
, tag
, osp
);
3280 (void) fprintf(stderr
, "failed to hold dataset "
3282 path
, strerror(err
));
3285 dsl_dataset_long_hold(dmu_objset_ds(*osp
), tag
);
3286 dsl_pool_rele(dmu_objset_pool(*osp
), tag
);
3288 /* succeeds or dies */
3291 /* release it all */
3292 dsl_dataset_long_rele(dmu_objset_ds(*osp
), tag
);
3293 dsl_dataset_rele(dmu_objset_ds(*osp
), tag
);
3296 int ds_hold_flags
= key_loaded
? DS_HOLD_FLAG_DECRYPT
: 0;
3298 err
= dmu_objset_hold_flags(path
, ds_hold_flags
, tag
, osp
);
3300 (void) fprintf(stderr
, "failed to hold dataset '%s': %s\n",
3301 path
, strerror(err
));
3304 dsl_dataset_long_hold(dmu_objset_ds(*osp
), tag
);
3305 dsl_pool_rele(dmu_objset_pool(*osp
), tag
);
3307 if (dmu_objset_type(*osp
) == DMU_OST_ZFS
&&
3308 (key_loaded
|| !(*osp
)->os_encrypted
)) {
3309 (void) zap_lookup(*osp
, MASTER_NODE_OBJ
, ZPL_VERSION_STR
,
3311 if (version
>= ZPL_VERSION_SA
) {
3312 (void) zap_lookup(*osp
, MASTER_NODE_OBJ
, ZFS_SA_ATTRS
,
3315 err
= sa_setup(*osp
, sa_attrs
, zfs_attr_table
, ZPL_END
,
3318 (void) fprintf(stderr
, "sa_setup failed: %s\n",
3320 dsl_dataset_long_rele(dmu_objset_ds(*osp
), tag
);
3321 dsl_dataset_rele_flags(dmu_objset_ds(*osp
),
3322 ds_hold_flags
, tag
);
3332 close_objset(objset_t
*os
, const void *tag
)
3334 VERIFY3P(os
, ==, sa_os
);
3335 if (os
->os_sa
!= NULL
)
3337 dsl_dataset_long_rele(dmu_objset_ds(os
), tag
);
3338 dsl_dataset_rele_flags(dmu_objset_ds(os
),
3339 key_loaded
? DS_HOLD_FLAG_DECRYPT
: 0, tag
);
3340 sa_attr_table
= NULL
;
3347 fuid_table_destroy(void)
3349 if (fuid_table_loaded
) {
3350 zfs_fuid_table_destroy(&idx_tree
, &domain_tree
);
3351 fuid_table_loaded
= B_FALSE
;
3356 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3357 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3358 * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3359 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3361 * Note that this is not a particularly efficient way to do this, but
3362 * ddt_remove() is the only public method that can do the work we need, and it
3363 * requires the right locks and etc to do the job. This is only ever called
3364 * during zdb shutdown so efficiency is not especially important.
3367 zdb_ddt_cleanup(spa_t
*spa
)
3369 for (enum zio_checksum c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++) {
3370 ddt_t
*ddt
= spa
->spa_ddt
[c
];
3374 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3376 ddt_entry_t
*dde
= avl_first(&ddt
->ddt_tree
), *next
;
3378 next
= AVL_NEXT(&ddt
->ddt_tree
, dde
);
3380 ddt_remove(ddt
, dde
);
3384 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3389 zdb_exit(int reason
)
3392 zdb_ddt_cleanup(spa
);
3395 close_objset(os
, FTAG
);
3396 } else if (spa
!= NULL
) {
3397 spa_close(spa
, FTAG
);
3400 fuid_table_destroy();
3402 if (kernel_init_done
)
3409 * print uid or gid information.
3410 * For normal POSIX id just the id is printed in decimal format.
3411 * For CIFS files with FUID the fuid is printed in hex followed by
3412 * the domain-rid string.
3415 print_idstr(uint64_t id
, const char *id_type
)
3417 if (FUID_INDEX(id
)) {
3418 const char *domain
=
3419 zfs_fuid_idx_domain(&idx_tree
, FUID_INDEX(id
));
3420 (void) printf("\t%s %llx [%s-%d]\n", id_type
,
3421 (u_longlong_t
)id
, domain
, (int)FUID_RID(id
));
3423 (void) printf("\t%s %llu\n", id_type
, (u_longlong_t
)id
);
3429 dump_uidgid(objset_t
*os
, uint64_t uid
, uint64_t gid
)
3431 uint32_t uid_idx
, gid_idx
;
3433 uid_idx
= FUID_INDEX(uid
);
3434 gid_idx
= FUID_INDEX(gid
);
3436 /* Load domain table, if not already loaded */
3437 if (!fuid_table_loaded
&& (uid_idx
|| gid_idx
)) {
3440 /* first find the fuid object. It lives in the master node */
3441 VERIFY(zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_FUID_TABLES
,
3442 8, 1, &fuid_obj
) == 0);
3443 zfs_fuid_avl_tree_create(&idx_tree
, &domain_tree
);
3444 (void) zfs_fuid_table_load(os
, fuid_obj
,
3445 &idx_tree
, &domain_tree
);
3446 fuid_table_loaded
= B_TRUE
;
3449 print_idstr(uid
, "uid");
3450 print_idstr(gid
, "gid");
3454 dump_znode_sa_xattr(sa_handle_t
*hdl
)
3457 nvpair_t
*elem
= NULL
;
3458 int sa_xattr_size
= 0;
3459 int sa_xattr_entries
= 0;
3461 char *sa_xattr_packed
;
3463 error
= sa_size(hdl
, sa_attr_table
[ZPL_DXATTR
], &sa_xattr_size
);
3464 if (error
|| sa_xattr_size
== 0)
3467 sa_xattr_packed
= malloc(sa_xattr_size
);
3468 if (sa_xattr_packed
== NULL
)
3471 error
= sa_lookup(hdl
, sa_attr_table
[ZPL_DXATTR
],
3472 sa_xattr_packed
, sa_xattr_size
);
3474 free(sa_xattr_packed
);
3478 error
= nvlist_unpack(sa_xattr_packed
, sa_xattr_size
, &sa_xattr
, 0);
3480 free(sa_xattr_packed
);
3484 while ((elem
= nvlist_next_nvpair(sa_xattr
, elem
)) != NULL
)
3487 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3488 sa_xattr_size
, sa_xattr_entries
);
3489 while ((elem
= nvlist_next_nvpair(sa_xattr
, elem
)) != NULL
) {
3490 boolean_t can_print
= !dump_opt
['P'];
3494 (void) printf("\t\t%s = ", nvpair_name(elem
));
3495 nvpair_value_byte_array(elem
, &value
, &cnt
);
3497 for (idx
= 0; idx
< cnt
; ++idx
) {
3498 if (!isprint(value
[idx
])) {
3499 can_print
= B_FALSE
;
3504 for (idx
= 0; idx
< cnt
; ++idx
) {
3506 (void) putchar(value
[idx
]);
3508 (void) printf("\\%3.3o", value
[idx
]);
3510 (void) putchar('\n');
3513 nvlist_free(sa_xattr
);
3514 free(sa_xattr_packed
);
3518 dump_znode_symlink(sa_handle_t
*hdl
)
3520 int sa_symlink_size
= 0;
3521 char linktarget
[MAXPATHLEN
];
3524 error
= sa_size(hdl
, sa_attr_table
[ZPL_SYMLINK
], &sa_symlink_size
);
3525 if (error
|| sa_symlink_size
== 0) {
3528 if (sa_symlink_size
>= sizeof (linktarget
)) {
3529 (void) printf("symlink size %d is too large\n",
3533 linktarget
[sa_symlink_size
] = '\0';
3534 if (sa_lookup(hdl
, sa_attr_table
[ZPL_SYMLINK
],
3535 &linktarget
, sa_symlink_size
) == 0)
3536 (void) printf("\ttarget %s\n", linktarget
);
3540 dump_znode(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3542 (void) data
, (void) size
;
3543 char path
[MAXPATHLEN
* 2]; /* allow for xattr and failure prefix */
3545 uint64_t xattr
, rdev
, gen
;
3546 uint64_t uid
, gid
, mode
, fsize
, parent
, links
;
3548 uint64_t acctm
[2], modtm
[2], chgtm
[2], crtm
[2];
3549 time_t z_crtime
, z_atime
, z_mtime
, z_ctime
;
3550 sa_bulk_attr_t bulk
[12];
3554 VERIFY3P(os
, ==, sa_os
);
3555 if (sa_handle_get(os
, object
, NULL
, SA_HDL_PRIVATE
, &hdl
)) {
3556 (void) printf("Failed to get handle for SA znode\n");
3560 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_UID
], NULL
, &uid
, 8);
3561 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_GID
], NULL
, &gid
, 8);
3562 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_LINKS
], NULL
,
3564 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_GEN
], NULL
, &gen
, 8);
3565 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_MODE
], NULL
,
3567 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_PARENT
],
3569 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_SIZE
], NULL
,
3571 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_ATIME
], NULL
,
3573 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_MTIME
], NULL
,
3575 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_CRTIME
], NULL
,
3577 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_CTIME
], NULL
,
3579 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_FLAGS
], NULL
,
3582 if (sa_bulk_lookup(hdl
, bulk
, idx
)) {
3583 (void) sa_handle_destroy(hdl
);
3587 z_crtime
= (time_t)crtm
[0];
3588 z_atime
= (time_t)acctm
[0];
3589 z_mtime
= (time_t)modtm
[0];
3590 z_ctime
= (time_t)chgtm
[0];
3592 if (dump_opt
['d'] > 4) {
3593 error
= zfs_obj_to_path(os
, object
, path
, sizeof (path
));
3594 if (error
== ESTALE
) {
3595 (void) snprintf(path
, sizeof (path
), "on delete queue");
3596 } else if (error
!= 0) {
3598 (void) snprintf(path
, sizeof (path
),
3599 "path not found, possibly leaked");
3601 (void) printf("\tpath %s\n", path
);
3605 dump_znode_symlink(hdl
);
3606 dump_uidgid(os
, uid
, gid
);
3607 (void) printf("\tatime %s", ctime(&z_atime
));
3608 (void) printf("\tmtime %s", ctime(&z_mtime
));
3609 (void) printf("\tctime %s", ctime(&z_ctime
));
3610 (void) printf("\tcrtime %s", ctime(&z_crtime
));
3611 (void) printf("\tgen %llu\n", (u_longlong_t
)gen
);
3612 (void) printf("\tmode %llo\n", (u_longlong_t
)mode
);
3613 (void) printf("\tsize %llu\n", (u_longlong_t
)fsize
);
3614 (void) printf("\tparent %llu\n", (u_longlong_t
)parent
);
3615 (void) printf("\tlinks %llu\n", (u_longlong_t
)links
);
3616 (void) printf("\tpflags %llx\n", (u_longlong_t
)pflags
);
3617 if (dmu_objset_projectquota_enabled(os
) && (pflags
& ZFS_PROJID
)) {
3620 if (sa_lookup(hdl
, sa_attr_table
[ZPL_PROJID
], &projid
,
3621 sizeof (uint64_t)) == 0)
3622 (void) printf("\tprojid %llu\n", (u_longlong_t
)projid
);
3624 if (sa_lookup(hdl
, sa_attr_table
[ZPL_XATTR
], &xattr
,
3625 sizeof (uint64_t)) == 0)
3626 (void) printf("\txattr %llu\n", (u_longlong_t
)xattr
);
3627 if (sa_lookup(hdl
, sa_attr_table
[ZPL_RDEV
], &rdev
,
3628 sizeof (uint64_t)) == 0)
3629 (void) printf("\trdev 0x%016llx\n", (u_longlong_t
)rdev
);
3630 dump_znode_sa_xattr(hdl
);
3631 sa_handle_destroy(hdl
);
3635 dump_acl(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3637 (void) os
, (void) object
, (void) data
, (void) size
;
3641 dump_dmu_objset(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3643 (void) os
, (void) object
, (void) data
, (void) size
;
3646 static object_viewer_t
*object_viewer
[DMU_OT_NUMTYPES
+ 1] = {
3647 dump_none
, /* unallocated */
3648 dump_zap
, /* object directory */
3649 dump_uint64
, /* object array */
3650 dump_none
, /* packed nvlist */
3651 dump_packed_nvlist
, /* packed nvlist size */
3652 dump_none
, /* bpobj */
3653 dump_bpobj
, /* bpobj header */
3654 dump_none
, /* SPA space map header */
3655 dump_none
, /* SPA space map */
3656 dump_none
, /* ZIL intent log */
3657 dump_dnode
, /* DMU dnode */
3658 dump_dmu_objset
, /* DMU objset */
3659 dump_dsl_dir
, /* DSL directory */
3660 dump_zap
, /* DSL directory child map */
3661 dump_zap
, /* DSL dataset snap map */
3662 dump_zap
, /* DSL props */
3663 dump_dsl_dataset
, /* DSL dataset */
3664 dump_znode
, /* ZFS znode */
3665 dump_acl
, /* ZFS V0 ACL */
3666 dump_uint8
, /* ZFS plain file */
3667 dump_zpldir
, /* ZFS directory */
3668 dump_zap
, /* ZFS master node */
3669 dump_zap
, /* ZFS delete queue */
3670 dump_uint8
, /* zvol object */
3671 dump_zap
, /* zvol prop */
3672 dump_uint8
, /* other uint8[] */
3673 dump_uint64
, /* other uint64[] */
3674 dump_zap
, /* other ZAP */
3675 dump_zap
, /* persistent error log */
3676 dump_uint8
, /* SPA history */
3677 dump_history_offsets
, /* SPA history offsets */
3678 dump_zap
, /* Pool properties */
3679 dump_zap
, /* DSL permissions */
3680 dump_acl
, /* ZFS ACL */
3681 dump_uint8
, /* ZFS SYSACL */
3682 dump_none
, /* FUID nvlist */
3683 dump_packed_nvlist
, /* FUID nvlist size */
3684 dump_zap
, /* DSL dataset next clones */
3685 dump_zap
, /* DSL scrub queue */
3686 dump_zap
, /* ZFS user/group/project used */
3687 dump_zap
, /* ZFS user/group/project quota */
3688 dump_zap
, /* snapshot refcount tags */
3689 dump_ddt_zap
, /* DDT ZAP object */
3690 dump_zap
, /* DDT statistics */
3691 dump_znode
, /* SA object */
3692 dump_zap
, /* SA Master Node */
3693 dump_sa_attrs
, /* SA attribute registration */
3694 dump_sa_layouts
, /* SA attribute layouts */
3695 dump_zap
, /* DSL scrub translations */
3696 dump_none
, /* fake dedup BP */
3697 dump_zap
, /* deadlist */
3698 dump_none
, /* deadlist hdr */
3699 dump_zap
, /* dsl clones */
3700 dump_bpobj_subobjs
, /* bpobj subobjs */
3701 dump_unknown
, /* Unknown type, must be last */
3705 match_object_type(dmu_object_type_t obj_type
, uint64_t flags
)
3707 boolean_t match
= B_TRUE
;
3710 case DMU_OT_DIRECTORY_CONTENTS
:
3711 if (!(flags
& ZOR_FLAG_DIRECTORY
))
3714 case DMU_OT_PLAIN_FILE_CONTENTS
:
3715 if (!(flags
& ZOR_FLAG_PLAIN_FILE
))
3718 case DMU_OT_SPACE_MAP
:
3719 if (!(flags
& ZOR_FLAG_SPACE_MAP
))
3723 if (strcmp(zdb_ot_name(obj_type
), "zap") == 0) {
3724 if (!(flags
& ZOR_FLAG_ZAP
))
3730 * If all bits except some of the supported flags are
3731 * set, the user combined the all-types flag (A) with
3732 * a negated flag to exclude some types (e.g. A-f to
3733 * show all object types except plain files).
3735 if ((flags
| ZOR_SUPPORTED_FLAGS
) != ZOR_FLAG_ALL_TYPES
)
3745 dump_object(objset_t
*os
, uint64_t object
, int verbosity
,
3746 boolean_t
*print_header
, uint64_t *dnode_slots_used
, uint64_t flags
)
3748 dmu_buf_t
*db
= NULL
;
3749 dmu_object_info_t doi
;
3751 boolean_t dnode_held
= B_FALSE
;
3754 char iblk
[32], dblk
[32], lsize
[32], asize
[32], fill
[32], dnsize
[32];
3755 char bonus_size
[32];
3759 /* make sure nicenum has enough space */
3760 _Static_assert(sizeof (iblk
) >= NN_NUMBUF_SZ
, "iblk truncated");
3761 _Static_assert(sizeof (dblk
) >= NN_NUMBUF_SZ
, "dblk truncated");
3762 _Static_assert(sizeof (lsize
) >= NN_NUMBUF_SZ
, "lsize truncated");
3763 _Static_assert(sizeof (asize
) >= NN_NUMBUF_SZ
, "asize truncated");
3764 _Static_assert(sizeof (bonus_size
) >= NN_NUMBUF_SZ
,
3765 "bonus_size truncated");
3767 if (*print_header
) {
3768 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3769 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3770 "lsize", "%full", "type");
3775 dn
= DMU_META_DNODE(os
);
3776 dmu_object_info_from_dnode(dn
, &doi
);
3779 * Encrypted datasets will have sensitive bonus buffers
3780 * encrypted. Therefore we cannot hold the bonus buffer and
3781 * must hold the dnode itself instead.
3783 error
= dmu_object_info(os
, object
, &doi
);
3785 fatal("dmu_object_info() failed, errno %u", error
);
3787 if (!key_loaded
&& os
->os_encrypted
&&
3788 DMU_OT_IS_ENCRYPTED(doi
.doi_bonus_type
)) {
3789 error
= dnode_hold(os
, object
, FTAG
, &dn
);
3791 fatal("dnode_hold() failed, errno %u", error
);
3792 dnode_held
= B_TRUE
;
3794 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
3796 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3798 bonus
= db
->db_data
;
3799 bsize
= db
->db_size
;
3800 dn
= DB_DNODE((dmu_buf_impl_t
*)db
);
3805 * Default to showing all object types if no flags were specified.
3807 if (flags
!= 0 && flags
!= ZOR_FLAG_ALL_TYPES
&&
3808 !match_object_type(doi
.doi_type
, flags
))
3811 if (dnode_slots_used
)
3812 *dnode_slots_used
= doi
.doi_dnodesize
/ DNODE_MIN_SIZE
;
3814 zdb_nicenum(doi
.doi_metadata_block_size
, iblk
, sizeof (iblk
));
3815 zdb_nicenum(doi
.doi_data_block_size
, dblk
, sizeof (dblk
));
3816 zdb_nicenum(doi
.doi_max_offset
, lsize
, sizeof (lsize
));
3817 zdb_nicenum(doi
.doi_physical_blocks_512
<< 9, asize
, sizeof (asize
));
3818 zdb_nicenum(doi
.doi_bonus_size
, bonus_size
, sizeof (bonus_size
));
3819 zdb_nicenum(doi
.doi_dnodesize
, dnsize
, sizeof (dnsize
));
3820 (void) snprintf(fill
, sizeof (fill
), "%6.2f", 100.0 *
3821 doi
.doi_fill_count
* doi
.doi_data_block_size
/ (object
== 0 ?
3822 DNODES_PER_BLOCK
: 1) / doi
.doi_max_offset
);
3826 if (doi
.doi_checksum
!= ZIO_CHECKSUM_INHERIT
|| verbosity
>= 6) {
3827 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3828 " (K=%s)", ZDB_CHECKSUM_NAME(doi
.doi_checksum
));
3831 if (doi
.doi_compress
== ZIO_COMPRESS_INHERIT
&&
3832 ZIO_COMPRESS_HASLEVEL(os
->os_compress
) && verbosity
>= 6) {
3833 const char *compname
= NULL
;
3834 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION
,
3835 ZIO_COMPRESS_RAW(os
->os_compress
, os
->os_complevel
),
3837 (void) snprintf(aux
+ strlen(aux
),
3838 sizeof (aux
) - strlen(aux
), " (Z=inherit=%s)",
3841 (void) snprintf(aux
+ strlen(aux
),
3842 sizeof (aux
) - strlen(aux
),
3843 " (Z=inherit=%s-unknown)",
3844 ZDB_COMPRESS_NAME(os
->os_compress
));
3846 } else if (doi
.doi_compress
== ZIO_COMPRESS_INHERIT
&& verbosity
>= 6) {
3847 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3848 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os
->os_compress
));
3849 } else if (doi
.doi_compress
!= ZIO_COMPRESS_INHERIT
|| verbosity
>= 6) {
3850 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3851 " (Z=%s)", ZDB_COMPRESS_NAME(doi
.doi_compress
));
3854 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3855 (u_longlong_t
)object
, doi
.doi_indirection
, iblk
, dblk
,
3856 asize
, dnsize
, lsize
, fill
, zdb_ot_name(doi
.doi_type
), aux
);
3858 if (doi
.doi_bonus_type
!= DMU_OT_NONE
&& verbosity
> 3) {
3859 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3860 "", "", "", "", "", "", bonus_size
, "bonus",
3861 zdb_ot_name(doi
.doi_bonus_type
));
3864 if (verbosity
>= 4) {
3865 (void) printf("\tdnode flags: %s%s%s%s\n",
3866 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USED_BYTES
) ?
3868 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USERUSED_ACCOUNTED
) ?
3869 "USERUSED_ACCOUNTED " : "",
3870 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USEROBJUSED_ACCOUNTED
) ?
3871 "USEROBJUSED_ACCOUNTED " : "",
3872 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) ?
3873 "SPILL_BLKPTR" : "");
3874 (void) printf("\tdnode maxblkid: %llu\n",
3875 (longlong_t
)dn
->dn_phys
->dn_maxblkid
);
3878 object_viewer
[ZDB_OT_TYPE(doi
.doi_bonus_type
)](os
,
3879 object
, bonus
, bsize
);
3881 (void) printf("\t\t(bonus encrypted)\n");
3885 (!os
->os_encrypted
|| !DMU_OT_IS_ENCRYPTED(doi
.doi_type
))) {
3886 object_viewer
[ZDB_OT_TYPE(doi
.doi_type
)](os
, object
,
3889 (void) printf("\t\t(object encrypted)\n");
3892 *print_header
= B_TRUE
;
3895 if (verbosity
>= 5) {
3896 if (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
3897 char blkbuf
[BP_SPRINTF_LEN
];
3898 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
),
3899 DN_SPILL_BLKPTR(dn
->dn_phys
), B_FALSE
);
3900 (void) printf("\nSpill block: %s\n", blkbuf
);
3905 if (verbosity
>= 5) {
3907 * Report the list of segments that comprise the object.
3911 uint64_t blkfill
= 1;
3914 if (dn
->dn_type
== DMU_OT_DNODE
) {
3916 blkfill
= DNODES_PER_BLOCK
;
3921 /* make sure nicenum has enough space */
3922 _Static_assert(sizeof (segsize
) >= NN_NUMBUF_SZ
,
3923 "segsize truncated");
3924 error
= dnode_next_offset(dn
,
3925 0, &start
, minlvl
, blkfill
, 0);
3929 error
= dnode_next_offset(dn
,
3930 DNODE_FIND_HOLE
, &end
, minlvl
, blkfill
, 0);
3931 zdb_nicenum(end
- start
, segsize
, sizeof (segsize
));
3932 (void) printf("\t\tsegment [%016llx, %016llx)"
3933 " size %5s\n", (u_longlong_t
)start
,
3934 (u_longlong_t
)end
, segsize
);
3943 dmu_buf_rele(db
, FTAG
);
3945 dnode_rele(dn
, FTAG
);
3949 count_dir_mos_objects(dsl_dir_t
*dd
)
3951 mos_obj_refd(dd
->dd_object
);
3952 mos_obj_refd(dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
3953 mos_obj_refd(dsl_dir_phys(dd
)->dd_deleg_zapobj
);
3954 mos_obj_refd(dsl_dir_phys(dd
)->dd_props_zapobj
);
3955 mos_obj_refd(dsl_dir_phys(dd
)->dd_clones
);
3958 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3959 * Ignore the references after the first one.
3961 mos_obj_refd_multiple(dd
->dd_crypto_obj
);
3965 count_ds_mos_objects(dsl_dataset_t
*ds
)
3967 mos_obj_refd(ds
->ds_object
);
3968 mos_obj_refd(dsl_dataset_phys(ds
)->ds_next_clones_obj
);
3969 mos_obj_refd(dsl_dataset_phys(ds
)->ds_props_obj
);
3970 mos_obj_refd(dsl_dataset_phys(ds
)->ds_userrefs_obj
);
3971 mos_obj_refd(dsl_dataset_phys(ds
)->ds_snapnames_zapobj
);
3972 mos_obj_refd(ds
->ds_bookmarks_obj
);
3974 if (!dsl_dataset_is_snapshot(ds
)) {
3975 count_dir_mos_objects(ds
->ds_dir
);
3979 static const char *const objset_types
[DMU_OST_NUMTYPES
] = {
3980 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3983 * Parse a string denoting a range of object IDs of the form
3984 * <start>[:<end>[:flags]], and store the results in zor.
3985 * Return 0 on success. On error, return 1 and update the msg
3986 * pointer to point to a descriptive error message.
