During pool export flush the ARC asynchronously
[zfs.git] / module / zfs / arc.c
blobbd6f076dfbbde997c125e2a0b23138009d8036f6
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, 2024, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
34 * [1] Portions of this software were developed by Allan Jude
35 * under sponsorship from the FreeBSD Foundation.
39 * DVA-based Adjustable Replacement Cache
41 * While much of the theory of operation used here is
42 * based on the self-tuning, low overhead replacement cache
43 * presented by Megiddo and Modha at FAST 2003, there are some
44 * significant differences:
46 * 1. The Megiddo and Modha model assumes any page is evictable.
47 * Pages in its cache cannot be "locked" into memory. This makes
48 * the eviction algorithm simple: evict the last page in the list.
49 * This also make the performance characteristics easy to reason
50 * about. Our cache is not so simple. At any given moment, some
51 * subset of the blocks in the cache are un-evictable because we
52 * have handed out a reference to them. Blocks are only evictable
53 * when there are no external references active. This makes
54 * eviction far more problematic: we choose to evict the evictable
55 * blocks that are the "lowest" in the list.
57 * There are times when it is not possible to evict the requested
58 * space. In these circumstances we are unable to adjust the cache
59 * size. To prevent the cache growing unbounded at these times we
60 * implement a "cache throttle" that slows the flow of new data
61 * into the cache until we can make space available.
63 * 2. The Megiddo and Modha model assumes a fixed cache size.
64 * Pages are evicted when the cache is full and there is a cache
65 * miss. Our model has a variable sized cache. It grows with
66 * high use, but also tries to react to memory pressure from the
67 * operating system: decreasing its size when system memory is
68 * tight.
70 * 3. The Megiddo and Modha model assumes a fixed page size. All
71 * elements of the cache are therefore exactly the same size. So
72 * when adjusting the cache size following a cache miss, its simply
73 * a matter of choosing a single page to evict. In our model, we
74 * have variable sized cache blocks (ranging from 512 bytes to
75 * 128K bytes). We therefore choose a set of blocks to evict to make
76 * space for a cache miss that approximates as closely as possible
77 * the space used by the new block.
79 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
80 * by N. Megiddo & D. Modha, FAST 2003
84 * The locking model:
86 * A new reference to a cache buffer can be obtained in two
87 * ways: 1) via a hash table lookup using the DVA as a key,
88 * or 2) via one of the ARC lists. The arc_read() interface
89 * uses method 1, while the internal ARC algorithms for
90 * adjusting the cache use method 2. We therefore provide two
91 * types of locks: 1) the hash table lock array, and 2) the
92 * ARC list locks.
94 * Buffers do not have their own mutexes, rather they rely on the
95 * hash table mutexes for the bulk of their protection (i.e. most
96 * fields in the arc_buf_hdr_t are protected by these mutexes).
98 * buf_hash_find() returns the appropriate mutex (held) when it
99 * locates the requested buffer in the hash table. It returns
100 * NULL for the mutex if the buffer was not in the table.
102 * buf_hash_remove() expects the appropriate hash mutex to be
103 * already held before it is invoked.
105 * Each ARC state also has a mutex which is used to protect the
106 * buffer list associated with the state. When attempting to
107 * obtain a hash table lock while holding an ARC list lock you
108 * must use: mutex_tryenter() to avoid deadlock. Also note that
109 * the active state mutex must be held before the ghost state mutex.
111 * It as also possible to register a callback which is run when the
112 * metadata limit is reached and no buffers can be safely evicted. In
113 * this case the arc user should drop a reference on some arc buffers so
114 * they can be reclaimed. For example, when using the ZPL each dentry
115 * holds a references on a znode. These dentries must be pruned before
116 * the arc buffer holding the znode can be safely evicted.
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
131 * ARC operation:
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
178 * buffer).
180 * arc_buf_hdr_t
181 * +-----------+
182 * | fields |
183 * | common to |
184 * | L1- and |
185 * | L2ARC |
186 * +-----------+
187 * | l2arc_buf_hdr_t
188 * | |
189 * +-----------+
190 * | l1arc_buf_hdr_t
191 * | | arc_buf_t
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
199 * compressed | | | |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
203 * data | |
204 * | |
205 * +------+
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
222 * arc_buf_hdr_t
223 * +-----------+
224 * | |
225 * | |
226 * | |
227 * +-----------+
228 * l2arc_buf_hdr_t| |
229 * | |
230 * +-----------+
231 * l1arc_buf_hdr_t| |
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
237 * | |b_data +-+ | |
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
240 * | | | |
241 * uncompressed | | | |
242 * data +------+ | |
243 * ^ +->+------+ |
244 * | uncompressed | | |
245 * | data | | |
246 * | +------+ |
247 * +---------------------------------+
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will memcpy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
283 * cannot be shared.
286 #include <sys/spa.h>
287 #include <sys/zio.h>
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
292 #include <sys/arc.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
298 #include <sys/abd.h>
299 #include <sys/zil.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
314 #ifndef _KERNEL
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch = B_FALSE;
317 #endif
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
324 static zthr_t *arc_reap_zthr;
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
330 static zthr_t *arc_evict_zthr;
331 static arc_buf_hdr_t **arc_state_evict_markers;
332 static int arc_state_evict_marker_count;
334 static kmutex_t arc_evict_lock;
335 static boolean_t arc_evict_needed = B_FALSE;
336 static clock_t arc_last_uncached_flush;
339 * Count of bytes evicted since boot.
341 static uint64_t arc_evict_count;
344 * List of arc_evict_waiter_t's, representing threads waiting for the
345 * arc_evict_count to reach specific values.
347 static list_t arc_evict_waiters;
350 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
351 * the requested amount of data to be evicted. For example, by default for
352 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
353 * Since this is above 100%, it ensures that progress is made towards getting
354 * arc_size under arc_c. Since this is finite, it ensures that allocations
355 * can still happen, even during the potentially long time that arc_size is
356 * more than arc_c.
358 static uint_t zfs_arc_eviction_pct = 200;
361 * The number of headers to evict in arc_evict_state_impl() before
362 * dropping the sublist lock and evicting from another sublist. A lower
363 * value means we're more likely to evict the "correct" header (i.e. the
364 * oldest header in the arc state), but comes with higher overhead
365 * (i.e. more invocations of arc_evict_state_impl()).
367 static uint_t zfs_arc_evict_batch_limit = 10;
369 /* number of seconds before growing cache again */
370 uint_t arc_grow_retry = 5;
373 * Minimum time between calls to arc_kmem_reap_soon().
375 static const int arc_kmem_cache_reap_retry_ms = 1000;
377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
378 static int zfs_arc_overflow_shift = 8;
380 /* log2(fraction of arc to reclaim) */
381 uint_t arc_shrink_shift = 7;
383 /* percent of pagecache to reclaim arc to */
384 #ifdef _KERNEL
385 uint_t zfs_arc_pc_percent = 0;
386 #endif
389 * log2(fraction of ARC which must be free to allow growing).
390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391 * when reading a new block into the ARC, we will evict an equal-sized block
392 * from the ARC.
394 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395 * we will still not allow it to grow.
397 uint_t arc_no_grow_shift = 5;
401 * minimum lifespan of a prefetch block in clock ticks
402 * (initialized in arc_init())
404 static uint_t arc_min_prefetch_ms;
405 static uint_t arc_min_prescient_prefetch_ms;
408 * If this percent of memory is free, don't throttle.
410 uint_t arc_lotsfree_percent = 10;
413 * The arc has filled available memory and has now warmed up.
415 boolean_t arc_warm;
418 * These tunables are for performance analysis.
420 uint64_t zfs_arc_max = 0;
421 uint64_t zfs_arc_min = 0;
422 static uint64_t zfs_arc_dnode_limit = 0;
423 static uint_t zfs_arc_dnode_reduce_percent = 10;
424 static uint_t zfs_arc_grow_retry = 0;
425 static uint_t zfs_arc_shrink_shift = 0;
426 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
429 * ARC dirty data constraints for arc_tempreserve_space() throttle:
430 * * total dirty data limit
431 * * anon block dirty limit
432 * * each pool's anon allowance
434 static const unsigned long zfs_arc_dirty_limit_percent = 50;
435 static const unsigned long zfs_arc_anon_limit_percent = 25;
436 static const unsigned long zfs_arc_pool_dirty_percent = 20;
439 * Enable or disable compressed arc buffers.
441 int zfs_compressed_arc_enabled = B_TRUE;
444 * Balance between metadata and data on ghost hits. Values above 100
445 * increase metadata caching by proportionally reducing effect of ghost
446 * data hits on target data/metadata rate.
448 static uint_t zfs_arc_meta_balance = 500;
451 * Percentage that can be consumed by dnodes of ARC meta buffers.
453 static uint_t zfs_arc_dnode_limit_percent = 10;
456 * These tunables are Linux-specific
458 static uint64_t zfs_arc_sys_free = 0;
459 static uint_t zfs_arc_min_prefetch_ms = 0;
460 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
461 static uint_t zfs_arc_lotsfree_percent = 10;
464 * Number of arc_prune threads
466 static int zfs_arc_prune_task_threads = 1;
468 /* Used by spa_export/spa_destroy to flush the arc asynchronously */
469 static taskq_t *arc_flush_taskq;
471 /* The 7 states: */
472 arc_state_t ARC_anon;
473 arc_state_t ARC_mru;
474 arc_state_t ARC_mru_ghost;
475 arc_state_t ARC_mfu;
476 arc_state_t ARC_mfu_ghost;
477 arc_state_t ARC_l2c_only;
478 arc_state_t ARC_uncached;
480 arc_stats_t arc_stats = {
481 { "hits", KSTAT_DATA_UINT64 },
482 { "iohits", KSTAT_DATA_UINT64 },
483 { "misses", KSTAT_DATA_UINT64 },
484 { "demand_data_hits", KSTAT_DATA_UINT64 },
485 { "demand_data_iohits", KSTAT_DATA_UINT64 },
486 { "demand_data_misses", KSTAT_DATA_UINT64 },
487 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
488 { "demand_metadata_iohits", KSTAT_DATA_UINT64 },
489 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
490 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
491 { "prefetch_data_iohits", KSTAT_DATA_UINT64 },
492 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
493 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
494 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 },
495 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
496 { "mru_hits", KSTAT_DATA_UINT64 },
497 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
498 { "mfu_hits", KSTAT_DATA_UINT64 },
499 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
500 { "uncached_hits", KSTAT_DATA_UINT64 },
501 { "deleted", KSTAT_DATA_UINT64 },
502 { "mutex_miss", KSTAT_DATA_UINT64 },
503 { "access_skip", KSTAT_DATA_UINT64 },
504 { "evict_skip", KSTAT_DATA_UINT64 },
505 { "evict_not_enough", KSTAT_DATA_UINT64 },
506 { "evict_l2_cached", KSTAT_DATA_UINT64 },
507 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
508 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
509 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
510 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
511 { "evict_l2_skip", KSTAT_DATA_UINT64 },
512 { "hash_elements", KSTAT_DATA_UINT64 },
513 { "hash_elements_max", KSTAT_DATA_UINT64 },
514 { "hash_collisions", KSTAT_DATA_UINT64 },
515 { "hash_chains", KSTAT_DATA_UINT64 },
516 { "hash_chain_max", KSTAT_DATA_UINT64 },
517 { "meta", KSTAT_DATA_UINT64 },
518 { "pd", KSTAT_DATA_UINT64 },
519 { "pm", KSTAT_DATA_UINT64 },
520 { "c", KSTAT_DATA_UINT64 },
521 { "c_min", KSTAT_DATA_UINT64 },
522 { "c_max", KSTAT_DATA_UINT64 },
523 { "size", KSTAT_DATA_UINT64 },
524 { "compressed_size", KSTAT_DATA_UINT64 },
525 { "uncompressed_size", KSTAT_DATA_UINT64 },
526 { "overhead_size", KSTAT_DATA_UINT64 },
527 { "hdr_size", KSTAT_DATA_UINT64 },
528 { "data_size", KSTAT_DATA_UINT64 },
529 { "metadata_size", KSTAT_DATA_UINT64 },
530 { "dbuf_size", KSTAT_DATA_UINT64 },
531 { "dnode_size", KSTAT_DATA_UINT64 },
532 { "bonus_size", KSTAT_DATA_UINT64 },
533 #if defined(COMPAT_FREEBSD11)
534 { "other_size", KSTAT_DATA_UINT64 },
535 #endif
536 { "anon_size", KSTAT_DATA_UINT64 },
537 { "anon_data", KSTAT_DATA_UINT64 },
538 { "anon_metadata", KSTAT_DATA_UINT64 },
539 { "anon_evictable_data", KSTAT_DATA_UINT64 },
540 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
541 { "mru_size", KSTAT_DATA_UINT64 },
542 { "mru_data", KSTAT_DATA_UINT64 },
543 { "mru_metadata", KSTAT_DATA_UINT64 },
544 { "mru_evictable_data", KSTAT_DATA_UINT64 },
545 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
546 { "mru_ghost_size", KSTAT_DATA_UINT64 },
547 { "mru_ghost_data", KSTAT_DATA_UINT64 },
548 { "mru_ghost_metadata", KSTAT_DATA_UINT64 },
549 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
550 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
551 { "mfu_size", KSTAT_DATA_UINT64 },
552 { "mfu_data", KSTAT_DATA_UINT64 },
553 { "mfu_metadata", KSTAT_DATA_UINT64 },
554 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
555 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
556 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
557 { "mfu_ghost_data", KSTAT_DATA_UINT64 },
558 { "mfu_ghost_metadata", KSTAT_DATA_UINT64 },
559 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
560 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
561 { "uncached_size", KSTAT_DATA_UINT64 },
562 { "uncached_data", KSTAT_DATA_UINT64 },
563 { "uncached_metadata", KSTAT_DATA_UINT64 },
564 { "uncached_evictable_data", KSTAT_DATA_UINT64 },
565 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
566 { "l2_hits", KSTAT_DATA_UINT64 },
567 { "l2_misses", KSTAT_DATA_UINT64 },
568 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
569 { "l2_mru_asize", KSTAT_DATA_UINT64 },
570 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
571 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
572 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
573 { "l2_feeds", KSTAT_DATA_UINT64 },
574 { "l2_rw_clash", KSTAT_DATA_UINT64 },
575 { "l2_read_bytes", KSTAT_DATA_UINT64 },
576 { "l2_write_bytes", KSTAT_DATA_UINT64 },
577 { "l2_writes_sent", KSTAT_DATA_UINT64 },
578 { "l2_writes_done", KSTAT_DATA_UINT64 },
579 { "l2_writes_error", KSTAT_DATA_UINT64 },
580 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
581 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
582 { "l2_evict_reading", KSTAT_DATA_UINT64 },
583 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
584 { "l2_free_on_write", KSTAT_DATA_UINT64 },
585 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
586 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
587 { "l2_io_error", KSTAT_DATA_UINT64 },
588 { "l2_size", KSTAT_DATA_UINT64 },
589 { "l2_asize", KSTAT_DATA_UINT64 },
590 { "l2_hdr_size", KSTAT_DATA_UINT64 },
591 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
592 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
593 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
594 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
595 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
596 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
597 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
598 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
599 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
600 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
601 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
602 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
603 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
604 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
605 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
606 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
607 { "memory_throttle_count", KSTAT_DATA_UINT64 },
608 { "memory_direct_count", KSTAT_DATA_UINT64 },
609 { "memory_indirect_count", KSTAT_DATA_UINT64 },
610 { "memory_all_bytes", KSTAT_DATA_UINT64 },
611 { "memory_free_bytes", KSTAT_DATA_UINT64 },
612 { "memory_available_bytes", KSTAT_DATA_INT64 },
613 { "arc_no_grow", KSTAT_DATA_UINT64 },
614 { "arc_tempreserve", KSTAT_DATA_UINT64 },
615 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
616 { "arc_prune", KSTAT_DATA_UINT64 },
617 { "arc_meta_used", KSTAT_DATA_UINT64 },
618 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
619 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
620 { "predictive_prefetch", KSTAT_DATA_UINT64 },
621 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
622 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
623 { "prescient_prefetch", KSTAT_DATA_UINT64 },
624 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
625 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
626 { "arc_need_free", KSTAT_DATA_UINT64 },
627 { "arc_sys_free", KSTAT_DATA_UINT64 },
628 { "arc_raw_size", KSTAT_DATA_UINT64 },
629 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
630 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
633 arc_sums_t arc_sums;
635 #define ARCSTAT_MAX(stat, val) { \
636 uint64_t m; \
637 while ((val) > (m = arc_stats.stat.value.ui64) && \
638 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
639 continue; \
643 * We define a macro to allow ARC hits/misses to be easily broken down by
644 * two separate conditions, giving a total of four different subtypes for
645 * each of hits and misses (so eight statistics total).
647 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
648 if (cond1) { \
649 if (cond2) { \
650 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
651 } else { \
652 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
654 } else { \
655 if (cond2) { \
656 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
657 } else { \
658 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
663 * This macro allows us to use kstats as floating averages. Each time we
664 * update this kstat, we first factor it and the update value by
665 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
666 * average. This macro assumes that integer loads and stores are atomic, but
667 * is not safe for multiple writers updating the kstat in parallel (only the
668 * last writer's update will remain).
670 #define ARCSTAT_F_AVG_FACTOR 3
671 #define ARCSTAT_F_AVG(stat, value) \
672 do { \
673 uint64_t x = ARCSTAT(stat); \
674 x = x - x / ARCSTAT_F_AVG_FACTOR + \
675 (value) / ARCSTAT_F_AVG_FACTOR; \
676 ARCSTAT(stat) = x; \
677 } while (0)
679 static kstat_t *arc_ksp;
682 * There are several ARC variables that are critical to export as kstats --
683 * but we don't want to have to grovel around in the kstat whenever we wish to
684 * manipulate them. For these variables, we therefore define them to be in
685 * terms of the statistic variable. This assures that we are not introducing
686 * the possibility of inconsistency by having shadow copies of the variables,
687 * while still allowing the code to be readable.
689 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
690 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
691 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
692 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
694 hrtime_t arc_growtime;
695 list_t arc_prune_list;
696 kmutex_t arc_prune_mtx;
697 taskq_t *arc_prune_taskq;
699 #define GHOST_STATE(state) \
700 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
701 (state) == arc_l2c_only)
703 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
704 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
705 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
706 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
707 #define HDR_PRESCIENT_PREFETCH(hdr) \
708 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
709 #define HDR_COMPRESSION_ENABLED(hdr) \
710 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
712 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
713 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
714 #define HDR_L2_READING(hdr) \
715 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
716 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
717 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
718 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
719 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
720 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
721 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
722 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
724 #define HDR_ISTYPE_METADATA(hdr) \
725 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
726 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
728 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
729 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
730 #define HDR_HAS_RABD(hdr) \
731 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
732 (hdr)->b_crypt_hdr.b_rabd != NULL)
733 #define HDR_ENCRYPTED(hdr) \
734 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
735 #define HDR_AUTHENTICATED(hdr) \
736 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
738 /* For storing compression mode in b_flags */
739 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
741 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
742 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
743 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
744 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
746 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
747 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
748 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
749 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
752 * Other sizes
755 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
756 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
759 * Hash table routines
762 #define BUF_LOCKS 2048
763 typedef struct buf_hash_table {
764 uint64_t ht_mask;
765 arc_buf_hdr_t **ht_table;
766 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
767 } buf_hash_table_t;
769 static buf_hash_table_t buf_hash_table;
771 #define BUF_HASH_INDEX(spa, dva, birth) \
772 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
773 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
774 #define HDR_LOCK(hdr) \
775 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
777 uint64_t zfs_crc64_table[256];
780 * Asynchronous ARC flush
782 * We track these in a list for arc_async_flush_guid_inuse().
783 * Used for both L1 and L2 async teardown.
785 static list_t arc_async_flush_list;
786 static kmutex_t arc_async_flush_lock;
788 typedef struct arc_async_flush {
789 uint64_t af_spa_guid;
790 taskq_ent_t af_tqent;
791 uint_t af_cache_level; /* 1 or 2 to differentiate node */
792 list_node_t af_node;
793 } arc_async_flush_t;
797 * Level 2 ARC
800 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */
801 #define L2ARC_HEADROOM 8 /* num of writes */
804 * If we discover during ARC scan any buffers to be compressed, we boost
805 * our headroom for the next scanning cycle by this percentage multiple.
807 #define L2ARC_HEADROOM_BOOST 200
808 #define L2ARC_FEED_SECS 1 /* caching interval secs */
809 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
812 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
813 * and each of the state has two types: data and metadata.
