ZAP: Align za_name in zap_attribute_t to 8 bytes
[zfs.git] / include / sys / spa.h
blobca30b60c0af73364c8f8b92dcd2a0a3d7d76e4b3
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2019, Klara Inc.
32 * Copyright (c) 2019, Datto Inc.
35 #ifndef _SYS_SPA_H
36 #define _SYS_SPA_H
38 #include <sys/zfs_context.h>
39 #include <sys/avl.h>
40 #include <sys/kstat.h>
41 #include <sys/nvpair.h>
42 #include <sys/types.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/spa_checksum.h>
45 #include <sys/dmu.h>
46 #include <sys/space_map.h>
47 #include <sys/bitops.h>
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
54 * Forward references that lots of things need.
56 typedef struct spa spa_t;
57 typedef struct vdev vdev_t;
58 typedef struct metaslab metaslab_t;
59 typedef struct metaslab_group metaslab_group_t;
60 typedef struct metaslab_class metaslab_class_t;
61 typedef struct zio zio_t;
62 typedef struct zilog zilog_t;
63 typedef struct spa_aux_vdev spa_aux_vdev_t;
64 typedef struct zbookmark_phys zbookmark_phys_t;
65 typedef struct zbookmark_err_phys zbookmark_err_phys_t;
67 struct bpobj;
68 struct bplist;
69 struct dsl_pool;
70 struct dsl_dataset;
71 struct dsl_crypto_params;
74 * Alignment Shift (ashift) is an immutable, internal top-level vdev property
75 * which can only be set at vdev creation time. Physical writes are always done
76 * according to it, which makes 2^ashift the smallest possible IO on a vdev.
78 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
79 * (2^16 = 65,536).
81 #define ASHIFT_MIN 9
82 #define ASHIFT_MAX 16
85 * Size of block to hold the configuration data (a packed nvlist)
87 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14)
90 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
91 * The ASIZE encoding should be at least 64 times larger (6 more bits)
92 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
93 * overhead, three DVAs per bp, plus one more bit in case we do anything
94 * else that expands the ASIZE.
96 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
97 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
98 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
100 #define SPA_COMPRESSBITS 7
101 #define SPA_VDEVBITS 24
102 #define SPA_COMPRESSMASK ((1U << SPA_COMPRESSBITS) - 1)
105 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
106 * The members of the dva_t should be considered opaque outside the SPA.
108 typedef struct dva {
109 uint64_t dva_word[2];
110 } dva_t;
114 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
115 * secret and is suitable for use in MAC algorithms as the key.
117 typedef struct zio_cksum_salt {
118 uint8_t zcs_bytes[32];
119 } zio_cksum_salt_t;
122 * Each block is described by its DVAs, time of birth, checksum, etc.
123 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
125 * 64 56 48 40 32 24 16 8 0
126 * +-------+-------+-------+-------+-------+-------+-------+-------+
127 * 0 | pad | vdev1 | pad | ASIZE |
128 * +-------+-------+-------+-------+-------+-------+-------+-------+
129 * 1 |G| offset1 |
130 * +-------+-------+-------+-------+-------+-------+-------+-------+
131 * 2 | pad | vdev2 | pad | ASIZE |
132 * +-------+-------+-------+-------+-------+-------+-------+-------+
133 * 3 |G| offset2 |
134 * +-------+-------+-------+-------+-------+-------+-------+-------+
135 * 4 | pad | vdev3 | pad | ASIZE |
136 * +-------+-------+-------+-------+-------+-------+-------+-------+
137 * 5 |G| offset3 |
138 * +-------+-------+-------+-------+-------+-------+-------+-------+
139 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
140 * +-------+-------+-------+-------+-------+-------+-------+-------+
141 * 7 | padding |
142 * +-------+-------+-------+-------+-------+-------+-------+-------+
143 * 8 | padding |
144 * +-------+-------+-------+-------+-------+-------+-------+-------+
145 * 9 | physical birth txg |
146 * +-------+-------+-------+-------+-------+-------+-------+-------+
147 * a | logical birth txg |
148 * +-------+-------+-------+-------+-------+-------+-------+-------+
149 * b | fill count |
150 * +-------+-------+-------+-------+-------+-------+-------+-------+
151 * c | checksum[0] |
152 * +-------+-------+-------+-------+-------+-------+-------+-------+
153 * d | checksum[1] |
154 * +-------+-------+-------+-------+-------+-------+-------+-------+
155 * e | checksum[2] |
156 * +-------+-------+-------+-------+-------+-------+-------+-------+
157 * f | checksum[3] |
158 * +-------+-------+-------+-------+-------+-------+-------+-------+
160 * Legend:
162 * vdev virtual device ID
163 * offset offset into virtual device
164 * LSIZE logical size
165 * PSIZE physical size (after compression)
166 * ASIZE allocated size (including RAID-Z parity and gang block headers)
167 * cksum checksum function
168 * comp compression function
169 * G gang block indicator
170 * B byteorder (endianness)
171 * D dedup
172 * X encryption
173 * E blkptr_t contains embedded data (see below)
174 * lvl level of indirection
175 * type DMU object type
176 * phys birth txg when dva[0] was written; zero if same as logical birth txg
177 * note that typically all the dva's would be written in this
178 * txg, but they could be different if they were moved by
179 * device removal.