3989 parse_object_range(char *range
, zopt_object_range_t
*zor
, const char **msg
)
3992 char *p
, *s
, *dup
, *flagstr
, *tmp
= NULL
;
3997 if (strchr(range
, ':') == NULL
) {
3998 zor
->zor_obj_start
= strtoull(range
, &p
, 0);
4000 *msg
= "Invalid characters in object ID";
4003 zor
->zor_obj_start
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_start
);
4004 zor
->zor_obj_end
= zor
->zor_obj_start
;
4008 if (strchr(range
, ':') == range
) {
4009 *msg
= "Invalid leading colon";
4014 len
= strlen(range
);
4015 if (range
[len
- 1] == ':') {
4016 *msg
= "Invalid trailing colon";
4021 dup
= strdup(range
);
4022 s
= strtok_r(dup
, ":", &tmp
);
4023 zor
->zor_obj_start
= strtoull(s
, &p
, 0);
4026 *msg
= "Invalid characters in start object ID";
4031 s
= strtok_r(NULL
, ":", &tmp
);
4032 zor
->zor_obj_end
= strtoull(s
, &p
, 0);
4035 *msg
= "Invalid characters in end object ID";
4040 if (zor
->zor_obj_start
> zor
->zor_obj_end
) {
4041 *msg
= "Start object ID may not exceed end object ID";
4046 s
= strtok_r(NULL
, ":", &tmp
);
4048 zor
->zor_flags
= ZOR_FLAG_ALL_TYPES
;
4050 } else if (strtok_r(NULL
, ":", &tmp
) != NULL
) {
4051 *msg
= "Invalid colon-delimited field after flags";
4057 for (i
= 0; flagstr
[i
]; i
++) {
4059 boolean_t negation
= (flagstr
[i
] == '-');
4063 if (flagstr
[i
] == '\0') {
4064 *msg
= "Invalid trailing negation operator";
4069 bit
= flagbits
[(uchar_t
)flagstr
[i
]];
4071 *msg
= "Invalid flag";
4080 zor
->zor_flags
= flags
;
4082 zor
->zor_obj_start
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_start
);
4083 zor
->zor_obj_end
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_end
);
4091 dump_objset(objset_t
*os
)
4093 dmu_objset_stats_t dds
= { 0 };
4094 uint64_t object
, object_count
;
4095 uint64_t refdbytes
, usedobjs
, scratch
;
4097 char blkbuf
[BP_SPRINTF_LEN
+ 20];
4098 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
4099 const char *type
= "UNKNOWN";
4100 int verbosity
= dump_opt
['d'];
4101 boolean_t print_header
;
4104 uint64_t total_slots_used
= 0;
4105 uint64_t max_slot_used
= 0;
4106 uint64_t dnode_slots
;
4111 /* make sure nicenum has enough space */
4112 _Static_assert(sizeof (numbuf
) >= NN_NUMBUF_SZ
, "numbuf truncated");
4114 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
4115 dmu_objset_fast_stat(os
, &dds
);
4116 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
4118 print_header
= B_TRUE
;
4120 if (dds
.dds_type
< DMU_OST_NUMTYPES
)
4121 type
= objset_types
[dds
.dds_type
];
4123 if (dds
.dds_type
== DMU_OST_META
) {
4124 dds
.dds_creation_txg
= TXG_INITIAL
;
4125 usedobjs
= BP_GET_FILL(os
->os_rootbp
);
4126 refdbytes
= dsl_dir_phys(os
->os_spa
->spa_dsl_pool
->dp_mos_dir
)->
4129 dmu_objset_space(os
, &refdbytes
, &scratch
, &usedobjs
, &scratch
);
4132 ASSERT3U(usedobjs
, ==, BP_GET_FILL(os
->os_rootbp
));
4134 zdb_nicenum(refdbytes
, numbuf
, sizeof (numbuf
));
4136 if (verbosity
>= 4) {
4137 (void) snprintf(blkbuf
, sizeof (blkbuf
), ", rootbp ");
4138 (void) snprintf_blkptr(blkbuf
+ strlen(blkbuf
),
4139 sizeof (blkbuf
) - strlen(blkbuf
), os
->os_rootbp
);
4144 dmu_objset_name(os
, osname
);
4146 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4147 "%s, %llu objects%s%s\n",
4148 osname
, type
, (u_longlong_t
)dmu_objset_id(os
),
4149 (u_longlong_t
)dds
.dds_creation_txg
,
4150 numbuf
, (u_longlong_t
)usedobjs
, blkbuf
,
4151 (dds
.dds_inconsistent
) ? " (inconsistent)" : "");
4153 for (i
= 0; i
< zopt_object_args
; i
++) {
4154 obj_start
= zopt_object_ranges
[i
].zor_obj_start
;
4155 obj_end
= zopt_object_ranges
[i
].zor_obj_end
;
4156 flags
= zopt_object_ranges
[i
].zor_flags
;
4159 if (object
== 0 || obj_start
== obj_end
)
4160 dump_object(os
, object
, verbosity
, &print_header
, NULL
,
4165 while ((dmu_object_next(os
, &object
, B_FALSE
, 0) == 0) &&
4166 object
<= obj_end
) {
4167 dump_object(os
, object
, verbosity
, &print_header
, NULL
,
4172 if (zopt_object_args
> 0) {
4173 (void) printf("\n");
4177 if (dump_opt
['i'] != 0 || verbosity
>= 2)
4178 dump_intent_log(dmu_objset_zil(os
));
4180 if (dmu_objset_ds(os
) != NULL
) {
4181 dsl_dataset_t
*ds
= dmu_objset_ds(os
);
4182 dump_blkptr_list(&ds
->ds_deadlist
, "Deadlist");
4183 if (dsl_deadlist_is_open(&ds
->ds_dir
->dd_livelist
) &&
4184 !dmu_objset_is_snapshot(os
)) {
4185 dump_blkptr_list(&ds
->ds_dir
->dd_livelist
, "Livelist");
4186 if (verify_dd_livelist(os
) != 0)
4187 fatal("livelist is incorrect");
4190 if (dsl_dataset_remap_deadlist_exists(ds
)) {
4191 (void) printf("ds_remap_deadlist:\n");
4192 dump_blkptr_list(&ds
->ds_remap_deadlist
, "Deadlist");
4194 count_ds_mos_objects(ds
);
4197 if (dmu_objset_ds(os
) != NULL
)
4198 dump_bookmarks(os
, verbosity
);
4203 if (BP_IS_HOLE(os
->os_rootbp
))
4206 dump_object(os
, 0, verbosity
, &print_header
, NULL
, 0);
4208 if (DMU_USERUSED_DNODE(os
) != NULL
&&
4209 DMU_USERUSED_DNODE(os
)->dn_type
!= 0) {
4210 dump_object(os
, DMU_USERUSED_OBJECT
, verbosity
, &print_header
,
4212 dump_object(os
, DMU_GROUPUSED_OBJECT
, verbosity
, &print_header
,
4216 if (DMU_PROJECTUSED_DNODE(os
) != NULL
&&
4217 DMU_PROJECTUSED_DNODE(os
)->dn_type
!= 0)
4218 dump_object(os
, DMU_PROJECTUSED_OBJECT
, verbosity
,
4219 &print_header
, NULL
, 0);
4222 while ((error
= dmu_object_next(os
, &object
, B_FALSE
, 0)) == 0) {
4223 dump_object(os
, object
, verbosity
, &print_header
, &dnode_slots
,
4226 total_slots_used
+= dnode_slots
;
4227 max_slot_used
= object
+ dnode_slots
- 1;
4230 (void) printf("\n");
4232 (void) printf(" Dnode slots:\n");
4233 (void) printf("\tTotal used: %10llu\n",
4234 (u_longlong_t
)total_slots_used
);
4235 (void) printf("\tMax used: %10llu\n",
4236 (u_longlong_t
)max_slot_used
);
4237 (void) printf("\tPercent empty: %10lf\n",
4238 (double)(max_slot_used
- total_slots_used
)*100 /
4239 (double)max_slot_used
);
4240 (void) printf("\n");
4242 if (error
!= ESRCH
) {
4243 (void) fprintf(stderr
, "dmu_object_next() = %d\n", error
);
4247 ASSERT3U(object_count
, ==, usedobjs
);
4249 if (leaked_objects
!= 0) {
4250 (void) printf("%d potentially leaked objects detected\n",
4257 dump_uberblock(uberblock_t
*ub
, const char *header
, const char *footer
)
4259 time_t timestamp
= ub
->ub_timestamp
;
4261 (void) printf("%s", header
? header
: "");
4262 (void) printf("\tmagic = %016llx\n", (u_longlong_t
)ub
->ub_magic
);
4263 (void) printf("\tversion = %llu\n", (u_longlong_t
)ub
->ub_version
);
4264 (void) printf("\ttxg = %llu\n", (u_longlong_t
)ub
->ub_txg
);
4265 (void) printf("\tguid_sum = %llu\n", (u_longlong_t
)ub
->ub_guid_sum
);
4266 (void) printf("\ttimestamp = %llu UTC = %s",
4267 (u_longlong_t
)ub
->ub_timestamp
, ctime(×tamp
));
4269 char blkbuf
[BP_SPRINTF_LEN
];
4270 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ub
->ub_rootbp
);
4271 (void) printf("\tbp = %s\n", blkbuf
);
4273 (void) printf("\tmmp_magic = %016llx\n",
4274 (u_longlong_t
)ub
->ub_mmp_magic
);
4275 if (MMP_VALID(ub
)) {
4276 (void) printf("\tmmp_delay = %0llu\n",
4277 (u_longlong_t
)ub
->ub_mmp_delay
);
4278 if (MMP_SEQ_VALID(ub
))
4279 (void) printf("\tmmp_seq = %u\n",
4280 (unsigned int) MMP_SEQ(ub
));
4281 if (MMP_FAIL_INT_VALID(ub
))
4282 (void) printf("\tmmp_fail = %u\n",
4283 (unsigned int) MMP_FAIL_INT(ub
));
4284 if (MMP_INTERVAL_VALID(ub
))
4285 (void) printf("\tmmp_write = %u\n",
4286 (unsigned int) MMP_INTERVAL(ub
));
4287 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4288 (void) printf("\tmmp_valid = %x\n",
4289 (unsigned int) ub
->ub_mmp_config
& 0xFF);
4292 if (dump_opt
['u'] >= 4) {
4293 char blkbuf
[BP_SPRINTF_LEN
];
4294 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ub
->ub_rootbp
);
4295 (void) printf("\trootbp = %s\n", blkbuf
);
4297 (void) printf("\tcheckpoint_txg = %llu\n",
4298 (u_longlong_t
)ub
->ub_checkpoint_txg
);
4300 (void) printf("\traidz_reflow state=%u off=%llu\n",
4301 (int)RRSS_GET_STATE(ub
),
4302 (u_longlong_t
)RRSS_GET_OFFSET(ub
));
4304 (void) printf("%s", footer
? footer
: "");
4308 dump_config(spa_t
*spa
)
4315 error
= dmu_bonus_hold(spa
->spa_meta_objset
,
4316 spa
->spa_config_object
, FTAG
, &db
);
4319 nvsize
= *(uint64_t *)db
->db_data
;
4320 dmu_buf_rele(db
, FTAG
);
4322 (void) printf("\nMOS Configuration:\n");
4323 dump_packed_nvlist(spa
->spa_meta_objset
,
4324 spa
->spa_config_object
, (void *)&nvsize
, 1);
4326 (void) fprintf(stderr
, "dmu_bonus_hold(%llu) failed, errno %d",
4327 (u_longlong_t
)spa
->spa_config_object
, error
);
4332 dump_cachefile(const char *cachefile
)
4335 struct stat64 statbuf
;
4339 if ((fd
= open64(cachefile
, O_RDONLY
)) < 0) {
4340 (void) printf("cannot open '%s': %s\n", cachefile
,
4345 if (fstat64(fd
, &statbuf
) != 0) {
4346 (void) printf("failed to stat '%s': %s\n", cachefile
,
4351 if ((buf
= malloc(statbuf
.st_size
)) == NULL
) {
4352 (void) fprintf(stderr
, "failed to allocate %llu bytes\n",
4353 (u_longlong_t
)statbuf
.st_size
);
4357 if (read(fd
, buf
, statbuf
.st_size
) != statbuf
.st_size
) {
4358 (void) fprintf(stderr
, "failed to read %llu bytes\n",
4359 (u_longlong_t
)statbuf
.st_size
);
4365 if (nvlist_unpack(buf
, statbuf
.st_size
, &config
, 0) != 0) {
4366 (void) fprintf(stderr
, "failed to unpack nvlist\n");
4372 dump_nvlist(config
, 0);
4374 nvlist_free(config
);
4378 * ZFS label nvlist stats
4380 typedef struct zdb_nvl_stats
{
4383 size_t zns_leaf_largest
;
4384 size_t zns_leaf_total
;
4385 nvlist_t
*zns_string
;
4386 nvlist_t
*zns_uint64
;
4387 nvlist_t
*zns_boolean
;
4391 collect_nvlist_stats(nvlist_t
*nvl
, zdb_nvl_stats_t
*stats
)
4393 nvlist_t
*list
, **array
;
4394 nvpair_t
*nvp
= NULL
;
4398 stats
->zns_list_count
++;
4400 while ((nvp
= nvlist_next_nvpair(nvl
, nvp
)) != NULL
) {
4401 name
= nvpair_name(nvp
);
4403 switch (nvpair_type(nvp
)) {
4404 case DATA_TYPE_STRING
:
4405 fnvlist_add_string(stats
->zns_string
, name
,
4406 fnvpair_value_string(nvp
));
4408 case DATA_TYPE_UINT64
:
4409 fnvlist_add_uint64(stats
->zns_uint64
, name
,
4410 fnvpair_value_uint64(nvp
));
4412 case DATA_TYPE_BOOLEAN
:
4413 fnvlist_add_boolean(stats
->zns_boolean
, name
);
4415 case DATA_TYPE_NVLIST
:
4416 if (nvpair_value_nvlist(nvp
, &list
) == 0)
4417 collect_nvlist_stats(list
, stats
);
4419 case DATA_TYPE_NVLIST_ARRAY
:
4420 if (nvpair_value_nvlist_array(nvp
, &array
, &items
) != 0)
4423 for (i
= 0; i
< items
; i
++) {
4424 collect_nvlist_stats(array
[i
], stats
);
4426 /* collect stats on leaf vdev */
4427 if (strcmp(name
, "children") == 0) {
4430 (void) nvlist_size(array
[i
], &size
,
4432 stats
->zns_leaf_total
+= size
;
4433 if (size
> stats
->zns_leaf_largest
)
4434 stats
->zns_leaf_largest
= size
;
4435 stats
->zns_leaf_count
++;
4440 (void) printf("skip type %d!\n", (int)nvpair_type(nvp
));
4446 dump_nvlist_stats(nvlist_t
*nvl
, size_t cap
)
4448 zdb_nvl_stats_t stats
= { 0 };
4449 size_t size
, sum
= 0, total
;
4452 /* requires nvlist with non-unique names for stat collection */
4453 VERIFY0(nvlist_alloc(&stats
.zns_string
, 0, 0));
4454 VERIFY0(nvlist_alloc(&stats
.zns_uint64
, 0, 0));
4455 VERIFY0(nvlist_alloc(&stats
.zns_boolean
, 0, 0));
4456 VERIFY0(nvlist_size(stats
.zns_boolean
, &noise
, NV_ENCODE_XDR
));
4458 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4460 VERIFY0(nvlist_size(nvl
, &total
, NV_ENCODE_XDR
));
4461 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4462 (int)total
, (int)(cap
- total
), 100.0 * total
/ cap
);
4464 collect_nvlist_stats(nvl
, &stats
);
4466 VERIFY0(nvlist_size(stats
.zns_uint64
, &size
, NV_ENCODE_XDR
));
4469 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4470 (int)fnvlist_num_pairs(stats
.zns_uint64
),
4471 (int)size
, 100.0 * size
/ total
);
4473 VERIFY0(nvlist_size(stats
.zns_string
, &size
, NV_ENCODE_XDR
));
4476 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4477 (int)fnvlist_num_pairs(stats
.zns_string
),
4478 (int)size
, 100.0 * size
/ total
);
4480 VERIFY0(nvlist_size(stats
.zns_boolean
, &size
, NV_ENCODE_XDR
));
4483 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4484 (int)fnvlist_num_pairs(stats
.zns_boolean
),
4485 (int)size
, 100.0 * size
/ total
);
4487 size
= total
- sum
; /* treat remainder as nvlist overhead */
4488 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4489 stats
.zns_list_count
, (int)size
, 100.0 * size
/ total
);
4491 if (stats
.zns_leaf_count
> 0) {
4492 size_t average
= stats
.zns_leaf_total
/ stats
.zns_leaf_count
;
4494 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4495 stats
.zns_leaf_count
, (int)average
);
4496 (void) printf("%24d bytes largest\n",
4497 (int)stats
.zns_leaf_largest
);
4499 if (dump_opt
['l'] >= 3 && average
> 0)
4500 (void) printf(" space for %d additional leaf vdevs\n",
4501 (int)((cap
- total
) / average
));
4503 (void) printf("\n");
4505 nvlist_free(stats
.zns_string
);
4506 nvlist_free(stats
.zns_uint64
);
4507 nvlist_free(stats
.zns_boolean
);
4510 typedef struct cksum_record
{
4512 boolean_t labels
[VDEV_LABELS
];
4517 cksum_record_compare(const void *x1
, const void *x2
)
4519 const cksum_record_t
*l
= (cksum_record_t
*)x1
;
4520 const cksum_record_t
*r
= (cksum_record_t
*)x2
;
4521 int arraysize
= ARRAY_SIZE(l
->cksum
.zc_word
);
4524 for (int i
= 0; i
< arraysize
; i
++) {
4525 difference
= TREE_CMP(l
->cksum
.zc_word
[i
], r
->cksum
.zc_word
[i
]);
4530 return (difference
);
4533 static cksum_record_t
*
4534 cksum_record_alloc(zio_cksum_t
*cksum
, int l
)
4536 cksum_record_t
*rec
;
4538 rec
= umem_zalloc(sizeof (*rec
), UMEM_NOFAIL
);
4539 rec
->cksum
= *cksum
;
4540 rec
->labels
[l
] = B_TRUE
;
4545 static cksum_record_t
*
4546 cksum_record_lookup(avl_tree_t
*tree
, zio_cksum_t
*cksum
)
4548 cksum_record_t lookup
= { .cksum
= *cksum
};
4551 return (avl_find(tree
, &lookup
, &where
));
4554 static cksum_record_t
*
4555 cksum_record_insert(avl_tree_t
*tree
, zio_cksum_t
*cksum
, int l
)
4557 cksum_record_t
*rec
;
4559 rec
= cksum_record_lookup(tree
, cksum
);
4561 rec
->labels
[l
] = B_TRUE
;
4563 rec
= cksum_record_alloc(cksum
, l
);
4571 first_label(cksum_record_t
*rec
)
4573 for (int i
= 0; i
< VDEV_LABELS
; i
++)
4581 print_label_numbers(const char *prefix
, const cksum_record_t
*rec
)
4583 fputs(prefix
, stdout
);
4584 for (int i
= 0; i
< VDEV_LABELS
; i
++)
4585 if (rec
->labels
[i
] == B_TRUE
)
4590 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4592 typedef struct zdb_label
{
4594 uint64_t label_offset
;
4595 nvlist_t
*config_nv
;
4596 cksum_record_t
*config
;
4597 cksum_record_t
*uberblocks
[MAX_UBERBLOCK_COUNT
];
4598 boolean_t header_printed
;
4599 boolean_t read_failed
;
4600 boolean_t cksum_valid
;
4604 print_label_header(zdb_label_t
*label
, int l
)
4610 if (label
->header_printed
== B_TRUE
)
4613 (void) printf("------------------------------------\n");
4614 (void) printf("LABEL %d %s\n", l
,
4615 label
->cksum_valid
? "" : "(Bad label cksum)");
4616 (void) printf("------------------------------------\n");
4618 label
->header_printed
= B_TRUE
;
4622 print_l2arc_header(void)
4624 (void) printf("------------------------------------\n");
4625 (void) printf("L2ARC device header\n");
4626 (void) printf("------------------------------------\n");
4630 print_l2arc_log_blocks(void)
4632 (void) printf("------------------------------------\n");
4633 (void) printf("L2ARC device log blocks\n");
4634 (void) printf("------------------------------------\n");
4638 dump_l2arc_log_entries(uint64_t log_entries
,
4639 l2arc_log_ent_phys_t
*le
, uint64_t i
)
4641 for (int j
= 0; j
< log_entries
; j
++) {
4642 dva_t dva
= le
[j
].le_dva
;
4643 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4644 "vdev: %llu, offset: %llu\n",
4645 (u_longlong_t
)i
, j
+ 1,
4646 (u_longlong_t
)DVA_GET_ASIZE(&dva
),
4647 (u_longlong_t
)DVA_GET_VDEV(&dva
),
4648 (u_longlong_t
)DVA_GET_OFFSET(&dva
));
4649 (void) printf("|\t\t\t\tbirth: %llu\n",
4650 (u_longlong_t
)le
[j
].le_birth
);
4651 (void) printf("|\t\t\t\tlsize: %llu\n",
4652 (u_longlong_t
)L2BLK_GET_LSIZE((&le
[j
])->le_prop
));
4653 (void) printf("|\t\t\t\tpsize: %llu\n",
4654 (u_longlong_t
)L2BLK_GET_PSIZE((&le
[j
])->le_prop
));
4655 (void) printf("|\t\t\t\tcompr: %llu\n",
4656 (u_longlong_t
)L2BLK_GET_COMPRESS((&le
[j
])->le_prop
));
4657 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4658 (u_longlong_t
)(&le
[j
])->le_complevel
);
4659 (void) printf("|\t\t\t\ttype: %llu\n",
4660 (u_longlong_t
)L2BLK_GET_TYPE((&le
[j
])->le_prop
));
4661 (void) printf("|\t\t\t\tprotected: %llu\n",
4662 (u_longlong_t
)L2BLK_GET_PROTECTED((&le
[j
])->le_prop
));
4663 (void) printf("|\t\t\t\tprefetch: %llu\n",
4664 (u_longlong_t
)L2BLK_GET_PREFETCH((&le
[j
])->le_prop
));
4665 (void) printf("|\t\t\t\taddress: %llu\n",
4666 (u_longlong_t
)le
[j
].le_daddr
);
4667 (void) printf("|\t\t\t\tARC state: %llu\n",
4668 (u_longlong_t
)L2BLK_GET_STATE((&le
[j
])->le_prop
));
4669 (void) printf("|\n");
4671 (void) printf("\n");
4675 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t
*lbps
)
4677 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t
)lbps
->lbp_daddr
);
4678 (void) printf("|\t\tpayload_asize: %llu\n",
4679 (u_longlong_t
)lbps
->lbp_payload_asize
);
4680 (void) printf("|\t\tpayload_start: %llu\n",
4681 (u_longlong_t
)lbps
->lbp_payload_start
);
4682 (void) printf("|\t\tlsize: %llu\n",
4683 (u_longlong_t
)L2BLK_GET_LSIZE(lbps
->lbp_prop
));
4684 (void) printf("|\t\tasize: %llu\n",
4685 (u_longlong_t
)L2BLK_GET_PSIZE(lbps
->lbp_prop
));
4686 (void) printf("|\t\tcompralgo: %llu\n",
4687 (u_longlong_t
)L2BLK_GET_COMPRESS(lbps
->lbp_prop
));
4688 (void) printf("|\t\tcksumalgo: %llu\n",
4689 (u_longlong_t
)L2BLK_GET_CHECKSUM(lbps
->lbp_prop
));
4690 (void) printf("|\n\n");
4694 dump_l2arc_log_blocks(int fd
, const l2arc_dev_hdr_phys_t
*l2dhdr
,
4695 l2arc_dev_hdr_phys_t
*rebuild
)
4697 l2arc_log_blk_phys_t this_lb
;
4699 l2arc_log_blkptr_t lbps
[2];
4705 print_l2arc_log_blocks();
4706 memcpy(lbps
, l2dhdr
->dh_start_lbps
, sizeof (lbps
));
4708 dev
.l2ad_evict
= l2dhdr
->dh_evict
;
4709 dev
.l2ad_start
= l2dhdr
->dh_start
;
4710 dev
.l2ad_end
= l2dhdr
->dh_end
;
4712 if (l2dhdr
->dh_start_lbps
[0].lbp_daddr
== 0) {
4713 /* no log blocks to read */
4714 if (!dump_opt
['q']) {
4715 (void) printf("No log blocks to read\n");
4716 (void) printf("\n");
4720 dev
.l2ad_hand
= lbps
[0].lbp_daddr
+
4721 L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
4724 dev
.l2ad_first
= !!(l2dhdr
->dh_flags
& L2ARC_DEV_HDR_EVICT_FIRST
);
4727 if (!l2arc_log_blkptr_valid(&dev
, &lbps
[0]))
4730 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4731 asize
= L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
4732 if (pread64(fd
, &this_lb
, asize
, lbps
[0].lbp_daddr
) != asize
) {
4733 if (!dump_opt
['q']) {
4734 (void) printf("Error while reading next log "
4740 fletcher_4_native_varsize(&this_lb
, asize
, &cksum
);
4741 if (!ZIO_CHECKSUM_EQUAL(cksum
, lbps
[0].lbp_cksum
)) {
4743 if (!dump_opt
['q']) {
4744 (void) printf("Invalid cksum\n");
4745 dump_l2arc_log_blkptr(&lbps
[0]);
4750 switch (L2BLK_GET_COMPRESS((&lbps
[0])->lbp_prop
)) {
4751 case ZIO_COMPRESS_OFF
:
4754 abd_t
*abd
= abd_alloc_linear(asize
, B_TRUE
);
4755 abd_copy_from_buf_off(abd
, &this_lb
, 0, asize
);
4757 abd_get_from_buf_struct(&dabd
, &this_lb
,
4759 int err
= zio_decompress_data(L2BLK_GET_COMPRESS(
4760 (&lbps
[0])->lbp_prop
), abd
, &dabd
,
4761 asize
, sizeof (this_lb
), NULL
);
4765 (void) printf("L2ARC block decompression "
4773 if (this_lb
.lb_magic
== BSWAP_64(L2ARC_LOG_BLK_MAGIC
))
4774 byteswap_uint64_array(&this_lb
, sizeof (this_lb
));
4775 if (this_lb
.lb_magic
!= L2ARC_LOG_BLK_MAGIC
) {
4777 (void) printf("Invalid log block magic\n\n");
4781 rebuild
->dh_lb_count
++;
4782 rebuild
->dh_lb_asize
+= asize
;
4783 if (dump_opt
['l'] > 1 && !dump_opt
['q']) {
4784 (void) printf("lb[%4llu]\tmagic: %llu\n",
4785 (u_longlong_t
)rebuild
->dh_lb_count
,
4786 (u_longlong_t
)this_lb
.lb_magic
);
4787 dump_l2arc_log_blkptr(&lbps
[0]);
4790 if (dump_opt
['l'] > 2 && !dump_opt
['q'])
4791 dump_l2arc_log_entries(l2dhdr
->dh_log_entries
,
4793 rebuild
->dh_lb_count
);
4795 if (l2arc_range_check_overlap(lbps
[1].lbp_payload_start
,
4796 lbps
[0].lbp_payload_start
, dev
.l2ad_evict
) &&
4801 lbps
[1] = this_lb
.lb_prev_lbp
;
4804 if (!dump_opt
['q']) {
4805 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4806 (u_longlong_t
)rebuild
->dh_lb_count
);
4807 (void) printf("\t\t %d with invalid cksum\n", failed
);
4808 (void) printf("log_blk_asize:\t %llu\n\n",
4809 (u_longlong_t
)rebuild
->dh_lb_asize
);
4814 dump_l2arc_header(int fd
)
4816 l2arc_dev_hdr_phys_t l2dhdr
= {0}, rebuild
= {0};
4817 int error
= B_FALSE
;
4819 if (pread64(fd
, &l2dhdr
, sizeof (l2dhdr
),
4820 VDEV_LABEL_START_SIZE
) != sizeof (l2dhdr
)) {
4823 if (l2dhdr
.dh_magic
== BSWAP_64(L2ARC_DEV_HDR_MAGIC
))
4824 byteswap_uint64_array(&l2dhdr
, sizeof (l2dhdr
));
4826 if (l2dhdr
.dh_magic
!= L2ARC_DEV_HDR_MAGIC
)
4831 (void) printf("L2ARC device header not found\n\n");
4832 /* Do not return an error here for backward compatibility */
4834 } else if (!dump_opt
['q']) {
4835 print_l2arc_header();
4837 (void) printf(" magic: %llu\n",
4838 (u_longlong_t
)l2dhdr
.dh_magic
);
4839 (void) printf(" version: %llu\n",
4840 (u_longlong_t
)l2dhdr
.dh_version
);
4841 (void) printf(" pool_guid: %llu\n",
4842 (u_longlong_t
)l2dhdr
.dh_spa_guid
);
4843 (void) printf(" flags: %llu\n",
4844 (u_longlong_t
)l2dhdr
.dh_flags
);
4845 (void) printf(" start_lbps[0]: %llu\n",
4847 l2dhdr
.dh_start_lbps
[0].lbp_daddr
);
4848 (void) printf(" start_lbps[1]: %llu\n",
4850 l2dhdr
.dh_start_lbps
[1].lbp_daddr
);
4851 (void) printf(" log_blk_ent: %llu\n",
4852 (u_longlong_t
)l2dhdr
.dh_log_entries
);
4853 (void) printf(" start: %llu\n",
4854 (u_longlong_t
)l2dhdr
.dh_start
);
4855 (void) printf(" end: %llu\n",
4856 (u_longlong_t
)l2dhdr
.dh_end
);
4857 (void) printf(" evict: %llu\n",
4858 (u_longlong_t
)l2dhdr
.dh_evict
);
4859 (void) printf(" lb_asize_refcount: %llu\n",
4860 (u_longlong_t
)l2dhdr
.dh_lb_asize
);
4861 (void) printf(" lb_count_refcount: %llu\n",
4862 (u_longlong_t
)l2dhdr
.dh_lb_count
);
4863 (void) printf(" trim_action_time: %llu\n",
4864 (u_longlong_t
)l2dhdr
.dh_trim_action_time
);
4865 (void) printf(" trim_state: %llu\n\n",
4866 (u_longlong_t
)l2dhdr
.dh_trim_state
);
4869 dump_l2arc_log_blocks(fd
, &l2dhdr
, &rebuild
);
4871 * The total aligned size of log blocks and the number of log blocks
4872 * reported in the header of the device may be less than what zdb
4873 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4874 * This happens because dump_l2arc_log_blocks() lacks the memory
4875 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4876 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4877 * and dh_lb_count will be lower to begin with than what exists on the
4878 * device. This is normal and zdb should not exit with an error. The
4879 * opposite case should never happen though, the values reported in the
4880 * header should never be higher than what dump_l2arc_log_blocks() and
4881 * l2arc_rebuild() report. If this happens there is a leak in the
4882 * accounting of log blocks.