815 #define L2ARC_FEED_TYPES 4
817 /* L2ARC Performance Tunables */
818 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
819 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
820 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
821 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
822 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
823 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
824 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
825 int l2arc_feed_again = B_TRUE; /* turbo warmup */
826 int l2arc_norw = B_FALSE; /* no reads during writes */
827 static uint_t l2arc_meta_percent = 33; /* limit on headers size */
830 * L2ARC Internals
832 static list_t L2ARC_dev_list; /* device list */
833 static list_t *l2arc_dev_list; /* device list pointer */
834 static kmutex_t l2arc_dev_mtx; /* device list mutex */
835 static l2arc_dev_t *l2arc_dev_last; /* last device used */
836 static list_t L2ARC_free_on_write; /* free after write buf list */
837 static list_t *l2arc_free_on_write; /* free after write list ptr */
838 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
839 static uint64_t l2arc_ndev; /* number of devices */
841 typedef struct l2arc_read_callback {
842 arc_buf_hdr_t *l2rcb_hdr; /* read header */
843 blkptr_t l2rcb_bp; /* original blkptr */
844 zbookmark_phys_t l2rcb_zb; /* original bookmark */
845 int l2rcb_flags; /* original flags */
846 abd_t *l2rcb_abd; /* temporary buffer */
847 } l2arc_read_callback_t;
849 typedef struct l2arc_data_free {
850 /* protected by l2arc_free_on_write_mtx */
851 abd_t *l2df_abd;
852 size_t l2df_size;
853 arc_buf_contents_t l2df_type;
854 list_node_t l2df_list_node;
855 } l2arc_data_free_t;
857 typedef enum arc_fill_flags {
858 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
859 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
860 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
861 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
862 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
863 } arc_fill_flags_t;
865 typedef enum arc_ovf_level {
866 ARC_OVF_NONE, /* ARC within target size. */
867 ARC_OVF_SOME, /* ARC is slightly overflowed. */
868 ARC_OVF_SEVERE /* ARC is severely overflowed. */
869 } arc_ovf_level_t;
871 static kmutex_t l2arc_feed_thr_lock;
872 static kcondvar_t l2arc_feed_thr_cv;
873 static uint8_t l2arc_thread_exit;
875 static kmutex_t l2arc_rebuild_thr_lock;
876 static kcondvar_t l2arc_rebuild_thr_cv;
878 enum arc_hdr_alloc_flags {
879 ARC_HDR_ALLOC_RDATA = 0x1,
880 ARC_HDR_USE_RESERVE = 0x4,
881 ARC_HDR_ALLOC_LINEAR = 0x8,
885 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
886 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
887 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
888 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
889 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
890 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
891 const void *tag);
892 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
893 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
894 static void arc_hdr_destroy(arc_buf_hdr_t *);
895 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
896 static void arc_buf_watch(arc_buf_t *);
897 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
899 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
900 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
901 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
902 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
904 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
905 static void l2arc_read_done(zio_t *);
906 static void l2arc_do_free_on_write(void);
907 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
908 boolean_t state_only);
910 static void arc_prune_async(uint64_t adjust);
912 #define l2arc_hdr_arcstats_increment(hdr) \
913 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
914 #define l2arc_hdr_arcstats_decrement(hdr) \
915 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
916 #define l2arc_hdr_arcstats_increment_state(hdr) \
917 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
918 #define l2arc_hdr_arcstats_decrement_state(hdr) \
919 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
922 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
923 * present on special vdevs are eligibile for caching in L2ARC. If
924 * set to 1, exclude dbufs on special vdevs from being cached to
925 * L2ARC.
927 int l2arc_exclude_special = 0;
930 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
931 * metadata and data are cached from ARC into L2ARC.
933 static int l2arc_mfuonly = 0;
936 * L2ARC TRIM
937 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
938 * the current write size (l2arc_write_max) we should TRIM if we
939 * have filled the device. It is defined as a percentage of the
940 * write size. If set to 100 we trim twice the space required to
941 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
942 * It also enables TRIM of the whole L2ARC device upon creation or
943 * addition to an existing pool or if the header of the device is
944 * invalid upon importing a pool or onlining a cache device. The
945 * default is 0, which disables TRIM on L2ARC altogether as it can
946 * put significant stress on the underlying storage devices. This
947 * will vary depending of how well the specific device handles
948 * these commands.
950 static uint64_t l2arc_trim_ahead = 0;
953 * Performance tuning of L2ARC persistence:
955 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
956 * an L2ARC device (either at pool import or later) will attempt
957 * to rebuild L2ARC buffer contents.
958 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
959 * whether log blocks are written to the L2ARC device. If the L2ARC
960 * device is less than 1GB, the amount of data l2arc_evict()
961 * evicts is significant compared to the amount of restored L2ARC
962 * data. In this case do not write log blocks in L2ARC in order
963 * not to waste space.
965 static int l2arc_rebuild_enabled = B_TRUE;
966 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
968 /* L2ARC persistence rebuild control routines. */
969 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
970 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
971 static int l2arc_rebuild(l2arc_dev_t *dev);
973 /* L2ARC persistence read I/O routines. */
974 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
975 static int l2arc_log_blk_read(l2arc_dev_t *dev,
976 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
977 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
978 zio_t *this_io, zio_t **next_io);
979 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
980 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
981 static void l2arc_log_blk_fetch_abort(zio_t *zio);
983 /* L2ARC persistence block restoration routines. */
984 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
985 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
986 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
987 l2arc_dev_t *dev);
989 /* L2ARC persistence write I/O routines. */
990 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
991 l2arc_write_callback_t *cb);
993 /* L2ARC persistence auxiliary routines. */
994 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
995 const l2arc_log_blkptr_t *lbp);
996 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
997 const arc_buf_hdr_t *ab);
998 boolean_t l2arc_range_check_overlap(uint64_t bottom,
999 uint64_t top, uint64_t check);
1000 static void l2arc_blk_fetch_done(zio_t *zio);
1001 static inline uint64_t
1002 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
1005 * We use Cityhash for this. It's fast, and has good hash properties without
1006 * requiring any large static buffers.
1008 static uint64_t
1009 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1011 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1014 #define HDR_EMPTY(hdr) \
1015 ((hdr)->b_dva.dva_word[0] == 0 && \
1016 (hdr)->b_dva.dva_word[1] == 0)
1018 #define HDR_EMPTY_OR_LOCKED(hdr) \
1019 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1021 #define HDR_EQUAL(spa, dva, birth, hdr) \
1022 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1023 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1024 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1026 static void
1027 buf_discard_identity(arc_buf_hdr_t *hdr)
1029 hdr->b_dva.dva_word[0] = 0;
1030 hdr->b_dva.dva_word[1] = 0;
1031 hdr->b_birth = 0;
1034 static arc_buf_hdr_t *
1035 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1037 const dva_t *dva = BP_IDENTITY(bp);
1038 uint64_t birth = BP_GET_BIRTH(bp);
1039 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1040 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1041 arc_buf_hdr_t *hdr;
1043 mutex_enter(hash_lock);
1044 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1045 hdr = hdr->b_hash_next) {
1046 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1047 *lockp = hash_lock;
1048 return (hdr);
1051 mutex_exit(hash_lock);
1052 *lockp = NULL;
1053 return (NULL);
1057 * Insert an entry into the hash table. If there is already an element
1058 * equal to elem in the hash table, then the already existing element
1059 * will be returned and the new element will not be inserted.
1060 * Otherwise returns NULL.
1061 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1063 static arc_buf_hdr_t *
1064 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1066 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1067 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1068 arc_buf_hdr_t *fhdr;
1069 uint32_t i;
1071 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1072 ASSERT(hdr->b_birth != 0);
1073 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1075 if (lockp != NULL) {
1076 *lockp = hash_lock;
1077 mutex_enter(hash_lock);
1078 } else {
1079 ASSERT(MUTEX_HELD(hash_lock));
1082 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1083 fhdr = fhdr->b_hash_next, i++) {
1084 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1085 return (fhdr);
1088 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1089 buf_hash_table.ht_table[idx] = hdr;
1090 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1092 /* collect some hash table performance data */
1093 if (i > 0) {
1094 ARCSTAT_BUMP(arcstat_hash_collisions);
1095 if (i == 1)
1096 ARCSTAT_BUMP(arcstat_hash_chains);
1097 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1099 ARCSTAT_BUMP(arcstat_hash_elements);
1101 return (NULL);
1104 static void
1105 buf_hash_remove(arc_buf_hdr_t *hdr)
1107 arc_buf_hdr_t *fhdr, **hdrp;
1108 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1110 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1111 ASSERT(HDR_IN_HASH_TABLE(hdr));
1113 hdrp = &buf_hash_table.ht_table[idx];
1114 while ((fhdr = *hdrp) != hdr) {
1115 ASSERT3P(fhdr, !=, NULL);
1116 hdrp = &fhdr->b_hash_next;
1118 *hdrp = hdr->b_hash_next;
1119 hdr->b_hash_next = NULL;
1120 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1122 /* collect some hash table performance data */
1123 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1124 if (buf_hash_table.ht_table[idx] &&
1125 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1126 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1130 * Global data structures and functions for the buf kmem cache.
1133 static kmem_cache_t *hdr_full_cache;
1134 static kmem_cache_t *hdr_l2only_cache;
1135 static kmem_cache_t *buf_cache;
1137 static void
1138 buf_fini(void)
1140 #if defined(_KERNEL)
1142 * Large allocations which do not require contiguous pages
1143 * should be using vmem_free() in the linux kernel\
1145 vmem_free(buf_hash_table.ht_table,
1146 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1147 #else
1148 kmem_free(buf_hash_table.ht_table,
1149 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1150 #endif
1151 for (int i = 0; i < BUF_LOCKS; i++)
1152 mutex_destroy(BUF_HASH_LOCK(i));
1153 kmem_cache_destroy(hdr_full_cache);
1154 kmem_cache_destroy(hdr_l2only_cache);
1155 kmem_cache_destroy(buf_cache);
1159 * Constructor callback - called when the cache is empty
1160 * and a new buf is requested.
1162 static int
1163 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1165 (void) unused, (void) kmflag;
1166 arc_buf_hdr_t *hdr = vbuf;
1168 memset(hdr, 0, HDR_FULL_SIZE);
1169 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1170 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1171 #ifdef ZFS_DEBUG
1172 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1173 #endif
1174 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1175 list_link_init(&hdr->b_l2hdr.b_l2node);
1176 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1178 return (0);
1181 static int
1182 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1184 (void) unused, (void) kmflag;
1185 arc_buf_hdr_t *hdr = vbuf;
1187 memset(hdr, 0, HDR_L2ONLY_SIZE);
1188 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1190 return (0);
1193 static int
1194 buf_cons(void *vbuf, void *unused, int kmflag)
1196 (void) unused, (void) kmflag;
1197 arc_buf_t *buf = vbuf;
1199 memset(buf, 0, sizeof (arc_buf_t));
1200 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1202 return (0);
1206 * Destructor callback - called when a cached buf is
1207 * no longer required.
1209 static void
1210 hdr_full_dest(void *vbuf, void *unused)
1212 (void) unused;
1213 arc_buf_hdr_t *hdr = vbuf;
1215 ASSERT(HDR_EMPTY(hdr));
1216 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1217 #ifdef ZFS_DEBUG
1218 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1219 #endif
1220 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1221 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1224 static void
1225 hdr_l2only_dest(void *vbuf, void *unused)
1227 (void) unused;
1228 arc_buf_hdr_t *hdr = vbuf;
1230 ASSERT(HDR_EMPTY(hdr));
1231 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1234 static void
1235 buf_dest(void *vbuf, void *unused)
1237 (void) unused;
1238 (void) vbuf;
1240 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1243 static void
1244 buf_init(void)
1246 uint64_t *ct = NULL;
1247 uint64_t hsize = 1ULL << 12;
1248 int i, j;
1251 * The hash table is big enough to fill all of physical memory
1252 * with an average block size of zfs_arc_average_blocksize (default 8K).
1253 * By default, the table will take up
1254 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1256 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1257 hsize <<= 1;
1258 retry:
1259 buf_hash_table.ht_mask = hsize - 1;
1260 #if defined(_KERNEL)
1262 * Large allocations which do not require contiguous pages
1263 * should be using vmem_alloc() in the linux kernel
1265 buf_hash_table.ht_table =
1266 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1267 #else
1268 buf_hash_table.ht_table =
1269 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1270 #endif
1271 if (buf_hash_table.ht_table == NULL) {
1272 ASSERT(hsize > (1ULL << 8));
1273 hsize >>= 1;
1274 goto retry;
1277 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1278 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
1279 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1280 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1281 NULL, NULL, 0);
1282 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1283 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1285 for (i = 0; i < 256; i++)
1286 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1287 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1289 for (i = 0; i < BUF_LOCKS; i++)
1290 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1293 #define ARC_MINTIME (hz>>4) /* 62 ms */
1296 * This is the size that the buf occupies in memory. If the buf is compressed,
1297 * it will correspond to the compressed size. You should use this method of
1298 * getting the buf size unless you explicitly need the logical size.
1300 uint64_t
1301 arc_buf_size(arc_buf_t *buf)
1303 return (ARC_BUF_COMPRESSED(buf) ?
1304 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1307 uint64_t
1308 arc_buf_lsize(arc_buf_t *buf)
1310 return (HDR_GET_LSIZE(buf->b_hdr));
1314 * This function will return B_TRUE if the buffer is encrypted in memory.
1315 * This buffer can be decrypted by calling arc_untransform().
1317 boolean_t
1318 arc_is_encrypted(arc_buf_t *buf)
1320 return (ARC_BUF_ENCRYPTED(buf) != 0);
1324 * Returns B_TRUE if the buffer represents data that has not had its MAC
1325 * verified yet.
1327 boolean_t
1328 arc_is_unauthenticated(arc_buf_t *buf)
1330 return (HDR_NOAUTH(buf->b_hdr) != 0);
1333 void
1334 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1335 uint8_t *iv, uint8_t *mac)
1337 arc_buf_hdr_t *hdr = buf->b_hdr;
1339 ASSERT(HDR_PROTECTED(hdr));
1341 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1342 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1343 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1344 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1345 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1349 * Indicates how this buffer is compressed in memory. If it is not compressed
1350 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1351 * arc_untransform() as long as it is also unencrypted.
1353 enum zio_compress
1354 arc_get_compression(arc_buf_t *buf)
1356 return (ARC_BUF_COMPRESSED(buf) ?
1357 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1361 * Return the compression algorithm used to store this data in the ARC. If ARC
1362 * compression is enabled or this is an encrypted block, this will be the same
1363 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1365 static inline enum zio_compress
1366 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1368 return (HDR_COMPRESSION_ENABLED(hdr) ?
1369 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1372 uint8_t
1373 arc_get_complevel(arc_buf_t *buf)
1375 return (buf->b_hdr->b_complevel);
1378 static inline boolean_t
1379 arc_buf_is_shared(arc_buf_t *buf)
1381 boolean_t shared = (buf->b_data != NULL &&
1382 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1383 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1384 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1385 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1386 EQUIV(shared, ARC_BUF_SHARED(buf));
1387 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1390 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1391 * already being shared" requirement prevents us from doing that.
1394 return (shared);
1398 * Free the checksum associated with this header. If there is no checksum, this
1399 * is a no-op.
1401 static inline void
1402 arc_cksum_free(arc_buf_hdr_t *hdr)
1404 #ifdef ZFS_DEBUG
1405 ASSERT(HDR_HAS_L1HDR(hdr));
1407 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1408 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1409 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1410 hdr->b_l1hdr.b_freeze_cksum = NULL;
1412 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1413 #endif
1417 * Return true iff at least one of the bufs on hdr is not compressed.
1418 * Encrypted buffers count as compressed.
1420 static boolean_t
1421 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1423 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1425 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1426 if (!ARC_BUF_COMPRESSED(b)) {
1427 return (B_TRUE);
1430 return (B_FALSE);
1435 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1436 * matches the checksum that is stored in the hdr. If there is no checksum,
1437 * or if the buf is compressed, this is a no-op.
1439 static void
1440 arc_cksum_verify(arc_buf_t *buf)
1442 #ifdef ZFS_DEBUG
1443 arc_buf_hdr_t *hdr = buf->b_hdr;
1444 zio_cksum_t zc;
1446 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1447 return;
1449 if (ARC_BUF_COMPRESSED(buf))
1450 return;
1452 ASSERT(HDR_HAS_L1HDR(hdr));
1454 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1456 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1457 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1458 return;
1461 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1462 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1463 panic("buffer modified while frozen!");
1464 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1465 #endif
1469 * This function makes the assumption that data stored in the L2ARC
1470 * will be transformed exactly as it is in the main pool. Because of
1471 * this we can verify the checksum against the reading process's bp.
1473 static boolean_t
1474 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1476 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1477 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1480 * Block pointers always store the checksum for the logical data.
1481 * If the block pointer has the gang bit set, then the checksum
1482 * it represents is for the reconstituted data and not for an
1483 * individual gang member. The zio pipeline, however, must be able to
1484 * determine the checksum of each of the gang constituents so it
1485 * treats the checksum comparison differently than what we need
1486 * for l2arc blocks. This prevents us from using the
1487 * zio_checksum_error() interface directly. Instead we must call the
1488 * zio_checksum_error_impl() so that we can ensure the checksum is
1489 * generated using the correct checksum algorithm and accounts for the
1490 * logical I/O size and not just a gang fragment.
1492 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1493 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1494 zio->io_offset, NULL) == 0);
1498 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1499 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1500 * isn't modified later on. If buf is compressed or there is already a checksum
1501 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1503 static void
1504 arc_cksum_compute(arc_buf_t *buf)
1506 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1507 return;
1509 #ifdef ZFS_DEBUG
1510 arc_buf_hdr_t *hdr = buf->b_hdr;
1511 ASSERT(HDR_HAS_L1HDR(hdr));
1512 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1513 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1514 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1515 return;
1518 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1519 ASSERT(!ARC_BUF_COMPRESSED(buf));
1520 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1521 KM_SLEEP);
1522 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1523 hdr->b_l1hdr.b_freeze_cksum);
1524 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1525 #endif
1526 arc_buf_watch(buf);
1529 #ifndef _KERNEL
1530 void
1531 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1533 (void) sig, (void) unused;
1534 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1536 #endif
1538 static void
1539 arc_buf_unwatch(arc_buf_t *buf)
1541 #ifndef _KERNEL
1542 if (arc_watch) {
1543 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1544 PROT_READ | PROT_WRITE));
1546 #else
1547 (void) buf;
1548 #endif
1551 static void
1552 arc_buf_watch(arc_buf_t *buf)
1554 #ifndef _KERNEL
1555 if (arc_watch)
1556 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1557 PROT_READ));
1558 #else
1559 (void) buf;
1560 #endif
1563 static arc_buf_contents_t
1564 arc_buf_type(arc_buf_hdr_t *hdr)
1566 arc_buf_contents_t type;
1567 if (HDR_ISTYPE_METADATA(hdr)) {
1568 type = ARC_BUFC_METADATA;
1569 } else {
1570 type = ARC_BUFC_DATA;
1572 VERIFY3U(hdr->b_type, ==, type);
1573 return (type);
1576 boolean_t
1577 arc_is_metadata(arc_buf_t *buf)
1579 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1582 static uint32_t
1583 arc_bufc_to_flags(arc_buf_contents_t type)
1585 switch (type) {
1586 case ARC_BUFC_DATA:
1587 /* metadata field is 0 if buffer contains normal data */
1588 return (0);
1589 case ARC_BUFC_METADATA:
1590 return (ARC_FLAG_BUFC_METADATA);
1591 default:
1592 break;
1594 panic("undefined ARC buffer type!");
1595 return ((uint32_t)-1);
1598 void
1599 arc_buf_thaw(arc_buf_t *buf)
1601 arc_buf_hdr_t *hdr = buf->b_hdr;
1603 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1604 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1606 arc_cksum_verify(buf);
1609 * Compressed buffers do not manipulate the b_freeze_cksum.
1611 if (ARC_BUF_COMPRESSED(buf))
1612 return;
1614 ASSERT(HDR_HAS_L1HDR(hdr));
1615 arc_cksum_free(hdr);
1616 arc_buf_unwatch(buf);
1619 void
1620 arc_buf_freeze(arc_buf_t *buf)
1622 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1623 return;
1625 if (ARC_BUF_COMPRESSED(buf))
1626 return;
1628 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1629 arc_cksum_compute(buf);
1633 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1634 * the following functions should be used to ensure that the flags are
1635 * updated in a thread-safe way. When manipulating the flags either
1636 * the hash_lock must be held or the hdr must be undiscoverable. This
1637 * ensures that we're not racing with any other threads when updating
1638 * the flags.
1640 static inline void
1641 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1643 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1644 hdr->b_flags |= flags;
1647 static inline void
1648 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1650 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1651 hdr->b_flags &= ~flags;
1655 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1656 * done in a special way since we have to clear and set bits
1657 * at the same time. Consumers that wish to set the compression bits
1658 * must use this function to ensure that the flags are updated in
1659 * thread-safe manner.
1661 static void
1662 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1664 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1667 * Holes and embedded blocks will always have a psize = 0 so
1668 * we ignore the compression of the blkptr and set the
1669 * want to uncompress them. Mark them as uncompressed.
1671 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1672 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1673 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1674 } else {
1675 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1676 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1679 HDR_SET_COMPRESS(hdr, cmp);
1680 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1684 * Looks for another buf on the same hdr which has the data decompressed, copies
1685 * from it, and returns true. If no such buf exists, returns false.
