During pool export flush the ARC asynchronously
[zfs.git] / include / sys / spa.h
blob23c20294d1f826960f5b60b55af7b64da7fddfca
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2019, Klara Inc.
32 * Copyright (c) 2019, Datto Inc.
35 #ifndef _SYS_SPA_H
36 #define _SYS_SPA_H
38 #include <sys/zfs_context.h>
39 #include <sys/avl.h>
40 #include <sys/kstat.h>
41 #include <sys/nvpair.h>
42 #include <sys/types.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/spa_checksum.h>
45 #include <sys/dmu.h>
46 #include <sys/space_map.h>
47 #include <sys/bitops.h>
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
54 * Forward references that lots of things need.
56 typedef struct brt_vdev brt_vdev_t;
57 typedef struct spa spa_t;
58 typedef struct vdev vdev_t;
59 typedef struct metaslab metaslab_t;
60 typedef struct metaslab_group metaslab_group_t;
61 typedef struct metaslab_class metaslab_class_t;
62 typedef struct zio zio_t;
63 typedef struct zilog zilog_t;
64 typedef struct spa_aux_vdev spa_aux_vdev_t;
65 typedef struct zbookmark_phys zbookmark_phys_t;
66 typedef struct zbookmark_err_phys zbookmark_err_phys_t;
68 struct bpobj;
69 struct bplist;
70 struct dsl_pool;
71 struct dsl_dataset;
72 struct dsl_crypto_params;
75 * Alignment Shift (ashift) is an immutable, internal top-level vdev property
76 * which can only be set at vdev creation time. Physical writes are always done
77 * according to it, which makes 2^ashift the smallest possible IO on a vdev.
79 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
80 * (2^16 = 65,536).
82 #define ASHIFT_MIN 9
83 #define ASHIFT_MAX 16
86 * Size of block to hold the configuration data (a packed nvlist)
88 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14)
91 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
92 * The ASIZE encoding should be at least 64 times larger (6 more bits)
93 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
94 * overhead, three DVAs per bp, plus one more bit in case we do anything
95 * else that expands the ASIZE.
97 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
98 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
99 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
101 #define SPA_COMPRESSBITS 7
102 #define SPA_VDEVBITS 24
103 #define SPA_COMPRESSMASK ((1U << SPA_COMPRESSBITS) - 1)
106 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
107 * The members of the dva_t should be considered opaque outside the SPA.
109 typedef struct dva {
110 uint64_t dva_word[2];
111 } dva_t;
115 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
116 * secret and is suitable for use in MAC algorithms as the key.
118 typedef struct zio_cksum_salt {
119 uint8_t zcs_bytes[32];
120 } zio_cksum_salt_t;
123 * Each block is described by its DVAs, time of birth, checksum, etc.
124 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
126 * 64 56 48 40 32 24 16 8 0
127 * +-------+-------+-------+-------+-------+-------+-------+-------+
128 * 0 | pad | vdev1 | pad | ASIZE |
129 * +-------+-------+-------+-------+-------+-------+-------+-------+
130 * 1 |G| offset1 |
131 * +-------+-------+-------+-------+-------+-------+-------+-------+
132 * 2 | pad | vdev2 | pad | ASIZE |
133 * +-------+-------+-------+-------+-------+-------+-------+-------+
134 * 3 |G| offset2 |
135 * +-------+-------+-------+-------+-------+-------+-------+-------+
136 * 4 | pad | vdev3 | pad | ASIZE |
137 * +-------+-------+-------+-------+-------+-------+-------+-------+
138 * 5 |G| offset3 |
139 * +-------+-------+-------+-------+-------+-------+-------+-------+
140 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
141 * +-------+-------+-------+-------+-------+-------+-------+-------+
142 * 7 | padding |
143 * +-------+-------+-------+-------+-------+-------+-------+-------+
144 * 8 | padding |
145 * +-------+-------+-------+-------+-------+-------+-------+-------+
146 * 9 | physical birth txg |
147 * +-------+-------+-------+-------+-------+-------+-------+-------+
148 * a | logical birth txg |
149 * +-------+-------+-------+-------+-------+-------+-------+-------+
150 * b | fill count |
151 * +-------+-------+-------+-------+-------+-------+-------+-------+
152 * c | checksum[0] |
153 * +-------+-------+-------+-------+-------+-------+-------+-------+
154 * d | checksum[1] |
155 * +-------+-------+-------+-------+-------+-------+-------+-------+
156 * e | checksum[2] |
157 * +-------+-------+-------+-------+-------+-------+-------+-------+
158 * f | checksum[3] |
159 * +-------+-------+-------+-------+-------+-------+-------+-------+
161 * Legend:
163 * vdev virtual device ID
164 * offset offset into virtual device
165 * LSIZE logical size
166 * PSIZE physical size (after compression)
167 * ASIZE allocated size (including RAID-Z parity and gang block headers)
168 * cksum checksum function
169 * comp compression function
170 * G gang block indicator
171 * B byteorder (endianness)
172 * D dedup
173 * X encryption
174 * E blkptr_t contains embedded data (see below)
175 * lvl level of indirection
176 * type DMU object type
177 * phys birth txg when dva[0] was written; zero if same as logical birth txg
178 * note that typically all the dva's would be written in this
179 * txg, but they could be different if they were moved by
180 * device removal.
