2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
26 #include <sys/kmem_cache.h>
27 #include <sys/shrinker.h>
28 #include <sys/taskq.h>
29 #include <sys/timer.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/prefetch.h>
37 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
38 * are removed to allow access to the real Linux slab allocator.
40 #undef kmem_cache_destroy
41 #undef kmem_cache_create
42 #undef kmem_cache_alloc
43 #undef kmem_cache_free
47 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
48 * with smp_mb__{before,after}_atomic() because they were redundant. This is
49 * only used inside our SLAB allocator, so we implement an internal wrapper
50 * here to give us smp_mb__{before,after}_atomic() on older kernels.
52 #ifndef smp_mb__before_atomic
53 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
56 #ifndef smp_mb__after_atomic
57 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
61 * Cache expiration was implemented because it was part of the default Solaris
62 * kmem_cache behavior. The idea is that per-cpu objects which haven't been
63 * accessed in several seconds should be returned to the cache. On the other
64 * hand Linux slabs never move objects back to the slabs unless there is
65 * memory pressure on the system. By default the Linux method is enabled
66 * because it has been shown to improve responsiveness on low memory systems.
67 * This policy may be changed by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
70 unsigned int spl_kmem_cache_expire
= KMC_EXPIRE_MEM
;
71 EXPORT_SYMBOL(spl_kmem_cache_expire
);
72 module_param(spl_kmem_cache_expire
, uint
, 0644);
73 MODULE_PARM_DESC(spl_kmem_cache_expire
, "By age (0x1) or low memory (0x2)");
76 * Cache magazines are an optimization designed to minimize the cost of
77 * allocating memory. They do this by keeping a per-cpu cache of recently
78 * freed objects, which can then be reallocated without taking a lock. This
79 * can improve performance on highly contended caches. However, because
80 * objects in magazines will prevent otherwise empty slabs from being
81 * immediately released this may not be ideal for low memory machines.
83 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
84 * magazine size. When this value is set to 0 the magazine size will be
85 * automatically determined based on the object size. Otherwise magazines
86 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
87 * may never be entirely disabled in this implementation.
89 unsigned int spl_kmem_cache_magazine_size
= 0;
90 module_param(spl_kmem_cache_magazine_size
, uint
, 0444);
91 MODULE_PARM_DESC(spl_kmem_cache_magazine_size
,
92 "Default magazine size (2-256), set automatically (0)");
95 * The default behavior is to report the number of objects remaining in the
96 * cache. This allows the Linux VM to repeatedly reclaim objects from the
97 * cache when memory is low satisfy other memory allocations. Alternately,
98 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
99 * is reclaimed. This may increase the likelihood of out of memory events.
101 unsigned int spl_kmem_cache_reclaim
= 0 /* KMC_RECLAIM_ONCE */;
102 module_param(spl_kmem_cache_reclaim
, uint
, 0644);
103 MODULE_PARM_DESC(spl_kmem_cache_reclaim
, "Single reclaim pass (0x1)");
105 unsigned int spl_kmem_cache_obj_per_slab
= SPL_KMEM_CACHE_OBJ_PER_SLAB
;
106 module_param(spl_kmem_cache_obj_per_slab
, uint
, 0644);
107 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab
, "Number of objects per slab");
109 unsigned int spl_kmem_cache_obj_per_slab_min
= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN
;
110 module_param(spl_kmem_cache_obj_per_slab_min
, uint
, 0644);
111 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab_min
,
112 "Minimal number of objects per slab");
114 unsigned int spl_kmem_cache_max_size
= SPL_KMEM_CACHE_MAX_SIZE
;
115 module_param(spl_kmem_cache_max_size
, uint
, 0644);
116 MODULE_PARM_DESC(spl_kmem_cache_max_size
, "Maximum size of slab in MB");
119 * For small objects the Linux slab allocator should be used to make the most
120 * efficient use of the memory. However, large objects are not supported by
121 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
122 * of 16K was determined to be optimal for architectures using 4K pages.
124 #if PAGE_SIZE == 4096
125 unsigned int spl_kmem_cache_slab_limit
= 16384;
127 unsigned int spl_kmem_cache_slab_limit
= 0;
129 module_param(spl_kmem_cache_slab_limit
, uint
, 0644);
130 MODULE_PARM_DESC(spl_kmem_cache_slab_limit
,
131 "Objects less than N bytes use the Linux slab");
134 * This value defaults to a threshold designed to avoid allocations which
135 * have been deemed costly by the kernel.
137 unsigned int spl_kmem_cache_kmem_limit
=
138 ((1 << (PAGE_ALLOC_COSTLY_ORDER
- 1)) * PAGE_SIZE
) /
139 SPL_KMEM_CACHE_OBJ_PER_SLAB
;
140 module_param(spl_kmem_cache_kmem_limit
, uint
, 0644);
141 MODULE_PARM_DESC(spl_kmem_cache_kmem_limit
,
142 "Objects less than N bytes use the kmalloc");
145 * The number of threads available to allocate new slabs for caches. This
146 * should not need to be tuned but it is available for performance analysis.
148 unsigned int spl_kmem_cache_kmem_threads
= 4;
149 module_param(spl_kmem_cache_kmem_threads
, uint
, 0444);
150 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads
,
151 "Number of spl_kmem_cache threads");
155 * Slab allocation interfaces
157 * While the Linux slab implementation was inspired by the Solaris
158 * implementation I cannot use it to emulate the Solaris APIs. I
159 * require two features which are not provided by the Linux slab.
161 * 1) Constructors AND destructors. Recent versions of the Linux
162 * kernel have removed support for destructors. This is a deal
163 * breaker for the SPL which contains particularly expensive
164 * initializers for mutex's, condition variables, etc. We also
165 * require a minimal level of cleanup for these data types unlike
166 * many Linux data types which do need to be explicitly destroyed.
168 * 2) Virtual address space backed slab. Callers of the Solaris slab
169 * expect it to work well for both small are very large allocations.
170 * Because of memory fragmentation the Linux slab which is backed
171 * by kmalloc'ed memory performs very badly when confronted with
172 * large numbers of large allocations. Basing the slab on the
173 * virtual address space removes the need for contiguous pages
174 * and greatly improve performance for large allocations.
176 * For these reasons, the SPL has its own slab implementation with
177 * the needed features. It is not as highly optimized as either the
178 * Solaris or Linux slabs, but it should get me most of what is
179 * needed until it can be optimized or obsoleted by another approach.
181 * One serious concern I do have about this method is the relatively
182 * small virtual address space on 32bit arches. This will seriously
183 * constrain the size of the slab caches and their performance.
186 struct list_head spl_kmem_cache_list
; /* List of caches */
187 struct rw_semaphore spl_kmem_cache_sem
; /* Cache list lock */
188 taskq_t
*spl_kmem_cache_taskq
; /* Task queue for ageing / reclaim */
190 static void spl_cache_shrink(spl_kmem_cache_t
*skc
, void *obj
);
192 SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker
);
193 SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker
,
194 spl_kmem_cache_generic_shrinker
, KMC_DEFAULT_SEEKS
);
197 kv_alloc(spl_kmem_cache_t
*skc
, int size
, int flags
)
199 gfp_t lflags
= kmem_flags_convert(flags
);
202 if (skc
->skc_flags
& KMC_KMEM
) {
204 ptr
= (void *)__get_free_pages(lflags
, get_order(size
));
206 ptr
= __vmalloc(size
, lflags
| __GFP_HIGHMEM
, PAGE_KERNEL
);
209 /* Resulting allocated memory will be page aligned */
210 ASSERT(IS_P2ALIGNED(ptr
, PAGE_SIZE
));
216 kv_free(spl_kmem_cache_t
*skc
, void *ptr
, int size
)
218 ASSERT(IS_P2ALIGNED(ptr
, PAGE_SIZE
));
221 * The Linux direct reclaim path uses this out of band value to
222 * determine if forward progress is being made. Normally this is
223 * incremented by kmem_freepages() which is part of the various
224 * Linux slab implementations. However, since we are using none
225 * of that infrastructure we are responsible for incrementing it.
