4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
40 #include <sys/metaslab.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
49 #include "zfs_namecheck.h"
53 * Filesystem and Snapshot Limits
54 * ------------------------------
56 * These limits are used to restrict the number of filesystems and/or snapshots
57 * that can be created at a given level in the tree or below. A typical
58 * use-case is with a delegated dataset where the administrator wants to ensure
59 * that a user within the zone is not creating too many additional filesystems
60 * or snapshots, even though they're not exceeding their space quota.
62 * The filesystem and snapshot counts are stored as extensible properties. This
63 * capability is controlled by a feature flag and must be enabled to be used.
64 * Once enabled, the feature is not active until the first limit is set. At
65 * that point, future operations to create/destroy filesystems or snapshots
66 * will validate and update the counts.
68 * Because the count properties will not exist before the feature is active,
69 * the counts are updated when a limit is first set on an uninitialized
70 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
71 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
72 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
73 * snapshot count properties on a node indicate uninitialized counts on that
74 * node.) When first setting a limit on an uninitialized node, the code starts
75 * at the filesystem with the new limit and descends into all sub-filesystems
76 * to add the count properties.
78 * In practice this is lightweight since a limit is typically set when the
79 * filesystem is created and thus has no children. Once valid, changing the
80 * limit value won't require a re-traversal since the counts are already valid.
81 * When recursively fixing the counts, if a node with a limit is encountered
82 * during the descent, the counts are known to be valid and there is no need to
83 * descend into that filesystem's children. The counts on filesystems above the
84 * one with the new limit will still be uninitialized, unless a limit is
85 * eventually set on one of those filesystems. The counts are always recursively
86 * updated when a limit is set on a dataset, unless there is already a limit.
87 * When a new limit value is set on a filesystem with an existing limit, it is
88 * possible for the new limit to be less than the current count at that level
89 * since a user who can change the limit is also allowed to exceed the limit.
91 * Once the feature is active, then whenever a filesystem or snapshot is
92 * created, the code recurses up the tree, validating the new count against the
93 * limit at each initialized level. In practice, most levels will not have a
94 * limit set. If there is a limit at any initialized level up the tree, the
95 * check must pass or the creation will fail. Likewise, when a filesystem or
96 * snapshot is destroyed, the counts are recursively adjusted all the way up
97 * the initizized nodes in the tree. Renaming a filesystem into different point
98 * in the tree will first validate, then update the counts on each branch up to
99 * the common ancestor. A receive will also validate the counts and then update
102 * An exception to the above behavior is that the limit is not enforced if the
103 * user has permission to modify the limit. This is primarily so that
104 * recursive snapshots in the global zone always work. We want to prevent a
105 * denial-of-service in which a lower level delegated dataset could max out its
106 * limit and thus block recursive snapshots from being taken in the global zone.
107 * Because of this, it is possible for the snapshot count to be over the limit
108 * and snapshots taken in the global zone could cause a lower level dataset to
109 * hit or exceed its limit. The administrator taking the global zone recursive
110 * snapshot should be aware of this side-effect and behave accordingly.
111 * For consistency, the filesystem limit is also not enforced if the user can
114 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
115 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
116 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
117 * dsl_dir_init_fs_ss_count().
119 * There is a special case when we receive a filesystem that already exists. In
120 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
121 * never update the filesystem counts for temporary clones.
123 * Likewise, we do not update the snapshot counts for temporary snapshots,
124 * such as those created by zfs diff.
127 extern inline dsl_dir_phys_t
*dsl_dir_phys(dsl_dir_t
*dd
);
129 static uint64_t dsl_dir_space_towrite(dsl_dir_t
*dd
);
132 dsl_dir_evict_async(void *dbu
)
136 ASSERTV(dsl_pool_t
*dp
= dd
->dd_pool
);
140 for (t
= 0; t
< TXG_SIZE
; t
++) {
141 ASSERT(!txg_list_member(&dp
->dp_dirty_dirs
, dd
, t
));
142 ASSERT(dd
->dd_tempreserved
[t
] == 0);
143 ASSERT(dd
->dd_space_towrite
[t
] == 0);
147 dsl_dir_async_rele(dd
->dd_parent
, dd
);
149 spa_async_close(dd
->dd_pool
->dp_spa
, dd
);
152 mutex_destroy(&dd
->dd_lock
);
153 kmem_free(dd
, sizeof (dsl_dir_t
));
157 dsl_dir_hold_obj(dsl_pool_t
*dp
, uint64_t ddobj
,
158 const char *tail
, void *tag
, dsl_dir_t
**ddp
)
164 ASSERT(dsl_pool_config_held(dp
));
166 err
= dmu_bonus_hold(dp
->dp_meta_objset
, ddobj
, tag
, &dbuf
);
169 dd
= dmu_buf_get_user(dbuf
);
172 dmu_object_info_t doi
;
173 dmu_object_info_from_db(dbuf
, &doi
);
174 ASSERT3U(doi
.doi_bonus_type
, ==, DMU_OT_DSL_DIR
);
175 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (dsl_dir_phys_t
));
181 dd
= kmem_zalloc(sizeof (dsl_dir_t
), KM_SLEEP
);
182 dd
->dd_object
= ddobj
;
185 mutex_init(&dd
->dd_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
188 dsl_dir_snap_cmtime_update(dd
);
190 if (dsl_dir_phys(dd
)->dd_parent_obj
) {
191 err
= dsl_dir_hold_obj(dp
,
192 dsl_dir_phys(dd
)->dd_parent_obj
, NULL
, dd
,
200 err
= zap_lookup(dp
->dp_meta_objset
,
201 dsl_dir_phys(dd
->dd_parent
)->
202 dd_child_dir_zapobj
, tail
,
203 sizeof (foundobj
), 1, &foundobj
);
204 ASSERT(err
|| foundobj
== ddobj
);
206 (void) strlcpy(dd
->dd_myname
, tail
,
207 sizeof (dd
->dd_myname
));
209 err
= zap_value_search(dp
->dp_meta_objset
,
210 dsl_dir_phys(dd
->dd_parent
)->
212 ddobj
, 0, dd
->dd_myname
);
217 (void) strcpy(dd
->dd_myname
, spa_name(dp
->dp_spa
));
220 if (dsl_dir_is_clone(dd
)) {
221 dmu_buf_t
*origin_bonus
;
222 dsl_dataset_phys_t
*origin_phys
;
225 * We can't open the origin dataset, because
226 * that would require opening this dsl_dir.
227 * Just look at its phys directly instead.
229 err
= dmu_bonus_hold(dp
->dp_meta_objset
,
230 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
,
234 origin_phys
= origin_bonus
->db_data
;
236 origin_phys
->ds_creation_txg
;
237 dmu_buf_rele(origin_bonus
, FTAG
);
240 dmu_buf_init_user(&dd
->dd_dbu
, NULL
, dsl_dir_evict_async
,
242 winner
= dmu_buf_set_user_ie(dbuf
, &dd
->dd_dbu
);
243 if (winner
!= NULL
) {
245 dsl_dir_rele(dd
->dd_parent
, dd
);
247 mutex_destroy(&dd
->dd_lock
);
248 kmem_free(dd
, sizeof (dsl_dir_t
));
251 spa_open_ref(dp
->dp_spa
, dd
);
256 * The dsl_dir_t has both open-to-close and instantiate-to-evict
257 * holds on the spa. We need the open-to-close holds because
258 * otherwise the spa_refcnt wouldn't change when we open a
259 * dir which the spa also has open, so we could incorrectly
260 * think it was OK to unload/export/destroy the pool. We need
261 * the instantiate-to-evict hold because the dsl_dir_t has a
262 * pointer to the dd_pool, which has a pointer to the spa_t.
