2 * BSD 3-Clause New License (https://spdx.org/licenses/BSD-3-Clause.html)
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
7 * 1. Redistributions of source code must retain the above copyright notice,
8 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
14 * 3. Neither the name of the copyright holder nor the names of its
15 * contributors may be used to endorse or promote products derived from this
16 * software without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
32 * Copyright (c) 2016-2018, Klara Inc.
33 * Copyright (c) 2016-2018, Allan Jude
34 * Copyright (c) 2018-2020, Sebastian Gottschall
35 * Copyright (c) 2019-2020, Michael Niewöhner
36 * Copyright (c) 2020, The FreeBSD Foundation [1]
38 * [1] Portions of this software were developed by Allan Jude
39 * under sponsorship from the FreeBSD Foundation.
42 #include <sys/param.h>
43 #include <sys/sysmacros.h>
44 #include <sys/zfs_context.h>
45 #include <sys/zio_compress.h>
47 #include <sys/zstd/zstd.h>
49 #define ZSTD_STATIC_LINKING_ONLY
51 #include "lib/common/zstd_errors.h"
53 static kstat_t
*zstd_ksp
= NULL
;
55 typedef struct zstd_stats
{
56 kstat_named_t zstd_stat_alloc_fail
;
57 kstat_named_t zstd_stat_alloc_fallback
;
58 kstat_named_t zstd_stat_com_alloc_fail
;
59 kstat_named_t zstd_stat_dec_alloc_fail
;
60 kstat_named_t zstd_stat_com_inval
;
61 kstat_named_t zstd_stat_dec_inval
;
62 kstat_named_t zstd_stat_dec_header_inval
;
63 kstat_named_t zstd_stat_com_fail
;
64 kstat_named_t zstd_stat_dec_fail
;
65 kstat_named_t zstd_stat_buffers
;
66 kstat_named_t zstd_stat_size
;
69 static zstd_stats_t zstd_stats
= {
70 { "alloc_fail", KSTAT_DATA_UINT64
},
71 { "alloc_fallback", KSTAT_DATA_UINT64
},
72 { "compress_alloc_fail", KSTAT_DATA_UINT64
},
73 { "decompress_alloc_fail", KSTAT_DATA_UINT64
},
74 { "compress_level_invalid", KSTAT_DATA_UINT64
},
75 { "decompress_level_invalid", KSTAT_DATA_UINT64
},
76 { "decompress_header_invalid", KSTAT_DATA_UINT64
},
77 { "compress_failed", KSTAT_DATA_UINT64
},
78 { "decompress_failed", KSTAT_DATA_UINT64
},
79 { "buffers", KSTAT_DATA_UINT64
},
80 { "size", KSTAT_DATA_UINT64
},
83 /* Enums describing the allocator type specified by kmem_type in zstd_kmem */
85 ZSTD_KMEM_UNKNOWN
= 0,
86 /* Allocation type using kmem_vmalloc */
88 /* Pool based allocation using mempool_alloc */
90 /* Reserved fallback memory for decompression only */
95 /* Structure for pooled memory objects */
103 /* Global structure for handling memory allocations */
105 enum zstd_kmem_type kmem_type
;
107 struct zstd_pool
*pool
;
110 /* Fallback memory structure used for decompression only if memory runs out */
111 struct zstd_fallback_mem
{
117 struct zstd_levelmap
{
119 enum zio_zstd_levels level
;
123 * ZSTD memory handlers
125 * For decompression we use a different handler which also provides fallback
126 * memory allocation in case memory runs out.
128 * The ZSTD handlers were split up for the most simplified implementation.