227 if (current
->reclaim_state
)
228 current
->reclaim_state
->reclaimed_slab
+= size
>> PAGE_SHIFT
;
230 if (skc
->skc_flags
& KMC_KMEM
) {
232 free_pages((unsigned long)ptr
, get_order(size
));
239 * Required space for each aligned sks.
241 static inline uint32_t
242 spl_sks_size(spl_kmem_cache_t
*skc
)
244 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t
),
245 skc
->skc_obj_align
, uint32_t));
249 * Required space for each aligned object.
251 static inline uint32_t
252 spl_obj_size(spl_kmem_cache_t
*skc
)
254 uint32_t align
= skc
->skc_obj_align
;
256 return (P2ROUNDUP_TYPED(skc
->skc_obj_size
, align
, uint32_t) +
257 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t
), align
, uint32_t));
261 * Lookup the spl_kmem_object_t for an object given that object.
263 static inline spl_kmem_obj_t
*
264 spl_sko_from_obj(spl_kmem_cache_t
*skc
, void *obj
)
266 return (obj
+ P2ROUNDUP_TYPED(skc
->skc_obj_size
,
267 skc
->skc_obj_align
, uint32_t));
271 * Required space for each offslab object taking in to account alignment
272 * restrictions and the power-of-two requirement of kv_alloc().
274 static inline uint32_t
275 spl_offslab_size(spl_kmem_cache_t
*skc
)
277 return (1UL << (fls64(spl_obj_size(skc
)) + 1));
281 * It's important that we pack the spl_kmem_obj_t structure and the
282 * actual objects in to one large address space to minimize the number
283 * of calls to the allocator. It is far better to do a few large
284 * allocations and then subdivide it ourselves. Now which allocator
285 * we use requires balancing a few trade offs.
287 * For small objects we use kmem_alloc() because as long as you are
288 * only requesting a small number of pages (ideally just one) its cheap.
289 * However, when you start requesting multiple pages with kmem_alloc()
290 * it gets increasingly expensive since it requires contiguous pages.
291 * For this reason we shift to vmem_alloc() for slabs of large objects
292 * which removes the need for contiguous pages. We do not use
293 * vmem_alloc() in all cases because there is significant locking
294 * overhead in __get_vm_area_node(). This function takes a single
295 * global lock when acquiring an available virtual address range which
296 * serializes all vmem_alloc()'s for all slab caches. Using slightly
297 * different allocation functions for small and large objects should
298 * give us the best of both worlds.
300 * KMC_ONSLAB KMC_OFFSLAB
302 * +------------------------+ +-----------------+
303 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
304 * | skc_obj_size <-+ | | +-----------------+ | |
305 * | spl_kmem_obj_t | | | |
306 * | skc_obj_size <---+ | +-----------------+ | |
307 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
308 * | ... v | | spl_kmem_obj_t | |
309 * +------------------------+ +-----------------+ v
311 static spl_kmem_slab_t
*
312 spl_slab_alloc(spl_kmem_cache_t
*skc
, int flags
)
314 spl_kmem_slab_t
*sks
;
315 spl_kmem_obj_t
*sko
, *n
;
317 uint32_t obj_size
, offslab_size
= 0;
320 base
= kv_alloc(skc
, skc
->skc_slab_size
, flags
);
324 sks
= (spl_kmem_slab_t
*)base
;
325 sks
->sks_magic
= SKS_MAGIC
;
326 sks
->sks_objs
= skc
->skc_slab_objs
;
327 sks
->sks_age
= jiffies
;
328 sks
->sks_cache
= skc
;
329 INIT_LIST_HEAD(&sks
->sks_list
);
330 INIT_LIST_HEAD(&sks
->sks_free_list
);
332 obj_size
= spl_obj_size(skc
);
334 if (skc
->skc_flags
& KMC_OFFSLAB
)
335 offslab_size
= spl_offslab_size(skc
);
337 for (i
= 0; i
< sks
->sks_objs
; i
++) {
338 if (skc
->skc_flags
& KMC_OFFSLAB
) {
339 obj
= kv_alloc(skc
, offslab_size
, flags
);
345 obj
= base
+ spl_sks_size(skc
) + (i
* obj_size
);
348 ASSERT(IS_P2ALIGNED(obj
, skc
->skc_obj_align
));
349 sko
= spl_sko_from_obj(skc
, obj
);
351 sko
->sko_magic
= SKO_MAGIC
;
353 INIT_LIST_HEAD(&sko
->sko_list
);
354 list_add_tail(&sko
->sko_list
, &sks
->sks_free_list
);
359 if (skc
->skc_flags
& KMC_OFFSLAB
)
360 list_for_each_entry_safe(sko
,
361 n
, &sks
->sks_free_list
, sko_list
) {
362 kv_free(skc
, sko
->sko_addr
, offslab_size
);
365 kv_free(skc
, base
, skc
->skc_slab_size
);
373 * Remove a slab from complete or partial list, it must be called with
374 * the 'skc->skc_lock' held but the actual free must be performed
375 * outside the lock to prevent deadlocking on vmem addresses.
378 spl_slab_free(spl_kmem_slab_t
*sks
,
379 struct list_head
*sks_list
, struct list_head
*sko_list
)
381 spl_kmem_cache_t
*skc
;
383 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
384 ASSERT(sks
->sks_ref
== 0);
386 skc
= sks
->sks_cache
;
387 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
390 * Update slab/objects counters in the cache, then remove the
391 * slab from the skc->skc_partial_list. Finally add the slab
392 * and all its objects in to the private work lists where the
393 * destructors will be called and the memory freed to the system.
395 skc
->skc_obj_total
-= sks
->sks_objs
;
396 skc
->skc_slab_total
--;
397 list_del(&sks
->sks_list
);
398 list_add(&sks
->sks_list
, sks_list
);
399 list_splice_init(&sks
->sks_free_list
, sko_list
);
403 * Reclaim empty slabs at the end of the partial list.
406 spl_slab_reclaim(spl_kmem_cache_t
*skc
)
408 spl_kmem_slab_t
*sks
, *m
;
409 spl_kmem_obj_t
*sko
, *n
;
415 * Empty slabs and objects must be moved to a private list so they
416 * can be safely freed outside the spin lock. All empty slabs are
417 * at the end of skc->skc_partial_list, therefore once a non-empty
418 * slab is found we can stop scanning.
420 spin_lock(&skc
->skc_lock
);
421 list_for_each_entry_safe_reverse(sks
, m
,
422 &skc
->skc_partial_list
, sks_list
) {
424 if (sks
->sks_ref
> 0)
427 spl_slab_free(sks
, &sks_list
, &sko_list
);
429 spin_unlock(&skc
->skc_lock
);
432 * The following two loops ensure all the object destructors are
433 * run, any offslab objects are freed, and the slabs themselves
434 * are freed. This is all done outside the skc->skc_lock since
435 * this allows the destructor to sleep, and allows us to perform
436 * a conditional reschedule when a freeing a large number of
437 * objects and slabs back to the system.