4884 if (l2dhdr
.dh_lb_asize
> rebuild
.dh_lb_asize
||
4885 l2dhdr
.dh_lb_count
> rebuild
.dh_lb_count
)
4892 dump_config_from_label(zdb_label_t
*label
, size_t buflen
, int l
)
4897 if ((dump_opt
['l'] < 3) && (first_label(label
->config
) != l
))
4900 print_label_header(label
, l
);
4901 dump_nvlist(label
->config_nv
, 4);
4902 print_label_numbers(" labels = ", label
->config
);
4904 if (dump_opt
['l'] >= 2)
4905 dump_nvlist_stats(label
->config_nv
, buflen
);
4908 #define ZDB_MAX_UB_HEADER_SIZE 32
4911 dump_label_uberblocks(zdb_label_t
*label
, uint64_t ashift
, int label_num
)
4915 char header
[ZDB_MAX_UB_HEADER_SIZE
];
4917 vd
.vdev_ashift
= ashift
;
4920 for (int i
= 0; i
< VDEV_UBERBLOCK_COUNT(&vd
); i
++) {
4921 uint64_t uoff
= VDEV_UBERBLOCK_OFFSET(&vd
, i
);
4922 uberblock_t
*ub
= (void *)((char *)&label
->label
+ uoff
);
4923 cksum_record_t
*rec
= label
->uberblocks
[i
];
4926 if (dump_opt
['u'] >= 2) {
4927 print_label_header(label
, label_num
);
4928 (void) printf(" Uberblock[%d] invalid\n", i
);
4933 if ((dump_opt
['u'] < 3) && (first_label(rec
) != label_num
))
4936 if ((dump_opt
['u'] < 4) &&
4937 (ub
->ub_mmp_magic
== MMP_MAGIC
) && ub
->ub_mmp_delay
&&
4938 (i
>= VDEV_UBERBLOCK_COUNT(&vd
) - MMP_BLOCKS_PER_LABEL
))
4941 print_label_header(label
, label_num
);
4942 (void) snprintf(header
, ZDB_MAX_UB_HEADER_SIZE
,
4943 " Uberblock[%d]\n", i
);
4944 dump_uberblock(ub
, header
, "");
4945 print_label_numbers(" labels = ", rec
);
4949 static char curpath
[PATH_MAX
];
4952 * Iterate through the path components, recursively passing
4953 * current one's obj and remaining path until we find the obj
4957 dump_path_impl(objset_t
*os
, uint64_t obj
, char *name
, uint64_t *retobj
)
4960 boolean_t header
= B_TRUE
;
4964 dmu_object_info_t doi
;
4966 if ((s
= strchr(name
, '/')) != NULL
)
4968 err
= zap_lookup(os
, obj
, name
, 8, 1, &child_obj
);
4970 (void) strlcat(curpath
, name
, sizeof (curpath
));
4973 (void) fprintf(stderr
, "failed to lookup %s: %s\n",
4974 curpath
, strerror(err
));
4978 child_obj
= ZFS_DIRENT_OBJ(child_obj
);
4979 err
= sa_buf_hold(os
, child_obj
, FTAG
, &db
);
4981 (void) fprintf(stderr
,
4982 "failed to get SA dbuf for obj %llu: %s\n",
4983 (u_longlong_t
)child_obj
, strerror(err
));
4986 dmu_object_info_from_db(db
, &doi
);
4987 sa_buf_rele(db
, FTAG
);
4989 if (doi
.doi_bonus_type
!= DMU_OT_SA
&&
4990 doi
.doi_bonus_type
!= DMU_OT_ZNODE
) {
4991 (void) fprintf(stderr
, "invalid bonus type %d for obj %llu\n",
4992 doi
.doi_bonus_type
, (u_longlong_t
)child_obj
);
4996 if (dump_opt
['v'] > 6) {
4997 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
4998 (u_longlong_t
)child_obj
, curpath
, doi
.doi_type
,
4999 doi
.doi_bonus_type
);
5002 (void) strlcat(curpath
, "/", sizeof (curpath
));
5004 switch (doi
.doi_type
) {
5005 case DMU_OT_DIRECTORY_CONTENTS
:
5006 if (s
!= NULL
&& *(s
+ 1) != '\0')
5007 return (dump_path_impl(os
, child_obj
, s
+ 1, retobj
));
5009 case DMU_OT_PLAIN_FILE_CONTENTS
:
5010 if (retobj
!= NULL
) {
5011 *retobj
= child_obj
;
5013 dump_object(os
, child_obj
, dump_opt
['v'], &header
,
5018 (void) fprintf(stderr
, "object %llu has non-file/directory "
5019 "type %d\n", (u_longlong_t
)obj
, doi
.doi_type
);
5027 * Dump the blocks for the object specified by path inside the dataset.
5030 dump_path(char *ds
, char *path
, uint64_t *retobj
)
5036 err
= open_objset(ds
, FTAG
, &os
);
5040 err
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_ROOT_OBJ
, 8, 1, &root_obj
);
5042 (void) fprintf(stderr
, "can't lookup root znode: %s\n",
5044 close_objset(os
, FTAG
);
5048 (void) snprintf(curpath
, sizeof (curpath
), "dataset=%s path=/", ds
);
5050 err
= dump_path_impl(os
, root_obj
, path
, retobj
);
5052 close_objset(os
, FTAG
);
5057 dump_backup_bytes(objset_t
*os
, void *buf
, int len
, void *arg
)
5059 const char *p
= (const char *)buf
;
5065 /* Write the data out, handling short writes and signals. */
5066 while ((nwritten
= write(STDOUT_FILENO
, p
, len
)) < len
) {
5080 dump_backup(const char *pool
, uint64_t objset_id
, const char *flagstr
)
5082 boolean_t embed
= B_FALSE
;
5083 boolean_t large_block
= B_FALSE
;
5084 boolean_t compress
= B_FALSE
;
5085 boolean_t raw
= B_FALSE
;
5088 for (c
= flagstr
; c
!= NULL
&& *c
!= '\0'; c
++) {
5094 large_block
= B_TRUE
;
5103 fprintf(stderr
, "dump_backup: invalid flag "
5109 if (isatty(STDOUT_FILENO
)) {
5110 fprintf(stderr
, "dump_backup: stream cannot be written "
5116 dmu_send_outparams_t out
= {
5117 .dso_outfunc
= dump_backup_bytes
,
5118 .dso_dryrun
= B_FALSE
,
5121 int err
= dmu_send_obj(pool
, objset_id
, /* fromsnap */0, embed
,
5122 large_block
, compress
, raw
, /* saved */ B_FALSE
, STDOUT_FILENO
,
5125 fprintf(stderr
, "dump_backup: dmu_send_obj: %s\n",
5132 zdb_copy_object(objset_t
*os
, uint64_t srcobj
, char *destfile
)
5135 uint64_t size
, readsize
, oursize
, offset
;
5139 (void) printf("Copying object %" PRIu64
" to file %s\n", srcobj
,
5142 VERIFY3P(os
, ==, sa_os
);
5143 if ((err
= sa_handle_get(os
, srcobj
, NULL
, SA_HDL_PRIVATE
, &hdl
))) {
5144 (void) printf("Failed to get handle for SA znode\n");
5147 if ((err
= sa_lookup(hdl
, sa_attr_table
[ZPL_SIZE
], &size
, 8))) {
5148 (void) sa_handle_destroy(hdl
);
5151 (void) sa_handle_destroy(hdl
);
5153 (void) printf("Object %" PRIu64
" is %" PRIu64
" bytes\n", srcobj
,
5159 int fd
= open(destfile
, O_WRONLY
| O_CREAT
| O_TRUNC
, 0644);
5163 * We cap the size at 1 mebibyte here to prevent
5164 * allocation failures and nigh-infinite printing if the
5165 * object is extremely large.
5167 oursize
= MIN(size
, 1 << 20);
5169 char *buf
= kmem_alloc(oursize
, KM_NOSLEEP
);
5175 while (offset
< size
) {
5176 readsize
= MIN(size
- offset
, 1 << 20);
5177 err
= dmu_read(os
, srcobj
, offset
, readsize
, buf
, 0);
5179 (void) printf("got error %u from dmu_read\n", err
);
5180 kmem_free(buf
, oursize
);
5184 if (dump_opt
['v'] > 3) {
5185 (void) printf("Read offset=%" PRIu64
" size=%" PRIu64
5186 " error=%d\n", offset
, readsize
, err
);
5189 writesize
= write(fd
, buf
, readsize
);
5190 if (writesize
< 0) {
5193 } else if (writesize
!= readsize
) {
5194 /* Incomplete write */
5195 (void) fprintf(stderr
, "Short write, only wrote %llu of"
5196 " %" PRIu64
" bytes, exiting...\n",
5197 (u_longlong_t
)writesize
, readsize
);
5207 kmem_free(buf
, oursize
);
5213 label_cksum_valid(vdev_label_t
*label
, uint64_t offset
)
5215 zio_checksum_info_t
*ci
= &zio_checksum_table
[ZIO_CHECKSUM_LABEL
];
5216 zio_cksum_t expected_cksum
;
5217 zio_cksum_t actual_cksum
;
5218 zio_cksum_t verifier
;
5222 void *data
= (char *)label
+ offsetof(vdev_label_t
, vl_vdev_phys
);
5223 eck
= (zio_eck_t
*)((char *)(data
) + VDEV_PHYS_SIZE
) - 1;
5225 offset
+= offsetof(vdev_label_t
, vl_vdev_phys
);
5226 ZIO_SET_CHECKSUM(&verifier
, offset
, 0, 0, 0);
5228 byteswap
= (eck
->zec_magic
== BSWAP_64(ZEC_MAGIC
));
5230 byteswap_uint64_array(&verifier
, sizeof (zio_cksum_t
));
5232 expected_cksum
= eck
->zec_cksum
;
5233 eck
->zec_cksum
= verifier
;
5235 abd_t
*abd
= abd_get_from_buf(data
, VDEV_PHYS_SIZE
);
5236 ci
->ci_func
[byteswap
](abd
, VDEV_PHYS_SIZE
, NULL
, &actual_cksum
);
5240 byteswap_uint64_array(&expected_cksum
, sizeof (zio_cksum_t
));
5242 if (ZIO_CHECKSUM_EQUAL(actual_cksum
, expected_cksum
))
5249 dump_label(const char *dev
)
5251 char path
[MAXPATHLEN
];
5252 zdb_label_t labels
[VDEV_LABELS
] = {{{{0}}}};
5253 uint64_t psize
, ashift
, l2cache
;
5254 struct stat64 statbuf
;
5255 boolean_t config_found
= B_FALSE
;
5256 boolean_t error
= B_FALSE
;
5257 boolean_t read_l2arc_header
= B_FALSE
;
5258 avl_tree_t config_tree
;
5259 avl_tree_t uberblock_tree
;
5260 void *node
, *cookie
;
5264 * Check if we were given absolute path and use it as is.
5265 * Otherwise if the provided vdev name doesn't point to a file,
5266 * try prepending expected disk paths and partition numbers.
5268 (void) strlcpy(path
, dev
, sizeof (path
));
5269 if (dev
[0] != '/' && stat64(path
, &statbuf
) != 0) {
5272 error
= zfs_resolve_shortname(dev
, path
, MAXPATHLEN
);
5273 if (error
== 0 && zfs_dev_is_whole_disk(path
)) {
5274 if (zfs_append_partition(path
, MAXPATHLEN
) == -1)
5278 if (error
|| (stat64(path
, &statbuf
) != 0)) {
5279 (void) printf("failed to find device %s, try "
5280 "specifying absolute path instead\n", dev
);
5285 if ((fd
= open64(path
, O_RDONLY
)) < 0) {
5286 (void) printf("cannot open '%s': %s\n", path
, strerror(errno
));
5290 if (fstat64_blk(fd
, &statbuf
) != 0) {
5291 (void) printf("failed to stat '%s': %s\n", path
,
5297 if (S_ISBLK(statbuf
.st_mode
) && zfs_dev_flush(fd
) != 0)
5298 (void) printf("failed to invalidate cache '%s' : %s\n", path
,
5301 avl_create(&config_tree
, cksum_record_compare
,
5302 sizeof (cksum_record_t
), offsetof(cksum_record_t
, link
));
5303 avl_create(&uberblock_tree
, cksum_record_compare
,
5304 sizeof (cksum_record_t
), offsetof(cksum_record_t
, link
));
5306 psize
= statbuf
.st_size
;
5307 psize
= P2ALIGN_TYPED(psize
, sizeof (vdev_label_t
), uint64_t);
5308 ashift
= SPA_MINBLOCKSHIFT
;
5311 * 1. Read the label from disk
5312 * 2. Verify label cksum
5313 * 3. Unpack the configuration and insert in config tree.
5314 * 4. Traverse all uberblocks and insert in uberblock tree.
5316 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
5317 zdb_label_t
*label
= &labels
[l
];
5318 char *buf
= label
->label
.vl_vdev_phys
.vp_nvlist
;
5319 size_t buflen
= sizeof (label
->label
.vl_vdev_phys
.vp_nvlist
);
5321 cksum_record_t
*rec
;
5325 label
->label_offset
= vdev_label_offset(psize
, l
, 0);
5327 if (pread64(fd
, &label
->label
, sizeof (label
->label
),
5328 label
->label_offset
) != sizeof (label
->label
)) {
5330 (void) printf("failed to read label %d\n", l
);
5331 label
->read_failed
= B_TRUE
;
5336 label
->read_failed
= B_FALSE
;
5337 label
->cksum_valid
= label_cksum_valid(&label
->label
,
5338 label
->label_offset
);
5340 if (nvlist_unpack(buf
, buflen
, &config
, 0) == 0) {
5341 nvlist_t
*vdev_tree
= NULL
;
5344 if ((nvlist_lookup_nvlist(config
,
5345 ZPOOL_CONFIG_VDEV_TREE
, &vdev_tree
) != 0) ||
5346 (nvlist_lookup_uint64(vdev_tree
,
5347 ZPOOL_CONFIG_ASHIFT
, &ashift
) != 0))
5348 ashift
= SPA_MINBLOCKSHIFT
;
5350 if (nvlist_size(config
, &size
, NV_ENCODE_XDR
) != 0)
5353 /* If the device is a cache device read the header. */
5354 if (!read_l2arc_header
) {
5355 if (nvlist_lookup_uint64(config
,
5356 ZPOOL_CONFIG_POOL_STATE
, &l2cache
) == 0 &&
5357 l2cache
== POOL_STATE_L2CACHE
) {
5358 read_l2arc_header
= B_TRUE
;
5362 fletcher_4_native_varsize(buf
, size
, &cksum
);
5363 rec
= cksum_record_insert(&config_tree
, &cksum
, l
);
5365 label
->config
= rec
;
5366 label
->config_nv
= config
;
5367 config_found
= B_TRUE
;
5372 vd
.vdev_ashift
= ashift
;
5375 for (int i
= 0; i
< VDEV_UBERBLOCK_COUNT(&vd
); i
++) {
5376 uint64_t uoff
= VDEV_UBERBLOCK_OFFSET(&vd
, i
);
5377 uberblock_t
*ub
= (void *)((char *)label
+ uoff
);
5379 if (uberblock_verify(ub
))
5382 fletcher_4_native_varsize(ub
, sizeof (*ub
), &cksum
);
5383 rec
= cksum_record_insert(&uberblock_tree
, &cksum
, l
);
5385 label
->uberblocks
[i
] = rec
;
5390 * Dump the label and uberblocks.
5392 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
5393 zdb_label_t
*label
= &labels
[l
];
5394 size_t buflen
= sizeof (label
->label
.vl_vdev_phys
.vp_nvlist
);
5396 if (label
->read_failed
== B_TRUE
)
5399 if (label
->config_nv
) {
5400 dump_config_from_label(label
, buflen
, l
);
5403 (void) printf("failed to unpack label %d\n", l
);
5407 dump_label_uberblocks(label
, ashift
, l
);
5409 nvlist_free(label
->config_nv
);
5413 * Dump the L2ARC header, if existent.
5415 if (read_l2arc_header
)
5416 error
|= dump_l2arc_header(fd
);
5419 while ((node
= avl_destroy_nodes(&config_tree
, &cookie
)) != NULL
)
5420 umem_free(node
, sizeof (cksum_record_t
));
5423 while ((node
= avl_destroy_nodes(&uberblock_tree
, &cookie
)) != NULL
)
5424 umem_free(node
, sizeof (cksum_record_t
));
5426 avl_destroy(&config_tree
);
5427 avl_destroy(&uberblock_tree
);
5431 return (config_found
== B_FALSE
? 2 :
5432 (error
== B_TRUE
? 1 : 0));
5435 static uint64_t dataset_feature_count
[SPA_FEATURES
];
5436 static uint64_t global_feature_count
[SPA_FEATURES
];
5437 static uint64_t remap_deadlist_count
= 0;
5440 dump_one_objset(const char *dsname
, void *arg
)
5447 error
= open_objset(dsname
, FTAG
, &os
);
5451 for (f
= 0; f
< SPA_FEATURES
; f
++) {
5452 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os
), f
))
5454 ASSERT(spa_feature_table
[f
].fi_flags
&
5455 ZFEATURE_FLAG_PER_DATASET
);
5456 dataset_feature_count
[f
]++;
5459 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os
))) {
5460 remap_deadlist_count
++;
5463 for (dsl_bookmark_node_t
*dbn
=
5464 avl_first(&dmu_objset_ds(os
)->ds_bookmarks
); dbn
!= NULL
;
5465 dbn
= AVL_NEXT(&dmu_objset_ds(os
)->ds_bookmarks
, dbn
)) {
5466 mos_obj_refd(dbn
->dbn_phys
.zbm_redaction_obj
);
5467 if (dbn
->dbn_phys
.zbm_redaction_obj
!= 0) {
5468 global_feature_count
[
5469 SPA_FEATURE_REDACTION_BOOKMARKS
]++;
5470 objset_t
*mos
= os
->os_spa
->spa_meta_objset
;
5472 VERIFY0(dnode_hold(mos
,
5473 dbn
->dbn_phys
.zbm_redaction_obj
, FTAG
, &rl
));
5474 if (rl
->dn_have_spill
) {
5475 global_feature_count
[
5476 SPA_FEATURE_REDACTION_LIST_SPILL
]++;
5479 if (dbn
->dbn_phys
.zbm_flags
& ZBM_FLAG_HAS_FBN
)
5480 global_feature_count
[SPA_FEATURE_BOOKMARK_WRITTEN
]++;
5483 if (dsl_deadlist_is_open(&dmu_objset_ds(os
)->ds_dir
->dd_livelist
) &&
5484 !dmu_objset_is_snapshot(os
)) {
5485 global_feature_count
[SPA_FEATURE_LIVELIST
]++;
5489 close_objset(os
, FTAG
);
5490 fuid_table_destroy();
5497 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5498 typedef struct zdb_blkstats
{
5504 uint64_t zb_ditto_samevdev
;
5505 uint64_t zb_ditto_same_ms
;
5506 uint64_t zb_psize_histogram
[PSIZE_HISTO_SIZE
];
5510 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5512 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5513 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5514 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5515 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5517 static const char *zdb_ot_extname
[] = {
5524 #define ZB_TOTAL DN_MAX_LEVELS
5525 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5527 typedef struct zdb_brt_entry
{
5529 uint64_t zbre_refcount
;
5530 avl_node_t zbre_node
;
5533 typedef struct zdb_cb
{
5534 zdb_blkstats_t zcb_type
[ZB_TOTAL
+ 1][ZDB_OT_TOTAL
+ 1];
5535 uint64_t zcb_removing_size
;
5536 uint64_t zcb_checkpoint_size
;
5537 uint64_t zcb_dedup_asize
;
5538 uint64_t zcb_dedup_blocks
;
5539 uint64_t zcb_clone_asize
;
5540 uint64_t zcb_clone_blocks
;
5541 uint64_t zcb_psize_count
[SPA_MAX_FOR_16M
];
5542 uint64_t zcb_lsize_count
[SPA_MAX_FOR_16M
];
5543 uint64_t zcb_asize_count
[SPA_MAX_FOR_16M
];
5544 uint64_t zcb_psize_len
[SPA_MAX_FOR_16M
];
5545 uint64_t zcb_lsize_len
[SPA_MAX_FOR_16M
];
5546 uint64_t zcb_asize_len
[SPA_MAX_FOR_16M
];
5547 uint64_t zcb_psize_total
;
5548 uint64_t zcb_lsize_total
;
5549 uint64_t zcb_asize_total
;
5550 uint64_t zcb_embedded_blocks
[NUM_BP_EMBEDDED_TYPES
];
5551 uint64_t zcb_embedded_histogram
[NUM_BP_EMBEDDED_TYPES
]
5552 [BPE_PAYLOAD_SIZE
+ 1];
5554 hrtime_t zcb_lastprint
;
5555 uint64_t zcb_totalasize
;
5556 uint64_t zcb_errors
[256];
5560 uint32_t **zcb_vd_obsolete_counts
;
5562 boolean_t zcb_brt_is_active
;
5565 /* test if two DVA offsets from same vdev are within the same metaslab */
5567 same_metaslab(spa_t
*spa
, uint64_t vdev
, uint64_t off1
, uint64_t off2
)
5569 vdev_t
*vd
= vdev_lookup_top(spa
, vdev
);
5570 uint64_t ms_shift
= vd
->vdev_ms_shift
;
5572 return ((off1
>> ms_shift
) == (off2
>> ms_shift
));
5576 * Used to simplify reporting of the histogram data.
5578 typedef struct one_histo
{
5582 uint64_t cumulative
;
5586 * The number of separate histograms processed for psize, lsize and asize.
5591 * This routine will create a fixed column size output of three different
5592 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5593 * the count, length and cumulative length of the psize, lsize and
5596 * All three types of blocks are listed on a single line
5598 * By default the table is printed in nicenumber format (e.g. 123K) but
5599 * if the '-P' parameter is specified then the full raw number (parseable)
5603 dump_size_histograms(zdb_cb_t
*zcb
)
5606 * A temporary buffer that allows us to convert a number into
5607 * a string using zdb_nicenumber to allow either raw or human
5608 * readable numbers to be output.
5613 * Define titles which are used in the headers of the tables
5614 * printed by this routine.
5616 const char blocksize_title1
[] = "block";
5617 const char blocksize_title2
[] = "size";
5618 const char count_title
[] = "Count";
5619 const char length_title
[] = "Size";
5620 const char cumulative_title
[] = "Cum.";
5623 * Setup the histogram arrays (psize, lsize, and asize).
5625 one_histo_t parm_histo
[NUM_HISTO
];
5627 parm_histo
[0].name
= "psize";
5628 parm_histo
[0].count
= zcb
->zcb_psize_count
;
5629 parm_histo
[0].len
= zcb
->zcb_psize_len
;
5630 parm_histo
[0].cumulative
= 0;
5632 parm_histo
[1].name
= "lsize";
5633 parm_histo
[1].count
= zcb
->zcb_lsize_count
;
5634 parm_histo
[1].len
= zcb
->zcb_lsize_len
;
5635 parm_histo
[1].cumulative
= 0;
5637 parm_histo
[2].name
= "asize";
5638 parm_histo
[2].count
= zcb
->zcb_asize_count
;
5639 parm_histo
[2].len
= zcb
->zcb_asize_len
;
5640 parm_histo
[2].cumulative
= 0;
5643 (void) printf("\nBlock Size Histogram\n");
5645 * Print the first line titles
5648 (void) printf("\n%s\t", blocksize_title1
);
5650 (void) printf("\n%7s ", blocksize_title1
);
5652 for (int j
= 0; j
< NUM_HISTO
; j
++) {
5653 if (dump_opt
['P']) {
5654 if (j
< NUM_HISTO
- 1) {
5655 (void) printf("%s\t\t\t", parm_histo
[j
].name
);
5657 /* Don't print trailing spaces */
5658 (void) printf(" %s", parm_histo
[j
].name
);
5661 if (j
< NUM_HISTO
- 1) {
5662 /* Left aligned strings in the output */
5663 (void) printf("%-7s ",
5664 parm_histo
[j
].name
);
5666 /* Don't print trailing spaces */
5667 (void) printf("%s", parm_histo
[j
].name
);
5671 (void) printf("\n");
5674 * Print the second line titles
5676 if (dump_opt
['P']) {
5677 (void) printf("%s\t", blocksize_title2
);
5679 (void) printf("%7s ", blocksize_title2
);
5682 for (int i
= 0; i
< NUM_HISTO
; i
++) {
5683 if (dump_opt
['P']) {
5684 (void) printf("%s\t%s\t%s\t",
5685 count_title
, length_title
, cumulative_title
);
5687 (void) printf("%7s%7s%7s",
5688 count_title
, length_title
, cumulative_title
);
5691 (void) printf("\n");
5696 for (int i
= SPA_MINBLOCKSHIFT
; i
< SPA_MAX_FOR_16M
; i
++) {
5699 * Print the first column showing the blocksize
5701 zdb_nicenum((1ULL << i
), numbuf
, sizeof (numbuf
));
5703 if (dump_opt
['P']) {
5704 printf("%s", numbuf
);
5706 printf("%7s:", numbuf
);
5710 * Print the remaining set of 3 columns per size:
5711 * for psize, lsize and asize
5713 for (int j
= 0; j
< NUM_HISTO
; j
++) {
5714 parm_histo
[j
].cumulative
+= parm_histo
[j
].len
[i
];
5716 zdb_nicenum(parm_histo
[j
].count
[i
],
5717 numbuf
, sizeof (numbuf
));
5719 (void) printf("\t%s", numbuf
);
5721 (void) printf("%7s", numbuf
);
5723 zdb_nicenum(parm_histo
[j
].len
[i
],
5724 numbuf
, sizeof (numbuf
));
5726 (void) printf("\t%s", numbuf
);
5728 (void) printf("%7s", numbuf
);
5730 zdb_nicenum(parm_histo
[j
].cumulative
,
5731 numbuf
, sizeof (numbuf
));
5733 (void) printf("\t%s", numbuf
);
5735 (void) printf("%7s", numbuf
);
5737 (void) printf("\n");
5742 zdb_count_block(zdb_cb_t
*zcb
, zilog_t
*zilog
, const blkptr_t
*bp
,
5743 dmu_object_type_t type
)
5747 ASSERT(type
< ZDB_OT_TOTAL
);
5749 if (zilog
&& zil_bp_tree_add(zilog
, bp
) != 0)
5753 * This flag controls if we will issue a claim for the block while
5754 * counting it, to ensure that all blocks are referenced in space maps.
5755 * We don't issue claims if we're not doing leak tracking, because it's
5756 * expensive if the user isn't interested. We also don't claim the
5757 * second or later occurences of cloned or dedup'd blocks, because we
5758 * already claimed them the first time.
5760 boolean_t do_claim
= !dump_opt
['L'];
5762 spa_config_enter(zcb
->zcb_spa
, SCL_CONFIG
, FTAG
, RW_READER
);
5765 if (BP_GET_DEDUP(bp
)) {
5767 * Dedup'd blocks are special. We need to count them, so we can
5768 * later uncount them when reporting leaked space, and we must
5769 * only claim them once.
5771 * We use the existing dedup system to track what we've seen.
5772 * The first time we see a block, we do a ddt_lookup() to see
5773 * if it exists in the DDT. If we're doing leak tracking, we
5774 * claim the block at this time.
5776 * Each time we see a block, we reduce the refcount in the
5777 * entry by one, and add to the size and count of dedup'd
5778 * blocks to report at the end.
5781 ddt_t
*ddt
= ddt_select(zcb
->zcb_spa
, bp
);
5786 * Find the block. This will create the entry in memory, but
5787 * we'll know if that happened by its refcount.
5789 ddt_entry_t
*dde
= ddt_lookup(ddt
, bp
);
5792 * ddt_lookup() can return NULL if this block didn't exist
5793 * in the DDT and creating it would take the DDT over its
5794 * quota. Since we got the block from disk, it must exist in
5795 * the DDT, so this can't happen. However, when unique entries
5796 * are pruned, the dedup bit can be set with no corresponding
5804 /* Get the phys for this variant */
5805 ddt_phys_variant_t v
= ddt_phys_select(ddt
, dde
, bp
);
5808 * This entry may have multiple sets of DVAs. We must claim
5809 * each set the first time we see them in a real block on disk,
5810 * or count them on subsequent occurences. We don't have a
5811 * convenient way to track the first time we see each variant,
5812 * so we repurpose dde_io as a set of "seen" flag bits. We can
5813 * do this safely in zdb because it never writes, so it will
5814 * never have a writing zio for this block in that pointer.