130 static void *zstd_alloc(void *opaque
, size_t size
);
131 static void *zstd_dctx_alloc(void *opaque
, size_t size
);
132 static void zstd_free(void *opaque
, void *ptr
);
134 /* Compression memory handler */
135 static const ZSTD_customMem zstd_malloc
= {
141 /* Decompression memory handler */
142 static const ZSTD_customMem zstd_dctx_malloc
= {
148 /* Level map for converting ZFS internal levels to ZSTD levels and vice versa */
149 static struct zstd_levelmap zstd_levels
[] = {
150 {ZIO_ZSTD_LEVEL_1
, ZIO_ZSTD_LEVEL_1
},
151 {ZIO_ZSTD_LEVEL_2
, ZIO_ZSTD_LEVEL_2
},
152 {ZIO_ZSTD_LEVEL_3
, ZIO_ZSTD_LEVEL_3
},
153 {ZIO_ZSTD_LEVEL_4
, ZIO_ZSTD_LEVEL_4
},
154 {ZIO_ZSTD_LEVEL_5
, ZIO_ZSTD_LEVEL_5
},
155 {ZIO_ZSTD_LEVEL_6
, ZIO_ZSTD_LEVEL_6
},
156 {ZIO_ZSTD_LEVEL_7
, ZIO_ZSTD_LEVEL_7
},
157 {ZIO_ZSTD_LEVEL_8
, ZIO_ZSTD_LEVEL_8
},
158 {ZIO_ZSTD_LEVEL_9
, ZIO_ZSTD_LEVEL_9
},
159 {ZIO_ZSTD_LEVEL_10
, ZIO_ZSTD_LEVEL_10
},
160 {ZIO_ZSTD_LEVEL_11
, ZIO_ZSTD_LEVEL_11
},
161 {ZIO_ZSTD_LEVEL_12
, ZIO_ZSTD_LEVEL_12
},
162 {ZIO_ZSTD_LEVEL_13
, ZIO_ZSTD_LEVEL_13
},
163 {ZIO_ZSTD_LEVEL_14
, ZIO_ZSTD_LEVEL_14
},
164 {ZIO_ZSTD_LEVEL_15
, ZIO_ZSTD_LEVEL_15
},
165 {ZIO_ZSTD_LEVEL_16
, ZIO_ZSTD_LEVEL_16
},
166 {ZIO_ZSTD_LEVEL_17
, ZIO_ZSTD_LEVEL_17
},
167 {ZIO_ZSTD_LEVEL_18
, ZIO_ZSTD_LEVEL_18
},
168 {ZIO_ZSTD_LEVEL_19
, ZIO_ZSTD_LEVEL_19
},
169 {-1, ZIO_ZSTD_LEVEL_FAST_1
},
170 {-2, ZIO_ZSTD_LEVEL_FAST_2
},
171 {-3, ZIO_ZSTD_LEVEL_FAST_3
},
172 {-4, ZIO_ZSTD_LEVEL_FAST_4
},
173 {-5, ZIO_ZSTD_LEVEL_FAST_5
},
174 {-6, ZIO_ZSTD_LEVEL_FAST_6
},
175 {-7, ZIO_ZSTD_LEVEL_FAST_7
},
176 {-8, ZIO_ZSTD_LEVEL_FAST_8
},
177 {-9, ZIO_ZSTD_LEVEL_FAST_9
},
178 {-10, ZIO_ZSTD_LEVEL_FAST_10
},
179 {-20, ZIO_ZSTD_LEVEL_FAST_20
},
180 {-30, ZIO_ZSTD_LEVEL_FAST_30
},
181 {-40, ZIO_ZSTD_LEVEL_FAST_40
},
182 {-50, ZIO_ZSTD_LEVEL_FAST_50
},
183 {-60, ZIO_ZSTD_LEVEL_FAST_60
},
184 {-70, ZIO_ZSTD_LEVEL_FAST_70
},
185 {-80, ZIO_ZSTD_LEVEL_FAST_80
},
186 {-90, ZIO_ZSTD_LEVEL_FAST_90
},
187 {-100, ZIO_ZSTD_LEVEL_FAST_100
},
188 {-500, ZIO_ZSTD_LEVEL_FAST_500
},
189 {-1000, ZIO_ZSTD_LEVEL_FAST_1000
},
193 * This variable represents the maximum count of the pool based on the number
194 * of CPUs plus some buffer. We default to cpu count * 4, see init_zstd.
196 static int pool_count
= 16;
198 #define ZSTD_POOL_MAX pool_count
199 #define ZSTD_POOL_TIMEOUT 60 * 2
201 static struct zstd_fallback_mem zstd_dctx_fallback
;
202 static struct zstd_pool
*zstd_mempool_cctx
;
203 static struct zstd_pool
*zstd_mempool_dctx
;
206 * The library zstd code expects these if ADDRESS_SANITIZER gets defined,
207 * and while ASAN does this, KASAN defines that and does not. So to avoid
208 * changing the external code, we do this.