181 * log. birth transaction group in which the block was logically born
182 * fill count number of non-zero blocks under this bp
183 * checksum[4] 256-bit checksum of the data this bp describes
187 * The blkptr_t's of encrypted blocks also need to store the encryption
188 * parameters so that the block can be decrypted. This layout is as follows:
190 * 64 56 48 40 32 24 16 8 0
191 * +-------+-------+-------+-------+-------+-------+-------+-------+
192 * 0 | vdev1 | pad | ASIZE |
193 * +-------+-------+-------+-------+-------+-------+-------+-------+
194 * 1 |G| offset1 |
195 * +-------+-------+-------+-------+-------+-------+-------+-------+
196 * 2 | vdev2 | pad | ASIZE |
197 * +-------+-------+-------+-------+-------+-------+-------+-------+
198 * 3 |G| offset2 |
199 * +-------+-------+-------+-------+-------+-------+-------+-------+
200 * 4 | salt |
201 * +-------+-------+-------+-------+-------+-------+-------+-------+
202 * 5 | IV1 |
203 * +-------+-------+-------+-------+-------+-------+-------+-------+
204 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
205 * +-------+-------+-------+-------+-------+-------+-------+-------+
206 * 7 | padding |
207 * +-------+-------+-------+-------+-------+-------+-------+-------+
208 * 8 | padding |
209 * +-------+-------+-------+-------+-------+-------+-------+-------+
210 * 9 | physical birth txg |
211 * +-------+-------+-------+-------+-------+-------+-------+-------+
212 * a | logical birth txg |
213 * +-------+-------+-------+-------+-------+-------+-------+-------+
214 * b | IV2 | fill count |
215 * +-------+-------+-------+-------+-------+-------+-------+-------+
216 * c | checksum[0] |
217 * +-------+-------+-------+-------+-------+-------+-------+-------+
218 * d | checksum[1] |
219 * +-------+-------+-------+-------+-------+-------+-------+-------+
220 * e | MAC[0] |
221 * +-------+-------+-------+-------+-------+-------+-------+-------+
222 * f | MAC[1] |
223 * +-------+-------+-------+-------+-------+-------+-------+-------+
225 * Legend:
227 * salt Salt for generating encryption keys
228 * IV1 First 64 bits of encryption IV
229 * X Block requires encryption handling (set to 1)
230 * E blkptr_t contains embedded data (set to 0, see below)
231 * fill count number of non-zero blocks under this bp (truncated to 32 bits)
232 * IV2 Last 32 bits of encryption IV
233 * checksum[2] 128-bit checksum of the data this bp describes
234 * MAC[2] 128-bit message authentication code for this data
236 * The X bit being set indicates that this block is one of 3 types. If this is
237 * a level 0 block with an encrypted object type, the block is encrypted
238 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
239 * object type, this block is authenticated with an HMAC (see
240 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
241 * words to store a checksum-of-MACs from the level below (see
242 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
243 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
244 * refers to any of these 3 kinds of blocks.
246 * The additional encryption parameters are the salt, IV, and MAC which are
247 * explained in greater detail in the block comment at the top of zio_crypt.c.
248 * The MAC occupies half of the checksum space since it serves a very similar
249 * purpose: to prevent data corruption on disk. The only functional difference
250 * is that the checksum is used to detect on-disk corruption whether or not the
251 * encryption key is loaded and the MAC provides additional protection against
252 * malicious disk tampering. We use the 3rd DVA to store the salt and first
253 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
254 * maximum instead of the normal 3. The last 32 bits of the IV are stored in
255 * the upper bits of what is usually the fill count. Note that only blocks at
256 * level 0 or -2 are ever encrypted, which allows us to guarantee that these
257 * 32 bits are not trampled over by other code (see zio_crypt.c for details).
258 * The salt and IV are not used for authenticated bps or bps with an indirect
259 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
260 * for the fill count.
264 * "Embedded" blkptr_t's don't actually point to a block, instead they
265 * have a data payload embedded in the blkptr_t itself. See the comment
266 * in blkptr.c for more details.
268 * The blkptr_t is laid out as follows:
270 * 64 56 48 40 32 24 16 8 0
271 * +-------+-------+-------+-------+-------+-------+-------+-------+
272 * 0 | payload |
273 * 1 | payload |
274 * 2 | payload |
275 * 3 | payload |
276 * 4 | payload |
277 * 5 | payload |
278 * +-------+-------+-------+-------+-------+-------+-------+-------+
279 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE |
280 * +-------+-------+-------+-------+-------+-------+-------+-------+
281 * 7 | payload |
282 * 8 | payload |
283 * 9 | payload |
284 * +-------+-------+-------+-------+-------+-------+-------+-------+
285 * a | logical birth txg |
286 * +-------+-------+-------+-------+-------+-------+-------+-------+
287 * b | payload |
288 * c | payload |
289 * d | payload |
290 * e | payload |
291 * f | payload |
292 * +-------+-------+-------+-------+-------+-------+-------+-------+
294 * Legend:
296 * payload contains the embedded data
297 * B (byteorder) byteorder (endianness)
298 * D (dedup) padding (set to zero)
299 * X encryption (set to zero)
300 * E (embedded) set to one
301 * lvl indirection level
302 * type DMU object type
303 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*)
304 * comp compression function of payload
305 * PSIZE size of payload after compression, in bytes
306 * LSIZE logical size of payload, in bytes
307 * note that 25 bits is enough to store the largest
308 * "normal" BP's LSIZE (2^16 * 2^9) in bytes
309 * log. birth transaction group in which the block was logically born
311 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
312 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
313 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
314 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
315 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must
316 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before
317 * other macros, as they assert that they are only used on BP's of the correct
318 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
319 * the payload space for encryption parameters (see the comment above on
320 * how encryption parameters are stored).
323 #define BPE_GET_ETYPE(bp) \
324 (ASSERT(BP_IS_EMBEDDED(bp)), \
325 BF64_GET((bp)->blk_prop, 40, 8))
326 #define BPE_SET_ETYPE(bp, t) do { \
327 ASSERT(BP_IS_EMBEDDED(bp)); \
328 BF64_SET((bp)->blk_prop, 40, 8, t); \
329 } while (0)
331 #define BPE_GET_LSIZE(bp) \
332 (ASSERT(BP_IS_EMBEDDED(bp)), \
333 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
334 #define BPE_SET_LSIZE(bp, x) do { \
335 ASSERT(BP_IS_EMBEDDED(bp)); \
336 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
337 } while (0)
339 #define BPE_GET_PSIZE(bp) \
340 (ASSERT(BP_IS_EMBEDDED(bp)), \
341 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
342 #define BPE_SET_PSIZE(bp, x) do { \
343 ASSERT(BP_IS_EMBEDDED(bp)); \
344 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
345 } while (0)
347 typedef enum bp_embedded_type {
348 BP_EMBEDDED_TYPE_DATA,
349 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */
350 BP_EMBEDDED_TYPE_REDACTED,
351 NUM_BP_EMBEDDED_TYPES
352 } bp_embedded_type_t;
354 #define BPE_NUM_WORDS 14
355 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
356 #define BPE_IS_PAYLOADWORD(bp, wp) \
357 ((wp) != &(bp)->blk_prop && (wp) != (&(bp)->blk_birth_word[1]))
359 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
360 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
361 #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */
364 * A block is a hole when it has either 1) never been written to, or
365 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
366 * without physically allocating disk space. Holes are represented in the
367 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
368 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
369 * DMU object type, and birth times are all also stored for holes that
370 * were written to at some point (i.e. were punched after having been filled).