264 spa_open_ref(dp
->dp_spa
, tag
);
265 ASSERT3P(dd
->dd_pool
, ==, dp
);
266 ASSERT3U(dd
->dd_object
, ==, ddobj
);
267 ASSERT3P(dd
->dd_dbuf
, ==, dbuf
);
273 dsl_dir_rele(dd
->dd_parent
, dd
);
275 mutex_destroy(&dd
->dd_lock
);
276 kmem_free(dd
, sizeof (dsl_dir_t
));
277 dmu_buf_rele(dbuf
, tag
);
282 dsl_dir_rele(dsl_dir_t
*dd
, void *tag
)
284 dprintf_dd(dd
, "%s\n", "");
285 spa_close(dd
->dd_pool
->dp_spa
, tag
);
286 dmu_buf_rele(dd
->dd_dbuf
, tag
);
290 * Remove a reference to the given dsl dir that is being asynchronously
291 * released. Async releases occur from a taskq performing eviction of
292 * dsl datasets and dirs. This process is identical to a normal release
293 * with the exception of using the async API for releasing the reference on
297 dsl_dir_async_rele(dsl_dir_t
*dd
, void *tag
)
299 dprintf_dd(dd
, "%s\n", "");
300 spa_async_close(dd
->dd_pool
->dp_spa
, tag
);
301 dmu_buf_rele(dd
->dd_dbuf
, tag
);
304 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
306 dsl_dir_name(dsl_dir_t
*dd
, char *buf
)
309 dsl_dir_name(dd
->dd_parent
, buf
);
310 VERIFY3U(strlcat(buf
, "/", ZFS_MAX_DATASET_NAME_LEN
), <,
311 ZFS_MAX_DATASET_NAME_LEN
);
315 if (!MUTEX_HELD(&dd
->dd_lock
)) {
317 * recursive mutex so that we can use
318 * dprintf_dd() with dd_lock held
320 mutex_enter(&dd
->dd_lock
);
321 VERIFY3U(strlcat(buf
, dd
->dd_myname
, ZFS_MAX_DATASET_NAME_LEN
),
322 <, ZFS_MAX_DATASET_NAME_LEN
);
323 mutex_exit(&dd
->dd_lock
);
325 VERIFY3U(strlcat(buf
, dd
->dd_myname
, ZFS_MAX_DATASET_NAME_LEN
),
326 <, ZFS_MAX_DATASET_NAME_LEN
);
330 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
332 dsl_dir_namelen(dsl_dir_t
*dd
)
337 /* parent's name + 1 for the "/" */
338 result
= dsl_dir_namelen(dd
->dd_parent
) + 1;
341 if (!MUTEX_HELD(&dd
->dd_lock
)) {
342 /* see dsl_dir_name */
343 mutex_enter(&dd
->dd_lock
);
344 result
+= strlen(dd
->dd_myname
);
345 mutex_exit(&dd
->dd_lock
);
347 result
+= strlen(dd
->dd_myname
);
354 getcomponent(const char *path
, char *component
, const char **nextp
)
358 if ((path
== NULL
) || (path
[0] == '\0'))
359 return (SET_ERROR(ENOENT
));
360 /* This would be a good place to reserve some namespace... */
361 p
= strpbrk(path
, "/@");
362 if (p
&& (p
[1] == '/' || p
[1] == '@')) {
363 /* two separators in a row */
364 return (SET_ERROR(EINVAL
));
366 if (p
== NULL
|| p
== path
) {
368 * if the first thing is an @ or /, it had better be an
369 * @ and it had better not have any more ats or slashes,
370 * and it had better have something after the @.
373 (p
[0] != '@' || strpbrk(path
+1, "/@") || p
[1] == '\0'))
374 return (SET_ERROR(EINVAL
));
375 if (strlen(path
) >= ZFS_MAX_DATASET_NAME_LEN
)
376 return (SET_ERROR(ENAMETOOLONG
));
377 (void) strcpy(component
, path
);
379 } else if (p
[0] == '/') {
380 if (p
- path
>= ZFS_MAX_DATASET_NAME_LEN
)
381 return (SET_ERROR(ENAMETOOLONG
));
382 (void) strncpy(component
, path
, p
- path
);
383 component
[p
- path
] = '\0';
385 } else if (p
[0] == '@') {
387 * if the next separator is an @, there better not be
390 if (strchr(path
, '/'))
391 return (SET_ERROR(EINVAL
));
392 if (p
- path
>= ZFS_MAX_DATASET_NAME_LEN
)
393 return (SET_ERROR(ENAMETOOLONG
));
394 (void) strncpy(component
, path
, p
- path
);
395 component
[p
- path
] = '\0';
397 panic("invalid p=%p", (void *)p
);
404 * Return the dsl_dir_t, and possibly the last component which couldn't
405 * be found in *tail. The name must be in the specified dsl_pool_t. This
406 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
407 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
408 * (*tail)[0] == '@' means that the last component is a snapshot.
411 dsl_dir_hold(dsl_pool_t
*dp
, const char *name
, void *tag
,
412 dsl_dir_t
**ddp
, const char **tailp
)
415 const char *spaname
, *next
, *nextnext
= NULL
;
420 buf
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
421 err
= getcomponent(name
, buf
, &next
);
425 /* Make sure the name is in the specified pool. */
426 spaname
= spa_name(dp
->dp_spa
);
427 if (strcmp(buf
, spaname
) != 0) {
428 err
= SET_ERROR(EXDEV
);
432 ASSERT(dsl_pool_config_held(dp
));
434 err
= dsl_dir_hold_obj(dp
, dp
->dp_root_dir_obj
, NULL
, tag
, &dd
);
439 while (next
!= NULL
) {
441 err
= getcomponent(next
, buf
, &nextnext
);
444 ASSERT(next
[0] != '\0');
447 dprintf("looking up %s in obj%lld\n",
448 buf
, dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
450 err
= zap_lookup(dp
->dp_meta_objset
,
451 dsl_dir_phys(dd
)->dd_child_dir_zapobj
,
452 buf
, sizeof (ddobj
), 1, &ddobj
);
459 err
= dsl_dir_hold_obj(dp
, ddobj
, buf
, tag
, &child_dd
);
462 dsl_dir_rele(dd
, tag
);
468 dsl_dir_rele(dd
, tag
);
473 * It's an error if there's more than one component left, or
474 * tailp==NULL and there's any component left.
477 (tailp
== NULL
|| (nextnext
&& nextnext
[0] != '\0'))) {
479 dsl_dir_rele(dd
, tag
);
480 dprintf("next=%p (%s) tail=%p\n", next
, next
?next
:"", tailp
);
481 err
= SET_ERROR(ENOENT
);
487 kmem_free(buf
, ZFS_MAX_DATASET_NAME_LEN
);
492 * If the counts are already initialized for this filesystem and its
493 * descendants then do nothing, otherwise initialize the counts.
495 * The counts on this filesystem, and those below, may be uninitialized due to
496 * either the use of a pre-existing pool which did not support the
497 * filesystem/snapshot limit feature, or one in which the feature had not yet
500 * Recursively descend the filesystem tree and update the filesystem/snapshot
501 * counts on each filesystem below, then update the cumulative count on the
502 * current filesystem. If the filesystem already has a count set on it,
503 * then we know that its counts, and the counts on the filesystems below it,
504 * are already correct, so we don't have to update this filesystem.
507 dsl_dir_init_fs_ss_count(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
509 uint64_t my_fs_cnt
= 0;
510 uint64_t my_ss_cnt
= 0;
511 dsl_pool_t
*dp
= dd
->dd_pool
;
512 objset_t
*os
= dp
->dp_meta_objset
;
517 ASSERT(spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
));
518 ASSERT(dsl_pool_config_held(dp
));
519 ASSERT(dmu_tx_is_syncing(tx
));
521 dsl_dir_zapify(dd
, tx
);
524 * If the filesystem count has already been initialized then we
525 * don't need to recurse down any further.
527 if (zap_contains(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
) == 0)
530 zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
531 za
= kmem_alloc(sizeof (zap_attribute_t
), KM_SLEEP
);
533 /* Iterate my child dirs */
534 for (zap_cursor_init(zc
, os
, dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
535 zap_cursor_retrieve(zc
, za
) == 0; zap_cursor_advance(zc
)) {
539 VERIFY0(dsl_dir_hold_obj(dp
, za
->za_first_integer
, NULL
, FTAG
,
543 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
544 * temporary datasets.