180 * log. birth transaction group in which the block was logically born
181 * fill count number of non-zero blocks under this bp
182 * checksum[4] 256-bit checksum of the data this bp describes
186 * The blkptr_t's of encrypted blocks also need to store the encryption
187 * parameters so that the block can be decrypted. This layout is as follows:
189 * 64 56 48 40 32 24 16 8 0
190 * +-------+-------+-------+-------+-------+-------+-------+-------+
191 * 0 | vdev1 | pad | ASIZE |
192 * +-------+-------+-------+-------+-------+-------+-------+-------+
193 * 1 |G| offset1 |
194 * +-------+-------+-------+-------+-------+-------+-------+-------+
195 * 2 | vdev2 | pad | ASIZE |
196 * +-------+-------+-------+-------+-------+-------+-------+-------+
197 * 3 |G| offset2 |
198 * +-------+-------+-------+-------+-------+-------+-------+-------+
199 * 4 | salt |
200 * +-------+-------+-------+-------+-------+-------+-------+-------+
201 * 5 | IV1 |
202 * +-------+-------+-------+-------+-------+-------+-------+-------+
203 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
204 * +-------+-------+-------+-------+-------+-------+-------+-------+
205 * 7 | padding |
206 * +-------+-------+-------+-------+-------+-------+-------+-------+
207 * 8 | padding |
208 * +-------+-------+-------+-------+-------+-------+-------+-------+
209 * 9 | physical birth txg |
210 * +-------+-------+-------+-------+-------+-------+-------+-------+
211 * a | logical birth txg |
212 * +-------+-------+-------+-------+-------+-------+-------+-------+
213 * b | IV2 | fill count |
214 * +-------+-------+-------+-------+-------+-------+-------+-------+
215 * c | checksum[0] |
216 * +-------+-------+-------+-------+-------+-------+-------+-------+
217 * d | checksum[1] |
218 * +-------+-------+-------+-------+-------+-------+-------+-------+
219 * e | MAC[0] |
220 * +-------+-------+-------+-------+-------+-------+-------+-------+
221 * f | MAC[1] |
222 * +-------+-------+-------+-------+-------+-------+-------+-------+
224 * Legend:
226 * salt Salt for generating encryption keys
227 * IV1 First 64 bits of encryption IV
228 * X Block requires encryption handling (set to 1)
229 * E blkptr_t contains embedded data (set to 0, see below)
230 * fill count number of non-zero blocks under this bp (truncated to 32 bits)
231 * IV2 Last 32 bits of encryption IV
232 * checksum[2] 128-bit checksum of the data this bp describes
233 * MAC[2] 128-bit message authentication code for this data
235 * The X bit being set indicates that this block is one of 3 types. If this is
236 * a level 0 block with an encrypted object type, the block is encrypted
237 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
238 * object type, this block is authenticated with an HMAC (see
239 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
240 * words to store a checksum-of-MACs from the level below (see
241 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
242 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
243 * refers to any of these 3 kinds of blocks.
245 * The additional encryption parameters are the salt, IV, and MAC which are
246 * explained in greater detail in the block comment at the top of zio_crypt.c.
247 * The MAC occupies half of the checksum space since it serves a very similar
248 * purpose: to prevent data corruption on disk. The only functional difference
249 * is that the checksum is used to detect on-disk corruption whether or not the
250 * encryption key is loaded and the MAC provides additional protection against
251 * malicious disk tampering. We use the 3rd DVA to store the salt and first
252 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
253 * maximum instead of the normal 3. The last 32 bits of the IV are stored in
254 * the upper bits of what is usually the fill count. Note that only blocks at
255 * level 0 or -2 are ever encrypted, which allows us to guarantee that these
256 * 32 bits are not trampled over by other code (see zio_crypt.c for details).
257 * The salt and IV are not used for authenticated bps or bps with an indirect
258 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
259 * for the fill count.
263 * "Embedded" blkptr_t's don't actually point to a block, instead they
264 * have a data payload embedded in the blkptr_t itself. See the comment
265 * in blkptr.c for more details.
267 * The blkptr_t is laid out as follows:
269 * 64 56 48 40 32 24 16 8 0
270 * +-------+-------+-------+-------+-------+-------+-------+-------+
271 * 0 | payload |
272 * 1 | payload |
273 * 2 | payload |
274 * 3 | payload |
275 * 4 | payload |
276 * 5 | payload |
277 * +-------+-------+-------+-------+-------+-------+-------+-------+
278 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE |
279 * +-------+-------+-------+-------+-------+-------+-------+-------+
280 * 7 | payload |
281 * 8 | payload |
282 * 9 | payload |
283 * +-------+-------+-------+-------+-------+-------+-------+-------+
284 * a | logical birth txg |
285 * +-------+-------+-------+-------+-------+-------+-------+-------+
286 * b | payload |
287 * c | payload |
288 * d | payload |
289 * e | payload |
290 * f | payload |
291 * +-------+-------+-------+-------+-------+-------+-------+-------+
293 * Legend:
295 * payload contains the embedded data
296 * B (byteorder) byteorder (endianness)
297 * D (dedup) padding (set to zero)
298 * X encryption (set to zero)
299 * E (embedded) set to one
300 * lvl indirection level
301 * type DMU object type
302 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*)
303 * comp compression function of payload
304 * PSIZE size of payload after compression, in bytes
305 * LSIZE logical size of payload, in bytes
306 * note that 25 bits is enough to store the largest
307 * "normal" BP's LSIZE (2^16 * 2^9) in bytes
308 * log. birth transaction group in which the block was logically born
310 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
311 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
312 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
313 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
314 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must
315 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before
316 * other macros, as they assert that they are only used on BP's of the correct
317 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
318 * the payload space for encryption parameters (see the comment above on
319 * how encryption parameters are stored).
322 #define BPE_GET_ETYPE(bp) \
323 (ASSERT(BP_IS_EMBEDDED(bp)), \
324 BF64_GET((bp)->blk_prop, 40, 8))
325 #define BPE_SET_ETYPE(bp, t) do { \
326 ASSERT(BP_IS_EMBEDDED(bp)); \
327 BF64_SET((bp)->blk_prop, 40, 8, t); \
328 } while (0)
330 #define BPE_GET_LSIZE(bp) \
331 (ASSERT(BP_IS_EMBEDDED(bp)), \
332 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
333 #define BPE_SET_LSIZE(bp, x) do { \
334 ASSERT(BP_IS_EMBEDDED(bp)); \
335 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
336 } while (0)
338 #define BPE_GET_PSIZE(bp) \
339 (ASSERT(BP_IS_EMBEDDED(bp)), \
340 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
341 #define BPE_SET_PSIZE(bp, x) do { \
342 ASSERT(BP_IS_EMBEDDED(bp)); \
343 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
344 } while (0)
346 typedef enum bp_embedded_type {
347 BP_EMBEDDED_TYPE_DATA,
348 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */
349 BP_EMBEDDED_TYPE_REDACTED,
350 NUM_BP_EMBEDDED_TYPES
351 } bp_embedded_type_t;
353 #define BPE_NUM_WORDS 14
354 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
355 #define BPE_IS_PAYLOADWORD(bp, wp) \
356 ((wp) != &(bp)->blk_prop && (wp) != (&(bp)->blk_birth_word[1]))
358 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
359 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
360 #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */
363 * A block is a hole when it has either 1) never been written to, or
364 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
365 * without physically allocating disk space. Holes are represented in the
366 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
367 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
368 * DMU object type, and birth times are all also stored for holes that
369 * were written to at some point (i.e. were punched after having been filled).