1687 static boolean_t
1688 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1690 arc_buf_hdr_t *hdr = buf->b_hdr;
1691 boolean_t copied = B_FALSE;
1693 ASSERT(HDR_HAS_L1HDR(hdr));
1694 ASSERT3P(buf->b_data, !=, NULL);
1695 ASSERT(!ARC_BUF_COMPRESSED(buf));
1697 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1698 from = from->b_next) {
1699 /* can't use our own data buffer */
1700 if (from == buf) {
1701 continue;
1704 if (!ARC_BUF_COMPRESSED(from)) {
1705 memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1706 copied = B_TRUE;
1707 break;
1711 #ifdef ZFS_DEBUG
1713 * There were no decompressed bufs, so there should not be a
1714 * checksum on the hdr either.
1716 if (zfs_flags & ZFS_DEBUG_MODIFY)
1717 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1718 #endif
1720 return (copied);
1724 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1725 * This is used during l2arc reconstruction to make empty ARC buffers
1726 * which circumvent the regular disk->arc->l2arc path and instead come
1727 * into being in the reverse order, i.e. l2arc->arc.
1729 static arc_buf_hdr_t *
1730 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1731 dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth,
1732 enum zio_compress compress, uint8_t complevel, boolean_t protected,
1733 boolean_t prefetch, arc_state_type_t arcs_state)
1735 arc_buf_hdr_t *hdr;
1737 ASSERT(size != 0);
1738 ASSERT(dev->l2ad_vdev != NULL);
1740 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1741 hdr->b_birth = birth;
1742 hdr->b_type = type;
1743 hdr->b_flags = 0;
1744 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1745 HDR_SET_LSIZE(hdr, size);
1746 HDR_SET_PSIZE(hdr, psize);
1747 HDR_SET_L2SIZE(hdr, asize);
1748 arc_hdr_set_compress(hdr, compress);
1749 hdr->b_complevel = complevel;
1750 if (protected)
1751 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1752 if (prefetch)
1753 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1754 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1756 hdr->b_dva = dva;
1758 hdr->b_l2hdr.b_dev = dev;
1759 hdr->b_l2hdr.b_daddr = daddr;
1760 hdr->b_l2hdr.b_arcs_state = arcs_state;
1762 return (hdr);
1766 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1768 static uint64_t
1769 arc_hdr_size(arc_buf_hdr_t *hdr)
1771 uint64_t size;
1773 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1774 HDR_GET_PSIZE(hdr) > 0) {
1775 size = HDR_GET_PSIZE(hdr);
1776 } else {
1777 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1778 size = HDR_GET_LSIZE(hdr);
1780 return (size);
1783 static int
1784 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1786 int ret;
1787 uint64_t csize;
1788 uint64_t lsize = HDR_GET_LSIZE(hdr);
1789 uint64_t psize = HDR_GET_PSIZE(hdr);
1790 abd_t *abd = hdr->b_l1hdr.b_pabd;
1791 boolean_t free_abd = B_FALSE;
1793 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1794 ASSERT(HDR_AUTHENTICATED(hdr));
1795 ASSERT3P(abd, !=, NULL);
1798 * The MAC is calculated on the compressed data that is stored on disk.
1799 * However, if compressed arc is disabled we will only have the
1800 * decompressed data available to us now. Compress it into a temporary
1801 * abd so we can verify the MAC. The performance overhead of this will
1802 * be relatively low, since most objects in an encrypted objset will
1803 * be encrypted (instead of authenticated) anyway.
1805 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1806 !HDR_COMPRESSION_ENABLED(hdr)) {
1807 abd = NULL;
1808 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1809 hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
1810 hdr->b_complevel);
1811 if (csize >= lsize || csize > psize) {
1812 ret = SET_ERROR(EIO);
1813 return (ret);
1815 ASSERT3P(abd, !=, NULL);
1816 abd_zero_off(abd, csize, psize - csize);
1817 free_abd = B_TRUE;
1821 * Authentication is best effort. We authenticate whenever the key is
1822 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1824 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1825 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1826 ASSERT3U(lsize, ==, psize);
1827 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1828 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1829 } else {
1830 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1831 hdr->b_crypt_hdr.b_mac);
1834 if (ret == 0)
1835 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1836 else if (ret == ENOENT)
1837 ret = 0;
1839 if (free_abd)
1840 abd_free(abd);
1842 return (ret);
1846 * This function will take a header that only has raw encrypted data in
1847 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1848 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1849 * also decompress the data.
1851 static int
1852 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1854 int ret;
1855 abd_t *cabd = NULL;
1856 boolean_t no_crypt = B_FALSE;
1857 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1859 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1860 ASSERT(HDR_ENCRYPTED(hdr));
1862 arc_hdr_alloc_abd(hdr, 0);
1864 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1865 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1866 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1867 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1868 if (ret != 0)
1869 goto error;
1871 if (no_crypt) {
1872 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1873 HDR_GET_PSIZE(hdr));
1877 * If this header has disabled arc compression but the b_pabd is
1878 * compressed after decrypting it, we need to decompress the newly
1879 * decrypted data.
1881 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1882 !HDR_COMPRESSION_ENABLED(hdr)) {
1884 * We want to make sure that we are correctly honoring the
1885 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1886 * and then loan a buffer from it, rather than allocating a
1887 * linear buffer and wrapping it in an abd later.
1889 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1891 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1892 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
1893 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1894 if (ret != 0) {
1895 goto error;
1898 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1899 arc_hdr_size(hdr), hdr);
1900 hdr->b_l1hdr.b_pabd = cabd;
1903 return (0);
1905 error:
1906 arc_hdr_free_abd(hdr, B_FALSE);
1907 if (cabd != NULL)
1908 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1910 return (ret);
1914 * This function is called during arc_buf_fill() to prepare the header's
1915 * abd plaintext pointer for use. This involves authenticated protected
1916 * data and decrypting encrypted data into the plaintext abd.
1918 static int
1919 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1920 const zbookmark_phys_t *zb, boolean_t noauth)
1922 int ret;
1924 ASSERT(HDR_PROTECTED(hdr));
1926 if (hash_lock != NULL)
1927 mutex_enter(hash_lock);
1929 if (HDR_NOAUTH(hdr) && !noauth) {
1931 * The caller requested authenticated data but our data has
1932 * not been authenticated yet. Verify the MAC now if we can.
1934 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1935 if (ret != 0)
1936 goto error;
1937 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1939 * If we only have the encrypted version of the data, but the
1940 * unencrypted version was requested we take this opportunity
1941 * to store the decrypted version in the header for future use.
1943 ret = arc_hdr_decrypt(hdr, spa, zb);
1944 if (ret != 0)
1945 goto error;
1948 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1950 if (hash_lock != NULL)
1951 mutex_exit(hash_lock);
1953 return (0);
1955 error:
1956 if (hash_lock != NULL)
1957 mutex_exit(hash_lock);
1959 return (ret);
1963 * This function is used by the dbuf code to decrypt bonus buffers in place.
1964 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1965 * block, so we use the hash lock here to protect against concurrent calls to
1966 * arc_buf_fill().
1968 static void
1969 arc_buf_untransform_in_place(arc_buf_t *buf)
1971 arc_buf_hdr_t *hdr = buf->b_hdr;
1973 ASSERT(HDR_ENCRYPTED(hdr));
1974 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1975 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1976 ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
1978 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1979 arc_buf_size(buf));
1980 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1981 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1985 * Given a buf that has a data buffer attached to it, this function will
1986 * efficiently fill the buf with data of the specified compression setting from
1987 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1988 * are already sharing a data buf, no copy is performed.
1990 * If the buf is marked as compressed but uncompressed data was requested, this
1991 * will allocate a new data buffer for the buf, remove that flag, and fill the
1992 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1993 * uncompressed data, and (since we haven't added support for it yet) if you
1994 * want compressed data your buf must already be marked as compressed and have
1995 * the correct-sized data buffer.
1997 static int
1998 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1999 arc_fill_flags_t flags)
2001 int error = 0;
2002 arc_buf_hdr_t *hdr = buf->b_hdr;
2003 boolean_t hdr_compressed =
2004 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2005 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2006 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2007 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2008 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2010 ASSERT3P(buf->b_data, !=, NULL);
2011 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2012 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2013 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2014 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2015 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2016 IMPLY(encrypted, !arc_buf_is_shared(buf));
2019 * If the caller wanted encrypted data we just need to copy it from
2020 * b_rabd and potentially byteswap it. We won't be able to do any
2021 * further transforms on it.
2023 if (encrypted) {
2024 ASSERT(HDR_HAS_RABD(hdr));
2025 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2026 HDR_GET_PSIZE(hdr));
2027 goto byteswap;
2031 * Adjust encrypted and authenticated headers to accommodate
2032 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2033 * allowed to fail decryption due to keys not being loaded
2034 * without being marked as an IO error.
2036 if (HDR_PROTECTED(hdr)) {
2037 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2038 zb, !!(flags & ARC_FILL_NOAUTH));
2039 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2040 return (error);
2041 } else if (error != 0) {
2042 if (hash_lock != NULL)
2043 mutex_enter(hash_lock);
2044 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2045 if (hash_lock != NULL)
2046 mutex_exit(hash_lock);
2047 return (error);
2052 * There is a special case here for dnode blocks which are
2053 * decrypting their bonus buffers. These blocks may request to
2054 * be decrypted in-place. This is necessary because there may
2055 * be many dnodes pointing into this buffer and there is
2056 * currently no method to synchronize replacing the backing
2057 * b_data buffer and updating all of the pointers. Here we use
2058 * the hash lock to ensure there are no races. If the need
2059 * arises for other types to be decrypted in-place, they must
2060 * add handling here as well.
2062 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2063 ASSERT(!hdr_compressed);
2064 ASSERT(!compressed);
2065 ASSERT(!encrypted);
2067 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2068 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2070 if (hash_lock != NULL)
2071 mutex_enter(hash_lock);
2072 arc_buf_untransform_in_place(buf);
2073 if (hash_lock != NULL)
2074 mutex_exit(hash_lock);
2076 /* Compute the hdr's checksum if necessary */
2077 arc_cksum_compute(buf);
2080 return (0);
2083 if (hdr_compressed == compressed) {
2084 if (ARC_BUF_SHARED(buf)) {
2085 ASSERT(arc_buf_is_shared(buf));
2086 } else {
2087 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2088 arc_buf_size(buf));
2090 } else {
2091 ASSERT(hdr_compressed);
2092 ASSERT(!compressed);
2095 * If the buf is sharing its data with the hdr, unlink it and
2096 * allocate a new data buffer for the buf.
2098 if (ARC_BUF_SHARED(buf)) {
2099 ASSERTF(ARC_BUF_COMPRESSED(buf),
2100 "buf %p was uncompressed", buf);
2102 /* We need to give the buf its own b_data */
2103 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2104 buf->b_data =
2105 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2106 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2108 /* Previously overhead was 0; just add new overhead */
2109 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2110 } else if (ARC_BUF_COMPRESSED(buf)) {
2111 ASSERT(!arc_buf_is_shared(buf));
2113 /* We need to reallocate the buf's b_data */
2114 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2115 buf);
2116 buf->b_data =
2117 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2119 /* We increased the size of b_data; update overhead */
2120 ARCSTAT_INCR(arcstat_overhead_size,
2121 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2125 * Regardless of the buf's previous compression settings, it
2126 * should not be compressed at the end of this function.
2128 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2131 * Try copying the data from another buf which already has a
2132 * decompressed version. If that's not possible, it's time to
2133 * bite the bullet and decompress the data from the hdr.
2135 if (arc_buf_try_copy_decompressed_data(buf)) {
2136 /* Skip byteswapping and checksumming (already done) */
2137 return (0);
2138 } else {
2139 abd_t dabd;
2140 abd_get_from_buf_struct(&dabd, buf->b_data,
2141 HDR_GET_LSIZE(hdr));
2142 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2143 hdr->b_l1hdr.b_pabd, &dabd,
2144 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2145 &hdr->b_complevel);
2146 abd_free(&dabd);
2149 * Absent hardware errors or software bugs, this should
2150 * be impossible, but log it anyway so we can debug it.
2152 if (error != 0) {
2153 zfs_dbgmsg(
2154 "hdr %px, compress %d, psize %d, lsize %d",
2155 hdr, arc_hdr_get_compress(hdr),
2156 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2157 if (hash_lock != NULL)
2158 mutex_enter(hash_lock);
2159 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2160 if (hash_lock != NULL)
2161 mutex_exit(hash_lock);
2162 return (SET_ERROR(EIO));
2167 byteswap:
2168 /* Byteswap the buf's data if necessary */
2169 if (bswap != DMU_BSWAP_NUMFUNCS) {
2170 ASSERT(!HDR_SHARED_DATA(hdr));
2171 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2172 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2175 /* Compute the hdr's checksum if necessary */
2176 arc_cksum_compute(buf);
2178 return (0);
2182 * If this function is being called to decrypt an encrypted buffer or verify an
2183 * authenticated one, the key must be loaded and a mapping must be made
2184 * available in the keystore via spa_keystore_create_mapping() or one of its
2185 * callers.
2188 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2189 boolean_t in_place)
2191 int ret;
2192 arc_fill_flags_t flags = 0;
2194 if (in_place)
2195 flags |= ARC_FILL_IN_PLACE;
2197 ret = arc_buf_fill(buf, spa, zb, flags);
2198 if (ret == ECKSUM) {
2200 * Convert authentication and decryption errors to EIO
2201 * (and generate an ereport) before leaving the ARC.
2203 ret = SET_ERROR(EIO);
2204 spa_log_error(spa, zb, buf->b_hdr->b_birth);
2205 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2206 spa, NULL, zb, NULL, 0);
2209 return (ret);
2213 * Increment the amount of evictable space in the arc_state_t's refcount.
2214 * We account for the space used by the hdr and the arc buf individually
2215 * so that we can add and remove them from the refcount individually.
2217 static void
2218 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2220 arc_buf_contents_t type = arc_buf_type(hdr);
2222 ASSERT(HDR_HAS_L1HDR(hdr));
2224 if (GHOST_STATE(state)) {
2225 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2226 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2227 ASSERT(!HDR_HAS_RABD(hdr));
2228 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2229 HDR_GET_LSIZE(hdr), hdr);
2230 return;
2233 if (hdr->b_l1hdr.b_pabd != NULL) {
2234 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2235 arc_hdr_size(hdr), hdr);
2237 if (HDR_HAS_RABD(hdr)) {
2238 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2239 HDR_GET_PSIZE(hdr), hdr);
2242 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2243 buf = buf->b_next) {
2244 if (ARC_BUF_SHARED(buf))
2245 continue;
2246 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2247 arc_buf_size(buf), buf);
2252 * Decrement the amount of evictable space in the arc_state_t's refcount.
2253 * We account for the space used by the hdr and the arc buf individually
2254 * so that we can add and remove them from the refcount individually.
2256 static void
2257 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2259 arc_buf_contents_t type = arc_buf_type(hdr);
2261 ASSERT(HDR_HAS_L1HDR(hdr));
2263 if (GHOST_STATE(state)) {
2264 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2265 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2266 ASSERT(!HDR_HAS_RABD(hdr));
2267 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2268 HDR_GET_LSIZE(hdr), hdr);
2269 return;
2272 if (hdr->b_l1hdr.b_pabd != NULL) {
2273 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2274 arc_hdr_size(hdr), hdr);
2276 if (HDR_HAS_RABD(hdr)) {
2277 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2278 HDR_GET_PSIZE(hdr), hdr);
2281 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2282 buf = buf->b_next) {
2283 if (ARC_BUF_SHARED(buf))
2284 continue;
2285 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2286 arc_buf_size(buf), buf);
2291 * Add a reference to this hdr indicating that someone is actively
2292 * referencing that memory. When the refcount transitions from 0 to 1,
2293 * we remove it from the respective arc_state_t list to indicate that
2294 * it is not evictable.
2296 static void
2297 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2299 arc_state_t *state = hdr->b_l1hdr.b_state;
2301 ASSERT(HDR_HAS_L1HDR(hdr));
2302 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2303 ASSERT(state == arc_anon);
2304 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2305 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2308 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2309 state != arc_anon && state != arc_l2c_only) {
2310 /* We don't use the L2-only state list. */
2311 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2312 arc_evictable_space_decrement(hdr, state);
2317 * Remove a reference from this hdr. When the reference transitions from
2318 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2319 * list making it eligible for eviction.
2321 static int
2322 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2324 int cnt;
2325 arc_state_t *state = hdr->b_l1hdr.b_state;
2327 ASSERT(HDR_HAS_L1HDR(hdr));
2328 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2329 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */
2331 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2332 return (cnt);
2334 if (state == arc_anon) {
2335 arc_hdr_destroy(hdr);
2336 return (0);
2338 if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2339 arc_change_state(arc_anon, hdr);
2340 arc_hdr_destroy(hdr);
2341 return (0);
2343 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2344 arc_evictable_space_increment(hdr, state);
2345 return (0);
2349 * Returns detailed information about a specific arc buffer. When the
2350 * state_index argument is set the function will calculate the arc header
2351 * list position for its arc state. Since this requires a linear traversal
2352 * callers are strongly encourage not to do this. However, it can be helpful
2353 * for targeted analysis so the functionality is provided.
2355 void
2356 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2358 (void) state_index;
2359 arc_buf_hdr_t *hdr = ab->b_hdr;
2360 l1arc_buf_hdr_t *l1hdr = NULL;
2361 l2arc_buf_hdr_t *l2hdr = NULL;
2362 arc_state_t *state = NULL;
2364 memset(abi, 0, sizeof (arc_buf_info_t));
2366 if (hdr == NULL)
2367 return;
2369 abi->abi_flags = hdr->b_flags;
2371 if (HDR_HAS_L1HDR(hdr)) {
2372 l1hdr = &hdr->b_l1hdr;
2373 state = l1hdr->b_state;
2375 if (HDR_HAS_L2HDR(hdr))
2376 l2hdr = &hdr->b_l2hdr;
2378 if (l1hdr) {
2379 abi->abi_bufcnt = 0;
2380 for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2381 abi->abi_bufcnt++;
2382 abi->abi_access = l1hdr->b_arc_access;
2383 abi->abi_mru_hits = l1hdr->b_mru_hits;
2384 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2385 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2386 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2387 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2390 if (l2hdr) {
2391 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2392 abi->abi_l2arc_hits = l2hdr->b_hits;
2395 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2396 abi->abi_state_contents = arc_buf_type(hdr);
2397 abi->abi_size = arc_hdr_size(hdr);
2401 * Move the supplied buffer to the indicated state. The hash lock
2402 * for the buffer must be held by the caller.
2404 static void
2405 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2407 arc_state_t *old_state;
2408 int64_t refcnt;
2409 boolean_t update_old, update_new;
2410 arc_buf_contents_t type = arc_buf_type(hdr);
2413 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2414 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2415 * L1 hdr doesn't always exist when we change state to arc_anon before
2416 * destroying a header, in which case reallocating to add the L1 hdr is
2417 * pointless.
2419 if (HDR_HAS_L1HDR(hdr)) {
2420 old_state = hdr->b_l1hdr.b_state;
2421 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2422 update_old = (hdr->b_l1hdr.b_buf != NULL ||
2423 hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2425 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2426 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2427 IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2428 ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2429 } else {
2430 old_state = arc_l2c_only;
2431 refcnt = 0;
2432 update_old = B_FALSE;
2434 update_new = update_old;
2435 if (GHOST_STATE(old_state))
2436 update_old = B_TRUE;
2437 if (GHOST_STATE(new_state))
2438 update_new = B_TRUE;
2440 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2441 ASSERT3P(new_state, !=, old_state);
2444 * If this buffer is evictable, transfer it from the
2445 * old state list to the new state list.
2447 if (refcnt == 0) {
2448 if (old_state != arc_anon && old_state != arc_l2c_only) {
2449 ASSERT(HDR_HAS_L1HDR(hdr));
2450 /* remove_reference() saves on insert. */
2451 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2452 multilist_remove(&old_state->arcs_list[type],
2453 hdr);
2454 arc_evictable_space_decrement(hdr, old_state);
2457 if (new_state != arc_anon && new_state != arc_l2c_only) {
2459 * An L1 header always exists here, since if we're
2460 * moving to some L1-cached state (i.e. not l2c_only or
2461 * anonymous), we realloc the header to add an L1hdr
2462 * beforehand.
2464 ASSERT(HDR_HAS_L1HDR(hdr));
2465 multilist_insert(&new_state->arcs_list[type], hdr);
2466 arc_evictable_space_increment(hdr, new_state);
2470 ASSERT(!HDR_EMPTY(hdr));
2471 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2472 buf_hash_remove(hdr);
2474 /* adjust state sizes (ignore arc_l2c_only) */
2476 if (update_new && new_state != arc_l2c_only) {
2477 ASSERT(HDR_HAS_L1HDR(hdr));
2478 if (GHOST_STATE(new_state)) {
2481 * When moving a header to a ghost state, we first
2482 * remove all arc buffers. Thus, we'll have no arc
2483 * buffer to use for the reference. As a result, we
2484 * use the arc header pointer for the reference.
2486 (void) zfs_refcount_add_many(
2487 &new_state->arcs_size[type],
2488 HDR_GET_LSIZE(hdr), hdr);
2489 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2490 ASSERT(!HDR_HAS_RABD(hdr));
2491 } else {
2494 * Each individual buffer holds a unique reference,
2495 * thus we must remove each of these references one
2496 * at a time.