546 if (chld_dd
->dd_myname
[0] == '$' ||
547 chld_dd
->dd_myname
[0] == '%') {
548 dsl_dir_rele(chld_dd
, FTAG
);
552 my_fs_cnt
++; /* count this child */
554 dsl_dir_init_fs_ss_count(chld_dd
, tx
);
556 VERIFY0(zap_lookup(os
, chld_dd
->dd_object
,
557 DD_FIELD_FILESYSTEM_COUNT
, sizeof (count
), 1, &count
));
559 VERIFY0(zap_lookup(os
, chld_dd
->dd_object
,
560 DD_FIELD_SNAPSHOT_COUNT
, sizeof (count
), 1, &count
));
563 dsl_dir_rele(chld_dd
, FTAG
);
566 /* Count my snapshots (we counted children's snapshots above) */
567 VERIFY0(dsl_dataset_hold_obj(dd
->dd_pool
,
568 dsl_dir_phys(dd
)->dd_head_dataset_obj
, FTAG
, &ds
));
570 for (zap_cursor_init(zc
, os
, dsl_dataset_phys(ds
)->ds_snapnames_zapobj
);
571 zap_cursor_retrieve(zc
, za
) == 0;
572 zap_cursor_advance(zc
)) {
573 /* Don't count temporary snapshots */
574 if (za
->za_name
[0] != '%')
579 dsl_dataset_rele(ds
, FTAG
);
581 kmem_free(zc
, sizeof (zap_cursor_t
));
582 kmem_free(za
, sizeof (zap_attribute_t
));
584 /* we're in a sync task, update counts */
585 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
586 VERIFY0(zap_add(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
,
587 sizeof (my_fs_cnt
), 1, &my_fs_cnt
, tx
));
588 VERIFY0(zap_add(os
, dd
->dd_object
, DD_FIELD_SNAPSHOT_COUNT
,
589 sizeof (my_ss_cnt
), 1, &my_ss_cnt
, tx
));
593 dsl_dir_actv_fs_ss_limit_check(void *arg
, dmu_tx_t
*tx
)
595 char *ddname
= (char *)arg
;
596 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
601 error
= dsl_dataset_hold(dp
, ddname
, FTAG
, &ds
);
605 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
)) {
606 dsl_dataset_rele(ds
, FTAG
);
607 return (SET_ERROR(ENOTSUP
));
611 if (spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
) &&
612 dsl_dir_is_zapified(dd
) &&
613 zap_contains(dp
->dp_meta_objset
, dd
->dd_object
,
614 DD_FIELD_FILESYSTEM_COUNT
) == 0) {
615 dsl_dataset_rele(ds
, FTAG
);
616 return (SET_ERROR(EALREADY
));
619 dsl_dataset_rele(ds
, FTAG
);
624 dsl_dir_actv_fs_ss_limit_sync(void *arg
, dmu_tx_t
*tx
)
626 char *ddname
= (char *)arg
;
627 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
631 VERIFY0(dsl_dataset_hold(dp
, ddname
, FTAG
, &ds
));
633 spa
= dsl_dataset_get_spa(ds
);
635 if (!spa_feature_is_active(spa
, SPA_FEATURE_FS_SS_LIMIT
)) {
637 * Since the feature was not active and we're now setting a
638 * limit, increment the feature-active counter so that the
639 * feature becomes active for the first time.
641 * We are already in a sync task so we can update the MOS.
643 spa_feature_incr(spa
, SPA_FEATURE_FS_SS_LIMIT
, tx
);
647 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
648 * we need to ensure the counts are correct. Descend down the tree from
649 * this point and update all of the counts to be accurate.
651 dsl_dir_init_fs_ss_count(ds
->ds_dir
, tx
);
653 dsl_dataset_rele(ds
, FTAG
);
657 * Make sure the feature is enabled and activate it if necessary.
658 * Since we're setting a limit, ensure the on-disk counts are valid.
659 * This is only called by the ioctl path when setting a limit value.
661 * We do not need to validate the new limit, since users who can change the
662 * limit are also allowed to exceed the limit.
665 dsl_dir_activate_fs_ss_limit(const char *ddname
)
669 error
= dsl_sync_task(ddname
, dsl_dir_actv_fs_ss_limit_check
,
670 dsl_dir_actv_fs_ss_limit_sync
, (void *)ddname
, 0,
671 ZFS_SPACE_CHECK_RESERVED
);
673 if (error
== EALREADY
)
680 * Used to determine if the filesystem_limit or snapshot_limit should be
681 * enforced. We allow the limit to be exceeded if the user has permission to
682 * write the property value. We pass in the creds that we got in the open
683 * context since we will always be the GZ root in syncing context. We also have
684 * to handle the case where we are allowed to change the limit on the current
685 * dataset, but there may be another limit in the tree above.
687 * We can never modify these two properties within a non-global zone. In
688 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
689 * can't use that function since we are already holding the dp_config_rwlock.
690 * In addition, we already have the dd and dealing with snapshots is simplified
701 dsl_enforce_ds_ss_limits(dsl_dir_t
*dd
, zfs_prop_t prop
, cred_t
*cr
)
703 enforce_res_t enforce
= ENFORCE_ALWAYS
;
708 ASSERT(prop
== ZFS_PROP_FILESYSTEM_LIMIT
||
709 prop
== ZFS_PROP_SNAPSHOT_LIMIT
);
712 if (crgetzoneid(cr
) != GLOBAL_ZONEID
)
713 return (ENFORCE_ALWAYS
);
715 if (secpolicy_zfs(cr
) == 0)
716 return (ENFORCE_NEVER
);
719 if ((obj
= dsl_dir_phys(dd
)->dd_head_dataset_obj
) == 0)
720 return (ENFORCE_ALWAYS
);
722 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
724 if (dsl_dataset_hold_obj(dd
->dd_pool
, obj
, FTAG
, &ds
) != 0)
725 return (ENFORCE_ALWAYS
);
727 if (dsl_prop_get_ds(ds
, "zoned", 8, 1, &zoned
, NULL
) || zoned
) {
728 /* Only root can access zoned fs's from the GZ */
729 enforce
= ENFORCE_ALWAYS
;
731 if (dsl_deleg_access_impl(ds
, zfs_prop_to_name(prop
), cr
) == 0)
732 enforce
= ENFORCE_ABOVE
;
735 dsl_dataset_rele(ds
, FTAG
);
740 * Check if adding additional child filesystem(s) would exceed any filesystem
741 * limits or adding additional snapshot(s) would exceed any snapshot limits.
742 * The prop argument indicates which limit to check.
744 * Note that all filesystem limits up to the root (or the highest
745 * initialized) filesystem or the given ancestor must be satisfied.
748 dsl_fs_ss_limit_check(dsl_dir_t
*dd
, uint64_t delta
, zfs_prop_t prop
,
749 dsl_dir_t
*ancestor
, cred_t
*cr
)
751 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
752 uint64_t limit
, count
;
754 enforce_res_t enforce
;
757 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
758 ASSERT(prop
== ZFS_PROP_FILESYSTEM_LIMIT
||
759 prop
== ZFS_PROP_SNAPSHOT_LIMIT
);
762 * If we're allowed to change the limit, don't enforce the limit
763 * e.g. this can happen if a snapshot is taken by an administrative
764 * user in the global zone (i.e. a recursive snapshot by root).
765 * However, we must handle the case of delegated permissions where we
766 * are allowed to change the limit on the current dataset, but there
767 * is another limit in the tree above.
769 enforce
= dsl_enforce_ds_ss_limits(dd
, prop
, cr
);
770 if (enforce
== ENFORCE_NEVER
)
774 * e.g. if renaming a dataset with no snapshots, count adjustment
780 if (prop
== ZFS_PROP_SNAPSHOT_LIMIT
) {
782 * We don't enforce the limit for temporary snapshots. This is
783 * indicated by a NULL cred_t argument.
788 count_prop
= DD_FIELD_SNAPSHOT_COUNT
;
790 count_prop
= DD_FIELD_FILESYSTEM_COUNT
;
794 * If an ancestor has been provided, stop checking the limit once we
795 * hit that dir. We need this during rename so that we don't overcount
796 * the check once we recurse up to the common ancestor.
802 * If we hit an uninitialized node while recursing up the tree, we can
803 * stop since we know there is no limit here (or above). The counts are
804 * not valid on this node and we know we won't touch this node's counts.
806 if (!dsl_dir_is_zapified(dd
) || zap_lookup(os
, dd
->dd_object
,
807 count_prop
, sizeof (count
), 1, &count
) == ENOENT
)
810 err
= dsl_prop_get_dd(dd
, zfs_prop_to_name(prop
), 8, 1, &limit
, NULL
,
815 /* Is there a limit which we've hit? */
816 if (enforce
== ENFORCE_ALWAYS
&& (count
+ delta
) > limit
)
817 return (SET_ERROR(EDQUOT
));
819 if (dd
->dd_parent
!= NULL
)
820 err
= dsl_fs_ss_limit_check(dd
->dd_parent
, delta
, prop
,
827 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
828 * parents. When a new filesystem/snapshot is created, increment the count on
829 * all parents, and when a filesystem/snapshot is destroyed, decrement the
833 dsl_fs_ss_count_adjust(dsl_dir_t
*dd
, int64_t delta
, const char *prop
,
837 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
840 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
841 ASSERT(dmu_tx_is_syncing(tx
));
842 ASSERT(strcmp(prop
, DD_FIELD_FILESYSTEM_COUNT
) == 0 ||
843 strcmp(prop
, DD_FIELD_SNAPSHOT_COUNT
) == 0);
846 * When we receive an incremental stream into a filesystem that already
847 * exists, a temporary clone is created. We don't count this temporary
848 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
849 * $MOS & $ORIGIN) objsets.
