4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
35 * The overall design of the ztest program is as follows:
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
75 * To turn this into an overnight stress test, use -T to specify run time.
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
80 * Use the -k option to set the desired frequency of kills.
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
91 #include <sys/zfs_context.h>
97 #include <sys/dmu_objset.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
124 #include <sys/blake3.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #if (__GLIBC__ && !__UCLIBC__)
139 #include <execinfo.h> /* for backtrace() */
142 static int ztest_fd_data
= -1;
143 static int ztest_fd_rand
= -1;
145 typedef struct ztest_shared_hdr
{
146 uint64_t zh_hdr_size
;
147 uint64_t zh_opts_size
;
149 uint64_t zh_stats_size
;
150 uint64_t zh_stats_count
;
152 uint64_t zh_ds_count
;
153 } ztest_shared_hdr_t
;
155 static ztest_shared_hdr_t
*ztest_shared_hdr
;
157 enum ztest_class_state
{
158 ZTEST_VDEV_CLASS_OFF
,
163 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
164 #define ZO_GVARS_MAX_COUNT ((size_t)10)
166 typedef struct ztest_shared_opts
{
167 char zo_pool
[ZFS_MAX_DATASET_NAME_LEN
];
168 char zo_dir
[ZFS_MAX_DATASET_NAME_LEN
];
169 char zo_alt_ztest
[MAXNAMELEN
];
170 char zo_alt_libpath
[MAXNAMELEN
];
172 uint64_t zo_vdevtime
;
176 int zo_raid_children
;
178 char zo_raid_type
[8];
183 uint64_t zo_passtime
;
184 uint64_t zo_killrate
;
188 uint64_t zo_maxloops
;
189 uint64_t zo_metaslab_force_ganging
;
191 int zo_special_vdevs
;
194 char zo_gvars
[ZO_GVARS_MAX_COUNT
][ZO_GVARS_MAX_ARGLEN
];
195 } ztest_shared_opts_t
;
197 /* Default values for command line options. */
198 #define DEFAULT_POOL "ztest"
199 #define DEFAULT_VDEV_DIR "/tmp"
200 #define DEFAULT_VDEV_COUNT 5
201 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
202 #define DEFAULT_VDEV_SIZE_STR "256M"
203 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
204 #define DEFAULT_MIRRORS 2
205 #define DEFAULT_RAID_CHILDREN 4
206 #define DEFAULT_RAID_PARITY 1
207 #define DEFAULT_DRAID_DATA 4
208 #define DEFAULT_DRAID_SPARES 1
209 #define DEFAULT_DATASETS_COUNT 7
210 #define DEFAULT_THREADS 23
211 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
212 #define DEFAULT_RUN_TIME_STR "300 sec"
213 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
214 #define DEFAULT_PASS_TIME_STR "60 sec"
215 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
216 #define DEFAULT_KILLRATE_STR "70%"
217 #define DEFAULT_INITS 1
218 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
219 #define DEFAULT_FORCE_GANGING (64 << 10)
220 #define DEFAULT_FORCE_GANGING_STR "64K"
222 /* Simplifying assumption: -1 is not a valid default. */
223 #define NO_DEFAULT -1
225 static const ztest_shared_opts_t ztest_opts_defaults
= {
226 .zo_pool
= DEFAULT_POOL
,
227 .zo_dir
= DEFAULT_VDEV_DIR
,
228 .zo_alt_ztest
= { '\0' },
229 .zo_alt_libpath
= { '\0' },
230 .zo_vdevs
= DEFAULT_VDEV_COUNT
,
231 .zo_ashift
= DEFAULT_ASHIFT
,
232 .zo_mirrors
= DEFAULT_MIRRORS
,
233 .zo_raid_children
= DEFAULT_RAID_CHILDREN
,
234 .zo_raid_parity
= DEFAULT_RAID_PARITY
,
235 .zo_raid_type
= VDEV_TYPE_RAIDZ
,
236 .zo_vdev_size
= DEFAULT_VDEV_SIZE
,
237 .zo_draid_data
= DEFAULT_DRAID_DATA
, /* data drives */
238 .zo_draid_spares
= DEFAULT_DRAID_SPARES
, /* distributed spares */
239 .zo_datasets
= DEFAULT_DATASETS_COUNT
,
240 .zo_threads
= DEFAULT_THREADS
,
241 .zo_passtime
= DEFAULT_PASS_TIME
,
242 .zo_killrate
= DEFAULT_KILL_RATE
,
245 .zo_init
= DEFAULT_INITS
,
246 .zo_time
= DEFAULT_RUN_TIME
,
247 .zo_maxloops
= DEFAULT_MAX_LOOPS
, /* max loops during spa_freeze() */
248 .zo_metaslab_force_ganging
= DEFAULT_FORCE_GANGING
,
249 .zo_special_vdevs
= ZTEST_VDEV_CLASS_RND
,
253 extern uint64_t metaslab_force_ganging
;
254 extern uint64_t metaslab_df_alloc_threshold
;
255 extern uint64_t zfs_deadman_synctime_ms
;
256 extern uint_t metaslab_preload_limit
;
257 extern int zfs_compressed_arc_enabled
;
258 extern int zfs_abd_scatter_enabled
;
259 extern uint_t dmu_object_alloc_chunk_shift
;
260 extern boolean_t zfs_force_some_double_word_sm_entries
;
261 extern unsigned long zio_decompress_fail_fraction
;
262 extern unsigned long zfs_reconstruct_indirect_damage_fraction
;
265 static ztest_shared_opts_t
*ztest_shared_opts
;
266 static ztest_shared_opts_t ztest_opts
;
267 static const char *const ztest_wkeydata
= "abcdefghijklmnopqrstuvwxyz012345";
269 typedef struct ztest_shared_ds
{
273 static ztest_shared_ds_t
*ztest_shared_ds
;
274 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
276 #define BT_MAGIC 0x123456789abcdefULL
277 #define MAXFAULTS(zs) \
278 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
282 ZTEST_IO_WRITE_PATTERN
,
283 ZTEST_IO_WRITE_ZEROES
,
290 typedef struct ztest_block_tag
{
294 uint64_t bt_dnodesize
;
301 typedef struct bufwad
{
308 * It would be better to use a rangelock_t per object. Unfortunately
309 * the rangelock_t is not a drop-in replacement for rl_t, because we
310 * still need to map from object ID to rangelock_t.
332 #define ZTEST_RANGE_LOCKS 64
333 #define ZTEST_OBJECT_LOCKS 64
336 * Object descriptor. Used as a template for object lookup/create/remove.
338 typedef struct ztest_od
{
341 dmu_object_type_t od_type
;
342 dmu_object_type_t od_crtype
;
343 uint64_t od_blocksize
;
344 uint64_t od_crblocksize
;
345 uint64_t od_crdnodesize
;
348 char od_name
[ZFS_MAX_DATASET_NAME_LEN
];
354 typedef struct ztest_ds
{
355 ztest_shared_ds_t
*zd_shared
;
357 pthread_rwlock_t zd_zilog_lock
;
359 ztest_od_t
*zd_od
; /* debugging aid */
360 char zd_name
[ZFS_MAX_DATASET_NAME_LEN
];
361 kmutex_t zd_dirobj_lock
;
362 rll_t zd_object_lock
[ZTEST_OBJECT_LOCKS
];
363 rll_t zd_range_lock
[ZTEST_RANGE_LOCKS
];
367 * Per-iteration state.
369 typedef void ztest_func_t(ztest_ds_t
*zd
, uint64_t id
);
371 typedef struct ztest_info
{
372 ztest_func_t
*zi_func
; /* test function */
373 uint64_t zi_iters
; /* iterations per execution */
374 uint64_t *zi_interval
; /* execute every <interval> seconds */
375 const char *zi_funcname
; /* name of test function */
378 typedef struct ztest_shared_callstate
{
379 uint64_t zc_count
; /* per-pass count */
380 uint64_t zc_time
; /* per-pass time */
381 uint64_t zc_next
; /* next time to call this function */
382 } ztest_shared_callstate_t
;
384 static ztest_shared_callstate_t
*ztest_shared_callstate
;
385 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
387 ztest_func_t ztest_dmu_read_write
;
388 ztest_func_t ztest_dmu_write_parallel
;
389 ztest_func_t ztest_dmu_object_alloc_free
;
390 ztest_func_t ztest_dmu_object_next_chunk
;
391 ztest_func_t ztest_dmu_commit_callbacks
;
392 ztest_func_t ztest_zap
;
393 ztest_func_t ztest_zap_parallel
;
394 ztest_func_t ztest_zil_commit
;
395 ztest_func_t ztest_zil_remount
;
396 ztest_func_t ztest_dmu_read_write_zcopy
;
397 ztest_func_t ztest_dmu_objset_create_destroy
;
398 ztest_func_t ztest_dmu_prealloc
;
399 ztest_func_t ztest_fzap
;
400 ztest_func_t ztest_dmu_snapshot_create_destroy
;
401 ztest_func_t ztest_dsl_prop_get_set
;
402 ztest_func_t ztest_spa_prop_get_set
;
403 ztest_func_t ztest_spa_create_destroy
;
404 ztest_func_t ztest_fault_inject
;
405 ztest_func_t ztest_dmu_snapshot_hold
;
406 ztest_func_t ztest_mmp_enable_disable
;
407 ztest_func_t ztest_scrub
;
408 ztest_func_t ztest_dsl_dataset_promote_busy
;
409 ztest_func_t ztest_vdev_attach_detach
;
410 ztest_func_t ztest_vdev_LUN_growth
;
411 ztest_func_t ztest_vdev_add_remove
;
412 ztest_func_t ztest_vdev_class_add
;
413 ztest_func_t ztest_vdev_aux_add_remove
;
414 ztest_func_t ztest_split_pool
;
415 ztest_func_t ztest_reguid
;
416 ztest_func_t ztest_spa_upgrade
;
417 ztest_func_t ztest_device_removal
;
418 ztest_func_t ztest_spa_checkpoint_create_discard
;
419 ztest_func_t ztest_initialize
;
420 ztest_func_t ztest_trim
;
421 ztest_func_t ztest_blake3
;
422 ztest_func_t ztest_fletcher
;
423 ztest_func_t ztest_fletcher_incr
;
424 ztest_func_t ztest_verify_dnode_bt
;
426 static uint64_t zopt_always
= 0ULL * NANOSEC
; /* all the time */
427 static uint64_t zopt_incessant
= 1ULL * NANOSEC
/ 10; /* every 1/10 second */
428 static uint64_t zopt_often
= 1ULL * NANOSEC
; /* every second */
429 static uint64_t zopt_sometimes
= 10ULL * NANOSEC
; /* every 10 seconds */
430 static uint64_t zopt_rarely
= 60ULL * NANOSEC
; /* every 60 seconds */
432 #define ZTI_INIT(func, iters, interval) \
433 { .zi_func = (func), \
434 .zi_iters = (iters), \
435 .zi_interval = (interval), \
436 .zi_funcname = # func }
438 static ztest_info_t ztest_info
[] = {
439 ZTI_INIT(ztest_dmu_read_write
, 1, &zopt_always
),
440 ZTI_INIT(ztest_dmu_write_parallel
, 10, &zopt_always
),
441 ZTI_INIT(ztest_dmu_object_alloc_free
, 1, &zopt_always
),
442 ZTI_INIT(ztest_dmu_object_next_chunk
, 1, &zopt_sometimes
),
443 ZTI_INIT(ztest_dmu_commit_callbacks
, 1, &zopt_always
),
444 ZTI_INIT(ztest_zap
, 30, &zopt_always
),
445 ZTI_INIT(ztest_zap_parallel
, 100, &zopt_always
),
446 ZTI_INIT(ztest_split_pool
, 1, &zopt_always
),
447 ZTI_INIT(ztest_zil_commit
, 1, &zopt_incessant
),
448 ZTI_INIT(ztest_zil_remount
, 1, &zopt_sometimes
),
449 ZTI_INIT(ztest_dmu_read_write_zcopy
, 1, &zopt_often
),
450 ZTI_INIT(ztest_dmu_objset_create_destroy
, 1, &zopt_often
),
451 ZTI_INIT(ztest_dsl_prop_get_set
, 1, &zopt_often
),
452 ZTI_INIT(ztest_spa_prop_get_set
, 1, &zopt_sometimes
),
454 ZTI_INIT(ztest_dmu_prealloc
, 1, &zopt_sometimes
),
456 ZTI_INIT(ztest_fzap
, 1, &zopt_sometimes
),
457 ZTI_INIT(ztest_dmu_snapshot_create_destroy
, 1, &zopt_sometimes
),
458 ZTI_INIT(ztest_spa_create_destroy
, 1, &zopt_sometimes
),
459 ZTI_INIT(ztest_fault_inject
, 1, &zopt_sometimes
),
460 ZTI_INIT(ztest_dmu_snapshot_hold
, 1, &zopt_sometimes
),
461 ZTI_INIT(ztest_mmp_enable_disable
, 1, &zopt_sometimes
),
462 ZTI_INIT(ztest_reguid
, 1, &zopt_rarely
),
463 ZTI_INIT(ztest_scrub
, 1, &zopt_rarely
),
464 ZTI_INIT(ztest_spa_upgrade
, 1, &zopt_rarely
),
465 ZTI_INIT(ztest_dsl_dataset_promote_busy
, 1, &zopt_rarely
),
466 ZTI_INIT(ztest_vdev_attach_detach
, 1, &zopt_sometimes
),
467 ZTI_INIT(ztest_vdev_LUN_growth
, 1, &zopt_rarely
),
468 ZTI_INIT(ztest_vdev_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
469 ZTI_INIT(ztest_vdev_class_add
, 1, &ztest_opts
.zo_vdevtime
),
470 ZTI_INIT(ztest_vdev_aux_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
471 ZTI_INIT(ztest_device_removal
, 1, &zopt_sometimes
),
472 ZTI_INIT(ztest_spa_checkpoint_create_discard
, 1, &zopt_rarely
),
473 ZTI_INIT(ztest_initialize
, 1, &zopt_sometimes
),
474 ZTI_INIT(ztest_trim
, 1, &zopt_sometimes
),
475 ZTI_INIT(ztest_blake3
, 1, &zopt_rarely
),
476 ZTI_INIT(ztest_fletcher
, 1, &zopt_rarely
),
477 ZTI_INIT(ztest_fletcher_incr
, 1, &zopt_rarely
),
478 ZTI_INIT(ztest_verify_dnode_bt
, 1, &zopt_sometimes
),
481 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
484 * The following struct is used to hold a list of uncalled commit callbacks.
485 * The callbacks are ordered by txg number.
487 typedef struct ztest_cb_list
{
488 kmutex_t zcl_callbacks_lock
;
489 list_t zcl_callbacks
;
493 * Stuff we need to share writably between parent and child.
495 typedef struct ztest_shared
{
496 boolean_t zs_do_init
;
497 hrtime_t zs_proc_start
;
498 hrtime_t zs_proc_stop
;
499 hrtime_t zs_thread_start
;
500 hrtime_t zs_thread_stop
;
501 hrtime_t zs_thread_kill
;
502 uint64_t zs_enospc_count
;
503 uint64_t zs_vdev_next_leaf
;
504 uint64_t zs_vdev_aux
;
509 uint64_t zs_metaslab_sz
;
510 uint64_t zs_metaslab_df_alloc_threshold
;
514 #define ID_PARALLEL -1ULL
516 static char ztest_dev_template
[] = "%s/%s.%llua";
517 static char ztest_aux_template
[] = "%s/%s.%s.%llu";
518 static ztest_shared_t
*ztest_shared
;
520 static spa_t
*ztest_spa
= NULL
;
521 static ztest_ds_t
*ztest_ds
;
523 static kmutex_t ztest_vdev_lock
;
524 static boolean_t ztest_device_removal_active
= B_FALSE
;
525 static boolean_t ztest_pool_scrubbed
= B_FALSE
;
526 static kmutex_t ztest_checkpoint_lock
;
529 * The ztest_name_lock protects the pool and dataset namespace used by
530 * the individual tests. To modify the namespace, consumers must grab
531 * this lock as writer. Grabbing the lock as reader will ensure that the
532 * namespace does not change while the lock is held.
534 static pthread_rwlock_t ztest_name_lock
;
536 static boolean_t ztest_dump_core
= B_TRUE
;
537 static boolean_t ztest_exiting
;
539 /* Global commit callback list */
540 static ztest_cb_list_t zcl
;
541 /* Commit cb delay */
542 static uint64_t zc_min_txg_delay
= UINT64_MAX
;
543 static int zc_cb_counter
= 0;
546 * Minimum number of commit callbacks that need to be registered for us to check
547 * whether the minimum txg delay is acceptable.
549 #define ZTEST_COMMIT_CB_MIN_REG 100
552 * If a number of txgs equal to this threshold have been created after a commit
553 * callback has been registered but not called, then we assume there is an
554 * implementation bug.
556 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
559 ZTEST_META_DNODE
= 0,
564 static __attribute__((noreturn
)) void usage(boolean_t requested
);
565 static int ztest_scrub_impl(spa_t
*spa
);
568 * These libumem hooks provide a reasonable set of defaults for the allocator's
569 * debugging facilities.
572 _umem_debug_init(void)
574 return ("default,verbose"); /* $UMEM_DEBUG setting */
578 _umem_logging_init(void)
580 return ("fail,contents"); /* $UMEM_LOGGING setting */
584 dump_debug_buffer(void)
586 ssize_t ret
__attribute__((unused
));
588 if (!ztest_opts
.zo_dump_dbgmsg
)
592 * We use write() instead of printf() so that this function
593 * is safe to call from a signal handler.
595 ret
= write(STDOUT_FILENO
, "\n", 1);
596 zfs_dbgmsg_print("ztest");
599 #define BACKTRACE_SZ 100
601 static void sig_handler(int signo
)
603 struct sigaction action
;
604 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
606 void *buffer
[BACKTRACE_SZ
];
608 nptrs
= backtrace(buffer
, BACKTRACE_SZ
);
609 backtrace_symbols_fd(buffer
, nptrs
, STDERR_FILENO
);
614 * Restore default action and re-raise signal so SIGSEGV and
615 * SIGABRT can trigger a core dump.
617 action
.sa_handler
= SIG_DFL
;
618 sigemptyset(&action
.sa_mask
);
620 (void) sigaction(signo
, &action
, NULL
);
624 #define FATAL_MSG_SZ 1024
626 static const char *fatal_msg
;
628 static __attribute__((format(printf
, 2, 3))) __attribute__((noreturn
)) void
629 fatal(int do_perror
, const char *message
, ...)
632 int save_errno
= errno
;
635 (void) fflush(stdout
);
636 buf
= umem_alloc(FATAL_MSG_SZ
, UMEM_NOFAIL
);
640 va_start(args
, message
);
641 (void) sprintf(buf
, "ztest: ");
643 (void) vsprintf(buf
+ strlen(buf
), message
, args
);
646 (void) snprintf(buf
+ strlen(buf
), FATAL_MSG_SZ
- strlen(buf
),
647 ": %s", strerror(save_errno
));
649 (void) fprintf(stderr
, "%s\n", buf
);
650 fatal_msg
= buf
; /* to ease debugging */
662 str2shift(const char *buf
)
664 const char *ends
= "BKMGTPEZ";
669 for (i
= 0; i
< strlen(ends
); i
++) {
670 if (toupper(buf
[0]) == ends
[i
])
673 if (i
== strlen(ends
)) {
674 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n",
678 if (buf
[1] == '\0' || (toupper(buf
[1]) == 'B' && buf
[2] == '\0')) {
681 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n", buf
);
686 nicenumtoull(const char *buf
)
691 val
= strtoull(buf
, &end
, 0);
693 (void) fprintf(stderr
, "ztest: bad numeric value: %s\n", buf
);
695 } else if (end
[0] == '.') {
696 double fval
= strtod(buf
, &end
);
697 fval
*= pow(2, str2shift(end
));
699 * UINT64_MAX is not exactly representable as a double.
700 * The closest representation is UINT64_MAX + 1, so we
701 * use a >= comparison instead of > for the bounds check.
703 if (fval
>= (double)UINT64_MAX
) {
704 (void) fprintf(stderr
, "ztest: value too large: %s\n",
708 val
= (uint64_t)fval
;
710 int shift
= str2shift(end
);
711 if (shift
>= 64 || (val
<< shift
) >> shift
!= val
) {
712 (void) fprintf(stderr
, "ztest: value too large: %s\n",
721 typedef struct ztest_option
{
722 const char short_opt
;
723 const char *long_opt
;
724 const char *long_opt_param
;
726 unsigned int default_int
;
727 const char *default_str
;
731 * The following option_table is used for generating the usage info as well as
732 * the long and short option information for calling getopt_long().
734 static ztest_option_t option_table
[] = {
735 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT
,
737 { 's', "vdev-size", "INTEGER", "Size of each vdev",
738 NO_DEFAULT
, DEFAULT_VDEV_SIZE_STR
},
739 { 'a', "alignment-shift", "INTEGER",
740 "Alignment shift; use 0 for random", DEFAULT_ASHIFT
, NULL
},
741 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
742 DEFAULT_MIRRORS
, NULL
},
743 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
744 DEFAULT_RAID_CHILDREN
, NULL
},
745 { 'R', "raid-parity", "INTEGER", "Raid parity",
746 DEFAULT_RAID_PARITY
, NULL
},
747 { 'K', "raid-kind", "raidz|draid|random", "Raid kind",
748 NO_DEFAULT
, "random"},
749 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
750 DEFAULT_DRAID_DATA
, NULL
},
751 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
752 DEFAULT_DRAID_SPARES
, NULL
},
753 { 'd', "datasets", "INTEGER", "Number of datasets",
754 DEFAULT_DATASETS_COUNT
, NULL
},
755 { 't', "threads", "INTEGER", "Number of ztest threads",
756 DEFAULT_THREADS
, NULL
},
757 { 'g', "gang-block-threshold", "INTEGER",
758 "Metaslab gang block threshold",
759 NO_DEFAULT
, DEFAULT_FORCE_GANGING_STR
},
760 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
761 DEFAULT_INITS
, NULL
},
762 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
763 NO_DEFAULT
, DEFAULT_KILLRATE_STR
},
764 { 'p', "pool-name", "STRING", "Pool name",
765 NO_DEFAULT
, DEFAULT_POOL
},
766 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
767 NO_DEFAULT
, DEFAULT_VDEV_DIR
},
768 { 'M', "multi-host", NULL
,
769 "Multi-host; simulate pool imported on remote host",
771 { 'E', "use-existing-pool", NULL
,
772 "Use existing pool instead of creating new one", NO_DEFAULT
, NULL
},
773 { 'T', "run-time", "INTEGER", "Total run time",
774 NO_DEFAULT
, DEFAULT_RUN_TIME_STR
},
775 { 'P', "pass-time", "INTEGER", "Time per pass",
776 NO_DEFAULT
, DEFAULT_PASS_TIME_STR
},
777 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
778 DEFAULT_MAX_LOOPS
, NULL
},
779 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
781 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
782 NO_DEFAULT
, "random"},
783 { 'o', "option", "\"OPTION=INTEGER\"",
784 "Set global variable to an unsigned 32-bit integer value",
786 { 'G', "dump-debug-msg", NULL
,
787 "Dump zfs_dbgmsg buffer before exiting due to an error",
789 { 'V', "verbose", NULL
,
790 "Verbose (use multiple times for ever more verbosity)",
792 { 'h', "help", NULL
, "Show this help",
797 static struct option
*long_opts
= NULL
;
798 static char *short_opts
= NULL
;
803 ASSERT3P(long_opts
, ==, NULL
);
804 ASSERT3P(short_opts
, ==, NULL
);
806 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
807 long_opts
= umem_alloc(sizeof (struct option
) * count
, UMEM_NOFAIL
);
809 short_opts
= umem_alloc(sizeof (char) * 2 * count
, UMEM_NOFAIL
);
810 int short_opt_index
= 0;
812 for (int i
= 0; i
< count
; i
++) {
813 long_opts
[i
].val
= option_table
[i
].short_opt
;
814 long_opts
[i
].name
= option_table
[i
].long_opt
;
815 long_opts
[i
].has_arg
= option_table
[i
].long_opt_param
!= NULL
816 ? required_argument
: no_argument
;
817 long_opts
[i
].flag
= NULL
;
818 short_opts
[short_opt_index
++] = option_table
[i
].short_opt
;
819 if (option_table
[i
].long_opt_param
!= NULL
) {
820 short_opts
[short_opt_index
++] = ':';
828 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
830 umem_free(long_opts
, sizeof (struct option
) * count
);
831 umem_free(short_opts
, sizeof (char) * 2 * count
);
837 static __attribute__((noreturn
)) void
838 usage(boolean_t requested
)
841 FILE *fp
= requested
? stdout
: stderr
;
843 (void) fprintf(fp
, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL
);
844 for (int i
= 0; option_table
[i
].short_opt
!= 0; i
++) {
845 if (option_table
[i
].long_opt_param
!= NULL
) {
846 (void) sprintf(option
, " -%c --%s=%s",
847 option_table
[i
].short_opt
,
848 option_table
[i
].long_opt
,
849 option_table
[i
].long_opt_param
);
851 (void) sprintf(option
, " -%c --%s",
852 option_table
[i
].short_opt
,
853 option_table
[i
].long_opt
);
855 (void) fprintf(fp
, " %-40s%s", option
,
856 option_table
[i
].comment
);
858 if (option_table
[i
].long_opt_param
!= NULL
) {
859 if (option_table
[i
].default_str
!= NULL
) {
860 (void) fprintf(fp
, " (default: %s)",
861 option_table
[i
].default_str
);
862 } else if (option_table
[i
].default_int
!= NO_DEFAULT
) {
863 (void) fprintf(fp
, " (default: %u)",
864 option_table
[i
].default_int
);
867 (void) fprintf(fp
, "\n");
869 exit(requested
? 0 : 1);
873 ztest_random(uint64_t range
)
877 ASSERT3S(ztest_fd_rand
, >=, 0);
882 if (read(ztest_fd_rand
, &r
, sizeof (r
)) != sizeof (r
))
883 fatal(B_TRUE
, "short read from /dev/urandom");
889 ztest_parse_name_value(const char *input
, ztest_shared_opts_t
*zo
)
893 int state
= ZTEST_VDEV_CLASS_RND
;
895 (void) strlcpy(name
, input
, sizeof (name
));
897 value
= strchr(name
, '=');
899 (void) fprintf(stderr
, "missing value in property=value "
900 "'-C' argument (%s)\n", input
);
906 if (strcmp(value
, "on") == 0) {
907 state
= ZTEST_VDEV_CLASS_ON
;
908 } else if (strcmp(value
, "off") == 0) {
909 state
= ZTEST_VDEV_CLASS_OFF
;
910 } else if (strcmp(value
, "random") == 0) {
911 state
= ZTEST_VDEV_CLASS_RND
;
913 (void) fprintf(stderr
, "invalid property value '%s'\n", value
);
917 if (strcmp(name
, "special") == 0) {
918 zo
->zo_special_vdevs
= state
;
920 (void) fprintf(stderr
, "invalid property name '%s'\n", name
);
923 if (zo
->zo_verbose
>= 3)
924 (void) printf("%s vdev state is '%s'\n", name
, value
);
928 process_options(int argc
, char **argv
)
931 ztest_shared_opts_t
*zo
= &ztest_opts
;
935 const char *raid_kind
= "random";
937 memcpy(zo
, &ztest_opts_defaults
, sizeof (*zo
));
941 while ((opt
= getopt_long(argc
, argv
, short_opts
, long_opts
,
961 value
= nicenumtoull(optarg
);
965 zo
->zo_vdevs
= value
;
968 zo
->zo_vdev_size
= MAX(SPA_MINDEVSIZE
, value
);
971 zo
->zo_ashift
= value
;
974 zo
->zo_mirrors
= value
;
977 zo
->zo_raid_children
= MAX(1, value
);
980 zo
->zo_raid_parity
= MIN(MAX(value
, 1), 3);
986 zo
->zo_draid_data
= MAX(1, value
);
989 zo
->zo_draid_spares
= MAX(1, value
);
992 zo
->zo_datasets
= MAX(1, value
);
995 zo
->zo_threads
= MAX(1, value
);
998 zo
->zo_metaslab_force_ganging
=
999 MAX(SPA_MINBLOCKSIZE
<< 1, value
);
1002 zo
->zo_init
= value
;
1005 zo
->zo_killrate
= value
;
1008 (void) strlcpy(zo
->zo_pool
, optarg
,
1009 sizeof (zo
->zo_pool
));
1012 path
= realpath(optarg
, NULL
);
1014 (void) fprintf(stderr
, "error: %s: %s\n",
1015 optarg
, strerror(errno
));
1018 (void) strlcpy(zo
->zo_dir
, path
,
1019 sizeof (zo
->zo_dir
));
1024 zo
->zo_mmp_test
= 1;
1033 zo
->zo_time
= value
;
1036 zo
->zo_passtime
= MAX(1, value
);
1039 zo
->zo_maxloops
= MAX(1, value
);
1042 (void) strlcpy(zo
->zo_alt_ztest
, optarg
,
1043 sizeof (zo
->zo_alt_ztest
));
1046 ztest_parse_name_value(optarg
, zo
);
1049 if (zo
->zo_gvars_count
>= ZO_GVARS_MAX_COUNT
) {
1050 (void) fprintf(stderr
,
1051 "max global var count (%zu) exceeded\n",
1052 ZO_GVARS_MAX_COUNT
);
1055 char *v
= zo
->zo_gvars
[zo
->zo_gvars_count
];
1056 if (strlcpy(v
, optarg
, ZO_GVARS_MAX_ARGLEN
) >=
1057 ZO_GVARS_MAX_ARGLEN
) {
1058 (void) fprintf(stderr
,
1059 "global var option '%s' is too long\n",
1063 zo
->zo_gvars_count
++;
1066 zo
->zo_dump_dbgmsg
= 1;
1080 /* When raid choice is 'random' add a draid pool 50% of the time */
1081 if (strcmp(raid_kind
, "random") == 0) {
1082 raid_kind
= (ztest_random(2) == 0) ? "draid" : "raidz";
1084 if (ztest_opts
.zo_verbose
>= 3)
1085 (void) printf("choosing RAID type '%s'\n", raid_kind
);
1088 if (strcmp(raid_kind
, "draid") == 0) {
1089 uint64_t min_devsize
;
1091 /* With fewer disk use 256M, otherwise 128M is OK */
1092 min_devsize
= (ztest_opts
.zo_raid_children
< 16) ?