2498 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2499 buf = buf->b_next) {
2502 * When the arc_buf_t is sharing the data
2503 * block with the hdr, the owner of the
2504 * reference belongs to the hdr. Only
2505 * add to the refcount if the arc_buf_t is
2506 * not shared.
2508 if (ARC_BUF_SHARED(buf))
2509 continue;
2511 (void) zfs_refcount_add_many(
2512 &new_state->arcs_size[type],
2513 arc_buf_size(buf), buf);
2516 if (hdr->b_l1hdr.b_pabd != NULL) {
2517 (void) zfs_refcount_add_many(
2518 &new_state->arcs_size[type],
2519 arc_hdr_size(hdr), hdr);
2522 if (HDR_HAS_RABD(hdr)) {
2523 (void) zfs_refcount_add_many(
2524 &new_state->arcs_size[type],
2525 HDR_GET_PSIZE(hdr), hdr);
2530 if (update_old && old_state != arc_l2c_only) {
2531 ASSERT(HDR_HAS_L1HDR(hdr));
2532 if (GHOST_STATE(old_state)) {
2533 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2534 ASSERT(!HDR_HAS_RABD(hdr));
2537 * When moving a header off of a ghost state,
2538 * the header will not contain any arc buffers.
2539 * We use the arc header pointer for the reference
2540 * which is exactly what we did when we put the
2541 * header on the ghost state.
2544 (void) zfs_refcount_remove_many(
2545 &old_state->arcs_size[type],
2546 HDR_GET_LSIZE(hdr), hdr);
2547 } else {
2550 * Each individual buffer holds a unique reference,
2551 * thus we must remove each of these references one
2552 * at a time.
2554 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2555 buf = buf->b_next) {
2558 * When the arc_buf_t is sharing the data
2559 * block with the hdr, the owner of the
2560 * reference belongs to the hdr. Only
2561 * add to the refcount if the arc_buf_t is
2562 * not shared.
2564 if (ARC_BUF_SHARED(buf))
2565 continue;
2567 (void) zfs_refcount_remove_many(
2568 &old_state->arcs_size[type],
2569 arc_buf_size(buf), buf);
2571 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2572 HDR_HAS_RABD(hdr));
2574 if (hdr->b_l1hdr.b_pabd != NULL) {
2575 (void) zfs_refcount_remove_many(
2576 &old_state->arcs_size[type],
2577 arc_hdr_size(hdr), hdr);
2580 if (HDR_HAS_RABD(hdr)) {
2581 (void) zfs_refcount_remove_many(
2582 &old_state->arcs_size[type],
2583 HDR_GET_PSIZE(hdr), hdr);
2588 if (HDR_HAS_L1HDR(hdr)) {
2589 hdr->b_l1hdr.b_state = new_state;
2591 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2592 l2arc_hdr_arcstats_decrement_state(hdr);
2593 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2594 l2arc_hdr_arcstats_increment_state(hdr);
2599 void
2600 arc_space_consume(uint64_t space, arc_space_type_t type)
2602 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2604 switch (type) {
2605 default:
2606 break;
2607 case ARC_SPACE_DATA:
2608 ARCSTAT_INCR(arcstat_data_size, space);
2609 break;
2610 case ARC_SPACE_META:
2611 ARCSTAT_INCR(arcstat_metadata_size, space);
2612 break;
2613 case ARC_SPACE_BONUS:
2614 ARCSTAT_INCR(arcstat_bonus_size, space);
2615 break;
2616 case ARC_SPACE_DNODE:
2617 ARCSTAT_INCR(arcstat_dnode_size, space);
2618 break;
2619 case ARC_SPACE_DBUF:
2620 ARCSTAT_INCR(arcstat_dbuf_size, space);
2621 break;
2622 case ARC_SPACE_HDRS:
2623 ARCSTAT_INCR(arcstat_hdr_size, space);
2624 break;
2625 case ARC_SPACE_L2HDRS:
2626 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2627 break;
2628 case ARC_SPACE_ABD_CHUNK_WASTE:
2630 * Note: this includes space wasted by all scatter ABD's, not
2631 * just those allocated by the ARC. But the vast majority of
2632 * scatter ABD's come from the ARC, because other users are
2633 * very short-lived.
2635 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2636 break;
2639 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2640 ARCSTAT_INCR(arcstat_meta_used, space);
2642 aggsum_add(&arc_sums.arcstat_size, space);
2645 void
2646 arc_space_return(uint64_t space, arc_space_type_t type)
2648 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2650 switch (type) {
2651 default:
2652 break;
2653 case ARC_SPACE_DATA:
2654 ARCSTAT_INCR(arcstat_data_size, -space);
2655 break;
2656 case ARC_SPACE_META:
2657 ARCSTAT_INCR(arcstat_metadata_size, -space);
2658 break;
2659 case ARC_SPACE_BONUS:
2660 ARCSTAT_INCR(arcstat_bonus_size, -space);
2661 break;
2662 case ARC_SPACE_DNODE:
2663 ARCSTAT_INCR(arcstat_dnode_size, -space);
2664 break;
2665 case ARC_SPACE_DBUF:
2666 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2667 break;
2668 case ARC_SPACE_HDRS:
2669 ARCSTAT_INCR(arcstat_hdr_size, -space);
2670 break;
2671 case ARC_SPACE_L2HDRS:
2672 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2673 break;
2674 case ARC_SPACE_ABD_CHUNK_WASTE:
2675 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2676 break;
2679 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2680 ARCSTAT_INCR(arcstat_meta_used, -space);
2682 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2683 aggsum_add(&arc_sums.arcstat_size, -space);
2687 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2688 * with the hdr's b_pabd.
2690 static boolean_t
2691 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2694 * The criteria for sharing a hdr's data are:
2695 * 1. the buffer is not encrypted
2696 * 2. the hdr's compression matches the buf's compression
2697 * 3. the hdr doesn't need to be byteswapped
2698 * 4. the hdr isn't already being shared
2699 * 5. the buf is either compressed or it is the last buf in the hdr list
2701 * Criterion #5 maintains the invariant that shared uncompressed
2702 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2703 * might ask, "if a compressed buf is allocated first, won't that be the
2704 * last thing in the list?", but in that case it's impossible to create
2705 * a shared uncompressed buf anyway (because the hdr must be compressed
2706 * to have the compressed buf). You might also think that #3 is
2707 * sufficient to make this guarantee, however it's possible
2708 * (specifically in the rare L2ARC write race mentioned in
2709 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2710 * is shareable, but wasn't at the time of its allocation. Rather than
2711 * allow a new shared uncompressed buf to be created and then shuffle
2712 * the list around to make it the last element, this simply disallows
2713 * sharing if the new buf isn't the first to be added.
2715 ASSERT3P(buf->b_hdr, ==, hdr);
2716 boolean_t hdr_compressed =
2717 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2718 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2719 return (!ARC_BUF_ENCRYPTED(buf) &&
2720 buf_compressed == hdr_compressed &&
2721 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2722 !HDR_SHARED_DATA(hdr) &&
2723 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2727 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2728 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2729 * copy was made successfully, or an error code otherwise.
2731 static int
2732 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2733 const void *tag, boolean_t encrypted, boolean_t compressed,
2734 boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2736 arc_buf_t *buf;
2737 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2739 ASSERT(HDR_HAS_L1HDR(hdr));
2740 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2741 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2742 hdr->b_type == ARC_BUFC_METADATA);
2743 ASSERT3P(ret, !=, NULL);
2744 ASSERT3P(*ret, ==, NULL);
2745 IMPLY(encrypted, compressed);
2747 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2748 buf->b_hdr = hdr;
2749 buf->b_data = NULL;
2750 buf->b_next = hdr->b_l1hdr.b_buf;
2751 buf->b_flags = 0;
2753 add_reference(hdr, tag);
2756 * We're about to change the hdr's b_flags. We must either
2757 * hold the hash_lock or be undiscoverable.
2759 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2762 * Only honor requests for compressed bufs if the hdr is actually
2763 * compressed. This must be overridden if the buffer is encrypted since
2764 * encrypted buffers cannot be decompressed.
2766 if (encrypted) {
2767 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2768 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2769 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2770 } else if (compressed &&
2771 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2772 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2773 flags |= ARC_FILL_COMPRESSED;
2776 if (noauth) {
2777 ASSERT0(encrypted);
2778 flags |= ARC_FILL_NOAUTH;
2782 * If the hdr's data can be shared then we share the data buffer and
2783 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2784 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2785 * buffer to store the buf's data.
2787 * There are two additional restrictions here because we're sharing
2788 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2789 * actively involved in an L2ARC write, because if this buf is used by
2790 * an arc_write() then the hdr's data buffer will be released when the
2791 * write completes, even though the L2ARC write might still be using it.
2792 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2793 * need to be ABD-aware. It must be allocated via
2794 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2795 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2796 * page" buffers because the ABD code needs to handle freeing them
2797 * specially.
2799 boolean_t can_share = arc_can_share(hdr, buf) &&
2800 !HDR_L2_WRITING(hdr) &&
2801 hdr->b_l1hdr.b_pabd != NULL &&
2802 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2803 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2805 /* Set up b_data and sharing */
2806 if (can_share) {
2807 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2808 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2809 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2810 } else {
2811 buf->b_data =
2812 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2813 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2815 VERIFY3P(buf->b_data, !=, NULL);
2817 hdr->b_l1hdr.b_buf = buf;
2820 * If the user wants the data from the hdr, we need to either copy or
2821 * decompress the data.
2823 if (fill) {
2824 ASSERT3P(zb, !=, NULL);
2825 return (arc_buf_fill(buf, spa, zb, flags));
2828 return (0);
2831 static const char *arc_onloan_tag = "onloan";
2833 static inline void
2834 arc_loaned_bytes_update(int64_t delta)
2836 atomic_add_64(&arc_loaned_bytes, delta);
2838 /* assert that it did not wrap around */
2839 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2843 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2844 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2845 * buffers must be returned to the arc before they can be used by the DMU or
2846 * freed.
2848 arc_buf_t *
2849 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2851 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2852 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2854 arc_loaned_bytes_update(arc_buf_size(buf));
2856 return (buf);
2859 arc_buf_t *
2860 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2861 enum zio_compress compression_type, uint8_t complevel)
2863 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2864 psize, lsize, compression_type, complevel);
2866 arc_loaned_bytes_update(arc_buf_size(buf));
2868 return (buf);
2871 arc_buf_t *
2872 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2873 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2874 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2875 enum zio_compress compression_type, uint8_t complevel)
2877 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2878 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2879 complevel);
2881 atomic_add_64(&arc_loaned_bytes, psize);
2882 return (buf);
2887 * Return a loaned arc buffer to the arc.
2889 void
2890 arc_return_buf(arc_buf_t *buf, const void *tag)
2892 arc_buf_hdr_t *hdr = buf->b_hdr;
2894 ASSERT3P(buf->b_data, !=, NULL);
2895 ASSERT(HDR_HAS_L1HDR(hdr));
2896 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2897 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2899 arc_loaned_bytes_update(-arc_buf_size(buf));
2902 /* Detach an arc_buf from a dbuf (tag) */
2903 void
2904 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2906 arc_buf_hdr_t *hdr = buf->b_hdr;
2908 ASSERT3P(buf->b_data, !=, NULL);
2909 ASSERT(HDR_HAS_L1HDR(hdr));
2910 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2911 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2913 arc_loaned_bytes_update(arc_buf_size(buf));
2916 static void
2917 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2919 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2921 df->l2df_abd = abd;
2922 df->l2df_size = size;
2923 df->l2df_type = type;
2924 mutex_enter(&l2arc_free_on_write_mtx);
2925 list_insert_head(l2arc_free_on_write, df);
2926 mutex_exit(&l2arc_free_on_write_mtx);
2929 static void
2930 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2932 arc_state_t *state = hdr->b_l1hdr.b_state;
2933 arc_buf_contents_t type = arc_buf_type(hdr);
2934 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2936 /* protected by hash lock, if in the hash table */
2937 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2938 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2939 ASSERT(state != arc_anon && state != arc_l2c_only);
2941 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2942 size, hdr);
2944 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2945 if (type == ARC_BUFC_METADATA) {
2946 arc_space_return(size, ARC_SPACE_META);
2947 } else {
2948 ASSERT(type == ARC_BUFC_DATA);
2949 arc_space_return(size, ARC_SPACE_DATA);
2952 if (free_rdata) {
2953 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2954 } else {
2955 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2960 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2961 * data buffer, we transfer the refcount ownership to the hdr and update
2962 * the appropriate kstats.
2964 static void
2965 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2967 ASSERT(arc_can_share(hdr, buf));
2968 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2969 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2970 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2973 * Start sharing the data buffer. We transfer the
2974 * refcount ownership to the hdr since it always owns
2975 * the refcount whenever an arc_buf_t is shared.
2977 zfs_refcount_transfer_ownership_many(
2978 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2979 arc_hdr_size(hdr), buf, hdr);
2980 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2981 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2982 HDR_ISTYPE_METADATA(hdr));
2983 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2984 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2987 * Since we've transferred ownership to the hdr we need
2988 * to increment its compressed and uncompressed kstats and
2989 * decrement the overhead size.
2991 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2992 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2993 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2996 static void
2997 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2999 ASSERT(arc_buf_is_shared(buf));
3000 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3001 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3004 * We are no longer sharing this buffer so we need
3005 * to transfer its ownership to the rightful owner.
3007 zfs_refcount_transfer_ownership_many(
3008 &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3009 arc_hdr_size(hdr), hdr, buf);
3010 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3011 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3012 abd_free(hdr->b_l1hdr.b_pabd);
3013 hdr->b_l1hdr.b_pabd = NULL;
3014 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3017 * Since the buffer is no longer shared between
3018 * the arc buf and the hdr, count it as overhead.
3020 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3021 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3022 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3026 * Remove an arc_buf_t from the hdr's buf list and return the last
3027 * arc_buf_t on the list. If no buffers remain on the list then return
3028 * NULL.
3030 static arc_buf_t *
3031 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3033 ASSERT(HDR_HAS_L1HDR(hdr));
3034 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3036 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3037 arc_buf_t *lastbuf = NULL;
3040 * Remove the buf from the hdr list and locate the last
3041 * remaining buffer on the list.
3043 while (*bufp != NULL) {
3044 if (*bufp == buf)
3045 *bufp = buf->b_next;
3048 * If we've removed a buffer in the middle of
3049 * the list then update the lastbuf and update
3050 * bufp.
3052 if (*bufp != NULL) {
3053 lastbuf = *bufp;
3054 bufp = &(*bufp)->b_next;
3057 buf->b_next = NULL;
3058 ASSERT3P(lastbuf, !=, buf);
3059 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3061 return (lastbuf);
3065 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3066 * list and free it.
3068 static void
3069 arc_buf_destroy_impl(arc_buf_t *buf)
3071 arc_buf_hdr_t *hdr = buf->b_hdr;
3074 * Free up the data associated with the buf but only if we're not
3075 * sharing this with the hdr. If we are sharing it with the hdr, the
3076 * hdr is responsible for doing the free.
3078 if (buf->b_data != NULL) {
3080 * We're about to change the hdr's b_flags. We must either
3081 * hold the hash_lock or be undiscoverable.
3083 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3085 arc_cksum_verify(buf);
3086 arc_buf_unwatch(buf);
3088 if (ARC_BUF_SHARED(buf)) {
3089 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3090 } else {
3091 ASSERT(!arc_buf_is_shared(buf));
3092 uint64_t size = arc_buf_size(buf);
3093 arc_free_data_buf(hdr, buf->b_data, size, buf);
3094 ARCSTAT_INCR(arcstat_overhead_size, -size);
3096 buf->b_data = NULL;
3099 * If we have no more encrypted buffers and we've already
3100 * gotten a copy of the decrypted data we can free b_rabd
3101 * to save some space.
3103 if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3104 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3105 arc_buf_t *b;
3106 for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3107 if (b != buf && ARC_BUF_ENCRYPTED(b))
3108 break;
3110 if (b == NULL)
3111 arc_hdr_free_abd(hdr, B_TRUE);
3115 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3117 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3119 * If the current arc_buf_t is sharing its data buffer with the
3120 * hdr, then reassign the hdr's b_pabd to share it with the new
3121 * buffer at the end of the list. The shared buffer is always
3122 * the last one on the hdr's buffer list.
3124 * There is an equivalent case for compressed bufs, but since
3125 * they aren't guaranteed to be the last buf in the list and
3126 * that is an exceedingly rare case, we just allow that space be
3127 * wasted temporarily. We must also be careful not to share
3128 * encrypted buffers, since they cannot be shared.
3130 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3131 /* Only one buf can be shared at once */
3132 ASSERT(!arc_buf_is_shared(lastbuf));
3133 /* hdr is uncompressed so can't have compressed buf */
3134 ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3136 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3137 arc_hdr_free_abd(hdr, B_FALSE);
3140 * We must setup a new shared block between the
3141 * last buffer and the hdr. The data would have
3142 * been allocated by the arc buf so we need to transfer
3143 * ownership to the hdr since it's now being shared.
3145 arc_share_buf(hdr, lastbuf);
3147 } else if (HDR_SHARED_DATA(hdr)) {
3149 * Uncompressed shared buffers are always at the end
3150 * of the list. Compressed buffers don't have the
3151 * same requirements. This makes it hard to
3152 * simply assert that the lastbuf is shared so
3153 * we rely on the hdr's compression flags to determine
3154 * if we have a compressed, shared buffer.
3156 ASSERT3P(lastbuf, !=, NULL);
3157 ASSERT(arc_buf_is_shared(lastbuf) ||
3158 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3162 * Free the checksum if we're removing the last uncompressed buf from
3163 * this hdr.
3165 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3166 arc_cksum_free(hdr);
3169 /* clean up the buf */
3170 buf->b_hdr = NULL;
3171 kmem_cache_free(buf_cache, buf);
3174 static void
3175 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3177 uint64_t size;
3178 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3180 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3181 ASSERT(HDR_HAS_L1HDR(hdr));
3182 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3183 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3185 if (alloc_rdata) {
3186 size = HDR_GET_PSIZE(hdr);
3187 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3188 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3189 alloc_flags);
3190 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3191 ARCSTAT_INCR(arcstat_raw_size, size);
3192 } else {
3193 size = arc_hdr_size(hdr);
3194 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3195 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3196 alloc_flags);
3197 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3200 ARCSTAT_INCR(arcstat_compressed_size, size);
3201 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3204 static void
3205 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3207 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3209 ASSERT(HDR_HAS_L1HDR(hdr));
3210 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3211 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3214 * If the hdr is currently being written to the l2arc then
3215 * we defer freeing the data by adding it to the l2arc_free_on_write
3216 * list. The l2arc will free the data once it's finished
3217 * writing it to the l2arc device.
3219 if (HDR_L2_WRITING(hdr)) {
3220 arc_hdr_free_on_write(hdr, free_rdata);
3221 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3222 } else if (free_rdata) {
3223 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3224 } else {
3225 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3228 if (free_rdata) {
3229 hdr->b_crypt_hdr.b_rabd = NULL;
3230 ARCSTAT_INCR(arcstat_raw_size, -size);
3231 } else {
3232 hdr->b_l1hdr.b_pabd = NULL;
3235 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3236 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3238 ARCSTAT_INCR(arcstat_compressed_size, -size);
3239 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3243 * Allocate empty anonymous ARC header. The header will get its identity
3244 * assigned and buffers attached later as part of read or write operations.
3246 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3247 * inserts it into ARC hash to become globally visible and allocates physical
3248 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3249 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3250 * sharing one of them with the physical ABD buffer.
3252 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3253 * data. Then after compression and/or encryption arc_write_ready() allocates
3254 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3255 * buffer. On disk write completion arc_write_done() assigns the header its
3256 * new identity (b_dva + b_birth) and inserts into ARC hash.
3258 * In case of partial overwrite the old data is read first as described. Then
3259 * arc_release() either allocates new anonymous ARC header and moves the ARC
3260 * buffer to it, or reuses the old ARC header by discarding its identity and
3261 * removing it from ARC hash. After buffer modification normal write process
3262 * follows as described.
3264 static arc_buf_hdr_t *
3265 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3266 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3267 arc_buf_contents_t type)
3269 arc_buf_hdr_t *hdr;
3271 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3272 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3274 ASSERT(HDR_EMPTY(hdr));
3275 #ifdef ZFS_DEBUG
3276 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3277 #endif
3278 HDR_SET_PSIZE(hdr, psize);
3279 HDR_SET_LSIZE(hdr, lsize);
3280 hdr->b_spa = spa;
3281 hdr->b_type = type;
3282 hdr->b_flags = 0;
3283 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3284 arc_hdr_set_compress(hdr, compression_type);
3285 hdr->b_complevel = complevel;
3286 if (protected)
3287 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3289 hdr->b_l1hdr.b_state = arc_anon;
3290 hdr->b_l1hdr.b_arc_access = 0;
3291 hdr->b_l1hdr.b_mru_hits = 0;
3292 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3293 hdr->b_l1hdr.b_mfu_hits = 0;
3294 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3295 hdr->b_l1hdr.b_buf = NULL;
3297 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3299 return (hdr);
3303 * Transition between the two allocation states for the arc_buf_hdr struct.