210 #if defined(ZFS_ASAN_ENABLED)
211 #define ADDRESS_SANITIZER 1
213 #if defined(_KERNEL) && defined(ADDRESS_SANITIZER)
214 void __asan_unpoison_memory_region(void const volatile *addr
, size_t size
);
215 void __asan_poison_memory_region(void const volatile *addr
, size_t size
);
216 void __asan_unpoison_memory_region(void const volatile *addr
, size_t size
) {};
217 void __asan_poison_memory_region(void const volatile *addr
, size_t size
) {};
222 zstd_mempool_reap(struct zstd_pool
*zstd_mempool
)
224 struct zstd_pool
*pool
;
226 if (!zstd_mempool
|| !ZSTDSTAT(zstd_stat_buffers
)) {
230 /* free obsolete slots */
231 for (int i
= 0; i
< ZSTD_POOL_MAX
; i
++) {
232 pool
= &zstd_mempool
[i
];
233 if (pool
->mem
&& mutex_tryenter(&pool
->barrier
)) {
234 /* Free memory if unused object older than 2 minutes */
235 if (pool
->mem
&& gethrestime_sec() > pool
->timeout
) {
236 vmem_free(pool
->mem
, pool
->size
);
237 ZSTDSTAT_SUB(zstd_stat_buffers
, 1);
238 ZSTDSTAT_SUB(zstd_stat_size
, pool
->size
);
243 mutex_exit(&pool
->barrier
);
249 * Try to get a cached allocated buffer from memory pool or allocate a new one
250 * if necessary. If a object is older than 2 minutes and does not fit the
251 * requested size, it will be released and a new cached entry will be allocated.
252 * If other pooled objects are detected without being used for 2 minutes, they
253 * will be released, too.
255 * The concept is that high frequency memory allocations of bigger objects are
256 * expensive. So if a lot of work is going on, allocations will be kept for a
257 * while and can be reused in that time frame.
259 * The scheduled release will be updated every time a object is reused.
263 zstd_mempool_alloc(struct zstd_pool
*zstd_mempool
, size_t size
)
265 struct zstd_pool
*pool
;
266 struct zstd_kmem
*mem
= NULL
;
272 /* Seek for preallocated memory slot and free obsolete slots */
273 for (int i
= 0; i
< ZSTD_POOL_MAX
; i
++) {
274 pool
= &zstd_mempool
[i
];
276 * This lock is simply a marker for a pool object being in use.
277 * If it's already hold, it will be skipped.
279 * We need to create it before checking it to avoid race
280 * conditions caused by running in a threaded context.
282 * The lock is later released by zstd_mempool_free.
284 if (mutex_tryenter(&pool
->barrier
)) {
286 * Check if objects fits the size, if so we take it and
287 * update the timestamp.
289 if (pool
->mem
&& size
<= pool
->size
) {
290 pool
->timeout
= gethrestime_sec() +
295 mutex_exit(&pool
->barrier
);
300 * If no preallocated slot was found, try to fill in a new one.
302 * We run a similar algorithm twice here to avoid pool fragmentation.
303 * The first one may generate holes in the list if objects get released.
304 * We always make sure that these holes get filled instead of adding new
305 * allocations constantly at the end.
307 for (int i
= 0; i
< ZSTD_POOL_MAX
; i
++) {
308 pool
= &zstd_mempool
[i
];
309 if (mutex_tryenter(&pool
->barrier
)) {
310 /* Object is free, try to allocate new one */
312 mem
= vmem_alloc(size
, KM_SLEEP
);
314 ZSTDSTAT_ADD(zstd_stat_buffers
, 1);
315 ZSTDSTAT_ADD(zstd_stat_size
, size
);
318 /* Keep track for later release */
320 mem
->kmem_type
= ZSTD_KMEM_POOL
;
321 mem
->kmem_size
= size
;
325 if (size
<= pool
->size
) {
326 /* Update timestamp */
327 pool
->timeout
= gethrestime_sec() +
333 mutex_exit(&pool
->barrier
);
338 * If the pool is full or the allocation failed, try lazy allocation
342 mem
= vmem_alloc(size
, KM_NOSLEEP
);
345 mem
->kmem_type
= ZSTD_KMEM_DEFAULT
;
346 mem
->kmem_size
= size
;
353 /* Mark object as released by releasing the barrier mutex */
355 zstd_mempool_free(struct zstd_kmem
*z
)
357 mutex_exit(&z
->pool
->barrier
);
360 /* Convert ZFS internal enum to ZSTD level */
362 zstd_enum_to_level(enum zio_zstd_levels level