1093 (256ULL << 20) : (128ULL << 20);
1095 /* No top-level mirrors with dRAID for now */
1098 /* Use more appropriate defaults for dRAID */
1099 if (zo
->zo_vdevs
== ztest_opts_defaults
.zo_vdevs
)
1101 if (zo
->zo_raid_children
==
1102 ztest_opts_defaults
.zo_raid_children
)
1103 zo
->zo_raid_children
= 16;
1104 if (zo
->zo_ashift
< 12)
1106 if (zo
->zo_vdev_size
< min_devsize
)
1107 zo
->zo_vdev_size
= min_devsize
;
1109 if (zo
->zo_draid_data
+ zo
->zo_raid_parity
>
1110 zo
->zo_raid_children
- zo
->zo_draid_spares
) {
1111 (void) fprintf(stderr
, "error: too few draid "
1112 "children (%d) for stripe width (%d)\n",
1113 zo
->zo_raid_children
,
1114 zo
->zo_draid_data
+ zo
->zo_raid_parity
);
1118 (void) strlcpy(zo
->zo_raid_type
, VDEV_TYPE_DRAID
,
1119 sizeof (zo
->zo_raid_type
));
1121 } else /* using raidz */ {
1122 ASSERT0(strcmp(raid_kind
, "raidz"));
1124 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1125 zo
->zo_raid_children
- 1);
1129 (zo
->zo_vdevs
> 0 ? zo
->zo_time
* NANOSEC
/ zo
->zo_vdevs
:
1132 if (*zo
->zo_alt_ztest
) {
1133 const char *invalid_what
= "ztest";
1134 char *val
= zo
->zo_alt_ztest
;
1135 if (0 != access(val
, X_OK
) ||
1136 (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
)))
1139 int dirlen
= strrchr(val
, '/') - val
;
1140 strlcpy(zo
->zo_alt_libpath
, val
,
1141 MIN(sizeof (zo
->zo_alt_libpath
), dirlen
+ 1));
1142 invalid_what
= "library path", val
= zo
->zo_alt_libpath
;
1143 if (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
))
1145 *strrchr(val
, '/') = '\0';
1146 strlcat(val
, "/lib", sizeof (zo
->zo_alt_libpath
));
1148 if (0 != access(zo
->zo_alt_libpath
, X_OK
))
1153 ztest_dump_core
= B_FALSE
;
1154 fatal(B_TRUE
, "invalid alternate %s %s", invalid_what
, val
);
1159 ztest_kill(ztest_shared_t
*zs
)
1161 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(ztest_spa
));
1162 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(ztest_spa
));
1165 * Before we kill ourselves, make sure that the config is updated.
1166 * See comment above spa_write_cachefile().
1168 mutex_enter(&spa_namespace_lock
);
1169 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
, B_FALSE
);
1170 mutex_exit(&spa_namespace_lock
);
1172 (void) raise(SIGKILL
);
1176 ztest_record_enospc(const char *s
)
1179 ztest_shared
->zs_enospc_count
++;
1183 ztest_get_ashift(void)
1185 if (ztest_opts
.zo_ashift
== 0)
1186 return (SPA_MINBLOCKSHIFT
+ ztest_random(5));
1187 return (ztest_opts
.zo_ashift
);
1191 ztest_is_draid_spare(const char *name
)
1193 uint64_t spare_id
= 0, parity
= 0, vdev_id
= 0;
1195 if (sscanf(name
, VDEV_TYPE_DRAID
"%"PRIu64
"-%"PRIu64
"-%"PRIu64
"",
1196 &parity
, &vdev_id
, &spare_id
) == 3) {
1204 make_vdev_file(const char *path
, const char *aux
, const char *pool
,
1205 size_t size
, uint64_t ashift
)
1207 char *pathbuf
= NULL
;
1210 boolean_t draid_spare
= B_FALSE
;
1214 ashift
= ztest_get_ashift();
1217 pathbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1221 vdev
= ztest_shared
->zs_vdev_aux
;
1222 (void) snprintf(pathbuf
, MAXPATHLEN
,
1223 ztest_aux_template
, ztest_opts
.zo_dir
,
1224 pool
== NULL
? ztest_opts
.zo_pool
: pool
,
1227 vdev
= ztest_shared
->zs_vdev_next_leaf
++;
1228 (void) snprintf(pathbuf
, MAXPATHLEN
,
1229 ztest_dev_template
, ztest_opts
.zo_dir
,
1230 pool
== NULL
? ztest_opts
.zo_pool
: pool
, vdev
);
1233 draid_spare
= ztest_is_draid_spare(path
);
1236 if (size
!= 0 && !draid_spare
) {
1237 int fd
= open(path
, O_RDWR
| O_CREAT
| O_TRUNC
, 0666);
1239 fatal(B_TRUE
, "can't open %s", path
);
1240 if (ftruncate(fd
, size
) != 0)
1241 fatal(B_TRUE
, "can't ftruncate %s", path
);
1245 file
= fnvlist_alloc();
1246 fnvlist_add_string(file
, ZPOOL_CONFIG_TYPE
,
1247 draid_spare
? VDEV_TYPE_DRAID_SPARE
: VDEV_TYPE_FILE
);
1248 fnvlist_add_string(file
, ZPOOL_CONFIG_PATH
, path
);
1249 fnvlist_add_uint64(file
, ZPOOL_CONFIG_ASHIFT
, ashift
);
1250 umem_free(pathbuf
, MAXPATHLEN
);
1256 make_vdev_raid(const char *path
, const char *aux
, const char *pool
, size_t size
,
1257 uint64_t ashift
, int r
)
1259 nvlist_t
*raid
, **child
;
1263 return (make_vdev_file(path
, aux
, pool
, size
, ashift
));
1264 child
= umem_alloc(r
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1266 for (c
= 0; c
< r
; c
++)
1267 child
[c
] = make_vdev_file(path
, aux
, pool
, size
, ashift
);
1269 raid
= fnvlist_alloc();
1270 fnvlist_add_string(raid
, ZPOOL_CONFIG_TYPE
,
1271 ztest_opts
.zo_raid_type
);
1272 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_NPARITY
,
1273 ztest_opts
.zo_raid_parity
);
1274 fnvlist_add_nvlist_array(raid
, ZPOOL_CONFIG_CHILDREN
,
1275 (const nvlist_t
**)child
, r
);
1277 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0) {
1278 uint64_t ndata
= ztest_opts
.zo_draid_data
;
1279 uint64_t nparity
= ztest_opts
.zo_raid_parity
;
1280 uint64_t nspares
= ztest_opts
.zo_draid_spares
;
1281 uint64_t children
= ztest_opts
.zo_raid_children
;
1282 uint64_t ngroups
= 1;
1285 * Calculate the minimum number of groups required to fill a
1286 * slice. This is the LCM of the stripe width (data + parity)
1287 * and the number of data drives (children - spares).
1289 while (ngroups
* (ndata
+ nparity
) % (children
- nspares
) != 0)
1292 /* Store the basic dRAID configuration. */
1293 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NDATA
, ndata
);
1294 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NSPARES
, nspares
);
1295 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NGROUPS
, ngroups
);
1298 for (c
= 0; c
< r
; c
++)
1299 fnvlist_free(child
[c
]);
1301 umem_free(child
, r
* sizeof (nvlist_t
*));
1307 make_vdev_mirror(const char *path
, const char *aux
, const char *pool
,
1308 size_t size
, uint64_t ashift
, int r
, int m
)
1310 nvlist_t
*mirror
, **child
;
1314 return (make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
));
1316 child
= umem_alloc(m
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1318 for (c
= 0; c
< m
; c
++)
1319 child
[c
] = make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
);
1321 mirror
= fnvlist_alloc();
1322 fnvlist_add_string(mirror
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_MIRROR
);
1323 fnvlist_add_nvlist_array(mirror
, ZPOOL_CONFIG_CHILDREN
,
1324 (const nvlist_t
**)child
, m
);
1326 for (c
= 0; c
< m
; c
++)
1327 fnvlist_free(child
[c
]);
1329 umem_free(child
, m
* sizeof (nvlist_t
*));
1335 make_vdev_root(const char *path
, const char *aux
, const char *pool
, size_t size
,
1336 uint64_t ashift
, const char *class, int r
, int m
, int t
)
1338 nvlist_t
*root
, **child
;
1344 log
= (class != NULL
&& strcmp(class, "log") == 0);
1346 child
= umem_alloc(t
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1348 for (c
= 0; c
< t
; c
++) {
1349 child
[c
] = make_vdev_mirror(path
, aux
, pool
, size
, ashift
,
1351 fnvlist_add_uint64(child
[c
], ZPOOL_CONFIG_IS_LOG
, log
);
1353 if (class != NULL
&& class[0] != '\0') {
1354 ASSERT(m
> 1 || log
); /* expecting a mirror */
1355 fnvlist_add_string(child
[c
],
1356 ZPOOL_CONFIG_ALLOCATION_BIAS
, class);
1360 root
= fnvlist_alloc();
1361 fnvlist_add_string(root
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
1362 fnvlist_add_nvlist_array(root
, aux
? aux
: ZPOOL_CONFIG_CHILDREN
,
1363 (const nvlist_t
**)child
, t
);
1365 for (c
= 0; c
< t
; c
++)
1366 fnvlist_free(child
[c
]);
1368 umem_free(child
, t
* sizeof (nvlist_t
*));
1374 * Find a random spa version. Returns back a random spa version in the
1375 * range [initial_version, SPA_VERSION_FEATURES].
1378 ztest_random_spa_version(uint64_t initial_version
)
1380 uint64_t version
= initial_version
;
1382 if (version
<= SPA_VERSION_BEFORE_FEATURES
) {
1384 ztest_random(SPA_VERSION_BEFORE_FEATURES
- version
+ 1);
1387 if (version
> SPA_VERSION_BEFORE_FEATURES
)
1388 version
= SPA_VERSION_FEATURES
;
1390 ASSERT(SPA_VERSION_IS_SUPPORTED(version
));
1395 ztest_random_blocksize(void)
1397 ASSERT3U(ztest_spa
->spa_max_ashift
, !=, 0);
1400 * Choose a block size >= the ashift.
1401 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1403 int maxbs
= SPA_OLD_MAXBLOCKSHIFT
;
1404 if (spa_maxblocksize(ztest_spa
) == SPA_MAXBLOCKSIZE
)
1406 uint64_t block_shift
=
1407 ztest_random(maxbs
- ztest_spa
->spa_max_ashift
+ 1);
1408 return (1 << (SPA_MINBLOCKSHIFT
+ block_shift
));
1412 ztest_random_dnodesize(void)
1415 int max_slots
= spa_maxdnodesize(ztest_spa
) >> DNODE_SHIFT
;
1417 if (max_slots
== DNODE_MIN_SLOTS
)
1418 return (DNODE_MIN_SIZE
);
1421 * Weight the random distribution more heavily toward smaller
1422 * dnode sizes since that is more likely to reflect real-world
1425 ASSERT3U(max_slots
, >, 4);
1426 switch (ztest_random(10)) {
1428 slots
= 5 + ztest_random(max_slots
- 4);
1431 slots
= 2 + ztest_random(3);
1438 return (slots
<< DNODE_SHIFT
);
1442 ztest_random_ibshift(void)
1444 return (DN_MIN_INDBLKSHIFT
+
1445 ztest_random(DN_MAX_INDBLKSHIFT
- DN_MIN_INDBLKSHIFT
+ 1));
1449 ztest_random_vdev_top(spa_t
*spa
, boolean_t log_ok
)
1452 vdev_t
*rvd
= spa
->spa_root_vdev
;
1455 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
1458 top
= ztest_random(rvd
->vdev_children
);
1459 tvd
= rvd
->vdev_child
[top
];
1460 } while (!vdev_is_concrete(tvd
) || (tvd
->vdev_islog
&& !log_ok
) ||
1461 tvd
->vdev_mg
== NULL
|| tvd
->vdev_mg
->mg_class
== NULL
);
1467 ztest_random_dsl_prop(zfs_prop_t prop
)
1472 value
= zfs_prop_random_value(prop
, ztest_random(-1ULL));
1473 } while (prop
== ZFS_PROP_CHECKSUM
&& value
== ZIO_CHECKSUM_OFF
);
1479 ztest_dsl_prop_set_uint64(char *osname
, zfs_prop_t prop
, uint64_t value
,
1482 const char *propname
= zfs_prop_to_name(prop
);
1483 const char *valname
;
1488 error
= dsl_prop_set_int(osname
, propname
,
1489 (inherit
? ZPROP_SRC_NONE
: ZPROP_SRC_LOCAL
), value
);
1491 if (error
== ENOSPC
) {
1492 ztest_record_enospc(FTAG
);
1497 setpoint
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1498 VERIFY0(dsl_prop_get_integer(osname
, propname
, &curval
, setpoint
));
1500 if (ztest_opts
.zo_verbose
>= 6) {
1503 err
= zfs_prop_index_to_string(prop
, curval
, &valname
);
1505 (void) printf("%s %s = %llu at '%s'\n", osname
,
1506 propname
, (unsigned long long)curval
, setpoint
);
1508 (void) printf("%s %s = %s at '%s'\n",
1509 osname
, propname
, valname
, setpoint
);
1511 umem_free(setpoint
, MAXPATHLEN
);
1517 ztest_spa_prop_set_uint64(zpool_prop_t prop
, uint64_t value
)
1519 spa_t
*spa
= ztest_spa
;
1520 nvlist_t
*props
= NULL
;
1523 props
= fnvlist_alloc();
1524 fnvlist_add_uint64(props
, zpool_prop_to_name(prop
), value
);
1526 error
= spa_prop_set(spa
, props
);
1528 fnvlist_free(props
);
1530 if (error
== ENOSPC
) {
1531 ztest_record_enospc(FTAG
);
1540 ztest_dmu_objset_own(const char *name
, dmu_objset_type_t type
,
1541 boolean_t readonly
, boolean_t decrypt
, const void *tag
, objset_t
**osp
)
1545 char ddname
[ZFS_MAX_DATASET_NAME_LEN
];
1547 strlcpy(ddname
, name
, sizeof (ddname
));
1548 cp
= strchr(ddname
, '@');
1552 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1553 while (decrypt
&& err
== EACCES
) {
1554 dsl_crypto_params_t
*dcp
;
1555 nvlist_t
*crypto_args
= fnvlist_alloc();
1557 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
1558 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
1559 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, NULL
,
1560 crypto_args
, &dcp
));
1561 err
= spa_keystore_load_wkey(ddname
, dcp
, B_FALSE
);
1563 * Note: if there was an error loading, the wkey was not
1564 * consumed, and needs to be freed.
1566 dsl_crypto_params_free(dcp
, (err
!= 0));
1567 fnvlist_free(crypto_args
);
1569 if (err
== EINVAL
) {
1571 * We couldn't load a key for this dataset so try
1572 * the parent. This loop will eventually hit the
1573 * encryption root since ztest only makes clones
1574 * as children of their origin datasets.
1576 cp
= strrchr(ddname
, '/');
1583 } else if (err
!= 0) {
1587 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1595 ztest_rll_init(rll_t
*rll
)
1597 rll
->rll_writer
= NULL
;
1598 rll
->rll_readers
= 0;
1599 mutex_init(&rll
->rll_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1600 cv_init(&rll
->rll_cv
, NULL
, CV_DEFAULT
, NULL
);
1604 ztest_rll_destroy(rll_t
*rll
)
1606 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1607 ASSERT0(rll
->rll_readers
);
1608 mutex_destroy(&rll
->rll_lock
);
1609 cv_destroy(&rll
->rll_cv
);
1613 ztest_rll_lock(rll_t
*rll
, rl_type_t type
)
1615 mutex_enter(&rll
->rll_lock
);
1617 if (type
== RL_READER
) {
1618 while (rll
->rll_writer
!= NULL
)
1619 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1622 while (rll
->rll_writer
!= NULL
|| rll
->rll_readers
)
1623 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1624 rll
->rll_writer
= curthread
;
1627 mutex_exit(&rll
->rll_lock
);
1631 ztest_rll_unlock(rll_t
*rll
)
1633 mutex_enter(&rll
->rll_lock
);
1635 if (rll
->rll_writer
) {
1636 ASSERT0(rll
->rll_readers
);
1637 rll
->rll_writer
= NULL
;
1639 ASSERT3S(rll
->rll_readers
, >, 0);
1640 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1644 if (rll
->rll_writer
== NULL
&& rll
->rll_readers
== 0)
1645 cv_broadcast(&rll
->rll_cv
);
1647 mutex_exit(&rll
->rll_lock
);
1651 ztest_object_lock(ztest_ds_t
*zd
, uint64_t object
, rl_type_t type
)
1653 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1655 ztest_rll_lock(rll
, type
);
1659 ztest_object_unlock(ztest_ds_t
*zd
, uint64_t object
)
1661 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1663 ztest_rll_unlock(rll
);
1667 ztest_range_lock(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
,
1668 uint64_t size
, rl_type_t type
)
1670 uint64_t hash
= object
^ (offset
% (ZTEST_RANGE_LOCKS
+ 1));
1671 rll_t
*rll
= &zd
->zd_range_lock
[hash
& (ZTEST_RANGE_LOCKS
- 1)];
1674 rl
= umem_alloc(sizeof (*rl
), UMEM_NOFAIL
);
1675 rl
->rl_object
= object
;
1676 rl
->rl_offset
= offset
;
1680 ztest_rll_lock(rll
, type
);
1686 ztest_range_unlock(rl_t
*rl
)
1688 rll_t
*rll
= rl
->rl_lock
;
1690 ztest_rll_unlock(rll
);
1692 umem_free(rl
, sizeof (*rl
));
1696 ztest_zd_init(ztest_ds_t
*zd
, ztest_shared_ds_t
*szd
, objset_t
*os
)
1699 zd
->zd_zilog
= dmu_objset_zil(os
);
1700 zd
->zd_shared
= szd
;
1701 dmu_objset_name(os
, zd
->zd_name
);
1704 if (zd
->zd_shared
!= NULL
)
1705 zd
->zd_shared
->zd_seq
= 0;
1707 VERIFY0(pthread_rwlock_init(&zd
->zd_zilog_lock
, NULL
));
1708 mutex_init(&zd
->zd_dirobj_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1710 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1711 ztest_rll_init(&zd
->zd_object_lock
[l
]);
1713 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1714 ztest_rll_init(&zd
->zd_range_lock
[l
]);
1718 ztest_zd_fini(ztest_ds_t
*zd
)
1722 mutex_destroy(&zd
->zd_dirobj_lock
);
1723 (void) pthread_rwlock_destroy(&zd
->zd_zilog_lock
);
1725 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1726 ztest_rll_destroy(&zd
->zd_object_lock
[l
]);
1728 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1729 ztest_rll_destroy(&zd
->zd_range_lock
[l
]);
1732 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1735 ztest_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
, const char *tag
)
1741 * Attempt to assign tx to some transaction group.
1743 error
= dmu_tx_assign(tx
, txg_how
);
1745 if (error
== ERESTART
) {
1746 ASSERT3U(txg_how
, ==, TXG_NOWAIT
);
1749 ASSERT3U(error
, ==, ENOSPC
);
1750 ztest_record_enospc(tag
);
1755 txg
= dmu_tx_get_txg(tx
);
1756 ASSERT3U(txg
, !=, 0);
1761 ztest_bt_generate(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1762 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1765 bt
->bt_magic
= BT_MAGIC
;
1766 bt
->bt_objset
= dmu_objset_id(os
);
1767 bt
->bt_object
= object
;
1768 bt
->bt_dnodesize
= dnodesize
;
1769 bt
->bt_offset
= offset
;
1772 bt
->bt_crtxg
= crtxg
;
1776 ztest_bt_verify(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1777 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1780 ASSERT3U(bt
->bt_magic
, ==, BT_MAGIC
);
1781 ASSERT3U(bt
->bt_objset
, ==, dmu_objset_id(os
));
1782 ASSERT3U(bt
->bt_object
, ==, object
);
1783 ASSERT3U(bt
->bt_dnodesize
, ==, dnodesize
);
1784 ASSERT3U(bt
->bt_offset
, ==, offset
);
1785 ASSERT3U(bt
->bt_gen
, <=, gen
);
1786 ASSERT3U(bt
->bt_txg
, <=, txg
);
1787 ASSERT3U(bt
->bt_crtxg
, ==, crtxg
);
1790 static ztest_block_tag_t
*
1791 ztest_bt_bonus(dmu_buf_t
*db
)
1793 dmu_object_info_t doi
;
1794 ztest_block_tag_t
*bt
;
1796 dmu_object_info_from_db(db
, &doi
);
1797 ASSERT3U(doi
.doi_bonus_size
, <=, db
->db_size
);
1798 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (*bt
));
1799 bt
= (void *)((char *)db
->db_data
+ doi
.doi_bonus_size
- sizeof (*bt
));
1805 * Generate a token to fill up unused bonus buffer space. Try to make
1806 * it unique to the object, generation, and offset to verify that data
1807 * is not getting overwritten by data from other dnodes.
1809 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1810 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1813 * Fill up the unused bonus buffer region before the block tag with a
1814 * verifiable pattern. Filling the whole bonus area with non-zero data
1815 * helps ensure that all dnode traversal code properly skips the
1816 * interior regions of large dnodes.
1819 ztest_fill_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1820 objset_t
*os
, uint64_t gen
)
1824 ASSERT(IS_P2ALIGNED((char *)end
- (char *)db
->db_data
, 8));
1826 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1827 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1828 gen
, bonusp
- (uint64_t *)db
->db_data
);
1834 * Verify that the unused area of a bonus buffer is filled with the
1838 ztest_verify_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1839 objset_t
*os
, uint64_t gen
)
1843 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1844 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1845 gen
, bonusp
- (uint64_t *)db
->db_data
);
1846 VERIFY3U(*bonusp
, ==, token
);
1854 #define lrz_type lr_mode
1855 #define lrz_blocksize lr_uid
1856 #define lrz_ibshift lr_gid
1857 #define lrz_bonustype lr_rdev
1858 #define lrz_dnodesize lr_crtime[1]
1861 ztest_log_create(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_create_t
*lr
)
1863 char *name
= (void *)(lr
+ 1); /* name follows lr */
1864 size_t namesize
= strlen(name
) + 1;
1867 if (zil_replaying(zd
->zd_zilog
, tx
))
1870 itx
= zil_itx_create(TX_CREATE
, sizeof (*lr
) + namesize
);
1871 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1872 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1874 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1878 ztest_log_remove(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_remove_t
*lr
, uint64_t object
)
1880 char *name
= (void *)(lr
+ 1); /* name follows lr */
1881 size_t namesize
= strlen(name
) + 1;
1884 if (zil_replaying(zd
->zd_zilog
, tx
))
1887 itx
= zil_itx_create(TX_REMOVE
, sizeof (*lr
) + namesize
);
1888 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1889 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1891 itx
->itx_oid
= object
;
1892 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1896 ztest_log_write(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_write_t
*lr
)
1899 itx_wr_state_t write_state
= ztest_random(WR_NUM_STATES
);
1901 if (zil_replaying(zd
->zd_zilog
, tx
))
1904 if (lr
->lr_length
> zil_max_log_data(zd
->zd_zilog
))
1905 write_state
= WR_INDIRECT
;
1907 itx
= zil_itx_create(TX_WRITE
,
1908 sizeof (*lr
) + (write_state
== WR_COPIED
? lr
->lr_length
: 0));
1910 if (write_state
== WR_COPIED
&&
1911 dmu_read(zd
->zd_os
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1912 ((lr_write_t
*)&itx
->itx_lr
) + 1, DMU_READ_NO_PREFETCH
) != 0) {
1913 zil_itx_destroy(itx
);
1914 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
1915 write_state
= WR_NEED_COPY
;
1917 itx
->itx_private
= zd
;
1918 itx
->itx_wr_state
= write_state
;
1919 itx
->itx_sync
= (ztest_random(8) == 0);
1921 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1922 sizeof (*lr
) - sizeof (lr_t
));
1924 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1928 ztest_log_truncate(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_truncate_t
*lr
)
1932 if (zil_replaying(zd
->zd_zilog
, tx
))
1935 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
1936 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1937 sizeof (*lr
) - sizeof (lr_t
));
1939 itx
->itx_sync
= B_FALSE
;
1940 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1944 ztest_log_setattr(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_setattr_t
*lr
)
1948 if (zil_replaying(zd
->zd_zilog
, tx
))
1951 itx
= zil_itx_create(TX_SETATTR
, sizeof (*lr
));
1952 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1953 sizeof (*lr
) - sizeof (lr_t
));
1955 itx
->itx_sync
= B_FALSE
;
1956 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1963 ztest_replay_create(void *arg1
, void *arg2
, boolean_t byteswap
)
1965 ztest_ds_t
*zd
= arg1
;
1966 lr_create_t
*lr
= arg2
;
1967 char *name
= (void *)(lr
+ 1); /* name follows lr */
1968 objset_t
*os
= zd
->zd_os
;
1969 ztest_block_tag_t
*bbt
;
1977 byteswap_uint64_array(lr
, sizeof (*lr
));
1979 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
1980 ASSERT3S(name
[0], !=, '\0');
1982 tx
= dmu_tx_create(os
);
1984 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_TRUE
, name
);
1986 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
1987 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1989 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
1992 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1996 ASSERT3U(dmu_objset_zil(os
)->zl_replay
, ==, !!lr
->lr_foid
);
1997 bonuslen
= DN_BONUS_SIZE(lr
->lrz_dnodesize
);
1999 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
2000 if (lr
->lr_foid
== 0) {
2001 lr
->lr_foid
= zap_create_dnsize(os
,
2002 lr
->lrz_type
, lr
->lrz_bonustype
,
2003 bonuslen
, lr
->lrz_dnodesize
, tx
);
2005 error
= zap_create_claim_dnsize(os
, lr
->lr_foid
,
2006 lr
->lrz_type
, lr
->lrz_bonustype
,
2007 bonuslen
, lr
->lrz_dnodesize
, tx
);
2010 if (lr
->lr_foid
== 0) {
2011 lr
->lr_foid
= dmu_object_alloc_dnsize(os
,
2012 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2013 bonuslen
, lr
->lrz_dnodesize
, tx
);
2015 error
= dmu_object_claim_dnsize(os
, lr
->lr_foid
,
2016 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2017 bonuslen
, lr
->lrz_dnodesize
, tx
);
2022 ASSERT3U(error
, ==, EEXIST
);
2023 ASSERT(zd
->zd_zilog
->zl_replay
);
2028 ASSERT3U(lr
->lr_foid
, !=, 0);
2030 if (lr
->lrz_type
!= DMU_OT_ZAP_OTHER
)
2031 VERIFY0(dmu_object_set_blocksize(os
, lr
->lr_foid
,
2032 lr
->lrz_blocksize
, lr
->lrz_ibshift
, tx
));
2034 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2035 bbt
= ztest_bt_bonus(db
);
2036 dmu_buf_will_dirty(db
, tx
);
2037 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, lr
->lrz_dnodesize
, -1ULL,
2038 lr
->lr_gen
, txg
, txg
);
2039 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, lr
->lr_gen
);
2040 dmu_buf_rele(db
, FTAG
);
2042 VERIFY0(zap_add(os
, lr
->lr_doid
, name
, sizeof (uint64_t), 1,
2045 (void) ztest_log_create(zd
, tx
, lr
);
2053 ztest_replay_remove(void *arg1
, void *arg2
, boolean_t byteswap
)
2055 ztest_ds_t
*zd
= arg1
;
2056 lr_remove_t
*lr
= arg2
;
2057 char *name
= (void *)(lr
+ 1); /* name follows lr */
2058 objset_t
*os
= zd
->zd_os
;
2059 dmu_object_info_t doi
;
2061 uint64_t object
, txg
;
2064 byteswap_uint64_array(lr
, sizeof (*lr
));
2066 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2067 ASSERT3S(name
[0], !=, '\0');
2070 zap_lookup(os
, lr
->lr_doid
, name
, sizeof (object
), 1, &object
));
2071 ASSERT3U(object
, !=, 0);
2073 ztest_object_lock(zd
, object
, RL_WRITER
);
2075 VERIFY0(dmu_object_info(os
, object
, &doi
));
2077 tx
= dmu_tx_create(os
);
2079 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_FALSE
, name
);
2080 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
2082 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2084 ztest_object_unlock(zd
, object
);
2088 if (doi
.doi_type
== DMU_OT_ZAP_OTHER
) {
2089 VERIFY0(zap_destroy(os
, object
, tx
));
2091 VERIFY0(dmu_object_free(os
, object
, tx
));
2094 VERIFY0(zap_remove(os
, lr
->lr_doid
, name
, tx
));
2096 (void) ztest_log_remove(zd
, tx
, lr
, object
);
2100 ztest_object_unlock(zd
, object
);
2106 ztest_replay_write(void *arg1
, void *arg2
, boolean_t byteswap
)
2108 ztest_ds_t
*zd
= arg1
;
2109 lr_write_t
*lr
= arg2
;
2110 objset_t
*os
= zd
->zd_os
;
2111 void *data
= lr
+ 1; /* data follows lr */
2112 uint64_t offset
, length
;
2113 ztest_block_tag_t
*bt
= data
;
2114 ztest_block_tag_t
*bbt
;
2115 uint64_t gen
, txg
, lrtxg
, crtxg
;
2116 dmu_object_info_t doi
;
2119 arc_buf_t
*abuf
= NULL
;
2123 byteswap_uint64_array(lr
, sizeof (*lr
));
2125 offset
= lr
->lr_offset
;
2126 length
= lr
->lr_length
;
2128 /* If it's a dmu_sync() block, write the whole block */
2129 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
2130 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
2131 if (length
< blocksize
) {
2132 offset
-= offset
% blocksize
;
2137 if (bt
->bt_magic
== BSWAP_64(BT_MAGIC
))
2138 byteswap_uint64_array(bt
, sizeof (*bt
));
2140 if (bt
->bt_magic
!= BT_MAGIC
)
2143 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
2144 rl
= ztest_range_lock(zd
, lr
->lr_foid
, offset
, length
, RL_WRITER
);
2146 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2148 dmu_object_info_from_db(db
, &doi
);
2150 bbt
= ztest_bt_bonus(db
);
2151 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2153 crtxg
= bbt
->bt_crtxg
;
2154 lrtxg
= lr
->lr_common
.lrc_txg
;
2156 tx
= dmu_tx_create(os
);
2158 dmu_tx_hold_write(tx
, lr
->lr_foid
, offset
, length
);
2160 if (ztest_random(8) == 0 && length
== doi
.doi_data_block_size
&&
2161 P2PHASE(offset
, length
) == 0)
2162 abuf
= dmu_request_arcbuf(db
, length
);
2164 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2167 dmu_return_arcbuf(abuf
);
2168 dmu_buf_rele(db
, FTAG
);
2169 ztest_range_unlock(rl
);
2170 ztest_object_unlock(zd
, lr
->lr_foid
);
2176 * Usually, verify the old data before writing new data --
2177 * but not always, because we also want to verify correct
2178 * behavior when the data was not recently read into cache.
