CI: Stick with ubuntu-22.04 for CodeQL analysis
[zfs.git] / module / icp / algs / blake3 / blake3.c
blob0bab7a3a7593eca6f2dec11ff51849a8a9fea414
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3
24 * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor
25 * Copyright (c) 2021-2022 Tino Reichardt <milky-zfs@mcmilk.de>
28 #include <sys/simd.h>
29 #include <sys/zfs_context.h>
30 #include <sys/blake3.h>
32 #include "blake3_impl.h"
35 * We need 1056 byte stack for blake3_compress_subtree_wide()
36 * - we define this pragma to make gcc happy
38 #if defined(__GNUC__)
39 #pragma GCC diagnostic ignored "-Wframe-larger-than="
40 #endif
42 /* internal used */
43 typedef struct {
44 uint32_t input_cv[8];
45 uint64_t counter;
46 uint8_t block[BLAKE3_BLOCK_LEN];
47 uint8_t block_len;
48 uint8_t flags;
49 } output_t;
51 /* internal flags */
52 enum blake3_flags {
53 CHUNK_START = 1 << 0,
54 CHUNK_END = 1 << 1,
55 PARENT = 1 << 2,
56 ROOT = 1 << 3,
57 KEYED_HASH = 1 << 4,
58 DERIVE_KEY_CONTEXT = 1 << 5,
59 DERIVE_KEY_MATERIAL = 1 << 6,
62 /* internal start */
63 static void chunk_state_init(blake3_chunk_state_t *ctx,
64 const uint32_t key[8], uint8_t flags)
66 memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
67 ctx->chunk_counter = 0;
68 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
69 ctx->buf_len = 0;
70 ctx->blocks_compressed = 0;
71 ctx->flags = flags;
74 static void chunk_state_reset(blake3_chunk_state_t *ctx,
75 const uint32_t key[8], uint64_t chunk_counter)
77 memcpy(ctx->cv, key, BLAKE3_KEY_LEN);
78 ctx->chunk_counter = chunk_counter;
79 ctx->blocks_compressed = 0;
80 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
81 ctx->buf_len = 0;
84 static size_t chunk_state_len(const blake3_chunk_state_t *ctx)
86 return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) +
87 ((size_t)ctx->buf_len);
90 static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx,
91 const uint8_t *input, size_t input_len)
93 size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len);
94 if (take > input_len) {
95 take = input_len;
97 uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len);
98 memcpy(dest, input, take);
99 ctx->buf_len += (uint8_t)take;
100 return (take);
103 static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx)
105 if (ctx->blocks_compressed == 0) {
106 return (CHUNK_START);
107 } else {
108 return (0);
112 static output_t make_output(const uint32_t input_cv[8],
113 const uint8_t *block, uint8_t block_len,
114 uint64_t counter, uint8_t flags)
116 output_t ret;
117 memcpy(ret.input_cv, input_cv, 32);
118 memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
119 ret.block_len = block_len;
120 ret.counter = counter;
121 ret.flags = flags;
122 return (ret);
126 * Chaining values within a given chunk (specifically the compress_in_place
127 * interface) are represented as words. This avoids unnecessary bytes<->words
128 * conversion overhead in the portable implementation. However, the hash_many
129 * interface handles both user input and parent node blocks, so it accepts
130 * bytes. For that reason, chaining values in the CV stack are represented as
131 * bytes.