, int16_t *zstd_level
)
364 if (level
> 0 && level
<= ZIO_ZSTD_LEVEL_19
) {
365 *zstd_level
= zstd_levels
[level
- 1].zstd_level
;
368 if (level
>= ZIO_ZSTD_LEVEL_FAST_1
&&
369 level
<= ZIO_ZSTD_LEVEL_FAST_1000
) {
370 *zstd_level
= zstd_levels
[level
- ZIO_ZSTD_LEVEL_FAST_1
371 + ZIO_ZSTD_LEVEL_19
].zstd_level
;
375 /* Invalid/unknown zfs compression enum - this should never happen. */
380 /* Compress block using zstd */
382 zfs_zstd_compress(void *s_start
, void *d_start
, size_t s_len
, size_t d_len
,
390 hdr
= (zfs_zstdhdr_t
*)d_start
;
392 /* Skip compression if the specified level is invalid */
393 if (zstd_enum_to_level(level
, &zstd_level
)) {
394 ZSTDSTAT_BUMP(zstd_stat_com_inval
);
398 ASSERT3U(d_len
, >=, sizeof (*hdr
));
399 ASSERT3U(d_len
, <=, s_len
);
400 ASSERT3U(zstd_level
, !=, 0);
402 cctx
= ZSTD_createCCtx_advanced(zstd_malloc
);
405 * Out of kernel memory, gently fall through - this will disable
406 * compression in zio_compress_data
409 ZSTDSTAT_BUMP(zstd_stat_com_alloc_fail
);
413 /* Set the compression level */
414 ZSTD_CCtx_setParameter(cctx
, ZSTD_c_compressionLevel
, zstd_level
);
416 /* Use the "magicless" zstd header which saves us 4 header bytes */
417 ZSTD_CCtx_setParameter(cctx
, ZSTD_c_format
, ZSTD_f_zstd1_magicless
);
420 * Disable redundant checksum calculation and content size storage since
421 * this is already done by ZFS itself.
423 ZSTD_CCtx_setParameter(cctx
, ZSTD_c_checksumFlag
, 0);
424 ZSTD_CCtx_setParameter(cctx
, ZSTD_c_contentSizeFlag
, 0);
426 c_len
= ZSTD_compress2(cctx
,
428 d_len
- sizeof (*hdr
),
433 /* Error in the compression routine, disable compression. */
434 if (ZSTD_isError(c_len
)) {
436 * If we are aborting the compression because the saves are
437 * too small, that is not a failure. Everything else is a
438 * failure, so increment the compression failure counter.
440 if (ZSTD_getErrorCode(c_len
) != ZSTD_error_dstSize_tooSmall
) {
441 ZSTDSTAT_BUMP(zstd_stat_com_fail
);
447 * Encode the compressed buffer size at the start. We'll need this in
448 * decompression to counter the effects of padding which might be added
449 * to the compressed buffer and which, if unhandled, would confuse the
450 * hell out of our decompression function.
452 hdr
->c_len
= BE_32(c_len
);
455 * Check version for overflow.
456 * The limit of 24 bits must not be exceeded. This allows a maximum
457 * version 1677.72.15 which we don't expect to be ever reached.
459 ASSERT3U(ZSTD_VERSION_NUMBER
, <=, 0xFFFFFF);
462 * Encode the compression level as well. We may need to know the
463 * original compression level if compressed_arc is disabled, to match
464 * the compression settings to write this block to the L2ARC.
466 * Encode the actual level, so if the enum changes in the future, we
467 * will be compatible.
469 * The upper 24 bits store the ZSTD version to be able to provide
470 * future compatibility, since new versions might enhance the
471 * compression algorithm in a way, where the compressed data will
474 * As soon as such incompatibility occurs, handling code needs to be
475 * added, differentiating between the versions.
477 zfs_set_hdrversion(hdr
, ZSTD_VERSION_NUMBER
);
478 zfs_set_hdrlevel(hdr
, level
);
479 hdr
->raw_version_level
= BE_32(hdr
->raw_version_level
);
481 return (c_len
+ sizeof (*hdr
));
484 /* Decompress block using zstd and return its stored level */
486 zfs_zstd_decompress_level(void *s_start
, void *d_start
, size_t s_len
,
487 size_t d_len
, uint8_t *level
)
493 const zfs_zstdhdr_t
*hdr
;
494 zfs_zstdhdr_t hdr_copy
;
496 hdr
= (const zfs_zstdhdr_t
*)s_start
;
497 c_len
= BE_32(hdr
->c_len
);
500 * Make a copy instead of directly converting the header, since we must
501 * not modify the original data that may be used again later.