371 typedef struct blkptr {
372 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
373 uint64_t blk_prop; /* size, compression, type, etc */
374 uint64_t blk_pad[2]; /* Extra space for the future */
375 uint64_t blk_birth_word[2];
376 uint64_t blk_fill; /* fill count */
377 zio_cksum_t blk_cksum; /* 256-bit checksum */
378 } blkptr_t;
381 * Macros to get and set fields in a bp or DVA.
385 * Note, for gang blocks, DVA_GET_ASIZE() is the total space allocated for
386 * this gang DVA including its children BP's. The space allocated at this
387 * DVA's vdev/offset is vdev_gang_header_asize(vdev).
389 #define DVA_GET_ASIZE(dva) \
390 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
391 #define DVA_SET_ASIZE(dva, x) \
392 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
393 SPA_MINBLOCKSHIFT, 0, x)
395 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
396 #define DVA_SET_VDEV(dva, x) \
397 BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
399 #define DVA_GET_OFFSET(dva) \
400 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
401 #define DVA_SET_OFFSET(dva, x) \
402 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
404 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
405 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
407 #define BP_GET_LSIZE(bp) \
408 (BP_IS_EMBEDDED(bp) ? \
409 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
410 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
411 #define BP_SET_LSIZE(bp, x) do { \
412 ASSERT(!BP_IS_EMBEDDED(bp)); \
413 BF64_SET_SB((bp)->blk_prop, \
414 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
415 } while (0)
417 #define BP_GET_PSIZE(bp) \
418 (BP_IS_EMBEDDED(bp) ? 0 : \
419 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
420 #define BP_SET_PSIZE(bp, x) do { \
421 ASSERT(!BP_IS_EMBEDDED(bp)); \
422 BF64_SET_SB((bp)->blk_prop, \
423 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
424 } while (0)
426 #define BP_GET_COMPRESS(bp) \
427 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
428 #define BP_SET_COMPRESS(bp, x) \
429 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
431 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
432 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)
434 #define BP_GET_CHECKSUM(bp) \
435 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
436 BF64_GET((bp)->blk_prop, 40, 8))
437 #define BP_SET_CHECKSUM(bp, x) do { \
438 ASSERT(!BP_IS_EMBEDDED(bp)); \
439 BF64_SET((bp)->blk_prop, 40, 8, x); \
440 } while (0)
442 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
443 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
445 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
446 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
448 /* encrypted, authenticated, and MAC cksum bps use the same bit */
449 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1)
450 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
452 #define BP_IS_ENCRYPTED(bp) \
453 (BP_USES_CRYPT(bp) && \
454 BP_GET_LEVEL(bp) <= 0 && \
455 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
457 #define BP_IS_AUTHENTICATED(bp) \
458 (BP_USES_CRYPT(bp) && \
459 BP_GET_LEVEL(bp) <= 0 && \
460 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
462 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \
463 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
465 #define BP_IS_PROTECTED(bp) \
466 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
468 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
469 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
471 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
472 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
474 #define BP_GET_FREE(bp) BF64_GET((bp)->blk_fill, 0, 1)
475 #define BP_SET_FREE(bp, x) BF64_SET((bp)->blk_fill, 0, 1, x)
477 #define BP_GET_LOGICAL_BIRTH(bp) (bp)->blk_birth_word[1]
478 #define BP_SET_LOGICAL_BIRTH(bp, x) ((bp)->blk_birth_word[1] = (x))
480 #define BP_GET_PHYSICAL_BIRTH(bp) (bp)->blk_birth_word[0]
481 #define BP_SET_PHYSICAL_BIRTH(bp, x) ((bp)->blk_birth_word[0] = (x))
483 #define BP_GET_BIRTH(bp) \
484 (BP_IS_EMBEDDED(bp) ? 0 : \
485 BP_GET_PHYSICAL_BIRTH(bp) ? BP_GET_PHYSICAL_BIRTH(bp) : \
486 BP_GET_LOGICAL_BIRTH(bp))
488 #define BP_SET_BIRTH(bp, logical, physical) \
490 ASSERT(!BP_IS_EMBEDDED(bp)); \
491 BP_SET_LOGICAL_BIRTH(bp, logical); \
492 BP_SET_PHYSICAL_BIRTH(bp, \
493 ((logical) == (physical) ? 0 : (physical))); \
496 #define BP_GET_FILL(bp) \
497 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
498 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
500 #define BP_SET_FILL(bp, fill) \
502 if (BP_IS_ENCRYPTED(bp)) \
503 BF64_SET((bp)->blk_fill, 0, 32, fill); \
504 else \
505 (bp)->blk_fill = fill; \
508 #define BP_GET_IV2(bp) \
509 (ASSERT(BP_IS_ENCRYPTED(bp)), \
510 BF64_GET((bp)->blk_fill, 32, 32))
511 #define BP_SET_IV2(bp, iv2) \
513 ASSERT(BP_IS_ENCRYPTED(bp)); \
514 BF64_SET((bp)->blk_fill, 32, 32, iv2); \
517 #define BP_IS_METADATA(bp) \
518 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
520 #define BP_GET_ASIZE(bp) \
521 (BP_IS_EMBEDDED(bp) ? 0 : \
522 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
523 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
524 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
526 #define BP_GET_UCSIZE(bp) \
527 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
529 #define BP_GET_NDVAS(bp) \
530 (BP_IS_EMBEDDED(bp) ? 0 : \
531 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
532 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
533 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
535 #define BP_COUNT_GANG(bp) \
536 (BP_IS_EMBEDDED(bp) ? 0 : \
537 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
538 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
539 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
541 #define DVA_EQUAL(dva1, dva2) \