851 if ((dd
->dd_myname
[0] == '%' || dd
->dd_myname
[0] == '$') &&
852 strcmp(prop
, DD_FIELD_FILESYSTEM_COUNT
) == 0)
856 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
862 * If we hit an uninitialized node while recursing up the tree, we can
863 * stop since we know the counts are not valid on this node and we
864 * know we shouldn't touch this node's counts. An uninitialized count
865 * on the node indicates that either the feature has not yet been
866 * activated or there are no limits on this part of the tree.
868 if (!dsl_dir_is_zapified(dd
) || (err
= zap_lookup(os
, dd
->dd_object
,
869 prop
, sizeof (count
), 1, &count
)) == ENOENT
)
874 /* Use a signed verify to make sure we're not neg. */
875 VERIFY3S(count
, >=, 0);
877 VERIFY0(zap_update(os
, dd
->dd_object
, prop
, sizeof (count
), 1, &count
,
880 /* Roll up this additional count into our ancestors */
881 if (dd
->dd_parent
!= NULL
)
882 dsl_fs_ss_count_adjust(dd
->dd_parent
, delta
, prop
, tx
);
886 dsl_dir_create_sync(dsl_pool_t
*dp
, dsl_dir_t
*pds
, const char *name
,
889 objset_t
*mos
= dp
->dp_meta_objset
;
891 dsl_dir_phys_t
*ddphys
;
894 ddobj
= dmu_object_alloc(mos
, DMU_OT_DSL_DIR
, 0,
895 DMU_OT_DSL_DIR
, sizeof (dsl_dir_phys_t
), tx
);
897 VERIFY(0 == zap_add(mos
, dsl_dir_phys(pds
)->dd_child_dir_zapobj
,
898 name
, sizeof (uint64_t), 1, &ddobj
, tx
));
900 /* it's the root dir */
901 VERIFY(0 == zap_add(mos
, DMU_POOL_DIRECTORY_OBJECT
,
902 DMU_POOL_ROOT_DATASET
, sizeof (uint64_t), 1, &ddobj
, tx
));
904 VERIFY(0 == dmu_bonus_hold(mos
, ddobj
, FTAG
, &dbuf
));
905 dmu_buf_will_dirty(dbuf
, tx
);
906 ddphys
= dbuf
->db_data
;
908 ddphys
->dd_creation_time
= gethrestime_sec();
910 ddphys
->dd_parent_obj
= pds
->dd_object
;
912 /* update the filesystem counts */
913 dsl_fs_ss_count_adjust(pds
, 1, DD_FIELD_FILESYSTEM_COUNT
, tx
);
915 ddphys
->dd_props_zapobj
= zap_create(mos
,
916 DMU_OT_DSL_PROPS
, DMU_OT_NONE
, 0, tx
);
917 ddphys
->dd_child_dir_zapobj
= zap_create(mos
,
918 DMU_OT_DSL_DIR_CHILD_MAP
, DMU_OT_NONE
, 0, tx
);
919 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_USED_BREAKDOWN
)
920 ddphys
->dd_flags
|= DD_FLAG_USED_BREAKDOWN
;
921 dmu_buf_rele(dbuf
, FTAG
);
927 dsl_dir_is_clone(dsl_dir_t
*dd
)
929 return (dsl_dir_phys(dd
)->dd_origin_obj
&&
930 (dd
->dd_pool
->dp_origin_snap
== NULL
||
931 dsl_dir_phys(dd
)->dd_origin_obj
!=
932 dd
->dd_pool
->dp_origin_snap
->ds_object
));
936 dsl_dir_stats(dsl_dir_t
*dd
, nvlist_t
*nv
)
938 mutex_enter(&dd
->dd_lock
);
939 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USED
,
940 dsl_dir_phys(dd
)->dd_used_bytes
);
941 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_QUOTA
,
942 dsl_dir_phys(dd
)->dd_quota
);
943 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_RESERVATION
,
944 dsl_dir_phys(dd
)->dd_reserved
);
945 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_COMPRESSRATIO
,
946 dsl_dir_phys(dd
)->dd_compressed_bytes
== 0 ? 100 :
947 (dsl_dir_phys(dd
)->dd_uncompressed_bytes
* 100 /
948 dsl_dir_phys(dd
)->dd_compressed_bytes
));
949 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_LOGICALUSED
,
950 dsl_dir_phys(dd
)->dd_uncompressed_bytes
);
951 if (dsl_dir_phys(dd
)->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
952 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDSNAP
,
953 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_SNAP
]);
954 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDDS
,
955 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_HEAD
]);
956 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDREFRESERV
,
957 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_REFRSRV
]);
958 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDCHILD
,
959 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_CHILD
] +
960 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_CHILD_RSRV
]);
962 mutex_exit(&dd
->dd_lock
);
964 if (dsl_dir_is_zapified(dd
)) {
966 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
968 if (zap_lookup(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
,
969 sizeof (count
), 1, &count
) == 0) {
970 dsl_prop_nvlist_add_uint64(nv
,
971 ZFS_PROP_FILESYSTEM_COUNT
, count
);
973 if (zap_lookup(os
, dd
->dd_object
, DD_FIELD_SNAPSHOT_COUNT
,
974 sizeof (count
), 1, &count
) == 0) {
975 dsl_prop_nvlist_add_uint64(nv
,
976 ZFS_PROP_SNAPSHOT_COUNT
, count
);
980 if (dsl_dir_is_clone(dd
)) {
982 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
984 VERIFY0(dsl_dataset_hold_obj(dd
->dd_pool
,
985 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
, &ds
));
986 dsl_dataset_name(ds
, buf
);
987 dsl_dataset_rele(ds
, FTAG
);
988 dsl_prop_nvlist_add_string(nv
, ZFS_PROP_ORIGIN
, buf
);
993 dsl_dir_dirty(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
995 dsl_pool_t
*dp
= dd
->dd_pool
;
997 ASSERT(dsl_dir_phys(dd
));
999 if (txg_list_add(&dp
->dp_dirty_dirs
, dd
, tx
->tx_txg
)) {
1000 /* up the hold count until we can be written out */
1001 dmu_buf_add_ref(dd
->dd_dbuf
, dd
);
1006 parent_delta(dsl_dir_t
*dd
, uint64_t used
, int64_t delta
)
1008 uint64_t old_accounted
= MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1009 uint64_t new_accounted
=
1010 MAX(used
+ delta
, dsl_dir_phys(dd
)->dd_reserved
);
1011 return (new_accounted
- old_accounted
);
1015 dsl_dir_sync(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
1017 ASSERT(dmu_tx_is_syncing(tx
));
1019 mutex_enter(&dd
->dd_lock
);
1020 ASSERT0(dd
->dd_tempreserved
[tx
->tx_txg
&TXG_MASK
]);
1021 dprintf_dd(dd
, "txg=%llu towrite=%lluK\n", tx
->tx_txg
,
1022 dd
->dd_space_towrite
[tx
->tx_txg
&TXG_MASK
] / 1024);
1023 dd
->dd_space_towrite
[tx
->tx_txg
&TXG_MASK
] = 0;
1024 mutex_exit(&dd
->dd_lock
);
1026 /* release the hold from dsl_dir_dirty */
1027 dmu_buf_rele(dd
->dd_dbuf
, dd
);
1031 dsl_dir_space_towrite(dsl_dir_t
*dd
)
1036 ASSERT(MUTEX_HELD(&dd
->dd_lock
));
1038 for (i
= 0; i
< TXG_SIZE
; i
++) {
1039 space
+= dd
->dd_space_towrite
[i
&TXG_MASK
];
1040 ASSERT3U(dd
->dd_space_towrite
[i
&TXG_MASK
], >=, 0);
1046 * How much space would dd have available if ancestor had delta applied
1047 * to it? If ondiskonly is set, we're only interested in what's
1048 * on-disk, not estimated pending changes.
1051 dsl_dir_space_available(dsl_dir_t
*dd
,
1052 dsl_dir_t
*ancestor
, int64_t delta
, int ondiskonly
)
1054 uint64_t parentspace
, myspace
, quota
, used
;
1057 * If there are no restrictions otherwise, assume we have
1058 * unlimited space available.