503 hdr_copy
.raw_version_level
= BE_32(hdr
->raw_version_level
);
504 uint8_t curlevel
= zfs_get_hdrlevel(&hdr_copy
);
507 * NOTE: We ignore the ZSTD version for now. As soon as any
508 * incompatibility occurs, it has to be handled accordingly.
509 * The version can be accessed via `hdr_copy.version`.
513 * Convert and check the level
514 * An invalid level is a strong indicator for data corruption! In such
515 * case return an error so the upper layers can try to fix it.
517 if (zstd_enum_to_level(curlevel
, &zstd_level
)) {
518 ZSTDSTAT_BUMP(zstd_stat_dec_inval
);
522 ASSERT3U(d_len
, >=, s_len
);
523 ASSERT3U(curlevel
, !=, ZIO_COMPLEVEL_INHERIT
);
525 /* Invalid compressed buffer size encoded at start */
526 if (c_len
+ sizeof (*hdr
) > s_len
) {
527 ZSTDSTAT_BUMP(zstd_stat_dec_header_inval
);
531 dctx
= ZSTD_createDCtx_advanced(zstd_dctx_malloc
);
533 ZSTDSTAT_BUMP(zstd_stat_dec_alloc_fail
);
537 /* Set header type to "magicless" */
538 ZSTD_DCtx_setParameter(dctx
, ZSTD_d_format
, ZSTD_f_zstd1_magicless
);
540 /* Decompress the data and release the context */
541 result
= ZSTD_decompressDCtx(dctx
, d_start
, d_len
, hdr
->data
, c_len
);
545 * Returns 0 on success (decompression function returned non-negative)
546 * and non-zero on failure (decompression function returned negative.
548 if (ZSTD_isError(result
)) {
549 ZSTDSTAT_BUMP(zstd_stat_dec_fail
);
560 /* Decompress datablock using zstd */
562 zfs_zstd_decompress(void *s_start
, void *d_start
, size_t s_len
, size_t d_len
,
563 int level __maybe_unused
)
566 return (zfs_zstd_decompress_level(s_start
, d_start
, s_len
, d_len
,
570 /* Allocator for zstd compression context using mempool_allocator */
572 zstd_alloc(void *opaque __maybe_unused
, size_t size
)
574 size_t nbytes
= sizeof (struct zstd_kmem
) + size
;
575 struct zstd_kmem
*z
= NULL
;
577 z
= (struct zstd_kmem
*)zstd_mempool_alloc(zstd_mempool_cctx
, nbytes
);
580 ZSTDSTAT_BUMP(zstd_stat_alloc_fail
);
584 return ((void*)z
+ (sizeof (struct zstd_kmem
)));
588 * Allocator for zstd decompression context using mempool_allocator with
589 * fallback to reserved memory if allocation fails
592 zstd_dctx_alloc(void *opaque __maybe_unused
, size_t size
)
594 size_t nbytes
= sizeof (struct zstd_kmem
) + size
;
595 struct zstd_kmem
*z
= NULL
;
596 enum zstd_kmem_type type
= ZSTD_KMEM_DEFAULT
;
598 z
= (struct zstd_kmem
*)zstd_mempool_alloc(zstd_mempool_dctx
, nbytes
);
600 /* Try harder, decompression shall not fail */
601 z
= vmem_alloc(nbytes
, KM_SLEEP
);
605 ZSTDSTAT_BUMP(zstd_stat_alloc_fail
);
607 return ((void*)z
+ (sizeof (struct zstd_kmem
)));
610 /* Fallback if everything fails */
613 * Barrier since we only can handle it in a single thread. All
614 * other following threads need to wait here until decompression
615 * is completed. zstd_free will release this barrier later.