133 static void output_chaining_value(const blake3_ops_t *ops,
134 const output_t *ctx, uint8_t cv[32])
136 uint32_t cv_words[8];
137 memcpy(cv_words, ctx->input_cv, 32);
138 ops->compress_in_place(cv_words, ctx->block, ctx->block_len,
139 ctx->counter, ctx->flags);
140 store_cv_words(cv, cv_words);
143 static void output_root_bytes(const blake3_ops_t *ops, const output_t *ctx,
144 uint64_t seek, uint8_t *out, size_t out_len)
146 uint64_t output_block_counter = seek / 64;
147 size_t offset_within_block = seek % 64;
148 uint8_t wide_buf[64];
149 while (out_len > 0) {
150 ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len,
151 output_block_counter, ctx->flags | ROOT, wide_buf);
152 size_t available_bytes = 64 - offset_within_block;
153 size_t memcpy_len;
154 if (out_len > available_bytes) {
155 memcpy_len = available_bytes;
156 } else {
157 memcpy_len = out_len;
159 memcpy(out, wide_buf + offset_within_block, memcpy_len);
160 out += memcpy_len;
161 out_len -= memcpy_len;
162 output_block_counter += 1;
163 offset_within_block = 0;
167 static void chunk_state_update(const blake3_ops_t *ops,
168 blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len)
170 if (ctx->buf_len > 0) {
171 size_t take = chunk_state_fill_buf(ctx, input, input_len);
172 input += take;
173 input_len -= take;
174 if (input_len > 0) {
175 ops->compress_in_place(ctx->cv, ctx->buf,
176 BLAKE3_BLOCK_LEN, ctx->chunk_counter,
177 ctx->flags|chunk_state_maybe_start_flag(ctx));
178 ctx->blocks_compressed += 1;
179 ctx->buf_len = 0;
180 memset(ctx->buf, 0, BLAKE3_BLOCK_LEN);
184 while (input_len > BLAKE3_BLOCK_LEN) {
185 ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN,
186 ctx->chunk_counter,
187 ctx->flags|chunk_state_maybe_start_flag(ctx));
188 ctx->blocks_compressed += 1;
189 input += BLAKE3_BLOCK_LEN;
190 input_len -= BLAKE3_BLOCK_LEN;
193 chunk_state_fill_buf(ctx, input, input_len);
196 static output_t chunk_state_output(const blake3_chunk_state_t *ctx)
198 uint8_t block_flags =
199 ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END;
200 return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter,
201 block_flags));
204 static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
205 const uint32_t key[8], uint8_t flags)
207 return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT));
211 * Given some input larger than one chunk, return the number of bytes that
212 * should go in the left subtree. This is the largest power-of-2 number of
213 * chunks that leaves at least 1 byte for the right subtree.
215 static size_t left_len(size_t content_len)
218 * Subtract 1 to reserve at least one byte for the right side.
219 * content_len
220 * should always be greater than BLAKE3_CHUNK_LEN.
222 size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
223 return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN);
227 * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
228 * on a single thread. Write out the chunk chaining values and return the
229 * number of chunks hashed. These chunks are never the root and never empty;
230 * those cases use a different codepath.
232 static size_t compress_chunks_parallel(const blake3_ops_t *ops,
233 const uint8_t *input, size_t input_len, const uint32_t key[8],
234 uint64_t chunk_counter, uint8_t flags, uint8_t *out)
236 const uint8_t *chunks_array[MAX_SIMD_DEGREE];
237 size_t input_position = 0;
238 size_t chunks_array_len = 0;
239 while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
240 chunks_array[chunks_array_len] = &input[input_position];
241 input_position += BLAKE3_CHUNK_LEN;
242 chunks_array_len += 1;
245 ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN /
246 BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START,
247 CHUNK_END, out);
250 * Hash the remaining partial chunk, if there is one. Note that the
251 * empty chunk (meaning the empty message) is a different codepath.
253 if (input_len > input_position) {
254 uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
255 blake3_chunk_state_t chunk_state;
256 chunk_state_init(&chunk_state, key, flags);
257 chunk_state.chunk_counter = counter;
258 chunk_state_update(ops, &chunk_state, &input[input_position],
259 input_len - input_position);
260 output_t output = chunk_state_output(&chunk_state);
261 output_chaining_value(ops, &output, &out[chunks_array_len *
262 BLAKE3_OUT_LEN]);
263 return (chunks_array_len + 1);
264 } else {
265 return (chunks_array_len);
270 * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
271 * on a single thread. Write out the parent chaining values and return the
272 * number of parents hashed. (If there's an odd input chaining value left over,
273 * return it as an additional output.) These parents are never the root and
274 * never empty; those cases use a different codepath.