439 if (skc
->skc_flags
& KMC_OFFSLAB
)
440 size
= spl_offslab_size(skc
);
442 list_for_each_entry_safe(sko
, n
, &sko_list
, sko_list
) {
443 ASSERT(sko
->sko_magic
== SKO_MAGIC
);
445 if (skc
->skc_flags
& KMC_OFFSLAB
)
446 kv_free(skc
, sko
->sko_addr
, size
);
449 list_for_each_entry_safe(sks
, m
, &sks_list
, sks_list
) {
450 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
451 kv_free(skc
, sks
, skc
->skc_slab_size
);
455 static spl_kmem_emergency_t
*
456 spl_emergency_search(struct rb_root
*root
, void *obj
)
458 struct rb_node
*node
= root
->rb_node
;
459 spl_kmem_emergency_t
*ske
;
460 unsigned long address
= (unsigned long)obj
;
463 ske
= container_of(node
, spl_kmem_emergency_t
, ske_node
);
465 if (address
< ske
->ske_obj
)
466 node
= node
->rb_left
;
467 else if (address
> ske
->ske_obj
)
468 node
= node
->rb_right
;
477 spl_emergency_insert(struct rb_root
*root
, spl_kmem_emergency_t
*ske
)
479 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
480 spl_kmem_emergency_t
*ske_tmp
;
481 unsigned long address
= ske
->ske_obj
;
484 ske_tmp
= container_of(*new, spl_kmem_emergency_t
, ske_node
);
487 if (address
< ske_tmp
->ske_obj
)
488 new = &((*new)->rb_left
);
489 else if (address
> ske_tmp
->ske_obj
)
490 new = &((*new)->rb_right
);
495 rb_link_node(&ske
->ske_node
, parent
, new);
496 rb_insert_color(&ske
->ske_node
, root
);
502 * Allocate a single emergency object and track it in a red black tree.
505 spl_emergency_alloc(spl_kmem_cache_t
*skc
, int flags
, void **obj
)
507 gfp_t lflags
= kmem_flags_convert(flags
);
508 spl_kmem_emergency_t
*ske
;
509 int order
= get_order(skc
->skc_obj_size
);
512 /* Last chance use a partial slab if one now exists */
513 spin_lock(&skc
->skc_lock
);
514 empty
= list_empty(&skc
->skc_partial_list
);
515 spin_unlock(&skc
->skc_lock
);
519 ske
= kmalloc(sizeof (*ske
), lflags
);
523 ske
->ske_obj
= __get_free_pages(lflags
, order
);
524 if (ske
->ske_obj
== 0) {
529 spin_lock(&skc
->skc_lock
);
530 empty
= spl_emergency_insert(&skc
->skc_emergency_tree
, ske
);
532 skc
->skc_obj_total
++;
533 skc
->skc_obj_emergency
++;
534 if (skc
->skc_obj_emergency
> skc
->skc_obj_emergency_max
)
535 skc
->skc_obj_emergency_max
= skc
->skc_obj_emergency
;
537 spin_unlock(&skc
->skc_lock
);
539 if (unlikely(!empty
)) {
540 free_pages(ske
->ske_obj
, order
);
545 *obj
= (void *)ske
->ske_obj
;
551 * Locate the passed object in the red black tree and free it.
554 spl_emergency_free(spl_kmem_cache_t
*skc
, void *obj
)
556 spl_kmem_emergency_t
*ske
;
557 int order
= get_order(skc
->skc_obj_size
);
559 spin_lock(&skc
->skc_lock
);
560 ske
= spl_emergency_search(&skc
->skc_emergency_tree
, obj
);
562 rb_erase(&ske
->ske_node
, &skc
->skc_emergency_tree
);
563 skc
->skc_obj_emergency
--;
564 skc
->skc_obj_total
--;
566 spin_unlock(&skc
->skc_lock
);
571 free_pages(ske
->ske_obj
, order
);
578 * Release objects from the per-cpu magazine back to their slab. The flush
579 * argument contains the max number of entries to remove from the magazine.
582 __spl_cache_flush(spl_kmem_cache_t
*skc
, spl_kmem_magazine_t
*skm
, int flush
)
584 int i
, count
= MIN(flush
, skm
->skm_avail
);
586 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
587 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
589 for (i
= 0; i
< count
; i
++)
590 spl_cache_shrink(skc
, skm
->skm_objs
[i
]);
592 skm
->skm_avail
-= count
;
593 memmove(skm
->skm_objs
, &(skm
->skm_objs
[count
]),
594 sizeof (void *) * skm
->skm_avail
);
598 spl_cache_flush(spl_kmem_cache_t
*skc
, spl_kmem_magazine_t
*skm
, int flush
)
600 spin_lock(&skc
->skc_lock
);
601 __spl_cache_flush(skc
, skm
, flush
);
602 spin_unlock(&skc
->skc_lock
);
606 spl_magazine_age(void *data
)
608 spl_kmem_cache_t
*skc
= (spl_kmem_cache_t
*)data
;
609 spl_kmem_magazine_t
*skm
= skc
->skc_mag
[smp_processor_id()];
611 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
612 ASSERT(skm
->skm_cpu
== smp_processor_id());
613 ASSERT(irqs_disabled());
615 /* There are no available objects or they are too young to age out */
616 if ((skm
->skm_avail
== 0) ||
617 time_before(jiffies
, skm
->skm_age
+ skc
->skc_delay
* HZ
))
621 * Because we're executing in interrupt context we may have
622 * interrupted the holder of this lock. To avoid a potential
623 * deadlock return if the lock is contended.
625 if (!spin_trylock(&skc
->skc_lock
))
628 __spl_cache_flush(skc
, skm
, skm
->skm_refill
);
629 spin_unlock(&skc
->skc_lock
);
633 * Called regularly to keep a downward pressure on the cache.
635 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
636 * be returned to the caches. This is done to prevent idle magazines from
637 * holding memory which could be better used elsewhere. The delay is
638 * present to prevent thrashing the magazine.
640 * The newly released objects may result in empty partial slabs. Those
641 * slabs should be released to the system. Otherwise moving the objects
642 * out of the magazines is just wasted work.
645 spl_cache_age(void *data
)
647 spl_kmem_cache_t
*skc
= (spl_kmem_cache_t
*)data
;
650 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
652 /* Dynamically disabled at run time */
653 if (!(spl_kmem_cache_expire
& KMC_EXPIRE_AGE
))
656 atomic_inc(&skc
->skc_ref
);
658 if (!(skc
->skc_flags
& KMC_NOMAGAZINE
))
659 on_each_cpu(spl_magazine_age
, skc
, 1);
661 spl_slab_reclaim(skc
);
663 while (!test_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
) && !id
) {
664 id
= taskq_dispatch_delay(
665 spl_kmem_cache_taskq
, spl_cache_age
, skc
, TQ_SLEEP
,
666 ddi_get_lbolt() + skc
->skc_delay
/ 3 * HZ
);
668 /* Destroy issued after dispatch immediately cancel it */
669 if (test_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
) && id
)
670 taskq_cancel_id(spl_kmem_cache_taskq
, id
);
673 spin_lock(&skc
->skc_lock
);
674 skc
->skc_taskqid
= id
;
675 spin_unlock(&skc
->skc_lock
);
677 atomic_dec(&skc
->skc_ref
);
681 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
682 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
683 * for very small objects we may end up with more than this so as not
684 * to waste space in the minimal allocation of a single page. Also for
685 * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
686 * lower than this and we will fail.