617 mutex_enter(&zstd_dctx_fallback
.barrier
);
619 z
= zstd_dctx_fallback
.mem
;
620 type
= ZSTD_KMEM_DCTX
;
621 ZSTDSTAT_BUMP(zstd_stat_alloc_fallback
);
624 /* Allocation should always be successful */
630 z
->kmem_size
= nbytes
;
632 return ((void*)z
+ (sizeof (struct zstd_kmem
)));
635 /* Free allocated memory by its specific type */
637 zstd_free(void *opaque __maybe_unused
, void *ptr
)
639 struct zstd_kmem
*z
= (ptr
- sizeof (struct zstd_kmem
));
640 enum zstd_kmem_type type
;
642 ASSERT3U(z
->kmem_type
, <, ZSTD_KMEM_COUNT
);
643 ASSERT3U(z
->kmem_type
, >, ZSTD_KMEM_UNKNOWN
);
647 case ZSTD_KMEM_DEFAULT
:
648 vmem_free(z
, z
->kmem_size
);
651 zstd_mempool_free(z
);
654 mutex_exit(&zstd_dctx_fallback
.barrier
);
661 /* Allocate fallback memory to ensure safe decompression */
663 create_fallback_mem(struct zstd_fallback_mem
*mem
, size_t size
)
665 mem
->mem_size
= size
;
666 mem
->mem
= vmem_zalloc(mem
->mem_size
, KM_SLEEP
);
667 mutex_init(&mem
->barrier
, NULL
, MUTEX_DEFAULT
, NULL
);
670 /* Initialize memory pool barrier mutexes */
672 zstd_mempool_init(void)
674 zstd_mempool_cctx
= (struct zstd_pool
*)
675 kmem_zalloc(ZSTD_POOL_MAX
* sizeof (struct zstd_pool
), KM_SLEEP
);
676 zstd_mempool_dctx
= (struct zstd_pool
*)
677 kmem_zalloc(ZSTD_POOL_MAX
* sizeof (struct zstd_pool
), KM_SLEEP
);
679 for (int i
= 0; i
< ZSTD_POOL_MAX
; i
++) {
680 mutex_init(&zstd_mempool_cctx
[i
].barrier
, NULL
,
681 MUTEX_DEFAULT
, NULL
);
682 mutex_init(&zstd_mempool_dctx
[i
].barrier
, NULL
,
683 MUTEX_DEFAULT
, NULL
);
687 /* Initialize zstd-related memory handling */
694 * Estimate the size of the fallback decompression context.
695 * The expected size on x64 with current ZSTD should be about 160 KB.
697 create_fallback_mem(&zstd_dctx_fallback
,
698 P2ROUNDUP(ZSTD_estimateDCtxSize() + sizeof (struct zstd_kmem
),
704 /* Release object from pool and free memory */
706 release_pool(struct zstd_pool
*pool
)
708 mutex_destroy(&pool
->barrier
);
709 vmem_free(pool
->mem
, pool
->size
);
714 /* Release memory pool objects */
716 zstd_mempool_deinit(void)
718 for (int i
= 0; i
< ZSTD_POOL_MAX
; i
++) {
719 release_pool(&zstd_mempool_cctx
[i
]);
720 release_pool(&zstd_mempool_dctx
[i
]);
723 kmem_free(zstd_mempool_dctx
, ZSTD_POOL_MAX
* sizeof (struct zstd_pool
));
724 kmem_free(zstd_mempool_cctx
, ZSTD_POOL_MAX
* sizeof (struct zstd_pool
));
725 zstd_mempool_dctx
= NULL
;
726 zstd_mempool_cctx
= NULL
;
729 /* release unused memory from pool */
732 zfs_zstd_cache_reap_now(void)
735 * calling alloc with zero size seeks
736 * and releases old unused objects
738 zstd_mempool_reap(zstd_mempool_cctx
);
739 zstd_mempool_reap(zstd_mempool_dctx
);
745 /* Set pool size by using maximum sane thread count * 4 */
746 pool_count
= (boot_ncpus
* 4);
749 /* Initialize kstat */
750 zstd_ksp
= kstat_create("zfs", 0, "zstd", "misc",
751 KSTAT_TYPE_NAMED
, sizeof (zstd_stats
) / sizeof (kstat_named_t
),
753 if (zstd_ksp
!= NULL
) {
754 zstd_ksp
->ks_data
= &zstd_stats
;
755 kstat_install(zstd_ksp
);
764 /* Deinitialize kstat */
765 if (zstd_ksp
!= NULL
) {
766 kstat_delete(zstd_ksp
);
770 /* Release fallback memory */
771 vmem_free(zstd_dctx_fallback
.mem
, zstd_dctx_fallback
.mem_size
);
772 mutex_destroy(&zstd_dctx_fallback
.barrier
);
774 /* Deinit memory pool */
775 zstd_mempool_deinit();
780 module_init(zstd_init
);
781 module_exit(zstd_fini
);
784 EXPORT_SYMBOL(zfs_zstd_compress
);
785 EXPORT_SYMBOL(zfs_zstd_decompress_level
);
786 EXPORT_SYMBOL(zfs_zstd_decompress
);
787 EXPORT_SYMBOL(zfs_zstd_cache_reap_now
);