276 static size_t compress_parents_parallel(const blake3_ops_t *ops,
277 const uint8_t *child_chaining_values, size_t num_chaining_values,
278 const uint32_t key[8], uint8_t flags, uint8_t *out)
280 const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2] = {0};
281 size_t parents_array_len = 0;
283 while (num_chaining_values - (2 * parents_array_len) >= 2) {
284 parents_array[parents_array_len] = &child_chaining_values[2 *
285 parents_array_len * BLAKE3_OUT_LEN];
286 parents_array_len += 1;
289 ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE,
290 flags | PARENT, 0, 0, out);
292 /* If there's an odd child left over, it becomes an output. */
293 if (num_chaining_values > 2 * parents_array_len) {
294 memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
295 &child_chaining_values[2 * parents_array_len *
296 BLAKE3_OUT_LEN], BLAKE3_OUT_LEN);
297 return (parents_array_len + 1);
298 } else {
299 return (parents_array_len);
304 * The wide helper function returns (writes out) an array of chaining values
305 * and returns the length of that array. The number of chaining values returned
306 * is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
307 * if the input is shorter than that many chunks. The reason for maintaining a
308 * wide array of chaining values going back up the tree, is to allow the
309 * implementation to hash as many parents in parallel as possible.
311 * As a special case when the SIMD degree is 1, this function will still return
312 * at least 2 outputs. This guarantees that this function doesn't perform the
313 * root compression. (If it did, it would use the wrong flags, and also we
314 * wouldn't be able to implement exendable ouput.) Note that this function is
315 * not used when the whole input is only 1 chunk long; that's a different
316 * codepath.
318 * Why not just have the caller split the input on the first update(), instead
319 * of implementing this special rule? Because we don't want to limit SIMD or
320 * multi-threading parallelism for that update().
322 static size_t blake3_compress_subtree_wide(const blake3_ops_t *ops,
323 const uint8_t *input, size_t input_len, const uint32_t key[8],
324 uint64_t chunk_counter, uint8_t flags, uint8_t *out)
327 * Note that the single chunk case does *not* bump the SIMD degree up
328 * to 2 when it is 1. If this implementation adds multi-threading in
329 * the future, this gives us the option of multi-threading even the
330 * 2-chunk case, which can help performance on smaller platforms.
332 if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) {
333 return (compress_chunks_parallel(ops, input, input_len, key,
334 chunk_counter, flags, out));
339 * With more than simd_degree chunks, we need to recurse. Start by
340 * dividing the input into left and right subtrees. (Note that this is
341 * only optimal as long as the SIMD degree is a power of 2. If we ever
342 * get a SIMD degree of 3 or something, we'll need a more complicated
343 * strategy.)
345 size_t left_input_len = left_len(input_len);
346 size_t right_input_len = input_len - left_input_len;
347 const uint8_t *right_input = &input[left_input_len];
348 uint64_t right_chunk_counter = chunk_counter +
349 (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
352 * Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2
353 * to account for the special case of returning 2 outputs when the
354 * SIMD degree is 1.
356 uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
357 size_t degree = ops->degree;
358 if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
361 * The special case: We always use a degree of at least two,
362 * to make sure there are two outputs. Except, as noted above,
363 * at the chunk level, where we allow degree=1. (Note that the
364 * 1-chunk-input case is a different codepath.)
366 degree = 2;
368 uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
371 * Recurse! If this implementation adds multi-threading support in the
372 * future, this is where it will go.
374 size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len,
375 key, chunk_counter, flags, cv_array);
376 size_t right_n = blake3_compress_subtree_wide(ops, right_input,
377 right_input_len, key, right_chunk_counter, flags, right_cvs);
380 * The special case again. If simd_degree=1, then we'll have left_n=1
381 * and right_n=1. Rather than compressing them into a single output,
382 * return them directly, to make sure we always have at least two
383 * outputs.