542 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
543 (dva1)->dva_word[0] == (dva2)->dva_word[0])
545 #define BP_EQUAL(bp1, bp2) \
546 (BP_GET_BIRTH(bp1) == BP_GET_BIRTH(bp2) && \
547 BP_GET_LOGICAL_BIRTH(bp1) == BP_GET_LOGICAL_BIRTH(bp2) && \
548 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
549 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
550 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
553 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
555 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
556 #define BP_IS_GANG(bp) \
557 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
558 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
559 (dva)->dva_word[1] == 0ULL)
560 #define BP_IS_HOLE(bp) \
561 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
563 #define BP_SET_REDACTED(bp) \
565 BP_SET_EMBEDDED(bp, B_TRUE); \
566 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_REDACTED); \
568 #define BP_IS_REDACTED(bp) \
569 (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_REDACTED)
571 /* BP_IS_RAIDZ(bp) assumes no block compression */
572 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
573 BP_GET_PSIZE(bp))
575 #define BP_ZERO_DVAS(bp) \
577 (bp)->blk_dva[0].dva_word[0] = 0; \
578 (bp)->blk_dva[0].dva_word[1] = 0; \
579 (bp)->blk_dva[1].dva_word[0] = 0; \
580 (bp)->blk_dva[1].dva_word[1] = 0; \
581 (bp)->blk_dva[2].dva_word[0] = 0; \
582 (bp)->blk_dva[2].dva_word[1] = 0; \
585 #define BP_ZERO(bp) \
587 BP_ZERO_DVAS(bp); \
588 (bp)->blk_prop = 0; \
589 (bp)->blk_pad[0] = 0; \
590 (bp)->blk_pad[1] = 0; \
591 (bp)->blk_birth_word[0] = 0; \
592 (bp)->blk_birth_word[1] = 0; \
593 (bp)->blk_fill = 0; \
594 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
597 #ifdef _ZFS_BIG_ENDIAN
598 #define ZFS_HOST_BYTEORDER (0ULL)
599 #else
600 #define ZFS_HOST_BYTEORDER (1ULL)
601 #endif
603 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
605 #define BP_SPRINTF_LEN 400
608 * This macro allows code sharing between zfs, libzpool, and mdb.
609 * 'func' is either kmem_scnprintf() or mdb_snprintf().
610 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
613 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
615 static const char *const copyname[] = \
616 { "zero", "single", "double", "triple" }; \
617 int len = 0; \
618 int copies = 0; \
619 const char *crypt_type; \
620 if (bp != NULL) { \
621 if (BP_IS_ENCRYPTED(bp)) { \
622 crypt_type = "encrypted"; \
623 /* LINTED E_SUSPICIOUS_COMPARISON */ \
624 } else if (BP_IS_AUTHENTICATED(bp)) { \
625 crypt_type = "authenticated"; \
626 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \
627 crypt_type = "indirect-MAC"; \
628 } else { \
629 crypt_type = "unencrypted"; \
632 if (bp == NULL) { \
633 len += func(buf + len, size - len, "<NULL>"); \
634 } else if (BP_IS_HOLE(bp)) { \
635 len += func(buf + len, size - len, \
636 "HOLE [L%llu %s] " \
637 "size=%llxL birth=%lluL", \
638 (u_longlong_t)BP_GET_LEVEL(bp), \
639 type, \
640 (u_longlong_t)BP_GET_LSIZE(bp), \
641 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); \
642 } else if (BP_IS_EMBEDDED(bp)) { \
643 len = func(buf + len, size - len, \
644 "EMBEDDED [L%llu %s] et=%u %s " \
645 "size=%llxL/%llxP birth=%lluL", \
646 (u_longlong_t)BP_GET_LEVEL(bp), \
647 type, \
648 (int)BPE_GET_ETYPE(bp), \
649 compress, \
650 (u_longlong_t)BPE_GET_LSIZE(bp), \
651 (u_longlong_t)BPE_GET_PSIZE(bp), \
652 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); \
653 } else if (BP_IS_REDACTED(bp)) { \
654 len += func(buf + len, size - len, \
655 "REDACTED [L%llu %s] size=%llxL birth=%lluL", \
656 (u_longlong_t)BP_GET_LEVEL(bp), \
657 type, \
658 (u_longlong_t)BP_GET_LSIZE(bp), \
659 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); \
660 } else { \
661 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
662 const dva_t *dva = &bp->blk_dva[d]; \
663 if (DVA_IS_VALID(dva)) \
664 copies++; \
665 len += func(buf + len, size - len, \
666 "DVA[%d]=<%llu:%llx:%llx>%c", d, \
667 (u_longlong_t)DVA_GET_VDEV(dva), \
668 (u_longlong_t)DVA_GET_OFFSET(dva), \
669 (u_longlong_t)DVA_GET_ASIZE(dva), \
670 ws); \
672 ASSERT3S(copies, >, 0); \
673 if (BP_IS_ENCRYPTED(bp)) { \
674 len += func(buf + len, size - len, \
675 "salt=%llx iv=%llx:%llx%c", \
676 (u_longlong_t)bp->blk_dva[2].dva_word[0], \
677 (u_longlong_t)bp->blk_dva[2].dva_word[1], \
678 (u_longlong_t)BP_GET_IV2(bp), \
679 ws); \
681 if (BP_IS_GANG(bp) && \
682 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
683 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
684 copies--; \
685 len += func(buf + len, size - len, \
686 "[L%llu %s] %s %s %s %s %s %s %s%c" \
687 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
688 "cksum=%016llx:%016llx:%016llx:%016llx", \
689 (u_longlong_t)BP_GET_LEVEL(bp), \
690 type, \
691 checksum, \
692 compress, \
693 crypt_type, \
694 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
695 BP_IS_GANG(bp) ? "gang" : "contiguous", \
696 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
697 copyname[copies], \
698 ws, \
699 (u_longlong_t)BP_GET_LSIZE(bp), \
700 (u_longlong_t)BP_GET_PSIZE(bp), \
701 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), \
702 (u_longlong_t)BP_GET_BIRTH(bp), \
703 (u_longlong_t)BP_GET_FILL(bp), \
704 ws, \
705 (u_longlong_t)bp->blk_cksum.zc_word[0], \
706 (u_longlong_t)bp->blk_cksum.zc_word[1], \
707 (u_longlong_t)bp->blk_cksum.zc_word[2], \
708 (u_longlong_t)bp->blk_cksum.zc_word[3]); \
710 ASSERT(len < size); \
713 #define BP_GET_BUFC_TYPE(bp) \
714 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
716 typedef enum spa_import_type {
717 SPA_IMPORT_EXISTING,
718 SPA_IMPORT_ASSEMBLE
719 } spa_import_type_t;
721 typedef enum spa_mode {
722 SPA_MODE_UNINIT = 0,
723 SPA_MODE_READ = 1,
724 SPA_MODE_WRITE = 2,
725 } spa_mode_t;
728 * Send TRIM commands in-line during normal pool operation while deleting.