689 spl_slab_size(spl_kmem_cache_t
*skc
, uint32_t *objs
, uint32_t *size
)
691 uint32_t sks_size
, obj_size
, max_size
, tgt_size
, tgt_objs
;
693 if (skc
->skc_flags
& KMC_OFFSLAB
) {
694 tgt_objs
= spl_kmem_cache_obj_per_slab
;
695 tgt_size
= P2ROUNDUP(sizeof (spl_kmem_slab_t
), PAGE_SIZE
);
697 if ((skc
->skc_flags
& KMC_KMEM
) &&
698 (spl_obj_size(skc
) > (SPL_MAX_ORDER_NR_PAGES
* PAGE_SIZE
)))
701 sks_size
= spl_sks_size(skc
);
702 obj_size
= spl_obj_size(skc
);
703 max_size
= (spl_kmem_cache_max_size
* 1024 * 1024);
704 tgt_size
= (spl_kmem_cache_obj_per_slab
* obj_size
+ sks_size
);
707 * KMC_KMEM slabs are allocated by __get_free_pages() which
708 * rounds up to the nearest order. Knowing this the size
709 * should be rounded up to the next power of two with a hard
710 * maximum defined by the maximum allowed allocation order.
712 if (skc
->skc_flags
& KMC_KMEM
) {
713 max_size
= SPL_MAX_ORDER_NR_PAGES
* PAGE_SIZE
;
714 tgt_size
= MIN(max_size
,
715 PAGE_SIZE
* (1 << MAX(get_order(tgt_size
) - 1, 1)));
718 if (tgt_size
<= max_size
) {
719 tgt_objs
= (tgt_size
- sks_size
) / obj_size
;
721 tgt_objs
= (max_size
- sks_size
) / obj_size
;
722 tgt_size
= (tgt_objs
* obj_size
) + sks_size
;
736 * Make a guess at reasonable per-cpu magazine size based on the size of
737 * each object and the cost of caching N of them in each magazine. Long
738 * term this should really adapt based on an observed usage heuristic.
741 spl_magazine_size(spl_kmem_cache_t
*skc
)
743 uint32_t obj_size
= spl_obj_size(skc
);
746 if (spl_kmem_cache_magazine_size
> 0)
747 return (MAX(MIN(spl_kmem_cache_magazine_size
, 256), 2));
749 /* Per-magazine sizes below assume a 4Kib page size */
750 if (obj_size
> (PAGE_SIZE
* 256))
751 size
= 4; /* Minimum 4Mib per-magazine */
752 else if (obj_size
> (PAGE_SIZE
* 32))
753 size
= 16; /* Minimum 2Mib per-magazine */
754 else if (obj_size
> (PAGE_SIZE
))
755 size
= 64; /* Minimum 256Kib per-magazine */
756 else if (obj_size
> (PAGE_SIZE
/ 4))
757 size
= 128; /* Minimum 128Kib per-magazine */
765 * Allocate a per-cpu magazine to associate with a specific core.
767 static spl_kmem_magazine_t
*
768 spl_magazine_alloc(spl_kmem_cache_t
*skc
, int cpu
)
770 spl_kmem_magazine_t
*skm
;
771 int size
= sizeof (spl_kmem_magazine_t
) +
772 sizeof (void *) * skc
->skc_mag_size
;
774 skm
= kmalloc_node(size
, GFP_KERNEL
, cpu_to_node(cpu
));
776 skm
->skm_magic
= SKM_MAGIC
;
778 skm
->skm_size
= skc
->skc_mag_size
;
779 skm
->skm_refill
= skc
->skc_mag_refill
;
780 skm
->skm_cache
= skc
;
781 skm
->skm_age
= jiffies
;
789 * Free a per-cpu magazine associated with a specific core.
792 spl_magazine_free(spl_kmem_magazine_t
*skm
)
794 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
795 ASSERT(skm
->skm_avail
== 0);
800 * Create all pre-cpu magazines of reasonable sizes.
803 spl_magazine_create(spl_kmem_cache_t
*skc
)
807 if (skc
->skc_flags
& KMC_NOMAGAZINE
)
810 skc
->skc_mag
= kzalloc(sizeof (spl_kmem_magazine_t
*) *
811 num_possible_cpus(), kmem_flags_convert(KM_SLEEP
));
812 skc
->skc_mag_size
= spl_magazine_size(skc
);
813 skc
->skc_mag_refill
= (skc
->skc_mag_size
+ 1) / 2;
815 for_each_possible_cpu(i
) {
816 skc
->skc_mag
[i
] = spl_magazine_alloc(skc
, i
);
817 if (!skc
->skc_mag
[i
]) {
818 for (i
--; i
>= 0; i
--)
819 spl_magazine_free(skc
->skc_mag
[i
]);
830 * Destroy all pre-cpu magazines.
833 spl_magazine_destroy(spl_kmem_cache_t
*skc
)
835 spl_kmem_magazine_t
*skm
;
838 if (skc
->skc_flags
& KMC_NOMAGAZINE
)
841 for_each_possible_cpu(i
) {
842 skm
= skc
->skc_mag
[i
];
843 spl_cache_flush(skc
, skm
, skm
->skm_avail
);
844 spl_magazine_free(skm
);
851 * Create a object cache based on the following arguments:
853 * size cache object size
854 * align cache object alignment
855 * ctor cache object constructor
856 * dtor cache object destructor
857 * reclaim cache object reclaim
858 * priv cache private data for ctor/dtor/reclaim
859 * vmp unused must be NULL
861 * KMC_NOTOUCH Disable cache object aging (unsupported)
862 * KMC_NODEBUG Disable debugging (unsupported)
863 * KMC_NOHASH Disable hashing (unsupported)
864 * KMC_QCACHE Disable qcache (unsupported)
865 * KMC_NOMAGAZINE Enabled for kmem/vmem, Disabled for Linux slab
866 * KMC_KMEM Force kmem backed cache
867 * KMC_VMEM Force vmem backed cache
868 * KMC_SLAB Force Linux slab backed cache
869 * KMC_OFFSLAB Locate objects off the slab
872 spl_kmem_cache_create(char *name
, size_t size
, size_t align
,
873 spl_kmem_ctor_t ctor
, spl_kmem_dtor_t dtor
, spl_kmem_reclaim_t reclaim
,
874 void *priv
, void *vmp
, int flags
)
876 gfp_t lflags
= kmem_flags_convert(KM_SLEEP
);
877 spl_kmem_cache_t
*skc
;
883 ASSERT0(flags
& KMC_NOMAGAZINE
);
884 ASSERT0(flags
& KMC_NOHASH
);
885 ASSERT0(flags
& KMC_QCACHE
);
890 skc
= kzalloc(sizeof (*skc
), lflags
);
894 skc
->skc_magic
= SKC_MAGIC
;
895 skc
->skc_name_size
= strlen(name
) + 1;
896 skc
->skc_name
= (char *)kmalloc(skc
->skc_name_size
, lflags
);
897 if (skc
->skc_name
== NULL
) {
901 strncpy(skc
->skc_name
, name
, skc
->skc_name_size
);
903 skc
->skc_ctor
= ctor
;
904 skc
->skc_dtor
= dtor
;
905 skc
->skc_reclaim
= reclaim
;
906 skc
->skc_private
= priv
;
908 skc
->skc_linux_cache
= NULL
;
909 skc
->skc_flags
= flags
;
910 skc
->skc_obj_size
= size
;
911 skc
->skc_obj_align
= SPL_KMEM_CACHE_ALIGN
;
912 skc
->skc_delay
= SPL_KMEM_CACHE_DELAY
;
913 skc
->skc_reap
= SPL_KMEM_CACHE_REAP
;
914 atomic_set(&skc
->skc_ref
, 0);
916 INIT_LIST_HEAD(&skc
->skc_list
);
917 INIT_LIST_HEAD(&skc
->skc_complete_list
);
918 INIT_LIST_HEAD(&skc
->skc_partial_list
);
919 skc
->skc_emergency_tree
= RB_ROOT
;
920 spin_lock_init(&skc
->skc_lock
);
921 init_waitqueue_head(&skc
->skc_waitq
);
922 skc
->skc_slab_fail
= 0;
923 skc
->skc_slab_create
= 0;
924 skc
->skc_slab_destroy
= 0;
925 skc
->skc_slab_total
= 0;
926 skc
->skc_slab_alloc
= 0;
927 skc
->skc_slab_max
= 0;
928 skc
->skc_obj_total
= 0;
929 skc
->skc_obj_alloc
= 0;
930 skc
->skc_obj_max
= 0;
931 skc
->skc_obj_deadlock
= 0;
932 skc
->skc_obj_emergency
= 0;
933 skc
->skc_obj_emergency_max
= 0;
936 * Verify the requested alignment restriction is sane.