372 typedef struct blkptr {
373 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
374 uint64_t blk_prop; /* size, compression, type, etc */
375 uint64_t blk_pad[2]; /* Extra space for the future */
376 uint64_t blk_birth_word[2];
377 uint64_t blk_fill; /* fill count */
378 zio_cksum_t blk_cksum; /* 256-bit checksum */
379 } blkptr_t;
382 * Macros to get and set fields in a bp or DVA.
386 * Note, for gang blocks, DVA_GET_ASIZE() is the total space allocated for
387 * this gang DVA including its children BP's. The space allocated at this
388 * DVA's vdev/offset is vdev_gang_header_asize(vdev).
390 #define DVA_GET_ASIZE(dva) \
391 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
392 #define DVA_SET_ASIZE(dva, x) \
393 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
394 SPA_MINBLOCKSHIFT, 0, x)
396 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
397 #define DVA_SET_VDEV(dva, x) \
398 BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
400 #define DVA_GET_OFFSET(dva) \
401 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
402 #define DVA_SET_OFFSET(dva, x) \
403 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
405 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
406 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
408 #define BP_GET_LSIZE(bp) \
409 (BP_IS_EMBEDDED(bp) ? \
410 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
411 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
412 #define BP_SET_LSIZE(bp, x) do { \
413 ASSERT(!BP_IS_EMBEDDED(bp)); \
414 BF64_SET_SB((bp)->blk_prop, \
415 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
416 } while (0)
418 #define BP_GET_PSIZE(bp) \
419 (BP_IS_EMBEDDED(bp) ? 0 : \
420 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
421 #define BP_SET_PSIZE(bp, x) do { \
422 ASSERT(!BP_IS_EMBEDDED(bp)); \
423 BF64_SET_SB((bp)->blk_prop, \
424 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
425 } while (0)
427 #define BP_GET_COMPRESS(bp) \
428 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
429 #define BP_SET_COMPRESS(bp, x) \
430 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
432 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
433 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)
435 #define BP_GET_CHECKSUM(bp) \
436 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
437 BF64_GET((bp)->blk_prop, 40, 8))
438 #define BP_SET_CHECKSUM(bp, x) do { \
439 ASSERT(!BP_IS_EMBEDDED(bp)); \
440 BF64_SET((bp)->blk_prop, 40, 8, x); \
441 } while (0)
443 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
444 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
446 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
447 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
449 /* encrypted, authenticated, and MAC cksum bps use the same bit */
450 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1)
451 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
453 #define BP_IS_ENCRYPTED(bp) \
454 (BP_USES_CRYPT(bp) && \
455 BP_GET_LEVEL(bp) <= 0 && \
456 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
458 #define BP_IS_AUTHENTICATED(bp) \
459 (BP_USES_CRYPT(bp) && \
460 BP_GET_LEVEL(bp) <= 0 && \
461 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
463 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \
464 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
466 #define BP_IS_PROTECTED(bp) \
467 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
469 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
470 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
472 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
473 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
475 #define BP_GET_FREE(bp) BF64_GET((bp)->blk_fill, 0, 1)
476 #define BP_SET_FREE(bp, x) BF64_SET((bp)->blk_fill, 0, 1, x)
478 #define BP_GET_LOGICAL_BIRTH(bp) (bp)->blk_birth_word[1]
479 #define BP_SET_LOGICAL_BIRTH(bp, x) ((bp)->blk_birth_word[1] = (x))
481 #define BP_GET_PHYSICAL_BIRTH(bp) (bp)->blk_birth_word[0]
482 #define BP_SET_PHYSICAL_BIRTH(bp, x) ((bp)->blk_birth_word[0] = (x))
484 #define BP_GET_BIRTH(bp) \
485 (BP_IS_EMBEDDED(bp) ? 0 : \
486 BP_GET_PHYSICAL_BIRTH(bp) ? BP_GET_PHYSICAL_BIRTH(bp) : \
487 BP_GET_LOGICAL_BIRTH(bp))
489 #define BP_SET_BIRTH(bp, logical, physical) \
491 ASSERT(!BP_IS_EMBEDDED(bp)); \
492 BP_SET_LOGICAL_BIRTH(bp, logical); \
493 BP_SET_PHYSICAL_BIRTH(bp, \
494 ((logical) == (physical) ? 0 : (physical))); \
497 #define BP_GET_FILL(bp) \
498 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
499 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
501 #define BP_SET_FILL(bp, fill) \
503 if (BP_IS_ENCRYPTED(bp)) \
504 BF64_SET((bp)->blk_fill, 0, 32, fill); \
505 else \
506 (bp)->blk_fill = fill; \
509 #define BP_GET_IV2(bp) \
510 (ASSERT(BP_IS_ENCRYPTED(bp)), \
511 BF64_GET((bp)->blk_fill, 32, 32))
512 #define BP_SET_IV2(bp, iv2) \
514 ASSERT(BP_IS_ENCRYPTED(bp)); \
515 BF64_SET((bp)->blk_fill, 32, 32, iv2); \
518 #define BP_IS_METADATA(bp) \
519 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
521 #define BP_GET_ASIZE(bp) \
522 (BP_IS_EMBEDDED(bp) ? 0 : \
523 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
524 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
525 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
527 #define BP_GET_UCSIZE(bp) \
528 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
530 #define BP_GET_NDVAS(bp) \
531 (BP_IS_EMBEDDED(bp) ? 0 : \
532 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
533 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
534 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
536 #define BP_COUNT_GANG(bp) \
537 (BP_IS_EMBEDDED(bp) ? 0 : \
538 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
539 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
540 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
542 #define DVA_EQUAL(dva1, dva2) \