729 * OFF: no
730 * ON: yes
732 typedef enum {
733 SPA_AUTOTRIM_OFF = 0, /* default */
734 SPA_AUTOTRIM_ON,
735 } spa_autotrim_t;
738 * Reason TRIM command was issued, used internally for accounting purposes.
740 typedef enum trim_type {
741 TRIM_TYPE_MANUAL = 0,
742 TRIM_TYPE_AUTO = 1,
743 TRIM_TYPE_SIMPLE = 2
744 } trim_type_t;
746 /* state manipulation functions */
747 extern int spa_open(const char *pool, spa_t **, const void *tag);
748 extern int spa_open_rewind(const char *pool, spa_t **, const void *tag,
749 nvlist_t *policy, nvlist_t **config);
750 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
751 size_t buflen);
752 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
753 nvlist_t *zplprops, struct dsl_crypto_params *dcp);
754 extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
755 uint64_t flags);
756 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
757 extern int spa_destroy(const char *pool);
758 extern int spa_checkpoint(const char *pool);
759 extern int spa_checkpoint_discard(const char *pool);
760 extern int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
761 boolean_t hardforce);
762 extern int spa_reset(const char *pool);
763 extern void spa_async_request(spa_t *spa, int flag);
764 extern void spa_async_unrequest(spa_t *spa, int flag);
765 extern void spa_async_suspend(spa_t *spa);
766 extern void spa_async_resume(spa_t *spa);
767 extern int spa_async_tasks(spa_t *spa);
768 extern spa_t *spa_inject_addref(char *pool);
769 extern void spa_inject_delref(spa_t *spa);
770 extern void spa_scan_stat_init(spa_t *spa);
771 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
772 extern int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
773 extern int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
775 #define SPA_ASYNC_CONFIG_UPDATE 0x01
776 #define SPA_ASYNC_REMOVE 0x02
777 #define SPA_ASYNC_FAULT_VDEV 0x04
778 #define SPA_ASYNC_RESILVER_DONE 0x08
779 #define SPA_ASYNC_RESILVER 0x10
780 #define SPA_ASYNC_AUTOEXPAND 0x20
781 #define SPA_ASYNC_REMOVE_DONE 0x40
782 #define SPA_ASYNC_REMOVE_STOP 0x80
783 #define SPA_ASYNC_INITIALIZE_RESTART 0x100
784 #define SPA_ASYNC_TRIM_RESTART 0x200
785 #define SPA_ASYNC_AUTOTRIM_RESTART 0x400
786 #define SPA_ASYNC_L2CACHE_REBUILD 0x800
787 #define SPA_ASYNC_L2CACHE_TRIM 0x1000
788 #define SPA_ASYNC_REBUILD_DONE 0x2000
789 #define SPA_ASYNC_DETACH_SPARE 0x4000
791 /* device manipulation */
792 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t ashift_check);
793 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
794 int replacing, int rebuild);
795 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
796 int replace_done);
797 extern int spa_vdev_alloc(spa_t *spa, uint64_t guid);
798 extern int spa_vdev_noalloc(spa_t *spa, uint64_t guid);
799 extern boolean_t spa_vdev_remove_active(spa_t *spa);
800 extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
801 nvlist_t *vdev_errlist);
802 extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
803 uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist);
804 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
805 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
806 extern int spa_vdev_split_mirror(spa_t *spa, const char *newname,
807 nvlist_t *config, nvlist_t *props, boolean_t exp);
809 /* spare state (which is global across all pools) */
810 extern void spa_spare_add(vdev_t *vd);
811 extern void spa_spare_remove(vdev_t *vd);
812 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
813 extern void spa_spare_activate(vdev_t *vd);
815 /* L2ARC state (which is global across all pools) */
816 extern void spa_l2cache_add(vdev_t *vd);
817 extern void spa_l2cache_remove(vdev_t *vd);
818 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
819 extern void spa_l2cache_activate(vdev_t *vd);
820 extern void spa_l2cache_drop(spa_t *spa);
822 /* scanning */
823 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
824 extern int spa_scan_stop(spa_t *spa);
825 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
827 /* spa syncing */
828 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
829 extern void spa_sync_allpools(void);
831 extern uint_t zfs_sync_pass_deferred_free;
833 /* spa sync taskqueues */
834 taskq_t *spa_sync_tq_create(spa_t *spa, const char *name);
835 void spa_sync_tq_destroy(spa_t *spa);
836 uint_t spa_acq_allocator(spa_t *spa);
837 void spa_rel_allocator(spa_t *spa, uint_t allocator);
838 void spa_select_allocator(zio_t *zio);
840 /* spa namespace global mutex */
841 extern kmutex_t spa_namespace_lock;
842 extern avl_tree_t spa_namespace_avl;
843 extern kcondvar_t spa_namespace_cv;
846 * SPA configuration functions in spa_config.c
849 #define SPA_CONFIG_UPDATE_POOL 0
850 #define SPA_CONFIG_UPDATE_VDEVS 1
852 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t, boolean_t);
853 extern void spa_config_load(void);
854 extern int spa_all_configs(uint64_t *generation, nvlist_t **pools);