2180 ASSERT(doi
.doi_data_block_size
);
2181 ASSERT0(offset
% doi
.doi_data_block_size
);
2182 if (ztest_random(4) != 0) {
2183 int prefetch
= ztest_random(2) ?
2184 DMU_READ_PREFETCH
: DMU_READ_NO_PREFETCH
;
2185 ztest_block_tag_t rbt
;
2187 VERIFY(dmu_read(os
, lr
->lr_foid
, offset
,
2188 sizeof (rbt
), &rbt
, prefetch
) == 0);
2189 if (rbt
.bt_magic
== BT_MAGIC
) {
2190 ztest_bt_verify(&rbt
, os
, lr
->lr_foid
, 0,
2191 offset
, gen
, txg
, crtxg
);
2196 * Writes can appear to be newer than the bonus buffer because
2197 * the ztest_get_data() callback does a dmu_read() of the
2198 * open-context data, which may be different than the data
2199 * as it was when the write was generated.
2201 if (zd
->zd_zilog
->zl_replay
) {
2202 ztest_bt_verify(bt
, os
, lr
->lr_foid
, 0, offset
,
2203 MAX(gen
, bt
->bt_gen
), MAX(txg
, lrtxg
),
2208 * Set the bt's gen/txg to the bonus buffer's gen/txg
2209 * so that all of the usual ASSERTs will work.
2211 ztest_bt_generate(bt
, os
, lr
->lr_foid
, 0, offset
, gen
, txg
,
2216 dmu_write(os
, lr
->lr_foid
, offset
, length
, data
, tx
);
2218 memcpy(abuf
->b_data
, data
, length
);
2219 VERIFY0(dmu_assign_arcbuf_by_dbuf(db
, offset
, abuf
, tx
));
2222 (void) ztest_log_write(zd
, tx
, lr
);
2224 dmu_buf_rele(db
, FTAG
);
2228 ztest_range_unlock(rl
);
2229 ztest_object_unlock(zd
, lr
->lr_foid
);
2235 ztest_replay_truncate(void *arg1
, void *arg2
, boolean_t byteswap
)
2237 ztest_ds_t
*zd
= arg1
;
2238 lr_truncate_t
*lr
= arg2
;
2239 objset_t
*os
= zd
->zd_os
;
2245 byteswap_uint64_array(lr
, sizeof (*lr
));
2247 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
2248 rl
= ztest_range_lock(zd
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
2251 tx
= dmu_tx_create(os
);
2253 dmu_tx_hold_free(tx
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
);
2255 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2257 ztest_range_unlock(rl
);
2258 ztest_object_unlock(zd
, lr
->lr_foid
);
2262 VERIFY0(dmu_free_range(os
, lr
->lr_foid
, lr
->lr_offset
,
2263 lr
->lr_length
, tx
));
2265 (void) ztest_log_truncate(zd
, tx
, lr
);
2269 ztest_range_unlock(rl
);
2270 ztest_object_unlock(zd
, lr
->lr_foid
);
2276 ztest_replay_setattr(void *arg1
, void *arg2
, boolean_t byteswap
)
2278 ztest_ds_t
*zd
= arg1
;
2279 lr_setattr_t
*lr
= arg2
;
2280 objset_t
*os
= zd
->zd_os
;
2283 ztest_block_tag_t
*bbt
;
2284 uint64_t txg
, lrtxg
, crtxg
, dnodesize
;
2287 byteswap_uint64_array(lr
, sizeof (*lr
));
2289 ztest_object_lock(zd
, lr
->lr_foid
, RL_WRITER
);
2291 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2293 tx
= dmu_tx_create(os
);
2294 dmu_tx_hold_bonus(tx
, lr
->lr_foid
);
2296 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2298 dmu_buf_rele(db
, FTAG
);
2299 ztest_object_unlock(zd
, lr
->lr_foid
);
2303 bbt
= ztest_bt_bonus(db
);
2304 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2305 crtxg
= bbt
->bt_crtxg
;
2306 lrtxg
= lr
->lr_common
.lrc_txg
;
2307 dnodesize
= bbt
->bt_dnodesize
;
2309 if (zd
->zd_zilog
->zl_replay
) {
2310 ASSERT3U(lr
->lr_size
, !=, 0);
2311 ASSERT3U(lr
->lr_mode
, !=, 0);
2312 ASSERT3U(lrtxg
, !=, 0);
2315 * Randomly change the size and increment the generation.
2317 lr
->lr_size
= (ztest_random(db
->db_size
/ sizeof (*bbt
)) + 1) *
2319 lr
->lr_mode
= bbt
->bt_gen
+ 1;
2324 * Verify that the current bonus buffer is not newer than our txg.
2326 ztest_bt_verify(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2327 MAX(txg
, lrtxg
), crtxg
);
2329 dmu_buf_will_dirty(db
, tx
);
2331 ASSERT3U(lr
->lr_size
, >=, sizeof (*bbt
));
2332 ASSERT3U(lr
->lr_size
, <=, db
->db_size
);
2333 VERIFY0(dmu_set_bonus(db
, lr
->lr_size
, tx
));
2334 bbt
= ztest_bt_bonus(db
);
2336 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2338 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, bbt
->bt_gen
);
2339 dmu_buf_rele(db
, FTAG
);
2341 (void) ztest_log_setattr(zd
, tx
, lr
);
2345 ztest_object_unlock(zd
, lr
->lr_foid
);
2350 static zil_replay_func_t
*ztest_replay_vector
[TX_MAX_TYPE
] = {
2351 NULL
, /* 0 no such transaction type */
2352 ztest_replay_create
, /* TX_CREATE */
2353 NULL
, /* TX_MKDIR */
2354 NULL
, /* TX_MKXATTR */
2355 NULL
, /* TX_SYMLINK */
2356 ztest_replay_remove
, /* TX_REMOVE */
2357 NULL
, /* TX_RMDIR */
2359 NULL
, /* TX_RENAME */
2360 ztest_replay_write
, /* TX_WRITE */
2361 ztest_replay_truncate
, /* TX_TRUNCATE */
2362 ztest_replay_setattr
, /* TX_SETATTR */
2364 NULL
, /* TX_CREATE_ACL */
2365 NULL
, /* TX_CREATE_ATTR */
2366 NULL
, /* TX_CREATE_ACL_ATTR */
2367 NULL
, /* TX_MKDIR_ACL */
2368 NULL
, /* TX_MKDIR_ATTR */
2369 NULL
, /* TX_MKDIR_ACL_ATTR */
2370 NULL
, /* TX_WRITE2 */
2371 NULL
, /* TX_SETSAXATTR */
2372 NULL
, /* TX_RENAME_EXCHANGE */
2373 NULL
, /* TX_RENAME_WHITEOUT */
2377 * ZIL get_data callbacks
2381 ztest_get_done(zgd_t
*zgd
, int error
)
2384 ztest_ds_t
*zd
= zgd
->zgd_private
;
2385 uint64_t object
= ((rl_t
*)zgd
->zgd_lr
)->rl_object
;
2388 dmu_buf_rele(zgd
->zgd_db
, zgd
);
2390 ztest_range_unlock((rl_t
*)zgd
->zgd_lr
);
2391 ztest_object_unlock(zd
, object
);
2393 umem_free(zgd
, sizeof (*zgd
));
2397 ztest_get_data(void *arg
, uint64_t arg2
, lr_write_t
*lr
, char *buf
,
2398 struct lwb
*lwb
, zio_t
*zio
)
2401 ztest_ds_t
*zd
= arg
;
2402 objset_t
*os
= zd
->zd_os
;
2403 uint64_t object
= lr
->lr_foid
;
2404 uint64_t offset
= lr
->lr_offset
;
2405 uint64_t size
= lr
->lr_length
;
2406 uint64_t txg
= lr
->lr_common
.lrc_txg
;
2408 dmu_object_info_t doi
;
2413 ASSERT3P(lwb
, !=, NULL
);
2414 ASSERT3P(zio
, !=, NULL
);
2415 ASSERT3U(size
, !=, 0);
2417 ztest_object_lock(zd
, object
, RL_READER
);
2418 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
2420 ztest_object_unlock(zd
, object
);
2424 crtxg
= ztest_bt_bonus(db
)->bt_crtxg
;
2426 if (crtxg
== 0 || crtxg
> txg
) {
2427 dmu_buf_rele(db
, FTAG
);
2428 ztest_object_unlock(zd
, object
);
2432 dmu_object_info_from_db(db
, &doi
);
2433 dmu_buf_rele(db
, FTAG
);
2436 zgd
= umem_zalloc(sizeof (*zgd
), UMEM_NOFAIL
);
2438 zgd
->zgd_private
= zd
;
2440 if (buf
!= NULL
) { /* immediate write */
2441 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2442 object
, offset
, size
, RL_READER
);
2444 error
= dmu_read(os
, object
, offset
, size
, buf
,
2445 DMU_READ_NO_PREFETCH
);
2448 size
= doi
.doi_data_block_size
;
2450 offset
= P2ALIGN(offset
, size
);
2452 ASSERT3U(offset
, <, size
);
2456 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2457 object
, offset
, size
, RL_READER
);
2459 error
= dmu_buf_hold(os
, object
, offset
, zgd
, &db
,
2460 DMU_READ_NO_PREFETCH
);
2463 blkptr_t
*bp
= &lr
->lr_blkptr
;
2468 ASSERT3U(db
->db_offset
, ==, offset
);
2469 ASSERT3U(db
->db_size
, ==, size
);
2471 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
2472 ztest_get_done
, zgd
);
2479 ztest_get_done(zgd
, error
);
2485 ztest_lr_alloc(size_t lrsize
, char *name
)
2488 size_t namesize
= name
? strlen(name
) + 1 : 0;
2490 lr
= umem_zalloc(lrsize
+ namesize
, UMEM_NOFAIL
);
2493 memcpy(lr
+ lrsize
, name
, namesize
);
2499 ztest_lr_free(void *lr
, size_t lrsize
, char *name
)
2501 size_t namesize
= name
? strlen(name
) + 1 : 0;
2503 umem_free(lr
, lrsize
+ namesize
);
2507 * Lookup a bunch of objects. Returns the number of objects not found.
2510 ztest_lookup(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2516 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2518 for (i
= 0; i
< count
; i
++, od
++) {
2520 error
= zap_lookup(zd
->zd_os
, od
->od_dir
, od
->od_name
,
2521 sizeof (uint64_t), 1, &od
->od_object
);
2523 ASSERT3S(error
, ==, ENOENT
);
2524 ASSERT0(od
->od_object
);
2528 ztest_block_tag_t
*bbt
;
2529 dmu_object_info_t doi
;
2531 ASSERT3U(od
->od_object
, !=, 0);
2532 ASSERT0(missing
); /* there should be no gaps */
2534 ztest_object_lock(zd
, od
->od_object
, RL_READER
);
2535 VERIFY0(dmu_bonus_hold(zd
->zd_os
, od
->od_object
,
2537 dmu_object_info_from_db(db
, &doi
);
2538 bbt
= ztest_bt_bonus(db
);
2539 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2540 od
->od_type
= doi
.doi_type
;
2541 od
->od_blocksize
= doi
.doi_data_block_size
;
2542 od
->od_gen
= bbt
->bt_gen
;
2543 dmu_buf_rele(db
, FTAG
);
2544 ztest_object_unlock(zd
, od
->od_object
);
2552 ztest_create(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2557 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2559 for (i
= 0; i
< count
; i
++, od
++) {
2566 lr_create_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2568 lr
->lr_doid
= od
->od_dir
;
2569 lr
->lr_foid
= 0; /* 0 to allocate, > 0 to claim */
2570 lr
->lrz_type
= od
->od_crtype
;
2571 lr
->lrz_blocksize
= od
->od_crblocksize
;
2572 lr
->lrz_ibshift
= ztest_random_ibshift();
2573 lr
->lrz_bonustype
= DMU_OT_UINT64_OTHER
;
2574 lr
->lrz_dnodesize
= od
->od_crdnodesize
;
2575 lr
->lr_gen
= od
->od_crgen
;
2576 lr
->lr_crtime
[0] = time(NULL
);
2578 if (ztest_replay_create(zd
, lr
, B_FALSE
) != 0) {
2583 od
->od_object
= lr
->lr_foid
;
2584 od
->od_type
= od
->od_crtype
;
2585 od
->od_blocksize
= od
->od_crblocksize
;
2586 od
->od_gen
= od
->od_crgen
;
2587 ASSERT3U(od
->od_object
, !=, 0);
2590 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2597 ztest_remove(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2603 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2607 for (i
= count
- 1; i
>= 0; i
--, od
--) {
2614 * No object was found.
2616 if (od
->od_object
== 0)
2619 lr_remove_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2621 lr
->lr_doid
= od
->od_dir
;
2623 if ((error
= ztest_replay_remove(zd
, lr
, B_FALSE
)) != 0) {
2624 ASSERT3U(error
, ==, ENOSPC
);
2629 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2636 ztest_write(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
,
2642 lr
= ztest_lr_alloc(sizeof (*lr
) + size
, NULL
);
2644 lr
->lr_foid
= object
;
2645 lr
->lr_offset
= offset
;
2646 lr
->lr_length
= size
;
2648 BP_ZERO(&lr
->lr_blkptr
);
2650 memcpy(lr
+ 1, data
, size
);
2652 error
= ztest_replay_write(zd
, lr
, B_FALSE
);
2654 ztest_lr_free(lr
, sizeof (*lr
) + size
, NULL
);
2660 ztest_truncate(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2665 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2667 lr
->lr_foid
= object
;
2668 lr
->lr_offset
= offset
;
2669 lr
->lr_length
= size
;
2671 error
= ztest_replay_truncate(zd
, lr
, B_FALSE
);
2673 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2679 ztest_setattr(ztest_ds_t
*zd
, uint64_t object
)
2684 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2686 lr
->lr_foid
= object
;
2690 error
= ztest_replay_setattr(zd
, lr
, B_FALSE
);
2692 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2698 ztest_prealloc(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2700 objset_t
*os
= zd
->zd_os
;
2705 txg_wait_synced(dmu_objset_pool(os
), 0);
2707 ztest_object_lock(zd
, object
, RL_READER
);
2708 rl
= ztest_range_lock(zd
, object
, offset
, size
, RL_WRITER
);
2710 tx
= dmu_tx_create(os
);
2712 dmu_tx_hold_write(tx
, object
, offset
, size
);
2714 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2717 dmu_prealloc(os
, object
, offset
, size
, tx
);
2719 txg_wait_synced(dmu_objset_pool(os
), txg
);
2721 (void) dmu_free_long_range(os
, object
, offset
, size
);
2724 ztest_range_unlock(rl
);
2725 ztest_object_unlock(zd
, object
);
2729 ztest_io(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
)
2732 ztest_block_tag_t wbt
;
2733 dmu_object_info_t doi
;
2734 enum ztest_io_type io_type
;
2738 VERIFY0(dmu_object_info(zd
->zd_os
, object
, &doi
));
2739 blocksize
= doi
.doi_data_block_size
;
2740 data
= umem_alloc(blocksize
, UMEM_NOFAIL
);
2743 * Pick an i/o type at random, biased toward writing block tags.
2745 io_type
= ztest_random(ZTEST_IO_TYPES
);
2746 if (ztest_random(2) == 0)
2747 io_type
= ZTEST_IO_WRITE_TAG
;
2749 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2753 case ZTEST_IO_WRITE_TAG
:
2754 ztest_bt_generate(&wbt
, zd
->zd_os
, object
, doi
.doi_dnodesize
,
2756 (void) ztest_write(zd
, object
, offset
, sizeof (wbt
), &wbt
);
2759 case ZTEST_IO_WRITE_PATTERN
:
2760 (void) memset(data
, 'a' + (object
+ offset
) % 5, blocksize
);
2761 if (ztest_random(2) == 0) {
2763 * Induce fletcher2 collisions to ensure that
2764 * zio_ddt_collision() detects and resolves them
2765 * when using fletcher2-verify for deduplication.
2767 ((uint64_t *)data
)[0] ^= 1ULL << 63;
2768 ((uint64_t *)data
)[4] ^= 1ULL << 63;
2770 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2773 case ZTEST_IO_WRITE_ZEROES
:
2774 memset(data
, 0, blocksize
);
2775 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2778 case ZTEST_IO_TRUNCATE
:
2779 (void) ztest_truncate(zd
, object
, offset
, blocksize
);
2782 case ZTEST_IO_SETATTR
:
2783 (void) ztest_setattr(zd
, object
);
2788 case ZTEST_IO_REWRITE
:
2789 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2790 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2791 ZFS_PROP_CHECKSUM
, spa_dedup_checksum(ztest_spa
),
2793 VERIFY(err
== 0 || err
== ENOSPC
);
2794 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2795 ZFS_PROP_COMPRESSION
,
2796 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
),
2798 VERIFY(err
== 0 || err
== ENOSPC
);
2799 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2801 VERIFY0(dmu_read(zd
->zd_os
, object
, offset
, blocksize
, data
,
2802 DMU_READ_NO_PREFETCH
));
2804 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2808 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2810 umem_free(data
, blocksize
);
2814 * Initialize an object description template.
2817 ztest_od_init(ztest_od_t
*od
, uint64_t id
, const char *tag
, uint64_t index
,
2818 dmu_object_type_t type
, uint64_t blocksize
, uint64_t dnodesize
,
2821 od
->od_dir
= ZTEST_DIROBJ
;
2824 od
->od_crtype
= type
;
2825 od
->od_crblocksize
= blocksize
? blocksize
: ztest_random_blocksize();
2826 od
->od_crdnodesize
= dnodesize
? dnodesize
: ztest_random_dnodesize();
2829 od
->od_type
= DMU_OT_NONE
;
2830 od
->od_blocksize
= 0;
2833 (void) snprintf(od
->od_name
, sizeof (od
->od_name
),
2834 "%s(%"PRId64
")[%"PRIu64
"]",
2839 * Lookup or create the objects for a test using the od template.
2840 * If the objects do not all exist, or if 'remove' is specified,
2841 * remove any existing objects and create new ones. Otherwise,
2842 * use the existing objects.
2845 ztest_object_init(ztest_ds_t
*zd
, ztest_od_t
*od
, size_t size
, boolean_t remove
)
2847 int count
= size
/ sizeof (*od
);
2850 mutex_enter(&zd
->zd_dirobj_lock
);
2851 if ((ztest_lookup(zd
, od
, count
) != 0 || remove
) &&
2852 (ztest_remove(zd
, od
, count
) != 0 ||
2853 ztest_create(zd
, od
, count
) != 0))
2856 mutex_exit(&zd
->zd_dirobj_lock
);
2862 ztest_zil_commit(ztest_ds_t
*zd
, uint64_t id
)
2865 zilog_t
*zilog
= zd
->zd_zilog
;
2867 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2869 zil_commit(zilog
, ztest_random(ZTEST_OBJECTS
));
2872 * Remember the committed values in zd, which is in parent/child
2873 * shared memory. If we die, the next iteration of ztest_run()
2874 * will verify that the log really does contain this record.
2876 mutex_enter(&zilog
->zl_lock
);
2877 ASSERT3P(zd
->zd_shared
, !=, NULL
);
2878 ASSERT3U(zd
->zd_shared
->zd_seq
, <=, zilog
->zl_commit_lr_seq
);
2879 zd
->zd_shared
->zd_seq
= zilog
->zl_commit_lr_seq
;
2880 mutex_exit(&zilog
->zl_lock
);
2882 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2886 * This function is designed to simulate the operations that occur during a
2887 * mount/unmount operation. We hold the dataset across these operations in an
2888 * attempt to expose any implicit assumptions about ZIL management.
2891 ztest_zil_remount(ztest_ds_t
*zd
, uint64_t id
)
2894 objset_t
*os
= zd
->zd_os
;
2897 * We hold the ztest_vdev_lock so we don't cause problems with
2898 * other threads that wish to remove a log device, such as
2899 * ztest_device_removal().
2901 mutex_enter(&ztest_vdev_lock
);
2904 * We grab the zd_dirobj_lock to ensure that no other thread is
2905 * updating the zil (i.e. adding in-memory log records) and the
2906 * zd_zilog_lock to block any I/O.
2908 mutex_enter(&zd
->zd_dirobj_lock
);
2909 (void) pthread_rwlock_wrlock(&zd
->zd_zilog_lock
);
2911 /* zfsvfs_teardown() */
2912 zil_close(zd
->zd_zilog
);
2914 /* zfsvfs_setup() */
2915 VERIFY3P(zil_open(os
, ztest_get_data
, NULL
), ==, zd
->zd_zilog
);
2916 zil_replay(os
, zd
, ztest_replay_vector
);
2918 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2919 mutex_exit(&zd
->zd_dirobj_lock
);
2920 mutex_exit(&ztest_vdev_lock
);
2924 * Verify that we can't destroy an active pool, create an existing pool,
2925 * or create a pool with a bad vdev spec.
2928 ztest_spa_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
2930 (void) zd
, (void) id
;
2931 ztest_shared_opts_t
*zo
= &ztest_opts
;
2935 if (zo
->zo_mmp_test
)
2939 * Attempt to create using a bad file.
2941 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
2942 VERIFY3U(ENOENT
, ==,
2943 spa_create("ztest_bad_file", nvroot
, NULL
, NULL
, NULL
));
2944 fnvlist_free(nvroot
);
2947 * Attempt to create using a bad mirror.
2949 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 2, 1);
2950 VERIFY3U(ENOENT
, ==,
2951 spa_create("ztest_bad_mirror", nvroot
, NULL
, NULL
, NULL
));
2952 fnvlist_free(nvroot
);
2955 * Attempt to create an existing pool. It shouldn't matter
2956 * what's in the nvroot; we should fail with EEXIST.
2958 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2959 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
2960 VERIFY3U(EEXIST
, ==,
2961 spa_create(zo
->zo_pool
, nvroot
, NULL
, NULL
, NULL
));
2962 fnvlist_free(nvroot
);
2965 * We open a reference to the spa and then we try to export it
2966 * expecting one of the following errors:
2969 * Because of the reference we just opened.
2971 * ZFS_ERR_EXPORT_IN_PROGRESS
2972 * For the case that there is another ztest thread doing
2973 * an export concurrently.
2975 VERIFY0(spa_open(zo
->zo_pool
, &spa
, FTAG
));
2976 int error
= spa_destroy(zo
->zo_pool
);
2977 if (error
!= EBUSY
&& error
!= ZFS_ERR_EXPORT_IN_PROGRESS
) {
2978 fatal(B_FALSE
, "spa_destroy(%s) returned unexpected value %d",
2979 spa
->spa_name
, error
);
2981 spa_close(spa
, FTAG
);
2983 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2987 * Start and then stop the MMP threads to ensure the startup and shutdown code
2988 * works properly. Actual protection and property-related code tested via ZTS.
2991 ztest_mmp_enable_disable(ztest_ds_t
*zd
, uint64_t id
)
2993 (void) zd
, (void) id
;
2994 ztest_shared_opts_t
*zo
= &ztest_opts
;
2995 spa_t
*spa
= ztest_spa
;
2997 if (zo
->zo_mmp_test
)
3001 * Since enabling MMP involves setting a property, it could not be done
3002 * while the pool is suspended.
3004 if (spa_suspended(spa
))
3007 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3008 mutex_enter(&spa
->spa_props_lock
);
3010 zfs_multihost_fail_intervals
= 0;
3012 if (!spa_multihost(spa
)) {
3013 spa
->spa_multihost
= B_TRUE
;
3014 mmp_thread_start(spa
);
3017 mutex_exit(&spa
->spa_props_lock
);
3018 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3020 txg_wait_synced(spa_get_dsl(spa
), 0);
3021 mmp_signal_all_threads();
3022 txg_wait_synced(spa_get_dsl(spa
), 0);
3024 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3025 mutex_enter(&spa
->spa_props_lock
);
3027 if (spa_multihost(spa
)) {
3028 mmp_thread_stop(spa
);
3029 spa
->spa_multihost
= B_FALSE
;
3032 mutex_exit(&spa
->spa_props_lock
);
3033 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3037 ztest_spa_upgrade(ztest_ds_t
*zd
, uint64_t id
)
3039 (void) zd
, (void) id
;
3041 uint64_t initial_version
= SPA_VERSION_INITIAL
;
3042 uint64_t version
, newversion
;
3043 nvlist_t
*nvroot
, *props
;
3046 if (ztest_opts
.zo_mmp_test
)
3049 /* dRAID added after feature flags, skip upgrade test. */
3050 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0)
3053 mutex_enter(&ztest_vdev_lock
);
3054 name
= kmem_asprintf("%s_upgrade", ztest_opts
.zo_pool
);
3057 * Clean up from previous runs.
3059 (void) spa_destroy(name
);
3061 nvroot
= make_vdev_root(NULL
, NULL
, name
, ztest_opts
.zo_vdev_size
, 0,
3062 NULL
, ztest_opts
.zo_raid_children
, ztest_opts
.zo_mirrors
, 1);
3065 * If we're configuring a RAIDZ device then make sure that the
3066 * initial version is capable of supporting that feature.
3068 switch (ztest_opts
.zo_raid_parity
) {
3071 initial_version
= SPA_VERSION_INITIAL
;
3074 initial_version
= SPA_VERSION_RAIDZ2
;
3077 initial_version
= SPA_VERSION_RAIDZ3
;
3082 * Create a pool with a spa version that can be upgraded. Pick
3083 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3086 version
= ztest_random_spa_version(initial_version
);
3087 } while (version
> SPA_VERSION_BEFORE_FEATURES
);
3089 props
= fnvlist_alloc();
3090 fnvlist_add_uint64(props
,
3091 zpool_prop_to_name(ZPOOL_PROP_VERSION
), version
);
3092 VERIFY0(spa_create(name
, nvroot
, props
, NULL
, NULL
));
3093 fnvlist_free(nvroot
);
3094 fnvlist_free(props
);
3096 VERIFY0(spa_open(name
, &spa
, FTAG
));
3097 VERIFY3U(spa_version(spa
), ==, version
);
3098 newversion
= ztest_random_spa_version(version
+ 1);
3100 if (ztest_opts
.zo_verbose
>= 4) {
3101 (void) printf("upgrading spa version from "
3102 "%"PRIu64
" to %"PRIu64
"\n",
3103 version
, newversion
);
3106 spa_upgrade(spa
, newversion
);
3107 VERIFY3U(spa_version(spa
), >, version
);
3108 VERIFY3U(spa_version(spa
), ==, fnvlist_lookup_uint64(spa
->spa_config
,
3109 zpool_prop_to_name(ZPOOL_PROP_VERSION
)));
3110 spa_close(spa
, FTAG
);
3113 mutex_exit(&ztest_vdev_lock
);
3117 ztest_spa_checkpoint(spa_t
*spa
)
3119 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3121 int error
= spa_checkpoint(spa
->spa_name
);
3125 case ZFS_ERR_DEVRM_IN_PROGRESS
:
3126 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3127 case ZFS_ERR_CHECKPOINT_EXISTS
:
3130 ztest_record_enospc(FTAG
);
3133 fatal(B_FALSE
, "spa_checkpoint(%s) = %d", spa
->spa_name
, error
);
3138 ztest_spa_discard_checkpoint(spa_t
*spa
)
3140 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3142 int error
= spa_checkpoint_discard(spa
->spa_name
);
3146 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3147 case ZFS_ERR_NO_CHECKPOINT
:
3150 fatal(B_FALSE
, "spa_discard_checkpoint(%s) = %d",
3151 spa
->spa_name
, error
);
3157 ztest_spa_checkpoint_create_discard(ztest_ds_t
*zd
, uint64_t id
)
3159 (void) zd
, (void) id
;
3160 spa_t
*spa
= ztest_spa
;
3162 mutex_enter(&ztest_checkpoint_lock
);
3163 if (ztest_random(2) == 0) {
3164 ztest_spa_checkpoint(spa
);
3166 ztest_spa_discard_checkpoint(spa
);
3168 mutex_exit(&ztest_checkpoint_lock
);
3173 vdev_lookup_by_path(vdev_t
*vd
, const char *path
)
3178 if (vd
->vdev_path
!= NULL
&& strcmp(path
, vd
->vdev_path
) == 0)
3181 for (c
= 0; c
< vd
->vdev_children
; c
++)
3182 if ((mvd
= vdev_lookup_by_path(vd
->vdev_child
[c
], path
)) !=
3190 spa_num_top_vdevs(spa_t
*spa
)
3192 vdev_t
*rvd
= spa
->spa_root_vdev
;
3193 ASSERT3U(spa_config_held(spa
, SCL_VDEV
, RW_READER
), ==, SCL_VDEV
);
3194 return (rvd
->vdev_children
);
3198 * Verify that vdev_add() works as expected.