543 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
544 (dva1)->dva_word[0] == (dva2)->dva_word[0])
546 #define BP_EQUAL(bp1, bp2) \
547 (BP_GET_BIRTH(bp1) == BP_GET_BIRTH(bp2) && \
548 BP_GET_LOGICAL_BIRTH(bp1) == BP_GET_LOGICAL_BIRTH(bp2) && \
549 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
550 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
551 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
554 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
556 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
557 #define BP_IS_GANG(bp) \
558 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
559 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
560 (dva)->dva_word[1] == 0ULL)
561 #define BP_IS_HOLE(bp) \
562 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
564 #define BP_SET_REDACTED(bp) \
566 BP_SET_EMBEDDED(bp, B_TRUE); \
567 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_REDACTED); \
569 #define BP_IS_REDACTED(bp) \
570 (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_REDACTED)
572 /* BP_IS_RAIDZ(bp) assumes no block compression */
573 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
574 BP_GET_PSIZE(bp))
576 #define BP_ZERO_DVAS(bp) \
578 (bp)->blk_dva[0].dva_word[0] = 0; \
579 (bp)->blk_dva[0].dva_word[1] = 0; \
580 (bp)->blk_dva[1].dva_word[0] = 0; \
581 (bp)->blk_dva[1].dva_word[1] = 0; \
582 (bp)->blk_dva[2].dva_word[0] = 0; \
583 (bp)->blk_dva[2].dva_word[1] = 0; \
586 #define BP_ZERO(bp) \
588 BP_ZERO_DVAS(bp); \
589 (bp)->blk_prop = 0; \
590 (bp)->blk_pad[0] = 0; \
591 (bp)->blk_pad[1] = 0; \
592 (bp)->blk_birth_word[0] = 0; \
593 (bp)->blk_birth_word[1] = 0; \
594 (bp)->blk_fill = 0; \
595 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
598 #ifdef _ZFS_BIG_ENDIAN
599 #define ZFS_HOST_BYTEORDER (0ULL)
600 #else
601 #define ZFS_HOST_BYTEORDER (1ULL)
602 #endif
604 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
606 #define BP_SPRINTF_LEN 400
609 * This macro allows code sharing between zfs, libzpool, and mdb.
610 * 'func' is either kmem_scnprintf() or mdb_snprintf().
611 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
614 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
616 static const char *const copyname[] = \
617 { "zero", "single", "double", "triple" }; \
618 int len = 0; \
619 int copies = 0; \
620 const char *crypt_type; \
621 if (bp != NULL) { \
622 if (BP_IS_ENCRYPTED(bp)) { \
623 crypt_type = "encrypted"; \
624 /* LINTED E_SUSPICIOUS_COMPARISON */ \
625 } else if (BP_IS_AUTHENTICATED(bp)) { \
626 crypt_type = "authenticated"; \
627 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \
628 crypt_type = "indirect-MAC"; \
629 } else { \
630 crypt_type = "unencrypted"; \
633 if (bp == NULL) { \
634 len += func(buf + len, size - len, "<NULL>"); \
635 } else if (BP_IS_HOLE(bp)) { \
636 len += func(buf + len, size - len, \
637 "HOLE [L%llu %s] " \
638 "size=%llxL birth=%lluL", \
639 (u_longlong_t)BP_GET_LEVEL(bp), \
640 type, \
641 (u_longlong_t)BP_GET_LSIZE(bp), \
642 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); \
643 } else if (BP_IS_EMBEDDED(bp)) { \
644 len = func(buf + len, size - len, \
645 "EMBEDDED [L%llu %s] et=%u %s " \
646 "size=%llxL/%llxP birth=%lluL", \
647 (u_longlong_t)BP_GET_LEVEL(bp), \
648 type, \
649 (int)BPE_GET_ETYPE(bp), \
650 compress, \
651 (u_longlong_t)BPE_GET_LSIZE(bp), \
652 (u_longlong_t)BPE_GET_PSIZE(bp), \
653 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); \
654 } else if (BP_IS_REDACTED(bp)) { \
655 len += func(buf + len, size - len, \
656 "REDACTED [L%llu %s] size=%llxL birth=%lluL", \
657 (u_longlong_t)BP_GET_LEVEL(bp), \
658 type, \
659 (u_longlong_t)BP_GET_LSIZE(bp), \
660 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); \
661 } else { \
662 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
663 const dva_t *dva = &bp->blk_dva[d]; \
664 if (DVA_IS_VALID(dva)) \
665 copies++; \
666 len += func(buf + len, size - len, \
667 "DVA[%d]=<%llu:%llx:%llx>%c", d, \
668 (u_longlong_t)DVA_GET_VDEV(dva), \
669 (u_longlong_t)DVA_GET_OFFSET(dva), \
670 (u_longlong_t)DVA_GET_ASIZE(dva), \
671 ws); \
673 ASSERT3S(copies, >, 0); \
674 if (BP_IS_ENCRYPTED(bp)) { \
675 len += func(buf + len, size - len, \
676 "salt=%llx iv=%llx:%llx%c", \
677 (u_longlong_t)bp->blk_dva[2].dva_word[0], \
678 (u_longlong_t)bp->blk_dva[2].dva_word[1], \
679 (u_longlong_t)BP_GET_IV2(bp), \
680 ws); \
682 if (BP_IS_GANG(bp) && \
683 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
684 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
685 copies--; \
686 len += func(buf + len, size - len, \
687 "[L%llu %s] %s %s %s %s %s %s %s%c" \
688 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
689 "cksum=%016llx:%016llx:%016llx:%016llx", \
690 (u_longlong_t)BP_GET_LEVEL(bp), \
691 type, \
692 checksum, \
693 compress, \
694 crypt_type, \
695 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
696 BP_IS_GANG(bp) ? "gang" : "contiguous", \
697 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
698 copyname[copies], \
699 ws, \
700 (u_longlong_t)BP_GET_LSIZE(bp), \
701 (u_longlong_t)BP_GET_PSIZE(bp), \
702 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), \
703 (u_longlong_t)BP_GET_BIRTH(bp), \
704 (u_longlong_t)BP_GET_FILL(bp), \
705 ws, \
706 (u_longlong_t)bp->blk_cksum.zc_word[0], \
707 (u_longlong_t)bp->blk_cksum.zc_word[1], \
708 (u_longlong_t)bp->blk_cksum.zc_word[2], \
709 (u_longlong_t)bp->blk_cksum.zc_word[3]); \
711 ASSERT(len < size); \
714 #define BP_GET_BUFC_TYPE(bp) \
715 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
717 typedef enum spa_import_type {
718 SPA_IMPORT_EXISTING,
719 SPA_IMPORT_ASSEMBLE
720 } spa_import_type_t;
722 typedef enum spa_mode {
723 SPA_MODE_UNINIT = 0,
724 SPA_MODE_READ = 1,
725 SPA_MODE_WRITE = 2,
726 } spa_mode_t;
729 * Send TRIM commands in-line during normal pool operation while deleting.