385 if (left_n == 1) {
386 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
387 return (2);
390 /* Otherwise, do one layer of parent node compression. */
391 size_t num_chaining_values = left_n + right_n;
392 return compress_parents_parallel(ops, cv_array,
393 num_chaining_values, key, flags, out);
397 * Hash a subtree with compress_subtree_wide(), and then condense the resulting
398 * list of chaining values down to a single parent node. Don't compress that
399 * last parent node, however. Instead, return its message bytes (the
400 * concatenated chaining values of its children). This is necessary when the
401 * first call to update() supplies a complete subtree, because the topmost
402 * parent node of that subtree could end up being the root. It's also necessary
403 * for extended output in the general case.
405 * As with compress_subtree_wide(), this function is not used on inputs of 1
406 * chunk or less. That's a different codepath.
408 static void compress_subtree_to_parent_node(const blake3_ops_t *ops,
409 const uint8_t *input, size_t input_len, const uint32_t key[8],
410 uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN])
412 uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
413 size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len,
414 key, chunk_counter, flags, cv_array);
417 * If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
418 * compress_subtree_wide() returns more than 2 chaining values. Condense
419 * them into 2 by forming parent nodes repeatedly.
421 uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
422 while (num_cvs > 2) {
423 num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key,
424 flags, out_array);
425 memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
427 memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
430 static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8],
431 uint8_t flags)
433 memcpy(ctx->key, key, BLAKE3_KEY_LEN);
434 chunk_state_init(&ctx->chunk, key, flags);
435 ctx->cv_stack_len = 0;
436 ctx->ops = blake3_get_ops();
440 * As described in hasher_push_cv() below, we do "lazy merging", delaying
441 * merges until right before the next CV is about to be added. This is
442 * different from the reference implementation. Another difference is that we
443 * aren't always merging 1 chunk at a time. Instead, each CV might represent
444 * any power-of-two number of chunks, as long as the smaller-above-larger
445 * stack order is maintained. Instead of the "count the trailing 0-bits"
446 * algorithm described in the spec, we use a "count the total number of
447 * 1-bits" variant that doesn't require us to retain the subtree size of the
448 * CV on top of the stack. The principle is the same: each CV that should
449 * remain in the stack is represented by a 1-bit in the total number of chunks
450 * (or bytes) so far.
452 static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len)
454 size_t post_merge_stack_len = (size_t)popcnt(total_len);
455 while (ctx->cv_stack_len > post_merge_stack_len) {
456 uint8_t *parent_node =
457 &ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN];
458 output_t output =
459 parent_output(parent_node, ctx->key, ctx->chunk.flags);
460 output_chaining_value(ctx->ops, &output, parent_node);
461 ctx->cv_stack_len -= 1;
466 * In reference_impl.rs, we merge the new CV with existing CVs from the stack
467 * before pushing it. We can do that because we know more input is coming, so
468 * we know none of the merges are root.
470 * This setting is different. We want to feed as much input as possible to
471 * compress_subtree_wide(), without setting aside anything for the chunk_state.
472 * If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
473 * as a single subtree, if at all possible.
475 * This leads to two problems:
476 * 1) This 64 KiB input might be the only call that ever gets made to update.
477 * In this case, the root node of the 64 KiB subtree would be the root node
478 * of the whole tree, and it would need to be ROOT finalized. We can't
479 * compress it until we know.
480 * 2) This 64 KiB input might complete a larger tree, whose root node is
481 * similarly going to be the the root of the whole tree. For example, maybe
482 * we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
483 * node at the root of the 256 KiB subtree until we know how to finalize it.
485 * The second problem is solved with "lazy merging". That is, when we're about
486 * to add a CV to the stack, we don't merge it with anything first, as the
487 * reference impl does. Instead we do merges using the *previous* CV that was
488 * added, which is sitting on top of the stack, and we put the new CV
489 * (unmerged) on top of the stack afterwards. This guarantees that we never
490 * merge the root node until finalize().
492 * Solving the first problem requires an additional tool,
493 * compress_subtree_to_parent_node(). That function always returns the top
494 * *two* chaining values of the subtree it's compressing. We then do lazy
495 * merging with each of them separately, so that the second CV will always
496 * remain unmerged. (That also helps us support extendable output when we're
497 * hashing an input all-at-once.)