5816 boolean_t seen
= !!(((uintptr_t)dde
->dde_io
) & (1 << v
));
5819 (void *)(((uintptr_t)dde
->dde_io
) | (1 << v
));
5821 /* Consume a reference for this block. */
5822 if (ddt_phys_total_refcnt(ddt
, dde
->dde_phys
) > 0)
5823 ddt_phys_decref(dde
->dde_phys
, v
);
5826 * If this entry has a single flat phys, it may have been
5827 * extended with additional DVAs at some time in its life.
5828 * This block might be from before it was fully extended, and
5829 * so have fewer DVAs.
5831 * If this is the first time we've seen this block, and we
5832 * claimed it as-is, then we would miss the claim on some
5833 * number of DVAs, which would then be seen as leaked.
5835 * In all cases, if we've had fewer DVAs, then the asize would
5836 * be too small, and would lead to the pool apparently using
5837 * more space than allocated.
5839 * To handle this, we copy the canonical set of DVAs from the
5840 * entry back to the block pointer before we claim it.
5842 if (v
== DDT_PHYS_FLAT
) {
5843 ASSERT3U(BP_GET_BIRTH(bp
), ==,
5844 ddt_phys_birth(dde
->dde_phys
, v
));
5846 ddt_bp_fill(dde
->dde_phys
, v
, &tempbp
,
5853 * The second or later time we see this block,
5854 * it's a duplicate and we count it.
5856 zcb
->zcb_dedup_asize
+= BP_GET_ASIZE(bp
);
5857 zcb
->zcb_dedup_blocks
++;
5859 /* Already claimed, don't do it again. */
5864 } else if (zcb
->zcb_brt_is_active
&&
5865 brt_maybe_exists(zcb
->zcb_spa
, bp
)) {
5867 * Cloned blocks are special. We need to count them, so we can
5868 * later uncount them when reporting leaked space, and we must
5869 * only claim them once.
5871 * To do this, we keep our own in-memory BRT. For each block
5872 * we haven't seen before, we look it up in the real BRT and
5873 * if its there, we note it and its refcount then proceed as
5874 * normal. If we see the block again, we count it as a clone
5875 * and then give it no further consideration.
5877 zdb_brt_entry_t zbre_search
, *zbre
;
5880 zbre_search
.zbre_dva
= bp
->blk_dva
[0];
5881 zbre
= avl_find(&zcb
->zcb_brt
, &zbre_search
, &where
);
5883 /* Not seen before; track it */
5885 brt_entry_get_refcount(zcb
->zcb_spa
, bp
);
5887 zbre
= umem_zalloc(sizeof (zdb_brt_entry_t
),
5889 zbre
->zbre_dva
= bp
->blk_dva
[0];
5890 zbre
->zbre_refcount
= refcnt
;
5891 avl_insert(&zcb
->zcb_brt
, zbre
, where
);
5895 * Second or later occurrence, count it and take a
5898 zcb
->zcb_clone_asize
+= BP_GET_ASIZE(bp
);
5899 zcb
->zcb_clone_blocks
++;
5901 zbre
->zbre_refcount
--;
5902 if (zbre
->zbre_refcount
== 0) {
5903 avl_remove(&zcb
->zcb_brt
, zbre
);
5904 umem_free(zbre
, sizeof (zdb_brt_entry_t
));
5907 /* Already claimed, don't do it again. */
5913 for (i
= 0; i
< 4; i
++) {
5914 int l
= (i
< 2) ? BP_GET_LEVEL(bp
) : ZB_TOTAL
;
5915 int t
= (i
& 1) ? type
: ZDB_OT_TOTAL
;
5917 zdb_blkstats_t
*zb
= &zcb
->zcb_type
[l
][t
];
5919 zb
->zb_asize
+= BP_GET_ASIZE(bp
);
5920 zb
->zb_lsize
+= BP_GET_LSIZE(bp
);
5921 zb
->zb_psize
+= BP_GET_PSIZE(bp
);
5925 * The histogram is only big enough to record blocks up to
5926 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5929 unsigned idx
= BP_GET_PSIZE(bp
) >> SPA_MINBLOCKSHIFT
;
5930 idx
= MIN(idx
, SPA_OLD_MAXBLOCKSIZE
/ SPA_MINBLOCKSIZE
+ 1);
5931 zb
->zb_psize_histogram
[idx
]++;
5933 zb
->zb_gangs
+= BP_COUNT_GANG(bp
);
5935 switch (BP_GET_NDVAS(bp
)) {
5937 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5938 DVA_GET_VDEV(&bp
->blk_dva
[1])) {
5939 zb
->zb_ditto_samevdev
++;
5941 if (same_metaslab(zcb
->zcb_spa
,
5942 DVA_GET_VDEV(&bp
->blk_dva
[0]),
5943 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
5944 DVA_GET_OFFSET(&bp
->blk_dva
[1])))
5945 zb
->zb_ditto_same_ms
++;
5949 equal
= (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5950 DVA_GET_VDEV(&bp
->blk_dva
[1])) +
5951 (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5952 DVA_GET_VDEV(&bp
->blk_dva
[2])) +
5953 (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
5954 DVA_GET_VDEV(&bp
->blk_dva
[2]));
5956 zb
->zb_ditto_samevdev
++;
5958 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5959 DVA_GET_VDEV(&bp
->blk_dva
[1]) &&
5960 same_metaslab(zcb
->zcb_spa
,
5961 DVA_GET_VDEV(&bp
->blk_dva
[0]),
5962 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
5963 DVA_GET_OFFSET(&bp
->blk_dva
[1])))
5964 zb
->zb_ditto_same_ms
++;
5965 else if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5966 DVA_GET_VDEV(&bp
->blk_dva
[2]) &&
5967 same_metaslab(zcb
->zcb_spa
,
5968 DVA_GET_VDEV(&bp
->blk_dva
[0]),
5969 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
5970 DVA_GET_OFFSET(&bp
->blk_dva
[2])))
5971 zb
->zb_ditto_same_ms
++;
5972 else if (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
5973 DVA_GET_VDEV(&bp
->blk_dva
[2]) &&
5974 same_metaslab(zcb
->zcb_spa
,
5975 DVA_GET_VDEV(&bp
->blk_dva
[1]),
5976 DVA_GET_OFFSET(&bp
->blk_dva
[1]),
5977 DVA_GET_OFFSET(&bp
->blk_dva
[2])))
5978 zb
->zb_ditto_same_ms
++;
5984 spa_config_exit(zcb
->zcb_spa
, SCL_CONFIG
, FTAG
);
5986 if (BP_IS_EMBEDDED(bp
)) {
5987 zcb
->zcb_embedded_blocks
[BPE_GET_ETYPE(bp
)]++;
5988 zcb
->zcb_embedded_histogram
[BPE_GET_ETYPE(bp
)]
5989 [BPE_GET_PSIZE(bp
)]++;
5993 * The binning histogram bins by powers of two up to
5994 * SPA_MAXBLOCKSIZE rather than creating bins for
5995 * every possible blocksize found in the pool.
5997 int bin
= highbit64(BP_GET_PSIZE(bp
)) - 1;
5999 zcb
->zcb_psize_count
[bin
]++;
6000 zcb
->zcb_psize_len
[bin
] += BP_GET_PSIZE(bp
);
6001 zcb
->zcb_psize_total
+= BP_GET_PSIZE(bp
);
6003 bin
= highbit64(BP_GET_LSIZE(bp
)) - 1;
6005 zcb
->zcb_lsize_count
[bin
]++;
6006 zcb
->zcb_lsize_len
[bin
] += BP_GET_LSIZE(bp
);
6007 zcb
->zcb_lsize_total
+= BP_GET_LSIZE(bp
);
6009 bin
= highbit64(BP_GET_ASIZE(bp
)) - 1;
6011 zcb
->zcb_asize_count
[bin
]++;
6012 zcb
->zcb_asize_len
[bin
] += BP_GET_ASIZE(bp
);
6013 zcb
->zcb_asize_total
+= BP_GET_ASIZE(bp
);
6018 VERIFY0(zio_wait(zio_claim(NULL
, zcb
->zcb_spa
,
6019 spa_min_claim_txg(zcb
->zcb_spa
), bp
, NULL
, NULL
,
6020 ZIO_FLAG_CANFAIL
)));
6024 zdb_blkptr_done(zio_t
*zio
)
6026 spa_t
*spa
= zio
->io_spa
;
6027 blkptr_t
*bp
= zio
->io_bp
;
6028 int ioerr
= zio
->io_error
;
6029 zdb_cb_t
*zcb
= zio
->io_private
;
6030 zbookmark_phys_t
*zb
= &zio
->io_bookmark
;
6032 mutex_enter(&spa
->spa_scrub_lock
);
6033 spa
->spa_load_verify_bytes
-= BP_GET_PSIZE(bp
);
6034 cv_broadcast(&spa
->spa_scrub_io_cv
);
6036 if (ioerr
&& !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
6037 char blkbuf
[BP_SPRINTF_LEN
];
6039 zcb
->zcb_haderrors
= 1;
6040 zcb
->zcb_errors
[ioerr
]++;
6042 if (dump_opt
['b'] >= 2)
6043 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6047 (void) printf("zdb_blkptr_cb: "
6048 "Got error %d reading "
6049 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6051 (u_longlong_t
)zb
->zb_objset
,
6052 (u_longlong_t
)zb
->zb_object
,
6053 (u_longlong_t
)zb
->zb_level
,
6054 (u_longlong_t
)zb
->zb_blkid
,
6057 mutex_exit(&spa
->spa_scrub_lock
);
6059 abd_free(zio
->io_abd
);
6063 zdb_blkptr_cb(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
6064 const zbookmark_phys_t
*zb
, const dnode_phys_t
*dnp
, void *arg
)
6066 zdb_cb_t
*zcb
= arg
;
6067 dmu_object_type_t type
;
6068 boolean_t is_metadata
;
6070 if (zb
->zb_level
== ZB_DNODE_LEVEL
)
6073 if (dump_opt
['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp
) > 0) {
6074 char blkbuf
[BP_SPRINTF_LEN
];
6075 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6076 (void) printf("objset %llu object %llu "
6077 "level %lld offset 0x%llx %s\n",
6078 (u_longlong_t
)zb
->zb_objset
,
6079 (u_longlong_t
)zb
->zb_object
,
6080 (longlong_t
)zb
->zb_level
,
6081 (u_longlong_t
)blkid2offset(dnp
, bp
, zb
),
6085 if (BP_IS_HOLE(bp
) || BP_IS_REDACTED(bp
))
6088 type
= BP_GET_TYPE(bp
);
6090 zdb_count_block(zcb
, zilog
, bp
,
6091 (type
& DMU_OT_NEWTYPE
) ? ZDB_OT_OTHER
: type
);
6093 is_metadata
= (BP_GET_LEVEL(bp
) != 0 || DMU_OT_IS_METADATA(type
));
6095 if (!BP_IS_EMBEDDED(bp
) &&
6096 (dump_opt
['c'] > 1 || (dump_opt
['c'] && is_metadata
))) {
6097 size_t size
= BP_GET_PSIZE(bp
);
6098 abd_t
*abd
= abd_alloc(size
, B_FALSE
);
6099 int flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCRUB
| ZIO_FLAG_RAW
;
6101 /* If it's an intent log block, failure is expected. */
6102 if (zb
->zb_level
== ZB_ZIL_LEVEL
)
6103 flags
|= ZIO_FLAG_SPECULATIVE
;
6105 mutex_enter(&spa
->spa_scrub_lock
);
6106 while (spa
->spa_load_verify_bytes
> max_inflight_bytes
)
6107 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
6108 spa
->spa_load_verify_bytes
+= size
;
6109 mutex_exit(&spa
->spa_scrub_lock
);
6111 zio_nowait(zio_read(NULL
, spa
, bp
, abd
, size
,
6112 zdb_blkptr_done
, zcb
, ZIO_PRIORITY_ASYNC_READ
, flags
, zb
));
6115 zcb
->zcb_readfails
= 0;
6117 /* only call gethrtime() every 100 blocks */
6124 if (dump_opt
['b'] < 5 && gethrtime() > zcb
->zcb_lastprint
+ NANOSEC
) {
6125 uint64_t now
= gethrtime();
6127 uint64_t bytes
= zcb
->zcb_type
[ZB_TOTAL
][ZDB_OT_TOTAL
].zb_asize
;
6128 uint64_t kb_per_sec
=
6129 1 + bytes
/ (1 + ((now
- zcb
->zcb_start
) / 1000 / 1000));
6130 uint64_t sec_remaining
=
6131 (zcb
->zcb_totalasize
- bytes
) / 1024 / kb_per_sec
;
6133 /* make sure nicenum has enough space */
6134 _Static_assert(sizeof (buf
) >= NN_NUMBUF_SZ
, "buf truncated");
6136 zfs_nicebytes(bytes
, buf
, sizeof (buf
));
6137 (void) fprintf(stderr
,
6138 "\r%5s completed (%4"PRIu64
"MB/s) "
6139 "estimated time remaining: "
6140 "%"PRIu64
"hr %02"PRIu64
"min %02"PRIu64
"sec ",
6141 buf
, kb_per_sec
/ 1024,
6142 sec_remaining
/ 60 / 60,
6143 sec_remaining
/ 60 % 60,
6144 sec_remaining
% 60);
6146 zcb
->zcb_lastprint
= now
;
6153 zdb_leak(void *arg
, uint64_t start
, uint64_t size
)
6157 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6158 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)start
, (u_longlong_t
)size
);
6161 static metaslab_ops_t zdb_metaslab_ops
= {
6166 load_unflushed_svr_segs_cb(spa_t
*spa
, space_map_entry_t
*sme
,
6167 uint64_t txg
, void *arg
)
6169 spa_vdev_removal_t
*svr
= arg
;
6171 uint64_t offset
= sme
->sme_offset
;
6172 uint64_t size
= sme
->sme_run
;
6174 /* skip vdevs we don't care about */
6175 if (sme
->sme_vdev
!= svr
->svr_vdev_id
)
6178 vdev_t
*vd
= vdev_lookup_top(spa
, sme
->sme_vdev
);
6179 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6180 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6182 if (txg
< metaslab_unflushed_txg(ms
))
6185 if (sme
->sme_type
== SM_ALLOC
)
6186 range_tree_add(svr
->svr_allocd_segs
, offset
, size
);
6188 range_tree_remove(svr
->svr_allocd_segs
, offset
, size
);
6194 claim_segment_impl_cb(uint64_t inner_offset
, vdev_t
*vd
, uint64_t offset
,
6195 uint64_t size
, void *arg
)
6197 (void) inner_offset
, (void) arg
;
6200 * This callback was called through a remap from
6201 * a device being removed. Therefore, the vdev that
6202 * this callback is applied to is a concrete
6205 ASSERT(vdev_is_concrete(vd
));
6207 VERIFY0(metaslab_claim_impl(vd
, offset
, size
,
6208 spa_min_claim_txg(vd
->vdev_spa
)));
6212 claim_segment_cb(void *arg
, uint64_t offset
, uint64_t size
)
6216 vdev_indirect_ops
.vdev_op_remap(vd
, offset
, size
,
6217 claim_segment_impl_cb
, NULL
);
6221 * After accounting for all allocated blocks that are directly referenced,
6222 * we might have missed a reference to a block from a partially complete
6223 * (and thus unused) indirect mapping object. We perform a secondary pass
6224 * through the metaslabs we have already mapped and claim the destination
6228 zdb_claim_removing(spa_t
*spa
, zdb_cb_t
*zcb
)
6233 if (spa
->spa_vdev_removal
== NULL
)
6236 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
6238 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
6239 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
6240 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6242 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
6244 range_tree_t
*allocs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
6245 for (uint64_t msi
= 0; msi
< vd
->vdev_ms_count
; msi
++) {
6246 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
6248 ASSERT0(range_tree_space(allocs
));
6249 if (msp
->ms_sm
!= NULL
)
6250 VERIFY0(space_map_load(msp
->ms_sm
, allocs
, SM_ALLOC
));
6251 range_tree_vacate(allocs
, range_tree_add
, svr
->svr_allocd_segs
);
6253 range_tree_destroy(allocs
);
6255 iterate_through_spacemap_logs(spa
, load_unflushed_svr_segs_cb
, svr
);
6258 * Clear everything past what has been synced,
6259 * because we have not allocated mappings for
6262 range_tree_clear(svr
->svr_allocd_segs
,
6263 vdev_indirect_mapping_max_offset(vim
),
6264 vd
->vdev_asize
- vdev_indirect_mapping_max_offset(vim
));
6266 zcb
->zcb_removing_size
+= range_tree_space(svr
->svr_allocd_segs
);
6267 range_tree_vacate(svr
->svr_allocd_segs
, claim_segment_cb
, vd
);
6269 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
6273 increment_indirect_mapping_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
6277 zdb_cb_t
*zcb
= arg
;
6278 spa_t
*spa
= zcb
->zcb_spa
;
6280 const dva_t
*dva
= &bp
->blk_dva
[0];
6283 ASSERT(!dump_opt
['L']);
6284 ASSERT3U(BP_GET_NDVAS(bp
), ==, 1);
6286 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6287 vd
= vdev_lookup_top(zcb
->zcb_spa
, DVA_GET_VDEV(dva
));
6288 ASSERT3P(vd
, !=, NULL
);
6289 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6291 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
6292 ASSERT3P(zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
], !=, NULL
);
6294 vdev_indirect_mapping_increment_obsolete_count(
6295 vd
->vdev_indirect_mapping
,
6296 DVA_GET_OFFSET(dva
), DVA_GET_ASIZE(dva
),
6297 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
]);
6303 zdb_load_obsolete_counts(vdev_t
*vd
)
6305 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6306 spa_t
*spa
= vd
->vdev_spa
;
6307 spa_condensing_indirect_phys_t
*scip
=
6308 &spa
->spa_condensing_indirect_phys
;
6309 uint64_t obsolete_sm_object
;
6312 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
6313 EQUIV(obsolete_sm_object
!= 0, vd
->vdev_obsolete_sm
!= NULL
);
6314 counts
= vdev_indirect_mapping_load_obsolete_counts(vim
);
6315 if (vd
->vdev_obsolete_sm
!= NULL
) {
6316 vdev_indirect_mapping_load_obsolete_spacemap(vim
, counts
,
6317 vd
->vdev_obsolete_sm
);
6319 if (scip
->scip_vdev
== vd
->vdev_id
&&
6320 scip
->scip_prev_obsolete_sm_object
!= 0) {
6321 space_map_t
*prev_obsolete_sm
= NULL
;
6322 VERIFY0(space_map_open(&prev_obsolete_sm
, spa
->spa_meta_objset
,
6323 scip
->scip_prev_obsolete_sm_object
, 0, vd
->vdev_asize
, 0));
6324 vdev_indirect_mapping_load_obsolete_spacemap(vim
, counts
,
6326 space_map_close(prev_obsolete_sm
);
6331 typedef struct checkpoint_sm_exclude_entry_arg
{
6333 uint64_t cseea_checkpoint_size
;
6334 } checkpoint_sm_exclude_entry_arg_t
;
6337 checkpoint_sm_exclude_entry_cb(space_map_entry_t
*sme
, void *arg
)
6339 checkpoint_sm_exclude_entry_arg_t
*cseea
= arg
;
6340 vdev_t
*vd
= cseea
->cseea_vd
;
6341 metaslab_t
*ms
= vd
->vdev_ms
[sme
->sme_offset
>> vd
->vdev_ms_shift
];
6342 uint64_t end
= sme
->sme_offset
+ sme
->sme_run
;
6344 ASSERT(sme
->sme_type
== SM_FREE
);
6347 * Since the vdev_checkpoint_sm exists in the vdev level
6348 * and the ms_sm space maps exist in the metaslab level,
6349 * an entry in the checkpoint space map could theoretically
6350 * cross the boundaries of the metaslab that it belongs.
6352 * In reality, because of the way that we populate and
6353 * manipulate the checkpoint's space maps currently,
6354 * there shouldn't be any entries that cross metaslabs.
6355 * Hence the assertion below.
6357 * That said, there is no fundamental requirement that
6358 * the checkpoint's space map entries should not cross
6359 * metaslab boundaries. So if needed we could add code
6360 * that handles metaslab-crossing segments in the future.
6362 VERIFY3U(sme
->sme_offset
, >=, ms
->ms_start
);
6363 VERIFY3U(end
, <=, ms
->ms_start
+ ms
->ms_size
);
6366 * By removing the entry from the allocated segments we
6367 * also verify that the entry is there to begin with.
6369 mutex_enter(&ms
->ms_lock
);
6370 range_tree_remove(ms
->ms_allocatable
, sme
->sme_offset
, sme
->sme_run
);
6371 mutex_exit(&ms
->ms_lock
);
6373 cseea
->cseea_checkpoint_size
+= sme
->sme_run
;
6378 zdb_leak_init_vdev_exclude_checkpoint(vdev_t
*vd
, zdb_cb_t
*zcb
)
6380 spa_t
*spa
= vd
->vdev_spa
;
6381 space_map_t
*checkpoint_sm
= NULL
;
6382 uint64_t checkpoint_sm_obj
;
6385 * If there is no vdev_top_zap, we are in a pool whose
6386 * version predates the pool checkpoint feature.
6388 if (vd
->vdev_top_zap
== 0)
6392 * If there is no reference of the vdev_checkpoint_sm in
6393 * the vdev_top_zap, then one of the following scenarios
6396 * 1] There is no checkpoint
6397 * 2] There is a checkpoint, but no checkpointed blocks
6398 * have been freed yet
6399 * 3] The current vdev is indirect
6401 * In these cases we return immediately.
6403 if (zap_contains(spa_meta_objset(spa
), vd
->vdev_top_zap
,
6404 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
6407 VERIFY0(zap_lookup(spa_meta_objset(spa
), vd
->vdev_top_zap
,
6408 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
, sizeof (uint64_t), 1,
6409 &checkpoint_sm_obj
));
6411 checkpoint_sm_exclude_entry_arg_t cseea
;
6412 cseea
.cseea_vd
= vd
;
6413 cseea
.cseea_checkpoint_size
= 0;
6415 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(spa
),
6416 checkpoint_sm_obj
, 0, vd
->vdev_asize
, vd
->vdev_ashift
));
6418 VERIFY0(space_map_iterate(checkpoint_sm
,
6419 space_map_length(checkpoint_sm
),
6420 checkpoint_sm_exclude_entry_cb
, &cseea
));
6421 space_map_close(checkpoint_sm
);
6423 zcb
->zcb_checkpoint_size
+= cseea
.cseea_checkpoint_size
;
6427 zdb_leak_init_exclude_checkpoint(spa_t
*spa
, zdb_cb_t
*zcb
)
6429 ASSERT(!dump_opt
['L']);
6431 vdev_t
*rvd
= spa
->spa_root_vdev
;
6432 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
6433 ASSERT3U(c
, ==, rvd
->vdev_child
[c
]->vdev_id
);
6434 zdb_leak_init_vdev_exclude_checkpoint(rvd
->vdev_child
[c
], zcb
);
6439 count_unflushed_space_cb(spa_t
*spa
, space_map_entry_t
*sme
,
6440 uint64_t txg
, void *arg
)
6442 int64_t *ualloc_space
= arg
;
6444 uint64_t offset
= sme
->sme_offset
;
6445 uint64_t vdev_id
= sme
->sme_vdev
;
6447 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
6448 if (!vdev_is_concrete(vd
))
6451 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6452 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6454 if (txg
< metaslab_unflushed_txg(ms
))
6457 if (sme
->sme_type
== SM_ALLOC
)
6458 *ualloc_space
+= sme
->sme_run
;
6460 *ualloc_space
-= sme
->sme_run
;
6466 get_unflushed_alloc_space(spa_t
*spa
)
6471 int64_t ualloc_space
= 0;
6472 iterate_through_spacemap_logs(spa
, count_unflushed_space_cb
,
6474 return (ualloc_space
);
6478 load_unflushed_cb(spa_t
*spa
, space_map_entry_t
*sme
, uint64_t txg
, void *arg
)
6480 maptype_t
*uic_maptype
= arg
;
6482 uint64_t offset
= sme
->sme_offset
;
6483 uint64_t size
= sme
->sme_run
;
6484 uint64_t vdev_id
= sme
->sme_vdev
;
6486 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
6488 /* skip indirect vdevs */
6489 if (!vdev_is_concrete(vd
))
6492 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6494 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6495 ASSERT(*uic_maptype
== SM_ALLOC
|| *uic_maptype
== SM_FREE
);
6497 if (txg
< metaslab_unflushed_txg(ms
))
6500 if (*uic_maptype
== sme
->sme_type
)
6501 range_tree_add(ms
->ms_allocatable
, offset
, size
);
6503 range_tree_remove(ms
->ms_allocatable
, offset
, size
);
6509 load_unflushed_to_ms_allocatables(spa_t
*spa
, maptype_t maptype
)
6511 iterate_through_spacemap_logs(spa
, load_unflushed_cb
, &maptype
);
6515 load_concrete_ms_allocatable_trees(spa_t
*spa
, maptype_t maptype
)
6517 vdev_t
*rvd
= spa
->spa_root_vdev
;
6518 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
6519 vdev_t
*vd
= rvd
->vdev_child
[i
];
6521 ASSERT3U(i
, ==, vd
->vdev_id
);
6523 if (vd
->vdev_ops
== &vdev_indirect_ops
)
6526 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6527 metaslab_t
*msp
= vd
->vdev_ms
[m
];
6529 (void) fprintf(stderr
,
6530 "\rloading concrete vdev %llu, "
6531 "metaslab %llu of %llu ...",
6532 (longlong_t
)vd
->vdev_id
,
6533 (longlong_t
)msp
->ms_id
,
6534 (longlong_t
)vd
->vdev_ms_count
);
6536 mutex_enter(&msp
->ms_lock
);
6537 range_tree_vacate(msp
->ms_allocatable
, NULL
, NULL
);
6540 * We don't want to spend the CPU manipulating the
6541 * size-ordered tree, so clear the range_tree ops.
6543 msp
->ms_allocatable
->rt_ops
= NULL
;
6545 if (msp
->ms_sm
!= NULL
) {
6546 VERIFY0(space_map_load(msp
->ms_sm
,
6547 msp
->ms_allocatable
, maptype
));
6549 if (!msp
->ms_loaded
)
6550 msp
->ms_loaded
= B_TRUE
;
6551 mutex_exit(&msp
->ms_lock
);
6555 load_unflushed_to_ms_allocatables(spa
, maptype
);
6559 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6560 * index in vim_entries that has the first entry in this metaslab.
6561 * On return, it will be set to the first entry after this metaslab.
6564 load_indirect_ms_allocatable_tree(vdev_t
*vd
, metaslab_t
*msp
,
6567 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6569 mutex_enter(&msp
->ms_lock
);
6570 range_tree_vacate(msp
->ms_allocatable
, NULL
, NULL
);
6573 * We don't want to spend the CPU manipulating the
6574 * size-ordered tree, so clear the range_tree ops.
6576 msp
->ms_allocatable
->rt_ops
= NULL
;
6578 for (; *vim_idxp
< vdev_indirect_mapping_num_entries(vim
);
6580 vdev_indirect_mapping_entry_phys_t
*vimep
=
6581 &vim
->vim_entries
[*vim_idxp
];
6582 uint64_t ent_offset
= DVA_MAPPING_GET_SRC_OFFSET(vimep
);
6583 uint64_t ent_len
= DVA_GET_ASIZE(&vimep
->vimep_dst
);
6584 ASSERT3U(ent_offset
, >=, msp
->ms_start
);
6585 if (ent_offset
>= msp
->ms_start
+ msp
->ms_size
)
6589 * Mappings do not cross metaslab boundaries,
6590 * because we create them by walking the metaslabs.
6592 ASSERT3U(ent_offset
+ ent_len
, <=,
6593 msp
->ms_start
+ msp
->ms_size
);
6594 range_tree_add(msp
->ms_allocatable
, ent_offset
, ent_len
);
6597 if (!msp
->ms_loaded
)
6598 msp
->ms_loaded
= B_TRUE
;
6599 mutex_exit(&msp
->ms_lock
);
6603 zdb_leak_init_prepare_indirect_vdevs(spa_t
*spa
, zdb_cb_t
*zcb
)
6605 ASSERT(!dump_opt
['L']);
6607 vdev_t
*rvd
= spa
->spa_root_vdev
;
6608 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
6609 vdev_t
*vd
= rvd
->vdev_child
[c
];
6611 ASSERT3U(c
, ==, vd
->vdev_id
);
6613 if (vd
->vdev_ops
!= &vdev_indirect_ops
)
6617 * Note: we don't check for mapping leaks on
6618 * removing vdevs because their ms_allocatable's
6619 * are used to look for leaks in allocated space.
