ZAP: Add by_dnode variants to lookup/prefetch_uint64
[zfs.git] / include / sys / avl.h
blob8818e3edb2928cbfe9f0e6bfa2571c41bb4c941e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2014 by Delphix. All rights reserved.
30 #ifndef _AVL_H
31 #define _AVL_H extern __attribute__((visibility("default")))
34 * This is a private header file. Applications should not directly include
35 * this file.
38 #ifdef __cplusplus
39 extern "C" {
40 #endif
42 #include <sys/types.h>
43 #include <sys/avl_impl.h>
46 * This is a generic implementation of AVL trees for use in the Solaris kernel.
47 * The interfaces provide an efficient way of implementing an ordered set of
48 * data structures.
50 * AVL trees provide an alternative to using an ordered linked list. Using AVL
51 * trees will usually be faster, however they requires more storage. An ordered
52 * linked list in general requires 2 pointers in each data structure. The
53 * AVL tree implementation uses 3 pointers. The following chart gives the
54 * approximate performance of operations with the different approaches:
56 * Operation Link List AVL tree
57 * --------- -------- --------
58 * lookup O(n) O(log(n))
60 * insert 1 node constant constant
62 * delete 1 node constant between constant and O(log(n))
64 * delete all nodes O(n) O(n)
66 * visit the next
67 * or prev node constant between constant and O(log(n))
70 * The data structure nodes are anchored at an "avl_tree_t" (the equivalent
71 * of a list header) and the individual nodes will have a field of
72 * type "avl_node_t" (corresponding to list pointers).
74 * The type "avl_index_t" is used to indicate a position in the list for
75 * certain calls.
77 * The usage scenario is generally:
79 * 1. Create the list/tree with: avl_create()
81 * followed by any mixture of:
83 * 2a. Insert nodes with: avl_add(), or avl_find() and avl_insert()
85 * 2b. Visited elements with:
86 * avl_first() - returns the lowest valued node
87 * avl_last() - returns the highest valued node
88 * AVL_NEXT() - given a node go to next higher one
89 * AVL_PREV() - given a node go to previous lower one
91 * 2c. Find the node with the closest value either less than or greater
92 * than a given value with avl_nearest().
94 * 2d. Remove individual nodes from the list/tree with avl_remove().
96 * and finally when the list is being destroyed
98 * 3. Use avl_destroy_nodes() to quickly process/free up any remaining nodes.
99 * Note that once you use avl_destroy_nodes(), you can no longer
100 * use any routine except avl_destroy_nodes() and avl_destroy().
102 * 4. Use avl_destroy() to destroy the AVL tree itself.
104 * Any locking for multiple thread access is up to the user to provide, just
105 * as is needed for any linked list implementation.
109 * AVL comparator helpers
111 #define TREE_ISIGN(a) (((a) > 0) - ((a) < 0))
112 #define TREE_CMP(a, b) (((a) > (b)) - ((a) < (b)))
113 #define TREE_PCMP(a, b) \
114 (((uintptr_t)(a) > (uintptr_t)(b)) - ((uintptr_t)(a) < (uintptr_t)(b)))
117 * Type used for the root of the AVL tree.
119 typedef struct avl_tree avl_tree_t;
122 * The data nodes in the AVL tree must have a field of this type.
124 typedef struct avl_node avl_node_t;
127 * An opaque type used to locate a position in the tree where a node
128 * would be inserted.
130 typedef uintptr_t avl_index_t;
134 * Direction constants used for avl_nearest().
136 #define AVL_BEFORE (0)
137 #define AVL_AFTER (1)
141 * Prototypes
143 * Where not otherwise mentioned, "void *" arguments are a pointer to the
144 * user data structure which must contain a field of type avl_node_t.
146 * Also assume the user data structures looks like:
147 * struct my_type {
148 * ...
149 * avl_node_t my_link;
150 * ...
151 * };
155 * Initialize an AVL tree. Arguments are:
157 * tree - the tree to be initialized
158 * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
159 * -1 for <, 0 for ==, and +1 for >
160 * size - the value of sizeof(struct my_type)
161 * offset - the value of OFFSETOF(struct my_type, my_link)
163 _AVL_H void avl_create(avl_tree_t *tree,
164 int (*compar) (const void *, const void *), size_t size, size_t offset);
168 * Find a node with a matching value in the tree. Returns the matching node
169 * found. If not found, it returns NULL and then if "where" is not NULL it sets
170 * "where" for use with avl_insert() or avl_nearest().