499 static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN],
500 uint64_t chunk_counter)
502 hasher_merge_cv_stack(ctx, chunk_counter);
503 memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
504 BLAKE3_OUT_LEN);
505 ctx->cv_stack_len += 1;
508 void
509 Blake3_Init(BLAKE3_CTX *ctx)
511 hasher_init_base(ctx, BLAKE3_IV, 0);
514 void
515 Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN])
517 uint32_t key_words[8];
518 load_key_words(key, key_words);
519 hasher_init_base(ctx, key_words, KEYED_HASH);
522 static void
523 Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len)
526 * Explicitly checking for zero avoids causing UB by passing a null
527 * pointer to memcpy. This comes up in practice with things like:
528 * std::vector<uint8_t> v;
529 * blake3_hasher_update(&hasher, v.data(), v.size());
531 if (input_len == 0) {
532 return;
535 const uint8_t *input_bytes = (const uint8_t *)input;
538 * If we have some partial chunk bytes in the internal chunk_state, we
539 * need to finish that chunk first.
541 if (chunk_state_len(&ctx->chunk) > 0) {
542 size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk);
543 if (take > input_len) {
544 take = input_len;
546 chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take);
547 input_bytes += take;
548 input_len -= take;
550 * If we've filled the current chunk and there's more coming,
551 * finalize this chunk and proceed. In this case we know it's
552 * not the root.
554 if (input_len > 0) {
555 output_t output = chunk_state_output(&ctx->chunk);
556 uint8_t chunk_cv[32];
557 output_chaining_value(ctx->ops, &output, chunk_cv);
558 hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter);
559 chunk_state_reset(&ctx->chunk, ctx->key,
560 ctx->chunk.chunk_counter + 1);
561 } else {
562 return;
567 * Now the chunk_state is clear, and we have more input. If there's
568 * more than a single chunk (so, definitely not the root chunk), hash
569 * the largest whole subtree we can, with the full benefits of SIMD
570 * (and maybe in the future, multi-threading) parallelism. Two
571 * restrictions:
572 * - The subtree has to be a power-of-2 number of chunks. Only
573 * subtrees along the right edge can be incomplete, and we don't know
574 * where the right edge is going to be until we get to finalize().
575 * - The subtree must evenly divide the total number of chunks up
576 * until this point (if total is not 0). If the current incomplete
577 * subtree is only waiting for 1 more chunk, we can't hash a subtree
578 * of 4 chunks. We have to complete the current subtree first.
579 * Because we might need to break up the input to form powers of 2, or
580 * to evenly divide what we already have, this part runs in a loop.
582 while (input_len > BLAKE3_CHUNK_LEN) {
583 size_t subtree_len = round_down_to_power_of_2(input_len);
584 uint64_t count_so_far =
585 ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
587 * Shrink the subtree_len until it evenly divides the count so
588 * far. We know that subtree_len itself is a power of 2, so we
589 * can use a bitmasking trick instead of an actual remainder
590 * operation. (Note that if the caller consistently passes
591 * power-of-2 inputs of the same size, as is hopefully
592 * typical, this loop condition will always fail, and
593 * subtree_len will always be the full length of the input.)
595 * An aside: We don't have to shrink subtree_len quite this
596 * much. For example, if count_so_far is 1, we could pass 2
597 * chunks to compress_subtree_to_parent_node. Since we'll get
598 * 2 CVs back, we'll still get the right answer in the end,
599 * and we might get to use 2-way SIMD parallelism. The problem
600 * with this optimization, is that it gets us stuck always
601 * hashing 2 chunks. The total number of chunks will remain
602 * odd, and we'll never graduate to higher degrees of
603 * parallelism. See
604 * https://github.com/BLAKE3-team/BLAKE3/issues/69.
606 while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
607 subtree_len /= 2;
610 * The shrunken subtree_len might now be 1 chunk long. If so,
611 * hash that one chunk by itself. Otherwise, compress the
612 * subtree into a pair of CVs.