1061 parentspace
= UINT64_MAX
;
1063 if (dd
->dd_parent
!= NULL
) {
1064 parentspace
= dsl_dir_space_available(dd
->dd_parent
,
1065 ancestor
, delta
, ondiskonly
);
1068 mutex_enter(&dd
->dd_lock
);
1069 if (dsl_dir_phys(dd
)->dd_quota
!= 0)
1070 quota
= dsl_dir_phys(dd
)->dd_quota
;
1071 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1073 used
+= dsl_dir_space_towrite(dd
);
1075 if (dd
->dd_parent
== NULL
) {
1076 uint64_t poolsize
= dsl_pool_adjustedsize(dd
->dd_pool
, FALSE
);
1077 quota
= MIN(quota
, poolsize
);
1080 if (dsl_dir_phys(dd
)->dd_reserved
> used
&& parentspace
!= UINT64_MAX
) {
1082 * We have some space reserved, in addition to what our
1085 parentspace
+= dsl_dir_phys(dd
)->dd_reserved
- used
;
1088 if (dd
== ancestor
) {
1090 ASSERT(used
>= -delta
);
1092 if (parentspace
!= UINT64_MAX
)
1093 parentspace
-= delta
;
1101 * the lesser of the space provided by our parent and
1102 * the space left in our quota
1104 myspace
= MIN(parentspace
, quota
- used
);
1107 mutex_exit(&dd
->dd_lock
);
1112 struct tempreserve
{
1113 list_node_t tr_node
;
1119 dsl_dir_tempreserve_impl(dsl_dir_t
*dd
, uint64_t asize
, boolean_t netfree
,
1120 boolean_t ignorequota
, boolean_t checkrefquota
, list_t
*tr_list
,
1121 dmu_tx_t
*tx
, boolean_t first
)
1123 uint64_t txg
= tx
->tx_txg
;
1124 uint64_t est_inflight
, used_on_disk
, quota
, parent_rsrv
;
1125 uint64_t deferred
= 0;
1126 struct tempreserve
*tr
;
1127 int retval
= EDQUOT
;
1128 int txgidx
= txg
& TXG_MASK
;
1130 uint64_t ref_rsrv
= 0;
1132 ASSERT3U(txg
, !=, 0);
1133 ASSERT3S(asize
, >, 0);
1135 mutex_enter(&dd
->dd_lock
);
1138 * Check against the dsl_dir's quota. We don't add in the delta
1139 * when checking for over-quota because they get one free hit.
1141 est_inflight
= dsl_dir_space_towrite(dd
);
1142 for (i
= 0; i
< TXG_SIZE
; i
++)
1143 est_inflight
+= dd
->dd_tempreserved
[i
];
1144 used_on_disk
= dsl_dir_phys(dd
)->dd_used_bytes
;
1147 * On the first iteration, fetch the dataset's used-on-disk and
1148 * refreservation values. Also, if checkrefquota is set, test if
1149 * allocating this space would exceed the dataset's refquota.
1151 if (first
&& tx
->tx_objset
) {
1153 dsl_dataset_t
*ds
= tx
->tx_objset
->os_dsl_dataset
;
1155 error
= dsl_dataset_check_quota(ds
, checkrefquota
,
1156 asize
, est_inflight
, &used_on_disk
, &ref_rsrv
);
1158 mutex_exit(&dd
->dd_lock
);
1159 DMU_TX_STAT_BUMP(dmu_tx_quota
);
1165 * If this transaction will result in a net free of space,
1166 * we want to let it through.
1168 if (ignorequota
|| netfree
|| dsl_dir_phys(dd
)->dd_quota
== 0)
1171 quota
= dsl_dir_phys(dd
)->dd_quota
;
1174 * Adjust the quota against the actual pool size at the root
1175 * minus any outstanding deferred frees.
1176 * To ensure that it's possible to remove files from a full
1177 * pool without inducing transient overcommits, we throttle
1178 * netfree transactions against a quota that is slightly larger,
1179 * but still within the pool's allocation slop. In cases where
1180 * we're very close to full, this will allow a steady trickle of
1181 * removes to get through.
1183 if (dd
->dd_parent
== NULL
) {
1184 spa_t
*spa
= dd
->dd_pool
->dp_spa
;
1185 uint64_t poolsize
= dsl_pool_adjustedsize(dd
->dd_pool
, netfree
);
1186 deferred
= metaslab_class_get_deferred(spa_normal_class(spa
));
1187 if (poolsize
- deferred
< quota
) {
1188 quota
= poolsize
- deferred
;
1194 * If they are requesting more space, and our current estimate
1195 * is over quota, they get to try again unless the actual
1196 * on-disk is over quota and there are no pending changes (which
1197 * may free up space for us).
1199 if (used_on_disk
+ est_inflight
>= quota
) {
1200 if (est_inflight
> 0 || used_on_disk
< quota
||
1201 (retval
== ENOSPC
&& used_on_disk
< quota
+ deferred
))
1203 dprintf_dd(dd
, "failing: used=%lluK inflight = %lluK "
1204 "quota=%lluK tr=%lluK err=%d\n",
1205 used_on_disk
>>10, est_inflight
>>10,
1206 quota
>>10, asize
>>10, retval
);
1207 mutex_exit(&dd
->dd_lock
);
1208 DMU_TX_STAT_BUMP(dmu_tx_quota
);
1209 return (SET_ERROR(retval
));
1212 /* We need to up our estimated delta before dropping dd_lock */
1213 dd
->dd_tempreserved
[txgidx
] += asize
;
1215 parent_rsrv
= parent_delta(dd
, used_on_disk
+ est_inflight
,
1217 mutex_exit(&dd
->dd_lock
);
1219 tr
= kmem_zalloc(sizeof (struct tempreserve
), KM_SLEEP
);
1221 tr
->tr_size
= asize
;
1222 list_insert_tail(tr_list
, tr
);
1224 /* see if it's OK with our parent */
1225 if (dd
->dd_parent
&& parent_rsrv
) {
1226 boolean_t ismos
= (dsl_dir_phys(dd
)->dd_head_dataset_obj
== 0);
1228 return (dsl_dir_tempreserve_impl(dd
->dd_parent
,
1229 parent_rsrv
, netfree
, ismos
, TRUE
, tr_list
, tx
, FALSE
));
1236 * Reserve space in this dsl_dir, to be used in this tx's txg.
1237 * After the space has been dirtied (and dsl_dir_willuse_space()
1238 * has been called), the reservation should be canceled, using
1239 * dsl_dir_tempreserve_clear().
1242 dsl_dir_tempreserve_space(dsl_dir_t
*dd
, uint64_t lsize
, uint64_t asize
,
1243 uint64_t fsize
, uint64_t usize
, void **tr_cookiep
, dmu_tx_t
*tx
)
1253 tr_list
= kmem_alloc(sizeof (list_t
), KM_SLEEP
);
1254 list_create(tr_list
, sizeof (struct tempreserve
),
1255 offsetof(struct tempreserve
, tr_node
));
1256 ASSERT3S(asize
, >, 0);
1257 ASSERT3S(fsize
, >=, 0);
1259 err
= arc_tempreserve_space(lsize
, tx
->tx_txg
);
1261 struct tempreserve
*tr
;
1263 tr
= kmem_zalloc(sizeof (struct tempreserve
), KM_SLEEP
);
1264 tr
->tr_size
= lsize
;
1265 list_insert_tail(tr_list
, tr
);
1267 if (err
== EAGAIN
) {
1269 * If arc_memory_throttle() detected that pageout
1270 * is running and we are low on memory, we delay new
1271 * non-pageout transactions to give pageout an
1274 * It is unfortunate to be delaying while the caller's
1277 txg_delay(dd
->dd_pool
, tx
->tx_txg
,
1278 MSEC2NSEC(10), MSEC2NSEC(10));
1279 err
= SET_ERROR(ERESTART
);
1284 err
= dsl_dir_tempreserve_impl(dd
, asize
, fsize
>= asize
,
1285 FALSE
, asize
> usize
, tr_list
, tx
, TRUE
);
1289 dsl_dir_tempreserve_clear(tr_list
, tx
);
1291 *tr_cookiep
= tr_list
;
1297 * Clear a temporary reservation that we previously made with
1298 * dsl_dir_tempreserve_space().