855 extern void spa_config_set(spa_t *spa, nvlist_t *config);
856 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
857 int getstats);
858 extern void spa_config_update(spa_t *spa, int what);
859 extern int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv,
860 vdev_t *parent, uint_t id, int atype);
864 * Miscellaneous SPA routines in spa_misc.c
867 /* Namespace manipulation */
868 extern spa_t *spa_lookup(const char *name);
869 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
870 extern void spa_remove(spa_t *spa);
871 extern spa_t *spa_next(spa_t *prev);
873 /* Refcount functions */
874 extern void spa_open_ref(spa_t *spa, const void *tag);
875 extern void spa_close(spa_t *spa, const void *tag);
876 extern void spa_async_close(spa_t *spa, const void *tag);
877 extern boolean_t spa_refcount_zero(spa_t *spa);
879 #define SCL_NONE 0x00
880 #define SCL_CONFIG 0x01
881 #define SCL_STATE 0x02
882 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
883 #define SCL_ALLOC 0x08
884 #define SCL_ZIO 0x10
885 #define SCL_FREE 0x20
886 #define SCL_VDEV 0x40
887 #define SCL_LOCKS 7
888 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
889 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)
891 /* Historical pool statistics */
892 typedef struct spa_history_kstat {
893 kmutex_t lock;
894 uint64_t count;
895 uint64_t size;
896 kstat_t *kstat;
897 void *priv;
898 list_t list;
899 } spa_history_kstat_t;
901 typedef struct spa_history_list {
902 uint64_t size;
903 procfs_list_t procfs_list;
904 } spa_history_list_t;
906 typedef struct spa_stats {
907 spa_history_list_t read_history;
908 spa_history_list_t txg_history;
909 spa_history_kstat_t tx_assign_histogram;
910 spa_history_list_t mmp_history;
911 spa_history_kstat_t state; /* pool state */
912 spa_history_kstat_t guid; /* pool guid */
913 spa_history_kstat_t iostats;
914 } spa_stats_t;
916 typedef enum txg_state {
917 TXG_STATE_BIRTH = 0,
918 TXG_STATE_OPEN = 1,
919 TXG_STATE_QUIESCED = 2,
920 TXG_STATE_WAIT_FOR_SYNC = 3,
921 TXG_STATE_SYNCED = 4,
922 TXG_STATE_COMMITTED = 5,
923 } txg_state_t;
925 typedef struct txg_stat {
926 vdev_stat_t vs1;
927 vdev_stat_t vs2;
928 uint64_t txg;
929 uint64_t ndirty;
930 } txg_stat_t;
932 /* Assorted pool IO kstats */
933 typedef struct spa_iostats {
934 kstat_named_t trim_extents_written;
935 kstat_named_t trim_bytes_written;
936 kstat_named_t trim_extents_skipped;
937 kstat_named_t trim_bytes_skipped;
938 kstat_named_t trim_extents_failed;
939 kstat_named_t trim_bytes_failed;
940 kstat_named_t autotrim_extents_written;
941 kstat_named_t autotrim_bytes_written;
942 kstat_named_t autotrim_extents_skipped;
943 kstat_named_t autotrim_bytes_skipped;
944 kstat_named_t autotrim_extents_failed;
945 kstat_named_t autotrim_bytes_failed;
946 kstat_named_t simple_trim_extents_written;
947 kstat_named_t simple_trim_bytes_written;
948 kstat_named_t simple_trim_extents_skipped;
949 kstat_named_t simple_trim_bytes_skipped;
950 kstat_named_t simple_trim_extents_failed;
951 kstat_named_t simple_trim_bytes_failed;
952 kstat_named_t arc_read_count;
953 kstat_named_t arc_read_bytes;
954 kstat_named_t arc_write_count;
955 kstat_named_t arc_write_bytes;
956 kstat_named_t direct_read_count;
957 kstat_named_t direct_read_bytes;
958 kstat_named_t direct_write_count;
959 kstat_named_t direct_write_bytes;
960 } spa_iostats_t;
962 extern void spa_stats_init(spa_t *spa);
963 extern void spa_stats_destroy(spa_t *spa);
964 extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
965 uint32_t aflags);
966 extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
967 extern int spa_txg_history_set(spa_t *spa, uint64_t txg,
968 txg_state_t completed_state, hrtime_t completed_time);
969 extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
970 struct dsl_pool *);
971 extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
972 extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
973 extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
974 extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
975 hrtime_t duration);
976 extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
977 uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
978 int error);
979 extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type,
980 uint64_t extents_written, uint64_t bytes_written,
981 uint64_t extents_skipped, uint64_t bytes_skipped,
982 uint64_t extents_failed, uint64_t bytes_failed);
983 extern void spa_iostats_read_add(spa_t *spa, uint64_t size, uint64_t iops,
984 uint32_t flags);
985 extern void spa_iostats_write_add(spa_t *spa, uint64_t size, uint64_t iops,
986 uint32_t flags);
987 extern void spa_import_progress_add(spa_t *spa);
988 extern void spa_import_progress_remove(uint64_t spa_guid);
989 extern int spa_import_progress_set_mmp_check(uint64_t pool_guid,
990 uint64_t mmp_sec_remaining);
991 extern int spa_import_progress_set_max_txg(uint64_t pool_guid,