6621 zcb
->zcb_vd_obsolete_counts
[c
] = zdb_load_obsolete_counts(vd
);
6624 * Normally, indirect vdevs don't have any
6625 * metaslabs. We want to set them up for
6628 vdev_metaslab_group_create(vd
);
6629 VERIFY0(vdev_metaslab_init(vd
, 0));
6631 vdev_indirect_mapping_t
*vim __maybe_unused
=
6632 vd
->vdev_indirect_mapping
;
6633 uint64_t vim_idx
= 0;
6634 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6636 (void) fprintf(stderr
,
6637 "\rloading indirect vdev %llu, "
6638 "metaslab %llu of %llu ...",
6639 (longlong_t
)vd
->vdev_id
,
6640 (longlong_t
)vd
->vdev_ms
[m
]->ms_id
,
6641 (longlong_t
)vd
->vdev_ms_count
);
6643 load_indirect_ms_allocatable_tree(vd
, vd
->vdev_ms
[m
],
6646 ASSERT3U(vim_idx
, ==, vdev_indirect_mapping_num_entries(vim
));
6651 zdb_leak_init(spa_t
*spa
, zdb_cb_t
*zcb
)
6658 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
6659 vdev_t
*rvd
= spa
->spa_root_vdev
;
6662 * We are going to be changing the meaning of the metaslab's
6663 * ms_allocatable. Ensure that the allocator doesn't try to
6666 spa
->spa_normal_class
->mc_ops
= &zdb_metaslab_ops
;
6667 spa
->spa_log_class
->mc_ops
= &zdb_metaslab_ops
;
6668 spa
->spa_embedded_log_class
->mc_ops
= &zdb_metaslab_ops
;
6670 zcb
->zcb_vd_obsolete_counts
=
6671 umem_zalloc(rvd
->vdev_children
* sizeof (uint32_t *),
6675 * For leak detection, we overload the ms_allocatable trees
6676 * to contain allocated segments instead of free segments.
6677 * As a result, we can't use the normal metaslab_load/unload
6680 zdb_leak_init_prepare_indirect_vdevs(spa
, zcb
);
6681 load_concrete_ms_allocatable_trees(spa
, SM_ALLOC
);
6684 * On load_concrete_ms_allocatable_trees() we loaded all the
6685 * allocated entries from the ms_sm to the ms_allocatable for
6686 * each metaslab. If the pool has a checkpoint or is in the
6687 * middle of discarding a checkpoint, some of these blocks
6688 * may have been freed but their ms_sm may not have been
6689 * updated because they are referenced by the checkpoint. In
6690 * order to avoid false-positives during leak-detection, we
6691 * go through the vdev's checkpoint space map and exclude all
6692 * its entries from their relevant ms_allocatable.
6694 * We also aggregate the space held by the checkpoint and add
6695 * it to zcb_checkpoint_size.
6697 * Note that at this point we are also verifying that all the
6698 * entries on the checkpoint_sm are marked as allocated in
6699 * the ms_sm of their relevant metaslab.
6700 * [see comment in checkpoint_sm_exclude_entry_cb()]
6702 zdb_leak_init_exclude_checkpoint(spa
, zcb
);
6703 ASSERT3U(zcb
->zcb_checkpoint_size
, ==, spa_get_checkpoint_space(spa
));
6705 /* for cleaner progress output */
6706 (void) fprintf(stderr
, "\n");
6708 if (bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
6709 ASSERT(spa_feature_is_enabled(spa
,
6710 SPA_FEATURE_DEVICE_REMOVAL
));
6711 (void) bpobj_iterate_nofree(&dp
->dp_obsolete_bpobj
,
6712 increment_indirect_mapping_cb
, zcb
, NULL
);
6717 zdb_check_for_obsolete_leaks(vdev_t
*vd
, zdb_cb_t
*zcb
)
6719 boolean_t leaks
= B_FALSE
;
6720 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6721 uint64_t total_leaked
= 0;
6722 boolean_t are_precise
= B_FALSE
;
6724 ASSERT(vim
!= NULL
);
6726 for (uint64_t i
= 0; i
< vdev_indirect_mapping_num_entries(vim
); i
++) {
6727 vdev_indirect_mapping_entry_phys_t
*vimep
=
6728 &vim
->vim_entries
[i
];
6729 uint64_t obsolete_bytes
= 0;
6730 uint64_t offset
= DVA_MAPPING_GET_SRC_OFFSET(vimep
);
6731 metaslab_t
*msp
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6734 * This is not very efficient but it's easy to
6735 * verify correctness.
6737 for (uint64_t inner_offset
= 0;
6738 inner_offset
< DVA_GET_ASIZE(&vimep
->vimep_dst
);
6739 inner_offset
+= 1ULL << vd
->vdev_ashift
) {
6740 if (range_tree_contains(msp
->ms_allocatable
,
6741 offset
+ inner_offset
, 1ULL << vd
->vdev_ashift
)) {
6742 obsolete_bytes
+= 1ULL << vd
->vdev_ashift
;
6746 int64_t bytes_leaked
= obsolete_bytes
-
6747 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
][i
];
6748 ASSERT3U(DVA_GET_ASIZE(&vimep
->vimep_dst
), >=,
6749 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
][i
]);
6751 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
6752 if (bytes_leaked
!= 0 && (are_precise
|| dump_opt
['d'] >= 5)) {
6753 (void) printf("obsolete indirect mapping count "
6754 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6755 (u_longlong_t
)vd
->vdev_id
,
6756 (u_longlong_t
)DVA_MAPPING_GET_SRC_OFFSET(vimep
),
6757 (u_longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
6758 (u_longlong_t
)bytes_leaked
);
6760 total_leaked
+= ABS(bytes_leaked
);
6763 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
6764 if (!are_precise
&& total_leaked
> 0) {
6765 int pct_leaked
= total_leaked
* 100 /
6766 vdev_indirect_mapping_bytes_mapped(vim
);
6767 (void) printf("cannot verify obsolete indirect mapping "
6768 "counts of vdev %llu because precise feature was not "
6769 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6771 (u_longlong_t
)vd
->vdev_id
, pct_leaked
,
6772 (u_longlong_t
)total_leaked
);
6773 } else if (total_leaked
> 0) {
6774 (void) printf("obsolete indirect mapping count mismatch "
6775 "for vdev %llu -- %llx total bytes mismatched\n",
6776 (u_longlong_t
)vd
->vdev_id
,
6777 (u_longlong_t
)total_leaked
);
6781 vdev_indirect_mapping_free_obsolete_counts(vim
,
6782 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
]);
6783 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
] = NULL
;
6789 zdb_leak_fini(spa_t
*spa
, zdb_cb_t
*zcb
)
6794 boolean_t leaks
= B_FALSE
;
6795 vdev_t
*rvd
= spa
->spa_root_vdev
;
6796 for (unsigned c
= 0; c
< rvd
->vdev_children
; c
++) {
6797 vdev_t
*vd
= rvd
->vdev_child
[c
];
6799 if (zcb
->zcb_vd_obsolete_counts
[c
] != NULL
) {
6800 leaks
|= zdb_check_for_obsolete_leaks(vd
, zcb
);
6803 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6804 metaslab_t
*msp
= vd
->vdev_ms
[m
];
6805 ASSERT3P(msp
->ms_group
, ==, (msp
->ms_group
->mg_class
==
6806 spa_embedded_log_class(spa
)) ?
6807 vd
->vdev_log_mg
: vd
->vdev_mg
);
6810 * ms_allocatable has been overloaded
6811 * to contain allocated segments. Now that
6812 * we finished traversing all blocks, any
6813 * block that remains in the ms_allocatable
6814 * represents an allocated block that we
6815 * did not claim during the traversal.
6816 * Claimed blocks would have been removed
6817 * from the ms_allocatable. For indirect
6818 * vdevs, space remaining in the tree
6819 * represents parts of the mapping that are
6820 * not referenced, which is not a bug.
6822 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
6823 range_tree_vacate(msp
->ms_allocatable
,
6826 range_tree_vacate(msp
->ms_allocatable
,
6829 if (msp
->ms_loaded
) {
6830 msp
->ms_loaded
= B_FALSE
;
6835 umem_free(zcb
->zcb_vd_obsolete_counts
,
6836 rvd
->vdev_children
* sizeof (uint32_t *));
6837 zcb
->zcb_vd_obsolete_counts
= NULL
;
6843 count_block_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
6846 zdb_cb_t
*zcb
= arg
;
6848 if (dump_opt
['b'] >= 5) {
6849 char blkbuf
[BP_SPRINTF_LEN
];
6850 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6851 (void) printf("[%s] %s\n",
6852 "deferred free", blkbuf
);
6854 zdb_count_block(zcb
, NULL
, bp
, ZDB_OT_DEFERRED
);
6859 * Iterate over livelists which have been destroyed by the user but
6860 * are still present in the MOS, waiting to be freed
6863 iterate_deleted_livelists(spa_t
*spa
, ll_iter_t func
, void *arg
)
6865 objset_t
*mos
= spa
->spa_meta_objset
;
6867 int err
= zap_lookup(mos
, DMU_POOL_DIRECTORY_OBJECT
,
6868 DMU_POOL_DELETED_CLONES
, sizeof (uint64_t), 1, &zap_obj
);
6874 zap_attribute_t
*attrp
= zap_attribute_alloc();
6876 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
6878 for (zap_cursor_init(&zc
, mos
, zap_obj
);
6879 zap_cursor_retrieve(&zc
, attrp
) == 0;
6880 (void) zap_cursor_advance(&zc
)) {
6881 dsl_deadlist_open(&ll
, mos
, attrp
->za_first_integer
);
6883 dsl_deadlist_close(&ll
);
6885 zap_cursor_fini(&zc
);
6886 zap_attribute_free(attrp
);
6890 bpobj_count_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
6894 return (count_block_cb(arg
, bp
, tx
));
6898 livelist_entry_count_blocks_cb(void *args
, dsl_deadlist_entry_t
*dle
)
6900 zdb_cb_t
*zbc
= args
;
6902 bplist_create(&blks
);
6903 /* determine which blocks have been alloc'd but not freed */
6904 VERIFY0(dsl_process_sub_livelist(&dle
->dle_bpobj
, &blks
, NULL
, NULL
));
6905 /* count those blocks */
6906 (void) bplist_iterate(&blks
, count_block_cb
, zbc
, NULL
);
6907 bplist_destroy(&blks
);
6912 livelist_count_blocks(dsl_deadlist_t
*ll
, void *arg
)
6914 dsl_deadlist_iterate(ll
, livelist_entry_count_blocks_cb
, arg
);
6918 * Count the blocks in the livelists that have been destroyed by the user
6919 * but haven't yet been freed.
6922 deleted_livelists_count_blocks(spa_t
*spa
, zdb_cb_t
*zbc
)
6924 iterate_deleted_livelists(spa
, livelist_count_blocks
, zbc
);
6928 dump_livelist_cb(dsl_deadlist_t
*ll
, void *arg
)
6930 ASSERT3P(arg
, ==, NULL
);
6931 global_feature_count
[SPA_FEATURE_LIVELIST
]++;
6932 dump_blkptr_list(ll
, "Deleted Livelist");
6933 dsl_deadlist_iterate(ll
, sublivelist_verify_lightweight
, NULL
);
6937 * Print out, register object references to, and increment feature counts for
6938 * livelists that have been destroyed by the user but haven't yet been freed.
6941 deleted_livelists_dump_mos(spa_t
*spa
)
6944 objset_t
*mos
= spa
->spa_meta_objset
;
6945 int err
= zap_lookup(mos
, DMU_POOL_DIRECTORY_OBJECT
,
6946 DMU_POOL_DELETED_CLONES
, sizeof (uint64_t), 1, &zap_obj
);
6949 mos_obj_refd(zap_obj
);
6950 iterate_deleted_livelists(spa
, dump_livelist_cb
, NULL
);
6954 zdb_brt_entry_compare(const void *zcn1
, const void *zcn2
)
6956 const dva_t
*dva1
= &((const zdb_brt_entry_t
*)zcn1
)->zbre_dva
;
6957 const dva_t
*dva2
= &((const zdb_brt_entry_t
*)zcn2
)->zbre_dva
;
6960 cmp
= TREE_CMP(DVA_GET_VDEV(dva1
), DVA_GET_VDEV(dva2
));
6962 cmp
= TREE_CMP(DVA_GET_OFFSET(dva1
), DVA_GET_OFFSET(dva2
));
6968 dump_block_stats(spa_t
*spa
)
6971 zdb_blkstats_t
*zb
, *tzb
;
6972 uint64_t norm_alloc
, norm_space
, total_alloc
, total_found
;
6973 int flags
= TRAVERSE_PRE
| TRAVERSE_PREFETCH_METADATA
|
6974 TRAVERSE_NO_DECRYPT
| TRAVERSE_HARD
;
6975 boolean_t leaks
= B_FALSE
;
6977 bp_embedded_type_t i
;
6979 ddt_prefetch_all(spa
);
6981 zcb
= umem_zalloc(sizeof (zdb_cb_t
), UMEM_NOFAIL
);
6983 if (spa_feature_is_active(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
6984 avl_create(&zcb
->zcb_brt
, zdb_brt_entry_compare
,
6985 sizeof (zdb_brt_entry_t
),
6986 offsetof(zdb_brt_entry_t
, zbre_node
));
6987 zcb
->zcb_brt_is_active
= B_TRUE
;
6990 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6991 (dump_opt
['c'] || !dump_opt
['L']) ? "to verify " : "",
6992 (dump_opt
['c'] == 1) ? "metadata " : "",
6993 dump_opt
['c'] ? "checksums " : "",
6994 (dump_opt
['c'] && !dump_opt
['L']) ? "and verify " : "",
6995 !dump_opt
['L'] ? "nothing leaked " : "");
6998 * When leak detection is enabled we load all space maps as SM_ALLOC
6999 * maps, then traverse the pool claiming each block we discover. If
7000 * the pool is perfectly consistent, the segment trees will be empty
7001 * when we're done. Anything left over is a leak; any block we can't
7002 * claim (because it's not part of any space map) is a double
7003 * allocation, reference to a freed block, or an unclaimed log block.
7005 * When leak detection is disabled (-L option) we still traverse the
7006 * pool claiming each block we discover, but we skip opening any space
7009 zdb_leak_init(spa
, zcb
);
7012 * If there's a deferred-free bplist, process that first.
7014 (void) bpobj_iterate_nofree(&spa
->spa_deferred_bpobj
,
7015 bpobj_count_block_cb
, zcb
, NULL
);
7017 if (spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
7018 (void) bpobj_iterate_nofree(&spa
->spa_dsl_pool
->dp_free_bpobj
,
7019 bpobj_count_block_cb
, zcb
, NULL
);
7022 zdb_claim_removing(spa
, zcb
);
7024 if (spa_feature_is_active(spa
, SPA_FEATURE_ASYNC_DESTROY
)) {
7025 VERIFY3U(0, ==, bptree_iterate(spa
->spa_meta_objset
,
7026 spa
->spa_dsl_pool
->dp_bptree_obj
, B_FALSE
, count_block_cb
,
7030 deleted_livelists_count_blocks(spa
, zcb
);
7032 if (dump_opt
['c'] > 1)
7033 flags
|= TRAVERSE_PREFETCH_DATA
;
7035 zcb
->zcb_totalasize
= metaslab_class_get_alloc(spa_normal_class(spa
));
7036 zcb
->zcb_totalasize
+= metaslab_class_get_alloc(spa_special_class(spa
));
7037 zcb
->zcb_totalasize
+= metaslab_class_get_alloc(spa_dedup_class(spa
));
7038 zcb
->zcb_totalasize
+=
7039 metaslab_class_get_alloc(spa_embedded_log_class(spa
));
7040 zcb
->zcb_start
= zcb
->zcb_lastprint
= gethrtime();
7041 err
= traverse_pool(spa
, 0, flags
, zdb_blkptr_cb
, zcb
);
7044 * If we've traversed the data blocks then we need to wait for those
7045 * I/Os to complete. We leverage "The Godfather" zio to wait on
7046 * all async I/Os to complete.
7048 if (dump_opt
['c']) {
7049 for (c
= 0; c
< max_ncpus
; c
++) {
7050 (void) zio_wait(spa
->spa_async_zio_root
[c
]);
7051 spa
->spa_async_zio_root
[c
] = zio_root(spa
, NULL
, NULL
,
7052 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
7053 ZIO_FLAG_GODFATHER
);
7056 ASSERT0(spa
->spa_load_verify_bytes
);
7059 * Done after zio_wait() since zcb_haderrors is modified in
7062 zcb
->zcb_haderrors
|= err
;
7064 if (zcb
->zcb_haderrors
) {
7065 (void) printf("\nError counts:\n\n");
7066 (void) printf("\t%5s %s\n", "errno", "count");
7067 for (e
= 0; e
< 256; e
++) {
7068 if (zcb
->zcb_errors
[e
] != 0) {
7069 (void) printf("\t%5d %llu\n",
7070 e
, (u_longlong_t
)zcb
->zcb_errors
[e
]);
7076 * Report any leaked segments.
7078 leaks
|= zdb_leak_fini(spa
, zcb
);
7080 tzb
= &zcb
->zcb_type
[ZB_TOTAL
][ZDB_OT_TOTAL
];
7082 norm_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
7083 norm_space
= metaslab_class_get_space(spa_normal_class(spa
));
7085 total_alloc
= norm_alloc
+
7086 metaslab_class_get_alloc(spa_log_class(spa
)) +
7087 metaslab_class_get_alloc(spa_embedded_log_class(spa
)) +
7088 metaslab_class_get_alloc(spa_special_class(spa
)) +
7089 metaslab_class_get_alloc(spa_dedup_class(spa
)) +
7090 get_unflushed_alloc_space(spa
);
7092 tzb
->zb_asize
- zcb
->zcb_dedup_asize
- zcb
->zcb_clone_asize
+
7093 zcb
->zcb_removing_size
+ zcb
->zcb_checkpoint_size
;
7095 if (total_found
== total_alloc
&& !dump_opt
['L']) {
7096 (void) printf("\n\tNo leaks (block sum matches space"
7097 " maps exactly)\n");
7098 } else if (!dump_opt
['L']) {
7099 (void) printf("block traversal size %llu != alloc %llu "
7101 (u_longlong_t
)total_found
,
7102 (u_longlong_t
)total_alloc
,
7103 (dump_opt
['L']) ? "unreachable" : "leaked",
7104 (longlong_t
)(total_alloc
- total_found
));
7107 if (tzb
->zb_count
== 0) {
7108 umem_free(zcb
, sizeof (zdb_cb_t
));
7112 (void) printf("\n");
7113 (void) printf("\t%-16s %14llu\n", "bp count:",
7114 (u_longlong_t
)tzb
->zb_count
);
7115 (void) printf("\t%-16s %14llu\n", "ganged count:",
7116 (longlong_t
)tzb
->zb_gangs
);
7117 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
7118 (u_longlong_t
)tzb
->zb_lsize
,
7119 (u_longlong_t
)(tzb
->zb_lsize
/ tzb
->zb_count
));
7120 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7121 "bp physical:", (u_longlong_t
)tzb
->zb_psize
,
7122 (u_longlong_t
)(tzb
->zb_psize
/ tzb
->zb_count
),
7123 (double)tzb
->zb_lsize
/ tzb
->zb_psize
);
7124 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7125 "bp allocated:", (u_longlong_t
)tzb
->zb_asize
,
7126 (u_longlong_t
)(tzb
->zb_asize
/ tzb
->zb_count
),
7127 (double)tzb
->zb_lsize
/ tzb
->zb_asize
);
7128 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
7129 "bp deduped:", (u_longlong_t
)zcb
->zcb_dedup_asize
,
7130 (u_longlong_t
)zcb
->zcb_dedup_blocks
,
7131 (double)zcb
->zcb_dedup_asize
/ tzb
->zb_asize
+ 1.0);
7132 (void) printf("\t%-16s %14llu count: %6llu\n",
7133 "bp cloned:", (u_longlong_t
)zcb
->zcb_clone_asize
,
7134 (u_longlong_t
)zcb
->zcb_clone_blocks
);
7135 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
7136 (u_longlong_t
)norm_alloc
, 100.0 * norm_alloc
/ norm_space
);
7138 if (spa_special_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7139 uint64_t alloc
= metaslab_class_get_alloc(
7140 spa_special_class(spa
));
7141 uint64_t space
= metaslab_class_get_space(
7142 spa_special_class(spa
));
7144 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7145 "Special class", (u_longlong_t
)alloc
,
7146 100.0 * alloc
/ space
);
7149 if (spa_dedup_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7150 uint64_t alloc
= metaslab_class_get_alloc(
7151 spa_dedup_class(spa
));
7152 uint64_t space
= metaslab_class_get_space(
7153 spa_dedup_class(spa
));
7155 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7156 "Dedup class", (u_longlong_t
)alloc
,
7157 100.0 * alloc
/ space
);
7160 if (spa_embedded_log_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7161 uint64_t alloc
= metaslab_class_get_alloc(
7162 spa_embedded_log_class(spa
));
7163 uint64_t space
= metaslab_class_get_space(
7164 spa_embedded_log_class(spa
));
7166 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7167 "Embedded log class", (u_longlong_t
)alloc
,
7168 100.0 * alloc
/ space
);
7171 for (i
= 0; i
< NUM_BP_EMBEDDED_TYPES
; i
++) {
7172 if (zcb
->zcb_embedded_blocks
[i
] == 0)
7174 (void) printf("\n");
7175 (void) printf("\tadditional, non-pointer bps of type %u: "
7177 i
, (u_longlong_t
)zcb
->zcb_embedded_blocks
[i
]);
7179 if (dump_opt
['b'] >= 3) {
7180 (void) printf("\t number of (compressed) bytes: "
7182 dump_histogram(zcb
->zcb_embedded_histogram
[i
],
7183 sizeof (zcb
->zcb_embedded_histogram
[i
]) /
7184 sizeof (zcb
->zcb_embedded_histogram
[i
][0]), 0);
7188 if (tzb
->zb_ditto_samevdev
!= 0) {
7189 (void) printf("\tDittoed blocks on same vdev: %llu\n",
7190 (longlong_t
)tzb
->zb_ditto_samevdev
);
7192 if (tzb
->zb_ditto_same_ms
!= 0) {
7193 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
7194 (longlong_t
)tzb
->zb_ditto_same_ms
);
7197 for (uint64_t v
= 0; v
< spa
->spa_root_vdev
->vdev_children
; v
++) {
7198 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[v
];
7199 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
7206 zdb_nicenum(vdev_indirect_mapping_num_entries(vim
),
7207 mem
, vdev_indirect_mapping_size(vim
));
7209 (void) printf("\tindirect vdev id %llu has %llu segments "
7211 (longlong_t
)vd
->vdev_id
,
7212 (longlong_t
)vdev_indirect_mapping_num_entries(vim
), mem
);
7215 if (dump_opt
['b'] >= 2) {
7217 char csize
[32], lsize
[32], psize
[32], asize
[32];
7218 char avg
[32], gang
[32];
7219 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7220 "\t avg\t comp\t%%Total\tType\n");
7222 zfs_blkstat_t
*mdstats
= umem_zalloc(sizeof (zfs_blkstat_t
),
7225 for (t
= 0; t
<= ZDB_OT_TOTAL
; t
++) {
7226 const char *typename
;
7228 /* make sure nicenum has enough space */
7229 _Static_assert(sizeof (csize
) >= NN_NUMBUF_SZ
,
7231 _Static_assert(sizeof (lsize
) >= NN_NUMBUF_SZ
,
7233 _Static_assert(sizeof (psize
) >= NN_NUMBUF_SZ
,
7235 _Static_assert(sizeof (asize
) >= NN_NUMBUF_SZ
,
7237 _Static_assert(sizeof (avg
) >= NN_NUMBUF_SZ
,
7239 _Static_assert(sizeof (gang
) >= NN_NUMBUF_SZ
,
7242 if (t
< DMU_OT_NUMTYPES
)
7243 typename
= dmu_ot
[t
].ot_name
;
7245 typename
= zdb_ot_extname
[t
- DMU_OT_NUMTYPES
];
7247 if (zcb
->zcb_type
[ZB_TOTAL
][t
].zb_asize
== 0) {
7248 (void) printf("%6s\t%5s\t%5s\t%5s"
7249 "\t%5s\t%5s\t%6s\t%s\n",
7261 for (l
= ZB_TOTAL
- 1; l
>= -1; l
--) {
7262 level
= (l
== -1 ? ZB_TOTAL
: l
);
7263 zb
= &zcb
->zcb_type
[level
][t
];
7265 if (zb
->zb_asize
== 0)
7268 if (level
!= ZB_TOTAL
&& t
< DMU_OT_NUMTYPES
&&
7269 (level
> 0 || DMU_OT_IS_METADATA(t
))) {
7270 mdstats
->zb_count
+= zb
->zb_count
;
7271 mdstats
->zb_lsize
+= zb
->zb_lsize
;
7272 mdstats
->zb_psize
+= zb
->zb_psize
;
7273 mdstats
->zb_asize
+= zb
->zb_asize
;
7274 mdstats
->zb_gangs
+= zb
->zb_gangs
;
7277 if (dump_opt
['b'] < 3 && level
!= ZB_TOTAL
)
7280 if (level
== 0 && zb
->zb_asize
==
7281 zcb
->zcb_type
[ZB_TOTAL
][t
].zb_asize
)
7284 zdb_nicenum(zb
->zb_count
, csize
,
7286 zdb_nicenum(zb
->zb_lsize
, lsize
,
7288 zdb_nicenum(zb
->zb_psize
, psize
,
7290 zdb_nicenum(zb
->zb_asize
, asize
,
7292 zdb_nicenum(zb
->zb_asize
/ zb
->zb_count
, avg
,
7294 zdb_nicenum(zb
->zb_gangs
, gang
, sizeof (gang
));
7296 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7298 csize
, lsize
, psize
, asize
, avg
,
7299 (double)zb
->zb_lsize
/ zb
->zb_psize
,
7300 100.0 * zb
->zb_asize
/ tzb
->zb_asize
);
7302 if (level
== ZB_TOTAL
)
7303 (void) printf("%s\n", typename
);
7305 (void) printf(" L%d %s\n",
7308 if (dump_opt
['b'] >= 3 && zb
->zb_gangs
> 0) {
7309 (void) printf("\t number of ganged "
7310 "blocks: %s\n", gang
);
7313 if (dump_opt
['b'] >= 4) {
7314 (void) printf("psize "
7315 "(in 512-byte sectors): "
7316 "number of blocks\n");
7317 dump_histogram(zb
->zb_psize_histogram
,
7318 PSIZE_HISTO_SIZE
, 0);
7322 zdb_nicenum(mdstats
->zb_count
, csize
,
7324 zdb_nicenum(mdstats
->zb_lsize
, lsize
,
7326 zdb_nicenum(mdstats
->zb_psize
, psize
,
7328 zdb_nicenum(mdstats
->zb_asize
, asize
,
7330 zdb_nicenum(mdstats
->zb_asize
/ mdstats
->zb_count
, avg
,
7332 zdb_nicenum(mdstats
->zb_gangs
, gang
, sizeof (gang
));
7334 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7336 csize
, lsize
, psize
, asize
, avg
,
7337 (double)mdstats
->zb_lsize
/ mdstats
->zb_psize
,
7338 100.0 * mdstats
->zb_asize
/ tzb
->zb_asize
);
7339 (void) printf("%s\n", "Metadata Total");
7341 /* Output a table summarizing block sizes in the pool */
7342 if (dump_opt
['b'] >= 2) {
7343 dump_size_histograms(zcb
);
7346 umem_free(mdstats
, sizeof (zfs_blkstat_t
));
7349 (void) printf("\n");
7352 umem_free(zcb
, sizeof (zdb_cb_t
));
7356 if (zcb
->zcb_haderrors
) {
7357 umem_free(zcb
, sizeof (zdb_cb_t
));
7361 umem_free(zcb
, sizeof (zdb_cb_t
));
7365 typedef struct zdb_ddt_entry
{
7366 /* key must be first for ddt_key_compare */
7368 uint64_t zdde_ref_blocks
;
7369 uint64_t zdde_ref_lsize
;
7370 uint64_t zdde_ref_psize
;
7371 uint64_t zdde_ref_dsize
;
7372 avl_node_t zdde_node
;
7376 zdb_ddt_add_cb(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
7377 const zbookmark_phys_t
*zb
, const dnode_phys_t
*dnp
, void *arg
)
7379 (void) zilog
, (void) dnp
;
7380 avl_tree_t
*t
= arg
;
7382 zdb_ddt_entry_t
*zdde
, zdde_search
;
7384 if (zb
->zb_level
== ZB_DNODE_LEVEL
|| BP_IS_HOLE(bp
) ||
7388 if (dump_opt
['S'] > 1 && zb
->zb_level
== ZB_ROOT_LEVEL
) {
7389 (void) printf("traversing objset %llu, %llu objects, "
7390 "%lu blocks so far\n",
7391 (u_longlong_t
)zb
->zb_objset
,
7392 (u_longlong_t
)BP_GET_FILL(bp
),
7396 if (BP_IS_HOLE(bp