730 * OFF: no
731 * ON: yes
733 typedef enum {
734 SPA_AUTOTRIM_OFF = 0, /* default */
735 SPA_AUTOTRIM_ON,
736 } spa_autotrim_t;
739 * Reason TRIM command was issued, used internally for accounting purposes.
741 typedef enum trim_type {
742 TRIM_TYPE_MANUAL = 0,
743 TRIM_TYPE_AUTO = 1,
744 TRIM_TYPE_SIMPLE = 2
745 } trim_type_t;
747 /* state manipulation functions */
748 extern int spa_open(const char *pool, spa_t **, const void *tag);
749 extern int spa_open_rewind(const char *pool, spa_t **, const void *tag,
750 nvlist_t *policy, nvlist_t **config);
751 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
752 size_t buflen);
753 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
754 nvlist_t *zplprops, struct dsl_crypto_params *dcp);
755 extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
756 uint64_t flags);
757 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
758 extern int spa_destroy(const char *pool);
759 extern int spa_checkpoint(const char *pool);
760 extern int spa_checkpoint_discard(const char *pool);
761 extern int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
762 boolean_t hardforce);
763 extern int spa_reset(const char *pool);
764 extern void spa_async_request(spa_t *spa, int flag);
765 extern void spa_async_unrequest(spa_t *spa, int flag);
766 extern void spa_async_suspend(spa_t *spa);
767 extern void spa_async_resume(spa_t *spa);
768 extern int spa_async_tasks(spa_t *spa);
769 extern spa_t *spa_inject_addref(char *pool);
770 extern void spa_inject_delref(spa_t *spa);
771 extern void spa_scan_stat_init(spa_t *spa);
772 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
773 extern int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
774 extern int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
776 #define SPA_ASYNC_CONFIG_UPDATE 0x01
777 #define SPA_ASYNC_REMOVE 0x02
778 #define SPA_ASYNC_FAULT_VDEV 0x04
779 #define SPA_ASYNC_RESILVER_DONE 0x08
780 #define SPA_ASYNC_RESILVER 0x10
781 #define SPA_ASYNC_AUTOEXPAND 0x20
782 #define SPA_ASYNC_REMOVE_DONE 0x40
783 #define SPA_ASYNC_REMOVE_STOP 0x80
784 #define SPA_ASYNC_INITIALIZE_RESTART 0x100
785 #define SPA_ASYNC_TRIM_RESTART 0x200
786 #define SPA_ASYNC_AUTOTRIM_RESTART 0x400
787 #define SPA_ASYNC_L2CACHE_REBUILD 0x800
788 #define SPA_ASYNC_L2CACHE_TRIM 0x1000
789 #define SPA_ASYNC_REBUILD_DONE 0x2000
790 #define SPA_ASYNC_DETACH_SPARE 0x4000
792 /* device manipulation */
793 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t ashift_check);
794 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
795 int replacing, int rebuild);
796 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
797 int replace_done);
798 extern int spa_vdev_alloc(spa_t *spa, uint64_t guid);
799 extern int spa_vdev_noalloc(spa_t *spa, uint64_t guid);
800 extern boolean_t spa_vdev_remove_active(spa_t *spa);
801 extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
802 nvlist_t *vdev_errlist);
803 extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
804 uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist);
805 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
806 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
807 extern int spa_vdev_split_mirror(spa_t *spa, const char *newname,
808 nvlist_t *config, nvlist_t *props, boolean_t exp);
810 /* spare state (which is global across all pools) */
811 extern void spa_spare_add(vdev_t *vd);
812 extern void spa_spare_remove(vdev_t *vd);
813 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
814 extern void spa_spare_activate(vdev_t *vd);
816 /* L2ARC state (which is global across all pools) */
817 extern void spa_l2cache_add(vdev_t *vd);
818 extern void spa_l2cache_remove(vdev_t *vd);
819 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
820 extern void spa_l2cache_activate(vdev_t *vd);
821 extern void spa_l2cache_drop(spa_t *spa);
823 /* scanning */
824 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
825 extern int spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
826 uint64_t txgend);
827 extern int spa_scan_stop(spa_t *spa);
828 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
830 /* spa syncing */
831 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
832 extern void spa_sync_allpools(void);
834 extern uint_t zfs_sync_pass_deferred_free;
836 /* spa sync taskqueues */
837 taskq_t *spa_sync_tq_create(spa_t *spa, const char *name);
838 void spa_sync_tq_destroy(spa_t *spa);
839 uint_t spa_acq_allocator(spa_t *spa);
840 void spa_rel_allocator(spa_t *spa, uint_t allocator);
841 void spa_select_allocator(zio_t *zio);
843 /* spa namespace global mutex */
844 extern kmutex_t spa_namespace_lock;
845 extern avl_tree_t spa_namespace_avl;
846 extern kcondvar_t spa_namespace_cv;
849 * SPA configuration functions in spa_config.c
852 #define SPA_CONFIG_UPDATE_POOL 0
853 #define SPA_CONFIG_UPDATE_VDEVS 1
855 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t, boolean_t);
856 extern void spa_config_load(void);