3304 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3305 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3306 * version is used when a cache buffer is only in the L2ARC in order to reduce
3307 * memory usage.
3309 static arc_buf_hdr_t *
3310 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3312 ASSERT(HDR_HAS_L2HDR(hdr));
3314 arc_buf_hdr_t *nhdr;
3315 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3317 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3318 (old == hdr_l2only_cache && new == hdr_full_cache));
3320 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3322 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3323 buf_hash_remove(hdr);
3325 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3327 if (new == hdr_full_cache) {
3328 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3330 * arc_access and arc_change_state need to be aware that a
3331 * header has just come out of L2ARC, so we set its state to
3332 * l2c_only even though it's about to change.
3334 nhdr->b_l1hdr.b_state = arc_l2c_only;
3336 /* Verify previous threads set to NULL before freeing */
3337 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3338 ASSERT(!HDR_HAS_RABD(hdr));
3339 } else {
3340 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3341 #ifdef ZFS_DEBUG
3342 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3343 #endif
3346 * If we've reached here, We must have been called from
3347 * arc_evict_hdr(), as such we should have already been
3348 * removed from any ghost list we were previously on
3349 * (which protects us from racing with arc_evict_state),
3350 * thus no locking is needed during this check.
3352 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3355 * A buffer must not be moved into the arc_l2c_only
3356 * state if it's not finished being written out to the
3357 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3358 * might try to be accessed, even though it was removed.
3360 VERIFY(!HDR_L2_WRITING(hdr));
3361 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3362 ASSERT(!HDR_HAS_RABD(hdr));
3364 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3367 * The header has been reallocated so we need to re-insert it into any
3368 * lists it was on.
3370 (void) buf_hash_insert(nhdr, NULL);
3372 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3374 mutex_enter(&dev->l2ad_mtx);
3377 * We must place the realloc'ed header back into the list at
3378 * the same spot. Otherwise, if it's placed earlier in the list,
3379 * l2arc_write_buffers() could find it during the function's
3380 * write phase, and try to write it out to the l2arc.
3382 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3383 list_remove(&dev->l2ad_buflist, hdr);
3385 mutex_exit(&dev->l2ad_mtx);
3388 * Since we're using the pointer address as the tag when
3389 * incrementing and decrementing the l2ad_alloc refcount, we
3390 * must remove the old pointer (that we're about to destroy) and
3391 * add the new pointer to the refcount. Otherwise we'd remove
3392 * the wrong pointer address when calling arc_hdr_destroy() later.
3395 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3396 arc_hdr_size(hdr), hdr);
3397 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3398 arc_hdr_size(nhdr), nhdr);
3400 buf_discard_identity(hdr);
3401 kmem_cache_free(old, hdr);
3403 return (nhdr);
3407 * This function is used by the send / receive code to convert a newly
3408 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3409 * is also used to allow the root objset block to be updated without altering
3410 * its embedded MACs. Both block types will always be uncompressed so we do not
3411 * have to worry about compression type or psize.
3413 void
3414 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3415 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3416 const uint8_t *mac)
3418 arc_buf_hdr_t *hdr = buf->b_hdr;
3420 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3421 ASSERT(HDR_HAS_L1HDR(hdr));
3422 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3424 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3425 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3426 hdr->b_crypt_hdr.b_dsobj = dsobj;
3427 hdr->b_crypt_hdr.b_ot = ot;
3428 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3429 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3430 if (!arc_hdr_has_uncompressed_buf(hdr))
3431 arc_cksum_free(hdr);
3433 if (salt != NULL)
3434 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3435 if (iv != NULL)
3436 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3437 if (mac != NULL)
3438 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3442 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3443 * The buf is returned thawed since we expect the consumer to modify it.
3445 arc_buf_t *
3446 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3447 int32_t size)
3449 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3450 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3452 arc_buf_t *buf = NULL;
3453 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3454 B_FALSE, B_FALSE, &buf));
3455 arc_buf_thaw(buf);
3457 return (buf);
3461 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3462 * for bufs containing metadata.
3464 arc_buf_t *
3465 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3466 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3468 ASSERT3U(lsize, >, 0);
3469 ASSERT3U(lsize, >=, psize);
3470 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3471 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3473 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3474 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3476 arc_buf_t *buf = NULL;
3477 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3478 B_TRUE, B_FALSE, B_FALSE, &buf));
3479 arc_buf_thaw(buf);
3482 * To ensure that the hdr has the correct data in it if we call
3483 * arc_untransform() on this buf before it's been written to disk,
3484 * it's easiest if we just set up sharing between the buf and the hdr.
3486 arc_share_buf(hdr, buf);
3488 return (buf);
3491 arc_buf_t *
3492 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3493 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3494 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3495 enum zio_compress compression_type, uint8_t complevel)
3497 arc_buf_hdr_t *hdr;
3498 arc_buf_t *buf;
3499 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3500 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3502 ASSERT3U(lsize, >, 0);
3503 ASSERT3U(lsize, >=, psize);
3504 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3505 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3507 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3508 compression_type, complevel, type);
3510 hdr->b_crypt_hdr.b_dsobj = dsobj;
3511 hdr->b_crypt_hdr.b_ot = ot;
3512 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3513 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3514 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3515 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3516 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3519 * This buffer will be considered encrypted even if the ot is not an
3520 * encrypted type. It will become authenticated instead in
3521 * arc_write_ready().
3523 buf = NULL;
3524 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3525 B_FALSE, B_FALSE, &buf));
3526 arc_buf_thaw(buf);
3528 return (buf);
3531 static void
3532 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3533 boolean_t state_only)
3535 uint64_t lsize = HDR_GET_LSIZE(hdr);
3536 uint64_t psize = HDR_GET_PSIZE(hdr);
3537 uint64_t asize = HDR_GET_L2SIZE(hdr);
3538 arc_buf_contents_t type = hdr->b_type;
3539 int64_t lsize_s;
3540 int64_t psize_s;
3541 int64_t asize_s;
3543 /* For L2 we expect the header's b_l2size to be valid */
3544 ASSERT3U(asize, >=, psize);
3546 if (incr) {
3547 lsize_s = lsize;
3548 psize_s = psize;
3549 asize_s = asize;
3550 } else {
3551 lsize_s = -lsize;
3552 psize_s = -psize;
3553 asize_s = -asize;
3556 /* If the buffer is a prefetch, count it as such. */
3557 if (HDR_PREFETCH(hdr)) {
3558 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3559 } else {
3561 * We use the value stored in the L2 header upon initial
3562 * caching in L2ARC. This value will be updated in case
3563 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3564 * metadata (log entry) cannot currently be updated. Having
3565 * the ARC state in the L2 header solves the problem of a
3566 * possibly absent L1 header (apparent in buffers restored
3567 * from persistent L2ARC).
3569 switch (hdr->b_l2hdr.b_arcs_state) {
3570 case ARC_STATE_MRU_GHOST:
3571 case ARC_STATE_MRU:
3572 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3573 break;
3574 case ARC_STATE_MFU_GHOST:
3575 case ARC_STATE_MFU:
3576 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3577 break;
3578 default:
3579 break;
3583 if (state_only)
3584 return;
3586 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3587 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3589 switch (type) {
3590 case ARC_BUFC_DATA:
3591 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3592 break;
3593 case ARC_BUFC_METADATA:
3594 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3595 break;
3596 default:
3597 break;
3602 static void
3603 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3605 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3606 l2arc_dev_t *dev = l2hdr->b_dev;
3608 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3609 ASSERT(HDR_HAS_L2HDR(hdr));
3611 list_remove(&dev->l2ad_buflist, hdr);
3613 l2arc_hdr_arcstats_decrement(hdr);
3614 if (dev->l2ad_vdev != NULL) {
3615 uint64_t asize = HDR_GET_L2SIZE(hdr);
3616 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3619 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3620 hdr);
3621 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3624 static void
3625 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3627 if (HDR_HAS_L1HDR(hdr)) {
3628 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3629 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3631 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3632 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3634 if (HDR_HAS_L2HDR(hdr)) {
3635 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3636 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3638 if (!buflist_held)
3639 mutex_enter(&dev->l2ad_mtx);
3642 * Even though we checked this conditional above, we
3643 * need to check this again now that we have the
3644 * l2ad_mtx. This is because we could be racing with
3645 * another thread calling l2arc_evict() which might have
3646 * destroyed this header's L2 portion as we were waiting
3647 * to acquire the l2ad_mtx. If that happens, we don't
3648 * want to re-destroy the header's L2 portion.
3650 if (HDR_HAS_L2HDR(hdr)) {
3652 if (!HDR_EMPTY(hdr))
3653 buf_discard_identity(hdr);
3655 arc_hdr_l2hdr_destroy(hdr);
3658 if (!buflist_held)
3659 mutex_exit(&dev->l2ad_mtx);
3663 * The header's identify can only be safely discarded once it is no
3664 * longer discoverable. This requires removing it from the hash table
3665 * and the l2arc header list. After this point the hash lock can not
3666 * be used to protect the header.
3668 if (!HDR_EMPTY(hdr))
3669 buf_discard_identity(hdr);
3671 if (HDR_HAS_L1HDR(hdr)) {
3672 arc_cksum_free(hdr);
3674 while (hdr->b_l1hdr.b_buf != NULL)
3675 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3677 if (hdr->b_l1hdr.b_pabd != NULL)
3678 arc_hdr_free_abd(hdr, B_FALSE);
3680 if (HDR_HAS_RABD(hdr))
3681 arc_hdr_free_abd(hdr, B_TRUE);
3684 ASSERT3P(hdr->b_hash_next, ==, NULL);
3685 if (HDR_HAS_L1HDR(hdr)) {
3686 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3687 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3688 #ifdef ZFS_DEBUG
3689 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3690 #endif
3691 kmem_cache_free(hdr_full_cache, hdr);
3692 } else {
3693 kmem_cache_free(hdr_l2only_cache, hdr);
3697 void
3698 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3700 arc_buf_hdr_t *hdr = buf->b_hdr;
3702 if (hdr->b_l1hdr.b_state == arc_anon) {
3703 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3704 ASSERT(ARC_BUF_LAST(buf));
3705 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3706 VERIFY0(remove_reference(hdr, tag));
3707 return;
3710 kmutex_t *hash_lock = HDR_LOCK(hdr);
3711 mutex_enter(hash_lock);
3713 ASSERT3P(hdr, ==, buf->b_hdr);
3714 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3715 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3716 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3717 ASSERT3P(buf->b_data, !=, NULL);
3719 arc_buf_destroy_impl(buf);
3720 (void) remove_reference(hdr, tag);
3721 mutex_exit(hash_lock);
3725 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3726 * state of the header is dependent on its state prior to entering this
3727 * function. The following transitions are possible:
3729 * - arc_mru -> arc_mru_ghost
3730 * - arc_mfu -> arc_mfu_ghost
3731 * - arc_mru_ghost -> arc_l2c_only
3732 * - arc_mru_ghost -> deleted
3733 * - arc_mfu_ghost -> arc_l2c_only
3734 * - arc_mfu_ghost -> deleted
3735 * - arc_uncached -> deleted
3737 * Return total size of evicted data buffers for eviction progress tracking.
3738 * When evicting from ghost states return logical buffer size to make eviction
3739 * progress at the same (or at least comparable) rate as from non-ghost states.
3741 * Return *real_evicted for actual ARC size reduction to wake up threads
3742 * waiting for it. For non-ghost states it includes size of evicted data
3743 * buffers (the headers are not freed there). For ghost states it includes
3744 * only the evicted headers size.
3746 static int64_t
3747 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3749 arc_state_t *evicted_state, *state;
3750 int64_t bytes_evicted = 0;
3751 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3752 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3754 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3755 ASSERT(HDR_HAS_L1HDR(hdr));
3756 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3757 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3758 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3760 *real_evicted = 0;
3761 state = hdr->b_l1hdr.b_state;
3762 if (GHOST_STATE(state)) {
3765 * l2arc_write_buffers() relies on a header's L1 portion
3766 * (i.e. its b_pabd field) during it's write phase.
3767 * Thus, we cannot push a header onto the arc_l2c_only
3768 * state (removing its L1 piece) until the header is
3769 * done being written to the l2arc.
3771 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3772 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3773 return (bytes_evicted);
3776 ARCSTAT_BUMP(arcstat_deleted);
3777 bytes_evicted += HDR_GET_LSIZE(hdr);
3779 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3781 if (HDR_HAS_L2HDR(hdr)) {
3782 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3783 ASSERT(!HDR_HAS_RABD(hdr));
3785 * This buffer is cached on the 2nd Level ARC;
3786 * don't destroy the header.
3788 arc_change_state(arc_l2c_only, hdr);
3790 * dropping from L1+L2 cached to L2-only,
3791 * realloc to remove the L1 header.
3793 (void) arc_hdr_realloc(hdr, hdr_full_cache,
3794 hdr_l2only_cache);
3795 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3796 } else {
3797 arc_change_state(arc_anon, hdr);
3798 arc_hdr_destroy(hdr);
3799 *real_evicted += HDR_FULL_SIZE;
3801 return (bytes_evicted);
3804 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3805 evicted_state = (state == arc_uncached) ? arc_anon :
3806 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3808 /* prefetch buffers have a minimum lifespan */
3809 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3810 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3811 MSEC_TO_TICK(min_lifetime)) {
3812 ARCSTAT_BUMP(arcstat_evict_skip);
3813 return (bytes_evicted);
3816 if (HDR_HAS_L2HDR(hdr)) {
3817 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3818 } else {
3819 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3820 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3821 HDR_GET_LSIZE(hdr));
3823 switch (state->arcs_state) {
3824 case ARC_STATE_MRU:
3825 ARCSTAT_INCR(
3826 arcstat_evict_l2_eligible_mru,
3827 HDR_GET_LSIZE(hdr));
3828 break;
3829 case ARC_STATE_MFU:
3830 ARCSTAT_INCR(
3831 arcstat_evict_l2_eligible_mfu,
3832 HDR_GET_LSIZE(hdr));
3833 break;
3834 default:
3835 break;
3837 } else {
3838 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3839 HDR_GET_LSIZE(hdr));
3843 bytes_evicted += arc_hdr_size(hdr);
3844 *real_evicted += arc_hdr_size(hdr);
3847 * If this hdr is being evicted and has a compressed buffer then we
3848 * discard it here before we change states. This ensures that the
3849 * accounting is updated correctly in arc_free_data_impl().
3851 if (hdr->b_l1hdr.b_pabd != NULL)
3852 arc_hdr_free_abd(hdr, B_FALSE);
3854 if (HDR_HAS_RABD(hdr))
3855 arc_hdr_free_abd(hdr, B_TRUE);
3857 arc_change_state(evicted_state, hdr);
3858 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3859 if (evicted_state == arc_anon) {
3860 arc_hdr_destroy(hdr);
3861 *real_evicted += HDR_FULL_SIZE;
3862 } else {
3863 ASSERT(HDR_IN_HASH_TABLE(hdr));
3866 return (bytes_evicted);
3869 static void
3870 arc_set_need_free(void)
3872 ASSERT(MUTEX_HELD(&arc_evict_lock));
3873 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3874 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3875 if (aw == NULL) {
3876 arc_need_free = MAX(-remaining, 0);
3877 } else {
3878 arc_need_free =
3879 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3883 static uint64_t
3884 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3885 uint64_t spa, uint64_t bytes)
3887 multilist_sublist_t *mls;
3888 uint64_t bytes_evicted = 0, real_evicted = 0;
3889 arc_buf_hdr_t *hdr;
3890 kmutex_t *hash_lock;
3891 uint_t evict_count = zfs_arc_evict_batch_limit;
3893 ASSERT3P(marker, !=, NULL);
3895 mls = multilist_sublist_lock_idx(ml, idx);
3897 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3898 hdr = multilist_sublist_prev(mls, marker)) {
3899 if ((evict_count == 0) || (bytes_evicted >= bytes))
3900 break;
3903 * To keep our iteration location, move the marker
3904 * forward. Since we're not holding hdr's hash lock, we
3905 * must be very careful and not remove 'hdr' from the
3906 * sublist. Otherwise, other consumers might mistake the
3907 * 'hdr' as not being on a sublist when they call the
3908 * multilist_link_active() function (they all rely on
3909 * the hash lock protecting concurrent insertions and
3910 * removals). multilist_sublist_move_forward() was
3911 * specifically implemented to ensure this is the case
3912 * (only 'marker' will be removed and re-inserted).
3914 multilist_sublist_move_forward(mls, marker);
3917 * The only case where the b_spa field should ever be
3918 * zero, is the marker headers inserted by
3919 * arc_evict_state(). It's possible for multiple threads
3920 * to be calling arc_evict_state() concurrently (e.g.
3921 * dsl_pool_close() and zio_inject_fault()), so we must
3922 * skip any markers we see from these other threads.
3924 if (hdr->b_spa == 0)
3925 continue;
3927 /* we're only interested in evicting buffers of a certain spa */
3928 if (spa != 0 && hdr->b_spa != spa) {
3929 ARCSTAT_BUMP(arcstat_evict_skip);
3930 continue;
3933 hash_lock = HDR_LOCK(hdr);
3936 * We aren't calling this function from any code path
3937 * that would already be holding a hash lock, so we're
3938 * asserting on this assumption to be defensive in case
3939 * this ever changes. Without this check, it would be
3940 * possible to incorrectly increment arcstat_mutex_miss
3941 * below (e.g. if the code changed such that we called
3942 * this function with a hash lock held).
3944 ASSERT(!MUTEX_HELD(hash_lock));
3946 if (mutex_tryenter(hash_lock)) {
3947 uint64_t revicted;
3948 uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3949 mutex_exit(hash_lock);
3951 bytes_evicted += evicted;
3952 real_evicted += revicted;
3955 * If evicted is zero, arc_evict_hdr() must have
3956 * decided to skip this header, don't increment
3957 * evict_count in this case.
3959 if (evicted != 0)
3960 evict_count--;
3962 } else {
3963 ARCSTAT_BUMP(arcstat_mutex_miss);
3967 multilist_sublist_unlock(mls);
3970 * Increment the count of evicted bytes, and wake up any threads that
3971 * are waiting for the count to reach this value. Since the list is
3972 * ordered by ascending aew_count, we pop off the beginning of the
3973 * list until we reach the end, or a waiter that's past the current
3974 * "count". Doing this outside the loop reduces the number of times
3975 * we need to acquire the global arc_evict_lock.
3977 * Only wake when there's sufficient free memory in the system
3978 * (specifically, arc_sys_free/2, which by default is a bit more than
3979 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
3981 mutex_enter(&arc_evict_lock);
3982 arc_evict_count += real_evicted;
3984 if (arc_free_memory() > arc_sys_free / 2) {
3985 arc_evict_waiter_t *aw;
3986 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
3987 aw->aew_count <= arc_evict_count) {
3988 list_remove(&arc_evict_waiters, aw);
3989 cv_broadcast(&aw->aew_cv);
3992 arc_set_need_free();
3993 mutex_exit(&arc_evict_lock);
3996 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3997 * if the average cached block is small), eviction can be on-CPU for
3998 * many seconds. To ensure that other threads that may be bound to
3999 * this CPU are able to make progress, make a voluntary preemption
4000 * call here.
4002 kpreempt(KPREEMPT_SYNC);
4004 return (bytes_evicted);
4007 static arc_buf_hdr_t *
4008 arc_state_alloc_marker(void)
4010 arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4013 * A b_spa of 0 is used to indicate that this header is
4014 * a marker. This fact is used in arc_evict_state_impl().
4016 marker->b_spa = 0;
4018 return (marker);
4021 static void
4022 arc_state_free_marker(arc_buf_hdr_t *marker)
4024 kmem_cache_free(hdr_full_cache, marker);
4028 * Allocate an array of buffer headers used as placeholders during arc state
4029 * eviction.
4031 static arc_buf_hdr_t **
4032 arc_state_alloc_markers(int count)
4034 arc_buf_hdr_t **markers;
4036 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4037 for (int i = 0; i < count; i++)
4038 markers[i] = arc_state_alloc_marker();
4039 return (markers);
4042 static void
4043 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4045 for (int i = 0; i < count; i++)
4046 arc_state_free_marker(markers[i]);
4047 kmem_free(markers, sizeof (*markers) * count);
4051 * Evict buffers from the given arc state, until we've removed the
4052 * specified number of bytes. Move the removed buffers to the
4053 * appropriate evict state.
4055 * This function makes a "best effort". It skips over any buffers
4056 * it can't get a hash_lock on, and so, may not catch all candidates.
4057 * It may also return without evicting as much space as requested.
4059 * If bytes is specified using the special value ARC_EVICT_ALL, this
4060 * will evict all available (i.e. unlocked and evictable) buffers from
4061 * the given arc state; which is used by arc_flush().