992 uint64_t max_txg);
993 extern int spa_import_progress_set_state(uint64_t pool_guid,
994 spa_load_state_t spa_load_state);
995 extern void spa_import_progress_set_notes(spa_t *spa,
996 const char *fmt, ...) __printflike(2, 3);
997 extern void spa_import_progress_set_notes_nolog(spa_t *spa,
998 const char *fmt, ...) __printflike(2, 3);
1000 /* Pool configuration locks */
1001 extern int spa_config_tryenter(spa_t *spa, int locks, const void *tag,
1002 krw_t rw);
1003 extern void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw);
1004 extern void spa_config_enter_mmp(spa_t *spa, int locks, const void *tag,
1005 krw_t rw);
1006 extern void spa_config_exit(spa_t *spa, int locks, const void *tag);
1007 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
1009 /* Pool vdev add/remove lock */
1010 extern uint64_t spa_vdev_enter(spa_t *spa);
1011 extern uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid);
1012 extern uint64_t spa_vdev_config_enter(spa_t *spa);
1013 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
1014 int error, const char *tag);
1015 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
1017 /* Pool vdev state change lock */
1018 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
1019 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
1021 /* Log state */
1022 typedef enum spa_log_state {
1023 SPA_LOG_UNKNOWN = 0, /* unknown log state */
1024 SPA_LOG_MISSING, /* missing log(s) */
1025 SPA_LOG_CLEAR, /* clear the log(s) */
1026 SPA_LOG_GOOD, /* log(s) are good */
1027 } spa_log_state_t;
1029 extern spa_log_state_t spa_get_log_state(spa_t *spa);
1030 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
1031 extern int spa_reset_logs(spa_t *spa);
1033 /* Log claim callback */
1034 extern void spa_claim_notify(zio_t *zio);
1035 extern void spa_deadman(void *);
1037 /* Accessor functions */
1038 extern boolean_t spa_shutting_down(spa_t *spa);
1039 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
1040 extern boolean_t spa_is_initializing(spa_t *spa);
1041 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
1042 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
1043 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
1044 extern void spa_altroot(spa_t *, char *, size_t);
1045 extern uint32_t spa_sync_pass(spa_t *spa);
1046 extern char *spa_name(spa_t *spa);
1047 extern uint64_t spa_guid(spa_t *spa);
1048 extern uint64_t spa_load_guid(spa_t *spa);
1049 extern uint64_t spa_last_synced_txg(spa_t *spa);
1050 extern uint64_t spa_first_txg(spa_t *spa);
1051 extern uint64_t spa_syncing_txg(spa_t *spa);
1052 extern uint64_t spa_final_dirty_txg(spa_t *spa);
1053 extern uint64_t spa_version(spa_t *spa);
1054 extern pool_state_t spa_state(spa_t *spa);
1055 extern spa_load_state_t spa_load_state(spa_t *spa);
1056 extern uint64_t spa_freeze_txg(spa_t *spa);
1057 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
1058 extern uint64_t spa_get_dspace(spa_t *spa);
1059 extern uint64_t spa_get_checkpoint_space(spa_t *spa);
1060 extern uint64_t spa_get_slop_space(spa_t *spa);
1061 extern void spa_update_dspace(spa_t *spa);
1062 extern uint64_t spa_version(spa_t *spa);
1063 extern boolean_t spa_deflate(spa_t *spa);
1064 extern metaslab_class_t *spa_normal_class(spa_t *spa);
1065 extern metaslab_class_t *spa_log_class(spa_t *spa);
1066 extern metaslab_class_t *spa_embedded_log_class(spa_t *spa);
1067 extern metaslab_class_t *spa_special_class(spa_t *spa);
1068 extern metaslab_class_t *spa_dedup_class(spa_t *spa);
1069 extern metaslab_class_t *spa_preferred_class(spa_t *spa, const zio_t *zio);
1070 extern boolean_t spa_special_has_ddt(spa_t *spa);
1072 extern void spa_evicting_os_register(spa_t *, objset_t *os);
1073 extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
1074 extern void spa_evicting_os_wait(spa_t *spa);
1075 extern int spa_max_replication(spa_t *spa);
1076 extern int spa_prev_software_version(spa_t *spa);
1077 extern uint64_t spa_get_failmode(spa_t *spa);
1078 extern uint64_t spa_get_deadman_failmode(spa_t *spa);
1079 extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
1080 extern boolean_t spa_suspended(spa_t *spa);
1081 extern uint64_t spa_bootfs(spa_t *spa);
1082 extern uint64_t spa_delegation(spa_t *spa);
1083 extern objset_t *spa_meta_objset(spa_t *spa);
1084 extern space_map_t *spa_syncing_log_sm(spa_t *spa);
1085 extern uint64_t spa_deadman_synctime(spa_t *spa);
1086 extern uint64_t spa_deadman_ziotime(spa_t *spa);
1087 extern uint64_t spa_dirty_data(spa_t *spa);
1088 extern spa_autotrim_t spa_get_autotrim(spa_t *spa);
1089 extern int spa_get_allocator(spa_t *spa);
1090 extern void spa_set_allocator(spa_t *spa, const char *allocator);
1092 /* Miscellaneous support routines */
1093 extern void spa_load_failed(spa_t *spa, const char *fmt, ...)
1094 __attribute__((format(printf, 2, 3)));
1095 extern void spa_load_note(spa_t *spa, const char *fmt, ...)