940 VERIFY3U(align
, >=, SPL_KMEM_CACHE_ALIGN
);
941 VERIFY3U(align
, <=, PAGE_SIZE
);
942 skc
->skc_obj_align
= align
;
946 * When no specific type of slab is requested (kmem, vmem, or
947 * linuxslab) then select a cache type based on the object size
948 * and default tunables.
950 if (!(skc
->skc_flags
& (KMC_KMEM
| KMC_VMEM
| KMC_SLAB
))) {
953 * Objects smaller than spl_kmem_cache_slab_limit can
954 * use the Linux slab for better space-efficiency. By
955 * default this functionality is disabled until its
956 * performance characteristics are fully understood.
958 if (spl_kmem_cache_slab_limit
&&
959 size
<= (size_t)spl_kmem_cache_slab_limit
)
960 skc
->skc_flags
|= KMC_SLAB
;
963 * Small objects, less than spl_kmem_cache_kmem_limit per
964 * object should use kmem because their slabs are small.
966 else if (spl_obj_size(skc
) <= spl_kmem_cache_kmem_limit
)
967 skc
->skc_flags
|= KMC_KMEM
;
970 * All other objects are considered large and are placed
971 * on vmem backed slabs.
974 skc
->skc_flags
|= KMC_VMEM
;
978 * Given the type of slab allocate the required resources.
980 if (skc
->skc_flags
& (KMC_KMEM
| KMC_VMEM
)) {
981 rc
= spl_slab_size(skc
,
982 &skc
->skc_slab_objs
, &skc
->skc_slab_size
);
986 rc
= spl_magazine_create(skc
);
990 unsigned long slabflags
= 0;
992 if (size
> (SPL_MAX_KMEM_ORDER_NR_PAGES
* PAGE_SIZE
)) {
997 #if defined(SLAB_USERCOPY)
999 * Required for PAX-enabled kernels if the slab is to be
1000 * used for coping between user and kernel space.
1002 slabflags
|= SLAB_USERCOPY
;
1005 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
1007 * Newer grsec patchset uses kmem_cache_create_usercopy()
1008 * instead of SLAB_USERCOPY flag
1010 skc
->skc_linux_cache
= kmem_cache_create_usercopy(
1011 skc
->skc_name
, size
, align
, slabflags
, 0, size
, NULL
);
1013 skc
->skc_linux_cache
= kmem_cache_create(
1014 skc
->skc_name
, size
, align
, slabflags
, NULL
);
1016 if (skc
->skc_linux_cache
== NULL
) {
1021 #if defined(HAVE_KMEM_CACHE_ALLOCFLAGS)
1022 skc
->skc_linux_cache
->allocflags
|= __GFP_COMP
;
1023 #elif defined(HAVE_KMEM_CACHE_GFPFLAGS)
1024 skc
->skc_linux_cache
->gfpflags
|= __GFP_COMP
;
1026 skc
->skc_flags
|= KMC_NOMAGAZINE
;
1029 if (spl_kmem_cache_expire
& KMC_EXPIRE_AGE
)
1030 skc
->skc_taskqid
= taskq_dispatch_delay(spl_kmem_cache_taskq
,
1031 spl_cache_age
, skc
, TQ_SLEEP
,
1032 ddi_get_lbolt() + skc
->skc_delay
/ 3 * HZ
);
1034 down_write(&spl_kmem_cache_sem
);
1035 list_add_tail(&skc
->skc_list
, &spl_kmem_cache_list
);
1036 up_write(&spl_kmem_cache_sem
);
1040 kfree(skc
->skc_name
);
1044 EXPORT_SYMBOL(spl_kmem_cache_create
);
1047 * Register a move callback for cache defragmentation.
1048 * XXX: Unimplemented but harmless to stub out for now.
1051 spl_kmem_cache_set_move(spl_kmem_cache_t
*skc
,
1052 kmem_cbrc_t (move
)(void *, void *, size_t, void *))
1054 ASSERT(move
!= NULL
);
1056 EXPORT_SYMBOL(spl_kmem_cache_set_move
);
1059 * Destroy a cache and all objects associated with the cache.
1062 spl_kmem_cache_destroy(spl_kmem_cache_t
*skc
)
1064 DECLARE_WAIT_QUEUE_HEAD(wq
);
1067 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1068 ASSERT(skc
->skc_flags
& (KMC_KMEM
| KMC_VMEM
| KMC_SLAB
));
1070 down_write(&spl_kmem_cache_sem
);
1071 list_del_init(&skc
->skc_list
);
1072 up_write(&spl_kmem_cache_sem
);
1074 /* Cancel any and wait for any pending delayed tasks */
1075 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
));
1077 spin_lock(&skc
->skc_lock
);
1078 id
= skc
->skc_taskqid
;
1079 spin_unlock(&skc
->skc_lock
);
1081 taskq_cancel_id(spl_kmem_cache_taskq
, id
);
1084 * Wait until all current callers complete, this is mainly
1085 * to catch the case where a low memory situation triggers a
1086 * cache reaping action which races with this destroy.
1088 wait_event(wq
, atomic_read(&skc
->skc_ref
) == 0);
1090 if (skc
->skc_flags
& (KMC_KMEM
| KMC_VMEM
)) {
1091 spl_magazine_destroy(skc
);
1092 spl_slab_reclaim(skc
);
1094 ASSERT(skc
->skc_flags
& KMC_SLAB
);
1095 kmem_cache_destroy(skc
->skc_linux_cache
);
1098 spin_lock(&skc
->skc_lock
);
1101 * Validate there are no objects in use and free all the
1102 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
1104 ASSERT3U(skc
->skc_slab_alloc
, ==, 0);
1105 ASSERT3U(skc
->skc_obj_alloc
, ==, 0);
1106 ASSERT3U(skc
->skc_slab_total
, ==, 0);
1107 ASSERT3U(skc
->skc_obj_total
, ==, 0);
1108 ASSERT3U(skc
->skc_obj_emergency
, ==, 0);
1109 ASSERT(list_empty(&skc
->skc_complete_list
));
1111 spin_unlock(&skc
->skc_lock
);
1113 kfree(skc
->skc_name
);
1116 EXPORT_SYMBOL(spl_kmem_cache_destroy
);
1119 * Allocate an object from a slab attached to the cache. This is used to
1120 * repopulate the per-cpu magazine caches in batches when they run low.