3201 ztest_vdev_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3203 (void) zd
, (void) id
;
3204 ztest_shared_t
*zs
= ztest_shared
;
3205 spa_t
*spa
= ztest_spa
;
3211 if (ztest_opts
.zo_mmp_test
)
3214 mutex_enter(&ztest_vdev_lock
);
3215 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) *
3216 ztest_opts
.zo_raid_children
;
3218 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3220 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3223 * If we have slogs then remove them 1/4 of the time.
3225 if (spa_has_slogs(spa
) && ztest_random(4) == 0) {
3226 metaslab_group_t
*mg
;
3229 * find the first real slog in log allocation class
3231 mg
= spa_log_class(spa
)->mc_allocator
[0].mca_rotor
;
3232 while (!mg
->mg_vd
->vdev_islog
)
3235 guid
= mg
->mg_vd
->vdev_guid
;
3237 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3240 * We have to grab the zs_name_lock as writer to
3241 * prevent a race between removing a slog (dmu_objset_find)
3242 * and destroying a dataset. Removing the slog will
3243 * grab a reference on the dataset which may cause
3244 * dsl_destroy_head() to fail with EBUSY thus
3245 * leaving the dataset in an inconsistent state.
3247 pthread_rwlock_wrlock(&ztest_name_lock
);
3248 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3249 pthread_rwlock_unlock(&ztest_name_lock
);
3253 case EEXIST
: /* Generic zil_reset() error */
3254 case EBUSY
: /* Replay required */
3255 case EACCES
: /* Crypto key not loaded */
3256 case ZFS_ERR_CHECKPOINT_EXISTS
:
3257 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3260 fatal(B_FALSE
, "spa_vdev_remove() = %d", error
);
3263 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3266 * Make 1/4 of the devices be log devices
3268 nvroot
= make_vdev_root(NULL
, NULL
, NULL
,
3269 ztest_opts
.zo_vdev_size
, 0, (ztest_random(4) == 0) ?
3270 "log" : NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
,
3273 error
= spa_vdev_add(spa
, nvroot
);
3274 fnvlist_free(nvroot
);
3280 ztest_record_enospc("spa_vdev_add");
3283 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3287 mutex_exit(&ztest_vdev_lock
);
3291 ztest_vdev_class_add(ztest_ds_t
*zd
, uint64_t id
)
3293 (void) zd
, (void) id
;
3294 ztest_shared_t
*zs
= ztest_shared
;
3295 spa_t
*spa
= ztest_spa
;
3298 const char *class = (ztest_random(2) == 0) ?
3299 VDEV_ALLOC_BIAS_SPECIAL
: VDEV_ALLOC_BIAS_DEDUP
;
3303 * By default add a special vdev 50% of the time
3305 if ((ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_OFF
) ||
3306 (ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_RND
&&
3307 ztest_random(2) == 0)) {
3311 mutex_enter(&ztest_vdev_lock
);
3313 /* Only test with mirrors */
3314 if (zs
->zs_mirrors
< 2) {
3315 mutex_exit(&ztest_vdev_lock
);
3319 /* requires feature@allocation_classes */
3320 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_ALLOCATION_CLASSES
)) {
3321 mutex_exit(&ztest_vdev_lock
);
3325 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) *
3326 ztest_opts
.zo_raid_children
;
3328 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3329 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3330 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3332 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
3333 class, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
3335 error
= spa_vdev_add(spa
, nvroot
);
3336 fnvlist_free(nvroot
);
3338 if (error
== ENOSPC
)
3339 ztest_record_enospc("spa_vdev_add");
3340 else if (error
!= 0)
3341 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3344 * 50% of the time allow small blocks in the special class
3347 spa_special_class(spa
)->mc_groups
== 1 && ztest_random(2) == 0) {
3348 if (ztest_opts
.zo_verbose
>= 3)
3349 (void) printf("Enabling special VDEV small blocks\n");
3350 (void) ztest_dsl_prop_set_uint64(zd
->zd_name
,
3351 ZFS_PROP_SPECIAL_SMALL_BLOCKS
, 32768, B_FALSE
);
3354 mutex_exit(&ztest_vdev_lock
);
3356 if (ztest_opts
.zo_verbose
>= 3) {
3357 metaslab_class_t
*mc
;
3359 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL
) == 0)
3360 mc
= spa_special_class(spa
);
3362 mc
= spa_dedup_class(spa
);
3363 (void) printf("Added a %s mirrored vdev (of %d)\n",
3364 class, (int)mc
->mc_groups
);
3369 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3372 ztest_vdev_aux_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3374 (void) zd
, (void) id
;
3375 ztest_shared_t
*zs
= ztest_shared
;
3376 spa_t
*spa
= ztest_spa
;
3377 vdev_t
*rvd
= spa
->spa_root_vdev
;
3378 spa_aux_vdev_t
*sav
;
3382 int error
, ignore_err
= 0;
3384 if (ztest_opts
.zo_mmp_test
)
3387 path
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3389 if (ztest_random(2) == 0) {
3390 sav
= &spa
->spa_spares
;
3391 aux
= ZPOOL_CONFIG_SPARES
;
3393 sav
= &spa
->spa_l2cache
;
3394 aux
= ZPOOL_CONFIG_L2CACHE
;
3397 mutex_enter(&ztest_vdev_lock
);
3399 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3401 if (sav
->sav_count
!= 0 && ztest_random(4) == 0) {
3403 * Pick a random device to remove.
3405 vdev_t
*svd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3407 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3408 if (strstr(svd
->vdev_path
, VDEV_TYPE_DRAID
) != NULL
)
3409 ignore_err
= ENOTSUP
;
3411 guid
= svd
->vdev_guid
;
3414 * Find an unused device we can add.
3416 zs
->zs_vdev_aux
= 0;
3419 (void) snprintf(path
, MAXPATHLEN
, ztest_aux_template
,
3420 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, aux
,
3422 for (c
= 0; c
< sav
->sav_count
; c
++)
3423 if (strcmp(sav
->sav_vdevs
[c
]->vdev_path
,
3426 if (c
== sav
->sav_count
&&
3427 vdev_lookup_by_path(rvd
, path
) == NULL
)
3433 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3439 nvlist_t
*nvroot
= make_vdev_root(NULL
, aux
, NULL
,
3440 (ztest_opts
.zo_vdev_size
* 5) / 4, 0, NULL
, 0, 0, 1);
3441 error
= spa_vdev_add(spa
, nvroot
);
3447 fatal(B_FALSE
, "spa_vdev_add(%p) = %d", nvroot
, error
);
3449 fnvlist_free(nvroot
);
3452 * Remove an existing device. Sometimes, dirty its
3453 * vdev state first to make sure we handle removal
3454 * of devices that have pending state changes.
3456 if (ztest_random(2) == 0)
3457 (void) vdev_online(spa
, guid
, 0, NULL
);
3459 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3464 case ZFS_ERR_CHECKPOINT_EXISTS
:
3465 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3468 if (error
!= ignore_err
)
3470 "spa_vdev_remove(%"PRIu64
") = %d",
3475 mutex_exit(&ztest_vdev_lock
);
3477 umem_free(path
, MAXPATHLEN
);
3481 * split a pool if it has mirror tlvdevs
3484 ztest_split_pool(ztest_ds_t
*zd
, uint64_t id
)
3486 (void) zd
, (void) id
;
3487 ztest_shared_t
*zs
= ztest_shared
;
3488 spa_t
*spa
= ztest_spa
;
3489 vdev_t
*rvd
= spa
->spa_root_vdev
;
3490 nvlist_t
*tree
, **child
, *config
, *split
, **schild
;
3491 uint_t c
, children
, schildren
= 0, lastlogid
= 0;
3494 if (ztest_opts
.zo_mmp_test
)
3497 mutex_enter(&ztest_vdev_lock
);
3499 /* ensure we have a usable config; mirrors of raidz aren't supported */
3500 if (zs
->zs_mirrors
< 3 || ztest_opts
.zo_raid_children
> 1) {
3501 mutex_exit(&ztest_vdev_lock
);
3505 /* clean up the old pool, if any */
3506 (void) spa_destroy("splitp");
3508 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3510 /* generate a config from the existing config */
3511 mutex_enter(&spa
->spa_props_lock
);
3512 tree
= fnvlist_lookup_nvlist(spa
->spa_config
, ZPOOL_CONFIG_VDEV_TREE
);
3513 mutex_exit(&spa
->spa_props_lock
);
3515 VERIFY0(nvlist_lookup_nvlist_array(tree
, ZPOOL_CONFIG_CHILDREN
,
3516 &child
, &children
));
3518 schild
= umem_alloc(rvd
->vdev_children
* sizeof (nvlist_t
*),
3520 for (c
= 0; c
< children
; c
++) {
3521 vdev_t
*tvd
= rvd
->vdev_child
[c
];
3525 if (tvd
->vdev_islog
|| tvd
->vdev_ops
== &vdev_hole_ops
) {
3526 schild
[schildren
] = fnvlist_alloc();
3527 fnvlist_add_string(schild
[schildren
],
3528 ZPOOL_CONFIG_TYPE
, VDEV_TYPE_HOLE
);
3529 fnvlist_add_uint64(schild
[schildren
],
3530 ZPOOL_CONFIG_IS_HOLE
, 1);
3532 lastlogid
= schildren
;
3537 VERIFY0(nvlist_lookup_nvlist_array(child
[c
],
3538 ZPOOL_CONFIG_CHILDREN
, &mchild
, &mchildren
));
3539 schild
[schildren
++] = fnvlist_dup(mchild
[0]);
3542 /* OK, create a config that can be used to split */
3543 split
= fnvlist_alloc();
3544 fnvlist_add_string(split
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
3545 fnvlist_add_nvlist_array(split
, ZPOOL_CONFIG_CHILDREN
,
3546 (const nvlist_t
**)schild
, lastlogid
!= 0 ? lastlogid
: schildren
);
3548 config
= fnvlist_alloc();
3549 fnvlist_add_nvlist(config
, ZPOOL_CONFIG_VDEV_TREE
, split
);
3551 for (c
= 0; c
< schildren
; c
++)
3552 fnvlist_free(schild
[c
]);
3553 umem_free(schild
, rvd
->vdev_children
* sizeof (nvlist_t
*));
3554 fnvlist_free(split
);
3556 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3558 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
3559 error
= spa_vdev_split_mirror(spa
, "splitp", config
, NULL
, B_FALSE
);
3560 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3562 fnvlist_free(config
);
3565 (void) printf("successful split - results:\n");
3566 mutex_enter(&spa_namespace_lock
);
3567 show_pool_stats(spa
);
3568 show_pool_stats(spa_lookup("splitp"));
3569 mutex_exit(&spa_namespace_lock
);
3573 mutex_exit(&ztest_vdev_lock
);
3577 * Verify that we can attach and detach devices.
3580 ztest_vdev_attach_detach(ztest_ds_t
*zd
, uint64_t id
)
3582 (void) zd
, (void) id
;
3583 ztest_shared_t
*zs
= ztest_shared
;
3584 spa_t
*spa
= ztest_spa
;
3585 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
3586 vdev_t
*rvd
= spa
->spa_root_vdev
;
3587 vdev_t
*oldvd
, *newvd
, *pvd
;
3591 uint64_t ashift
= ztest_get_ashift();
3592 uint64_t oldguid
, pguid
;
3593 uint64_t oldsize
, newsize
;
3594 char *oldpath
, *newpath
;
3596 int oldvd_has_siblings
= B_FALSE
;
3597 int newvd_is_spare
= B_FALSE
;
3598 int newvd_is_dspare
= B_FALSE
;
3600 int oldvd_is_special
;
3601 int error
, expected_error
;
3603 if (ztest_opts
.zo_mmp_test
)
3606 oldpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3607 newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3609 mutex_enter(&ztest_vdev_lock
);
3610 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raid_children
;
3612 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
3615 * If a vdev is in the process of being removed, its removal may
3616 * finish while we are in progress, leading to an unexpected error
3617 * value. Don't bother trying to attach while we are in the middle
3620 if (ztest_device_removal_active
) {
3621 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3626 * Decide whether to do an attach or a replace.
3628 replacing
= ztest_random(2);
3631 * Pick a random top-level vdev.
3633 top
= ztest_random_vdev_top(spa
, B_TRUE
);
3636 * Pick a random leaf within it.
3638 leaf
= ztest_random(leaves
);
3643 oldvd
= rvd
->vdev_child
[top
];
3645 /* pick a child from the mirror */
3646 if (zs
->zs_mirrors
>= 1) {
3647 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_mirror_ops
);
3648 ASSERT3U(oldvd
->vdev_children
, >=, zs
->zs_mirrors
);
3649 oldvd
= oldvd
->vdev_child
[leaf
/ ztest_opts
.zo_raid_children
];
3652 /* pick a child out of the raidz group */
3653 if (ztest_opts
.zo_raid_children
> 1) {
3654 if (strcmp(oldvd
->vdev_ops
->vdev_op_type
, "raidz") == 0)
3655 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_raidz_ops
);
3657 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_draid_ops
);
3658 ASSERT3U(oldvd
->vdev_children
, ==, ztest_opts
.zo_raid_children
);
3659 oldvd
= oldvd
->vdev_child
[leaf
% ztest_opts
.zo_raid_children
];
3663 * If we're already doing an attach or replace, oldvd may be a
3664 * mirror vdev -- in which case, pick a random child.
3666 while (oldvd
->vdev_children
!= 0) {
3667 oldvd_has_siblings
= B_TRUE
;
3668 ASSERT3U(oldvd
->vdev_children
, >=, 2);
3669 oldvd
= oldvd
->vdev_child
[ztest_random(oldvd
->vdev_children
)];
3672 oldguid
= oldvd
->vdev_guid
;
3673 oldsize
= vdev_get_min_asize(oldvd
);
3674 oldvd_is_log
= oldvd
->vdev_top
->vdev_islog
;
3676 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_SPECIAL
||
3677 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_DEDUP
;
3678 (void) strlcpy(oldpath
, oldvd
->vdev_path
, MAXPATHLEN
);
3679 pvd
= oldvd
->vdev_parent
;
3680 pguid
= pvd
->vdev_guid
;
3683 * If oldvd has siblings, then half of the time, detach it. Prior
3684 * to the detach the pool is scrubbed in order to prevent creating
3685 * unrepairable blocks as a result of the data corruption injection.
3687 if (oldvd_has_siblings
&& ztest_random(2) == 0) {
3688 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3690 error
= ztest_scrub_impl(spa
);
3694 error
= spa_vdev_detach(spa
, oldguid
, pguid
, B_FALSE
);
3695 if (error
!= 0 && error
!= ENODEV
&& error
!= EBUSY
&&
3696 error
!= ENOTSUP
&& error
!= ZFS_ERR_CHECKPOINT_EXISTS
&&
3697 error
!= ZFS_ERR_DISCARDING_CHECKPOINT
)
3698 fatal(B_FALSE
, "detach (%s) returned %d",
3704 * For the new vdev, choose with equal probability between the two
3705 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3707 if (sav
->sav_count
!= 0 && ztest_random(3) == 0) {
3708 newvd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3709 newvd_is_spare
= B_TRUE
;
3711 if (newvd
->vdev_ops
== &vdev_draid_spare_ops
)
3712 newvd_is_dspare
= B_TRUE
;
3714 (void) strlcpy(newpath
, newvd
->vdev_path
, MAXPATHLEN
);
3716 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
3717 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
3718 top
* leaves
+ leaf
);
3719 if (ztest_random(2) == 0)
3720 newpath
[strlen(newpath
) - 1] = 'b';
3721 newvd
= vdev_lookup_by_path(rvd
, newpath
);
3726 * Reopen to ensure the vdev's asize field isn't stale.
3729 newsize
= vdev_get_min_asize(newvd
);
3732 * Make newsize a little bigger or smaller than oldsize.
3733 * If it's smaller, the attach should fail.
3734 * If it's larger, and we're doing a replace,
3735 * we should get dynamic LUN growth when we're done.
3737 newsize
= 10 * oldsize
/ (9 + ztest_random(3));
3741 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3742 * unless it's a replace; in that case any non-replacing parent is OK.
3744 * If newvd is already part of the pool, it should fail with EBUSY.
3746 * If newvd is too small, it should fail with EOVERFLOW.
3748 * If newvd is a distributed spare and it's being attached to a
3749 * dRAID which is not its parent it should fail with EINVAL.
3751 if (pvd
->vdev_ops
!= &vdev_mirror_ops
&&
3752 pvd
->vdev_ops
!= &vdev_root_ops
&& (!replacing
||
3753 pvd
->vdev_ops
== &vdev_replacing_ops
||
3754 pvd
->vdev_ops
== &vdev_spare_ops
))
3755 expected_error
= ENOTSUP
;
3756 else if (newvd_is_spare
&&
3757 (!replacing
|| oldvd_is_log
|| oldvd_is_special
))
3758 expected_error
= ENOTSUP
;
3759 else if (newvd
== oldvd
)
3760 expected_error
= replacing
? 0 : EBUSY
;
3761 else if (vdev_lookup_by_path(rvd
, newpath
) != NULL
)
3762 expected_error
= EBUSY
;
3763 else if (!newvd_is_dspare
&& newsize
< oldsize
)
3764 expected_error
= EOVERFLOW
;
3765 else if (ashift
> oldvd
->vdev_top
->vdev_ashift
)
3766 expected_error
= EDOM
;
3767 else if (newvd_is_dspare
&& pvd
!= vdev_draid_spare_get_parent(newvd
))
3768 expected_error
= ENOTSUP
;
3772 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3775 * Build the nvlist describing newpath.
3777 root
= make_vdev_root(newpath
, NULL
, NULL
, newvd
== NULL
? newsize
: 0,
3778 ashift
, NULL
, 0, 0, 1);
3781 * When supported select either a healing or sequential resilver.
3783 boolean_t rebuilding
= B_FALSE
;
3784 if (pvd
->vdev_ops
== &vdev_mirror_ops
||
3785 pvd
->vdev_ops
== &vdev_root_ops
) {
3786 rebuilding
= !!ztest_random(2);
3789 error
= spa_vdev_attach(spa
, oldguid
, root
, replacing
, rebuilding
);
3794 * If our parent was the replacing vdev, but the replace completed,
3795 * then instead of failing with ENOTSUP we may either succeed,
3796 * fail with ENODEV, or fail with EOVERFLOW.
3798 if (expected_error
== ENOTSUP
&&
3799 (error
== 0 || error
== ENODEV
|| error
== EOVERFLOW
))
3800 expected_error
= error
;
3803 * If someone grew the LUN, the replacement may be too small.
3805 if (error
== EOVERFLOW
|| error
== EBUSY
)
3806 expected_error
= error
;
3808 if (error
== ZFS_ERR_CHECKPOINT_EXISTS
||
3809 error
== ZFS_ERR_DISCARDING_CHECKPOINT
||
3810 error
== ZFS_ERR_RESILVER_IN_PROGRESS
||
3811 error
== ZFS_ERR_REBUILD_IN_PROGRESS
)
3812 expected_error
= error
;
3814 if (error
!= expected_error
&& expected_error
!= EBUSY
) {
3815 fatal(B_FALSE
, "attach (%s %"PRIu64
", %s %"PRIu64
", %d) "
3816 "returned %d, expected %d",
3817 oldpath
, oldsize
, newpath
,
3818 newsize
, replacing
, error
, expected_error
);
3821 mutex_exit(&ztest_vdev_lock
);
3823 umem_free(oldpath
, MAXPATHLEN
);
3824 umem_free(newpath
, MAXPATHLEN
);
3828 ztest_device_removal(ztest_ds_t
*zd
, uint64_t id
)
3830 (void) zd
, (void) id
;
3831 spa_t
*spa
= ztest_spa
;
3836 mutex_enter(&ztest_vdev_lock
);
3838 if (ztest_device_removal_active
) {
3839 mutex_exit(&ztest_vdev_lock
);
3844 * Remove a random top-level vdev and wait for removal to finish.
3846 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3847 vd
= vdev_lookup_top(spa
, ztest_random_vdev_top(spa
, B_FALSE
));
3848 guid
= vd
->vdev_guid
;
3849 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3851 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3853 ztest_device_removal_active
= B_TRUE
;
3854 mutex_exit(&ztest_vdev_lock
);
3857 * spa->spa_vdev_removal is created in a sync task that
3858 * is initiated via dsl_sync_task_nowait(). Since the
3859 * task may not run before spa_vdev_remove() returns, we
3860 * must wait at least 1 txg to ensure that the removal
3861 * struct has been created.
3863 txg_wait_synced(spa_get_dsl(spa
), 0);
3865 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
3866 txg_wait_synced(spa_get_dsl(spa
), 0);
3868 mutex_exit(&ztest_vdev_lock
);
3873 * The pool needs to be scrubbed after completing device removal.
3874 * Failure to do so may result in checksum errors due to the
3875 * strategy employed by ztest_fault_inject() when selecting which
3876 * offset are redundant and can be damaged.
3878 error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
3880 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
3881 txg_wait_synced(spa_get_dsl(spa
), 0);
3884 mutex_enter(&ztest_vdev_lock
);
3885 ztest_device_removal_active
= B_FALSE
;
3886 mutex_exit(&ztest_vdev_lock
);
3890 * Callback function which expands the physical size of the vdev.
3893 grow_vdev(vdev_t
*vd
, void *arg
)
3895 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
3896 size_t *newsize
= arg
;
3900 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
3901 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3903 if ((fd
= open(vd
->vdev_path
, O_RDWR
)) == -1)
3906 fsize
= lseek(fd
, 0, SEEK_END
);
3907 VERIFY0(ftruncate(fd
, *newsize
));
3909 if (ztest_opts
.zo_verbose
>= 6) {
3910 (void) printf("%s grew from %lu to %lu bytes\n",
3911 vd
->vdev_path
, (ulong_t
)fsize
, (ulong_t
)*newsize
);
3918 * Callback function which expands a given vdev by calling vdev_online().
3921 online_vdev(vdev_t
*vd
, void *arg
)
3924 spa_t
*spa
= vd
->vdev_spa
;
3925 vdev_t
*tvd
= vd
->vdev_top
;
3926 uint64_t guid
= vd
->vdev_guid
;
3927 uint64_t generation
= spa
->spa_config_generation
+ 1;
3928 vdev_state_t newstate
= VDEV_STATE_UNKNOWN
;
3931 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
3932 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3934 /* Calling vdev_online will initialize the new metaslabs */
3935 spa_config_exit(spa
, SCL_STATE
, spa
);
3936 error
= vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, &newstate
);
3937 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
3940 * If vdev_online returned an error or the underlying vdev_open
3941 * failed then we abort the expand. The only way to know that
3942 * vdev_open fails is by checking the returned newstate.
3944 if (error
|| newstate
!= VDEV_STATE_HEALTHY
) {
3945 if (ztest_opts
.zo_verbose
>= 5) {
3946 (void) printf("Unable to expand vdev, state %u, "
3947 "error %d\n", newstate
, error
);
3951 ASSERT3U(newstate
, ==, VDEV_STATE_HEALTHY
);
3954 * Since we dropped the lock we need to ensure that we're
3955 * still talking to the original vdev. It's possible this
3956 * vdev may have been detached/replaced while we were
3957 * trying to online it.
3959 if (generation
!= spa
->spa_config_generation
) {
3960 if (ztest_opts
.zo_verbose
>= 5) {
3961 (void) printf("vdev configuration has changed, "
3962 "guid %"PRIu64
", state %"PRIu64
", "
3963 "expected gen %"PRIu64
", got gen %"PRIu64
"\n",
3967 spa
->spa_config_generation
);
3975 * Traverse the vdev tree calling the supplied function.
3976 * We continue to walk the tree until we either have walked all
3977 * children or we receive a non-NULL return from the callback.
3978 * If a NULL callback is passed, then we just return back the first
3979 * leaf vdev we encounter.
3982 vdev_walk_tree(vdev_t
*vd
, vdev_t
*(*func
)(vdev_t
*, void *), void *arg
)
3986 if (vd
->vdev_ops
->vdev_op_leaf
) {
3990 return (func(vd
, arg
));
3993 for (c
= 0; c
< vd
->vdev_children
; c
++) {
3994 vdev_t
*cvd
= vd
->vdev_child
[c
];
3995 if ((cvd
= vdev_walk_tree(cvd
, func
, arg
)) != NULL
)
4002 * Verify that dynamic LUN growth works as expected.
4005 ztest_vdev_LUN_growth(ztest_ds_t
*zd
, uint64_t id
)
4007 (void) zd
, (void) id
;
4008 spa_t
*spa
= ztest_spa
;
4010 metaslab_class_t
*mc
;
4011 metaslab_group_t
*mg
;
4012 size_t psize
, newsize
;
4014 uint64_t old_class_space
, new_class_space
, old_ms_count
, new_ms_count
;
4016 mutex_enter(&ztest_checkpoint_lock
);
4017 mutex_enter(&ztest_vdev_lock
);
4018 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4021 * If there is a vdev removal in progress, it could complete while
4022 * we are running, in which case we would not be able to verify
4023 * that the metaslab_class space increased (because it decreases
4024 * when the device removal completes).
4026 if (ztest_device_removal_active
) {
4027 spa_config_exit(spa
, SCL_STATE
, spa
);
4028 mutex_exit(&ztest_vdev_lock
);
4029 mutex_exit(&ztest_checkpoint_lock
);
4033 top
= ztest_random_vdev_top(spa
, B_TRUE
);
4035 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4038 old_ms_count
= tvd
->vdev_ms_count
;
4039 old_class_space
= metaslab_class_get_space(mc
);
4042 * Determine the size of the first leaf vdev associated with
4043 * our top-level device.
4045 vd
= vdev_walk_tree(tvd
, NULL
, NULL
);
4046 ASSERT3P(vd
, !=, NULL
);
4047 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4049 psize
= vd
->vdev_psize
;
4052 * We only try to expand the vdev if it's healthy, less than 4x its
4053 * original size, and it has a valid psize.
4055 if (tvd
->vdev_state
!= VDEV_STATE_HEALTHY
||
4056 psize
== 0 || psize
>= 4 * ztest_opts
.zo_vdev_size
) {
4057 spa_config_exit(spa
, SCL_STATE
, spa
);
4058 mutex_exit(&ztest_vdev_lock
);
4059 mutex_exit(&ztest_checkpoint_lock
);
4062 ASSERT3U(psize
, >, 0);
4063 newsize
= psize
+ MAX(psize
/ 8, SPA_MAXBLOCKSIZE
);
4064 ASSERT3U(newsize
, >, psize
);
4066 if (ztest_opts
.zo_verbose
>= 6) {
4067 (void) printf("Expanding LUN %s from %lu to %lu\n",
4068 vd
->vdev_path
, (ulong_t
)psize
, (ulong_t
)newsize
);
4072 * Growing the vdev is a two step process:
4073 * 1). expand the physical size (i.e. relabel)
4074 * 2). online the vdev to create the new metaslabs
4076 if (vdev_walk_tree(tvd
, grow_vdev
, &newsize
) != NULL
||
4077 vdev_walk_tree(tvd
, online_vdev
, NULL
) != NULL
||
4078 tvd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
4079 if (ztest_opts
.zo_verbose
>= 5) {
4080 (void) printf("Could not expand LUN because "
4081 "the vdev configuration changed.\n");
4083 spa_config_exit(spa
, SCL_STATE
, spa
);
4084 mutex_exit(&ztest_vdev_lock
);
4085 mutex_exit(&ztest_checkpoint_lock
);
4089 spa_config_exit(spa
, SCL_STATE
, spa
);
4092 * Expanding the LUN will update the config asynchronously,
4093 * thus we must wait for the async thread to complete any
4094 * pending tasks before proceeding.