857 extern int spa_all_configs(uint64_t *generation, nvlist_t **pools);
858 extern void spa_config_set(spa_t *spa, nvlist_t *config);
859 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
860 int getstats);
861 extern void spa_config_update(spa_t *spa, int what);
862 extern int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv,
863 vdev_t *parent, uint_t id, int atype);
867 * Miscellaneous SPA routines in spa_misc.c
870 /* Namespace manipulation */
871 extern spa_t *spa_lookup(const char *name);
872 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
873 extern void spa_remove(spa_t *spa);
874 extern spa_t *spa_next(spa_t *prev);
876 /* Refcount functions */
877 extern void spa_open_ref(spa_t *spa, const void *tag);
878 extern void spa_close(spa_t *spa, const void *tag);
879 extern void spa_async_close(spa_t *spa, const void *tag);
880 extern boolean_t spa_refcount_zero(spa_t *spa);
882 #define SCL_NONE 0x00
883 #define SCL_CONFIG 0x01
884 #define SCL_STATE 0x02
885 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
886 #define SCL_ALLOC 0x08
887 #define SCL_ZIO 0x10
888 #define SCL_FREE 0x20
889 #define SCL_VDEV 0x40
890 #define SCL_LOCKS 7
891 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
892 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)
894 /* Historical pool statistics */
895 typedef struct spa_history_kstat {
896 kmutex_t lock;
897 uint64_t count;
898 uint64_t size;
899 kstat_t *kstat;
900 void *priv;
901 list_t list;
902 } spa_history_kstat_t;
904 typedef struct spa_history_list {
905 uint64_t size;
906 procfs_list_t procfs_list;
907 } spa_history_list_t;
909 typedef struct spa_stats {
910 spa_history_list_t read_history;
911 spa_history_list_t txg_history;
912 spa_history_kstat_t tx_assign_histogram;
913 spa_history_list_t mmp_history;
914 spa_history_kstat_t state; /* pool state */
915 spa_history_kstat_t guid; /* pool guid */
916 spa_history_kstat_t iostats;
917 } spa_stats_t;
919 typedef enum txg_state {
920 TXG_STATE_BIRTH = 0,
921 TXG_STATE_OPEN = 1,
922 TXG_STATE_QUIESCED = 2,
923 TXG_STATE_WAIT_FOR_SYNC = 3,
924 TXG_STATE_SYNCED = 4,
925 TXG_STATE_COMMITTED = 5,
926 } txg_state_t;
928 typedef struct txg_stat {
929 vdev_stat_t vs1;
930 vdev_stat_t vs2;
931 uint64_t txg;
932 uint64_t ndirty;
933 } txg_stat_t;
935 /* Assorted pool IO kstats */
936 typedef struct spa_iostats {
937 kstat_named_t trim_extents_written;
938 kstat_named_t trim_bytes_written;
939 kstat_named_t trim_extents_skipped;
940 kstat_named_t trim_bytes_skipped;
941 kstat_named_t trim_extents_failed;
942 kstat_named_t trim_bytes_failed;
943 kstat_named_t autotrim_extents_written;
944 kstat_named_t autotrim_bytes_written;
945 kstat_named_t autotrim_extents_skipped;
946 kstat_named_t autotrim_bytes_skipped;
947 kstat_named_t autotrim_extents_failed;
948 kstat_named_t autotrim_bytes_failed;
949 kstat_named_t simple_trim_extents_written;
950 kstat_named_t simple_trim_bytes_written;
951 kstat_named_t simple_trim_extents_skipped;
952 kstat_named_t simple_trim_bytes_skipped;
953 kstat_named_t simple_trim_extents_failed;
954 kstat_named_t simple_trim_bytes_failed;
955 kstat_named_t arc_read_count;
956 kstat_named_t arc_read_bytes;
957 kstat_named_t arc_write_count;
958 kstat_named_t arc_write_bytes;
959 kstat_named_t direct_read_count;
960 kstat_named_t direct_read_bytes;
961 kstat_named_t direct_write_count;
962 kstat_named_t direct_write_bytes;
963 } spa_iostats_t;
965 extern void spa_stats_init(spa_t *spa);
966 extern void spa_stats_destroy(spa_t *spa);
967 extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
968 uint32_t aflags);
969 extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
970 extern int spa_txg_history_set(spa_t *spa, uint64_t txg,
971 txg_state_t completed_state, hrtime_t completed_time);
972 extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
973 struct dsl_pool *);
974 extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
975 extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
976 extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
977 extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
978 hrtime_t duration);
979 extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
980 uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
981 int error);
982 extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type,
983 uint64_t extents_written, uint64_t bytes_written,
984 uint64_t extents_skipped, uint64_t bytes_skipped,
985 uint64_t extents_failed, uint64_t bytes_failed);
986 extern void spa_iostats_read_add(spa_t *spa, uint64_t size, uint64_t iops,
987 uint32_t flags);
988 extern void spa_iostats_write_add(spa_t *spa, uint64_t size, uint64_t iops,
989 uint32_t flags);
990 extern void spa_import_progress_add(spa_t *spa);
991 extern void spa_import_progress_remove(uint64_t spa_guid);
992 extern int spa_import_progress_set_mmp_check(uint64_t pool_guid,
993 uint64_t mmp_sec_remaining);
994 extern int spa_import_progress_set_max_txg(uint64_t pool_guid,