1123 spl_cache_obj(spl_kmem_cache_t
*skc
, spl_kmem_slab_t
*sks
)
1125 spl_kmem_obj_t
*sko
;
1127 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1128 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
1130 sko
= list_entry(sks
->sks_free_list
.next
, spl_kmem_obj_t
, sko_list
);
1131 ASSERT(sko
->sko_magic
== SKO_MAGIC
);
1132 ASSERT(sko
->sko_addr
!= NULL
);
1134 /* Remove from sks_free_list */
1135 list_del_init(&sko
->sko_list
);
1137 sks
->sks_age
= jiffies
;
1139 skc
->skc_obj_alloc
++;
1141 /* Track max obj usage statistics */
1142 if (skc
->skc_obj_alloc
> skc
->skc_obj_max
)
1143 skc
->skc_obj_max
= skc
->skc_obj_alloc
;
1145 /* Track max slab usage statistics */
1146 if (sks
->sks_ref
== 1) {
1147 skc
->skc_slab_alloc
++;
1149 if (skc
->skc_slab_alloc
> skc
->skc_slab_max
)
1150 skc
->skc_slab_max
= skc
->skc_slab_alloc
;
1153 return (sko
->sko_addr
);
1157 * Generic slab allocation function to run by the global work queues.
1158 * It is responsible for allocating a new slab, linking it in to the list
1159 * of partial slabs, and then waking any waiters.
1162 __spl_cache_grow(spl_kmem_cache_t
*skc
, int flags
)
1164 spl_kmem_slab_t
*sks
;
1166 fstrans_cookie_t cookie
= spl_fstrans_mark();
1167 sks
= spl_slab_alloc(skc
, flags
);
1168 spl_fstrans_unmark(cookie
);
1170 spin_lock(&skc
->skc_lock
);
1172 skc
->skc_slab_total
++;
1173 skc
->skc_obj_total
+= sks
->sks_objs
;
1174 list_add_tail(&sks
->sks_list
, &skc
->skc_partial_list
);
1176 smp_mb__before_atomic();
1177 clear_bit(KMC_BIT_DEADLOCKED
, &skc
->skc_flags
);
1178 smp_mb__after_atomic();
1179 wake_up_all(&skc
->skc_waitq
);
1181 spin_unlock(&skc
->skc_lock
);
1183 return (sks
== NULL
? -ENOMEM
: 0);
1187 spl_cache_grow_work(void *data
)
1189 spl_kmem_alloc_t
*ska
= (spl_kmem_alloc_t
*)data
;
1190 spl_kmem_cache_t
*skc
= ska
->ska_cache
;
1192 (void) __spl_cache_grow(skc
, ska
->ska_flags
);
1194 atomic_dec(&skc
->skc_ref
);
1195 smp_mb__before_atomic();
1196 clear_bit(KMC_BIT_GROWING
, &skc
->skc_flags
);
1197 smp_mb__after_atomic();
1203 * Returns non-zero when a new slab should be available.
1206 spl_cache_grow_wait(spl_kmem_cache_t
*skc
)
1208 return (!test_bit(KMC_BIT_GROWING
, &skc
->skc_flags
));
1212 * No available objects on any slabs, create a new slab. Note that this
1213 * functionality is disabled for KMC_SLAB caches which are backed by the
1217 spl_cache_grow(spl_kmem_cache_t
*skc
, int flags
, void **obj
)
1219 int remaining
, rc
= 0;
1221 ASSERT0(flags
& ~KM_PUBLIC_MASK
);
1222 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1223 ASSERT((skc
->skc_flags
& KMC_SLAB
) == 0);
1228 * Before allocating a new slab wait for any reaping to complete and
1229 * then return so the local magazine can be rechecked for new objects.
1231 if (test_bit(KMC_BIT_REAPING
, &skc
->skc_flags
)) {
1232 rc
= spl_wait_on_bit(&skc
->skc_flags
, KMC_BIT_REAPING
,
1233 TASK_UNINTERRUPTIBLE
);
1234 return (rc
? rc
: -EAGAIN
);
1238 * To reduce the overhead of context switch and improve NUMA locality,
1239 * it tries to allocate a new slab in the current process context with
1240 * KM_NOSLEEP flag. If it fails, it will launch a new taskq to do the
1243 * However, this can't be applied to KVM_VMEM due to a bug that
1244 * __vmalloc() doesn't honor gfp flags in page table allocation.
1246 if (!(skc
->skc_flags
& KMC_VMEM
)) {
1247 rc
= __spl_cache_grow(skc
, flags
| KM_NOSLEEP
);
1253 * This is handled by dispatching a work request to the global work
1254 * queue. This allows us to asynchronously allocate a new slab while
1255 * retaining the ability to safely fall back to a smaller synchronous
1256 * allocations to ensure forward progress is always maintained.
1258 if (test_and_set_bit(KMC_BIT_GROWING
, &skc
->skc_flags
) == 0) {
1259 spl_kmem_alloc_t
*ska
;
1261 ska
= kmalloc(sizeof (*ska
), kmem_flags_convert(flags
));
1263 clear_bit_unlock(KMC_BIT_GROWING
, &skc
->skc_flags
);
1264 smp_mb__after_atomic();
1265 wake_up_all(&skc
->skc_waitq
);
1269 atomic_inc(&skc
->skc_ref
);
1270 ska
->ska_cache
= skc
;
1271 ska
->ska_flags
= flags
;
1272 taskq_init_ent(&ska
->ska_tqe
);
1273 taskq_dispatch_ent(spl_kmem_cache_taskq
,
1274 spl_cache_grow_work
, ska
, 0, &ska
->ska_tqe
);
1278 * The goal here is to only detect the rare case where a virtual slab
1279 * allocation has deadlocked. We must be careful to minimize the use
1280 * of emergency objects which are more expensive to track. Therefore,
1281 * we set a very long timeout for the asynchronous allocation and if
1282 * the timeout is reached the cache is flagged as deadlocked. From
1283 * this point only new emergency objects will be allocated until the
1284 * asynchronous allocation completes and clears the deadlocked flag.
1286 if (test_bit(KMC_BIT_DEADLOCKED
, &skc
->skc_flags
)) {
1287 rc
= spl_emergency_alloc(skc
, flags
, obj
);
1289 remaining
= wait_event_timeout(skc
->skc_waitq
,
1290 spl_cache_grow_wait(skc
), HZ
/ 10);
1293 spin_lock(&skc
->skc_lock
);
1294 if (test_bit(KMC_BIT_GROWING
, &skc
->skc_flags
)) {
1295 set_bit(KMC_BIT_DEADLOCKED
, &skc
->skc_flags
);
1296 skc
->skc_obj_deadlock
++;
1298 spin_unlock(&skc
->skc_lock
);
1308 * Refill a per-cpu magazine with objects from the slabs for this cache.
1309 * Ideally the magazine can be repopulated using existing objects which have
1310 * been released, however if we are unable to locate enough free objects new
1311 * slabs of objects will be created. On success NULL is returned, otherwise
1312 * the address of a single emergency object is returned for use by the caller.