4098 mutex_enter(&spa
->spa_async_lock
);
4099 done
= (spa
->spa_async_thread
== NULL
&& !spa
->spa_async_tasks
);
4100 mutex_exit(&spa
->spa_async_lock
);
4103 txg_wait_synced(spa_get_dsl(spa
), 0);
4104 (void) poll(NULL
, 0, 100);
4107 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4109 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4110 new_ms_count
= tvd
->vdev_ms_count
;
4111 new_class_space
= metaslab_class_get_space(mc
);
4113 if (tvd
->vdev_mg
!= mg
|| mg
->mg_class
!= mc
) {
4114 if (ztest_opts
.zo_verbose
>= 5) {
4115 (void) printf("Could not verify LUN expansion due to "
4116 "intervening vdev offline or remove.\n");
4118 spa_config_exit(spa
, SCL_STATE
, spa
);
4119 mutex_exit(&ztest_vdev_lock
);
4120 mutex_exit(&ztest_checkpoint_lock
);
4125 * Make sure we were able to grow the vdev.
4127 if (new_ms_count
<= old_ms_count
) {
4129 "LUN expansion failed: ms_count %"PRIu64
" < %"PRIu64
"\n",
4130 old_ms_count
, new_ms_count
);
4134 * Make sure we were able to grow the pool.
4136 if (new_class_space
<= old_class_space
) {
4138 "LUN expansion failed: class_space %"PRIu64
" < %"PRIu64
"\n",
4139 old_class_space
, new_class_space
);
4142 if (ztest_opts
.zo_verbose
>= 5) {
4143 char oldnumbuf
[NN_NUMBUF_SZ
], newnumbuf
[NN_NUMBUF_SZ
];
4145 nicenum(old_class_space
, oldnumbuf
, sizeof (oldnumbuf
));
4146 nicenum(new_class_space
, newnumbuf
, sizeof (newnumbuf
));
4147 (void) printf("%s grew from %s to %s\n",
4148 spa
->spa_name
, oldnumbuf
, newnumbuf
);
4151 spa_config_exit(spa
, SCL_STATE
, spa
);
4152 mutex_exit(&ztest_vdev_lock
);
4153 mutex_exit(&ztest_checkpoint_lock
);
4157 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4160 ztest_objset_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
4162 (void) arg
, (void) cr
;
4165 * Create the objects common to all ztest datasets.
4167 VERIFY0(zap_create_claim(os
, ZTEST_DIROBJ
,
4168 DMU_OT_ZAP_OTHER
, DMU_OT_NONE
, 0, tx
));
4172 ztest_dataset_create(char *dsname
)
4176 dsl_crypto_params_t
*dcp
= NULL
;
4179 * 50% of the time, we create encrypted datasets
4180 * using a random cipher suite and a hard-coded
4183 rand
= ztest_random(2);
4185 nvlist_t
*crypto_args
= fnvlist_alloc();
4186 nvlist_t
*props
= fnvlist_alloc();
4188 /* slight bias towards the default cipher suite */
4189 rand
= ztest_random(ZIO_CRYPT_FUNCTIONS
);
4190 if (rand
< ZIO_CRYPT_AES_128_CCM
)
4191 rand
= ZIO_CRYPT_ON
;
4193 fnvlist_add_uint64(props
,
4194 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), rand
);
4195 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
4196 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
4199 * These parameters aren't really used by the kernel. They
4200 * are simply stored so that userspace knows how to load
4203 fnvlist_add_uint64(props
,
4204 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), ZFS_KEYFORMAT_RAW
);
4205 fnvlist_add_string(props
,
4206 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), "prompt");
4207 fnvlist_add_uint64(props
,
4208 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 0ULL);
4209 fnvlist_add_uint64(props
,
4210 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 0ULL);
4212 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, props
,
4213 crypto_args
, &dcp
));
4216 * Cycle through all available encryption implementations
4217 * to verify interoperability.
4219 VERIFY0(gcm_impl_set("cycle"));
4220 VERIFY0(aes_impl_set("cycle"));
4222 fnvlist_free(crypto_args
);
4223 fnvlist_free(props
);
4226 err
= dmu_objset_create(dsname
, DMU_OST_OTHER
, 0, dcp
,
4227 ztest_objset_create_cb
, NULL
);
4228 dsl_crypto_params_free(dcp
, !!err
);
4230 rand
= ztest_random(100);
4231 if (err
|| rand
< 80)
4234 if (ztest_opts
.zo_verbose
>= 5)
4235 (void) printf("Setting dataset %s to sync always\n", dsname
);
4236 return (ztest_dsl_prop_set_uint64(dsname
, ZFS_PROP_SYNC
,
4237 ZFS_SYNC_ALWAYS
, B_FALSE
));
4241 ztest_objset_destroy_cb(const char *name
, void *arg
)
4245 dmu_object_info_t doi
;
4249 * Verify that the dataset contains a directory object.
4251 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
4252 B_TRUE
, FTAG
, &os
));
4253 error
= dmu_object_info(os
, ZTEST_DIROBJ
, &doi
);
4254 if (error
!= ENOENT
) {
4255 /* We could have crashed in the middle of destroying it */
4257 ASSERT3U(doi
.doi_type
, ==, DMU_OT_ZAP_OTHER
);
4258 ASSERT3S(doi
.doi_physical_blocks_512
, >=, 0);
4260 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4263 * Destroy the dataset.
4265 if (strchr(name
, '@') != NULL
) {
4266 error
= dsl_destroy_snapshot(name
, B_TRUE
);
4267 if (error
!= ECHRNG
) {
4269 * The program was executed, but encountered a runtime
4270 * error, such as insufficient slop, or a hold on the
4276 error
= dsl_destroy_head(name
);
4277 if (error
== ENOSPC
) {
4278 /* There could be checkpoint or insufficient slop */
4279 ztest_record_enospc(FTAG
);
4280 } else if (error
!= EBUSY
) {
4281 /* There could be a hold on this dataset */
4289 ztest_snapshot_create(char *osname
, uint64_t id
)
4291 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4294 (void) snprintf(snapname
, sizeof (snapname
), "%"PRIu64
"", id
);
4296 error
= dmu_objset_snapshot_one(osname
, snapname
);
4297 if (error
== ENOSPC
) {
4298 ztest_record_enospc(FTAG
);
4301 if (error
!= 0 && error
!= EEXIST
) {
4302 fatal(B_FALSE
, "ztest_snapshot_create(%s@%s) = %d", osname
,
4309 ztest_snapshot_destroy(char *osname
, uint64_t id
)
4311 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4314 (void) snprintf(snapname
, sizeof (snapname
), "%s@%"PRIu64
"",
4317 error
= dsl_destroy_snapshot(snapname
, B_FALSE
);
4318 if (error
!= 0 && error
!= ENOENT
)
4319 fatal(B_FALSE
, "ztest_snapshot_destroy(%s) = %d",
4325 ztest_dmu_objset_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4332 char name
[ZFS_MAX_DATASET_NAME_LEN
];
4336 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
4338 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4340 (void) snprintf(name
, sizeof (name
), "%s/temp_%"PRIu64
"",
4341 ztest_opts
.zo_pool
, id
);
4344 * If this dataset exists from a previous run, process its replay log
4345 * half of the time. If we don't replay it, then dsl_destroy_head()
4346 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4348 if (ztest_random(2) == 0 &&
4349 ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
4350 B_TRUE
, FTAG
, &os
) == 0) {
4351 ztest_zd_init(zdtmp
, NULL
, os
);
4352 zil_replay(os
, zdtmp
, ztest_replay_vector
);
4353 ztest_zd_fini(zdtmp
);
4354 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4358 * There may be an old instance of the dataset we're about to
4359 * create lying around from a previous run. If so, destroy it
4360 * and all of its snapshots.
4362 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
4363 DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
4366 * Verify that the destroyed dataset is no longer in the namespace.
4368 VERIFY3U(ENOENT
, ==, ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
4369 B_TRUE
, FTAG
, &os
));
4372 * Verify that we can create a new dataset.
4374 error
= ztest_dataset_create(name
);
4376 if (error
== ENOSPC
) {
4377 ztest_record_enospc(FTAG
);
4380 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", name
, error
);
4383 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, B_TRUE
,
4386 ztest_zd_init(zdtmp
, NULL
, os
);
4389 * Open the intent log for it.
4391 zilog
= zil_open(os
, ztest_get_data
, NULL
);
4394 * Put some objects in there, do a little I/O to them,
4395 * and randomly take a couple of snapshots along the way.
4397 iters
= ztest_random(5);
4398 for (i
= 0; i
< iters
; i
++) {
4399 ztest_dmu_object_alloc_free(zdtmp
, id
);
4400 if (ztest_random(iters
) == 0)
4401 (void) ztest_snapshot_create(name
, i
);
4405 * Verify that we cannot create an existing dataset.
4407 VERIFY3U(EEXIST
, ==,
4408 dmu_objset_create(name
, DMU_OST_OTHER
, 0, NULL
, NULL
, NULL
));
4411 * Verify that we can hold an objset that is also owned.
4413 VERIFY0(dmu_objset_hold(name
, FTAG
, &os2
));
4414 dmu_objset_rele(os2
, FTAG
);
4417 * Verify that we cannot own an objset that is already owned.
4419 VERIFY3U(EBUSY
, ==, ztest_dmu_objset_own(name
, DMU_OST_OTHER
,
4420 B_FALSE
, B_TRUE
, FTAG
, &os2
));
4423 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4424 ztest_zd_fini(zdtmp
);
4426 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4428 umem_free(zdtmp
, sizeof (ztest_ds_t
));
4432 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4435 ztest_dmu_snapshot_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4437 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4438 (void) ztest_snapshot_destroy(zd
->zd_name
, id
);
4439 (void) ztest_snapshot_create(zd
->zd_name
, id
);
4440 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4444 * Cleanup non-standard snapshots and clones.
4447 ztest_dsl_dataset_cleanup(char *osname
, uint64_t id
)
4456 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4457 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4458 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4459 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4460 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4462 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4464 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4466 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4468 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4470 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4473 error
= dsl_destroy_head(clone2name
);
4474 if (error
&& error
!= ENOENT
)
4475 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone2name
, error
);
4476 error
= dsl_destroy_snapshot(snap3name
, B_FALSE
);
4477 if (error
&& error
!= ENOENT
)
4478 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4480 error
= dsl_destroy_snapshot(snap2name
, B_FALSE
);
4481 if (error
&& error
!= ENOENT
)
4482 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4484 error
= dsl_destroy_head(clone1name
);
4485 if (error
&& error
!= ENOENT
)
4486 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone1name
, error
);
4487 error
= dsl_destroy_snapshot(snap1name
, B_FALSE
);
4488 if (error
&& error
!= ENOENT
)
4489 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4492 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4493 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4494 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4495 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4496 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4500 * Verify dsl_dataset_promote handles EBUSY
4503 ztest_dsl_dataset_promote_busy(ztest_ds_t
*zd
, uint64_t id
)
4511 char *osname
= zd
->zd_name
;
4514 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4515 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4516 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4517 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4518 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4520 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4522 ztest_dsl_dataset_cleanup(osname
, id
);
4524 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4526 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4528 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4530 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4532 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4535 error
= dmu_objset_snapshot_one(osname
, strchr(snap1name
, '@') + 1);
4536 if (error
&& error
!= EEXIST
) {
4537 if (error
== ENOSPC
) {
4538 ztest_record_enospc(FTAG
);
4541 fatal(B_FALSE
, "dmu_take_snapshot(%s) = %d", snap1name
, error
);
4544 error
= dmu_objset_clone(clone1name
, snap1name
);
4546 if (error
== ENOSPC
) {
4547 ztest_record_enospc(FTAG
);
4550 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone1name
, error
);
4553 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap2name
, '@') + 1);
4554 if (error
&& error
!= EEXIST
) {
4555 if (error
== ENOSPC
) {
4556 ztest_record_enospc(FTAG
);
4559 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap2name
, error
);
4562 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap3name
, '@') + 1);
4563 if (error
&& error
!= EEXIST
) {
4564 if (error
== ENOSPC
) {
4565 ztest_record_enospc(FTAG
);
4568 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap3name
, error
);
4571 error
= dmu_objset_clone(clone2name
, snap3name
);
4573 if (error
== ENOSPC
) {
4574 ztest_record_enospc(FTAG
);
4577 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone2name
, error
);
4580 error
= ztest_dmu_objset_own(snap2name
, DMU_OST_ANY
, B_TRUE
, B_TRUE
,
4583 fatal(B_FALSE
, "dmu_objset_own(%s) = %d", snap2name
, error
);
4584 error
= dsl_dataset_promote(clone2name
, NULL
);
4585 if (error
== ENOSPC
) {
4586 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4587 ztest_record_enospc(FTAG
);
4591 fatal(B_FALSE
, "dsl_dataset_promote(%s), %d, not EBUSY",
4593 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4596 ztest_dsl_dataset_cleanup(osname
, id
);
4598 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4600 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4601 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4602 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4603 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4604 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4607 #undef OD_ARRAY_SIZE
4608 #define OD_ARRAY_SIZE 4
4611 * Verify that dmu_object_{alloc,free} work as expected.
4614 ztest_dmu_object_alloc_free(ztest_ds_t
*zd
, uint64_t id
)
4621 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4622 od
= umem_alloc(size
, UMEM_NOFAIL
);
4623 batchsize
= OD_ARRAY_SIZE
;
4625 for (b
= 0; b
< batchsize
; b
++)
4626 ztest_od_init(od
+ b
, id
, FTAG
, b
, DMU_OT_UINT64_OTHER
,
4630 * Destroy the previous batch of objects, create a new batch,
4631 * and do some I/O on the new objects.
4633 if (ztest_object_init(zd
, od
, size
, B_TRUE
) != 0)
4636 while (ztest_random(4 * batchsize
) != 0)
4637 ztest_io(zd
, od
[ztest_random(batchsize
)].od_object
,
4638 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
4640 umem_free(od
, size
);
4644 * Rewind the global allocator to verify object allocation backfilling.
4647 ztest_dmu_object_next_chunk(ztest_ds_t
*zd
, uint64_t id
)
4650 objset_t
*os
= zd
->zd_os
;
4651 uint_t dnodes_per_chunk
= 1 << dmu_object_alloc_chunk_shift
;
4655 * Rewind the global allocator randomly back to a lower object number
4656 * to force backfilling and reclamation of recently freed dnodes.
4658 mutex_enter(&os
->os_obj_lock
);
4659 object
= ztest_random(os
->os_obj_next_chunk
);
4660 os
->os_obj_next_chunk
= P2ALIGN(object
, dnodes_per_chunk
);
4661 mutex_exit(&os
->os_obj_lock
);
4664 #undef OD_ARRAY_SIZE
4665 #define OD_ARRAY_SIZE 2
4668 * Verify that dmu_{read,write} work as expected.
4671 ztest_dmu_read_write(ztest_ds_t
*zd
, uint64_t id
)
4676 objset_t
*os
= zd
->zd_os
;
4677 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4678 od
= umem_alloc(size
, UMEM_NOFAIL
);
4681 uint64_t i
, n
, s
, txg
;
4682 bufwad_t
*packbuf
, *bigbuf
, *pack
, *bigH
, *bigT
;
4683 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
4684 uint64_t chunksize
= (1000 + ztest_random(1000)) * sizeof (uint64_t);
4685 uint64_t regions
= 997;
4686 uint64_t stride
= 123456789ULL;
4687 uint64_t width
= 40;
4688 int free_percent
= 5;
4691 * This test uses two objects, packobj and bigobj, that are always
4692 * updated together (i.e. in the same tx) so that their contents are
4693 * in sync and can be compared. Their contents relate to each other
4694 * in a simple way: packobj is a dense array of 'bufwad' structures,
4695 * while bigobj is a sparse array of the same bufwads. Specifically,
4696 * for any index n, there are three bufwads that should be identical:
4698 * packobj, at offset n * sizeof (bufwad_t)
4699 * bigobj, at the head of the nth chunk
4700 * bigobj, at the tail of the nth chunk
4702 * The chunk size is arbitrary. It doesn't have to be a power of two,
4703 * and it doesn't have any relation to the object blocksize.
4704 * The only requirement is that it can hold at least two bufwads.
4706 * Normally, we write the bufwad to each of these locations.
4707 * However, free_percent of the time we instead write zeroes to
4708 * packobj and perform a dmu_free_range() on bigobj. By comparing
4709 * bigobj to packobj, we can verify that the DMU is correctly
4710 * tracking which parts of an object are allocated and free,
4711 * and that the contents of the allocated blocks are correct.
4715 * Read the directory info. If it's the first time, set things up.
4717 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, chunksize
);
4718 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
4721 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
4722 umem_free(od
, size
);
4726 bigobj
= od
[0].od_object
;
4727 packobj
= od
[1].od_object
;
4728 chunksize
= od
[0].od_gen
;
4729 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
4732 * Prefetch a random chunk of the big object.
4733 * Our aim here is to get some async reads in flight
4734 * for blocks that we may free below; the DMU should
4735 * handle this race correctly.
4737 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
4738 s
= 1 + ztest_random(2 * width
- 1);
4739 dmu_prefetch(os
, bigobj
, 0, n
* chunksize
, s
* chunksize
,
4740 ZIO_PRIORITY_SYNC_READ
);
4743 * Pick a random index and compute the offsets into packobj and bigobj.
4745 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
4746 s
= 1 + ztest_random(width
- 1);
4748 packoff
= n
* sizeof (bufwad_t
);
4749 packsize
= s
* sizeof (bufwad_t
);
4751 bigoff
= n
* chunksize
;
4752 bigsize
= s
* chunksize
;
4754 packbuf
= umem_alloc(packsize
, UMEM_NOFAIL
);
4755 bigbuf
= umem_alloc(bigsize
, UMEM_NOFAIL
);
4758 * free_percent of the time, free a range of bigobj rather than
4761 freeit
= (ztest_random(100) < free_percent
);
4764 * Read the current contents of our objects.
4766 error
= dmu_read(os
, packobj
, packoff
, packsize
, packbuf
,
4769 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
, bigbuf
,
4774 * Get a tx for the mods to both packobj and bigobj.
4776 tx
= dmu_tx_create(os
);
4778 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
4781 dmu_tx_hold_free(tx
, bigobj
, bigoff
, bigsize
);
4783 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
4785 /* This accounts for setting the checksum/compression. */
4786 dmu_tx_hold_bonus(tx
, bigobj
);
4788 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4790 umem_free(packbuf
, packsize
);
4791 umem_free(bigbuf
, bigsize
);
4792 umem_free(od
, size
);
4796 enum zio_checksum cksum
;
4798 cksum
= (enum zio_checksum
)
4799 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM
);
4800 } while (cksum
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
4801 dmu_object_set_checksum(os
, bigobj
, cksum
, tx
);
4803 enum zio_compress comp
;
4805 comp
= (enum zio_compress
)
4806 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
);
4807 } while (comp
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
);
4808 dmu_object_set_compress(os
, bigobj
, comp
, tx
);
4811 * For each index from n to n + s, verify that the existing bufwad
4812 * in packobj matches the bufwads at the head and tail of the
4813 * corresponding chunk in bigobj. Then update all three bufwads
4814 * with the new values we want to write out.
4816 for (i
= 0; i
< s
; i
++) {
4818 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
4820 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
4822 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
4824 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
4825 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
4827 if (pack
->bw_txg
> txg
)
4829 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
4832 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
4833 fatal(B_FALSE
, "wrong index: "
4834 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
4835 pack
->bw_index
, n
, i
);
4837 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
4838 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
4841 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
4842 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
4846 memset(pack
, 0, sizeof (bufwad_t
));
4848 pack
->bw_index
= n
+ i
;
4850 pack
->bw_data
= 1 + ztest_random(-2ULL);
4857 * We've verified all the old bufwads, and made new ones.
4858 * Now write them out.
4860 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
4863 if (ztest_opts
.zo_verbose
>= 7) {
4864 (void) printf("freeing offset %"PRIx64
" size %"PRIx64
""
4866 bigoff
, bigsize
, txg
);
4868 VERIFY0(dmu_free_range(os
, bigobj
, bigoff
, bigsize
, tx
));
4870 if (ztest_opts
.zo_verbose
>= 7) {
4871 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
4873 bigoff
, bigsize
, txg
);
4875 dmu_write(os
, bigobj
, bigoff
, bigsize
, bigbuf
, tx
);
4881 * Sanity check the stuff we just wrote.
4884 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
4885 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
4887 VERIFY0(dmu_read(os
, packobj
, packoff
,
4888 packsize
, packcheck
, DMU_READ_PREFETCH
));
4889 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
4890 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
4892 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
4893 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
4895 umem_free(packcheck
, packsize
);
4896 umem_free(bigcheck
, bigsize
);
4899 umem_free(packbuf
, packsize
);
4900 umem_free(bigbuf
, bigsize
);
4901 umem_free(od
, size
);
4905 compare_and_update_pbbufs(uint64_t s
, bufwad_t
*packbuf
, bufwad_t
*bigbuf
,
4906 uint64_t bigsize
, uint64_t n
, uint64_t chunksize
, uint64_t txg
)
4914 * For each index from n to n + s, verify that the existing bufwad
4915 * in packobj matches the bufwads at the head and tail of the
4916 * corresponding chunk in bigobj. Then update all three bufwads
4917 * with the new values we want to write out.
4919 for (i
= 0; i
< s
; i
++) {
4921 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
4923 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
4925 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
4927 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
4928 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
4930 if (pack
->bw_txg
> txg
)
4932 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
4935 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
4936 fatal(B_FALSE
, "wrong index: "
4937 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
4938 pack
->bw_index
, n
, i
);
4940 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
4941 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
4944 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
4945 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
4948 pack
->bw_index
= n
+ i
;
4950 pack
->bw_data
= 1 + ztest_random(-2ULL);
4957 #undef OD_ARRAY_SIZE
4958 #define OD_ARRAY_SIZE 2
4961 ztest_dmu_read_write_zcopy(ztest_ds_t
*zd
, uint64_t id
)
4963 objset_t
*os
= zd
->zd_os
;
4970 bufwad_t
*packbuf
, *bigbuf
;
4971 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
4972 uint64_t blocksize
= ztest_random_blocksize();
4973 uint64_t chunksize
= blocksize
;
4974 uint64_t regions
= 997;
4975 uint64_t stride
= 123456789ULL;
4977 dmu_buf_t
*bonus_db
;
4978 arc_buf_t
**bigbuf_arcbufs
;
4979 dmu_object_info_t doi
;
4981 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4982 od
= umem_alloc(size
, UMEM_NOFAIL
);
4985 * This test uses two objects, packobj and bigobj, that are always
4986 * updated together (i.e. in the same tx) so that their contents are
4987 * in sync and can be compared. Their contents relate to each other
4988 * in a simple way: packobj is a dense array of 'bufwad' structures,
4989 * while bigobj is a sparse array of the same bufwads. Specifically,
4990 * for any index n, there are three bufwads that should be identical:
4992 * packobj, at offset n * sizeof (bufwad_t)
4993 * bigobj, at the head of the nth chunk
4994 * bigobj, at the tail of the nth chunk
4996 * The chunk size is set equal to bigobj block size so that
4997 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5001 * Read the directory info. If it's the first time, set things up.
5003 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5004 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
5008 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
5009 umem_free(od
, size
);
5013 bigobj
= od
[0].od_object
;
5014 packobj
= od
[1].od_object
;
5015 blocksize
= od
[0].od_blocksize
;
5016 chunksize
= blocksize
;
5017 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5019 VERIFY0(dmu_object_info(os
, bigobj
, &doi
));
5020 VERIFY(ISP2(doi
.doi_data_block_size
));
5021 VERIFY3U(chunksize
, ==, doi
.doi_data_block_size
);
5022 VERIFY3U(chunksize
, >=, 2 * sizeof (bufwad_t
));
5025 * Pick a random index and compute the offsets into packobj and bigobj.
5027 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5028 s
= 1 + ztest_random(width
- 1);
5030 packoff
= n
* sizeof (bufwad_t
);
5031 packsize
= s
* sizeof (bufwad_t
);
5033 bigoff
= n
* chunksize
;
5034 bigsize
= s
* chunksize
;
5036 packbuf
= umem_zalloc(packsize
, UMEM_NOFAIL
);
5037 bigbuf
= umem_zalloc(bigsize
, UMEM_NOFAIL
);
5039 VERIFY0(dmu_bonus_hold(os
, bigobj
, FTAG
, &bonus_db
));
5041 bigbuf_arcbufs
= umem_zalloc(2 * s
* sizeof (arc_buf_t
*), UMEM_NOFAIL
);
5044 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5045 * Iteration 1 test zcopy to already referenced dbufs.
5046 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5047 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5048 * Iteration 4 test zcopy when dbuf is no longer dirty.
5049 * Iteration 5 test zcopy when it can't be done.
5050 * Iteration 6 one more zcopy write.
5052 for (i
= 0; i
< 7; i
++) {
5057 * In iteration 5 (i == 5) use arcbufs
5058 * that don't match bigobj blksz to test
5059 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5060 * assign an arcbuf to a dbuf.
5062 for (j
= 0; j
< s
; j
++) {
5063 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5065 dmu_request_arcbuf(bonus_db
, chunksize
);
5067 bigbuf_arcbufs
[2 * j
] =
5068 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5069 bigbuf_arcbufs
[2 * j
+ 1] =
5070 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5075 * Get a tx for the mods to both packobj and bigobj.
5077 tx
= dmu_tx_create(os
);
5079 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5080 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5082 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5084 umem_free(packbuf
, packsize
);
5085 umem_free(bigbuf
, bigsize
);
5086 for (j
= 0; j
< s
; j
++) {
5088 chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5089 dmu_return_arcbuf(bigbuf_arcbufs
[j
]);
5092 bigbuf_arcbufs
[2 * j
]);
5094 bigbuf_arcbufs
[2 * j
+ 1]);
5097 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5098 umem_free(od
, size
);
5099 dmu_buf_rele(bonus_db
, FTAG
);
5104 * 50% of the time don't read objects in the 1st iteration to
5105 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5106 * no existing dbufs for the specified offsets.
5108 if (i
!= 0 || ztest_random(2) != 0) {
5109 error
= dmu_read(os
, packobj
, packoff
,
5110 packsize
, packbuf
, DMU_READ_PREFETCH
);
5112 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
,
5113 bigbuf
, DMU_READ_PREFETCH
);
5116 compare_and_update_pbbufs(s
, packbuf
, bigbuf
, bigsize
,
5120 * We've verified all the old bufwads, and made new ones.
5121 * Now write them out.
5123 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5124 if (ztest_opts
.zo_verbose
>= 7) {
5125 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5127 bigoff
, bigsize
, txg
);
5129 for (off
= bigoff
, j
= 0; j
< s
; j
++, off
+= chunksize
) {
5131 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5132 memcpy(bigbuf_arcbufs
[j
]->b_data
,
5133 (caddr_t
)bigbuf
+ (off
- bigoff
),
5136 memcpy(bigbuf_arcbufs
[2 * j
]->b_data
,
5137 (caddr_t
)bigbuf
+ (off
- bigoff
),
5139 memcpy(bigbuf_arcbufs
[2 * j
+ 1]->b_data
,
5140 (caddr_t
)bigbuf
+ (off
- bigoff
) +
5146 VERIFY(dmu_buf_hold(os
, bigobj
, off
,
5147 FTAG
, &dbt
, DMU_READ_NO_PREFETCH
) == 0);
5149 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5150 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5151 off
, bigbuf_arcbufs
[j
], tx
));
5153 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5154 off
, bigbuf_arcbufs
[2 * j
], tx
));
5155 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5156 off
+ chunksize
/ 2,
5157 bigbuf_arcbufs
[2 * j
+ 1], tx
));
5160 dmu_buf_rele(dbt
, FTAG
);
5166 * Sanity check the stuff we just wrote.
5169 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5170 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5172 VERIFY0(dmu_read(os
, packobj
, packoff
,
5173 packsize
, packcheck
, DMU_READ_PREFETCH
));
5174 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5175 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
5177 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5178 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5180 umem_free(packcheck
, packsize
);
5181 umem_free(bigcheck
, bigsize
);
5184 txg_wait_open(dmu_objset_pool(os
), 0, B_TRUE
);
5185 } else if (i
== 3) {
5186 txg_wait_synced(dmu_objset_pool(os
), 0);
5190 dmu_buf_rele(bonus_db
, FTAG
);
5191 umem_free(packbuf
, packsize
);
5192 umem_free(bigbuf
, bigsize
);
5193 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5194 umem_free(od
, size
);
5198 ztest_dmu_write_parallel(ztest_ds_t
*zd
, uint64_t id
)
5203 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5204 uint64_t offset
= (1ULL << (ztest_random(20) + 43)) +
5205 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5208 * Have multiple threads write to large offsets in an object
5209 * to verify that parallel writes to an object -- even to the
5210 * same blocks within the object -- doesn't cause any trouble.