995 uint64_t max_txg);
996 extern int spa_import_progress_set_state(uint64_t pool_guid,
997 spa_load_state_t spa_load_state);
998 extern void spa_import_progress_set_notes(spa_t *spa,
999 const char *fmt, ...) __printflike(2, 3);
1000 extern void spa_import_progress_set_notes_nolog(spa_t *spa,
1001 const char *fmt, ...) __printflike(2, 3);
1003 /* Pool configuration locks */
1004 extern int spa_config_tryenter(spa_t *spa, int locks, const void *tag,
1005 krw_t rw);
1006 extern void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw);
1007 extern void spa_config_enter_mmp(spa_t *spa, int locks, const void *tag,
1008 krw_t rw);
1009 extern void spa_config_exit(spa_t *spa, int locks, const void *tag);
1010 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
1012 /* Pool vdev add/remove lock */
1013 extern uint64_t spa_vdev_enter(spa_t *spa);
1014 extern uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid);
1015 extern uint64_t spa_vdev_config_enter(spa_t *spa);
1016 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
1017 int error, const char *tag);
1018 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
1020 /* Pool vdev state change lock */
1021 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
1022 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
1024 /* Log state */
1025 typedef enum spa_log_state {
1026 SPA_LOG_UNKNOWN = 0, /* unknown log state */
1027 SPA_LOG_MISSING, /* missing log(s) */
1028 SPA_LOG_CLEAR, /* clear the log(s) */
1029 SPA_LOG_GOOD, /* log(s) are good */
1030 } spa_log_state_t;
1032 extern spa_log_state_t spa_get_log_state(spa_t *spa);
1033 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
1034 extern int spa_reset_logs(spa_t *spa);
1036 /* Log claim callback */
1037 extern void spa_claim_notify(zio_t *zio);
1038 extern void spa_deadman(void *);
1040 /* Accessor functions */
1041 extern boolean_t spa_shutting_down(spa_t *spa);
1042 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
1043 extern boolean_t spa_is_initializing(spa_t *spa);
1044 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
1045 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
1046 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
1047 extern void spa_altroot(spa_t *, char *, size_t);
1048 extern uint32_t spa_sync_pass(spa_t *spa);
1049 extern char *spa_name(spa_t *spa);
1050 extern uint64_t spa_guid(spa_t *spa);
1051 extern uint64_t spa_load_guid(spa_t *spa);
1052 extern uint64_t spa_last_synced_txg(spa_t *spa);
1053 extern uint64_t spa_first_txg(spa_t *spa);
1054 extern uint64_t spa_syncing_txg(spa_t *spa);
1055 extern uint64_t spa_final_dirty_txg(spa_t *spa);
1056 extern uint64_t spa_version(spa_t *spa);
1057 extern pool_state_t spa_state(spa_t *spa);
1058 extern spa_load_state_t spa_load_state(spa_t *spa);
1059 extern uint64_t spa_freeze_txg(spa_t *spa);
1060 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
1061 extern uint64_t spa_get_dspace(spa_t *spa);
1062 extern uint64_t spa_get_checkpoint_space(spa_t *spa);
1063 extern uint64_t spa_get_slop_space(spa_t *spa);
1064 extern void spa_update_dspace(spa_t *spa);
1065 extern uint64_t spa_version(spa_t *spa);
1066 extern boolean_t spa_deflate(spa_t *spa);
1067 extern metaslab_class_t *spa_normal_class(spa_t *spa);
1068 extern metaslab_class_t *spa_log_class(spa_t *spa);
1069 extern metaslab_class_t *spa_embedded_log_class(spa_t *spa);
1070 extern metaslab_class_t *spa_special_class(spa_t *spa);
1071 extern metaslab_class_t *spa_dedup_class(spa_t *spa);
1072 extern metaslab_class_t *spa_preferred_class(spa_t *spa, const zio_t *zio);
1073 extern boolean_t spa_special_has_ddt(spa_t *spa);
1075 extern void spa_evicting_os_register(spa_t *, objset_t *os);
1076 extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
1077 extern void spa_evicting_os_wait(spa_t *spa);
1078 extern int spa_max_replication(spa_t *spa);
1079 extern int spa_prev_software_version(spa_t *spa);
1080 extern uint64_t spa_get_failmode(spa_t *spa);
1081 extern uint64_t spa_get_deadman_failmode(spa_t *spa);
1082 extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
1083 extern boolean_t spa_suspended(spa_t *spa);
1084 extern uint64_t spa_bootfs(spa_t *spa);
1085 extern uint64_t spa_get_last_scrubbed_txg(spa_t *spa);
1086 extern uint64_t spa_delegation(spa_t *spa);
1087 extern objset_t *spa_meta_objset(spa_t *spa);
1088 extern space_map_t *spa_syncing_log_sm(spa_t *spa);
1089 extern uint64_t spa_deadman_synctime(spa_t *spa);
1090 extern uint64_t spa_deadman_ziotime(spa_t *spa);
1091 extern uint64_t spa_dirty_data(spa_t *spa);
1092 extern spa_autotrim_t spa_get_autotrim(spa_t *spa);
1093 extern int spa_get_allocator(spa_t *spa);
1094 extern void spa_set_allocator(spa_t *spa, const char *allocator);
1096 /* Miscellaneous support routines */
1097 extern void spa_load_failed(spa_t *spa, const char *fmt, ...)
1098 __attribute__((format(printf, 2, 3)));
1099 extern void spa_load_note(spa_t *spa, const char *fmt, ...)