1315 spl_cache_refill(spl_kmem_cache_t
*skc
, spl_kmem_magazine_t
*skm
, int flags
)
1317 spl_kmem_slab_t
*sks
;
1318 int count
= 0, rc
, refill
;
1321 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1322 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
1324 refill
= MIN(skm
->skm_refill
, skm
->skm_size
- skm
->skm_avail
);
1325 spin_lock(&skc
->skc_lock
);
1327 while (refill
> 0) {
1328 /* No slabs available we may need to grow the cache */
1329 if (list_empty(&skc
->skc_partial_list
)) {
1330 spin_unlock(&skc
->skc_lock
);
1333 rc
= spl_cache_grow(skc
, flags
, &obj
);
1334 local_irq_disable();
1336 /* Emergency object for immediate use by caller */
1337 if (rc
== 0 && obj
!= NULL
)
1343 /* Rescheduled to different CPU skm is not local */
1344 if (skm
!= skc
->skc_mag
[smp_processor_id()])
1348 * Potentially rescheduled to the same CPU but
1349 * allocations may have occurred from this CPU while
1350 * we were sleeping so recalculate max refill.
1352 refill
= MIN(refill
, skm
->skm_size
- skm
->skm_avail
);
1354 spin_lock(&skc
->skc_lock
);
1358 /* Grab the next available slab */
1359 sks
= list_entry((&skc
->skc_partial_list
)->next
,
1360 spl_kmem_slab_t
, sks_list
);
1361 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
1362 ASSERT(sks
->sks_ref
< sks
->sks_objs
);
1363 ASSERT(!list_empty(&sks
->sks_free_list
));
1366 * Consume as many objects as needed to refill the requested
1367 * cache. We must also be careful not to overfill it.
1369 while (sks
->sks_ref
< sks
->sks_objs
&& refill
-- > 0 &&
1371 ASSERT(skm
->skm_avail
< skm
->skm_size
);
1372 ASSERT(count
< skm
->skm_size
);
1373 skm
->skm_objs
[skm
->skm_avail
++] =
1374 spl_cache_obj(skc
, sks
);
1377 /* Move slab to skc_complete_list when full */
1378 if (sks
->sks_ref
== sks
->sks_objs
) {
1379 list_del(&sks
->sks_list
);
1380 list_add(&sks
->sks_list
, &skc
->skc_complete_list
);
1384 spin_unlock(&skc
->skc_lock
);
1390 * Release an object back to the slab from which it came.
1393 spl_cache_shrink(spl_kmem_cache_t
*skc
, void *obj
)
1395 spl_kmem_slab_t
*sks
= NULL
;
1396 spl_kmem_obj_t
*sko
= NULL
;
1398 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1400 sko
= spl_sko_from_obj(skc
, obj
);
1401 ASSERT(sko
->sko_magic
== SKO_MAGIC
);
1402 sks
= sko
->sko_slab
;
1403 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
1404 ASSERT(sks
->sks_cache
== skc
);
1405 list_add(&sko
->sko_list
, &sks
->sks_free_list
);
1407 sks
->sks_age
= jiffies
;
1409 skc
->skc_obj_alloc
--;
1412 * Move slab to skc_partial_list when no longer full. Slabs
1413 * are added to the head to keep the partial list is quasi-full
1414 * sorted order. Fuller at the head, emptier at the tail.
1416 if (sks
->sks_ref
== (sks
->sks_objs
- 1)) {
1417 list_del(&sks
->sks_list
);
1418 list_add(&sks
->sks_list
, &skc
->skc_partial_list
);
1422 * Move empty slabs to the end of the partial list so
1423 * they can be easily found and freed during reclamation.
1425 if (sks
->sks_ref
== 0) {
1426 list_del(&sks
->sks_list
);
1427 list_add_tail(&sks
->sks_list
, &skc
->skc_partial_list
);
1428 skc
->skc_slab_alloc
--;
1433 * Allocate an object from the per-cpu magazine, or if the magazine
1434 * is empty directly allocate from a slab and repopulate the magazine.
1437 spl_kmem_cache_alloc(spl_kmem_cache_t
*skc
, int flags
)
1439 spl_kmem_magazine_t
*skm
;
1442 ASSERT0(flags
& ~KM_PUBLIC_MASK
);
1443 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1444 ASSERT(!test_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
));
1447 * Allocate directly from a Linux slab. All optimizations are left
1448 * to the underlying cache we only need to guarantee that KM_SLEEP
1449 * callers will never fail.
1451 if (skc
->skc_flags
& KMC_SLAB
) {
1452 struct kmem_cache
*slc
= skc
->skc_linux_cache
;
1454 obj
= kmem_cache_alloc(slc
, kmem_flags_convert(flags
));
1455 } while ((obj
== NULL
) && !(flags
& KM_NOSLEEP
));
1460 local_irq_disable();
1464 * Safe to update per-cpu structure without lock, but
1465 * in the restart case we must be careful to reacquire
1466 * the local magazine since this may have changed
1467 * when we need to grow the cache.
1469 skm
= skc
->skc_mag
[smp_processor_id()];
1470 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
1472 if (likely(skm
->skm_avail
)) {
1473 /* Object available in CPU cache, use it */
1474 obj
= skm
->skm_objs
[--skm
->skm_avail
];
1475 skm
->skm_age
= jiffies
;
1477 obj
= spl_cache_refill(skc
, skm
, flags
);
1478 if ((obj
== NULL
) && !(flags
& KM_NOSLEEP
))
1487 ASSERT(IS_P2ALIGNED(obj
, skc
->skc_obj_align
));
1490 /* Pre-emptively migrate object to CPU L1 cache */
1492 if (obj
&& skc
->skc_ctor
)
1493 skc
->skc_ctor(obj
, skc
->skc_private
, flags
);
1500 EXPORT_SYMBOL(spl_kmem_cache_alloc
);
1503 * Free an object back to the local per-cpu magazine, there is no
1504 * guarantee that this is the same magazine the object was originally
1505 * allocated from. We may need to flush entire from the magazine
1506 * back to the slabs to make space.
1509 spl_kmem_cache_free(spl_kmem_cache_t
*skc
, void *obj
)
1511 spl_kmem_magazine_t
*skm
;
1512 unsigned long flags
;
1514 int do_emergency
= 0;
1516 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1517 ASSERT(!test_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
));
1520 * Run the destructor
1523 skc
->skc_dtor(obj
, skc
->skc_private
);
1526 * Free the object from the Linux underlying Linux slab.
1528 if (skc
->skc_flags
& KMC_SLAB
) {
1529 kmem_cache_free(skc
->skc_linux_cache
, obj
);
1534 * While a cache has outstanding emergency objects all freed objects
1535 * must be checked. However, since emergency objects will never use
1536 * a virtual address these objects can be safely excluded as an
1539 if (!is_vmalloc_addr(obj
)) {
1540 spin_lock(&skc
->skc_lock
);
1541 do_emergency
= (skc
->skc_obj_emergency
> 0);
1542 spin_unlock(&skc
->skc_lock
);
1544 if (do_emergency
&& (spl_emergency_free(skc
, obj
) == 0))
1548 local_irq_save(flags
);
1551 * Safe to update per-cpu structure without lock, but
1552 * no remote memory allocation tracking is being performed
1553 * it is entirely possible to allocate an object from one
1554 * CPU cache and return it to another.
1556 skm
= skc
->skc_mag
[smp_processor_id()];
1557 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
1560 * Per-CPU cache full, flush it to make space for this object,
1561 * this may result in an empty slab which can be reclaimed once
1562 * interrupts are re-enabled.