) || BP_GET_CHECKSUM(bp
) == ZIO_CHECKSUM_OFF
||
7397 BP_GET_LEVEL(bp
) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)))
7400 ddt_key_fill(&zdde_search
.zdde_key
, bp
);
7402 zdde
= avl_find(t
, &zdde_search
, &where
);
7405 zdde
= umem_zalloc(sizeof (*zdde
), UMEM_NOFAIL
);
7406 zdde
->zdde_key
= zdde_search
.zdde_key
;
7407 avl_insert(t
, zdde
, where
);
7410 zdde
->zdde_ref_blocks
+= 1;
7411 zdde
->zdde_ref_lsize
+= BP_GET_LSIZE(bp
);
7412 zdde
->zdde_ref_psize
+= BP_GET_PSIZE(bp
);
7413 zdde
->zdde_ref_dsize
+= bp_get_dsize_sync(spa
, bp
);
7419 dump_simulated_ddt(spa_t
*spa
)
7422 void *cookie
= NULL
;
7423 zdb_ddt_entry_t
*zdde
;
7424 ddt_histogram_t ddh_total
= {{{0}}};
7425 ddt_stat_t dds_total
= {0};
7427 avl_create(&t
, ddt_key_compare
,
7428 sizeof (zdb_ddt_entry_t
), offsetof(zdb_ddt_entry_t
, zdde_node
));
7430 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
7432 (void) traverse_pool(spa
, 0, TRAVERSE_PRE
| TRAVERSE_PREFETCH_METADATA
|
7433 TRAVERSE_NO_DECRYPT
, zdb_ddt_add_cb
, &t
);
7435 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
7437 while ((zdde
= avl_destroy_nodes(&t
, &cookie
)) != NULL
) {
7438 uint64_t refcnt
= zdde
->zdde_ref_blocks
;
7439 ASSERT(refcnt
!= 0);
7441 ddt_stat_t
*dds
= &ddh_total
.ddh_stat
[highbit64(refcnt
) - 1];
7443 dds
->dds_blocks
+= zdde
->zdde_ref_blocks
/ refcnt
;
7444 dds
->dds_lsize
+= zdde
->zdde_ref_lsize
/ refcnt
;
7445 dds
->dds_psize
+= zdde
->zdde_ref_psize
/ refcnt
;
7446 dds
->dds_dsize
+= zdde
->zdde_ref_dsize
/ refcnt
;
7448 dds
->dds_ref_blocks
+= zdde
->zdde_ref_blocks
;
7449 dds
->dds_ref_lsize
+= zdde
->zdde_ref_lsize
;
7450 dds
->dds_ref_psize
+= zdde
->zdde_ref_psize
;
7451 dds
->dds_ref_dsize
+= zdde
->zdde_ref_dsize
;
7453 umem_free(zdde
, sizeof (*zdde
));
7458 ddt_histogram_total(&dds_total
, &ddh_total
);
7460 (void) printf("Simulated DDT histogram:\n");
7462 zpool_dump_ddt(&dds_total
, &ddh_total
);
7464 dump_dedup_ratio(&dds_total
);
7468 verify_device_removal_feature_counts(spa_t
*spa
)
7470 uint64_t dr_feature_refcount
= 0;
7471 uint64_t oc_feature_refcount
= 0;
7472 uint64_t indirect_vdev_count
= 0;
7473 uint64_t precise_vdev_count
= 0;
7474 uint64_t obsolete_counts_object_count
= 0;
7475 uint64_t obsolete_sm_count
= 0;
7476 uint64_t obsolete_counts_count
= 0;
7477 uint64_t scip_count
= 0;
7478 uint64_t obsolete_bpobj_count
= 0;
7481 spa_condensing_indirect_phys_t
*scip
=
7482 &spa
->spa_condensing_indirect_phys
;
7483 if (scip
->scip_next_mapping_object
!= 0) {
7484 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[scip
->scip_vdev
];
7485 ASSERT(scip
->scip_prev_obsolete_sm_object
!= 0);
7486 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7488 (void) printf("Condensing indirect vdev %llu: new mapping "
7489 "object %llu, prev obsolete sm %llu\n",
7490 (u_longlong_t
)scip
->scip_vdev
,
7491 (u_longlong_t
)scip
->scip_next_mapping_object
,
7492 (u_longlong_t
)scip
->scip_prev_obsolete_sm_object
);
7493 if (scip
->scip_prev_obsolete_sm_object
!= 0) {
7494 space_map_t
*prev_obsolete_sm
= NULL
;
7495 VERIFY0(space_map_open(&prev_obsolete_sm
,
7496 spa
->spa_meta_objset
,
7497 scip
->scip_prev_obsolete_sm_object
,
7498 0, vd
->vdev_asize
, 0));
7499 dump_spacemap(spa
->spa_meta_objset
, prev_obsolete_sm
);
7500 (void) printf("\n");
7501 space_map_close(prev_obsolete_sm
);
7507 for (uint64_t i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
7508 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
7509 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
7511 if (vic
->vic_mapping_object
!= 0) {
7512 ASSERT(vd
->vdev_ops
== &vdev_indirect_ops
||
7514 indirect_vdev_count
++;
7516 if (vd
->vdev_indirect_mapping
->vim_havecounts
) {
7517 obsolete_counts_count
++;
7521 boolean_t are_precise
;
7522 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
7524 ASSERT(vic
->vic_mapping_object
!= 0);
7525 precise_vdev_count
++;
7528 uint64_t obsolete_sm_object
;
7529 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
7530 if (obsolete_sm_object
!= 0) {
7531 ASSERT(vic
->vic_mapping_object
!= 0);
7532 obsolete_sm_count
++;
7536 (void) feature_get_refcount(spa
,
7537 &spa_feature_table
[SPA_FEATURE_DEVICE_REMOVAL
],
7538 &dr_feature_refcount
);
7539 (void) feature_get_refcount(spa
,
7540 &spa_feature_table
[SPA_FEATURE_OBSOLETE_COUNTS
],
7541 &oc_feature_refcount
);
7543 if (dr_feature_refcount
!= indirect_vdev_count
) {
7545 (void) printf("Number of indirect vdevs (%llu) " \
7546 "does not match feature count (%llu)\n",
7547 (u_longlong_t
)indirect_vdev_count
,
7548 (u_longlong_t
)dr_feature_refcount
);
7550 (void) printf("Verified device_removal feature refcount " \
7551 "of %llu is correct\n",
7552 (u_longlong_t
)dr_feature_refcount
);
7555 if (zap_contains(spa_meta_objset(spa
), DMU_POOL_DIRECTORY_OBJECT
,
7556 DMU_POOL_OBSOLETE_BPOBJ
) == 0) {
7557 obsolete_bpobj_count
++;
7561 obsolete_counts_object_count
= precise_vdev_count
;
7562 obsolete_counts_object_count
+= obsolete_sm_count
;
7563 obsolete_counts_object_count
+= obsolete_counts_count
;
7564 obsolete_counts_object_count
+= scip_count
;
7565 obsolete_counts_object_count
+= obsolete_bpobj_count
;
7566 obsolete_counts_object_count
+= remap_deadlist_count
;
7568 if (oc_feature_refcount
!= obsolete_counts_object_count
) {
7570 (void) printf("Number of obsolete counts objects (%llu) " \
7571 "does not match feature count (%llu)\n",
7572 (u_longlong_t
)obsolete_counts_object_count
,
7573 (u_longlong_t
)oc_feature_refcount
);
7574 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7575 "ob:%llu rd:%llu\n",
7576 (u_longlong_t
)precise_vdev_count
,
7577 (u_longlong_t
)obsolete_sm_count
,
7578 (u_longlong_t
)obsolete_counts_count
,
7579 (u_longlong_t
)scip_count
,
7580 (u_longlong_t
)obsolete_bpobj_count
,
7581 (u_longlong_t
)remap_deadlist_count
);
7583 (void) printf("Verified indirect_refcount feature refcount " \
7584 "of %llu is correct\n",
7585 (u_longlong_t
)oc_feature_refcount
);
7591 zdb_set_skip_mmp(char *target
)
7596 * Disable the activity check to allow examination of
7599 mutex_enter(&spa_namespace_lock
);
7600 if ((spa
= spa_lookup(target
)) != NULL
) {
7601 spa
->spa_import_flags
|= ZFS_IMPORT_SKIP_MMP
;
7603 mutex_exit(&spa_namespace_lock
);
7606 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7608 * Import the checkpointed state of the pool specified by the target
7609 * parameter as readonly. The function also accepts a pool config
7610 * as an optional parameter, else it attempts to infer the config by
7611 * the name of the target pool.
7613 * Note that the checkpointed state's pool name will be the name of
7614 * the original pool with the above suffix appended to it. In addition,
7615 * if the target is not a pool name (e.g. a path to a dataset) then
7616 * the new_path parameter is populated with the updated path to
7617 * reflect the fact that we are looking into the checkpointed state.
7619 * The function returns a newly-allocated copy of the name of the
7620 * pool containing the checkpointed state. When this copy is no
7621 * longer needed it should be freed with free(3C). Same thing
7622 * applies to the new_path parameter if allocated.
7625 import_checkpointed_state(char *target
, nvlist_t
*cfg
, char **new_path
)
7628 char *poolname
, *bogus_name
= NULL
;
7629 boolean_t freecfg
= B_FALSE
;
7631 /* If the target is not a pool, the extract the pool name */
7632 char *path_start
= strchr(target
, '/');
7633 if (path_start
!= NULL
) {
7634 size_t poolname_len
= path_start
- target
;
7635 poolname
= strndup(target
, poolname_len
);
7641 zdb_set_skip_mmp(poolname
);
7642 error
= spa_get_stats(poolname
, &cfg
, NULL
, 0);
7644 fatal("Tried to read config of pool \"%s\" but "
7645 "spa_get_stats() failed with error %d\n",
7651 if (asprintf(&bogus_name
, "%s%s", poolname
, BOGUS_SUFFIX
) == -1) {
7652 if (target
!= poolname
)
7656 fnvlist_add_string(cfg
, ZPOOL_CONFIG_POOL_NAME
, bogus_name
);
7658 error
= spa_import(bogus_name
, cfg
, NULL
,
7659 ZFS_IMPORT_MISSING_LOG
| ZFS_IMPORT_CHECKPOINT
|
7660 ZFS_IMPORT_SKIP_MMP
);
7664 fatal("Tried to import pool \"%s\" but spa_import() failed "
7665 "with error %d\n", bogus_name
, error
);
7668 if (new_path
!= NULL
&& path_start
!= NULL
) {
7669 if (asprintf(new_path
, "%s%s", bogus_name
, path_start
) == -1) {
7671 if (path_start
!= NULL
)
7677 if (target
!= poolname
)
7680 return (bogus_name
);
7683 typedef struct verify_checkpoint_sm_entry_cb_arg
{
7686 /* the following fields are only used for printing progress */
7687 uint64_t vcsec_entryid
;
7688 uint64_t vcsec_num_entries
;
7689 } verify_checkpoint_sm_entry_cb_arg_t
;
7691 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7694 verify_checkpoint_sm_entry_cb(space_map_entry_t
*sme
, void *arg
)
7696 verify_checkpoint_sm_entry_cb_arg_t
*vcsec
= arg
;
7697 vdev_t
*vd
= vcsec
->vcsec_vd
;
7698 metaslab_t
*ms
= vd
->vdev_ms
[sme
->sme_offset
>> vd
->vdev_ms_shift
];
7699 uint64_t end
= sme
->sme_offset
+ sme
->sme_run
;
7701 ASSERT(sme
->sme_type
== SM_FREE
);
7703 if ((vcsec
->vcsec_entryid
% ENTRIES_PER_PROGRESS_UPDATE
) == 0) {
7704 (void) fprintf(stderr
,
7705 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7706 (longlong_t
)vd
->vdev_id
,
7707 (longlong_t
)vcsec
->vcsec_entryid
,
7708 (longlong_t
)vcsec
->vcsec_num_entries
);
7710 vcsec
->vcsec_entryid
++;
7713 * See comment in checkpoint_sm_exclude_entry_cb()
7715 VERIFY3U(sme
->sme_offset
, >=, ms
->ms_start
);
7716 VERIFY3U(end
, <=, ms
->ms_start
+ ms
->ms_size
);
7719 * The entries in the vdev_checkpoint_sm should be marked as
7720 * allocated in the checkpointed state of the pool, therefore
7721 * their respective ms_allocateable trees should not contain them.
7723 mutex_enter(&ms
->ms_lock
);
7724 range_tree_verify_not_present(ms
->ms_allocatable
,
7725 sme
->sme_offset
, sme
->sme_run
);
7726 mutex_exit(&ms
->ms_lock
);
7732 * Verify that all segments in the vdev_checkpoint_sm are allocated
7733 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7736 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7737 * each vdev in the current state of the pool to the metaslab space maps
7738 * (ms_sm) of the checkpointed state of the pool.
7740 * Note that the function changes the state of the ms_allocatable
7741 * trees of the current spa_t. The entries of these ms_allocatable
7742 * trees are cleared out and then repopulated from with the free
7743 * entries of their respective ms_sm space maps.
7746 verify_checkpoint_vdev_spacemaps(spa_t
*checkpoint
, spa_t
*current
)
7748 vdev_t
*ckpoint_rvd
= checkpoint
->spa_root_vdev
;
7749 vdev_t
*current_rvd
= current
->spa_root_vdev
;
7751 load_concrete_ms_allocatable_trees(checkpoint
, SM_FREE
);
7753 for (uint64_t c
= 0; c
< ckpoint_rvd
->vdev_children
; c
++) {
7754 vdev_t
*ckpoint_vd
= ckpoint_rvd
->vdev_child
[c
];
7755 vdev_t
*current_vd
= current_rvd
->vdev_child
[c
];
7757 space_map_t
*checkpoint_sm
= NULL
;
7758 uint64_t checkpoint_sm_obj
;
7760 if (ckpoint_vd
->vdev_ops
== &vdev_indirect_ops
) {
7762 * Since we don't allow device removal in a pool
7763 * that has a checkpoint, we expect that all removed
7764 * vdevs were removed from the pool before the
7767 ASSERT3P(current_vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7772 * If the checkpoint space map doesn't exist, then nothing
7773 * here is checkpointed so there's nothing to verify.
7775 if (current_vd
->vdev_top_zap
== 0 ||
7776 zap_contains(spa_meta_objset(current
),
7777 current_vd
->vdev_top_zap
,
7778 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
7781 VERIFY0(zap_lookup(spa_meta_objset(current
),
7782 current_vd
->vdev_top_zap
, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
,
7783 sizeof (uint64_t), 1, &checkpoint_sm_obj
));
7785 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(current
),
7786 checkpoint_sm_obj
, 0, current_vd
->vdev_asize
,
7787 current_vd
->vdev_ashift
));
7789 verify_checkpoint_sm_entry_cb_arg_t vcsec
;
7790 vcsec
.vcsec_vd
= ckpoint_vd
;
7791 vcsec
.vcsec_entryid
= 0;
7792 vcsec
.vcsec_num_entries
=
7793 space_map_length(checkpoint_sm
) / sizeof (uint64_t);
7794 VERIFY0(space_map_iterate(checkpoint_sm
,
7795 space_map_length(checkpoint_sm
),
7796 verify_checkpoint_sm_entry_cb
, &vcsec
));
7797 if (dump_opt
['m'] > 3)
7798 dump_spacemap(current
->spa_meta_objset
, checkpoint_sm
);
7799 space_map_close(checkpoint_sm
);
7803 * If we've added vdevs since we took the checkpoint, ensure
7804 * that their checkpoint space maps are empty.
7806 if (ckpoint_rvd
->vdev_children
< current_rvd
->vdev_children
) {
7807 for (uint64_t c
= ckpoint_rvd
->vdev_children
;
7808 c
< current_rvd
->vdev_children
; c
++) {
7809 vdev_t
*current_vd
= current_rvd
->vdev_child
[c
];
7810 VERIFY3P(current_vd
->vdev_checkpoint_sm
, ==, NULL
);
7814 /* for cleaner progress output */
7815 (void) fprintf(stderr
, "\n");
7819 * Verifies that all space that's allocated in the checkpoint is
7820 * still allocated in the current version, by checking that everything
7821 * in checkpoint's ms_allocatable (which is actually allocated, not
7822 * allocatable/free) is not present in current's ms_allocatable.
7824 * Note that the function changes the state of the ms_allocatable
7825 * trees of both spas when called. The entries of all ms_allocatable
7826 * trees are cleared out and then repopulated from their respective
7827 * ms_sm space maps. In the checkpointed state we load the allocated
7828 * entries, and in the current state we load the free entries.
7831 verify_checkpoint_ms_spacemaps(spa_t
*checkpoint
, spa_t
*current
)
7833 vdev_t
*ckpoint_rvd
= checkpoint
->spa_root_vdev
;
7834 vdev_t
*current_rvd
= current
->spa_root_vdev
;
7836 load_concrete_ms_allocatable_trees(checkpoint
, SM_ALLOC
);
7837 load_concrete_ms_allocatable_trees(current
, SM_FREE
);
7839 for (uint64_t i
= 0; i
< ckpoint_rvd
->vdev_children
; i
++) {
7840 vdev_t
*ckpoint_vd
= ckpoint_rvd
->vdev_child
[i
];
7841 vdev_t
*current_vd
= current_rvd
->vdev_child
[i
];
7843 if (ckpoint_vd
->vdev_ops
== &vdev_indirect_ops
) {
7845 * See comment in verify_checkpoint_vdev_spacemaps()
7847 ASSERT3P(current_vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7851 for (uint64_t m
= 0; m
< ckpoint_vd
->vdev_ms_count
; m
++) {
7852 metaslab_t
*ckpoint_msp
= ckpoint_vd
->vdev_ms
[m
];
7853 metaslab_t
*current_msp
= current_vd
->vdev_ms
[m
];
7855 (void) fprintf(stderr
,
7856 "\rverifying vdev %llu of %llu, "
7857 "metaslab %llu of %llu ...",
7858 (longlong_t
)current_vd
->vdev_id
,
7859 (longlong_t
)current_rvd
->vdev_children
,
7860 (longlong_t
)current_vd
->vdev_ms
[m
]->ms_id
,
7861 (longlong_t
)current_vd
->vdev_ms_count
);
7864 * We walk through the ms_allocatable trees that
7865 * are loaded with the allocated blocks from the
7866 * ms_sm spacemaps of the checkpoint. For each
7867 * one of these ranges we ensure that none of them
7868 * exists in the ms_allocatable trees of the
7869 * current state which are loaded with the ranges
7870 * that are currently free.
7872 * This way we ensure that none of the blocks that
7873 * are part of the checkpoint were freed by mistake.
7875 range_tree_walk(ckpoint_msp
->ms_allocatable
,
7876 (range_tree_func_t
*)range_tree_verify_not_present
,
7877 current_msp
->ms_allocatable
);
7881 /* for cleaner progress output */
7882 (void) fprintf(stderr
, "\n");
7886 verify_checkpoint_blocks(spa_t
*spa
)
7888 ASSERT(!dump_opt
['L']);
7890 spa_t
*checkpoint_spa
;
7891 char *checkpoint_pool
;
7895 * We import the checkpointed state of the pool (under a different
7896 * name) so we can do verification on it against the current state
7899 checkpoint_pool
= import_checkpointed_state(spa
->spa_name
, NULL
,
7901 ASSERT(strcmp(spa
->spa_name
, checkpoint_pool
) != 0);
7903 error
= spa_open(checkpoint_pool
, &checkpoint_spa
, FTAG
);
7905 fatal("Tried to open pool \"%s\" but spa_open() failed with "
7906 "error %d\n", checkpoint_pool
, error
);
7910 * Ensure that ranges in the checkpoint space maps of each vdev
7911 * are allocated according to the checkpointed state's metaslab
7914 verify_checkpoint_vdev_spacemaps(checkpoint_spa
, spa
);
7917 * Ensure that allocated ranges in the checkpoint's metaslab
7918 * space maps remain allocated in the metaslab space maps of
7919 * the current state.
7921 verify_checkpoint_ms_spacemaps(checkpoint_spa
, spa
);
7924 * Once we are done, we get rid of the checkpointed state.
7926 spa_close(checkpoint_spa
, FTAG
);
7927 free(checkpoint_pool
);
7931 dump_leftover_checkpoint_blocks(spa_t
*spa
)
7933 vdev_t
*rvd
= spa
->spa_root_vdev
;
7935 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
7936 vdev_t
*vd
= rvd
->vdev_child
[i
];
7938 space_map_t
*checkpoint_sm
= NULL
;
7939 uint64_t checkpoint_sm_obj
;
7941 if (vd
->vdev_top_zap
== 0)
7944 if (zap_contains(spa_meta_objset(spa
), vd
->vdev_top_zap
,
7945 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
7948 VERIFY0(zap_lookup(spa_meta_objset(spa
), vd
->vdev_top_zap
,
7949 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
,
7950 sizeof (uint64_t), 1, &checkpoint_sm_obj
));
7952 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(spa
),
7953 checkpoint_sm_obj
, 0, vd
->vdev_asize
, vd
->vdev_ashift
));
7954 dump_spacemap(spa
->spa_meta_objset
, checkpoint_sm
);
7955 space_map_close(checkpoint_sm
);
7960 verify_checkpoint(spa_t
*spa
)
7962 uberblock_t checkpoint
;
7965 if (!spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
))
7968 error
= zap_lookup(spa
->spa_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
7969 DMU_POOL_ZPOOL_CHECKPOINT
, sizeof (uint64_t),
7970 sizeof (uberblock_t
) / sizeof (uint64_t), &checkpoint
);
7972 if (error
== ENOENT
&& !dump_opt
['L']) {
7974 * If the feature is active but the uberblock is missing
7975 * then we must be in the middle of discarding the
7978 (void) printf("\nPartially discarded checkpoint "
7980 if (dump_opt
['m'] > 3)
7981 dump_leftover_checkpoint_blocks(spa
);
7983 } else if (error
!= 0) {
7984 (void) printf("lookup error %d when looking for "
7985 "checkpointed uberblock in MOS\n", error
);
7988 dump_uberblock(&checkpoint
, "\nCheckpointed uberblock found:\n", "\n");
7990 if (checkpoint
.ub_checkpoint_txg
== 0) {
7991 (void) printf("\nub_checkpoint_txg not set in checkpointed "
7996 if (error
== 0 && !dump_opt
['L'])
7997 verify_checkpoint_blocks(spa
);
8003 mos_leaks_cb(void *arg
, uint64_t start
, uint64_t size
)
8006 for (uint64_t i
= start
; i
< size
; i
++) {
8007 (void) printf("MOS object %llu referenced but not allocated\n",
8013 mos_obj_refd(uint64_t obj
)
8015 if (obj
!= 0 && mos_refd_objs
!= NULL
)
8016 range_tree_add(mos_refd_objs
, obj
, 1);
8020 * Call on a MOS object that may already have been referenced.
8023 mos_obj_refd_multiple(uint64_t obj
)
8025 if (obj
!= 0 && mos_refd_objs
!= NULL
&&
8026 !range_tree_contains(mos_refd_objs
, obj
, 1))
8027 range_tree_add(mos_refd_objs
, obj
, 1);
8031 mos_leak_vdev_top_zap(vdev_t
*vd
)
8033 uint64_t ms_flush_data_obj
;
8034 int error
= zap_lookup(spa_meta_objset(vd
->vdev_spa
),
8035 vd
->vdev_top_zap
, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
,
8036 sizeof (ms_flush_data_obj
), 1, &ms_flush_data_obj
);
8037 if (error
== ENOENT
)
8041 mos_obj_refd(ms_flush_data_obj
);
8045 mos_leak_vdev(vdev_t
*vd
)
8047 mos_obj_refd(vd
->vdev_dtl_object
);
8048 mos_obj_refd(vd
->vdev_ms_array
);
8049 mos_obj_refd(vd
->vdev_indirect_config
.vic_births_object
);
8050 mos_obj_refd(vd
->vdev_indirect_config
.vic_mapping_object
);
8051 mos_obj_refd(vd
->vdev_leaf_zap
);
8052 if (vd
->vdev_checkpoint_sm
!= NULL
)
8053 mos_obj_refd(vd
->vdev_checkpoint_sm
->sm_object
);
8054 if (vd
->vdev_indirect_mapping
!= NULL
) {
8055 mos_obj_refd(vd
->vdev_indirect_mapping
->
8056 vim_phys
->vimp_counts_object
);
8058 if (vd
->vdev_obsolete_sm
!= NULL
)
8059 mos_obj_refd(vd
->vdev_obsolete_sm
->sm_object
);
8061 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
8062 metaslab_t
*ms
= vd
->vdev_ms
[m
];
8063 mos_obj_refd(space_map_object(ms
->ms_sm
));
8066 if (vd
->vdev_root_zap
!= 0)
8067 mos_obj_refd(vd
->vdev_root_zap
);
8069 if (vd
->vdev_top_zap
!= 0) {
8070 mos_obj_refd(vd
->vdev_top_zap
);
8071 mos_leak_vdev_top_zap(vd
);
8074 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++) {
8075 mos_leak_vdev(vd
->vdev_child
[c
]);
8080 mos_leak_log_spacemaps(spa_t
*spa
)
8082 uint64_t spacemap_zap
;
8083 int error
= zap_lookup(spa_meta_objset(spa
),
8084 DMU_POOL_DIRECTORY_OBJECT
, DMU_POOL_LOG_SPACEMAP_ZAP
,
8085 sizeof (spacemap_zap
), 1, &spacemap_zap
);
8086 if (error
== ENOENT
)
8090 mos_obj_refd(spacemap_zap
);
8091 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
8092 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
))
8093 mos_obj_refd(sls
->sls_sm_obj
);
8097 errorlog_count_refd(objset_t
*mos
, uint64_t errlog
)
8100 zap_attribute_t
*za
= zap_attribute_alloc();
8101 for (zap_cursor_init(&zc
, mos
, errlog
);
8102 zap_cursor_retrieve(&zc
, za
) == 0;
8103 zap_cursor_advance(&zc
)) {
8104 mos_obj_refd(za
->za_first_integer
);
8106 zap_cursor_fini(&zc
);
8107 zap_attribute_free(za
);
8111 dump_mos_leaks(spa_t
*spa
)
8114 objset_t
*mos
= spa
->spa_meta_objset
;
8115 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
8117 /* Visit and mark all referenced objects in the MOS */
8119 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT
);
8120 mos_obj_refd(spa
->spa_pool_props_object
);
8121 mos_obj_refd(spa
->spa_config_object
);
8122 mos_obj_refd(spa
->spa_ddt_stat_object
);
8123 mos_obj_refd(spa
->spa_feat_desc_obj
);
8124 mos_obj_refd(spa
->spa_feat_enabled_txg_obj
);
8125 mos_obj_refd(spa
->spa_feat_for_read_obj
);
8126 mos_obj_refd(spa
->spa_feat_for_write_obj
);
8127 mos_obj_refd(spa
->spa_history
);
8128 mos_obj_refd(spa
->spa_errlog_last
);
8129 mos_obj_refd(spa
->spa_errlog_scrub
);
8131 if (spa_feature_is_enabled(spa
, SPA_FEATURE_HEAD_ERRLOG
)) {
8132 errorlog_count_refd(mos
, spa
->spa_errlog_last
);
8133 errorlog_count_refd(mos
, spa
->spa_errlog_scrub
);
8136 mos_obj_refd(spa
->spa_all_vdev_zaps
);
8137 mos_obj_refd(spa
->spa_dsl_pool
->dp_bptree_obj
);
8138 mos_obj_refd(spa
->spa_dsl_pool
->dp_tmp_userrefs_obj
);
8139 mos_obj_refd(spa
->spa_dsl_pool
->dp_scan
->scn_phys
.scn_queue_obj
);
8140 bpobj_count_refd(&spa
->spa_deferred_bpobj
);
8141 mos_obj_refd(dp
->dp_empty_bpobj
);
8142 bpobj_count_refd(&dp
->dp_obsolete_bpobj
);
8143 bpobj_count_refd(&dp
->dp_free_bpobj
);
8144 mos_obj_refd(spa
->spa_l2cache
.sav_object
);
8145 mos_obj_refd(spa
->spa_spares
.sav_object
);
8147 if (spa
->spa_syncing_log_sm
!= NULL
)
8148 mos_obj_refd(spa
->spa_syncing_log_sm
->sm_object
);
8149 mos_leak_log_spacemaps(spa
);
8151 mos_obj_refd(spa
->spa_condensing_indirect_phys
.