4063 static uint64_t
4064 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4065 uint64_t bytes)
4067 uint64_t total_evicted = 0;
4068 multilist_t *ml = &state->arcs_list[type];
4069 int num_sublists;
4070 arc_buf_hdr_t **markers;
4072 num_sublists = multilist_get_num_sublists(ml);
4075 * If we've tried to evict from each sublist, made some
4076 * progress, but still have not hit the target number of bytes
4077 * to evict, we want to keep trying. The markers allow us to
4078 * pick up where we left off for each individual sublist, rather
4079 * than starting from the tail each time.
4081 if (zthr_iscurthread(arc_evict_zthr)) {
4082 markers = arc_state_evict_markers;
4083 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4084 } else {
4085 markers = arc_state_alloc_markers(num_sublists);
4087 for (int i = 0; i < num_sublists; i++) {
4088 multilist_sublist_t *mls;
4090 mls = multilist_sublist_lock_idx(ml, i);
4091 multilist_sublist_insert_tail(mls, markers[i]);
4092 multilist_sublist_unlock(mls);
4096 * While we haven't hit our target number of bytes to evict, or
4097 * we're evicting all available buffers.
4099 while (total_evicted < bytes) {
4100 int sublist_idx = multilist_get_random_index(ml);
4101 uint64_t scan_evicted = 0;
4104 * Start eviction using a randomly selected sublist,
4105 * this is to try and evenly balance eviction across all
4106 * sublists. Always starting at the same sublist
4107 * (e.g. index 0) would cause evictions to favor certain
4108 * sublists over others.
4110 for (int i = 0; i < num_sublists; i++) {
4111 uint64_t bytes_remaining;
4112 uint64_t bytes_evicted;
4114 if (total_evicted < bytes)
4115 bytes_remaining = bytes - total_evicted;
4116 else
4117 break;
4119 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4120 markers[sublist_idx], spa, bytes_remaining);
4122 scan_evicted += bytes_evicted;
4123 total_evicted += bytes_evicted;
4125 /* we've reached the end, wrap to the beginning */
4126 if (++sublist_idx >= num_sublists)
4127 sublist_idx = 0;
4131 * If we didn't evict anything during this scan, we have
4132 * no reason to believe we'll evict more during another
4133 * scan, so break the loop.
4135 if (scan_evicted == 0) {
4136 /* This isn't possible, let's make that obvious */
4137 ASSERT3S(bytes, !=, 0);
4140 * When bytes is ARC_EVICT_ALL, the only way to
4141 * break the loop is when scan_evicted is zero.
4142 * In that case, we actually have evicted enough,
4143 * so we don't want to increment the kstat.
4145 if (bytes != ARC_EVICT_ALL) {
4146 ASSERT3S(total_evicted, <, bytes);
4147 ARCSTAT_BUMP(arcstat_evict_not_enough);
4150 break;
4154 for (int i = 0; i < num_sublists; i++) {
4155 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4156 multilist_sublist_remove(mls, markers[i]);
4157 multilist_sublist_unlock(mls);
4159 if (markers != arc_state_evict_markers)
4160 arc_state_free_markers(markers, num_sublists);
4162 return (total_evicted);
4166 * Flush all "evictable" data of the given type from the arc state
4167 * specified. This will not evict any "active" buffers (i.e. referenced).
4169 * When 'retry' is set to B_FALSE, the function will make a single pass
4170 * over the state and evict any buffers that it can. Since it doesn't
4171 * continually retry the eviction, it might end up leaving some buffers
4172 * in the ARC due to lock misses.
4174 * When 'retry' is set to B_TRUE, the function will continually retry the
4175 * eviction until *all* evictable buffers have been removed from the
4176 * state. As a result, if concurrent insertions into the state are
4177 * allowed (e.g. if the ARC isn't shutting down), this function might
4178 * wind up in an infinite loop, continually trying to evict buffers.
4180 static uint64_t
4181 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4182 boolean_t retry)
4184 uint64_t evicted = 0;
4186 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4187 evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4189 if (!retry)
4190 break;
4193 return (evicted);
4197 * Evict the specified number of bytes from the state specified. This
4198 * function prevents us from trying to evict more from a state's list
4199 * than is "evictable", and to skip evicting altogether when passed a
4200 * negative value for "bytes". In contrast, arc_evict_state() will
4201 * evict everything it can, when passed a negative value for "bytes".
4203 static uint64_t
4204 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4206 uint64_t delta;
4208 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4209 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4210 bytes);
4211 return (arc_evict_state(state, type, 0, delta));
4214 return (0);
4218 * Adjust specified fraction, taking into account initial ghost state(s) size,
4219 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4220 * decreasing it, plus a balance factor, controlling the decrease rate, used
4221 * to balance metadata vs data.
4223 static uint64_t
4224 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4225 uint_t balance)
4227 if (total < 8 || up + down == 0)
4228 return (frac);
4231 * We should not have more ghost hits than ghost size, but they
4232 * may get close. Restrict maximum adjustment in that case.
4234 if (up + down >= total / 4) {
4235 uint64_t scale = (up + down) / (total / 8);
4236 up /= scale;
4237 down /= scale;
4240 /* Get maximal dynamic range by choosing optimal shifts. */
4241 int s = highbit64(total);
4242 s = MIN(64 - s, 32);
4244 uint64_t ofrac = (1ULL << 32) - frac;
4246 if (frac >= 4 * ofrac)
4247 up /= frac / (2 * ofrac + 1);
4248 up = (up << s) / (total >> (32 - s));
4249 if (ofrac >= 4 * frac)
4250 down /= ofrac / (2 * frac + 1);
4251 down = (down << s) / (total >> (32 - s));
4252 down = down * 100 / balance;
4254 return (frac + up - down);
4258 * Calculate (x * multiplier / divisor) without unnecesary overflows.
4260 static uint64_t
4261 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
4263 uint64_t q = (x / divisor);
4264 uint64_t r = (x % divisor);
4266 return ((q * multiplier) + ((r * multiplier) / divisor));
4270 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4272 static uint64_t
4273 arc_evict(void)
4275 uint64_t bytes, total_evicted = 0;
4276 int64_t e, mrud, mrum, mfud, mfum, w;
4277 static uint64_t ogrd, ogrm, ogfd, ogfm;
4278 static uint64_t gsrd, gsrm, gsfd, gsfm;
4279 uint64_t ngrd, ngrm, ngfd, ngfm;
4281 /* Get current size of ARC states we can evict from. */
4282 mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4283 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4284 mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4285 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4286 mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4287 mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4288 uint64_t d = mrud + mfud;
4289 uint64_t m = mrum + mfum;
4290 uint64_t t = d + m;
4292 /* Get ARC ghost hits since last eviction. */
4293 ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4294 uint64_t grd = ngrd - ogrd;
4295 ogrd = ngrd;
4296 ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4297 uint64_t grm = ngrm - ogrm;
4298 ogrm = ngrm;
4299 ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4300 uint64_t gfd = ngfd - ogfd;
4301 ogfd = ngfd;
4302 ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4303 uint64_t gfm = ngfm - ogfm;
4304 ogfm = ngfm;
4306 /* Adjust ARC states balance based on ghost hits. */
4307 arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4308 grm + gfm, grd + gfd, zfs_arc_meta_balance);
4309 arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4310 arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4312 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4313 uint64_t ac = arc_c;
4314 int64_t wt = t - (asize - ac);
4317 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4318 * target is not evictable or if they go over arc_dnode_limit.
4320 int64_t prune = 0;
4321 int64_t dn = wmsum_value(&arc_sums.arcstat_dnode_size);
4322 int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
4323 + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
4324 - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
4325 - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4326 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4327 if (nem > w * 3 / 4) {
4328 prune = dn / sizeof (dnode_t) *
4329 zfs_arc_dnode_reduce_percent / 100;
4330 if (nem < w && w > 4)
4331 prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
4333 if (dn > arc_dnode_limit) {
4334 prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
4335 zfs_arc_dnode_reduce_percent / 100);
4337 if (prune > 0)
4338 arc_prune_async(prune);
4340 /* Evict MRU metadata. */
4341 w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4342 e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
4343 bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4344 total_evicted += bytes;
4345 mrum -= bytes;
4346 asize -= bytes;
4348 /* Evict MFU metadata. */
4349 w = wt * (int64_t)(arc_meta >> 16) >> 16;
4350 e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
4351 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4352 total_evicted += bytes;
4353 mfum -= bytes;
4354 asize -= bytes;
4356 /* Evict MRU data. */
4357 wt -= m - total_evicted;
4358 w = wt * (int64_t)(arc_pd >> 16) >> 16;
4359 e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
4360 bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4361 total_evicted += bytes;
4362 mrud -= bytes;
4363 asize -= bytes;
4365 /* Evict MFU data. */
4366 e = asize - ac;
4367 bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4368 mfud -= bytes;
4369 total_evicted += bytes;
4372 * Evict ghost lists
4374 * Size of each state's ghost list represents how much that state
4375 * may grow by shrinking the other states. Would it need to shrink
4376 * other states to zero (that is unlikely), its ghost size would be
4377 * equal to sum of other three state sizes. But excessive ghost
4378 * size may result in false ghost hits (too far back), that may
4379 * never result in real cache hits if several states are competing.
4380 * So choose some arbitraty point of 1/2 of other state sizes.
4382 gsrd = (mrum + mfud + mfum) / 2;
4383 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4384 gsrd;
4385 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4387 gsrm = (mrud + mfud + mfum) / 2;
4388 e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4389 gsrm;
4390 (void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4392 gsfd = (mrud + mrum + mfum) / 2;
4393 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4394 gsfd;
4395 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4397 gsfm = (mrud + mrum + mfud) / 2;
4398 e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4399 gsfm;
4400 (void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4402 return (total_evicted);
4405 static void
4406 arc_flush_impl(uint64_t guid, boolean_t retry)
4408 ASSERT(!retry || guid == 0);
4410 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4411 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4413 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4414 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4416 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4417 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4419 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4420 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4422 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4423 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4426 void
4427 arc_flush(spa_t *spa, boolean_t retry)
4430 * If retry is B_TRUE, a spa must not be specified since we have
4431 * no good way to determine if all of a spa's buffers have been
4432 * evicted from an arc state.
4434 ASSERT(!retry || spa == NULL);
4436 arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry);
4439 static arc_async_flush_t *
4440 arc_async_flush_add(uint64_t spa_guid, uint_t level)
4442 arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP);
4443 af->af_spa_guid = spa_guid;
4444 af->af_cache_level = level;
4445 taskq_init_ent(&af->af_tqent);
4446 list_link_init(&af->af_node);
4448 mutex_enter(&arc_async_flush_lock);
4449 list_insert_tail(&arc_async_flush_list, af);
4450 mutex_exit(&arc_async_flush_lock);
4452 return (af);
4455 static void
4456 arc_async_flush_remove(uint64_t spa_guid, uint_t level)
4458 mutex_enter(&arc_async_flush_lock);
4459 for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4460 af != NULL; af = list_next(&arc_async_flush_list, af)) {
4461 if (af->af_spa_guid == spa_guid &&
4462 af->af_cache_level == level) {
4463 list_remove(&arc_async_flush_list, af);
4464 kmem_free(af, sizeof (*af));
4465 break;
4468 mutex_exit(&arc_async_flush_lock);
4471 static void
4472 arc_flush_task(void *arg)
4474 arc_async_flush_t *af = arg;
4475 hrtime_t start_time = gethrtime();
4476 uint64_t spa_guid = af->af_spa_guid;
4478 arc_flush_impl(spa_guid, B_FALSE);
4479 arc_async_flush_remove(spa_guid, af->af_cache_level);
4481 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
4482 if (elaspsed > 0) {
4483 zfs_dbgmsg("spa %llu arc flushed in %llu ms",
4484 (u_longlong_t)spa_guid, (u_longlong_t)elaspsed);
4489 * ARC buffers use the spa's load guid and can continue to exist after
4490 * the spa_t is gone (exported). The blocks are orphaned since each
4491 * spa import has a different load guid.
4493 * It's OK if the spa is re-imported while this asynchronous flush is
4494 * still in progress. The new spa_load_guid will be different.
4496 * Also, arc_fini will wait for any arc_flush_task to finish.
4498 void
4499 arc_flush_async(spa_t *spa)
4501 uint64_t spa_guid = spa_load_guid(spa);
4502 arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1);
4504 taskq_dispatch_ent(arc_flush_taskq, arc_flush_task,
4505 af, TQ_SLEEP, &af->af_tqent);
4509 * Check if a guid is still in-use as part of an async teardown task
4511 boolean_t
4512 arc_async_flush_guid_inuse(uint64_t spa_guid)
4514 mutex_enter(&arc_async_flush_lock);
4515 for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4516 af != NULL; af = list_next(&arc_async_flush_list, af)) {
4517 if (af->af_spa_guid == spa_guid) {
4518 mutex_exit(&arc_async_flush_lock);
4519 return (B_TRUE);
4522 mutex_exit(&arc_async_flush_lock);
4523 return (B_FALSE);
4526 uint64_t
4527 arc_reduce_target_size(uint64_t to_free)
4530 * Get the actual arc size. Even if we don't need it, this updates
4531 * the aggsum lower bound estimate for arc_is_overflowing().
4533 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4536 * All callers want the ARC to actually evict (at least) this much
4537 * memory. Therefore we reduce from the lower of the current size and
4538 * the target size. This way, even if arc_c is much higher than
4539 * arc_size (as can be the case after many calls to arc_freed(), we will
4540 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4541 * will evict.
4543 uint64_t c = arc_c;
4544 if (c > arc_c_min) {
4545 c = MIN(c, MAX(asize, arc_c_min));
4546 to_free = MIN(to_free, c - arc_c_min);
4547 arc_c = c - to_free;
4548 } else {
4549 to_free = 0;
4553 * Whether or not we reduced the target size, request eviction if the
4554 * current size is over it now, since caller obviously wants some RAM.
4556 if (asize > arc_c) {
4557 /* See comment in arc_evict_cb_check() on why lock+flag */
4558 mutex_enter(&arc_evict_lock);
4559 arc_evict_needed = B_TRUE;
4560 mutex_exit(&arc_evict_lock);
4561 zthr_wakeup(arc_evict_zthr);
4564 return (to_free);
4568 * Determine if the system is under memory pressure and is asking
4569 * to reclaim memory. A return value of B_TRUE indicates that the system
4570 * is under memory pressure and that the arc should adjust accordingly.
4572 boolean_t
4573 arc_reclaim_needed(void)
4575 return (arc_available_memory() < 0);
4578 void
4579 arc_kmem_reap_soon(void)
4581 size_t i;
4582 kmem_cache_t *prev_cache = NULL;
4583 kmem_cache_t *prev_data_cache = NULL;
4585 #ifdef _KERNEL
4586 #if defined(_ILP32)
4588 * Reclaim unused memory from all kmem caches.
4590 kmem_reap();
4591 #endif
4592 #endif
4594 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4595 #if defined(_ILP32)
4596 /* reach upper limit of cache size on 32-bit */
4597 if (zio_buf_cache[i] == NULL)
4598 break;
4599 #endif
4600 if (zio_buf_cache[i] != prev_cache) {
4601 prev_cache = zio_buf_cache[i];
4602 kmem_cache_reap_now(zio_buf_cache[i]);
4604 if (zio_data_buf_cache[i] != prev_data_cache) {
4605 prev_data_cache = zio_data_buf_cache[i];
4606 kmem_cache_reap_now(zio_data_buf_cache[i]);
4609 kmem_cache_reap_now(buf_cache);
4610 kmem_cache_reap_now(hdr_full_cache);
4611 kmem_cache_reap_now(hdr_l2only_cache);
4612 kmem_cache_reap_now(zfs_btree_leaf_cache);
4613 abd_cache_reap_now();
4616 static boolean_t
4617 arc_evict_cb_check(void *arg, zthr_t *zthr)
4619 (void) arg, (void) zthr;
4621 #ifdef ZFS_DEBUG
4623 * This is necessary in order to keep the kstat information
4624 * up to date for tools that display kstat data such as the
4625 * mdb ::arc dcmd and the Linux crash utility. These tools
4626 * typically do not call kstat's update function, but simply
4627 * dump out stats from the most recent update. Without
4628 * this call, these commands may show stale stats for the
4629 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4630 * with this call, the data might be out of date if the
4631 * evict thread hasn't been woken recently; but that should
4632 * suffice. The arc_state_t structures can be queried
4633 * directly if more accurate information is needed.
4635 if (arc_ksp != NULL)
4636 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4637 #endif
4640 * We have to rely on arc_wait_for_eviction() to tell us when to
4641 * evict, rather than checking if we are overflowing here, so that we
4642 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4643 * If we have become "not overflowing" since arc_wait_for_eviction()
4644 * checked, we need to wake it up. We could broadcast the CV here,
4645 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4646 * would need to use a mutex to ensure that this function doesn't
4647 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4648 * the arc_evict_lock). However, the lock ordering of such a lock
4649 * would necessarily be incorrect with respect to the zthr_lock,
4650 * which is held before this function is called, and is held by
4651 * arc_wait_for_eviction() when it calls zthr_wakeup().
4653 if (arc_evict_needed)
4654 return (B_TRUE);
4657 * If we have buffers in uncached state, evict them periodically.
4659 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4660 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4661 ddi_get_lbolt() - arc_last_uncached_flush >
4662 MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4666 * Keep arc_size under arc_c by running arc_evict which evicts data
4667 * from the ARC.
4669 static void
4670 arc_evict_cb(void *arg, zthr_t *zthr)
4672 (void) arg;
4674 uint64_t evicted = 0;
4675 fstrans_cookie_t cookie = spl_fstrans_mark();
4677 /* Always try to evict from uncached state. */
4678 arc_last_uncached_flush = ddi_get_lbolt();
4679 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4680 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4682 /* Evict from other states only if told to. */
4683 if (arc_evict_needed)
4684 evicted += arc_evict();
4687 * If evicted is zero, we couldn't evict anything
4688 * via arc_evict(). This could be due to hash lock
4689 * collisions, but more likely due to the majority of
4690 * arc buffers being unevictable. Therefore, even if
4691 * arc_size is above arc_c, another pass is unlikely to
4692 * be helpful and could potentially cause us to enter an
4693 * infinite loop. Additionally, zthr_iscancelled() is
4694 * checked here so that if the arc is shutting down, the
4695 * broadcast will wake any remaining arc evict waiters.
4697 * Note we cancel using zthr instead of arc_evict_zthr
4698 * because the latter may not yet be initializd when the
4699 * callback is first invoked.
4701 mutex_enter(&arc_evict_lock);
4702 arc_evict_needed = !zthr_iscancelled(zthr) &&
4703 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4704 if (!arc_evict_needed) {
4706 * We're either no longer overflowing, or we
4707 * can't evict anything more, so we should wake
4708 * arc_get_data_impl() sooner.
4710 arc_evict_waiter_t *aw;
4711 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4712 cv_broadcast(&aw->aew_cv);
4714 arc_set_need_free();
4716 mutex_exit(&arc_evict_lock);
4717 spl_fstrans_unmark(cookie);
4720 static boolean_t
4721 arc_reap_cb_check(void *arg, zthr_t *zthr)
4723 (void) arg, (void) zthr;
4725 int64_t free_memory = arc_available_memory();
4726 static int reap_cb_check_counter = 0;
4729 * If a kmem reap is already active, don't schedule more. We must
4730 * check for this because kmem_cache_reap_soon() won't actually
4731 * block on the cache being reaped (this is to prevent callers from
4732 * becoming implicitly blocked by a system-wide kmem reap -- which,
4733 * on a system with many, many full magazines, can take minutes).
4735 if (!kmem_cache_reap_active() && free_memory < 0) {
4737 arc_no_grow = B_TRUE;
4738 arc_warm = B_TRUE;
4740 * Wait at least zfs_grow_retry (default 5) seconds
4741 * before considering growing.
4743 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4744 return (B_TRUE);
4745 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4746 arc_no_grow = B_TRUE;
4747 } else if (gethrtime() >= arc_growtime) {
4748 arc_no_grow = B_FALSE;
4752 * Called unconditionally every 60 seconds to reclaim unused
4753 * zstd compression and decompression context. This is done
4754 * here to avoid the need for an independent thread.
4756 if (!((reap_cb_check_counter++) % 60))
4757 zfs_zstd_cache_reap_now();
4759 return (B_FALSE);
4763 * Keep enough free memory in the system by reaping the ARC's kmem
4764 * caches. To cause more slabs to be reapable, we may reduce the
4765 * target size of the cache (arc_c), causing the arc_evict_cb()
4766 * to free more buffers.
4768 static void
4769 arc_reap_cb(void *arg, zthr_t *zthr)
4771 int64_t can_free, free_memory, to_free;
4773 (void) arg, (void) zthr;
4774 fstrans_cookie_t cookie = spl_fstrans_mark();
4777 * Kick off asynchronous kmem_reap()'s of all our caches.
4779 arc_kmem_reap_soon();
4782 * Wait at least arc_kmem_cache_reap_retry_ms between
4783 * arc_kmem_reap_soon() calls. Without this check it is possible to
4784 * end up in a situation where we spend lots of time reaping
4785 * caches, while we're near arc_c_min. Waiting here also gives the
4786 * subsequent free memory check a chance of finding that the
4787 * asynchronous reap has already freed enough memory, and we don't
4788 * need to call arc_reduce_target_size().