1301 dsl_dir_tempreserve_clear(void *tr_cookie
, dmu_tx_t
*tx
)
1303 int txgidx
= tx
->tx_txg
& TXG_MASK
;
1304 list_t
*tr_list
= tr_cookie
;
1305 struct tempreserve
*tr
;
1307 ASSERT3U(tx
->tx_txg
, !=, 0);
1309 if (tr_cookie
== NULL
)
1312 while ((tr
= list_head(tr_list
)) != NULL
) {
1314 mutex_enter(&tr
->tr_ds
->dd_lock
);
1315 ASSERT3U(tr
->tr_ds
->dd_tempreserved
[txgidx
], >=,
1317 tr
->tr_ds
->dd_tempreserved
[txgidx
] -= tr
->tr_size
;
1318 mutex_exit(&tr
->tr_ds
->dd_lock
);
1320 arc_tempreserve_clear(tr
->tr_size
);
1322 list_remove(tr_list
, tr
);
1323 kmem_free(tr
, sizeof (struct tempreserve
));
1326 kmem_free(tr_list
, sizeof (list_t
));
1330 * This should be called from open context when we think we're going to write
1331 * or free space, for example when dirtying data. Be conservative; it's okay
1332 * to write less space or free more, but we don't want to write more or free
1333 * less than the amount specified.
1335 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1336 * version however it has been adjusted to use an iterative rather then
1337 * recursive algorithm to minimize stack usage.
1340 dsl_dir_willuse_space(dsl_dir_t
*dd
, int64_t space
, dmu_tx_t
*tx
)
1342 int64_t parent_space
;
1346 mutex_enter(&dd
->dd_lock
);
1348 dd
->dd_space_towrite
[tx
->tx_txg
& TXG_MASK
] += space
;
1350 est_used
= dsl_dir_space_towrite(dd
) +
1351 dsl_dir_phys(dd
)->dd_used_bytes
;
1352 parent_space
= parent_delta(dd
, est_used
, space
);
1353 mutex_exit(&dd
->dd_lock
);
1355 /* Make sure that we clean up dd_space_to* */
1356 dsl_dir_dirty(dd
, tx
);
1359 space
= parent_space
;
1360 } while (space
&& dd
);
1363 /* call from syncing context when we actually write/free space for this dd */
1365 dsl_dir_diduse_space(dsl_dir_t
*dd
, dd_used_t type
,
1366 int64_t used
, int64_t compressed
, int64_t uncompressed
, dmu_tx_t
*tx
)
1368 int64_t accounted_delta
;
1371 * dsl_dataset_set_refreservation_sync_impl() calls this with
1372 * dd_lock held, so that it can atomically update
1373 * ds->ds_reserved and the dsl_dir accounting, so that
1374 * dsl_dataset_check_quota() can see dataset and dir accounting
1377 boolean_t needlock
= !MUTEX_HELD(&dd
->dd_lock
);
1379 ASSERT(dmu_tx_is_syncing(tx
));
1380 ASSERT(type
< DD_USED_NUM
);
1382 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1385 mutex_enter(&dd
->dd_lock
);
1387 parent_delta(dd
, dsl_dir_phys(dd
)->dd_used_bytes
, used
);
1388 ASSERT(used
>= 0 || dsl_dir_phys(dd
)->dd_used_bytes
>= -used
);
1389 ASSERT(compressed
>= 0 ||
1390 dsl_dir_phys(dd
)->dd_compressed_bytes
>= -compressed
);
1391 ASSERT(uncompressed
>= 0 ||
1392 dsl_dir_phys(dd
)->dd_uncompressed_bytes
>= -uncompressed
);
1393 dsl_dir_phys(dd
)->dd_used_bytes
+= used
;
1394 dsl_dir_phys(dd
)->dd_uncompressed_bytes
+= uncompressed
;
1395 dsl_dir_phys(dd
)->dd_compressed_bytes
+= compressed
;
1397 if (dsl_dir_phys(dd
)->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
1399 dsl_dir_phys(dd
)->dd_used_breakdown
[type
] >= -used
);
1400 dsl_dir_phys(dd
)->dd_used_breakdown
[type
] += used
;
1405 for (t
= 0; t
< DD_USED_NUM
; t
++)
1406 u
+= dsl_dir_phys(dd
)->dd_used_breakdown
[t
];
1407 ASSERT3U(u
, ==, dsl_dir_phys(dd
)->dd_used_bytes
);
1412 mutex_exit(&dd
->dd_lock
);
1414 if (dd
->dd_parent
!= NULL
) {
1415 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD
,
1416 accounted_delta
, compressed
, uncompressed
, tx
);
1417 dsl_dir_transfer_space(dd
->dd_parent
,
1418 used
- accounted_delta
,
1419 DD_USED_CHILD_RSRV
, DD_USED_CHILD
, tx
);
1424 dsl_dir_transfer_space(dsl_dir_t
*dd
, int64_t delta
,
1425 dd_used_t oldtype
, dd_used_t newtype
, dmu_tx_t
*tx
)
1427 ASSERT(dmu_tx_is_syncing(tx
));
1428 ASSERT(oldtype
< DD_USED_NUM
);
1429 ASSERT(newtype
< DD_USED_NUM
);
1432 !(dsl_dir_phys(dd
)->dd_flags
& DD_FLAG_USED_BREAKDOWN
))
1435 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1436 mutex_enter(&dd
->dd_lock
);
1438 dsl_dir_phys(dd
)->dd_used_breakdown
[oldtype
] >= delta
:
1439 dsl_dir_phys(dd
)->dd_used_breakdown
[newtype
] >= -delta
);
1440 ASSERT(dsl_dir_phys(dd
)->dd_used_bytes
>= ABS(delta
));
1441 dsl_dir_phys(dd
)->dd_used_breakdown
[oldtype
] -= delta
;
1442 dsl_dir_phys(dd
)->dd_used_breakdown
[newtype
] += delta
;
1443 mutex_exit(&dd
->dd_lock
);
1446 typedef struct dsl_dir_set_qr_arg
{
1447 const char *ddsqra_name
;
1448 zprop_source_t ddsqra_source
;
1449 uint64_t ddsqra_value
;
1450 } dsl_dir_set_qr_arg_t
;
1453 dsl_dir_set_quota_check(void *arg
, dmu_tx_t
*tx
)
1455 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1456 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1459 uint64_t towrite
, newval
;
1461 error
= dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
);
1465 error
= dsl_prop_predict(ds
->ds_dir
, "quota",
1466 ddsqra
->ddsqra_source
, ddsqra
->ddsqra_value
, &newval
);
1468 dsl_dataset_rele(ds
, FTAG
);
1473 dsl_dataset_rele(ds
, FTAG
);
1477 mutex_enter(&ds
->ds_dir
->dd_lock
);
1479 * If we are doing the preliminary check in open context, and
1480 * there are pending changes, then don't fail it, since the
1481 * pending changes could under-estimate the amount of space to be
1484 towrite
= dsl_dir_space_towrite(ds
->ds_dir
);
1485 if ((dmu_tx_is_syncing(tx
) || towrite
== 0) &&
1486 (newval
< dsl_dir_phys(ds
->ds_dir
)->dd_reserved
||
1487 newval
< dsl_dir_phys(ds
->ds_dir
)->dd_used_bytes
+ towrite
)) {
1488 error
= SET_ERROR(ENOSPC
);
1490 mutex_exit(&ds
->ds_dir
->dd_lock
);
1491 dsl_dataset_rele(ds
, FTAG
);
1496 dsl_dir_set_quota_sync(void *arg
, dmu_tx_t
*tx
)
1498 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1499 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1503 VERIFY0(dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
));
1505 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_RECVD_PROPS
) {
1506 dsl_prop_set_sync_impl(ds
, zfs_prop_to_name(ZFS_PROP_QUOTA
),
1507 ddsqra
->ddsqra_source
, sizeof (ddsqra
->ddsqra_value
), 1,
1508 &ddsqra
->ddsqra_value
, tx
);
1510 VERIFY0(dsl_prop_get_int_ds(ds
,
1511 zfs_prop_to_name(ZFS_PROP_QUOTA
), &newval
));
1513 newval
= ddsqra
->ddsqra_value
;
1514 spa_history_log_internal_ds(ds
, "set", tx
, "%s=%lld",
1515 zfs_prop_to_name(ZFS_PROP_QUOTA
), (longlong_t
)newval
);
1518 dmu_buf_will_dirty(ds
->ds_dir
->dd_dbuf
, tx
);
1519 mutex_enter(&ds
->ds_dir
->dd_lock
);
1520 dsl_dir_phys(ds
->ds_dir
)->dd_quota
= newval
;
1521 mutex_exit(&ds
->ds_dir
->dd_lock
);
1522 dsl_dataset_rele(ds
, FTAG
);
1526 dsl_dir_set_quota(const char *ddname
, zprop_source_t source
, uint64_t quota
)
1528 dsl_dir_set_qr_arg_t ddsqra
;
1530 ddsqra
.ddsqra_name
= ddname
;
1531 ddsqra
.ddsqra_source
= source
;
1532 ddsqra
.ddsqra_value
= quota
;
1534 return (dsl_sync_task(ddname
, dsl_dir_set_quota_check
,
1535 dsl_dir_set_quota_sync
, &ddsqra
, 0, ZFS_SPACE_CHECK_NONE
));
1539 dsl_dir_set_reservation_check(void *arg
, dmu_tx_t
*tx
)
1541 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1542 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1545 uint64_t newval
, used
, avail
;
1548 error
= dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
);
1554 * If we are doing the preliminary check in open context, the
1555 * space estimates may be inaccurate.