8152 scip_next_mapping_object
);
8153 mos_obj_refd(spa
->spa_condensing_indirect_phys
.
8154 scip_prev_obsolete_sm_object
);
8155 if (spa
->spa_condensing_indirect_phys
.scip_next_mapping_object
!= 0) {
8156 vdev_indirect_mapping_t
*vim
=
8157 vdev_indirect_mapping_open(mos
,
8158 spa
->spa_condensing_indirect_phys
.scip_next_mapping_object
);
8159 mos_obj_refd(vim
->vim_phys
->vimp_counts_object
);
8160 vdev_indirect_mapping_close(vim
);
8162 deleted_livelists_dump_mos(spa
);
8164 if (dp
->dp_origin_snap
!= NULL
) {
8167 dsl_pool_config_enter(dp
, FTAG
);
8168 VERIFY0(dsl_dataset_hold_obj(dp
,
8169 dsl_dataset_phys(dp
->dp_origin_snap
)->ds_next_snap_obj
,
8171 count_ds_mos_objects(ds
);
8172 dump_blkptr_list(&ds
->ds_deadlist
, "Deadlist");
8173 dsl_dataset_rele(ds
, FTAG
);
8174 dsl_pool_config_exit(dp
, FTAG
);
8176 count_ds_mos_objects(dp
->dp_origin_snap
);
8177 dump_blkptr_list(&dp
->dp_origin_snap
->ds_deadlist
, "Deadlist");
8179 count_dir_mos_objects(dp
->dp_mos_dir
);
8180 if (dp
->dp_free_dir
!= NULL
)
8181 count_dir_mos_objects(dp
->dp_free_dir
);
8182 if (dp
->dp_leak_dir
!= NULL
)
8183 count_dir_mos_objects(dp
->dp_leak_dir
);
8185 mos_leak_vdev(spa
->spa_root_vdev
);
8187 for (uint64_t c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++) {
8188 ddt_t
*ddt
= spa
->spa_ddt
[c
];
8189 if (!ddt
|| ddt
->ddt_version
== DDT_VERSION_UNCONFIGURED
)
8192 /* DDT store objects */
8193 for (ddt_type_t type
= 0; type
< DDT_TYPES
; type
++) {
8194 for (ddt_class_t
class = 0; class < DDT_CLASSES
;
8196 mos_obj_refd(ddt
->ddt_object
[type
][class]);
8201 if (ddt
->ddt_version
== DDT_VERSION_FDT
)
8202 mos_obj_refd(ddt
->ddt_dir_object
);
8204 /* FDT log objects */
8205 if (ddt
->ddt_flags
& DDT_FLAG_LOG
) {
8206 mos_obj_refd(ddt
->ddt_log
[0].ddl_object
);
8207 mos_obj_refd(ddt
->ddt_log
[1].ddl_object
);
8211 if (spa
->spa_brt
!= NULL
) {
8212 brt_t
*brt
= spa
->spa_brt
;
8213 for (uint64_t vdevid
= 0; vdevid
< brt
->brt_nvdevs
; vdevid
++) {
8214 brt_vdev_t
*brtvd
= &brt
->brt_vdevs
[vdevid
];
8215 if (brtvd
!= NULL
&& brtvd
->bv_initiated
) {
8216 mos_obj_refd(brtvd
->bv_mos_brtvdev
);
8217 mos_obj_refd(brtvd
->bv_mos_entries
);
8223 * Visit all allocated objects and make sure they are referenced.
8225 uint64_t object
= 0;
8226 while (dmu_object_next(mos
, &object
, B_FALSE
, 0) == 0) {
8227 if (range_tree_contains(mos_refd_objs
, object
, 1)) {
8228 range_tree_remove(mos_refd_objs
, object
, 1);
8230 dmu_object_info_t doi
;
8232 VERIFY0(dmu_object_info(mos
, object
, &doi
));
8233 if (doi
.doi_type
& DMU_OT_NEWTYPE
) {
8234 dmu_object_byteswap_t bswap
=
8235 DMU_OT_BYTESWAP(doi
.doi_type
);
8236 name
= dmu_ot_byteswap
[bswap
].ob_name
;
8238 name
= dmu_ot
[doi
.doi_type
].ot_name
;
8241 (void) printf("MOS object %llu (%s) leaked\n",
8242 (u_longlong_t
)object
, name
);
8246 (void) range_tree_walk(mos_refd_objs
, mos_leaks_cb
, NULL
);
8247 if (!range_tree_is_empty(mos_refd_objs
))
8249 range_tree_vacate(mos_refd_objs
, NULL
, NULL
);
8250 range_tree_destroy(mos_refd_objs
);
8254 typedef struct log_sm_obsolete_stats_arg
{
8255 uint64_t lsos_current_txg
;
8257 uint64_t lsos_total_entries
;
8258 uint64_t lsos_valid_entries
;
8260 uint64_t lsos_sm_entries
;
8261 uint64_t lsos_valid_sm_entries
;
8262 } log_sm_obsolete_stats_arg_t
;
8265 log_spacemap_obsolete_stats_cb(spa_t
*spa
, space_map_entry_t
*sme
,
8266 uint64_t txg
, void *arg
)
8268 log_sm_obsolete_stats_arg_t
*lsos
= arg
;
8270 uint64_t offset
= sme
->sme_offset
;
8271 uint64_t vdev_id
= sme
->sme_vdev
;
8273 if (lsos
->lsos_current_txg
== 0) {
8274 /* this is the first log */
8275 lsos
->lsos_current_txg
= txg
;
8276 } else if (lsos
->lsos_current_txg
< txg
) {
8277 /* we just changed log - print stats and reset */
8278 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8279 (u_longlong_t
)lsos
->lsos_valid_sm_entries
,
8280 (u_longlong_t
)lsos
->lsos_sm_entries
,
8281 (u_longlong_t
)lsos
->lsos_current_txg
);
8282 lsos
->lsos_valid_sm_entries
= 0;
8283 lsos
->lsos_sm_entries
= 0;
8284 lsos
->lsos_current_txg
= txg
;
8286 ASSERT3U(lsos
->lsos_current_txg
, ==, txg
);
8288 lsos
->lsos_sm_entries
++;
8289 lsos
->lsos_total_entries
++;
8291 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
8292 if (!vdev_is_concrete(vd
))
8295 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
8296 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
8298 if (txg
< metaslab_unflushed_txg(ms
))
8300 lsos
->lsos_valid_sm_entries
++;
8301 lsos
->lsos_valid_entries
++;
8306 dump_log_spacemap_obsolete_stats(spa_t
*spa
)
8308 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
8311 log_sm_obsolete_stats_arg_t lsos
= {0};
8313 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
8315 iterate_through_spacemap_logs(spa
,
8316 log_spacemap_obsolete_stats_cb
, &lsos
);
8318 /* print stats for latest log */
8319 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8320 (u_longlong_t
)lsos
.lsos_valid_sm_entries
,
8321 (u_longlong_t
)lsos
.lsos_sm_entries
,
8322 (u_longlong_t
)lsos
.lsos_current_txg
);
8324 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8325 (u_longlong_t
)lsos
.lsos_valid_entries
,
8326 (u_longlong_t
)lsos
.lsos_total_entries
);
8330 dump_zpool(spa_t
*spa
)
8332 dsl_pool_t
*dp
= spa_get_dsl(spa
);
8335 if (dump_opt
['y']) {
8336 livelist_metaslab_validate(spa
);
8339 if (dump_opt
['S']) {
8340 dump_simulated_ddt(spa
);
8344 if (!dump_opt
['e'] && dump_opt
['C'] > 1) {
8345 (void) printf("\nCached configuration:\n");
8346 dump_nvlist(spa
->spa_config
, 8);
8353 dump_uberblock(&spa
->spa_uberblock
, "\nUberblock:\n", "\n");
8361 if (dump_opt
['d'] > 2 || dump_opt
['m'])
8362 dump_metaslabs(spa
);
8364 dump_metaslab_groups(spa
, dump_opt
['M'] > 1);
8365 if (dump_opt
['d'] > 2 || dump_opt
['m']) {
8366 dump_log_spacemaps(spa
);
8367 dump_log_spacemap_obsolete_stats(spa
);
8370 if (dump_opt
['d'] || dump_opt
['i']) {
8372 mos_refd_objs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0,
8374 dump_objset(dp
->dp_meta_objset
);
8376 if (dump_opt
['d'] >= 3) {
8377 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
8378 dump_full_bpobj(&spa
->spa_deferred_bpobj
,
8379 "Deferred frees", 0);
8380 if (spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
8381 dump_full_bpobj(&dp
->dp_free_bpobj
,
8382 "Pool snapshot frees", 0);
8384 if (bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
8385 ASSERT(spa_feature_is_enabled(spa
,
8386 SPA_FEATURE_DEVICE_REMOVAL
));
8387 dump_full_bpobj(&dp
->dp_obsolete_bpobj
,
8388 "Pool obsolete blocks", 0);
8391 if (spa_feature_is_active(spa
,
8392 SPA_FEATURE_ASYNC_DESTROY
)) {
8393 dump_bptree(spa
->spa_meta_objset
,
8395 "Pool dataset frees");
8397 dump_dtl(spa
->spa_root_vdev
, 0);
8400 for (spa_feature_t f
= 0; f
< SPA_FEATURES
; f
++)
8401 global_feature_count
[f
] = UINT64_MAX
;
8402 global_feature_count
[SPA_FEATURE_REDACTION_BOOKMARKS
] = 0;
8403 global_feature_count
[SPA_FEATURE_REDACTION_LIST_SPILL
] = 0;
8404 global_feature_count
[SPA_FEATURE_BOOKMARK_WRITTEN
] = 0;
8405 global_feature_count
[SPA_FEATURE_LIVELIST
] = 0;
8407 (void) dmu_objset_find(spa_name(spa
), dump_one_objset
,
8408 NULL
, DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
8410 if (rc
== 0 && !dump_opt
['L'])
8411 rc
= dump_mos_leaks(spa
);
8413 for (f
= 0; f
< SPA_FEATURES
; f
++) {
8417 if (!(spa_feature_table
[f
].fi_flags
&
8418 ZFEATURE_FLAG_PER_DATASET
)) {
8419 if (global_feature_count
[f
] == UINT64_MAX
)
8421 if (!spa_feature_is_enabled(spa
, f
)) {
8422 ASSERT0(global_feature_count
[f
]);
8425 arr
= global_feature_count
;
8427 if (!spa_feature_is_enabled(spa
, f
)) {
8428 ASSERT0(dataset_feature_count
[f
]);
8431 arr
= dataset_feature_count
;
8433 if (feature_get_refcount(spa
, &spa_feature_table
[f
],
8434 &refcount
) == ENOTSUP
)
8436 if (arr
[f
] != refcount
) {
8437 (void) printf("%s feature refcount mismatch: "
8438 "%lld consumers != %lld refcount\n",
8439 spa_feature_table
[f
].fi_uname
,
8440 (longlong_t
)arr
[f
], (longlong_t
)refcount
);
8443 (void) printf("Verified %s feature refcount "
8444 "of %llu is correct\n",
8445 spa_feature_table
[f
].fi_uname
,
8446 (longlong_t
)refcount
);
8451 rc
= verify_device_removal_feature_counts(spa
);
8454 if (rc
== 0 && (dump_opt
['b'] || dump_opt
['c']))
8455 rc
= dump_block_stats(spa
);
8458 rc
= verify_spacemap_refcounts(spa
);
8461 show_pool_stats(spa
);
8467 rc
= verify_checkpoint(spa
);
8470 dump_debug_buffer();
8475 #define ZDB_FLAG_CHECKSUM 0x0001
8476 #define ZDB_FLAG_DECOMPRESS 0x0002
8477 #define ZDB_FLAG_BSWAP 0x0004
8478 #define ZDB_FLAG_GBH 0x0008
8479 #define ZDB_FLAG_INDIRECT 0x0010
8480 #define ZDB_FLAG_RAW 0x0020
8481 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8482 #define ZDB_FLAG_VERBOSE 0x0080
8484 static int flagbits
[256];
8485 static char flagbitstr
[16];
8488 zdb_print_blkptr(const blkptr_t
*bp
, int flags
)
8490 char blkbuf
[BP_SPRINTF_LEN
];
8492 if (flags
& ZDB_FLAG_BSWAP
)
8493 byteswap_uint64_array((void *)bp
, sizeof (blkptr_t
));
8495 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
8496 (void) printf("%s\n", blkbuf
);
8500 zdb_dump_indirect(blkptr_t
*bp
, int nbps
, int flags
)
8504 for (i
= 0; i
< nbps
; i
++)
8505 zdb_print_blkptr(&bp
[i
], flags
);
8509 zdb_dump_gbh(void *buf
, int flags
)
8511 zdb_dump_indirect((blkptr_t
*)buf
, SPA_GBH_NBLKPTRS
, flags
);
8515 zdb_dump_block_raw(void *buf
, uint64_t size
, int flags
)
8517 if (flags
& ZDB_FLAG_BSWAP
)
8518 byteswap_uint64_array(buf
, size
);
8519 VERIFY(write(fileno(stdout
), buf
, size
) == size
);
8523 zdb_dump_block(char *label
, void *buf
, uint64_t size
, int flags
)
8525 uint64_t *d
= (uint64_t *)buf
;
8526 unsigned nwords
= size
/ sizeof (uint64_t);
8527 int do_bswap
= !!(flags
& ZDB_FLAG_BSWAP
);
8534 hdr
= " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8536 hdr
= " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8538 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label
, "", hdr
);
8540 #ifdef _ZFS_LITTLE_ENDIAN
8541 /* correct the endianness */
8542 do_bswap
= !do_bswap
;
8544 for (i
= 0; i
< nwords
; i
+= 2) {
8545 (void) printf("%06llx: %016llx %016llx ",
8546 (u_longlong_t
)(i
* sizeof (uint64_t)),
8547 (u_longlong_t
)(do_bswap
? BSWAP_64(d
[i
]) : d
[i
]),
8548 (u_longlong_t
)(do_bswap
? BSWAP_64(d
[i
+ 1]) : d
[i
+ 1]));
8551 for (j
= 0; j
< 2 * sizeof (uint64_t); j
++)
8552 (void) printf("%c", isprint(c
[j
]) ? c
[j
] : '.');
8553 (void) printf("\n");
8558 * There are two acceptable formats:
8559 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8560 * child[.child]* - For example: 0.1.1
8562 * The second form can be used to specify arbitrary vdevs anywhere
8563 * in the hierarchy. For example, in a pool with a mirror of
8564 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8567 zdb_vdev_lookup(vdev_t
*vdev
, const char *path
)
8575 /* First, assume the x.x.x.x format */
8576 i
= strtoul(path
, &s
, 10);
8577 if (s
== path
|| (s
&& *s
!= '.' && *s
!= '\0'))
8579 if (i
>= vdev
->vdev_children
)
8582 vdev
= vdev
->vdev_child
[i
];
8583 if (s
&& *s
== '\0')
8585 return (zdb_vdev_lookup(vdev
, s
+1));
8588 for (i
= 0; i
< vdev
->vdev_children
; i
++) {
8589 vdev_t
*vc
= vdev
->vdev_child
[i
];
8591 if (vc
->vdev_path
== NULL
) {
8592 vc
= zdb_vdev_lookup(vc
, path
);
8599 p
= strrchr(vc
->vdev_path
, '/');
8600 p
= p
? p
+ 1 : vc
->vdev_path
;
8601 q
= &vc
->vdev_path
[strlen(vc
->vdev_path
) - 2];
8603 if (strcmp(vc
->vdev_path
, path
) == 0)
8605 if (strcmp(p
, path
) == 0)
8607 if (strcmp(q
, "s0") == 0 && strncmp(p
, path
, q
- p
) == 0)
8615 name_from_objset_id(spa_t
*spa
, uint64_t objset_id
, char *outstr
)
8619 dsl_pool_config_enter(spa
->spa_dsl_pool
, FTAG
);
8620 int error
= dsl_dataset_hold_obj(spa
->spa_dsl_pool
, objset_id
,
8623 (void) fprintf(stderr
, "failed to hold objset %llu: %s\n",
8624 (u_longlong_t
)objset_id
, strerror(error
));
8625 dsl_pool_config_exit(spa
->spa_dsl_pool
, FTAG
);
8628 dsl_dataset_name(ds
, outstr
);
8629 dsl_dataset_rele(ds
, NULL
);
8630 dsl_pool_config_exit(spa
->spa_dsl_pool
, FTAG
);
8635 zdb_parse_block_sizes(char *sizes
, uint64_t *lsize
, uint64_t *psize
)
8637 char *s0
, *s1
, *tmp
= NULL
;
8642 s0
= strtok_r(sizes
, "/", &tmp
);
8645 s1
= strtok_r(NULL
, "/", &tmp
);
8646 *lsize
= strtoull(s0
, NULL
, 16);
8647 *psize
= s1
? strtoull(s1
, NULL
, 16) : *lsize
;
8648 return (*lsize
>= *psize
&& *psize
> 0);
8651 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8654 try_decompress_block(abd_t
*pabd
, uint64_t lsize
, uint64_t psize
,
8655 int flags
, int cfunc
, void *lbuf
, void *lbuf2
)
8657 if (flags
& ZDB_FLAG_VERBOSE
) {
8658 (void) fprintf(stderr
,
8659 "Trying %05llx -> %05llx (%s)\n",
8660 (u_longlong_t
)psize
,
8661 (u_longlong_t
)lsize
,
8662 zio_compress_table
[cfunc
].ci_name
);
8666 * We set lbuf to all zeros and lbuf2 to all
8667 * ones, then decompress to both buffers and
8668 * compare their contents. This way we can
8669 * know if decompression filled exactly to
8670 * lsize or if it left some bytes unwritten.
8673 memset(lbuf
, 0x00, lsize
);
8674 memset(lbuf2
, 0xff, lsize
);
8677 abd_get_from_buf_struct(&labd
, lbuf
, lsize
);
8678 abd_get_from_buf_struct(&labd2
, lbuf2
, lsize
);
8680 boolean_t ret
= B_FALSE
;
8681 if (zio_decompress_data(cfunc
, pabd
,
8682 &labd
, psize
, lsize
, NULL
) == 0 &&
8683 zio_decompress_data(cfunc
, pabd
,
8684 &labd2
, psize
, lsize
, NULL
) == 0 &&
8685 memcmp(lbuf
, lbuf2
, lsize
) == 0)
8695 zdb_decompress_block(abd_t
*pabd
, void *buf
, void *lbuf
, uint64_t lsize
,
8696 uint64_t psize
, int flags
)
8699 uint64_t orig_lsize
= lsize
;
8700 boolean_t tryzle
= ((getenv("ZDB_NO_ZLE") == NULL
));
8701 boolean_t found
= B_FALSE
;
8703 * We don't know how the data was compressed, so just try
8704 * every decompress function at every inflated blocksize.
8706 void *lbuf2
= umem_alloc(SPA_MAXBLOCKSIZE
, UMEM_NOFAIL
);
8707 int cfuncs
[ZIO_COMPRESS_FUNCTIONS
] = { 0 };
8708 int *cfuncp
= cfuncs
;
8709 uint64_t maxlsize
= SPA_MAXBLOCKSIZE
;
8710 uint64_t mask
= ZIO_COMPRESS_MASK(ON
) | ZIO_COMPRESS_MASK(OFF
) |
8711 ZIO_COMPRESS_MASK(INHERIT
) | ZIO_COMPRESS_MASK(EMPTY
) |
8712 ZIO_COMPRESS_MASK(ZLE
);
8713 *cfuncp
++ = ZIO_COMPRESS_LZ4
;
8714 *cfuncp
++ = ZIO_COMPRESS_LZJB
;
8715 mask
|= ZIO_COMPRESS_MASK(LZ4
) | ZIO_COMPRESS_MASK(LZJB
);
8717 * Every gzip level has the same decompressor, no need to
8718 * run it 9 times per bruteforce attempt.
8720 mask
|= ZIO_COMPRESS_MASK(GZIP_2
) | ZIO_COMPRESS_MASK(GZIP_3
);
8721 mask
|= ZIO_COMPRESS_MASK(GZIP_4
) | ZIO_COMPRESS_MASK(GZIP_5
);
8722 mask
|= ZIO_COMPRESS_MASK(GZIP_6
) | ZIO_COMPRESS_MASK(GZIP_7
);
8723 mask
|= ZIO_COMPRESS_MASK(GZIP_8
) | ZIO_COMPRESS_MASK(GZIP_9
);
8724 for (int c
= 0; c
< ZIO_COMPRESS_FUNCTIONS
; c
++)
8725 if (((1ULL << c
) & mask
) == 0)
8729 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8730 * could take a while and we should let the user know
8731 * we are not stuck. On the other hand, printing progress
8732 * info gets old after a while. User can specify 'v' flag
8733 * to see the progression.
8736 lsize
+= SPA_MINBLOCKSIZE
;
8740 for (; lsize
<= maxlsize
; lsize
+= SPA_MINBLOCKSIZE
) {
8741 for (cfuncp
= cfuncs
; *cfuncp
; cfuncp
++) {
8742 if (try_decompress_block(pabd
, lsize
, psize
, flags
,
8743 *cfuncp
, lbuf
, lbuf2
)) {
8751 if (!found
&& tryzle
) {
8752 for (lsize
= orig_lsize
; lsize
<= maxlsize
;
8753 lsize
+= SPA_MINBLOCKSIZE
) {
8754 if (try_decompress_block(pabd
, lsize
, psize
, flags
,
8755 ZIO_COMPRESS_ZLE
, lbuf
, lbuf2
)) {
8756 *cfuncp
= ZIO_COMPRESS_ZLE
;
8762 umem_free(lbuf2
, SPA_MAXBLOCKSIZE
);
8764 if (*cfuncp
== ZIO_COMPRESS_ZLE
) {
8765 printf("\nZLE decompression was selected. If you "
8766 "suspect the results are wrong,\ntry avoiding ZLE "
8767 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8770 return (lsize
> maxlsize
? -1 : lsize
);
8774 * Read a block from a pool and print it out. The syntax of the
8775 * block descriptor is:
8777 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8779 * pool - The name of the pool you wish to read from
8780 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8781 * offset - offset, in hex, in bytes
8782 * size - Amount of data to read, in hex, in bytes
8783 * flags - A string of characters specifying options
8784 * b: Decode a blkptr at given offset within block
8785 * c: Calculate and display checksums
8786 * d: Decompress data before dumping
8787 * e: Byteswap data before dumping
8788 * g: Display data as a gang block header
8789 * i: Display as an indirect block
8790 * r: Dump raw data to stdout
8795 zdb_read_block(char *thing
, spa_t
*spa
)
8797 blkptr_t blk
, *bp
= &blk
;
8798 dva_t
*dva
= bp
->blk_dva
;
8800 uint64_t offset
= 0, psize
= 0, lsize
= 0, blkptr_offset
= 0;
8805 char *s
, *p
, *dup
, *flagstr
, *sizes
, *tmp
= NULL
;
8806 const char *vdev
, *errmsg
= NULL
;
8808 boolean_t borrowed
= B_FALSE
, found
= B_FALSE
;
8810 dup
= strdup(thing
);
8811 s
= strtok_r(dup
, ":", &tmp
);
8813 s
= strtok_r(NULL
, ":", &tmp
);
8814 offset
= strtoull(s
? s
: "", NULL
, 16);
8815 sizes
= strtok_r(NULL
, ":", &tmp
);
8816 s
= strtok_r(NULL
, ":", &tmp
);
8817 flagstr
= strdup(s
?: "");
8819 if (!zdb_parse_block_sizes(sizes
, &lsize
, &psize
))
8820 errmsg
= "invalid size(s)";
8821 if (!IS_P2ALIGNED(psize
, DEV_BSIZE
) || !IS_P2ALIGNED(lsize
, DEV_BSIZE
))
8822 errmsg
= "size must be a multiple of sector size";
8823 if (!IS_P2ALIGNED(offset
, DEV_BSIZE
))
8824 errmsg
= "offset must be a multiple of sector size";
8826 (void) printf("Invalid block specifier: %s - %s\n",
8832 for (s
= strtok_r(flagstr
, ":", &tmp
);
8834 s
= strtok_r(NULL
, ":", &tmp
)) {
8835 len
= strlen(flagstr
);
8836 for (i
= 0; i
< len
; i
++) {
8837 int bit
= flagbits
[(uchar_t
)flagstr
[i
]];
8840 (void) printf("***Ignoring flag: %c\n",
8841 (uchar_t
)flagstr
[i
]);
8847 p
= &flagstr
[i
+ 1];
8848 if (*p
!= ':' && *p
!= '\0') {
8849 int j
= 0, nextbit
= flagbits
[(uchar_t
)*p
];
8850 char *end
, offstr
[8] = { 0 };
8851 if ((bit
== ZDB_FLAG_PRINT_BLKPTR
) &&
8853 /* look ahead to isolate the offset */
8854 while (nextbit
== 0 &&
8855 strchr(flagbitstr
, *p
) == NULL
) {
8858 if (i
+ j
> strlen(flagstr
))
8861 nextbit
= flagbits
[(uchar_t
)*p
];
8863 blkptr_offset
= strtoull(offstr
, &end
,
8866 } else if (nextbit
== 0) {
8867 (void) printf("***Ignoring flag arg:"
8868 " '%c'\n", (uchar_t
)*p
);
8873 if (blkptr_offset
% sizeof (blkptr_t
)) {
8874 printf("Block pointer offset 0x%llx "
8875 "must be divisible by 0x%x\n",
8876 (longlong_t
)blkptr_offset
, (int)sizeof (blkptr_t
));
8879 if (found
== B_FALSE
&& strlen(flagstr
) > 0) {
8880 printf("Invalid flag arg: '%s'\n", flagstr
);
8884 vd
= zdb_vdev_lookup(spa
->spa_root_vdev
, vdev
);
8886 (void) printf("***Invalid vdev: %s\n", vdev
);
8890 (void) fprintf(stderr
, "Found vdev: %s\n",
8893 (void) fprintf(stderr
, "Found vdev type: %s\n",
8894 vd
->vdev_ops
->vdev_op_type
);
8897 pabd
= abd_alloc_for_io(SPA_MAXBLOCKSIZE
, B_FALSE
);
8898 lbuf
= umem_alloc(SPA_MAXBLOCKSIZE
, UMEM_NOFAIL
);
8902 DVA_SET_VDEV(&dva
[0], vd
->vdev_id
);
8903 DVA_SET_OFFSET(&dva
[0], offset
);
8904 DVA_SET_GANG(&dva
[0], !!(flags
& ZDB_FLAG_GBH
));
8905 DVA_SET_ASIZE(&dva
[0], vdev_psize_to_asize(vd
, psize
));
8907 BP_SET_BIRTH(bp
, TXG_INITIAL
, TXG_INITIAL
);
8909 BP_SET_LSIZE(bp
, lsize
);
8910 BP_SET_PSIZE(bp
, psize
);
8911 BP_SET_COMPRESS(bp
, ZIO_COMPRESS_OFF
);
8912 BP_SET_CHECKSUM(bp
, ZIO_CHECKSUM_OFF
);
8913 BP_SET_TYPE(bp
, DMU_OT_NONE
);
8914 BP_SET_LEVEL(bp
, 0);
8915 BP_SET_DEDUP(bp
, 0);
8916 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
8918 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
8919 zio
= zio_root(spa
, NULL
, NULL
, 0);
8921 if (vd
== vd
->vdev_top
) {
8923 * Treat this as a normal block read.