5212 ztest_od_init(od
, ID_PARALLEL
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5214 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0)
5217 while (ztest_random(10) != 0)
5218 ztest_io(zd
, od
->od_object
, offset
);
5220 umem_free(od
, sizeof (ztest_od_t
));
5224 ztest_dmu_prealloc(ztest_ds_t
*zd
, uint64_t id
)
5227 uint64_t offset
= (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT
)) +
5228 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5229 uint64_t count
= ztest_random(20) + 1;
5230 uint64_t blocksize
= ztest_random_blocksize();
5233 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5235 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5237 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5238 !ztest_random(2)) != 0) {
5239 umem_free(od
, sizeof (ztest_od_t
));
5243 if (ztest_truncate(zd
, od
->od_object
, offset
, count
* blocksize
) != 0) {
5244 umem_free(od
, sizeof (ztest_od_t
));
5248 ztest_prealloc(zd
, od
->od_object
, offset
, count
* blocksize
);
5250 data
= umem_zalloc(blocksize
, UMEM_NOFAIL
);
5252 while (ztest_random(count
) != 0) {
5253 uint64_t randoff
= offset
+ (ztest_random(count
) * blocksize
);
5254 if (ztest_write(zd
, od
->od_object
, randoff
, blocksize
,
5257 while (ztest_random(4) != 0)
5258 ztest_io(zd
, od
->od_object
, randoff
);
5261 umem_free(data
, blocksize
);
5262 umem_free(od
, sizeof (ztest_od_t
));
5266 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5268 #define ZTEST_ZAP_MIN_INTS 1
5269 #define ZTEST_ZAP_MAX_INTS 4
5270 #define ZTEST_ZAP_MAX_PROPS 1000
5273 ztest_zap(ztest_ds_t
*zd
, uint64_t id
)
5275 objset_t
*os
= zd
->zd_os
;
5278 uint64_t txg
, last_txg
;
5279 uint64_t value
[ZTEST_ZAP_MAX_INTS
];
5280 uint64_t zl_ints
, zl_intsize
, prop
;
5283 char propname
[100], txgname
[100];
5285 const char *const hc
[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5287 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5288 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5290 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5291 !ztest_random(2)) != 0)
5294 object
= od
->od_object
;
5297 * Generate a known hash collision, and verify that
5298 * we can lookup and remove both entries.
5300 tx
= dmu_tx_create(os
);
5301 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5302 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5305 for (i
= 0; i
< 2; i
++) {
5307 VERIFY0(zap_add(os
, object
, hc
[i
], sizeof (uint64_t),
5310 for (i
= 0; i
< 2; i
++) {
5311 VERIFY3U(EEXIST
, ==, zap_add(os
, object
, hc
[i
],
5312 sizeof (uint64_t), 1, &value
[i
], tx
));
5314 zap_length(os
, object
, hc
[i
], &zl_intsize
, &zl_ints
));
5315 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5316 ASSERT3U(zl_ints
, ==, 1);
5318 for (i
= 0; i
< 2; i
++) {
5319 VERIFY0(zap_remove(os
, object
, hc
[i
], tx
));
5324 * Generate a bunch of random entries.
5326 ints
= MAX(ZTEST_ZAP_MIN_INTS
, object
% ZTEST_ZAP_MAX_INTS
);
5328 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5329 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5330 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5331 memset(value
, 0, sizeof (value
));
5335 * If these zap entries already exist, validate their contents.
5337 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5339 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5340 ASSERT3U(zl_ints
, ==, 1);
5342 VERIFY0(zap_lookup(os
, object
, txgname
, zl_intsize
,
5343 zl_ints
, &last_txg
));
5345 VERIFY0(zap_length(os
, object
, propname
, &zl_intsize
,
5348 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5349 ASSERT3U(zl_ints
, ==, ints
);
5351 VERIFY0(zap_lookup(os
, object
, propname
, zl_intsize
,
5354 for (i
= 0; i
< ints
; i
++) {
5355 ASSERT3U(value
[i
], ==, last_txg
+ object
+ i
);
5358 ASSERT3U(error
, ==, ENOENT
);
5362 * Atomically update two entries in our zap object.
5363 * The first is named txg_%llu, and contains the txg
5364 * in which the property was last updated. The second
5365 * is named prop_%llu, and the nth element of its value
5366 * should be txg + object + n.
5368 tx
= dmu_tx_create(os
);
5369 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5370 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5375 fatal(B_FALSE
, "zap future leak: old %"PRIu64
" new %"PRIu64
"",
5378 for (i
= 0; i
< ints
; i
++)
5379 value
[i
] = txg
+ object
+ i
;
5381 VERIFY0(zap_update(os
, object
, txgname
, sizeof (uint64_t),
5383 VERIFY0(zap_update(os
, object
, propname
, sizeof (uint64_t),
5389 * Remove a random pair of entries.
5391 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5392 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5393 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5395 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5397 if (error
== ENOENT
)
5402 tx
= dmu_tx_create(os
);
5403 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5404 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5407 VERIFY0(zap_remove(os
, object
, txgname
, tx
));
5408 VERIFY0(zap_remove(os
, object
, propname
, tx
));
5411 umem_free(od
, sizeof (ztest_od_t
));
5415 * Test case to test the upgrading of a microzap to fatzap.
5418 ztest_fzap(ztest_ds_t
*zd
, uint64_t id
)
5420 objset_t
*os
= zd
->zd_os
;
5422 uint64_t object
, txg
, value
;
5424 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5425 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5427 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5428 !ztest_random(2)) != 0)
5430 object
= od
->od_object
;
5433 * Add entries to this ZAP and make sure it spills over
5434 * and gets upgraded to a fatzap. Also, since we are adding
5435 * 2050 entries we should see ptrtbl growth and leaf-block split.
5437 for (value
= 0; value
< 2050; value
++) {
5438 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5442 (void) snprintf(name
, sizeof (name
), "fzap-%"PRIu64
"-%"PRIu64
"",
5445 tx
= dmu_tx_create(os
);
5446 dmu_tx_hold_zap(tx
, object
, B_TRUE
, name
);
5447 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5450 error
= zap_add(os
, object
, name
, sizeof (uint64_t), 1,
5452 ASSERT(error
== 0 || error
== EEXIST
);
5456 umem_free(od
, sizeof (ztest_od_t
));
5460 ztest_zap_parallel(ztest_ds_t
*zd
, uint64_t id
)
5463 objset_t
*os
= zd
->zd_os
;
5465 uint64_t txg
, object
, count
, wsize
, wc
, zl_wsize
, zl_wc
;
5467 int i
, namelen
, error
;
5468 int micro
= ztest_random(2);
5469 char name
[20], string_value
[20];
5472 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5473 ztest_od_init(od
, ID_PARALLEL
, FTAG
, micro
, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5475 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5476 umem_free(od
, sizeof (ztest_od_t
));
5480 object
= od
->od_object
;
5483 * Generate a random name of the form 'xxx.....' where each
5484 * x is a random printable character and the dots are dots.
5485 * There are 94 such characters, and the name length goes from
5486 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5488 namelen
= ztest_random(sizeof (name
) - 5) + 5 + 1;
5490 for (i
= 0; i
< 3; i
++)
5491 name
[i
] = '!' + ztest_random('~' - '!' + 1);
5492 for (; i
< namelen
- 1; i
++)
5496 if ((namelen
& 1) || micro
) {
5497 wsize
= sizeof (txg
);
5503 data
= string_value
;
5507 VERIFY0(zap_count(os
, object
, &count
));
5508 ASSERT3S(count
, !=, -1ULL);
5511 * Select an operation: length, lookup, add, update, remove.
5513 i
= ztest_random(5);
5516 tx
= dmu_tx_create(os
);
5517 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5518 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5520 umem_free(od
, sizeof (ztest_od_t
));
5523 memcpy(string_value
, name
, namelen
);
5527 memset(string_value
, 0, namelen
);
5533 error
= zap_length(os
, object
, name
, &zl_wsize
, &zl_wc
);
5535 ASSERT3U(wsize
, ==, zl_wsize
);
5536 ASSERT3U(wc
, ==, zl_wc
);
5538 ASSERT3U(error
, ==, ENOENT
);
5543 error
= zap_lookup(os
, object
, name
, wsize
, wc
, data
);
5545 if (data
== string_value
&&
5546 memcmp(name
, data
, namelen
) != 0)
5547 fatal(B_FALSE
, "name '%s' != val '%s' len %d",
5548 name
, (char *)data
, namelen
);
5550 ASSERT3U(error
, ==, ENOENT
);
5555 error
= zap_add(os
, object
, name
, wsize
, wc
, data
, tx
);
5556 ASSERT(error
== 0 || error
== EEXIST
);
5560 VERIFY0(zap_update(os
, object
, name
, wsize
, wc
, data
, tx
));
5564 error
= zap_remove(os
, object
, name
, tx
);
5565 ASSERT(error
== 0 || error
== ENOENT
);
5572 umem_free(od
, sizeof (ztest_od_t
));
5576 * Commit callback data.
5578 typedef struct ztest_cb_data
{
5579 list_node_t zcd_node
;
5581 int zcd_expected_err
;
5582 boolean_t zcd_added
;
5583 boolean_t zcd_called
;
5587 /* This is the actual commit callback function */
5589 ztest_commit_callback(void *arg
, int error
)
5591 ztest_cb_data_t
*data
= arg
;
5592 uint64_t synced_txg
;
5594 VERIFY3P(data
, !=, NULL
);
5595 VERIFY3S(data
->zcd_expected_err
, ==, error
);
5596 VERIFY(!data
->zcd_called
);
5598 synced_txg
= spa_last_synced_txg(data
->zcd_spa
);
5599 if (data
->zcd_txg
> synced_txg
)
5601 "commit callback of txg %"PRIu64
" called prematurely, "
5602 "last synced txg = %"PRIu64
"\n",
5603 data
->zcd_txg
, synced_txg
);
5605 data
->zcd_called
= B_TRUE
;
5607 if (error
== ECANCELED
) {
5608 ASSERT0(data
->zcd_txg
);
5609 ASSERT(!data
->zcd_added
);
5612 * The private callback data should be destroyed here, but
5613 * since we are going to check the zcd_called field after
5614 * dmu_tx_abort(), we will destroy it there.
5619 ASSERT(data
->zcd_added
);
5620 ASSERT3U(data
->zcd_txg
, !=, 0);
5622 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
5624 /* See if this cb was called more quickly */
5625 if ((synced_txg
- data
->zcd_txg
) < zc_min_txg_delay
)
5626 zc_min_txg_delay
= synced_txg
- data
->zcd_txg
;
5628 /* Remove our callback from the list */
5629 list_remove(&zcl
.zcl_callbacks
, data
);
5631 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
5633 umem_free(data
, sizeof (ztest_cb_data_t
));
5636 /* Allocate and initialize callback data structure */
5637 static ztest_cb_data_t
*
5638 ztest_create_cb_data(objset_t
*os
, uint64_t txg
)
5640 ztest_cb_data_t
*cb_data
;
5642 cb_data
= umem_zalloc(sizeof (ztest_cb_data_t
), UMEM_NOFAIL
);
5644 cb_data
->zcd_txg
= txg
;
5645 cb_data
->zcd_spa
= dmu_objset_spa(os
);
5646 list_link_init(&cb_data
->zcd_node
);
5652 * Commit callback test.
5655 ztest_dmu_commit_callbacks(ztest_ds_t
*zd
, uint64_t id
)
5657 objset_t
*os
= zd
->zd_os
;
5660 ztest_cb_data_t
*cb_data
[3], *tmp_cb
;
5661 uint64_t old_txg
, txg
;
5664 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5665 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5667 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5668 umem_free(od
, sizeof (ztest_od_t
));
5672 tx
= dmu_tx_create(os
);
5674 cb_data
[0] = ztest_create_cb_data(os
, 0);
5675 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[0]);
5677 dmu_tx_hold_write(tx
, od
->od_object
, 0, sizeof (uint64_t));
5679 /* Every once in a while, abort the transaction on purpose */
5680 if (ztest_random(100) == 0)
5684 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
5686 txg
= error
? 0 : dmu_tx_get_txg(tx
);
5688 cb_data
[0]->zcd_txg
= txg
;
5689 cb_data
[1] = ztest_create_cb_data(os
, txg
);
5690 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[1]);
5694 * It's not a strict requirement to call the registered
5695 * callbacks from inside dmu_tx_abort(), but that's what
5696 * it's supposed to happen in the current implementation
5697 * so we will check for that.
5699 for (i
= 0; i
< 2; i
++) {
5700 cb_data
[i
]->zcd_expected_err
= ECANCELED
;
5701 VERIFY(!cb_data
[i
]->zcd_called
);
5706 for (i
= 0; i
< 2; i
++) {
5707 VERIFY(cb_data
[i
]->zcd_called
);
5708 umem_free(cb_data
[i
], sizeof (ztest_cb_data_t
));
5711 umem_free(od
, sizeof (ztest_od_t
));
5715 cb_data
[2] = ztest_create_cb_data(os
, txg
);
5716 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[2]);
5719 * Read existing data to make sure there isn't a future leak.
5721 VERIFY0(dmu_read(os
, od
->od_object
, 0, sizeof (uint64_t),
5722 &old_txg
, DMU_READ_PREFETCH
));
5726 "future leak: got %"PRIu64
", open txg is %"PRIu64
"",
5729 dmu_write(os
, od
->od_object
, 0, sizeof (uint64_t), &txg
, tx
);
5731 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
5734 * Since commit callbacks don't have any ordering requirement and since
5735 * it is theoretically possible for a commit callback to be called
5736 * after an arbitrary amount of time has elapsed since its txg has been
5737 * synced, it is difficult to reliably determine whether a commit
5738 * callback hasn't been called due to high load or due to a flawed
5741 * In practice, we will assume that if after a certain number of txgs a
5742 * commit callback hasn't been called, then most likely there's an
5743 * implementation bug..
5745 tmp_cb
= list_head(&zcl
.zcl_callbacks
);
5746 if (tmp_cb
!= NULL
&&
5747 tmp_cb
->zcd_txg
+ ZTEST_COMMIT_CB_THRESH
< txg
) {
5749 "Commit callback threshold exceeded, "
5750 "oldest txg: %"PRIu64
", open txg: %"PRIu64
"\n",
5751 tmp_cb
->zcd_txg
, txg
);
5755 * Let's find the place to insert our callbacks.
5757 * Even though the list is ordered by txg, it is possible for the
5758 * insertion point to not be the end because our txg may already be
5759 * quiescing at this point and other callbacks in the open txg
5760 * (from other objsets) may have sneaked in.
5762 tmp_cb
= list_tail(&zcl
.zcl_callbacks
);
5763 while (tmp_cb
!= NULL
&& tmp_cb
->zcd_txg
> txg
)
5764 tmp_cb
= list_prev(&zcl
.zcl_callbacks
, tmp_cb
);
5766 /* Add the 3 callbacks to the list */
5767 for (i
= 0; i
< 3; i
++) {
5769 list_insert_head(&zcl
.zcl_callbacks
, cb_data
[i
]);
5771 list_insert_after(&zcl
.zcl_callbacks
, tmp_cb
,
5774 cb_data
[i
]->zcd_added
= B_TRUE
;
5775 VERIFY(!cb_data
[i
]->zcd_called
);
5777 tmp_cb
= cb_data
[i
];
5782 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
5786 umem_free(od
, sizeof (ztest_od_t
));
5790 * Visit each object in the dataset. Verify that its properties
5791 * are consistent what was stored in the block tag when it was created,
5792 * and that its unused bonus buffer space has not been overwritten.
5795 ztest_verify_dnode_bt(ztest_ds_t
*zd
, uint64_t id
)
5798 objset_t
*os
= zd
->zd_os
;
5802 for (obj
= 0; err
== 0; err
= dmu_object_next(os
, &obj
, FALSE
, 0)) {
5803 ztest_block_tag_t
*bt
= NULL
;
5804 dmu_object_info_t doi
;
5807 ztest_object_lock(zd
, obj
, RL_READER
);
5808 if (dmu_bonus_hold(os
, obj
, FTAG
, &db
) != 0) {
5809 ztest_object_unlock(zd
, obj
);
5813 dmu_object_info_from_db(db
, &doi
);
5814 if (doi
.doi_bonus_size
>= sizeof (*bt
))
5815 bt
= ztest_bt_bonus(db
);
5817 if (bt
&& bt
->bt_magic
== BT_MAGIC
) {
5818 ztest_bt_verify(bt
, os
, obj
, doi
.doi_dnodesize
,
5819 bt
->bt_offset
, bt
->bt_gen
, bt
->bt_txg
,
5821 ztest_verify_unused_bonus(db
, bt
, obj
, os
, bt
->bt_gen
);
5824 dmu_buf_rele(db
, FTAG
);
5825 ztest_object_unlock(zd
, obj
);
5830 ztest_dsl_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
5833 zfs_prop_t proplist
[] = {
5835 ZFS_PROP_COMPRESSION
,
5840 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5842 for (int p
= 0; p
< sizeof (proplist
) / sizeof (proplist
[0]); p
++)
5843 (void) ztest_dsl_prop_set_uint64(zd
->zd_name
, proplist
[p
],
5844 ztest_random_dsl_prop(proplist
[p
]), (int)ztest_random(2));
5846 VERIFY0(ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_RECORDSIZE
,
5847 ztest_random_blocksize(), (int)ztest_random(2)));
5849 (void) pthread_rwlock_unlock(&ztest_name_lock
);
5853 ztest_spa_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
5855 (void) zd
, (void) id
;
5856 nvlist_t
*props
= NULL
;
5858 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5860 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM
, ztest_random(2));
5862 VERIFY0(spa_prop_get(ztest_spa
, &props
));
5864 if (ztest_opts
.zo_verbose
>= 6)
5865 dump_nvlist(props
, 4);
5867 fnvlist_free(props
);
5869 (void) pthread_rwlock_unlock(&ztest_name_lock
);
5873 user_release_one(const char *snapname
, const char *holdname
)
5875 nvlist_t
*snaps
, *holds
;
5878 snaps
= fnvlist_alloc();
5879 holds
= fnvlist_alloc();
5880 fnvlist_add_boolean(holds
, holdname
);
5881 fnvlist_add_nvlist(snaps
, snapname
, holds
);
5882 fnvlist_free(holds
);
5883 error
= dsl_dataset_user_release(snaps
, NULL
);
5884 fnvlist_free(snaps
);
5889 * Test snapshot hold/release and deferred destroy.
5892 ztest_dmu_snapshot_hold(ztest_ds_t
*zd
, uint64_t id
)
5895 objset_t
*os
= zd
->zd_os
;
5899 char clonename
[100];
5901 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
5904 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5906 dmu_objset_name(os
, osname
);
5908 (void) snprintf(snapname
, sizeof (snapname
), "sh1_%"PRIu64
"", id
);
5909 (void) snprintf(fullname
, sizeof (fullname
), "%s@%s", osname
, snapname
);
5910 (void) snprintf(clonename
, sizeof (clonename
), "%s/ch1_%"PRIu64
"",
5912 (void) snprintf(tag
, sizeof (tag
), "tag_%"PRIu64
"", id
);
5915 * Clean up from any previous run.
5917 error
= dsl_destroy_head(clonename
);
5918 if (error
!= ENOENT
)
5920 error
= user_release_one(fullname
, tag
);
5921 if (error
!= ESRCH
&& error
!= ENOENT
)
5923 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
5924 if (error
!= ENOENT
)
5928 * Create snapshot, clone it, mark snap for deferred destroy,
5929 * destroy clone, verify snap was also destroyed.
5931 error
= dmu_objset_snapshot_one(osname
, snapname
);
5933 if (error
== ENOSPC
) {
5934 ztest_record_enospc("dmu_objset_snapshot");
5937 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
5940 error
= dmu_objset_clone(clonename
, fullname
);
5942 if (error
== ENOSPC
) {
5943 ztest_record_enospc("dmu_objset_clone");
5946 fatal(B_FALSE
, "dmu_objset_clone(%s) = %d", clonename
, error
);
5949 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
5951 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5955 error
= dsl_destroy_head(clonename
);
5957 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clonename
, error
);
5959 error
= dmu_objset_hold(fullname
, FTAG
, &origin
);
5960 if (error
!= ENOENT
)
5961 fatal(B_FALSE
, "dmu_objset_hold(%s) = %d", fullname
, error
);
5964 * Create snapshot, add temporary hold, verify that we can't
5965 * destroy a held snapshot, mark for deferred destroy,
5966 * release hold, verify snapshot was destroyed.
5968 error
= dmu_objset_snapshot_one(osname
, snapname
);
5970 if (error
== ENOSPC
) {
5971 ztest_record_enospc("dmu_objset_snapshot");
5974 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
5977 holds
= fnvlist_alloc();
5978 fnvlist_add_string(holds
, fullname
, tag
);
5979 error
= dsl_dataset_user_hold(holds
, 0, NULL
);
5980 fnvlist_free(holds
);
5982 if (error
== ENOSPC
) {
5983 ztest_record_enospc("dsl_dataset_user_hold");
5986 fatal(B_FALSE
, "dsl_dataset_user_hold(%s, %s) = %u",
5987 fullname
, tag
, error
);
5990 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
5991 if (error
!= EBUSY
) {
5992 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5996 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
5998 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6002 error
= user_release_one(fullname
, tag
);
6004 fatal(B_FALSE
, "user_release_one(%s, %s) = %d",
6005 fullname
, tag
, error
);
6007 VERIFY3U(dmu_objset_hold(fullname
, FTAG
, &origin
), ==, ENOENT
);
6010 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6014 * Inject random faults into the on-disk data.
6017 ztest_fault_inject(ztest_ds_t
*zd
, uint64_t id
)
6019 (void) zd
, (void) id
;
6020 ztest_shared_t
*zs
= ztest_shared
;
6021 spa_t
*spa
= ztest_spa
;
6025 uint64_t bad
= 0x1990c0ffeedecadeull
;
6030 int bshift
= SPA_MAXBLOCKSHIFT
+ 2;
6036 boolean_t islog
= B_FALSE
;
6038 path0
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6039 pathrand
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6041 mutex_enter(&ztest_vdev_lock
);
6044 * Device removal is in progress, fault injection must be disabled
6045 * until it completes and the pool is scrubbed. The fault injection
6046 * strategy for damaging blocks does not take in to account evacuated
6047 * blocks which may have already been damaged.
6049 if (ztest_device_removal_active
) {
6050 mutex_exit(&ztest_vdev_lock
);
6054 maxfaults
= MAXFAULTS(zs
);
6055 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raid_children
;
6056 mirror_save
= zs
->zs_mirrors
;
6057 mutex_exit(&ztest_vdev_lock
);
6059 ASSERT3U(leaves
, >=, 1);
6062 * While ztest is running the number of leaves will not change. This
6063 * is critical for the fault injection logic as it determines where
6064 * errors can be safely injected such that they are always repairable.
6066 * When restarting ztest a different number of leaves may be requested
6067 * which will shift the regions to be damaged. This is fine as long
6068 * as the pool has been scrubbed prior to using the new mapping.
6069 * Failure to do can result in non-repairable damage being injected.
6071 if (ztest_pool_scrubbed
== B_FALSE
)
6075 * Grab the name lock as reader. There are some operations
6076 * which don't like to have their vdevs changed while
6077 * they are in progress (i.e. spa_change_guid). Those
6078 * operations will have grabbed the name lock as writer.
6080 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6083 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6085 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
6087 if (ztest_random(2) == 0) {
6089 * Inject errors on a normal data device or slog device.
6091 top
= ztest_random_vdev_top(spa
, B_TRUE
);
6092 leaf
= ztest_random(leaves
) + zs
->zs_splits
;
6095 * Generate paths to the first leaf in this top-level vdev,
6096 * and to the random leaf we selected. We'll induce transient
6097 * write failures and random online/offline activity on leaf 0,
6098 * and we'll write random garbage to the randomly chosen leaf.
6100 (void) snprintf(path0
, MAXPATHLEN
, ztest_dev_template
,
6101 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6102 top
* leaves
+ zs
->zs_splits
);
6103 (void) snprintf(pathrand
, MAXPATHLEN
, ztest_dev_template
,
6104 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6105 top
* leaves
+ leaf
);
6107 vd0
= vdev_lookup_by_path(spa
->spa_root_vdev
, path0
);
6108 if (vd0
!= NULL
&& vd0
->vdev_top
->vdev_islog
)
6112 * If the top-level vdev needs to be resilvered
6113 * then we only allow faults on the device that is
6116 if (vd0
!= NULL
&& maxfaults
!= 1 &&
6117 (!vdev_resilver_needed(vd0
->vdev_top
, NULL
, NULL
) ||
6118 vd0
->vdev_resilver_txg
!= 0)) {
6120 * Make vd0 explicitly claim to be unreadable,
6121 * or unwritable, or reach behind its back
6122 * and close the underlying fd. We can do this if
6123 * maxfaults == 0 because we'll fail and reexecute,
6124 * and we can do it if maxfaults >= 2 because we'll
6125 * have enough redundancy. If maxfaults == 1, the
6126 * combination of this with injection of random data
6127 * corruption below exceeds the pool's fault tolerance.
6129 vdev_file_t
*vf
= vd0
->vdev_tsd
;
6131 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6132 (long long)vd0
->vdev_id
, (int)maxfaults
);
6134 if (vf
!= NULL
&& ztest_random(3) == 0) {
6135 (void) close(vf
->vf_file
->f_fd
);
6136 vf
->vf_file
->f_fd
= -1;
6137 } else if (ztest_random(2) == 0) {
6138 vd0
->vdev_cant_read
= B_TRUE
;
6140 vd0
->vdev_cant_write
= B_TRUE
;
6142 guid0
= vd0
->vdev_guid
;
6146 * Inject errors on an l2cache device.
6148 spa_aux_vdev_t
*sav
= &spa
->spa_l2cache
;
6150 if (sav
->sav_count
== 0) {
6151 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6152 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6155 vd0
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
6156 guid0
= vd0
->vdev_guid
;
6157 (void) strlcpy(path0
, vd0
->vdev_path
, MAXPATHLEN
);
6158 (void) strlcpy(pathrand
, vd0
->vdev_path
, MAXPATHLEN
);
6162 maxfaults
= INT_MAX
; /* no limit on cache devices */
6165 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6166 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6169 * If we can tolerate two or more faults, or we're dealing
6170 * with a slog, randomly online/offline vd0.
6172 if ((maxfaults
>= 2 || islog
) && guid0
!= 0) {
6173 if (ztest_random(10) < 6) {
6174 int flags
= (ztest_random(2) == 0 ?
6175 ZFS_OFFLINE_TEMPORARY
: 0);
6178 * We have to grab the zs_name_lock as writer to
6179 * prevent a race between offlining a slog and
6180 * destroying a dataset. Offlining the slog will
6181 * grab a reference on the dataset which may cause
6182 * dsl_destroy_head() to fail with EBUSY thus
6183 * leaving the dataset in an inconsistent state.
6186 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6188 VERIFY3U(vdev_offline(spa
, guid0
, flags
), !=, EBUSY
);
6191 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6194 * Ideally we would like to be able to randomly
6195 * call vdev_[on|off]line without holding locks
6196 * to force unpredictable failures but the side
6197 * effects of vdev_[on|off]line prevent us from
6198 * doing so. We grab the ztest_vdev_lock here to
6199 * prevent a race between injection testing and
6202 mutex_enter(&ztest_vdev_lock
);
6203 (void) vdev_online(spa
, guid0
, 0, NULL
);
6204 mutex_exit(&ztest_vdev_lock
);
6212 * We have at least single-fault tolerance, so inject data corruption.
6214 fd
= open(pathrand
, O_RDWR
);
6216 if (fd
== -1) /* we hit a gap in the device namespace */
6219 fsize
= lseek(fd
, 0, SEEK_END
);
6221 while (--iters
!= 0) {
6223 * The offset must be chosen carefully to ensure that
6224 * we do not inject a given logical block with errors
6225 * on two different leaf devices, because ZFS can not
6226 * tolerate that (if maxfaults==1).
6228 * To achieve this we divide each leaf device into
6229 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6230 * Each chunk is further divided into error-injection
6231 * ranges (can accept errors) and clear ranges (we do
6232 * not inject errors in those). Each error-injection
6233 * range can accept errors only for a single leaf vdev.
6234 * Error-injection ranges are separated by clear ranges.
6236 * For example, with 3 leaves, each chunk looks like:
6237 * 0 to 32M: injection range for leaf 0
6238 * 32M to 64M: clear range - no injection allowed
6239 * 64M to 96M: injection range for leaf 1
6240 * 96M to 128M: clear range - no injection allowed
6241 * 128M to 160M: injection range for leaf 2
6242 * 160M to 192M: clear range - no injection allowed
6244 * Each clear range must be large enough such that a
6245 * single block cannot straddle it. This way a block
6246 * can't be a target in two different injection ranges
6247 * (on different leaf vdevs).
6249 offset
= ztest_random(fsize
/ (leaves
<< bshift
)) *
6250 (leaves
<< bshift
) + (leaf
<< bshift
) +
6251 (ztest_random(1ULL << (bshift
- 1)) & -8ULL);
6254 * Only allow damage to the labels at one end of the vdev.
6256 * If all labels are damaged, the device will be totally
6257 * inaccessible, which will result in loss of data,
6258 * because we also damage (parts of) the other side of
6261 * Additionally, we will always have both an even and an
6262 * odd label, so that we can handle crashes in the
6263 * middle of vdev_config_sync().
6265 if ((leaf
& 1) == 0 && offset
< VDEV_LABEL_START_SIZE
)
6269 * The two end labels are stored at the "end" of the disk, but
6270 * the end of the disk (vdev_psize) is aligned to
6271 * sizeof (vdev_label_t).