1557 if (!dmu_tx_is_syncing(tx
)) {
1558 dsl_dataset_rele(ds
, FTAG
);
1562 error
= dsl_prop_predict(ds
->ds_dir
,
1563 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1564 ddsqra
->ddsqra_source
, ddsqra
->ddsqra_value
, &newval
);
1566 dsl_dataset_rele(ds
, FTAG
);
1570 mutex_enter(&dd
->dd_lock
);
1571 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1572 mutex_exit(&dd
->dd_lock
);
1574 if (dd
->dd_parent
) {
1575 avail
= dsl_dir_space_available(dd
->dd_parent
,
1578 avail
= dsl_pool_adjustedsize(dd
->dd_pool
, B_FALSE
) - used
;
1581 if (MAX(used
, newval
) > MAX(used
, dsl_dir_phys(dd
)->dd_reserved
)) {
1582 uint64_t delta
= MAX(used
, newval
) -
1583 MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1585 if (delta
> avail
||
1586 (dsl_dir_phys(dd
)->dd_quota
> 0 &&
1587 newval
> dsl_dir_phys(dd
)->dd_quota
))
1588 error
= SET_ERROR(ENOSPC
);
1591 dsl_dataset_rele(ds
, FTAG
);
1596 dsl_dir_set_reservation_sync_impl(dsl_dir_t
*dd
, uint64_t value
, dmu_tx_t
*tx
)
1601 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1603 mutex_enter(&dd
->dd_lock
);
1604 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1605 delta
= MAX(used
, value
) - MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1606 dsl_dir_phys(dd
)->dd_reserved
= value
;
1608 if (dd
->dd_parent
!= NULL
) {
1609 /* Roll up this additional usage into our ancestors */
1610 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD_RSRV
,
1613 mutex_exit(&dd
->dd_lock
);
1617 dsl_dir_set_reservation_sync(void *arg
, dmu_tx_t
*tx
)
1619 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1620 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1624 VERIFY0(dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
));
1626 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_RECVD_PROPS
) {
1627 dsl_prop_set_sync_impl(ds
,
1628 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1629 ddsqra
->ddsqra_source
, sizeof (ddsqra
->ddsqra_value
), 1,
1630 &ddsqra
->ddsqra_value
, tx
);
1632 VERIFY0(dsl_prop_get_int_ds(ds
,
1633 zfs_prop_to_name(ZFS_PROP_RESERVATION
), &newval
));
1635 newval
= ddsqra
->ddsqra_value
;
1636 spa_history_log_internal_ds(ds
, "set", tx
, "%s=%lld",
1637 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1638 (longlong_t
)newval
);
1641 dsl_dir_set_reservation_sync_impl(ds
->ds_dir
, newval
, tx
);
1642 dsl_dataset_rele(ds
, FTAG
);
1646 dsl_dir_set_reservation(const char *ddname
, zprop_source_t source
,
1647 uint64_t reservation
)
1649 dsl_dir_set_qr_arg_t ddsqra
;
1651 ddsqra
.ddsqra_name
= ddname
;
1652 ddsqra
.ddsqra_source
= source
;
1653 ddsqra
.ddsqra_value
= reservation
;
1655 return (dsl_sync_task(ddname
, dsl_dir_set_reservation_check
,
1656 dsl_dir_set_reservation_sync
, &ddsqra
, 0, ZFS_SPACE_CHECK_NONE
));
1660 closest_common_ancestor(dsl_dir_t
*ds1
, dsl_dir_t
*ds2
)
1662 for (; ds1
; ds1
= ds1
->dd_parent
) {
1664 for (dd
= ds2
; dd
; dd
= dd
->dd_parent
) {
1673 * If delta is applied to dd, how much of that delta would be applied to
1674 * ancestor? Syncing context only.
1677 would_change(dsl_dir_t
*dd
, int64_t delta
, dsl_dir_t
*ancestor
)
1682 mutex_enter(&dd
->dd_lock
);
1683 delta
= parent_delta(dd
, dsl_dir_phys(dd
)->dd_used_bytes
, delta
);
1684 mutex_exit(&dd
->dd_lock
);
1685 return (would_change(dd
->dd_parent
, delta
, ancestor
));
1688 typedef struct dsl_dir_rename_arg
{
1689 const char *ddra_oldname
;
1690 const char *ddra_newname
;
1692 } dsl_dir_rename_arg_t
;
1696 dsl_valid_rename(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *arg
)
1699 char namebuf
[ZFS_MAX_DATASET_NAME_LEN
];
1701 dsl_dataset_name(ds
, namebuf
);
1703 if (strlen(namebuf
) + *deltap
>= ZFS_MAX_DATASET_NAME_LEN
)
1704 return (SET_ERROR(ENAMETOOLONG
));
1709 dsl_dir_rename_check(void *arg
, dmu_tx_t
*tx
)
1711 dsl_dir_rename_arg_t
*ddra
= arg
;
1712 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1713 dsl_dir_t
*dd
, *newparent
;
1714 const char *mynewname
;
1716 int delta
= strlen(ddra
->ddra_newname
) - strlen(ddra
->ddra_oldname
);
1718 /* target dir should exist */
1719 error
= dsl_dir_hold(dp
, ddra
->ddra_oldname
, FTAG
, &dd
, NULL
);
1723 /* new parent should exist */
1724 error
= dsl_dir_hold(dp
, ddra
->ddra_newname
, FTAG
,
1725 &newparent
, &mynewname
);
1727 dsl_dir_rele(dd
, FTAG
);
1731 /* can't rename to different pool */
1732 if (dd
->dd_pool
!= newparent
->dd_pool
) {
1733 dsl_dir_rele(newparent
, FTAG
);
1734 dsl_dir_rele(dd
, FTAG
);
1735 return (SET_ERROR(EXDEV
));
1738 /* new name should not already exist */
1739 if (mynewname
== NULL
) {
1740 dsl_dir_rele(newparent
, FTAG
);
1741 dsl_dir_rele(dd
, FTAG
);
1742 return (SET_ERROR(EEXIST
));
1745 /* if the name length is growing, validate child name lengths */
1747 error
= dmu_objset_find_dp(dp
, dd
->dd_object
, dsl_valid_rename
,
1748 &delta
, DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
1750 dsl_dir_rele(newparent
, FTAG
);
1751 dsl_dir_rele(dd
, FTAG
);
1756 if (dmu_tx_is_syncing(tx
)) {
1757 if (spa_feature_is_active(dp
->dp_spa
,
1758 SPA_FEATURE_FS_SS_LIMIT
)) {
1760 * Although this is the check function and we don't
1761 * normally make on-disk changes in check functions,
1762 * we need to do that here.
1764 * Ensure this portion of the tree's counts have been
1765 * initialized in case the new parent has limits set.