1096 __attribute__((format(printf, 2, 3)));
1097 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
1098 dmu_tx_t *tx);
1099 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
1100 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
1101 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
1102 extern char *spa_strdup(const char *);
1103 extern void spa_strfree(char *);
1104 extern uint64_t spa_generate_guid(spa_t *spa);
1105 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
1106 extern void spa_freeze(spa_t *spa);
1107 extern int spa_change_guid(spa_t *spa, const uint64_t *guidp);
1108 extern void spa_upgrade(spa_t *spa, uint64_t version);
1109 extern void spa_evict_all(void);
1110 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1111 boolean_t l2cache);
1112 extern boolean_t spa_has_l2cache(spa_t *, uint64_t guid);
1113 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1114 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1115 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1116 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1117 extern boolean_t spa_has_slogs(spa_t *spa);
1118 extern boolean_t spa_is_root(spa_t *spa);
1119 extern boolean_t spa_writeable(spa_t *spa);
1120 extern boolean_t spa_has_pending_synctask(spa_t *spa);
1121 extern int spa_maxblocksize(spa_t *spa);
1122 extern int spa_maxdnodesize(spa_t *spa);
1123 extern boolean_t spa_has_checkpoint(spa_t *spa);
1124 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
1125 extern boolean_t spa_suspend_async_destroy(spa_t *spa);
1126 extern uint64_t spa_min_claim_txg(spa_t *spa);
1127 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
1128 const blkptr_t *bp);
1129 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
1130 void *arg);
1131 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
1132 spa_remap_cb_t callback, void *arg);
1133 extern uint64_t spa_get_last_removal_txg(spa_t *spa);
1134 extern boolean_t spa_trust_config(spa_t *spa);
1135 extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
1136 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
1137 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
1138 extern uint64_t spa_total_metaslabs(spa_t *spa);
1139 extern boolean_t spa_multihost(spa_t *spa);
1140 extern uint32_t spa_get_hostid(spa_t *spa);
1141 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
1142 extern boolean_t spa_livelist_delete_check(spa_t *spa);
1144 extern boolean_t spa_mmp_remote_host_activity(spa_t *spa);
1146 extern spa_mode_t spa_mode(spa_t *spa);
1147 extern uint64_t zfs_strtonum(const char *str, char **nptr);
1149 extern char *spa_his_ievent_table[];
1151 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1152 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1153 char *his_buf);
1154 extern int spa_history_log(spa_t *spa, const char *his_buf);
1155 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1156 extern void spa_history_log_version(spa_t *spa, const char *operation,
1157 dmu_tx_t *tx);
1158 extern void spa_history_log_internal(spa_t *spa, const char *operation,
1159 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1160 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1161 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1162 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1163 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1165 extern const char *spa_state_to_name(spa_t *spa);
1167 /* error handling */
1168 struct zbookmark_phys;
1169 extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb,
1170 const uint64_t birth);
1171 extern void spa_remove_error(spa_t *spa, zbookmark_phys_t *zb,
1172 uint64_t birth);
1173 extern int zfs_ereport_post(const char *clazz, spa_t *spa, vdev_t *vd,
1174 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state);
1175 extern boolean_t zfs_ereport_is_valid(const char *clazz, spa_t *spa, vdev_t *vd,
1176 zio_t *zio);
1177 extern void zfs_ereport_taskq_fini(void);
1178 extern void zfs_ereport_clear(spa_t *spa, vdev_t *vd);
1179 extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1180 const char *name, nvlist_t *aux);
1181 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
1182 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1183 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1184 extern uint64_t spa_approx_errlog_size(spa_t *spa);
1185 extern int spa_get_errlog(spa_t *spa, void *uaddr, uint64_t *count);
1186 extern uint64_t spa_get_last_errlog_size(spa_t *spa);
1187 extern void spa_errlog_rotate(spa_t *spa);
1188 extern void spa_errlog_drain(spa_t *spa);
1189 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1190 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1191 extern void spa_delete_dataset_errlog(spa_t *spa, uint64_t ds, dmu_tx_t *tx);
1192 extern void spa_swap_errlog(spa_t *spa, uint64_t new_head_ds,
1193 uint64_t old_head_ds, dmu_tx_t *tx);
1194 extern void sync_error_list(spa_t *spa, avl_tree_t *t, uint64_t *obj,
1195 dmu_tx_t *tx);
1196 extern void spa_upgrade_errlog(spa_t *spa, dmu_tx_t *tx);
1197 extern int find_top_affected_fs(spa_t *spa, uint64_t head_ds,
1198 zbookmark_err_phys_t *zep, uint64_t *top_affected_fs);
1199 extern int find_birth_txg(struct dsl_dataset *ds, zbookmark_err_phys_t *zep,
1200 uint64_t *birth_txg);
1201 extern void zep_to_zb(uint64_t dataset, zbookmark_err_phys_t *zep,
1202 zbookmark_phys_t *zb);
1203 extern void name_to_errphys(char *buf, zbookmark_err_phys_t *zep);
1205 /* vdev mirror */
1206 extern void vdev_mirror_stat_init(void);
1207 extern void vdev_mirror_stat_fini(void);
1209 /* Initialization and termination */
1210 extern void spa_init(spa_mode_t mode);
1211 extern void spa_fini(void);
1212 extern void spa_boot_init(void);
1214 /* properties */
1215 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1216 extern int spa_prop_get(spa_t *spa, nvlist_t *nvp);
1217 extern int spa_prop_get_nvlist(spa_t *spa, char **props,
1218 unsigned int n_props, nvlist_t *outnvl);
1219 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1220 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1222 /* asynchronous event notification */
1223 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1224 const char *name);
1225 extern void zfs_ereport_zvol_post(const char *subclass, const char *name,
1226 const char *device_name, const char *raw_name);
1228 /* waiting for pool activities to complete */
1229 extern int spa_wait(const char *pool, zpool_wait_activity_t activity,
1230 boolean_t *waited);
1231 extern int spa_wait_tag(const char *name, zpool_wait_activity_t activity,
1232 uint64_t tag, boolean_t *waited);
1233 extern void spa_notify_waiters(spa_t *spa);
1234 extern void spa_wake_waiters(spa_t *spa);
1236 extern void spa_import_os(spa_t *spa);
1237 extern void spa_export_os(spa_t *spa);
1238 extern void spa_activate_os(spa_t *spa);
1239 extern void spa_deactivate_os(spa_t *spa);
1241 /* module param call functions */
1242 int param_set_deadman_ziotime(ZFS_MODULE_PARAM_ARGS);
1243 int param_set_deadman_synctime(ZFS_MODULE_PARAM_ARGS);
1244 int param_set_slop_shift(ZFS_MODULE_PARAM_ARGS);
1245 int param_set_deadman_failmode(ZFS_MODULE_PARAM_ARGS);
1246 int param_set_active_allocator(ZFS_MODULE_PARAM_ARGS);
1248 #ifdef ZFS_DEBUG
1249 #define dprintf_bp(bp, fmt, ...) do { \
1250 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
1251 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
1252 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
1253 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
1254 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
1256 } while (0)
1257 #else
1258 #define dprintf_bp(bp, fmt, ...)
1259 #endif
1261 extern spa_mode_t spa_mode_global;
1262 extern int zfs_deadman_enabled;
1263 extern uint64_t zfs_deadman_synctime_ms;
1264 extern uint64_t zfs_deadman_ziotime_ms;
1265 extern uint64_t zfs_deadman_checktime_ms;
1267 extern kmem_cache_t *zio_buf_cache[];
1268 extern kmem_cache_t *zio_data_buf_cache[];
1270 #ifdef __cplusplus
1272 #endif
1274 #endif /* _SYS_SPA_H */