614 uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
615 if (subtree_len <= BLAKE3_CHUNK_LEN) {
616 blake3_chunk_state_t chunk_state;
617 chunk_state_init(&chunk_state, ctx->key,
618 ctx->chunk.flags);
619 chunk_state.chunk_counter = ctx->chunk.chunk_counter;
620 chunk_state_update(ctx->ops, &chunk_state, input_bytes,
621 subtree_len);
622 output_t output = chunk_state_output(&chunk_state);
623 uint8_t cv[BLAKE3_OUT_LEN];
624 output_chaining_value(ctx->ops, &output, cv);
625 hasher_push_cv(ctx, cv, chunk_state.chunk_counter);
626 } else {
628 * This is the high-performance happy path, though
629 * getting here depends on the caller giving us a long
630 * enough input.
632 uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
633 compress_subtree_to_parent_node(ctx->ops, input_bytes,
634 subtree_len, ctx->key, ctx-> chunk.chunk_counter,
635 ctx->chunk.flags, cv_pair);
636 hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter);
637 hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN],
638 ctx->chunk.chunk_counter + (subtree_chunks / 2));
640 ctx->chunk.chunk_counter += subtree_chunks;
641 input_bytes += subtree_len;
642 input_len -= subtree_len;
646 * If there's any remaining input less than a full chunk, add it to
647 * the chunk state. In that case, also do a final merge loop to make
648 * sure the subtree stack doesn't contain any unmerged pairs. The
649 * remaining input means we know these merges are non-root. This merge
650 * loop isn't strictly necessary here, because hasher_push_chunk_cv
651 * already does its own merge loop, but it simplifies
652 * blake3_hasher_finalize below.
654 if (input_len > 0) {
655 chunk_state_update(ctx->ops, &ctx->chunk, input_bytes,
656 input_len);
657 hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter);
661 void
662 Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo)
664 size_t done = 0;
665 const uint8_t *data = input;
666 const size_t block_max = 1024 * 64;
668 /* max feed buffer to leave the stack size small */
669 while (todo != 0) {
670 size_t block = (todo >= block_max) ? block_max : todo;
671 Blake3_Update2(ctx, data + done, block);
672 done += block;
673 todo -= block;
677 void
678 Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out)
680 Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN);
683 void
684 Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out,
685 size_t out_len)
688 * Explicitly checking for zero avoids causing UB by passing a null
689 * pointer to memcpy. This comes up in practice with things like:
690 * std::vector<uint8_t> v;
691 * blake3_hasher_finalize(&hasher, v.data(), v.size());
693 if (out_len == 0) {
694 return;
696 /* If the subtree stack is empty, then the current chunk is the root. */
697 if (ctx->cv_stack_len == 0) {
698 output_t output = chunk_state_output(&ctx->chunk);
699 output_root_bytes(ctx->ops, &output, seek, out, out_len);
700 return;
703 * If there are any bytes in the chunk state, finalize that chunk and
704 * do a roll-up merge between that chunk hash and every subtree in the
705 * stack. In this case, the extra merge loop at the end of
706 * blake3_hasher_update guarantees that none of the subtrees in the
707 * stack need to be merged with each other first. Otherwise, if there
708 * are no bytes in the chunk state, then the top of the stack is a
709 * chunk hash, and we start the merge from that.
711 output_t output;
712 size_t cvs_remaining;
713 if (chunk_state_len(&ctx->chunk) > 0) {
714 cvs_remaining = ctx->cv_stack_len;
715 output = chunk_state_output(&ctx->chunk);
716 } else {
717 /* There are always at least 2 CVs in the stack in this case. */
718 cvs_remaining = ctx->cv_stack_len - 2;
719 output = parent_output(&ctx->cv_stack[cvs_remaining * 32],
720 ctx->key, ctx->chunk.flags);
722 while (cvs_remaining > 0) {
723 cvs_remaining -= 1;
724 uint8_t parent_block[BLAKE3_BLOCK_LEN];
725 memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32);
726 output_chaining_value(ctx->ops, &output, &parent_block[32]);
727 output = parent_output(parent_block, ctx->key,
728 ctx->chunk.flags);
730 output_root_bytes(ctx->ops, &output, seek, out, out_len);