4790 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4793 * Reduce the target size as needed to maintain the amount of free
4794 * memory in the system at a fraction of the arc_size (1/128th by
4795 * default). If oversubscribed (free_memory < 0) then reduce the
4796 * target arc_size by the deficit amount plus the fractional
4797 * amount. If free memory is positive but less than the fractional
4798 * amount, reduce by what is needed to hit the fractional amount.
4800 free_memory = arc_available_memory();
4801 can_free = arc_c - arc_c_min;
4802 to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
4803 if (to_free > 0)
4804 arc_reduce_target_size(to_free);
4805 spl_fstrans_unmark(cookie);
4808 #ifdef _KERNEL
4810 * Determine the amount of memory eligible for eviction contained in the
4811 * ARC. All clean data reported by the ghost lists can always be safely
4812 * evicted. Due to arc_c_min, the same does not hold for all clean data
4813 * contained by the regular mru and mfu lists.
4815 * In the case of the regular mru and mfu lists, we need to report as
4816 * much clean data as possible, such that evicting that same reported
4817 * data will not bring arc_size below arc_c_min. Thus, in certain
4818 * circumstances, the total amount of clean data in the mru and mfu
4819 * lists might not actually be evictable.
4821 * The following two distinct cases are accounted for:
4823 * 1. The sum of the amount of dirty data contained by both the mru and
4824 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4825 * is greater than or equal to arc_c_min.
4826 * (i.e. amount of dirty data >= arc_c_min)
4828 * This is the easy case; all clean data contained by the mru and mfu
4829 * lists is evictable. Evicting all clean data can only drop arc_size
4830 * to the amount of dirty data, which is greater than arc_c_min.
4832 * 2. The sum of the amount of dirty data contained by both the mru and
4833 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4834 * is less than arc_c_min.
4835 * (i.e. arc_c_min > amount of dirty data)
4837 * 2.1. arc_size is greater than or equal arc_c_min.
4838 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4840 * In this case, not all clean data from the regular mru and mfu
4841 * lists is actually evictable; we must leave enough clean data
4842 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4843 * evictable data from the two lists combined, is exactly the
4844 * difference between arc_size and arc_c_min.
4846 * 2.2. arc_size is less than arc_c_min
4847 * (i.e. arc_c_min > arc_size > amount of dirty data)
4849 * In this case, none of the data contained in the mru and mfu
4850 * lists is evictable, even if it's clean. Since arc_size is
4851 * already below arc_c_min, evicting any more would only
4852 * increase this negative difference.
4855 #endif /* _KERNEL */
4858 * Adapt arc info given the number of bytes we are trying to add and
4859 * the state that we are coming from. This function is only called
4860 * when we are adding new content to the cache.
4862 static void
4863 arc_adapt(uint64_t bytes)
4866 * Wake reap thread if we do not have any available memory
4868 if (arc_reclaim_needed()) {
4869 zthr_wakeup(arc_reap_zthr);
4870 return;
4873 if (arc_no_grow)
4874 return;
4876 if (arc_c >= arc_c_max)
4877 return;
4880 * If we're within (2 * maxblocksize) bytes of the target
4881 * cache size, increment the target cache size
4883 if (aggsum_upper_bound(&arc_sums.arcstat_size) +
4884 2 * SPA_MAXBLOCKSIZE >= arc_c) {
4885 uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
4886 if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
4887 arc_c = arc_c_max;
4892 * Check if ARC current size has grown past our upper thresholds.
4894 static arc_ovf_level_t
4895 arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
4898 * We just compare the lower bound here for performance reasons. Our
4899 * primary goals are to make sure that the arc never grows without
4900 * bound, and that it can reach its maximum size. This check
4901 * accomplishes both goals. The maximum amount we could run over by is
4902 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4903 * in the ARC. In practice, that's in the tens of MB, which is low
4904 * enough to be safe.
4906 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
4907 zfs_max_recordsize;
4909 /* Always allow at least one block of overflow. */
4910 if (over < 0)
4911 return (ARC_OVF_NONE);
4913 /* If we are under memory pressure, report severe overflow. */
4914 if (!lax)
4915 return (ARC_OVF_SEVERE);
4917 /* We are not under pressure, so be more or less relaxed. */
4918 int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
4919 if (use_reserve)
4920 overflow *= 3;
4921 return (over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
4924 static abd_t *
4925 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
4926 int alloc_flags)
4928 arc_buf_contents_t type = arc_buf_type(hdr);
4930 arc_get_data_impl(hdr, size, tag, alloc_flags);
4931 if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
4932 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
4933 else
4934 return (abd_alloc(size, type == ARC_BUFC_METADATA));
4937 static void *
4938 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
4940 arc_buf_contents_t type = arc_buf_type(hdr);
4942 arc_get_data_impl(hdr, size, tag, 0);
4943 if (type == ARC_BUFC_METADATA) {
4944 return (zio_buf_alloc(size));
4945 } else {
4946 ASSERT(type == ARC_BUFC_DATA);
4947 return (zio_data_buf_alloc(size));
4952 * Wait for the specified amount of data (in bytes) to be evicted from the
4953 * ARC, and for there to be sufficient free memory in the system.
4954 * The lax argument specifies that caller does not have a specific reason
4955 * to wait, not aware of any memory pressure. Low memory handlers though
4956 * should set it to B_FALSE to wait for all required evictions to complete.
4957 * The use_reserve argument allows some callers to wait less than others
4958 * to not block critical code paths, possibly blocking other resources.
4960 void
4961 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
4963 switch (arc_is_overflowing(lax, use_reserve)) {
4964 case ARC_OVF_NONE:
4965 return;
4966 case ARC_OVF_SOME:
4968 * This is a bit racy without taking arc_evict_lock, but the
4969 * worst that can happen is we either call zthr_wakeup() extra
4970 * time due to race with other thread here, or the set flag
4971 * get cleared by arc_evict_cb(), which is unlikely due to
4972 * big hysteresis, but also not important since at this level
4973 * of overflow the eviction is purely advisory. Same time
4974 * taking the global lock here every time without waiting for
4975 * the actual eviction creates a significant lock contention.
4977 if (!arc_evict_needed) {
4978 arc_evict_needed = B_TRUE;
4979 zthr_wakeup(arc_evict_zthr);
4981 return;
4982 case ARC_OVF_SEVERE:
4983 default:
4985 arc_evict_waiter_t aw;
4986 list_link_init(&aw.aew_node);
4987 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
4989 uint64_t last_count = 0;
4990 mutex_enter(&arc_evict_lock);
4991 if (!list_is_empty(&arc_evict_waiters)) {
4992 arc_evict_waiter_t *last =
4993 list_tail(&arc_evict_waiters);
4994 last_count = last->aew_count;
4995 } else if (!arc_evict_needed) {
4996 arc_evict_needed = B_TRUE;
4997 zthr_wakeup(arc_evict_zthr);
5000 * Note, the last waiter's count may be less than
5001 * arc_evict_count if we are low on memory in which
5002 * case arc_evict_state_impl() may have deferred
5003 * wakeups (but still incremented arc_evict_count).
5005 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5007 list_insert_tail(&arc_evict_waiters, &aw);
5009 arc_set_need_free();
5011 DTRACE_PROBE3(arc__wait__for__eviction,
5012 uint64_t, amount,
5013 uint64_t, arc_evict_count,
5014 uint64_t, aw.aew_count);
5017 * We will be woken up either when arc_evict_count reaches
5018 * aew_count, or when the ARC is no longer overflowing and
5019 * eviction completes.
5020 * In case of "false" wakeup, we will still be on the list.
5022 do {
5023 cv_wait(&aw.aew_cv, &arc_evict_lock);
5024 } while (list_link_active(&aw.aew_node));
5025 mutex_exit(&arc_evict_lock);
5027 cv_destroy(&aw.aew_cv);
5033 * Allocate a block and return it to the caller. If we are hitting the
5034 * hard limit for the cache size, we must sleep, waiting for the eviction
5035 * thread to catch up. If we're past the target size but below the hard
5036 * limit, we'll only signal the reclaim thread and continue on.
5038 static void
5039 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5040 int alloc_flags)
5042 arc_adapt(size);
5045 * If arc_size is currently overflowing, we must be adding data
5046 * faster than we are evicting. To ensure we don't compound the
5047 * problem by adding more data and forcing arc_size to grow even
5048 * further past it's target size, we wait for the eviction thread to
5049 * make some progress. We also wait for there to be sufficient free
5050 * memory in the system, as measured by arc_free_memory().
5052 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5053 * requested size to be evicted. This should be more than 100%, to
5054 * ensure that that progress is also made towards getting arc_size
5055 * under arc_c. See the comment above zfs_arc_eviction_pct.
5057 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5058 B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);
5060 arc_buf_contents_t type = arc_buf_type(hdr);
5061 if (type == ARC_BUFC_METADATA) {
5062 arc_space_consume(size, ARC_SPACE_META);
5063 } else {
5064 arc_space_consume(size, ARC_SPACE_DATA);
5068 * Update the state size. Note that ghost states have a
5069 * "ghost size" and so don't need to be updated.
5071 arc_state_t *state = hdr->b_l1hdr.b_state;
5072 if (!GHOST_STATE(state)) {
5074 (void) zfs_refcount_add_many(&state->arcs_size[type], size,
5075 tag);
5078 * If this is reached via arc_read, the link is
5079 * protected by the hash lock. If reached via
5080 * arc_buf_alloc, the header should not be accessed by
5081 * any other thread. And, if reached via arc_read_done,
5082 * the hash lock will protect it if it's found in the
5083 * hash table; otherwise no other thread should be
5084 * trying to [add|remove]_reference it.
5086 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5087 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5088 (void) zfs_refcount_add_many(&state->arcs_esize[type],
5089 size, tag);
5094 static void
5095 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
5096 const void *tag)
5098 arc_free_data_impl(hdr, size, tag);
5099 abd_free(abd);
5102 static void
5103 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
5105 arc_buf_contents_t type = arc_buf_type(hdr);
5107 arc_free_data_impl(hdr, size, tag);
5108 if (type == ARC_BUFC_METADATA) {
5109 zio_buf_free(buf, size);
5110 } else {
5111 ASSERT(type == ARC_BUFC_DATA);
5112 zio_data_buf_free(buf, size);
5117 * Free the arc data buffer.
5119 static void
5120 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5122 arc_state_t *state = hdr->b_l1hdr.b_state;
5123 arc_buf_contents_t type = arc_buf_type(hdr);
5125 /* protected by hash lock, if in the hash table */
5126 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5127 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5128 ASSERT(state != arc_anon && state != arc_l2c_only);
5130 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5131 size, tag);
5133 (void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
5135 VERIFY3U(hdr->b_type, ==, type);
5136 if (type == ARC_BUFC_METADATA) {
5137 arc_space_return(size, ARC_SPACE_META);
5138 } else {
5139 ASSERT(type == ARC_BUFC_DATA);
5140 arc_space_return(size, ARC_SPACE_DATA);
5145 * This routine is called whenever a buffer is accessed.
5147 static void
5148 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5150 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5151 ASSERT(HDR_HAS_L1HDR(hdr));
5154 * Update buffer prefetch status.
5156 boolean_t was_prefetch = HDR_PREFETCH(hdr);
5157 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5158 if (was_prefetch != now_prefetch) {
5159 if (was_prefetch) {
5160 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5161 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5162 prefetch);
5164 if (HDR_HAS_L2HDR(hdr))
5165 l2arc_hdr_arcstats_decrement_state(hdr);
5166 if (was_prefetch) {
5167 arc_hdr_clear_flags(hdr,
5168 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5169 } else {
5170 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5172 if (HDR_HAS_L2HDR(hdr))
5173 l2arc_hdr_arcstats_increment_state(hdr);
5175 if (now_prefetch) {
5176 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5177 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5178 ARCSTAT_BUMP(arcstat_prescient_prefetch);
5179 } else {
5180 ARCSTAT_BUMP(arcstat_predictive_prefetch);
5183 if (arc_flags & ARC_FLAG_L2CACHE)
5184 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5186 clock_t now = ddi_get_lbolt();
5187 if (hdr->b_l1hdr.b_state == arc_anon) {
5188 arc_state_t *new_state;
5190 * This buffer is not in the cache, and does not appear in
5191 * our "ghost" lists. Add it to the MRU or uncached state.
5193 ASSERT0(hdr->b_l1hdr.b_arc_access);
5194 hdr->b_l1hdr.b_arc_access = now;
5195 if (HDR_UNCACHED(hdr)) {
5196 new_state = arc_uncached;
5197 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5198 hdr);
5199 } else {
5200 new_state = arc_mru;
5201 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5203 arc_change_state(new_state, hdr);
5204 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5206 * This buffer has been accessed once recently and either
5207 * its read is still in progress or it is in the cache.
5209 if (HDR_IO_IN_PROGRESS(hdr)) {
5210 hdr->b_l1hdr.b_arc_access = now;
5211 return;
5213 hdr->b_l1hdr.b_mru_hits++;
5214 ARCSTAT_BUMP(arcstat_mru_hits);
5217 * If the previous access was a prefetch, then it already
5218 * handled possible promotion, so nothing more to do for now.
5220 if (was_prefetch) {
5221 hdr->b_l1hdr.b_arc_access = now;
5222 return;
5226 * If more than ARC_MINTIME have passed from the previous
5227 * hit, promote the buffer to the MFU state.
5229 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5230 ARC_MINTIME)) {
5231 hdr->b_l1hdr.b_arc_access = now;
5232 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5233 arc_change_state(arc_mfu, hdr);
5235 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5236 arc_state_t *new_state;
5238 * This buffer has been accessed once recently, but was
5239 * evicted from the cache. Would we have bigger MRU, it
5240 * would be an MRU hit, so handle it the same way, except
5241 * we don't need to check the previous access time.
5243 hdr->b_l1hdr.b_mru_ghost_hits++;
5244 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5245 hdr->b_l1hdr.b_arc_access = now;
5246 wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5247 arc_hdr_size(hdr));
5248 if (was_prefetch) {
5249 new_state = arc_mru;
5250 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5251 } else {
5252 new_state = arc_mfu;
5253 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5255 arc_change_state(new_state, hdr);
5256 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5258 * This buffer has been accessed more than once and either
5259 * still in the cache or being restored from one of ghosts.
5261 if (!HDR_IO_IN_PROGRESS(hdr)) {
5262 hdr->b_l1hdr.b_mfu_hits++;
5263 ARCSTAT_BUMP(arcstat_mfu_hits);
5265 hdr->b_l1hdr.b_arc_access = now;
5266 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5268 * This buffer has been accessed more than once recently, but
5269 * has been evicted from the cache. Would we have bigger MFU
5270 * it would stay in cache, so move it back to MFU state.
5272 hdr->b_l1hdr.b_mfu_ghost_hits++;
5273 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5274 hdr->b_l1hdr.b_arc_access = now;
5275 wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5276 arc_hdr_size(hdr));
5277 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5278 arc_change_state(arc_mfu, hdr);
5279 } else if (hdr->b_l1hdr.b_state == arc_uncached) {
5281 * This buffer is uncacheable, but we got a hit. Probably
5282 * a demand read after prefetch. Nothing more to do here.
5284 if (!HDR_IO_IN_PROGRESS(hdr))
5285 ARCSTAT_BUMP(arcstat_uncached_hits);
5286 hdr->b_l1hdr.b_arc_access = now;
5287 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5289 * This buffer is on the 2nd Level ARC and was not accessed
5290 * for a long time, so treat it as new and put into MRU.
5292 hdr->b_l1hdr.b_arc_access = now;
5293 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5294 arc_change_state(arc_mru, hdr);
5295 } else {
5296 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5297 hdr->b_l1hdr.b_state);
5302 * This routine is called by dbuf_hold() to update the arc_access() state
5303 * which otherwise would be skipped for entries in the dbuf cache.
5305 void
5306 arc_buf_access(arc_buf_t *buf)
5308 arc_buf_hdr_t *hdr = buf->b_hdr;
5311 * Avoid taking the hash_lock when possible as an optimization.
5312 * The header must be checked again under the hash_lock in order
5313 * to handle the case where it is concurrently being released.
5315 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5316 return;
5318 kmutex_t *hash_lock = HDR_LOCK(hdr);
5319 mutex_enter(hash_lock);
5321 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5322 mutex_exit(hash_lock);
5323 ARCSTAT_BUMP(arcstat_access_skip);
5324 return;
5327 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5328 hdr->b_l1hdr.b_state == arc_mfu ||
5329 hdr->b_l1hdr.b_state == arc_uncached);
5331 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5332 arc_access(hdr, 0, B_TRUE);
5333 mutex_exit(hash_lock);
5335 ARCSTAT_BUMP(arcstat_hits);
5336 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5337 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5340 /* a generic arc_read_done_func_t which you can use */
5341 void
5342 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5343 arc_buf_t *buf, void *arg)
5345 (void) zio, (void) zb, (void) bp;
5347 if (buf == NULL)
5348 return;
5350 memcpy(arg, buf->b_data, arc_buf_size(buf));
5351 arc_buf_destroy(buf, arg);
5354 /* a generic arc_read_done_func_t */
5355 void
5356 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5357 arc_buf_t *buf, void *arg)
5359 (void) zb, (void) bp;
5360 arc_buf_t **bufp = arg;
5362 if (buf == NULL) {
5363 ASSERT(zio == NULL || zio->io_error != 0);
5364 *bufp = NULL;
5365 } else {
5366 ASSERT(zio == NULL || zio->io_error == 0);
5367 *bufp = buf;
5368 ASSERT(buf->b_data != NULL);
5372 static void
5373 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5375 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5376 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5377 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5378 } else {
5379 if (HDR_COMPRESSION_ENABLED(hdr)) {
5380 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5381 BP_GET_COMPRESS(bp));
5383 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5384 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5385 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5389 static void
5390 arc_read_done(zio_t *zio)
5392 blkptr_t *bp = zio->io_bp;
5393 arc_buf_hdr_t *hdr = zio->io_private;
5394 kmutex_t *hash_lock = NULL;
5395 arc_callback_t *callback_list;
5396 arc_callback_t *acb;
5399 * The hdr was inserted into hash-table and removed from lists
5400 * prior to starting I/O. We should find this header, since
5401 * it's in the hash table, and it should be legit since it's
5402 * not possible to evict it during the I/O. The only possible
5403 * reason for it not to be found is if we were freed during the
5404 * read.
5406 if (HDR_IN_HASH_TABLE(hdr)) {
5407 arc_buf_hdr_t *found;
5409 ASSERT3U(hdr->b_birth, ==, BP_GET_BIRTH(zio->io_bp));
5410 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5411 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5412 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5413 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5415 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5417 ASSERT((found == hdr &&
5418 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5419 (found == hdr && HDR_L2_READING(hdr)));
5420 ASSERT3P(hash_lock, !=, NULL);
5423 if (BP_IS_PROTECTED(bp)) {
5424 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5425 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5426 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5427 hdr->b_crypt_hdr.b_iv);
5429 if (zio->io_error == 0) {
5430 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5431 void *tmpbuf;
5433 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5434 sizeof (zil_chain_t));
5435 zio_crypt_decode_mac_zil(tmpbuf,
5436 hdr->b_crypt_hdr.b_mac);
5437 abd_return_buf(zio->io_abd, tmpbuf,
5438 sizeof (zil_chain_t));
5439 } else {
5440 zio_crypt_decode_mac_bp(bp,
5441 hdr->b_crypt_hdr.b_mac);
5446 if (zio->io_error == 0) {
5447 /* byteswap if necessary */
5448 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5449 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5450 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5451 } else {
5452 hdr->b_l1hdr.b_byteswap =
5453 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5455 } else {
5456 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5458 if (!HDR_L2_READING(hdr)) {
5459 hdr->b_complevel = zio->io_prop.zp_complevel;
5463 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5464 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5465 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5467 callback_list = hdr->b_l1hdr.b_acb;
5468 ASSERT3P(callback_list, !=, NULL);
5469 hdr->b_l1hdr.b_acb = NULL;
5472 * If a read request has a callback (i.e. acb_done is not NULL), then we
5473 * make a buf containing the data according to the parameters which were
5474 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5475 * aren't needlessly decompressing the data multiple times.
5477 int callback_cnt = 0;
5478 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5480 /* We need the last one to call below in original order. */
5481 callback_list = acb;
5483 if (!acb->acb_done || acb->acb_nobuf)
5484 continue;
5486 callback_cnt++;
5488 if (zio->io_error != 0)
5489 continue;
5491 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5492 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5493 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5494 &acb->acb_buf);
5497 * Assert non-speculative zios didn't fail because an
5498 * encryption key wasn't loaded
5500 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5501 error != EACCES);
5504 * If we failed to decrypt, report an error now (as the zio
5505 * layer would have done if it had done the transforms).