172 * node - node that has the value being looked for
173 * where - position for use with avl_nearest() or avl_insert(), may be NULL
175 _AVL_H void *avl_find(avl_tree_t *tree, const void *node, avl_index_t *where);
178 * Insert a node into the tree.
180 * node - the node to insert
181 * where - position as returned from avl_find()
183 _AVL_H void avl_insert(avl_tree_t *tree, void *node, avl_index_t where);
186 * Insert "new_data" in "tree" in the given "direction" either after
187 * or before the data "here".
189 * This might be useful for avl clients caching recently accessed
190 * data to avoid doing avl_find() again for insertion.
192 * new_data - new data to insert
193 * here - existing node in "tree"
194 * direction - either AVL_AFTER or AVL_BEFORE the data "here".
196 _AVL_H void avl_insert_here(avl_tree_t *tree, void *new_data, void *here,
197 int direction);
201 * Return the first or last valued node in the tree. Will return NULL
202 * if the tree is empty.
205 _AVL_H void *avl_first(avl_tree_t *tree);
206 _AVL_H void *avl_last(avl_tree_t *tree);
210 * Return the next or previous valued node in the tree.
211 * AVL_NEXT() will return NULL if at the last node.
212 * AVL_PREV() will return NULL if at the first node.
214 * node - the node from which the next or previous node is found
216 #define AVL_NEXT(tree, node) avl_walk(tree, node, AVL_AFTER)
217 #define AVL_PREV(tree, node) avl_walk(tree, node, AVL_BEFORE)
221 * Find the node with the nearest value either greater or less than
222 * the value from a previous avl_find(). Returns the node or NULL if
223 * there isn't a matching one.
225 * where - position as returned from avl_find()
226 * direction - either AVL_BEFORE or AVL_AFTER
228 * EXAMPLE get the greatest node that is less than a given value:
230 * avl_tree_t *tree;
231 * struct my_data look_for_value = {....};
232 * struct my_data *node;
233 * struct my_data *less;
234 * avl_index_t where;
236 * node = avl_find(tree, &look_for_value, &where);
237 * if (node != NULL)
238 * less = AVL_PREV(tree, node);
239 * else
240 * less = avl_nearest(tree, where, AVL_BEFORE);
242 _AVL_H void *avl_nearest(avl_tree_t *tree, avl_index_t where, int direction);
246 * Add a single node to the tree.
247 * The node must not be in the tree, and it must not
248 * compare equal to any other node already in the tree.
250 * node - the node to add
252 _AVL_H void avl_add(avl_tree_t *tree, void *node);
256 * Remove a single node from the tree. The node must be in the tree.
258 * node - the node to remove
260 _AVL_H void avl_remove(avl_tree_t *tree, void *node);
263 * Reinsert a node only if its order has changed relative to its nearest
264 * neighbors. To optimize performance avl_update_lt() checks only the previous
265 * node and avl_update_gt() checks only the next node. Use avl_update_lt() and
266 * avl_update_gt() only if you know the direction in which the order of the
267 * node may change.
269 _AVL_H boolean_t avl_update(avl_tree_t *, void *);
270 _AVL_H boolean_t avl_update_lt(avl_tree_t *, void *);
271 _AVL_H boolean_t avl_update_gt(avl_tree_t *, void *);
274 * Swaps the contents of the two trees.
276 _AVL_H void avl_swap(avl_tree_t *tree1, avl_tree_t *tree2);
279 * Return the number of nodes in the tree
281 _AVL_H ulong_t avl_numnodes(avl_tree_t *tree);
284 * Return B_TRUE if there are zero nodes in the tree, B_FALSE otherwise.
286 _AVL_H boolean_t avl_is_empty(avl_tree_t *tree);
289 * Used to destroy any remaining nodes in a tree. The cookie argument should
290 * be initialized to NULL before the first call. Returns a node that has been
291 * removed from the tree and may be free()'d. Returns NULL when the tree is
292 * empty.
294 * Once you call avl_destroy_nodes(), you can only continuing calling it and
295 * finally avl_destroy(). No other AVL routines will be valid.
297 * cookie - a "void *" used to save state between calls to avl_destroy_nodes()
299 * EXAMPLE:
300 * avl_tree_t *tree;
301 * struct my_data *node;
302 * void *cookie;
304 * cookie = NULL;
305 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
306 * free(node);
307 * avl_destroy(tree);
309 _AVL_H void *avl_destroy_nodes(avl_tree_t *tree, void **cookie);
313 * Final destroy of an AVL tree. Arguments are:
315 * tree - the empty tree to destroy
317 _AVL_H void avl_destroy(avl_tree_t *tree);
321 #ifdef __cplusplus
323 #endif
325 #endif /* _AVL_H */