8925 zio_nowait(zio_read(zio
, spa
, bp
, pabd
, psize
, NULL
, NULL
,
8926 ZIO_PRIORITY_SYNC_READ
,
8927 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
, NULL
));
8930 * Treat this as a vdev child I/O.
8932 zio_nowait(zio_vdev_child_io(zio
, bp
, vd
, offset
, pabd
,
8933 psize
, ZIO_TYPE_READ
, ZIO_PRIORITY_SYNC_READ
,
8934 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
|
8935 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
| ZIO_FLAG_OPTIONAL
,
8939 error
= zio_wait(zio
);
8940 spa_config_exit(spa
, SCL_STATE
, FTAG
);
8943 (void) printf("Read of %s failed, error: %d\n", thing
, error
);
8947 uint64_t orig_lsize
= lsize
;
8949 if (flags
& ZDB_FLAG_DECOMPRESS
) {
8950 lsize
= zdb_decompress_block(pabd
, buf
, lbuf
,
8951 lsize
, psize
, flags
);
8953 (void) printf("Decompress of %s failed\n", thing
);
8957 buf
= abd_borrow_buf_copy(pabd
, lsize
);
8961 * Try to detect invalid block pointer. If invalid, try
8964 if ((flags
& ZDB_FLAG_PRINT_BLKPTR
|| flags
& ZDB_FLAG_INDIRECT
) &&
8965 !(flags
& ZDB_FLAG_DECOMPRESS
)) {
8966 const blkptr_t
*b
= (const blkptr_t
*)(void *)
8967 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
);
8968 if (zfs_blkptr_verify(spa
, b
,
8969 BLK_CONFIG_NEEDED
, BLK_VERIFY_ONLY
) == B_FALSE
) {
8970 abd_return_buf_copy(pabd
, buf
, lsize
);
8973 lsize
= zdb_decompress_block(pabd
, buf
,
8974 lbuf
, lsize
, psize
, flags
);
8975 b
= (const blkptr_t
*)(void *)
8976 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
);
8977 if (lsize
== -1 || zfs_blkptr_verify(spa
, b
,
8978 BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
) == B_FALSE
) {
8979 printf("invalid block pointer at this DVA\n");
8985 if (flags
& ZDB_FLAG_PRINT_BLKPTR
)
8986 zdb_print_blkptr((blkptr_t
*)(void *)
8987 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
), flags
);
8988 else if (flags
& ZDB_FLAG_RAW
)
8989 zdb_dump_block_raw(buf
, lsize
, flags
);
8990 else if (flags
& ZDB_FLAG_INDIRECT
)
8991 zdb_dump_indirect((blkptr_t
*)buf
,
8992 orig_lsize
/ sizeof (blkptr_t
), flags
);
8993 else if (flags
& ZDB_FLAG_GBH
)
8994 zdb_dump_gbh(buf
, flags
);
8996 zdb_dump_block(thing
, buf
, lsize
, flags
);
8999 * If :c was specified, iterate through the checksum table to
9000 * calculate and display each checksum for our specified
9003 if ((flags
& ZDB_FLAG_CHECKSUM
) && !(flags
& ZDB_FLAG_RAW
) &&
9004 !(flags
& ZDB_FLAG_GBH
)) {
9006 (void) printf("\n");
9007 for (enum zio_checksum ck
= ZIO_CHECKSUM_LABEL
;
9008 ck
< ZIO_CHECKSUM_FUNCTIONS
; ck
++) {
9010 if ((zio_checksum_table
[ck
].ci_flags
&
9011 ZCHECKSUM_FLAG_EMBEDDED
) ||
9012 ck
== ZIO_CHECKSUM_NOPARITY
) {
9015 BP_SET_CHECKSUM(bp
, ck
);
9016 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
9017 czio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
9018 if (vd
== vd
->vdev_top
) {
9019 zio_nowait(zio_read(czio
, spa
, bp
, pabd
, psize
,
9021 ZIO_PRIORITY_SYNC_READ
,
9022 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
|
9023 ZIO_FLAG_DONT_RETRY
, NULL
));
9025 zio_nowait(zio_vdev_child_io(czio
, bp
, vd
,
9026 offset
, pabd
, psize
, ZIO_TYPE_READ
,
9027 ZIO_PRIORITY_SYNC_READ
,
9028 ZIO_FLAG_DONT_PROPAGATE
|
9029 ZIO_FLAG_DONT_RETRY
|
9030 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
|
9031 ZIO_FLAG_SPECULATIVE
|
9032 ZIO_FLAG_OPTIONAL
, NULL
, NULL
));
9034 error
= zio_wait(czio
);
9035 if (error
== 0 || error
== ECKSUM
) {
9036 zio_t
*ck_zio
= zio_null(NULL
, spa
, NULL
,
9039 DVA_GET_OFFSET(&bp
->blk_dva
[0]);
9041 zio_checksum_compute(ck_zio
, ck
, pabd
, lsize
);
9044 "cksum=%016llx:%016llx:%016llx:%016llx\n",
9045 zio_checksum_table
[ck
].ci_name
,
9046 (u_longlong_t
)bp
->blk_cksum
.zc_word
[0],
9047 (u_longlong_t
)bp
->blk_cksum
.zc_word
[1],
9048 (u_longlong_t
)bp
->blk_cksum
.zc_word
[2],
9049 (u_longlong_t
)bp
->blk_cksum
.zc_word
[3]);
9052 printf("error %d reading block\n", error
);
9054 spa_config_exit(spa
, SCL_STATE
, FTAG
);
9059 abd_return_buf_copy(pabd
, buf
, lsize
);
9063 umem_free(lbuf
, SPA_MAXBLOCKSIZE
);
9070 zdb_embedded_block(char *thing
)
9072 blkptr_t bp
= {{{{0}}}};
9073 unsigned long long *words
= (void *)&bp
;
9077 err
= sscanf(thing
, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9078 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9079 words
+ 0, words
+ 1, words
+ 2, words
+ 3,
9080 words
+ 4, words
+ 5, words
+ 6, words
+ 7,
9081 words
+ 8, words
+ 9, words
+ 10, words
+ 11,
9082 words
+ 12, words
+ 13, words
+ 14, words
+ 15);
9084 (void) fprintf(stderr
, "invalid input format\n");
9087 ASSERT3U(BPE_GET_LSIZE(&bp
), <=, SPA_MAXBLOCKSIZE
);
9088 buf
= malloc(SPA_MAXBLOCKSIZE
);
9090 (void) fprintf(stderr
, "out of memory\n");
9093 err
= decode_embedded_bp(&bp
, buf
, BPE_GET_LSIZE(&bp
));
9095 (void) fprintf(stderr
, "decode failed: %u\n", err
);
9098 zdb_dump_block_raw(buf
, BPE_GET_LSIZE(&bp
), 0);
9102 /* check for valid hex or decimal numeric string */
9104 zdb_numeric(char *str
)
9111 if (strncmp(str
, "0x", 2) == 0 || strncmp(str
, "0X", 2) == 0)
9113 for (; i
< len
; i
++) {
9114 if (!isxdigit(str
[i
]))
9121 dummy_get_file_info(dmu_object_type_t bonustype
, const void *data
,
9122 zfs_file_info_t
*zoi
)
9124 (void) data
, (void) zoi
;
9126 if (bonustype
!= DMU_OT_ZNODE
&& bonustype
!= DMU_OT_SA
)
9129 (void) fprintf(stderr
, "dummy_get_file_info: not implemented");
9134 main(int argc
, char **argv
)
9140 char **searchdirs
= NULL
;
9142 char *target
, *target_pool
, dsname
[ZFS_MAX_DATASET_NAME_LEN
];
9143 nvlist_t
*policy
= NULL
;
9144 uint64_t max_txg
= UINT64_MAX
;
9145 int64_t objset_id
= -1;
9147 int flags
= ZFS_IMPORT_MISSING_LOG
;
9148 int rewind
= ZPOOL_NEVER_REWIND
;
9149 char *spa_config_path_env
, *objset_str
;
9150 boolean_t target_is_spa
= B_TRUE
, dataset_lookup
= B_FALSE
;
9151 nvlist_t
*cfg
= NULL
;
9152 struct sigaction action
;
9153 boolean_t force_import
= B_FALSE
;
9154 boolean_t config_path_console
= B_FALSE
;
9155 char pbuf
[MAXPATHLEN
];
9157 dprintf_setup(&argc
, argv
);
9160 * Set up signal handlers, so if we crash due to bad on-disk data we
9161 * can get more info. Unlike ztest, we don't bail out if we can't set
9162 * up signal handlers, because zdb is very useful without them.
9164 action
.sa_handler
= sig_handler
;
9165 sigemptyset(&action
.sa_mask
);
9166 action
.sa_flags
= 0;
9167 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
9168 (void) fprintf(stderr
, "zdb: cannot catch SIGSEGV: %s\n",
9171 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
9172 (void) fprintf(stderr
, "zdb: cannot catch SIGABRT: %s\n",
9177 * If there is an environment variable SPA_CONFIG_PATH it overrides
9178 * default spa_config_path setting. If -U flag is specified it will
9179 * override this environment variable settings once again.
9181 spa_config_path_env
= getenv("SPA_CONFIG_PATH");
9182 if (spa_config_path_env
!= NULL
)
9183 spa_config_path
= spa_config_path_env
;
9186 * For performance reasons, we set this tunable down. We do so before
9187 * the arg parsing section so that the user can override this value if
9190 zfs_btree_verify_intensity
= 3;
9192 struct option long_options
[] = {
9193 {"ignore-assertions", no_argument
, NULL
, 'A'},
9194 {"block-stats", no_argument
, NULL
, 'b'},
9195 {"backup", no_argument
, NULL
, 'B'},
9196 {"checksum", no_argument
, NULL
, 'c'},
9197 {"config", no_argument
, NULL
, 'C'},
9198 {"datasets", no_argument
, NULL
, 'd'},
9199 {"dedup-stats", no_argument
, NULL
, 'D'},
9200 {"exported", no_argument
, NULL
, 'e'},
9201 {"embedded-block-pointer", no_argument
, NULL
, 'E'},
9202 {"automatic-rewind", no_argument
, NULL
, 'F'},
9203 {"dump-debug-msg", no_argument
, NULL
, 'G'},
9204 {"history", no_argument
, NULL
, 'h'},
9205 {"intent-logs", no_argument
, NULL
, 'i'},
9206 {"inflight", required_argument
, NULL
, 'I'},
9207 {"checkpointed-state", no_argument
, NULL
, 'k'},
9208 {"key", required_argument
, NULL
, 'K'},
9209 {"label", no_argument
, NULL
, 'l'},
9210 {"disable-leak-tracking", no_argument
, NULL
, 'L'},
9211 {"metaslabs", no_argument
, NULL
, 'm'},
9212 {"metaslab-groups", no_argument
, NULL
, 'M'},
9213 {"numeric", no_argument
, NULL
, 'N'},
9214 {"option", required_argument
, NULL
, 'o'},
9215 {"object-lookups", no_argument
, NULL
, 'O'},
9216 {"path", required_argument
, NULL
, 'p'},
9217 {"parseable", no_argument
, NULL
, 'P'},
9218 {"skip-label", no_argument
, NULL
, 'q'},
9219 {"copy-object", no_argument
, NULL
, 'r'},
9220 {"read-block", no_argument
, NULL
, 'R'},
9221 {"io-stats", no_argument
, NULL
, 's'},
9222 {"simulate-dedup", no_argument
, NULL
, 'S'},
9223 {"txg", required_argument
, NULL
, 't'},
9224 {"brt-stats", no_argument
, NULL
, 'T'},
9225 {"uberblock", no_argument
, NULL
, 'u'},
9226 {"cachefile", required_argument
, NULL
, 'U'},
9227 {"verbose", no_argument
, NULL
, 'v'},
9228 {"verbatim", no_argument
, NULL
, 'V'},
9229 {"dump-blocks", required_argument
, NULL
, 'x'},
9230 {"extreme-rewind", no_argument
, NULL
, 'X'},
9231 {"all-reconstruction", no_argument
, NULL
, 'Y'},
9232 {"livelist", no_argument
, NULL
, 'y'},
9233 {"zstd-headers", no_argument
, NULL
, 'Z'},
9237 while ((c
= getopt_long(argc
, argv
,
9238 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9239 long_options
, NULL
)) != -1) {
9278 zfs_reconstruct_indirect_combinations_max
= INT_MAX
;
9279 zfs_deadman_enabled
= 0;
9281 /* NB: Sort single match options below. */
9283 max_inflight_bytes
= strtoull(optarg
, NULL
, 0);
9284 if (max_inflight_bytes
== 0) {
9285 (void) fprintf(stderr
, "maximum number "
9286 "of inflight bytes must be greater "
9293 key_material
= strdup(optarg
);
9294 /* redact key material in process table */
9295 while (*optarg
!= '\0') { *optarg
++ = '*'; }
9298 error
= set_global_var(optarg
);
9303 if (searchdirs
== NULL
) {
9304 searchdirs
= umem_alloc(sizeof (char *),
9307 char **tmp
= umem_alloc((nsearch
+ 1) *
9308 sizeof (char *), UMEM_NOFAIL
);
9309 memcpy(tmp
, searchdirs
, nsearch
*
9311 umem_free(searchdirs
,
9312 nsearch
* sizeof (char *));
9315 searchdirs
[nsearch
++] = optarg
;
9318 max_txg
= strtoull(optarg
, NULL
, 0);
9319 if (max_txg
< TXG_INITIAL
) {
9320 (void) fprintf(stderr
, "incorrect txg "
9321 "specified: %s\n", optarg
);
9326 config_path_console
= B_TRUE
;
9327 spa_config_path
= optarg
;
9328 if (spa_config_path
[0] != '/') {
9329 (void) fprintf(stderr
,
9330 "cachefile must be an absolute path "
9331 "(i.e. start with a slash)\n");
9339 flags
= ZFS_IMPORT_VERBATIM
;
9342 vn_dumpdir
= optarg
;
9350 if (!dump_opt
['e'] && searchdirs
!= NULL
) {
9351 (void) fprintf(stderr
, "-p option requires use of -e\n");
9356 * ZDB does not typically re-read blocks; therefore limit the ARC
9357 * to 256 MB, which can be used entirely for metadata.
9359 zfs_arc_min
= 2ULL << SPA_MAXBLOCKSHIFT
;
9360 zfs_arc_max
= 256 * 1024 * 1024;
9364 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9365 * "zdb -b" uses traversal prefetch which uses async reads.
9366 * For good performance, let several of them be active at once.
9368 zfs_vdev_async_read_max_active
= 10;
9371 * Disable reference tracking for better performance.
9373 reference_tracking_enable
= B_FALSE
;
9376 * Do not fail spa_load when spa_load_verify fails. This is needed
9377 * to load non-idle pools.
9379 spa_load_verify_dryrun
= B_TRUE
;
9382 * ZDB should have ability to read spacemaps.
9384 spa_mode_readable_spacemaps
= B_TRUE
;
9387 verbose
= MAX(verbose
, 1);
9389 for (c
= 0; c
< 256; c
++) {
9390 if (dump_all
&& strchr("ABeEFkKlLNOPrRSXy", c
) == NULL
)
9393 dump_opt
[c
] += verbose
;
9396 libspl_set_assert_ok((dump_opt
['A'] == 1) || (dump_opt
['A'] > 2));
9397 zfs_recover
= (dump_opt
['A'] > 1);
9401 if (argc
< 2 && dump_opt
['R'])
9407 * Automate cachefile
9409 if (!spa_config_path_env
&& !config_path_console
&& target
&&
9410 libzfs_core_init() == 0) {
9411 char *pname
= strdup(target
);
9413 nvlist_t
*pnvl
= NULL
;
9414 nvlist_t
*vnvl
= NULL
;
9416 if (strpbrk(pname
, "/@") != NULL
)
9417 *strpbrk(pname
, "/@") = '\0';
9419 if (pname
&& lzc_get_props(pname
, &pnvl
) == 0) {
9420 if (nvlist_lookup_nvlist(pnvl
, "cachefile",
9422 value
= fnvlist_lookup_string(vnvl
,
9427 strlcpy(pbuf
, value
, sizeof (pbuf
));
9428 if (pbuf
[0] != '\0') {
9429 if (pbuf
[0] == '/') {
9430 if (access(pbuf
, F_OK
) == 0)
9431 spa_config_path
= pbuf
;
9433 force_import
= B_TRUE
;
9434 } else if ((strcmp(pbuf
, "-") == 0 &&
9435 access(ZPOOL_CACHE
, F_OK
) != 0) ||
9436 strcmp(pbuf
, "none") == 0) {
9437 force_import
= B_TRUE
;
9448 dmu_objset_register_type(DMU_OST_ZFS
, dummy_get_file_info
);
9449 kernel_init(SPA_MODE_READ
);
9450 kernel_init_done
= B_TRUE
;
9452 if (dump_opt
['E']) {
9455 zdb_embedded_block(argv
[0]);
9461 if (!dump_opt
['e'] && dump_opt
['C']) {
9462 dump_cachefile(spa_config_path
);
9469 if (dump_opt
['l']) {
9470 error
= dump_label(argv
[0]);
9474 if (dump_opt
['X'] || dump_opt
['F'])
9475 rewind
= ZPOOL_DO_REWIND
|
9476 (dump_opt
['X'] ? ZPOOL_EXTREME_REWIND
: 0);
9479 if (dump_opt
['N'] && dump_opt
['d'] == 0)
9480 dump_opt
['d'] = dump_opt
['N'];
9482 if (nvlist_alloc(&policy
, NV_UNIQUE_NAME_TYPE
, 0) != 0 ||
9483 nvlist_add_uint64(policy
, ZPOOL_LOAD_REQUEST_TXG
, max_txg
) != 0 ||
9484 nvlist_add_uint32(policy
, ZPOOL_LOAD_REWIND_POLICY
, rewind
) != 0)
9485 fatal("internal error: %s", strerror(ENOMEM
));
9489 if (strpbrk(target
, "/@") != NULL
) {
9492 target_pool
= strdup(target
);
9493 *strpbrk(target_pool
, "/@") = '\0';
9495 target_is_spa
= B_FALSE
;
9496 targetlen
= strlen(target
);
9497 if (targetlen
&& target
[targetlen
- 1] == '/')
9498 target
[targetlen
- 1] = '\0';
9501 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9502 * To disambiguate tank/100, consider the 100 as objsetID
9503 * if -N was given, otherwise 100 is an objsetID iff
9504 * tank/100 as a named dataset fails on lookup.
9506 objset_str
= strchr(target
, '/');
9507 if (objset_str
&& strlen(objset_str
) > 1 &&
9508 zdb_numeric(objset_str
+ 1)) {
9512 objset_id
= strtoull(objset_str
, &endptr
, 0);
9513 /* dataset 0 is the same as opening the pool */
9514 if (errno
== 0 && endptr
!= objset_str
&&
9517 dataset_lookup
= B_TRUE
;
9519 /* normal dataset name not an objset ID */
9520 if (endptr
== objset_str
) {
9523 } else if (objset_str
&& !zdb_numeric(objset_str
+ 1) &&
9525 printf("Supply a numeric objset ID with -N\n");
9530 target_pool
= target
;
9533 if (dump_opt
['e'] || force_import
) {
9534 importargs_t args
= { 0 };
9537 * If path is not provided, search in /dev
9539 if (searchdirs
== NULL
) {
9540 searchdirs
= umem_alloc(sizeof (char *), UMEM_NOFAIL
);
9541 searchdirs
[nsearch
++] = (char *)ZFS_DEVDIR
;
9544 args
.paths
= nsearch
;
9545 args
.path
= searchdirs
;
9546 args
.can_be_active
= B_TRUE
;
9548 libpc_handle_t lpch
= {
9549 .lpc_lib_handle
= NULL
,
9550 .lpc_ops
= &libzpool_config_ops
,
9551 .lpc_printerr
= B_TRUE
9553 error
= zpool_find_config(&lpch
, target_pool
, &cfg
, &args
);
9557 if (nvlist_add_nvlist(cfg
,
9558 ZPOOL_LOAD_POLICY
, policy
) != 0) {
9559 fatal("can't open '%s': %s",
9560 target
, strerror(ENOMEM
));
9563 if (dump_opt
['C'] > 1) {
9564 (void) printf("\nConfiguration for import:\n");
9565 dump_nvlist(cfg
, 8);
9569 * Disable the activity check to allow examination of
9572 error
= spa_import(target_pool
, cfg
, NULL
,
9573 flags
| ZFS_IMPORT_SKIP_MMP
);
9577 if (searchdirs
!= NULL
) {
9578 umem_free(searchdirs
, nsearch
* sizeof (char *));
9583 * We need to make sure to process -O option or call
9584 * dump_path after the -e option has been processed,
9585 * which imports the pool to the namespace if it's
9586 * not in the cachefile.
9588 if (dump_opt
['O']) {
9591 dump_opt
['v'] = verbose
+ 3;
9592 error
= dump_path(argv
[0], argv
[1], NULL
);
9596 if (dump_opt
['r']) {
9597 target_is_spa
= B_FALSE
;
9600 dump_opt
['v'] = verbose
;
9601 error
= dump_path(argv
[0], argv
[1], &object
);
9603 fatal("internal error: %s", strerror(error
));
9607 * import_checkpointed_state makes the assumption that the
9608 * target pool that we pass it is already part of the spa
9609 * namespace. Because of that we need to make sure to call
9610 * it always after the -e option has been processed, which
9611 * imports the pool to the namespace if it's not in the
9614 char *checkpoint_pool
= NULL
;
9615 char *checkpoint_target
= NULL
;
9616 if (dump_opt
['k']) {
9617 checkpoint_pool
= import_checkpointed_state(target
, cfg
,
9618 &checkpoint_target
);
9620 if (checkpoint_target
!= NULL
)
9621 target
= checkpoint_target
;
9629 if (target_pool
!= target
)
9633 if (dump_opt
['k'] && (target_is_spa
|| dump_opt
['R'])) {
9634 ASSERT(checkpoint_pool
!= NULL
);
9635 ASSERT(checkpoint_target
== NULL
);
9637 error
= spa_open(checkpoint_pool
, &spa
, FTAG
);
9639 fatal("Tried to open pool \"%s\" but "
9640 "spa_open() failed with error %d\n",
9641 checkpoint_pool
, error
);
9644 } else if (target_is_spa
|| dump_opt
['R'] || dump_opt
['B'] ||
9646 zdb_set_skip_mmp(target
);
9647 error
= spa_open_rewind(target
, &spa
, FTAG
, policy
,
9651 * If we're missing the log device then
9652 * try opening the pool after clearing the
9655 mutex_enter(&spa_namespace_lock
);
9656 if ((spa
= spa_lookup(target
)) != NULL
&&
9657 spa
->spa_log_state
== SPA_LOG_MISSING
) {
9658 spa
->spa_log_state
= SPA_LOG_CLEAR
;
9661 mutex_exit(&spa_namespace_lock
);
9664 error
= spa_open_rewind(target
, &spa
,
9665 FTAG
, policy
, NULL
);
9668 } else if (strpbrk(target
, "#") != NULL
) {
9670 error
= dsl_pool_hold(target
, FTAG
, &dp
);
9672 fatal("can't dump '%s': %s", target
,
9675 error
= dump_bookmark(dp
, target
, B_TRUE
, verbose
> 1);
9676 dsl_pool_rele(dp
, FTAG
);
9678 fatal("can't dump '%s': %s", target
,
9683 target_pool
= strdup(target
);
9684 if (strpbrk(target
, "/@") != NULL
)
9685 *strpbrk(target_pool
, "/@") = '\0';
9687 zdb_set_skip_mmp(target
);
9689 * If -N was supplied, the user has indicated that
9690 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9691 * we first assume that the dataset string is the
9692 * dataset name. If dmu_objset_hold fails with the
9693 * dataset string, and we have an objset_id, retry the
9694 * lookup with the objsetID.
9696 boolean_t retry
= B_TRUE
;
9698 if (dataset_lookup
== B_TRUE
) {
9700 * Use the supplied id to get the name
9703 error
= spa_open(target_pool
, &spa
, FTAG
);
9705 error
= name_from_objset_id(spa
,
9707 spa_close(spa
, FTAG
);
9713 if (objset_id
> 0 && retry
) {
9714 int err
= dmu_objset_hold(target
, FTAG
,
9717 dataset_lookup
= B_TRUE
;
9721 dmu_objset_rele(os
, FTAG
);
9724 error
= open_objset(target
, FTAG
, &os
);
9727 spa
= dmu_objset_spa(os
);
9731 nvlist_free(policy
);
9734 fatal("can't open '%s': %s", target
, strerror(error
));
9737 * Set the pool failure mode to panic in order to prevent the pool
9738 * from suspending. A suspended I/O will have no way to resume and
9739 * can prevent the zdb(8) command from terminating as expected.
9742 spa
->spa_failmode
= ZIO_FAILURE_MODE_PANIC
;
9746 if (dump_opt
['r']) {
9747 error
= zdb_copy_object(os
, object
, argv
[1]);
9748 } else if (!dump_opt
['R']) {
9749 flagbits
['d'] = ZOR_FLAG_DIRECTORY
;
9750 flagbits
['f'] = ZOR_FLAG_PLAIN_FILE
;
9751 flagbits
['m'] = ZOR_FLAG_SPACE_MAP
;
9752 flagbits
['z'] = ZOR_FLAG_ZAP
;
9753 flagbits
['A'] = ZOR_FLAG_ALL_TYPES
;
9755 if (argc
> 0 && dump_opt
['d']) {
9756 zopt_object_args
= argc
;
9757 zopt_object_ranges
= calloc(zopt_object_args
,
9758 sizeof (zopt_object_range_t
));
9759 for (unsigned i
= 0; i
< zopt_object_args
; i
++) {
9761 const char *msg
= NULL
;
9763 err
= parse_object_range(argv
[i
],
9764 &zopt_object_ranges
[i
], &msg
);
9766 fatal("Bad object or range: '%s': %s\n",
9767 argv
[i
], msg
?: "");
9769 } else if (argc
> 0 && dump_opt
['m']) {
9770 zopt_metaslab_args
= argc
;
9771 zopt_metaslab
= calloc(zopt_metaslab_args
,
9773 for (unsigned i
= 0; i
< zopt_metaslab_args
; i
++) {
9775 zopt_metaslab
[i
] = strtoull(argv
[i
], NULL
, 0);
9776 if (zopt_metaslab
[i
] == 0 && errno
!= 0)
9777 fatal("bad number %s: %s", argv
[i
],
9781 if (dump_opt
['B']) {
9782 dump_backup(target
, objset_id
,
9783 argc
> 0 ? argv
[0] : NULL
);
9784 } else if (os
!= NULL
) {
9786 } else if (zopt_object_args
> 0 && !dump_opt
['m']) {
9787 dump_objset(spa
->spa_meta_objset
);
9792 flagbits
['b'] = ZDB_FLAG_PRINT_BLKPTR
;
9793 flagbits
['c'] = ZDB_FLAG_CHECKSUM
;
9794 flagbits
['d'] = ZDB_FLAG_DECOMPRESS
;
9795 flagbits
['e'] = ZDB_FLAG_BSWAP
;
9796 flagbits
['g'] = ZDB_FLAG_GBH
;
9797 flagbits
['i'] = ZDB_FLAG_INDIRECT
;
9798 flagbits
['r'] = ZDB_FLAG_RAW
;
9799 flagbits
['v'] = ZDB_FLAG_VERBOSE
;
9801 for (int i
= 0; i
< argc
; i
++)
9802 zdb_read_block(argv
[i
], spa
);
9805 if (dump_opt
['k']) {
9806 free(checkpoint_pool
);
9808 free(checkpoint_target
);
9813 zdb_ddt_cleanup(spa
);
9816 close_objset(os
, FTAG
);
9817 } else if (spa
!= NULL
) {
9818 spa_close(spa
, FTAG
);
9821 fuid_table_destroy();
9823 dump_debug_buffer();
9825 if (kernel_init_done
)