1564 if (unlikely(skm
->skm_avail
>= skm
->skm_size
)) {
1565 spl_cache_flush(skc
, skm
, skm
->skm_refill
);
1569 /* Available space in cache, use it */
1570 skm
->skm_objs
[skm
->skm_avail
++] = obj
;
1572 local_irq_restore(flags
);
1575 spl_slab_reclaim(skc
);
1577 EXPORT_SYMBOL(spl_kmem_cache_free
);
1580 * The generic shrinker function for all caches. Under Linux a shrinker
1581 * may not be tightly coupled with a slab cache. In fact Linux always
1582 * systematically tries calling all registered shrinker callbacks which
1583 * report that they contain unused objects. Because of this we only
1584 * register one shrinker function in the shim layer for all slab caches.
1585 * We always attempt to shrink all caches when this generic shrinker
1588 * If sc->nr_to_scan is zero, the caller is requesting a query of the
1589 * number of objects which can potentially be freed. If it is nonzero,
1590 * the request is to free that many objects.
1592 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
1593 * in struct shrinker and also require the shrinker to return the number
1596 * Older kernels require the shrinker to return the number of freeable
1597 * objects following the freeing of nr_to_free.
1599 * Linux semantics differ from those under Solaris, which are to
1600 * free all available objects which may (and probably will) be more
1601 * objects than the requested nr_to_scan.
1603 static spl_shrinker_t
1604 __spl_kmem_cache_generic_shrinker(struct shrinker
*shrink
,
1605 struct shrink_control
*sc
)
1607 spl_kmem_cache_t
*skc
;
1611 * No shrinking in a transaction context. Can cause deadlocks.
1613 if (sc
->nr_to_scan
&& spl_fstrans_check())
1614 return (SHRINK_STOP
);
1616 down_read(&spl_kmem_cache_sem
);
1617 list_for_each_entry(skc
, &spl_kmem_cache_list
, skc_list
) {
1618 if (sc
->nr_to_scan
) {
1619 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
1620 uint64_t oldalloc
= skc
->skc_obj_alloc
;
1621 spl_kmem_cache_reap_now(skc
,
1622 MAX(sc
->nr_to_scan
>>fls64(skc
->skc_slab_objs
), 1));
1623 if (oldalloc
> skc
->skc_obj_alloc
)
1624 alloc
+= oldalloc
- skc
->skc_obj_alloc
;
1626 spl_kmem_cache_reap_now(skc
,
1627 MAX(sc
->nr_to_scan
>>fls64(skc
->skc_slab_objs
), 1));
1628 alloc
+= skc
->skc_obj_alloc
;
1629 #endif /* HAVE_SPLIT_SHRINKER_CALLBACK */
1631 /* Request to query number of freeable objects */
1632 alloc
+= skc
->skc_obj_alloc
;
1635 up_read(&spl_kmem_cache_sem
);
1638 * When KMC_RECLAIM_ONCE is set allow only a single reclaim pass.
1639 * This functionality only exists to work around a rare issue where
1640 * shrink_slabs() is repeatedly invoked by many cores causing the
1643 if ((spl_kmem_cache_reclaim
& KMC_RECLAIM_ONCE
) && sc
->nr_to_scan
)
1644 return (SHRINK_STOP
);
1646 return (MAX(alloc
, 0));
1649 SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker
);
1652 * Call the registered reclaim function for a cache. Depending on how
1653 * many and which objects are released it may simply repopulate the
1654 * local magazine which will then need to age-out. Objects which cannot
1655 * fit in the magazine we will be released back to their slabs which will
1656 * also need to age out before being release. This is all just best
1657 * effort and we do not want to thrash creating and destroying slabs.
1660 spl_kmem_cache_reap_now(spl_kmem_cache_t
*skc
, int count
)
1662 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1663 ASSERT(!test_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
));
1665 atomic_inc(&skc
->skc_ref
);
1668 * Execute the registered reclaim callback if it exists.
1670 if (skc
->skc_flags
& KMC_SLAB
) {
1671 if (skc
->skc_reclaim
)
1672 skc
->skc_reclaim(skc
->skc_private
);
1677 * Prevent concurrent cache reaping when contended.
1679 if (test_and_set_bit(KMC_BIT_REAPING
, &skc
->skc_flags
))
1683 * When a reclaim function is available it may be invoked repeatedly
1684 * until at least a single slab can be freed. This ensures that we
1685 * do free memory back to the system. This helps minimize the chance
1686 * of an OOM event when the bulk of memory is used by the slab.
1688 * When free slabs are already available the reclaim callback will be
1689 * skipped. Additionally, if no forward progress is detected despite
1690 * a reclaim function the cache will be skipped to avoid deadlock.
1692 * Longer term this would be the correct place to add the code which
1693 * repacks the slabs in order minimize fragmentation.
1695 if (skc
->skc_reclaim
) {
1696 uint64_t objects
= UINT64_MAX
;
1700 spin_lock(&skc
->skc_lock
);
1702 (skc
->skc_slab_total
> 0) &&
1703 ((skc
->skc_slab_total
-skc
->skc_slab_alloc
) == 0) &&
1704 (skc
->skc_obj_alloc
< objects
);
1706 objects
= skc
->skc_obj_alloc
;
1707 spin_unlock(&skc
->skc_lock
);
1710 skc
->skc_reclaim(skc
->skc_private
);
1712 } while (do_reclaim
);
1715 /* Reclaim from the magazine and free all now empty slabs. */
1716 if (spl_kmem_cache_expire
& KMC_EXPIRE_MEM
) {
1717 spl_kmem_magazine_t
*skm
;
1718 unsigned long irq_flags
;
1720 local_irq_save(irq_flags
);
1721 skm
= skc
->skc_mag
[smp_processor_id()];
1722 spl_cache_flush(skc
, skm
, skm
->skm_avail
);
1723 local_irq_restore(irq_flags
);
1726 spl_slab_reclaim(skc
);
1727 clear_bit_unlock(KMC_BIT_REAPING
, &skc
->skc_flags
);
1728 smp_mb__after_atomic();
1729 wake_up_bit(&skc
->skc_flags
, KMC_BIT_REAPING
);
1731 atomic_dec(&skc
->skc_ref
);
1733 EXPORT_SYMBOL(spl_kmem_cache_reap_now
);
1736 * Reap all free slabs from all registered caches.
1741 struct shrink_control sc
;
1743 sc
.nr_to_scan
= KMC_REAP_CHUNK
;
1744 sc
.gfp_mask
= GFP_KERNEL
;
1746 (void) __spl_kmem_cache_generic_shrinker(NULL
, &sc
);
1748 EXPORT_SYMBOL(spl_kmem_reap
);
1751 spl_kmem_cache_init(void)
1753 init_rwsem(&spl_kmem_cache_sem
);
1754 INIT_LIST_HEAD(&spl_kmem_cache_list
);
1755 spl_kmem_cache_taskq
= taskq_create("spl_kmem_cache",
1756 spl_kmem_cache_kmem_threads
, maxclsyspri
,
1757 spl_kmem_cache_kmem_threads
* 8, INT_MAX
,
1758 TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
1759 spl_register_shrinker(&spl_kmem_cache_shrinker
);
1765 spl_kmem_cache_fini(void)
1767 spl_unregister_shrinker(&spl_kmem_cache_shrinker
);
1768 taskq_destroy(spl_kmem_cache_taskq
);