6273 uint64_t psize
= P2ALIGN(fsize
, sizeof (vdev_label_t
));
6274 if ((leaf
& 1) == 1 &&
6275 offset
+ sizeof (bad
) > psize
- VDEV_LABEL_END_SIZE
)
6278 mutex_enter(&ztest_vdev_lock
);
6279 if (mirror_save
!= zs
->zs_mirrors
) {
6280 mutex_exit(&ztest_vdev_lock
);
6285 if (pwrite(fd
, &bad
, sizeof (bad
), offset
) != sizeof (bad
))
6287 "can't inject bad word at 0x%"PRIx64
" in %s",
6290 mutex_exit(&ztest_vdev_lock
);
6292 if (ztest_opts
.zo_verbose
>= 7)
6293 (void) printf("injected bad word into %s,"
6294 " offset 0x%"PRIx64
"\n", pathrand
, offset
);
6299 umem_free(path0
, MAXPATHLEN
);
6300 umem_free(pathrand
, MAXPATHLEN
);
6304 * By design ztest will never inject uncorrectable damage in to the pool.
6305 * Issue a scrub, wait for it to complete, and verify there is never any
6306 * persistent damage.
6308 * Only after a full scrub has been completed is it safe to start injecting
6309 * data corruption. See the comment in zfs_fault_inject().
6312 ztest_scrub_impl(spa_t
*spa
)
6314 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6318 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6319 txg_wait_synced(spa_get_dsl(spa
), 0);
6321 if (spa_approx_errlog_size(spa
) > 0)
6324 ztest_pool_scrubbed
= B_TRUE
;
6333 ztest_scrub(ztest_ds_t
*zd
, uint64_t id
)
6335 (void) zd
, (void) id
;
6336 spa_t
*spa
= ztest_spa
;
6340 * Scrub in progress by device removal.
6342 if (ztest_device_removal_active
)
6346 * Start a scrub, wait a moment, then force a restart.
6348 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
6349 (void) poll(NULL
, 0, 100);
6351 error
= ztest_scrub_impl(spa
);
6358 * Change the guid for the pool.
6361 ztest_reguid(ztest_ds_t
*zd
, uint64_t id
)
6363 (void) zd
, (void) id
;
6364 spa_t
*spa
= ztest_spa
;
6365 uint64_t orig
, load
;
6368 if (ztest_opts
.zo_mmp_test
)
6371 orig
= spa_guid(spa
);
6372 load
= spa_load_guid(spa
);
6374 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6375 error
= spa_change_guid(spa
);
6376 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6381 if (ztest_opts
.zo_verbose
>= 4) {
6382 (void) printf("Changed guid old %"PRIu64
" -> %"PRIu64
"\n",
6383 orig
, spa_guid(spa
));
6386 VERIFY3U(orig
, !=, spa_guid(spa
));
6387 VERIFY3U(load
, ==, spa_load_guid(spa
));
6391 ztest_blake3(ztest_ds_t
*zd
, uint64_t id
)
6393 (void) zd
, (void) id
;
6394 hrtime_t end
= gethrtime() + NANOSEC
;
6395 zio_cksum_salt_t salt
;
6396 void *salt_ptr
= &salt
.zcs_bytes
;
6397 struct abd
*abd_data
, *abd_meta
;
6403 size
= ztest_random_blocksize();
6404 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6405 abd_data
= abd_alloc(size
, B_FALSE
);
6406 abd_meta
= abd_alloc(size
, B_TRUE
);
6408 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6409 *ptr
= ztest_random(UINT_MAX
);
6410 memset(salt_ptr
, 'A', 32);
6412 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6413 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6415 while (gethrtime() <= end
) {
6416 int run_count
= 100;
6417 zio_cksum_t zc_ref1
, zc_ref2
;
6418 zio_cksum_t zc_res1
, zc_res2
;
6420 void *ref1
= &zc_ref1
;
6421 void *ref2
= &zc_ref2
;
6422 void *res1
= &zc_res1
;
6423 void *res2
= &zc_res2
;
6425 /* BLAKE3_KEY_LEN = 32 */
6426 VERIFY0(blake3_impl_setname("generic"));
6427 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6428 Blake3_InitKeyed(&ctx
, salt_ptr
);
6429 Blake3_Update(&ctx
, buf
, size
);
6430 Blake3_Final(&ctx
, ref1
);
6432 ZIO_CHECKSUM_BSWAP(&zc_ref2
);
6433 abd_checksum_blake3_tmpl_free(templ
);
6435 VERIFY0(blake3_impl_setname("cycle"));
6436 while (run_count
-- > 0) {
6438 /* Test current implementation */
6439 Blake3_InitKeyed(&ctx
, salt_ptr
);
6440 Blake3_Update(&ctx
, buf
, size
);
6441 Blake3_Final(&ctx
, res1
);
6443 ZIO_CHECKSUM_BSWAP(&zc_res2
);
6445 VERIFY0(memcmp(ref1
, res1
, 32));
6446 VERIFY0(memcmp(ref2
, res2
, 32));
6448 /* Test ABD - data */
6449 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6450 abd_checksum_blake3_native(abd_data
, size
,
6452 abd_checksum_blake3_byteswap(abd_data
, size
,
6455 VERIFY0(memcmp(ref1
, res1
, 32));
6456 VERIFY0(memcmp(ref2
, res2
, 32));
6458 /* Test ABD - metadata */
6459 abd_checksum_blake3_native(abd_meta
, size
,
6461 abd_checksum_blake3_byteswap(abd_meta
, size
,
6463 abd_checksum_blake3_tmpl_free(templ
);
6465 VERIFY0(memcmp(ref1
, res1
, 32));
6466 VERIFY0(memcmp(ref2
, res2
, 32));
6473 umem_free(buf
, size
);
6477 ztest_fletcher(ztest_ds_t
*zd
, uint64_t id
)
6479 (void) zd
, (void) id
;
6480 hrtime_t end
= gethrtime() + NANOSEC
;
6482 while (gethrtime() <= end
) {
6483 int run_count
= 100;
6485 struct abd
*abd_data
, *abd_meta
;
6490 zio_cksum_t zc_ref_byteswap
;
6492 size
= ztest_random_blocksize();
6494 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6495 abd_data
= abd_alloc(size
, B_FALSE
);
6496 abd_meta
= abd_alloc(size
, B_TRUE
);
6498 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6499 *ptr
= ztest_random(UINT_MAX
);
6501 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6502 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6504 VERIFY0(fletcher_4_impl_set("scalar"));
6505 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6506 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_byteswap
);
6508 VERIFY0(fletcher_4_impl_set("cycle"));
6509 while (run_count
-- > 0) {
6511 zio_cksum_t zc_byteswap
;
6513 fletcher_4_byteswap(buf
, size
, NULL
, &zc_byteswap
);
6514 fletcher_4_native(buf
, size
, NULL
, &zc
);
6516 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6517 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6518 sizeof (zc_byteswap
)));
6520 /* Test ABD - data */
6521 abd_fletcher_4_byteswap(abd_data
, size
, NULL
,
6523 abd_fletcher_4_native(abd_data
, size
, NULL
, &zc
);
6525 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6526 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6527 sizeof (zc_byteswap
)));
6529 /* Test ABD - metadata */
6530 abd_fletcher_4_byteswap(abd_meta
, size
, NULL
,
6532 abd_fletcher_4_native(abd_meta
, size
, NULL
, &zc
);
6534 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6535 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6536 sizeof (zc_byteswap
)));
6540 umem_free(buf
, size
);
6547 ztest_fletcher_incr(ztest_ds_t
*zd
, uint64_t id
)
6549 (void) zd
, (void) id
;
6555 zio_cksum_t zc_ref_bswap
;
6557 hrtime_t end
= gethrtime() + NANOSEC
;
6559 while (gethrtime() <= end
) {
6560 int run_count
= 100;
6562 size
= ztest_random_blocksize();
6563 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6565 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6566 *ptr
= ztest_random(UINT_MAX
);
6568 VERIFY0(fletcher_4_impl_set("scalar"));
6569 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6570 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_bswap
);
6572 VERIFY0(fletcher_4_impl_set("cycle"));
6574 while (run_count
-- > 0) {
6576 zio_cksum_t zc_bswap
;
6579 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6580 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6582 while (pos
< size
) {
6583 size_t inc
= 64 * ztest_random(size
/ 67);
6584 /* sometimes add few bytes to test non-simd */
6585 if (ztest_random(100) < 10)
6586 inc
+= P2ALIGN(ztest_random(64),
6589 if (inc
> (size
- pos
))
6592 fletcher_4_incremental_native(buf
+ pos
, inc
,
6594 fletcher_4_incremental_byteswap(buf
+ pos
, inc
,
6600 VERIFY3U(pos
, ==, size
);
6602 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
6603 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
6606 * verify if incremental on the whole buffer is
6607 * equivalent to non-incremental version
6609 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6610 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6612 fletcher_4_incremental_native(buf
, size
, &zc
);
6613 fletcher_4_incremental_byteswap(buf
, size
, &zc_bswap
);
6615 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
6616 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
6619 umem_free(buf
, size
);
6624 ztest_set_global_vars(void)
6626 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
6627 char *kv
= ztest_opts
.zo_gvars
[i
];
6628 VERIFY3U(strlen(kv
), <=, ZO_GVARS_MAX_ARGLEN
);
6629 VERIFY3U(strlen(kv
), >, 0);
6630 int err
= set_global_var(kv
);
6631 if (ztest_opts
.zo_verbose
> 0) {
6632 (void) printf("setting global var %s ... %s\n", kv
,
6633 err
? "failed" : "ok");
6636 (void) fprintf(stderr
,
6637 "failed to set global var '%s'\n", kv
);
6645 ztest_global_vars_to_zdb_args(void)
6647 char **args
= calloc(2*ztest_opts
.zo_gvars_count
+ 1, sizeof (char *));
6651 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
6652 *cur
++ = (char *)"-o";
6653 *cur
++ = ztest_opts
.zo_gvars
[i
];
6655 ASSERT3P(cur
, ==, &args
[2*ztest_opts
.zo_gvars_count
]);
6660 /* The end of strings is indicated by a NULL element */
6662 join_strings(char **strings
, const char *sep
)
6664 size_t totallen
= 0;
6665 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
6666 totallen
+= strlen(*sp
);
6667 totallen
+= strlen(sep
);
6670 ASSERT(totallen
>= strlen(sep
));
6671 totallen
-= strlen(sep
);
6674 size_t buflen
= totallen
+ 1;
6675 char *o
= umem_alloc(buflen
, UMEM_NOFAIL
); /* trailing 0 byte */
6677 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
6679 would
= strlcat(o
, *sp
, buflen
);
6680 VERIFY3U(would
, <, buflen
);
6681 if (*(sp
+1) == NULL
) {
6684 would
= strlcat(o
, sep
, buflen
);
6685 VERIFY3U(would
, <, buflen
);
6687 ASSERT3S(strlen(o
), ==, totallen
);
6692 ztest_check_path(char *path
)
6695 /* return true on success */
6696 return (!stat(path
, &s
));
6700 ztest_get_zdb_bin(char *bin
, int len
)
6704 * Try to use $ZDB and in-tree zdb path. If not successful, just
6705 * let popen to search through PATH.
6707 if ((zdb_path
= getenv("ZDB"))) {
6708 strlcpy(bin
, zdb_path
, len
); /* In env */
6709 if (!ztest_check_path(bin
)) {
6710 ztest_dump_core
= 0;
6711 fatal(B_TRUE
, "invalid ZDB '%s'", bin
);
6716 VERIFY3P(realpath(getexecname(), bin
), !=, NULL
);
6717 if (strstr(bin
, ".libs/ztest")) {
6718 strstr(bin
, ".libs/ztest")[0] = '\0'; /* In-tree */
6720 if (ztest_check_path(bin
))
6727 ztest_random_concrete_vdev_leaf(vdev_t
*vd
)
6732 if (vd
->vdev_children
== 0)
6735 vdev_t
*eligible
[vd
->vdev_children
];
6736 int eligible_idx
= 0, i
;
6737 for (i
= 0; i
< vd
->vdev_children
; i
++) {
6738 vdev_t
*cvd
= vd
->vdev_child
[i
];
6739 if (cvd
->vdev_top
->vdev_removing
)
6741 if (cvd
->vdev_children
> 0 ||
6742 (vdev_is_concrete(cvd
) && !cvd
->vdev_detached
)) {
6743 eligible
[eligible_idx
++] = cvd
;
6746 VERIFY3S(eligible_idx
, >, 0);
6748 uint64_t child_no
= ztest_random(eligible_idx
);
6749 return (ztest_random_concrete_vdev_leaf(eligible
[child_no
]));
6753 ztest_initialize(ztest_ds_t
*zd
, uint64_t id
)
6755 (void) zd
, (void) id
;
6756 spa_t
*spa
= ztest_spa
;
6759 mutex_enter(&ztest_vdev_lock
);
6761 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6763 /* Random leaf vdev */
6764 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
6765 if (rand_vd
== NULL
) {
6766 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6767 mutex_exit(&ztest_vdev_lock
);
6772 * The random vdev we've selected may change as soon as we
6773 * drop the spa_config_lock. We create local copies of things
6774 * we're interested in.
6776 uint64_t guid
= rand_vd
->vdev_guid
;
6777 char *path
= strdup(rand_vd
->vdev_path
);
6778 boolean_t active
= rand_vd
->vdev_initialize_thread
!= NULL
;
6780 zfs_dbgmsg("vd %px, guid %llu", rand_vd
, (u_longlong_t
)guid
);
6781 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6783 uint64_t cmd
= ztest_random(POOL_INITIALIZE_FUNCS
);
6785 nvlist_t
*vdev_guids
= fnvlist_alloc();
6786 nvlist_t
*vdev_errlist
= fnvlist_alloc();
6787 fnvlist_add_uint64(vdev_guids
, path
, guid
);
6788 error
= spa_vdev_initialize(spa
, vdev_guids
, cmd
, vdev_errlist
);
6789 fnvlist_free(vdev_guids
);
6790 fnvlist_free(vdev_errlist
);
6793 case POOL_INITIALIZE_CANCEL
:
6794 if (ztest_opts
.zo_verbose
>= 4) {
6795 (void) printf("Cancel initialize %s", path
);
6797 (void) printf(" failed (no initialize active)");
6798 (void) printf("\n");
6801 case POOL_INITIALIZE_START
:
6802 if (ztest_opts
.zo_verbose
>= 4) {
6803 (void) printf("Start initialize %s", path
);
6804 if (active
&& error
== 0)
6805 (void) printf(" failed (already active)");
6806 else if (error
!= 0)
6807 (void) printf(" failed (error %d)", error
);
6808 (void) printf("\n");
6811 case POOL_INITIALIZE_SUSPEND
:
6812 if (ztest_opts
.zo_verbose
>= 4) {
6813 (void) printf("Suspend initialize %s", path
);
6815 (void) printf(" failed (no initialize active)");
6816 (void) printf("\n");
6821 mutex_exit(&ztest_vdev_lock
);
6825 ztest_trim(ztest_ds_t
*zd
, uint64_t id
)
6827 (void) zd
, (void) id
;
6828 spa_t
*spa
= ztest_spa
;
6831 mutex_enter(&ztest_vdev_lock
);
6833 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6835 /* Random leaf vdev */
6836 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
6837 if (rand_vd
== NULL
) {
6838 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6839 mutex_exit(&ztest_vdev_lock
);
6844 * The random vdev we've selected may change as soon as we
6845 * drop the spa_config_lock. We create local copies of things
6846 * we're interested in.
6848 uint64_t guid
= rand_vd
->vdev_guid
;
6849 char *path
= strdup(rand_vd
->vdev_path
);
6850 boolean_t active
= rand_vd
->vdev_trim_thread
!= NULL
;
6852 zfs_dbgmsg("vd %p, guid %llu", rand_vd
, (u_longlong_t
)guid
);
6853 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6855 uint64_t cmd
= ztest_random(POOL_TRIM_FUNCS
);
6856 uint64_t rate
= 1 << ztest_random(30);
6857 boolean_t partial
= (ztest_random(5) > 0);
6858 boolean_t secure
= (ztest_random(5) > 0);
6860 nvlist_t
*vdev_guids
= fnvlist_alloc();
6861 nvlist_t
*vdev_errlist
= fnvlist_alloc();
6862 fnvlist_add_uint64(vdev_guids
, path
, guid
);
6863 error
= spa_vdev_trim(spa
, vdev_guids
, cmd
, rate
, partial
,
6864 secure
, vdev_errlist
);
6865 fnvlist_free(vdev_guids
);
6866 fnvlist_free(vdev_errlist
);
6869 case POOL_TRIM_CANCEL
:
6870 if (ztest_opts
.zo_verbose
>= 4) {
6871 (void) printf("Cancel TRIM %s", path
);
6873 (void) printf(" failed (no TRIM active)");
6874 (void) printf("\n");
6877 case POOL_TRIM_START
:
6878 if (ztest_opts
.zo_verbose
>= 4) {
6879 (void) printf("Start TRIM %s", path
);
6880 if (active
&& error
== 0)
6881 (void) printf(" failed (already active)");
6882 else if (error
!= 0)
6883 (void) printf(" failed (error %d)", error
);
6884 (void) printf("\n");
6887 case POOL_TRIM_SUSPEND
:
6888 if (ztest_opts
.zo_verbose
>= 4) {
6889 (void) printf("Suspend TRIM %s", path
);
6891 (void) printf(" failed (no TRIM active)");
6892 (void) printf("\n");
6897 mutex_exit(&ztest_vdev_lock
);
6901 * Verify pool integrity by running zdb.
6904 ztest_run_zdb(const char *pool
)
6910 const int len
= MAXPATHLEN
+ MAXNAMELEN
+ 20;
6913 bin
= umem_alloc(len
, UMEM_NOFAIL
);
6914 zdb
= umem_alloc(len
, UMEM_NOFAIL
);
6915 zbuf
= umem_alloc(1024, UMEM_NOFAIL
);
6917 ztest_get_zdb_bin(bin
, len
);
6919 char **set_gvars_args
= ztest_global_vars_to_zdb_args();
6920 if (set_gvars_args
== NULL
) {
6921 fatal(B_FALSE
, "Failed to allocate memory in "
6922 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
6924 char *set_gvars_args_joined
= join_strings(set_gvars_args
, " ");
6925 free(set_gvars_args
);
6927 size_t would
= snprintf(zdb
, len
,
6928 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6930 ztest_opts
.zo_verbose
>= 3 ? "s" : "",
6931 ztest_opts
.zo_verbose
>= 4 ? "v" : "",
6932 set_gvars_args_joined
,
6935 ASSERT3U(would
, <, len
);
6937 umem_free(set_gvars_args_joined
, strlen(set_gvars_args_joined
) + 1);
6939 if (ztest_opts
.zo_verbose
>= 5)
6940 (void) printf("Executing %s\n", zdb
);
6942 fp
= popen(zdb
, "r");
6944 while (fgets(zbuf
, 1024, fp
) != NULL
)
6945 if (ztest_opts
.zo_verbose
>= 3)
6946 (void) printf("%s", zbuf
);
6948 status
= pclose(fp
);
6953 ztest_dump_core
= 0;
6954 if (WIFEXITED(status
))
6955 fatal(B_FALSE
, "'%s' exit code %d", zdb
, WEXITSTATUS(status
));
6957 fatal(B_FALSE
, "'%s' died with signal %d",
6958 zdb
, WTERMSIG(status
));
6960 umem_free(bin
, len
);
6961 umem_free(zdb
, len
);
6962 umem_free(zbuf
, 1024);
6966 ztest_walk_pool_directory(const char *header
)
6970 if (ztest_opts
.zo_verbose
>= 6)
6971 (void) puts(header
);
6973 mutex_enter(&spa_namespace_lock
);
6974 while ((spa
= spa_next(spa
)) != NULL
)
6975 if (ztest_opts
.zo_verbose
>= 6)
6976 (void) printf("\t%s\n", spa_name(spa
));
6977 mutex_exit(&spa_namespace_lock
);
6981 ztest_spa_import_export(char *oldname
, char *newname
)
6983 nvlist_t
*config
, *newconfig
;
6988 if (ztest_opts
.zo_verbose
>= 4) {
6989 (void) printf("import/export: old = %s, new = %s\n",
6994 * Clean up from previous runs.
6996 (void) spa_destroy(newname
);
6999 * Get the pool's configuration and guid.
7001 VERIFY0(spa_open(oldname
, &spa
, FTAG
));
7004 * Kick off a scrub to tickle scrub/export races.
7006 if (ztest_random(2) == 0)
7007 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
7009 pool_guid
= spa_guid(spa
);
7010 spa_close(spa
, FTAG
);
7012 ztest_walk_pool_directory("pools before export");
7017 VERIFY0(spa_export(oldname
, &config
, B_FALSE
, B_FALSE
));
7019 ztest_walk_pool_directory("pools after export");
7024 newconfig
= spa_tryimport(config
);
7025 ASSERT3P(newconfig
, !=, NULL
);
7026 fnvlist_free(newconfig
);
7029 * Import it under the new name.
7031 error
= spa_import(newname
, config
, NULL
, 0);
7033 dump_nvlist(config
, 0);
7034 fatal(B_FALSE
, "couldn't import pool %s as %s: error %u",
7035 oldname
, newname
, error
);
7038 ztest_walk_pool_directory("pools after import");
7041 * Try to import it again -- should fail with EEXIST.
7043 VERIFY3U(EEXIST
, ==, spa_import(newname
, config
, NULL
, 0));
7046 * Try to import it under a different name -- should fail with EEXIST.
7048 VERIFY3U(EEXIST
, ==, spa_import(oldname
, config
, NULL
, 0));
7051 * Verify that the pool is no longer visible under the old name.
7053 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
7056 * Verify that we can open and close the pool using the new name.
7058 VERIFY0(spa_open(newname
, &spa
, FTAG
));
7059 ASSERT3U(pool_guid
, ==, spa_guid(spa
));
7060 spa_close(spa
, FTAG
);
7062 fnvlist_free(config
);
7066 ztest_resume(spa_t
*spa
)
7068 if (spa_suspended(spa
) && ztest_opts
.zo_verbose
>= 6)
7069 (void) printf("resuming from suspended state\n");
7070 spa_vdev_state_enter(spa
, SCL_NONE
);
7071 vdev_clear(spa
, NULL
);
7072 (void) spa_vdev_state_exit(spa
, NULL
, 0);
7073 (void) zio_resume(spa
);
7076 static __attribute__((noreturn
)) void
7077 ztest_resume_thread(void *arg
)
7081 while (!ztest_exiting
) {
7082 if (spa_suspended(spa
))
7084 (void) poll(NULL
, 0, 100);
7087 * Periodically change the zfs_compressed_arc_enabled setting.
7089 if (ztest_random(10) == 0)
7090 zfs_compressed_arc_enabled
= ztest_random(2);
7093 * Periodically change the zfs_abd_scatter_enabled setting.
7095 if (ztest_random(10) == 0)
7096 zfs_abd_scatter_enabled
= ztest_random(2);
7102 static __attribute__((noreturn
)) void
7103 ztest_deadman_thread(void *arg
)
7105 ztest_shared_t
*zs
= arg
;
7106 spa_t
*spa
= ztest_spa
;
7107 hrtime_t delay
, overdue
, last_run
= gethrtime();
7109 delay
= (zs
->zs_thread_stop
- zs
->zs_thread_start
) +
7110 MSEC2NSEC(zfs_deadman_synctime_ms
);
7112 while (!ztest_exiting
) {
7114 * Wait for the delay timer while checking occasionally
7115 * if we should stop.
7117 if (gethrtime() < last_run
+ delay
) {
7118 (void) poll(NULL
, 0, 1000);
7123 * If the pool is suspended then fail immediately. Otherwise,
7124 * check to see if the pool is making any progress. If
7125 * vdev_deadman() discovers that there hasn't been any recent
7126 * I/Os then it will end up aborting the tests.
7128 if (spa_suspended(spa
) || spa
->spa_root_vdev
== NULL
) {
7130 "aborting test after %llu seconds because "
7131 "pool has transitioned to a suspended state.",
7132 (u_longlong_t
)zfs_deadman_synctime_ms
/ 1000);
7134 vdev_deadman(spa
->spa_root_vdev
, FTAG
);
7137 * If the process doesn't complete within a grace period of
7138 * zfs_deadman_synctime_ms over the expected finish time,
7139 * then it may be hung and is terminated.
7141 overdue
= zs
->zs_proc_stop
+ MSEC2NSEC(zfs_deadman_synctime_ms
);
7142 if (gethrtime() > overdue
) {
7144 "aborting test after %llu seconds because "
7145 "the process is overdue for termination.",
7146 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7149 (void) printf("ztest has been running for %lld seconds\n",
7150 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7152 last_run
= gethrtime();
7153 delay
= MSEC2NSEC(zfs_deadman_checktime_ms
);
7160 ztest_execute(int test
, ztest_info_t
*zi
, uint64_t id
)
7162 ztest_ds_t
*zd
= &ztest_ds
[id
% ztest_opts
.zo_datasets
];
7163 ztest_shared_callstate_t
*zc
= ZTEST_GET_SHARED_CALLSTATE(test
);
7164 hrtime_t functime
= gethrtime();
7167 for (i
= 0; i
< zi
->zi_iters
; i
++)
7168 zi
->zi_func(zd
, id
);
7170 functime
= gethrtime() - functime
;
7172 atomic_add_64(&zc
->zc_count
, 1);
7173 atomic_add_64(&zc
->zc_time
, functime
);
7175 if (ztest_opts
.zo_verbose
>= 4)
7176 (void) printf("%6.2f sec in %s\n",
7177 (double)functime
/ NANOSEC
, zi
->zi_funcname
);
7180 static __attribute__((noreturn
)) void
7181 ztest_thread(void *arg
)
7184 uint64_t id
= (uintptr_t)arg
;
7185 ztest_shared_t
*zs
= ztest_shared
;
7189 ztest_shared_callstate_t
*zc
;
7191 while ((now
= gethrtime()) < zs
->zs_thread_stop
) {
7193 * See if it's time to force a crash.
7195 if (now
> zs
->zs_thread_kill
)
7199 * If we're getting ENOSPC with some regularity, stop.
7201 if (zs
->zs_enospc_count
> 10)
7205 * Pick a random function to execute.
7207 rand
= ztest_random(ZTEST_FUNCS
);
7208 zi
= &ztest_info
[rand
];
7209 zc
= ZTEST_GET_SHARED_CALLSTATE(rand
);
7210 call_next
= zc
->zc_next
;
7212 if (now
>= call_next
&&
7213 atomic_cas_64(&zc
->zc_next
, call_next
, call_next
+
7214 ztest_random(2 * zi
->zi_interval
[0] + 1)) == call_next
) {
7215 ztest_execute(rand
, zi
, id
);
7223 ztest_dataset_name(char *dsname
, const char *pool
, int d
)
7225 (void) snprintf(dsname
, ZFS_MAX_DATASET_NAME_LEN
, "%s/ds_%d", pool
, d
);
7229 ztest_dataset_destroy(int d
)
7231 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7234 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7236 if (ztest_opts
.zo_verbose
>= 3)
7237 (void) printf("Destroying %s to free up space\n", name
);
7240 * Cleanup any non-standard clones and snapshots. In general,
7241 * ztest thread t operates on dataset (t % zopt_datasets),
7242 * so there may be more than one thing to clean up.
7244 for (t
= d
; t
< ztest_opts
.zo_threads
;
7245 t
+= ztest_opts
.zo_datasets
)
7246 ztest_dsl_dataset_cleanup(name
, t
);
7248 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
7249 DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
7253 ztest_dataset_dirobj_verify(ztest_ds_t
*zd
)
7255 uint64_t usedobjs
, dirobjs
, scratch
;
7258 * ZTEST_DIROBJ is the object directory for the entire dataset.
7259 * Therefore, the number of objects in use should equal the
7260 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7261 * If not, we have an object leak.
7263 * Note that we can only check this in ztest_dataset_open(),
7264 * when the open-context and syncing-context values agree.
7265 * That's because zap_count() returns the open-context value,
7266 * while dmu_objset_space() returns the rootbp fill count.