1100 __attribute__((format(printf, 2, 3)));
1101 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
1102 dmu_tx_t *tx);
1103 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
1104 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
1105 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
1106 extern char *spa_strdup(const char *);
1107 extern void spa_strfree(char *);
1108 extern uint64_t spa_generate_guid(spa_t *spa);
1109 extern uint64_t spa_generate_load_guid(void);
1110 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
1111 extern void spa_freeze(spa_t *spa);
1112 extern int spa_change_guid(spa_t *spa, const uint64_t *guidp);
1113 extern void spa_upgrade(spa_t *spa, uint64_t version);
1114 extern void spa_evict_all(void);
1115 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1116 boolean_t l2cache);
1117 extern boolean_t spa_has_l2cache(spa_t *, uint64_t guid);
1118 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1119 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1120 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1121 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1122 extern boolean_t spa_has_slogs(spa_t *spa);
1123 extern boolean_t spa_is_root(spa_t *spa);
1124 extern boolean_t spa_writeable(spa_t *spa);
1125 extern boolean_t spa_has_pending_synctask(spa_t *spa);
1126 extern int spa_maxblocksize(spa_t *spa);
1127 extern int spa_maxdnodesize(spa_t *spa);
1128 extern boolean_t spa_has_checkpoint(spa_t *spa);
1129 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
1130 extern boolean_t spa_suspend_async_destroy(spa_t *spa);
1131 extern uint64_t spa_min_claim_txg(spa_t *spa);
1132 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
1133 const blkptr_t *bp);
1134 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
1135 void *arg);
1136 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
1137 spa_remap_cb_t callback, void *arg);
1138 extern uint64_t spa_get_last_removal_txg(spa_t *spa);
1139 extern boolean_t spa_trust_config(spa_t *spa);
1140 extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
1141 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
1142 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
1143 extern uint64_t spa_total_metaslabs(spa_t *spa);
1144 extern boolean_t spa_multihost(spa_t *spa);
1145 extern uint32_t spa_get_hostid(spa_t *spa);
1146 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
1147 extern boolean_t spa_livelist_delete_check(spa_t *spa);
1149 extern boolean_t spa_mmp_remote_host_activity(spa_t *spa);
1151 extern spa_mode_t spa_mode(spa_t *spa);
1152 extern uint64_t zfs_strtonum(const char *str, char **nptr);
1154 extern char *spa_his_ievent_table[];
1156 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1157 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1158 char *his_buf);
1159 extern int spa_history_log(spa_t *spa, const char *his_buf);
1160 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1161 extern void spa_history_log_version(spa_t *spa, const char *operation,
1162 dmu_tx_t *tx);
1163 extern void spa_history_log_internal(spa_t *spa, const char *operation,
1164 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1165 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1166 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1167 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1168 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1170 extern const char *spa_state_to_name(spa_t *spa);
1172 /* error handling */
1173 struct zbookmark_phys;
1174 extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb,
1175 const uint64_t birth);
1176 extern void spa_remove_error(spa_t *spa, zbookmark_phys_t *zb,
1177 uint64_t birth);
1178 extern int zfs_ereport_post(const char *clazz, spa_t *spa, vdev_t *vd,
1179 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state);
1180 extern boolean_t zfs_ereport_is_valid(const char *clazz, spa_t *spa, vdev_t *vd,
1181 zio_t *zio);
1182 extern void zfs_ereport_taskq_fini(void);
1183 extern void zfs_ereport_clear(spa_t *spa, vdev_t *vd);
1184 extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1185 const char *name, nvlist_t *aux);
1186 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
1187 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1188 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1189 extern uint64_t spa_approx_errlog_size(spa_t *spa);
1190 extern int spa_get_errlog(spa_t *spa, void *uaddr, uint64_t *count);
1191 extern uint64_t spa_get_last_errlog_size(spa_t *spa);
1192 extern void spa_errlog_rotate(spa_t *spa);
1193 extern void spa_errlog_drain(spa_t *spa);
1194 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1195 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1196 extern void spa_delete_dataset_errlog(spa_t *spa, uint64_t ds, dmu_tx_t *tx);
1197 extern void spa_swap_errlog(spa_t *spa, uint64_t new_head_ds,
1198 uint64_t old_head_ds, dmu_tx_t *tx);
1199 extern void sync_error_list(spa_t *spa, avl_tree_t *t, uint64_t *obj,
1200 dmu_tx_t *tx);
1201 extern void spa_upgrade_errlog(spa_t *spa, dmu_tx_t *tx);
1202 extern int find_top_affected_fs(spa_t *spa, uint64_t head_ds,
1203 zbookmark_err_phys_t *zep, uint64_t *top_affected_fs);
1204 extern int find_birth_txg(struct dsl_dataset *ds, zbookmark_err_phys_t *zep,
1205 uint64_t *birth_txg);
1206 extern void zep_to_zb(uint64_t dataset, zbookmark_err_phys_t *zep,
1207 zbookmark_phys_t *zb);
1208 extern void name_to_errphys(char *buf, zbookmark_err_phys_t *zep);
1210 /* vdev mirror */
1211 extern void vdev_mirror_stat_init(void);
1212 extern void vdev_mirror_stat_fini(void);
1214 /* Initialization and termination */
1215 extern void spa_init(spa_mode_t mode);
1216 extern void spa_fini(void);
1217 extern void spa_boot_init(void);
1219 /* properties */
1220 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1221 extern int spa_prop_get(spa_t *spa, nvlist_t *nvp);
1222 extern int spa_prop_get_nvlist(spa_t *spa, char **props,
1223 unsigned int n_props, nvlist_t *outnvl);
1224 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1225 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1227 /* asynchronous event notification */
1228 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1229 const char *name);
1230 extern void zfs_ereport_zvol_post(const char *subclass, const char *name,
1231 const char *device_name, const char *raw_name);
1233 /* waiting for pool activities to complete */
1234 extern int spa_wait(const char *pool, zpool_wait_activity_t activity,
1235 boolean_t *waited);
1236 extern int spa_wait_tag(const char *name, zpool_wait_activity_t activity,
1237 uint64_t tag, boolean_t *waited);
1238 extern void spa_notify_waiters(spa_t *spa);
1239 extern void spa_wake_waiters(spa_t *spa);
1241 extern void spa_import_os(spa_t *spa);
1242 extern void spa_export_os(spa_t *spa);
1243 extern void spa_activate_os(spa_t *spa);
1244 extern void spa_deactivate_os(spa_t *spa);
1246 /* module param call functions */
1247 int param_set_deadman_ziotime(ZFS_MODULE_PARAM_ARGS);
1248 int param_set_deadman_synctime(ZFS_MODULE_PARAM_ARGS);
1249 int param_set_slop_shift(ZFS_MODULE_PARAM_ARGS);
1250 int param_set_deadman_failmode(ZFS_MODULE_PARAM_ARGS);
1251 int param_set_active_allocator(ZFS_MODULE_PARAM_ARGS);
1253 #ifdef ZFS_DEBUG
1254 #define dprintf_bp(bp, fmt, ...) do { \
1255 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
1256 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
1257 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
1258 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
1259 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
1261 } while (0)
1262 #else
1263 #define dprintf_bp(bp, fmt, ...)
1264 #endif
1266 extern spa_mode_t spa_mode_global;
1267 extern int zfs_deadman_enabled;
1268 extern uint64_t zfs_deadman_synctime_ms;
1269 extern uint64_t zfs_deadman_ziotime_ms;
1270 extern uint64_t zfs_deadman_checktime_ms;
1272 extern kmem_cache_t *zio_buf_cache[];
1273 extern kmem_cache_t *zio_data_buf_cache[];
1275 #ifdef __cplusplus
1277 #endif
1279 #endif /* _SYS_SPA_H */