1767 dsl_dir_init_fs_ss_count(dd
, tx
);
1771 if (newparent
!= dd
->dd_parent
) {
1772 /* is there enough space? */
1774 MAX(dsl_dir_phys(dd
)->dd_used_bytes
,
1775 dsl_dir_phys(dd
)->dd_reserved
);
1776 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
1777 uint64_t fs_cnt
= 0;
1778 uint64_t ss_cnt
= 0;
1780 if (dsl_dir_is_zapified(dd
)) {
1783 err
= zap_lookup(os
, dd
->dd_object
,
1784 DD_FIELD_FILESYSTEM_COUNT
, sizeof (fs_cnt
), 1,
1786 if (err
!= ENOENT
&& err
!= 0) {
1787 dsl_dir_rele(newparent
, FTAG
);
1788 dsl_dir_rele(dd
, FTAG
);
1793 * have to add 1 for the filesystem itself that we're
1798 err
= zap_lookup(os
, dd
->dd_object
,
1799 DD_FIELD_SNAPSHOT_COUNT
, sizeof (ss_cnt
), 1,
1801 if (err
!= ENOENT
&& err
!= 0) {
1802 dsl_dir_rele(newparent
, FTAG
);
1803 dsl_dir_rele(dd
, FTAG
);
1808 /* no rename into our descendant */
1809 if (closest_common_ancestor(dd
, newparent
) == dd
) {
1810 dsl_dir_rele(newparent
, FTAG
);
1811 dsl_dir_rele(dd
, FTAG
);
1812 return (SET_ERROR(EINVAL
));
1815 error
= dsl_dir_transfer_possible(dd
->dd_parent
,
1816 newparent
, fs_cnt
, ss_cnt
, myspace
, ddra
->ddra_cred
);
1818 dsl_dir_rele(newparent
, FTAG
);
1819 dsl_dir_rele(dd
, FTAG
);
1824 dsl_dir_rele(newparent
, FTAG
);
1825 dsl_dir_rele(dd
, FTAG
);
1830 dsl_dir_rename_sync(void *arg
, dmu_tx_t
*tx
)
1832 dsl_dir_rename_arg_t
*ddra
= arg
;
1833 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1834 dsl_dir_t
*dd
, *newparent
;
1835 const char *mynewname
;
1837 objset_t
*mos
= dp
->dp_meta_objset
;
1839 VERIFY0(dsl_dir_hold(dp
, ddra
->ddra_oldname
, FTAG
, &dd
, NULL
));
1840 VERIFY0(dsl_dir_hold(dp
, ddra
->ddra_newname
, FTAG
, &newparent
,
1843 /* Log this before we change the name. */
1844 spa_history_log_internal_dd(dd
, "rename", tx
,
1845 "-> %s", ddra
->ddra_newname
);
1847 if (newparent
!= dd
->dd_parent
) {
1848 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
1849 uint64_t fs_cnt
= 0;
1850 uint64_t ss_cnt
= 0;
1853 * We already made sure the dd counts were initialized in the
1856 if (spa_feature_is_active(dp
->dp_spa
,
1857 SPA_FEATURE_FS_SS_LIMIT
)) {
1858 VERIFY0(zap_lookup(os
, dd
->dd_object
,
1859 DD_FIELD_FILESYSTEM_COUNT
, sizeof (fs_cnt
), 1,
1861 /* add 1 for the filesystem itself that we're moving */
1864 VERIFY0(zap_lookup(os
, dd
->dd_object
,
1865 DD_FIELD_SNAPSHOT_COUNT
, sizeof (ss_cnt
), 1,
1869 dsl_fs_ss_count_adjust(dd
->dd_parent
, -fs_cnt
,
1870 DD_FIELD_FILESYSTEM_COUNT
, tx
);
1871 dsl_fs_ss_count_adjust(newparent
, fs_cnt
,
1872 DD_FIELD_FILESYSTEM_COUNT
, tx
);
1874 dsl_fs_ss_count_adjust(dd
->dd_parent
, -ss_cnt
,
1875 DD_FIELD_SNAPSHOT_COUNT
, tx
);
1876 dsl_fs_ss_count_adjust(newparent
, ss_cnt
,
1877 DD_FIELD_SNAPSHOT_COUNT
, tx
);
1879 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD
,
1880 -dsl_dir_phys(dd
)->dd_used_bytes
,
1881 -dsl_dir_phys(dd
)->dd_compressed_bytes
,
1882 -dsl_dir_phys(dd
)->dd_uncompressed_bytes
, tx
);
1883 dsl_dir_diduse_space(newparent
, DD_USED_CHILD
,
1884 dsl_dir_phys(dd
)->dd_used_bytes
,
1885 dsl_dir_phys(dd
)->dd_compressed_bytes
,
1886 dsl_dir_phys(dd
)->dd_uncompressed_bytes
, tx
);
1888 if (dsl_dir_phys(dd
)->dd_reserved
>
1889 dsl_dir_phys(dd
)->dd_used_bytes
) {
1890 uint64_t unused_rsrv
= dsl_dir_phys(dd
)->dd_reserved
-
1891 dsl_dir_phys(dd
)->dd_used_bytes
;
1893 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD_RSRV
,
1894 -unused_rsrv
, 0, 0, tx
);
1895 dsl_dir_diduse_space(newparent
, DD_USED_CHILD_RSRV
,
1896 unused_rsrv
, 0, 0, tx
);
1900 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1902 /* remove from old parent zapobj */
1903 error
= zap_remove(mos
,
1904 dsl_dir_phys(dd
->dd_parent
)->dd_child_dir_zapobj
,
1908 (void) strlcpy(dd
->dd_myname
, mynewname
,
1909 sizeof (dd
->dd_myname
));
1910 dsl_dir_rele(dd
->dd_parent
, dd
);
1911 dsl_dir_phys(dd
)->dd_parent_obj
= newparent
->dd_object
;
1912 VERIFY0(dsl_dir_hold_obj(dp
,
1913 newparent
->dd_object
, NULL
, dd
, &dd
->dd_parent
));
1915 /* add to new parent zapobj */
1916 VERIFY0(zap_add(mos
, dsl_dir_phys(newparent
)->dd_child_dir_zapobj
,
1917 dd
->dd_myname
, 8, 1, &dd
->dd_object
, tx
));
1919 zvol_rename_minors(dp
->dp_spa
, ddra
->ddra_oldname
,
1920 ddra
->ddra_newname
, B_TRUE
);
1922 dsl_prop_notify_all(dd
);
1924 dsl_dir_rele(newparent
, FTAG
);
1925 dsl_dir_rele(dd
, FTAG
);
1929 dsl_dir_rename(const char *oldname
, const char *newname
)
1931 dsl_dir_rename_arg_t ddra
;
1933 ddra
.ddra_oldname
= oldname
;
1934 ddra
.ddra_newname
= newname
;
1935 ddra
.ddra_cred
= CRED();
1937 return (dsl_sync_task(oldname
,
1938 dsl_dir_rename_check
, dsl_dir_rename_sync
, &ddra
,
1939 3, ZFS_SPACE_CHECK_RESERVED
));
1943 dsl_dir_transfer_possible(dsl_dir_t
*sdd
, dsl_dir_t
*tdd
,
1944 uint64_t fs_cnt
, uint64_t ss_cnt
, uint64_t space
, cred_t
*cr
)
1946 dsl_dir_t
*ancestor
;
1951 ancestor
= closest_common_ancestor(sdd
, tdd
);
1952 adelta
= would_change(sdd
, -space
, ancestor
);
1953 avail
= dsl_dir_space_available(tdd
, ancestor
, adelta
, FALSE
);
1955 return (SET_ERROR(ENOSPC
));
1957 err
= dsl_fs_ss_limit_check(tdd
, fs_cnt
, ZFS_PROP_FILESYSTEM_LIMIT
,
1961 err
= dsl_fs_ss_limit_check(tdd
, ss_cnt
, ZFS_PROP_SNAPSHOT_LIMIT
,
1970 dsl_dir_snap_cmtime(dsl_dir_t
*dd
)
1974 mutex_enter(&dd
->dd_lock
);
1975 t
= dd
->dd_snap_cmtime
;
1976 mutex_exit(&dd
->dd_lock
);
1982 dsl_dir_snap_cmtime_update(dsl_dir_t
*dd
)
1987 mutex_enter(&dd
->dd_lock
);
1988 dd
->dd_snap_cmtime
= t
;
1989 mutex_exit(&dd
->dd_lock
);
1993 dsl_dir_zapify(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
1995 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
1996 dmu_object_zapify(mos
, dd
->dd_object
, DMU_OT_DSL_DIR
, tx
);
2000 dsl_dir_is_zapified(dsl_dir_t
*dd
)
2002 dmu_object_info_t doi
;
2004 dmu_object_info_from_db(dd
->dd_dbuf
, &doi
);
2005 return (doi
.doi_type
== DMU_OTN_ZAP_METADATA
);
2008 #if defined(_KERNEL) && defined(HAVE_SPL)
2009 EXPORT_SYMBOL(dsl_dir_set_quota
);
2010 EXPORT_SYMBOL(dsl_dir_set_reservation
);