7268 VERIFY0(zap_count(zd
->zd_os
, ZTEST_DIROBJ
, &dirobjs
));
7269 dmu_objset_space(zd
->zd_os
, &scratch
, &scratch
, &usedobjs
, &scratch
);
7270 ASSERT3U(dirobjs
+ 1, ==, usedobjs
);
7274 ztest_dataset_open(int d
)
7276 ztest_ds_t
*zd
= &ztest_ds
[d
];
7277 uint64_t committed_seq
= ZTEST_GET_SHARED_DS(d
)->zd_seq
;
7280 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7283 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7285 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
7287 error
= ztest_dataset_create(name
);
7288 if (error
== ENOSPC
) {
7289 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7290 ztest_record_enospc(FTAG
);
7293 ASSERT(error
== 0 || error
== EEXIST
);
7295 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
7297 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7299 ztest_zd_init(zd
, ZTEST_GET_SHARED_DS(d
), os
);
7301 zilog
= zd
->zd_zilog
;
7303 if (zilog
->zl_header
->zh_claim_lr_seq
!= 0 &&
7304 zilog
->zl_header
->zh_claim_lr_seq
< committed_seq
)
7305 fatal(B_FALSE
, "missing log records: "
7306 "claimed %"PRIu64
" < committed %"PRIu64
"",
7307 zilog
->zl_header
->zh_claim_lr_seq
, committed_seq
);
7309 ztest_dataset_dirobj_verify(zd
);
7311 zil_replay(os
, zd
, ztest_replay_vector
);
7313 ztest_dataset_dirobj_verify(zd
);
7315 if (ztest_opts
.zo_verbose
>= 6)
7316 (void) printf("%s replay %"PRIu64
" blocks, "
7317 "%"PRIu64
" records, seq %"PRIu64
"\n",
7319 zilog
->zl_parse_blk_count
,
7320 zilog
->zl_parse_lr_count
,
7321 zilog
->zl_replaying_seq
);
7323 zilog
= zil_open(os
, ztest_get_data
, NULL
);
7325 if (zilog
->zl_replaying_seq
!= 0 &&
7326 zilog
->zl_replaying_seq
< committed_seq
)
7327 fatal(B_FALSE
, "missing log records: "
7328 "replayed %"PRIu64
" < committed %"PRIu64
"",
7329 zilog
->zl_replaying_seq
, committed_seq
);
7335 ztest_dataset_close(int d
)
7337 ztest_ds_t
*zd
= &ztest_ds
[d
];
7339 zil_close(zd
->zd_zilog
);
7340 dmu_objset_disown(zd
->zd_os
, B_TRUE
, zd
);
7346 ztest_replay_zil_cb(const char *name
, void *arg
)
7352 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_ANY
, B_TRUE
,
7353 B_TRUE
, FTAG
, &os
));
7355 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
7357 ztest_zd_init(zdtmp
, NULL
, os
);
7358 zil_replay(os
, zdtmp
, ztest_replay_vector
);
7359 ztest_zd_fini(zdtmp
);
7361 if (dmu_objset_zil(os
)->zl_parse_lr_count
!= 0 &&
7362 ztest_opts
.zo_verbose
>= 6) {
7363 zilog_t
*zilog
= dmu_objset_zil(os
);
7365 (void) printf("%s replay %"PRIu64
" blocks, "
7366 "%"PRIu64
" records, seq %"PRIu64
"\n",
7368 zilog
->zl_parse_blk_count
,
7369 zilog
->zl_parse_lr_count
,
7370 zilog
->zl_replaying_seq
);
7373 umem_free(zdtmp
, sizeof (ztest_ds_t
));
7375 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7382 ztest_ds_t
*zd
= &ztest_ds
[0];
7386 if (ztest_opts
.zo_verbose
>= 3)
7387 (void) printf("testing spa_freeze()...\n");
7389 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7390 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7391 VERIFY0(ztest_dataset_open(0));
7395 * Force the first log block to be transactionally allocated.
7396 * We have to do this before we freeze the pool -- otherwise
7397 * the log chain won't be anchored.
7399 while (BP_IS_HOLE(&zd
->zd_zilog
->zl_header
->zh_log
)) {
7400 ztest_dmu_object_alloc_free(zd
, 0);
7401 zil_commit(zd
->zd_zilog
, 0);
7404 txg_wait_synced(spa_get_dsl(spa
), 0);
7407 * Freeze the pool. This stops spa_sync() from doing anything,
7408 * so that the only way to record changes from now on is the ZIL.
7413 * Because it is hard to predict how much space a write will actually
7414 * require beforehand, we leave ourselves some fudge space to write over
7417 uint64_t capacity
= metaslab_class_get_space(spa_normal_class(spa
)) / 2;
7420 * Run tests that generate log records but don't alter the pool config
7421 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7422 * We do a txg_wait_synced() after each iteration to force the txg
7423 * to increase well beyond the last synced value in the uberblock.
7424 * The ZIL should be OK with that.
7426 * Run a random number of times less than zo_maxloops and ensure we do
7427 * not run out of space on the pool.
7429 while (ztest_random(10) != 0 &&
7430 numloops
++ < ztest_opts
.zo_maxloops
&&
7431 metaslab_class_get_alloc(spa_normal_class(spa
)) < capacity
) {
7433 ztest_od_init(&od
, 0, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
7434 VERIFY0(ztest_object_init(zd
, &od
, sizeof (od
), B_FALSE
));
7435 ztest_io(zd
, od
.od_object
,
7436 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
7437 txg_wait_synced(spa_get_dsl(spa
), 0);
7441 * Commit all of the changes we just generated.
7443 zil_commit(zd
->zd_zilog
, 0);
7444 txg_wait_synced(spa_get_dsl(spa
), 0);
7447 * Close our dataset and close the pool.
7449 ztest_dataset_close(0);
7450 spa_close(spa
, FTAG
);
7454 * Open and close the pool and dataset to induce log replay.
7456 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7457 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7458 ASSERT3U(spa_freeze_txg(spa
), ==, UINT64_MAX
);
7459 VERIFY0(ztest_dataset_open(0));
7461 txg_wait_synced(spa_get_dsl(spa
), 0);
7462 ztest_dataset_close(0);
7463 ztest_reguid(NULL
, 0);
7465 spa_close(spa
, FTAG
);
7470 ztest_import_impl(void)
7472 importargs_t args
= { 0 };
7473 nvlist_t
*cfg
= NULL
;
7475 char *searchdirs
[nsearch
];
7476 int flags
= ZFS_IMPORT_MISSING_LOG
;
7478 searchdirs
[0] = ztest_opts
.zo_dir
;
7479 args
.paths
= nsearch
;
7480 args
.path
= searchdirs
;
7481 args
.can_be_active
= B_FALSE
;
7483 libpc_handle_t lpch
= {
7484 .lpc_lib_handle
= NULL
,
7485 .lpc_ops
= &libzpool_config_ops
,
7486 .lpc_printerr
= B_TRUE
7488 VERIFY0(zpool_find_config(&lpch
, ztest_opts
.zo_pool
, &cfg
, &args
));
7489 VERIFY0(spa_import(ztest_opts
.zo_pool
, cfg
, NULL
, flags
));
7494 * Import a storage pool with the given name.
7497 ztest_import(ztest_shared_t
*zs
)
7501 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7502 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7503 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7505 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7507 ztest_import_impl();
7509 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7510 zs
->zs_metaslab_sz
=
7511 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7512 spa_close(spa
, FTAG
);
7516 if (!ztest_opts
.zo_mmp_test
) {
7517 ztest_run_zdb(ztest_opts
.zo_pool
);
7519 ztest_run_zdb(ztest_opts
.zo_pool
);
7522 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7523 mutex_destroy(&ztest_vdev_lock
);
7524 mutex_destroy(&ztest_checkpoint_lock
);
7528 * Kick off threads to run tests on all datasets in parallel.
7531 ztest_run(ztest_shared_t
*zs
)
7535 kthread_t
*resume_thread
, *deadman_thread
;
7536 kthread_t
**run_threads
;
7541 ztest_exiting
= B_FALSE
;
7544 * Initialize parent/child shared state.
7546 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7547 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7548 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7550 zs
->zs_thread_start
= gethrtime();
7551 zs
->zs_thread_stop
=
7552 zs
->zs_thread_start
+ ztest_opts
.zo_passtime
* NANOSEC
;
7553 zs
->zs_thread_stop
= MIN(zs
->zs_thread_stop
, zs
->zs_proc_stop
);
7554 zs
->zs_thread_kill
= zs
->zs_thread_stop
;
7555 if (ztest_random(100) < ztest_opts
.zo_killrate
) {
7556 zs
->zs_thread_kill
-=
7557 ztest_random(ztest_opts
.zo_passtime
* NANOSEC
);
7560 mutex_init(&zcl
.zcl_callbacks_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7562 list_create(&zcl
.zcl_callbacks
, sizeof (ztest_cb_data_t
),
7563 offsetof(ztest_cb_data_t
, zcd_node
));
7566 * Open our pool. It may need to be imported first depending on
7567 * what tests were running when the previous pass was terminated.
7569 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7570 error
= spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
);
7572 VERIFY3S(error
, ==, ENOENT
);
7573 ztest_import_impl();
7574 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7575 zs
->zs_metaslab_sz
=
7576 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7579 metaslab_preload_limit
= ztest_random(20) + 1;
7582 VERIFY0(vdev_raidz_impl_set("cycle"));
7584 dmu_objset_stats_t dds
;
7585 VERIFY0(ztest_dmu_objset_own(ztest_opts
.zo_pool
,
7586 DMU_OST_ANY
, B_TRUE
, B_TRUE
, FTAG
, &os
));
7587 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
7588 dmu_objset_fast_stat(os
, &dds
);
7589 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
7590 zs
->zs_guid
= dds
.dds_guid
;
7591 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7594 * Create a thread to periodically resume suspended I/O.
7596 resume_thread
= thread_create(NULL
, 0, ztest_resume_thread
,
7597 spa
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
7600 * Create a deadman thread and set to panic if we hang.
7602 deadman_thread
= thread_create(NULL
, 0, ztest_deadman_thread
,
7603 zs
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
7605 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_PANIC
;
7608 * Verify that we can safely inquire about any object,
7609 * whether it's allocated or not. To make it interesting,
7610 * we probe a 5-wide window around each power of two.
7611 * This hits all edge cases, including zero and the max.
7613 for (t
= 0; t
< 64; t
++) {
7614 for (d
= -5; d
<= 5; d
++) {
7615 error
= dmu_object_info(spa
->spa_meta_objset
,
7616 (1ULL << t
) + d
, NULL
);
7617 ASSERT(error
== 0 || error
== ENOENT
||
7623 * If we got any ENOSPC errors on the previous run, destroy something.
7625 if (zs
->zs_enospc_count
!= 0) {
7626 int d
= ztest_random(ztest_opts
.zo_datasets
);
7627 ztest_dataset_destroy(d
);
7629 zs
->zs_enospc_count
= 0;
7632 * If we were in the middle of ztest_device_removal() and were killed
7633 * we need to ensure the removal and scrub complete before running
7634 * any tests that check ztest_device_removal_active. The removal will
7635 * be restarted automatically when the spa is opened, but we need to
7636 * initiate the scrub manually if it is not already in progress. Note
7637 * that we always run the scrub whenever an indirect vdev exists
7638 * because we have no way of knowing for sure if ztest_device_removal()
7639 * fully completed its scrub before the pool was reimported.
7641 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
||
7642 spa
->spa_removing_phys
.sr_prev_indirect_vdev
!= -1) {
7643 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
7644 txg_wait_synced(spa_get_dsl(spa
), 0);
7646 error
= ztest_scrub_impl(spa
);
7652 run_threads
= umem_zalloc(ztest_opts
.zo_threads
* sizeof (kthread_t
*),
7655 if (ztest_opts
.zo_verbose
>= 4)
7656 (void) printf("starting main threads...\n");
7659 * Replay all logs of all datasets in the pool. This is primarily for
7660 * temporary datasets which wouldn't otherwise get replayed, which
7661 * can trigger failures when attempting to offline a SLOG in
7662 * ztest_fault_inject().
7664 (void) dmu_objset_find(ztest_opts
.zo_pool
, ztest_replay_zil_cb
,
7665 NULL
, DS_FIND_CHILDREN
);
7668 * Kick off all the tests that run in parallel.
7670 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
7671 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
7672 umem_free(run_threads
, ztest_opts
.zo_threads
*
7673 sizeof (kthread_t
*));
7677 run_threads
[t
] = thread_create(NULL
, 0, ztest_thread
,
7678 (void *)(uintptr_t)t
, 0, NULL
, TS_RUN
| TS_JOINABLE
,
7683 * Wait for all of the tests to complete.
7685 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++)
7686 VERIFY0(thread_join(run_threads
[t
]));
7689 * Close all datasets. This must be done after all the threads
7690 * are joined so we can be sure none of the datasets are in-use
7691 * by any of the threads.
7693 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
7694 if (t
< ztest_opts
.zo_datasets
)
7695 ztest_dataset_close(t
);
7698 txg_wait_synced(spa_get_dsl(spa
), 0);
7700 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
7701 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
7703 umem_free(run_threads
, ztest_opts
.zo_threads
* sizeof (kthread_t
*));
7705 /* Kill the resume and deadman threads */
7706 ztest_exiting
= B_TRUE
;
7707 VERIFY0(thread_join(resume_thread
));
7708 VERIFY0(thread_join(deadman_thread
));
7712 * Right before closing the pool, kick off a bunch of async I/O;
7713 * spa_close() should wait for it to complete.
7715 for (object
= 1; object
< 50; object
++) {
7716 dmu_prefetch(spa
->spa_meta_objset
, object
, 0, 0, 1ULL << 20,
7717 ZIO_PRIORITY_SYNC_READ
);
7720 /* Verify that at least one commit cb was called in a timely fashion */
7721 if (zc_cb_counter
>= ZTEST_COMMIT_CB_MIN_REG
)
7722 VERIFY0(zc_min_txg_delay
);
7724 spa_close(spa
, FTAG
);
7727 * Verify that we can loop over all pools.
7729 mutex_enter(&spa_namespace_lock
);
7730 for (spa
= spa_next(NULL
); spa
!= NULL
; spa
= spa_next(spa
))
7731 if (ztest_opts
.zo_verbose
> 3)
7732 (void) printf("spa_next: found %s\n", spa_name(spa
));
7733 mutex_exit(&spa_namespace_lock
);
7736 * Verify that we can export the pool and reimport it under a
7739 if ((ztest_random(2) == 0) && !ztest_opts
.zo_mmp_test
) {
7740 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7741 (void) snprintf(name
, sizeof (name
), "%s_import",
7742 ztest_opts
.zo_pool
);
7743 ztest_spa_import_export(ztest_opts
.zo_pool
, name
);
7744 ztest_spa_import_export(name
, ztest_opts
.zo_pool
);
7749 list_destroy(&zcl
.zcl_callbacks
);
7750 mutex_destroy(&zcl
.zcl_callbacks_lock
);
7751 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7752 mutex_destroy(&ztest_vdev_lock
);
7753 mutex_destroy(&ztest_checkpoint_lock
);
7757 print_time(hrtime_t t
, char *timebuf
)
7759 hrtime_t s
= t
/ NANOSEC
;
7760 hrtime_t m
= s
/ 60;
7761 hrtime_t h
= m
/ 60;
7762 hrtime_t d
= h
/ 24;
7771 (void) sprintf(timebuf
,
7772 "%llud%02lluh%02llum%02llus", d
, h
, m
, s
);
7774 (void) sprintf(timebuf
, "%lluh%02llum%02llus", h
, m
, s
);
7776 (void) sprintf(timebuf
, "%llum%02llus", m
, s
);
7778 (void) sprintf(timebuf
, "%llus", s
);
7782 make_random_props(void)
7786 props
= fnvlist_alloc();
7788 if (ztest_random(2) == 0)
7791 fnvlist_add_uint64(props
,
7792 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE
), 1);
7798 * Create a storage pool with the given name and initial vdev size.
7799 * Then test spa_freeze() functionality.
7802 ztest_init(ztest_shared_t
*zs
)
7805 nvlist_t
*nvroot
, *props
;
7808 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7809 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7810 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7812 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7815 * Create the storage pool.
7817 (void) spa_destroy(ztest_opts
.zo_pool
);
7818 ztest_shared
->zs_vdev_next_leaf
= 0;
7820 zs
->zs_mirrors
= ztest_opts
.zo_mirrors
;
7821 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
7822 NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
7823 props
= make_random_props();
7826 * We don't expect the pool to suspend unless maxfaults == 0,
7827 * in which case ztest_fault_inject() temporarily takes away
7828 * the only valid replica.
7830 fnvlist_add_uint64(props
,
7831 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE
),
7832 MAXFAULTS(zs
) ? ZIO_FAILURE_MODE_PANIC
: ZIO_FAILURE_MODE_WAIT
);
7834 for (i
= 0; i
< SPA_FEATURES
; i
++) {
7837 if (!spa_feature_table
[i
].fi_zfs_mod_supported
)
7841 * 75% chance of using the log space map feature. We want ztest
7842 * to exercise both the code paths that use the log space map
7843 * feature and the ones that don't.
7845 if (i
== SPA_FEATURE_LOG_SPACEMAP
&& ztest_random(4) == 0)
7848 VERIFY3S(-1, !=, asprintf(&buf
, "feature@%s",
7849 spa_feature_table
[i
].fi_uname
));
7850 fnvlist_add_uint64(props
, buf
, 0);
7854 VERIFY0(spa_create(ztest_opts
.zo_pool
, nvroot
, props
, NULL
, NULL
));
7855 fnvlist_free(nvroot
);
7856 fnvlist_free(props
);
7858 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7859 zs
->zs_metaslab_sz
=
7860 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7861 spa_close(spa
, FTAG
);
7865 if (!ztest_opts
.zo_mmp_test
) {
7866 ztest_run_zdb(ztest_opts
.zo_pool
);
7868 ztest_run_zdb(ztest_opts
.zo_pool
);
7871 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7872 mutex_destroy(&ztest_vdev_lock
);
7873 mutex_destroy(&ztest_checkpoint_lock
);
7879 static char ztest_name_data
[] = "/tmp/ztest.data.XXXXXX";
7881 ztest_fd_data
= mkstemp(ztest_name_data
);
7882 ASSERT3S(ztest_fd_data
, >=, 0);
7883 (void) unlink(ztest_name_data
);
7887 shared_data_size(ztest_shared_hdr_t
*hdr
)
7891 size
= hdr
->zh_hdr_size
;
7892 size
+= hdr
->zh_opts_size
;
7893 size
+= hdr
->zh_size
;
7894 size
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
7895 size
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
7904 ztest_shared_hdr_t
*hdr
;
7906 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
7907 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
7908 ASSERT3P(hdr
, !=, MAP_FAILED
);
7910 VERIFY0(ftruncate(ztest_fd_data
, sizeof (ztest_shared_hdr_t
)));
7912 hdr
->zh_hdr_size
= sizeof (ztest_shared_hdr_t
);
7913 hdr
->zh_opts_size
= sizeof (ztest_shared_opts_t
);
7914 hdr
->zh_size
= sizeof (ztest_shared_t
);
7915 hdr
->zh_stats_size
= sizeof (ztest_shared_callstate_t
);
7916 hdr
->zh_stats_count
= ZTEST_FUNCS
;
7917 hdr
->zh_ds_size
= sizeof (ztest_shared_ds_t
);
7918 hdr
->zh_ds_count
= ztest_opts
.zo_datasets
;
7920 size
= shared_data_size(hdr
);
7921 VERIFY0(ftruncate(ztest_fd_data
, size
));
7923 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
7930 ztest_shared_hdr_t
*hdr
;
7933 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
7934 PROT_READ
, MAP_SHARED
, ztest_fd_data
, 0);
7935 ASSERT3P(hdr
, !=, MAP_FAILED
);
7937 size
= shared_data_size(hdr
);
7939 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
7940 hdr
= ztest_shared_hdr
= (void *)mmap(0, P2ROUNDUP(size
, getpagesize()),
7941 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
7942 ASSERT3P(hdr
, !=, MAP_FAILED
);
7943 buf
= (uint8_t *)hdr
;
7945 offset
= hdr
->zh_hdr_size
;
7946 ztest_shared_opts
= (void *)&buf
[offset
];
7947 offset
+= hdr
->zh_opts_size
;
7948 ztest_shared
= (void *)&buf
[offset
];
7949 offset
+= hdr
->zh_size
;
7950 ztest_shared_callstate
= (void *)&buf
[offset
];
7951 offset
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
7952 ztest_shared_ds
= (void *)&buf
[offset
];
7956 exec_child(char *cmd
, char *libpath
, boolean_t ignorekill
, int *statusp
)
7960 char *cmdbuf
= NULL
;
7965 cmdbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
7966 (void) strlcpy(cmdbuf
, getexecname(), MAXPATHLEN
);
7971 fatal(B_TRUE
, "fork failed");
7973 if (pid
== 0) { /* child */
7974 char fd_data_str
[12];
7977 snprintf(fd_data_str
, 12, "%d", ztest_fd_data
));
7978 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str
, 1));
7980 if (libpath
!= NULL
) {
7981 const char *curlp
= getenv("LD_LIBRARY_PATH");
7983 VERIFY0(setenv("LD_LIBRARY_PATH", libpath
, 1));
7987 asprintf(&newlp
, "%s:%s", libpath
, curlp
));
7988 VERIFY0(setenv("LD_LIBRARY_PATH", newlp
, 1));
7992 (void) execl(cmd
, cmd
, (char *)NULL
);
7993 ztest_dump_core
= B_FALSE
;
7994 fatal(B_TRUE
, "exec failed: %s", cmd
);
7997 if (cmdbuf
!= NULL
) {
7998 umem_free(cmdbuf
, MAXPATHLEN
);
8002 while (waitpid(pid
, &status
, 0) != pid
)
8004 if (statusp
!= NULL
)
8007 if (WIFEXITED(status
)) {
8008 if (WEXITSTATUS(status
) != 0) {
8009 (void) fprintf(stderr
, "child exited with code %d\n",
8010 WEXITSTATUS(status
));
8014 } else if (WIFSIGNALED(status
)) {
8015 if (!ignorekill
|| WTERMSIG(status
) != SIGKILL
) {
8016 (void) fprintf(stderr
, "child died with signal %d\n",
8022 (void) fprintf(stderr
, "something strange happened to child\n");
8028 ztest_run_init(void)
8032 ztest_shared_t
*zs
= ztest_shared
;
8035 * Blow away any existing copy of zpool.cache
8037 (void) remove(spa_config_path
);
8039 if (ztest_opts
.zo_init
== 0) {
8040 if (ztest_opts
.zo_verbose
>= 1)
8041 (void) printf("Importing pool %s\n",
8042 ztest_opts
.zo_pool
);
8048 * Create and initialize our storage pool.
8050 for (i
= 1; i
<= ztest_opts
.zo_init
; i
++) {
8051 memset(zs
, 0, sizeof (*zs
));
8052 if (ztest_opts
.zo_verbose
>= 3 &&
8053 ztest_opts
.zo_init
!= 1) {
8054 (void) printf("ztest_init(), pass %d\n", i
);
8061 main(int argc
, char **argv
)
8069 ztest_shared_callstate_t
*zc
;
8071 char numbuf
[NN_NUMBUF_SZ
];
8075 char *fd_data_str
= getenv("ZTEST_FD_DATA");
8076 struct sigaction action
;
8078 (void) setvbuf(stdout
, NULL
, _IOLBF
, 0);
8080 dprintf_setup(&argc
, argv
);
8081 zfs_deadman_synctime_ms
= 300000;
8082 zfs_deadman_checktime_ms
= 30000;
8084 * As two-word space map entries may not come up often (especially
8085 * if pool and vdev sizes are small) we want to force at least some
8086 * of them so the feature get tested.
8088 zfs_force_some_double_word_sm_entries
= B_TRUE
;
8091 * Verify that even extensively damaged split blocks with many
8092 * segments can be reconstructed in a reasonable amount of time
8093 * when reconstruction is known to be possible.
8095 * Note: the lower this value is, the more damage we inflict, and
8096 * the more time ztest spends in recovering that damage. We chose
8097 * to induce damage 1/100th of the time so recovery is tested but
8098 * not so frequently that ztest doesn't get to test other code paths.
8100 zfs_reconstruct_indirect_damage_fraction
= 100;
8102 action
.sa_handler
= sig_handler
;
8103 sigemptyset(&action
.sa_mask
);
8104 action
.sa_flags
= 0;
8106 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
8107 (void) fprintf(stderr
, "ztest: cannot catch SIGSEGV: %s.\n",
8112 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
8113 (void) fprintf(stderr
, "ztest: cannot catch SIGABRT: %s.\n",
8119 * Force random_get_bytes() to use /dev/urandom in order to prevent
8120 * ztest from needlessly depleting the system entropy pool.
8122 random_path
= "/dev/urandom";
8123 ztest_fd_rand
= open(random_path
, O_RDONLY
| O_CLOEXEC
);
8124 ASSERT3S(ztest_fd_rand
, >=, 0);
8127 process_options(argc
, argv
);
8132 memcpy(ztest_shared_opts
, &ztest_opts
,
8133 sizeof (*ztest_shared_opts
));
8135 ztest_fd_data
= atoi(fd_data_str
);
8137 memcpy(&ztest_opts
, ztest_shared_opts
, sizeof (ztest_opts
));
8139 ASSERT3U(ztest_opts
.zo_datasets
, ==, ztest_shared_hdr
->zh_ds_count
);
8141 err
= ztest_set_global_vars();
8142 if (err
!= 0 && !fd_data_str
) {
8143 /* error message done by ztest_set_global_vars */
8146 /* children should not be spawned if setting gvars fails */
8147 VERIFY3S(err
, ==, 0);
8150 /* Override location of zpool.cache */
8151 VERIFY3S(asprintf((char **)&spa_config_path
, "%s/zpool.cache",
8152 ztest_opts
.zo_dir
), !=, -1);
8154 ztest_ds
= umem_alloc(ztest_opts
.zo_datasets
* sizeof (ztest_ds_t
),
8159 metaslab_force_ganging
= ztest_opts
.zo_metaslab_force_ganging
;
8160 metaslab_df_alloc_threshold
=
8161 zs
->zs_metaslab_df_alloc_threshold
;
8170 hasalt
= (strlen(ztest_opts
.zo_alt_ztest
) != 0);
8172 if (ztest_opts
.zo_verbose
>= 1) {
8173 (void) printf("%"PRIu64
" vdevs, %d datasets, %d threads,"
8174 "%d %s disks, %"PRIu64
" seconds...\n\n",
8175 ztest_opts
.zo_vdevs
,
8176 ztest_opts
.zo_datasets
,
8177 ztest_opts
.zo_threads
,
8178 ztest_opts
.zo_raid_children
,
8179 ztest_opts
.zo_raid_type
,
8180 ztest_opts
.zo_time
);
8183 cmd
= umem_alloc(MAXNAMELEN
, UMEM_NOFAIL
);
8184 (void) strlcpy(cmd
, getexecname(), MAXNAMELEN
);
8186 zs
->zs_do_init
= B_TRUE
;
8187 if (strlen(ztest_opts
.zo_alt_ztest
) != 0) {
8188 if (ztest_opts
.zo_verbose
>= 1) {
8189 (void) printf("Executing older ztest for "
8190 "initialization: %s\n", ztest_opts
.zo_alt_ztest
);
8192 VERIFY(!exec_child(ztest_opts
.zo_alt_ztest
,
8193 ztest_opts
.zo_alt_libpath
, B_FALSE
, NULL
));
8195 VERIFY(!exec_child(NULL
, NULL
, B_FALSE
, NULL
));
8197 zs
->zs_do_init
= B_FALSE
;
8199 zs
->zs_proc_start
= gethrtime();
8200 zs
->zs_proc_stop
= zs
->zs_proc_start
+ ztest_opts
.zo_time
* NANOSEC
;
8202 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8203 zi
= &ztest_info
[f
];
8204 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8205 if (zs
->zs_proc_start
+ zi
->zi_interval
[0] > zs
->zs_proc_stop
)
8206 zc
->zc_next
= UINT64_MAX
;
8208 zc
->zc_next
= zs
->zs_proc_start
+
8209 ztest_random(2 * zi
->zi_interval
[0] + 1);
8213 * Run the tests in a loop. These tests include fault injection
8214 * to verify that self-healing data works, and forced crashes
8215 * to verify that we never lose on-disk consistency.
8217 while (gethrtime() < zs
->zs_proc_stop
) {
8222 * Initialize the workload counters for each function.
8224 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8225 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8230 /* Set the allocation switch size */
8231 zs
->zs_metaslab_df_alloc_threshold
=
8232 ztest_random(zs
->zs_metaslab_sz
/ 4) + 1;
8234 if (!hasalt
|| ztest_random(2) == 0) {
8235 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
8236 (void) printf("Executing newer ztest: %s\n",
8240 killed
= exec_child(cmd
, NULL
, B_TRUE
, &status
);
8242 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
8243 (void) printf("Executing older ztest: %s\n",
8244 ztest_opts
.zo_alt_ztest
);
8247 killed
= exec_child(ztest_opts
.zo_alt_ztest
,
8248 ztest_opts
.zo_alt_libpath
, B_TRUE
, &status
);
8255 if (ztest_opts
.zo_verbose
>= 1) {
8256 hrtime_t now
= gethrtime();
8258 now
= MIN(now
, zs
->zs_proc_stop
);
8259 print_time(zs
->zs_proc_stop
- now
, timebuf
);
8260 nicenum(zs
->zs_space
, numbuf
, sizeof (numbuf
));
8262 (void) printf("Pass %3d, %8s, %3"PRIu64
" ENOSPC, "
8263 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8265 WIFEXITED(status
) ? "Complete" : "SIGKILL",
8266 zs
->zs_enospc_count
,
8267 100.0 * zs
->zs_alloc
/ zs
->zs_space
,
8269 100.0 * (now
- zs
->zs_proc_start
) /
8270 (ztest_opts
.zo_time
* NANOSEC
), timebuf
);
8273 if (ztest_opts
.zo_verbose
>= 2) {
8274 (void) printf("\nWorkload summary:\n\n");
8275 (void) printf("%7s %9s %s\n",
8276 "Calls", "Time", "Function");
8277 (void) printf("%7s %9s %s\n",
8278 "-----", "----", "--------");
8279 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8280 zi
= &ztest_info
[f
];
8281 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8282 print_time(zc
->zc_time
, timebuf
);
8283 (void) printf("%7"PRIu64
" %9s %s\n",
8284 zc
->zc_count
, timebuf
,
8287 (void) printf("\n");
8290 if (!ztest_opts
.zo_mmp_test
)
8291 ztest_run_zdb(ztest_opts
.zo_pool
);
8294 if (ztest_opts
.zo_verbose
>= 1) {
8296 (void) printf("%d runs of older ztest: %s\n", older
,
8297 ztest_opts
.zo_alt_ztest
);
8298 (void) printf("%d runs of newer ztest: %s\n", newer
,
8301 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8302 kills
, iters
- kills
, (100.0 * kills
) / MAX(1, iters
));
8305 umem_free(cmd
, MAXNAMELEN
);