5507 if (error == ECKSUM) {
5508 ASSERT(BP_IS_PROTECTED(bp));
5509 error = SET_ERROR(EIO);
5510 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5511 spa_log_error(zio->io_spa, &acb->acb_zb,
5512 BP_GET_LOGICAL_BIRTH(zio->io_bp));
5513 (void) zfs_ereport_post(
5514 FM_EREPORT_ZFS_AUTHENTICATION,
5515 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5519 if (error != 0) {
5521 * Decompression or decryption failed. Set
5522 * io_error so that when we call acb_done
5523 * (below), we will indicate that the read
5524 * failed. Note that in the unusual case
5525 * where one callback is compressed and another
5526 * uncompressed, we will mark all of them
5527 * as failed, even though the uncompressed
5528 * one can't actually fail. In this case,
5529 * the hdr will not be anonymous, because
5530 * if there are multiple callbacks, it's
5531 * because multiple threads found the same
5532 * arc buf in the hash table.
5534 zio->io_error = error;
5539 * If there are multiple callbacks, we must have the hash lock,
5540 * because the only way for multiple threads to find this hdr is
5541 * in the hash table. This ensures that if there are multiple
5542 * callbacks, the hdr is not anonymous. If it were anonymous,
5543 * we couldn't use arc_buf_destroy() in the error case below.
5545 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5547 if (zio->io_error == 0) {
5548 arc_hdr_verify(hdr, zio->io_bp);
5549 } else {
5550 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5551 if (hdr->b_l1hdr.b_state != arc_anon)
5552 arc_change_state(arc_anon, hdr);
5553 if (HDR_IN_HASH_TABLE(hdr))
5554 buf_hash_remove(hdr);
5557 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5558 (void) remove_reference(hdr, hdr);
5560 if (hash_lock != NULL)
5561 mutex_exit(hash_lock);
5563 /* execute each callback and free its structure */
5564 while ((acb = callback_list) != NULL) {
5565 if (acb->acb_done != NULL) {
5566 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5568 * If arc_buf_alloc_impl() fails during
5569 * decompression, the buf will still be
5570 * allocated, and needs to be freed here.
5572 arc_buf_destroy(acb->acb_buf,
5573 acb->acb_private);
5574 acb->acb_buf = NULL;
5576 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5577 acb->acb_buf, acb->acb_private);
5580 if (acb->acb_zio_dummy != NULL) {
5581 acb->acb_zio_dummy->io_error = zio->io_error;
5582 zio_nowait(acb->acb_zio_dummy);
5585 callback_list = acb->acb_prev;
5586 if (acb->acb_wait) {
5587 mutex_enter(&acb->acb_wait_lock);
5588 acb->acb_wait_error = zio->io_error;
5589 acb->acb_wait = B_FALSE;
5590 cv_signal(&acb->acb_wait_cv);
5591 mutex_exit(&acb->acb_wait_lock);
5592 /* acb will be freed by the waiting thread. */
5593 } else {
5594 kmem_free(acb, sizeof (arc_callback_t));
5600 * Lookup the block at the specified DVA (in bp), and return the manner in
5601 * which the block is cached. A zero return indicates not cached.
5604 arc_cached(spa_t *spa, const blkptr_t *bp)
5606 arc_buf_hdr_t *hdr = NULL;
5607 kmutex_t *hash_lock = NULL;
5608 uint64_t guid = spa_load_guid(spa);
5609 int flags = 0;
5611 if (BP_IS_EMBEDDED(bp))
5612 return (ARC_CACHED_EMBEDDED);
5614 hdr = buf_hash_find(guid, bp, &hash_lock);
5615 if (hdr == NULL)
5616 return (0);
5618 if (HDR_HAS_L1HDR(hdr)) {
5619 arc_state_t *state = hdr->b_l1hdr.b_state;
5621 * We switch to ensure that any future arc_state_type_t
5622 * changes are handled. This is just a shift to promote
5623 * more compile-time checking.
5625 switch (state->arcs_state) {
5626 case ARC_STATE_ANON:
5627 break;
5628 case ARC_STATE_MRU:
5629 flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
5630 break;
5631 case ARC_STATE_MFU:
5632 flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
5633 break;
5634 case ARC_STATE_UNCACHED:
5635 /* The header is still in L1, probably not for long */
5636 flags |= ARC_CACHED_IN_L1;
5637 break;
5638 default:
5639 break;
5642 if (HDR_HAS_L2HDR(hdr))
5643 flags |= ARC_CACHED_IN_L2;
5645 mutex_exit(hash_lock);
5647 return (flags);
5651 * "Read" the block at the specified DVA (in bp) via the
5652 * cache. If the block is found in the cache, invoke the provided
5653 * callback immediately and return. Note that the `zio' parameter
5654 * in the callback will be NULL in this case, since no IO was
5655 * required. If the block is not in the cache pass the read request
5656 * on to the spa with a substitute callback function, so that the
5657 * requested block will be added to the cache.
5659 * If a read request arrives for a block that has a read in-progress,
5660 * either wait for the in-progress read to complete (and return the
5661 * results); or, if this is a read with a "done" func, add a record
5662 * to the read to invoke the "done" func when the read completes,
5663 * and return; or just return.
5665 * arc_read_done() will invoke all the requested "done" functions
5666 * for readers of this block.
5669 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5670 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5671 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5673 arc_buf_hdr_t *hdr = NULL;
5674 kmutex_t *hash_lock = NULL;
5675 zio_t *rzio;
5676 uint64_t guid = spa_load_guid(spa);
5677 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5678 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5679 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5680 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5681 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5682 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5683 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5684 arc_buf_t *buf = NULL;
5685 int rc = 0;
5687 ASSERT(!embedded_bp ||
5688 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5689 ASSERT(!BP_IS_HOLE(bp));
5690 ASSERT(!BP_IS_REDACTED(bp));
5693 * Normally SPL_FSTRANS will already be set since kernel threads which
5694 * expect to call the DMU interfaces will set it when created. System
5695 * calls are similarly handled by setting/cleaning the bit in the
5696 * registered callback (module/os/.../zfs/zpl_*).
5698 * External consumers such as Lustre which call the exported DMU
5699 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5700 * on the hash_lock always set and clear the bit.
5702 fstrans_cookie_t cookie = spl_fstrans_mark();
5703 top:
5704 if (!embedded_bp) {
5706 * Embedded BP's have no DVA and require no I/O to "read".
5707 * Create an anonymous arc buf to back it.
5709 hdr = buf_hash_find(guid, bp, &hash_lock);
5713 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5714 * we maintain encrypted data separately from compressed / uncompressed
5715 * data. If the user is requesting raw encrypted data and we don't have
5716 * that in the header we will read from disk to guarantee that we can
5717 * get it even if the encryption keys aren't loaded.
5719 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5720 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5721 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5724 * Verify the block pointer contents are reasonable. This
5725 * should always be the case since the blkptr is protected by
5726 * a checksum.
5728 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
5729 BLK_VERIFY_LOG)) {
5730 mutex_exit(hash_lock);
5731 rc = SET_ERROR(ECKSUM);
5732 goto done;
5735 if (HDR_IO_IN_PROGRESS(hdr)) {
5736 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5737 mutex_exit(hash_lock);
5738 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5739 rc = SET_ERROR(ENOENT);
5740 goto done;
5743 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5744 ASSERT3P(head_zio, !=, NULL);
5745 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5746 priority == ZIO_PRIORITY_SYNC_READ) {
5748 * This is a sync read that needs to wait for
5749 * an in-flight async read. Request that the
5750 * zio have its priority upgraded.
5752 zio_change_priority(head_zio, priority);
5753 DTRACE_PROBE1(arc__async__upgrade__sync,
5754 arc_buf_hdr_t *, hdr);
5755 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5758 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5759 arc_access(hdr, *arc_flags, B_FALSE);
5762 * If there are multiple threads reading the same block
5763 * and that block is not yet in the ARC, then only one
5764 * thread will do the physical I/O and all other
5765 * threads will wait until that I/O completes.
5766 * Synchronous reads use the acb_wait_cv whereas nowait
5767 * reads register a callback. Both are signalled/called
5768 * in arc_read_done.
5770 * Errors of the physical I/O may need to be propagated.
5771 * Synchronous read errors are returned here from
5772 * arc_read_done via acb_wait_error. Nowait reads
5773 * attach the acb_zio_dummy zio to pio and
5774 * arc_read_done propagates the physical I/O's io_error
5775 * to acb_zio_dummy, and thereby to pio.
5777 arc_callback_t *acb = NULL;
5778 if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5779 acb = kmem_zalloc(sizeof (arc_callback_t),
5780 KM_SLEEP);
5781 acb->acb_done = done;
5782 acb->acb_private = private;
5783 acb->acb_compressed = compressed_read;
5784 acb->acb_encrypted = encrypted_read;
5785 acb->acb_noauth = noauth_read;
5786 acb->acb_nobuf = no_buf;
5787 if (*arc_flags & ARC_FLAG_WAIT) {
5788 acb->acb_wait = B_TRUE;
5789 mutex_init(&acb->acb_wait_lock, NULL,
5790 MUTEX_DEFAULT, NULL);
5791 cv_init(&acb->acb_wait_cv, NULL,
5792 CV_DEFAULT, NULL);
5794 acb->acb_zb = *zb;
5795 if (pio != NULL) {
5796 acb->acb_zio_dummy = zio_null(pio,
5797 spa, NULL, NULL, NULL, zio_flags);
5799 acb->acb_zio_head = head_zio;
5800 acb->acb_next = hdr->b_l1hdr.b_acb;
5801 hdr->b_l1hdr.b_acb->acb_prev = acb;
5802 hdr->b_l1hdr.b_acb = acb;
5804 mutex_exit(hash_lock);
5806 ARCSTAT_BUMP(arcstat_iohits);
5807 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5808 demand, prefetch, is_data, data, metadata, iohits);
5810 if (*arc_flags & ARC_FLAG_WAIT) {
5811 mutex_enter(&acb->acb_wait_lock);
5812 while (acb->acb_wait) {
5813 cv_wait(&acb->acb_wait_cv,
5814 &acb->acb_wait_lock);
5816 rc = acb->acb_wait_error;
5817 mutex_exit(&acb->acb_wait_lock);
5818 mutex_destroy(&acb->acb_wait_lock);
5819 cv_destroy(&acb->acb_wait_cv);
5820 kmem_free(acb, sizeof (arc_callback_t));
5822 goto out;
5825 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5826 hdr->b_l1hdr.b_state == arc_mfu ||
5827 hdr->b_l1hdr.b_state == arc_uncached);
5829 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5830 arc_access(hdr, *arc_flags, B_TRUE);
5832 if (done && !no_buf) {
5833 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
5835 /* Get a buf with the desired data in it. */
5836 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
5837 encrypted_read, compressed_read, noauth_read,
5838 B_TRUE, &buf);
5839 if (rc == ECKSUM) {
5841 * Convert authentication and decryption errors
5842 * to EIO (and generate an ereport if needed)
5843 * before leaving the ARC.
5845 rc = SET_ERROR(EIO);
5846 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5847 spa_log_error(spa, zb, hdr->b_birth);
5848 (void) zfs_ereport_post(
5849 FM_EREPORT_ZFS_AUTHENTICATION,
5850 spa, NULL, zb, NULL, 0);
5853 if (rc != 0) {
5854 arc_buf_destroy_impl(buf);
5855 buf = NULL;
5856 (void) remove_reference(hdr, private);
5859 /* assert any errors weren't due to unloaded keys */
5860 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
5861 rc != EACCES);
5863 mutex_exit(hash_lock);
5864 ARCSTAT_BUMP(arcstat_hits);
5865 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5866 demand, prefetch, is_data, data, metadata, hits);
5867 *arc_flags |= ARC_FLAG_CACHED;
5868 goto done;
5869 } else {
5870 uint64_t lsize = BP_GET_LSIZE(bp);
5871 uint64_t psize = BP_GET_PSIZE(bp);
5872 arc_callback_t *acb;
5873 vdev_t *vd = NULL;
5874 uint64_t addr = 0;
5875 boolean_t devw = B_FALSE;
5876 uint64_t size;
5877 abd_t *hdr_abd;
5878 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
5879 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5881 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5882 if (hash_lock != NULL)
5883 mutex_exit(hash_lock);
5884 rc = SET_ERROR(ENOENT);
5885 goto done;
5889 * Verify the block pointer contents are reasonable. This
5890 * should always be the case since the blkptr is protected by
5891 * a checksum.
5893 if (!zfs_blkptr_verify(spa, bp,
5894 (zio_flags & ZIO_FLAG_CONFIG_WRITER) ?
5895 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
5896 if (hash_lock != NULL)
5897 mutex_exit(hash_lock);
5898 rc = SET_ERROR(ECKSUM);
5899 goto done;
5902 if (hdr == NULL) {
5904 * This block is not in the cache or it has
5905 * embedded data.
5907 arc_buf_hdr_t *exists = NULL;
5908 hdr = arc_hdr_alloc(guid, psize, lsize,
5909 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
5911 if (!embedded_bp) {
5912 hdr->b_dva = *BP_IDENTITY(bp);
5913 hdr->b_birth = BP_GET_BIRTH(bp);
5914 exists = buf_hash_insert(hdr, &hash_lock);
5916 if (exists != NULL) {
5917 /* somebody beat us to the hash insert */
5918 mutex_exit(hash_lock);
5919 buf_discard_identity(hdr);
5920 arc_hdr_destroy(hdr);
5921 goto top; /* restart the IO request */
5923 } else {
5925 * This block is in the ghost cache or encrypted data
5926 * was requested and we didn't have it. If it was
5927 * L2-only (and thus didn't have an L1 hdr),
5928 * we realloc the header to add an L1 hdr.
5930 if (!HDR_HAS_L1HDR(hdr)) {
5931 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5932 hdr_full_cache);
5935 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
5936 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5937 ASSERT(!HDR_HAS_RABD(hdr));
5938 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5939 ASSERT0(zfs_refcount_count(
5940 &hdr->b_l1hdr.b_refcnt));
5941 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5942 #ifdef ZFS_DEBUG
5943 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5944 #endif
5945 } else if (HDR_IO_IN_PROGRESS(hdr)) {
5947 * If this header already had an IO in progress
5948 * and we are performing another IO to fetch
5949 * encrypted data we must wait until the first
5950 * IO completes so as not to confuse
5951 * arc_read_done(). This should be very rare
5952 * and so the performance impact shouldn't
5953 * matter.
5955 arc_callback_t *acb = kmem_zalloc(
5956 sizeof (arc_callback_t), KM_SLEEP);
5957 acb->acb_wait = B_TRUE;
5958 mutex_init(&acb->acb_wait_lock, NULL,
5959 MUTEX_DEFAULT, NULL);
5960 cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
5961 NULL);
5962 acb->acb_zio_head =
5963 hdr->b_l1hdr.b_acb->acb_zio_head;
5964 acb->acb_next = hdr->b_l1hdr.b_acb;
5965 hdr->b_l1hdr.b_acb->acb_prev = acb;
5966 hdr->b_l1hdr.b_acb = acb;
5967 mutex_exit(hash_lock);
5968 mutex_enter(&acb->acb_wait_lock);
5969 while (acb->acb_wait) {
5970 cv_wait(&acb->acb_wait_cv,
5971 &acb->acb_wait_lock);
5973 mutex_exit(&acb->acb_wait_lock);
5974 mutex_destroy(&acb->acb_wait_lock);
5975 cv_destroy(&acb->acb_wait_cv);
5976 kmem_free(acb, sizeof (arc_callback_t));
5977 goto top;
5980 if (*arc_flags & ARC_FLAG_UNCACHED) {
5981 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
5982 if (!encrypted_read)
5983 alloc_flags |= ARC_HDR_ALLOC_LINEAR;
5987 * Take additional reference for IO_IN_PROGRESS. It stops
5988 * arc_access() from putting this header without any buffers
5989 * and so other references but obviously nonevictable onto
5990 * the evictable list of MRU or MFU state.
5992 add_reference(hdr, hdr);
5993 if (!embedded_bp)
5994 arc_access(hdr, *arc_flags, B_FALSE);
5995 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5996 arc_hdr_alloc_abd(hdr, alloc_flags);
5997 if (encrypted_read) {
5998 ASSERT(HDR_HAS_RABD(hdr));
5999 size = HDR_GET_PSIZE(hdr);
6000 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6001 zio_flags |= ZIO_FLAG_RAW;
6002 } else {
6003 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6004 size = arc_hdr_size(hdr);
6005 hdr_abd = hdr->b_l1hdr.b_pabd;
6007 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6008 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6012 * For authenticated bp's, we do not ask the ZIO layer
6013 * to authenticate them since this will cause the entire
6014 * IO to fail if the key isn't loaded. Instead, we
6015 * defer authentication until arc_buf_fill(), which will
6016 * verify the data when the key is available.
6018 if (BP_IS_AUTHENTICATED(bp))
6019 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6022 if (BP_IS_AUTHENTICATED(bp))
6023 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6024 if (BP_GET_LEVEL(bp) > 0)
6025 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6026 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6028 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6029 acb->acb_done = done;
6030 acb->acb_private = private;
6031 acb->acb_compressed = compressed_read;
6032 acb->acb_encrypted = encrypted_read;
6033 acb->acb_noauth = noauth_read;
6034 acb->acb_zb = *zb;
6036 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6037 hdr->b_l1hdr.b_acb = acb;
6039 if (HDR_HAS_L2HDR(hdr) &&
6040 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6041 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6042 addr = hdr->b_l2hdr.b_daddr;
6044 * Lock out L2ARC device removal.
6046 if (vdev_is_dead(vd) ||
6047 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6048 vd = NULL;
6052 * We count both async reads and scrub IOs as asynchronous so
6053 * that both can be upgraded in the event of a cache hit while
6054 * the read IO is still in-flight.
6056 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6057 priority == ZIO_PRIORITY_SCRUB)
6058 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6059 else
6060 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6063 * At this point, we have a level 1 cache miss or a blkptr
6064 * with embedded data. Try again in L2ARC if possible.
6066 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6069 * Skip ARC stat bump for block pointers with embedded
6070 * data. The data are read from the blkptr itself via
6071 * decode_embedded_bp_compressed().
6073 if (!embedded_bp) {
6074 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6075 blkptr_t *, bp, uint64_t, lsize,
6076 zbookmark_phys_t *, zb);
6077 ARCSTAT_BUMP(arcstat_misses);
6078 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6079 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6080 metadata, misses);
6081 zfs_racct_read(spa, size, 1, 0);
6084 /* Check if the spa even has l2 configured */
6085 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6086 spa->spa_l2cache.sav_count > 0;
6088 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6090 * Read from the L2ARC if the following are true:
6091 * 1. The L2ARC vdev was previously cached.
6092 * 2. This buffer still has L2ARC metadata.
6093 * 3. This buffer isn't currently writing to the L2ARC.
6094 * 4. The L2ARC entry wasn't evicted, which may
6095 * also have invalidated the vdev.
6097 if (HDR_HAS_L2HDR(hdr) &&
6098 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
6099 l2arc_read_callback_t *cb;
6100 abd_t *abd;
6101 uint64_t asize;
6103 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6104 ARCSTAT_BUMP(arcstat_l2_hits);
6105 hdr->b_l2hdr.b_hits++;
6107 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6108 KM_SLEEP);
6109 cb->l2rcb_hdr = hdr;
6110 cb->l2rcb_bp = *bp;
6111 cb->l2rcb_zb = *zb;
6112 cb->l2rcb_flags = zio_flags;
6115 * When Compressed ARC is disabled, but the
6116 * L2ARC block is compressed, arc_hdr_size()
6117 * will have returned LSIZE rather than PSIZE.
6119 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6120 !HDR_COMPRESSION_ENABLED(hdr) &&
6121 HDR_GET_PSIZE(hdr) != 0) {
6122 size = HDR_GET_PSIZE(hdr);
6125 asize = vdev_psize_to_asize(vd, size);
6126 if (asize != size) {
6127 abd = abd_alloc_for_io(asize,
6128 HDR_ISTYPE_METADATA(hdr));
6129 cb->l2rcb_abd = abd;
6130 } else {
6131 abd = hdr_abd;
6134 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6135 addr + asize <= vd->vdev_psize -
6136 VDEV_LABEL_END_SIZE);
6139 * l2arc read. The SCL_L2ARC lock will be
6140 * released by l2arc_read_done().
6141 * Issue a null zio if the underlying buffer
6142 * was squashed to zero size by compression.
6144 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6145 ZIO_COMPRESS_EMPTY);
6146 rzio = zio_read_phys(pio, vd, addr,
6147 asize, abd,
6148 ZIO_CHECKSUM_OFF,
6149 l2arc_read_done, cb, priority,
6150 zio_flags | ZIO_FLAG_CANFAIL |
6151 ZIO_FLAG_DONT_PROPAGATE |
6152 ZIO_FLAG_DONT_RETRY, B_FALSE);
6153 acb->acb_zio_head = rzio;
6155 if (hash_lock != NULL)
6156 mutex_exit(hash_lock);
6158 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6159 zio_t *, rzio);
6160 ARCSTAT_INCR(arcstat_l2_read_bytes,
6161 HDR_GET_PSIZE(hdr));
6163 if (*arc_flags & ARC_FLAG_NOWAIT) {
6164 zio_nowait(rzio);
6165 goto out;
6168 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6169 if (zio_wait(rzio) == 0)
6170 goto out;
6172 /* l2arc read error; goto zio_read() */
6173 if (hash_lock != NULL)
6174 mutex_enter(hash_lock);
6175 } else {
6176 DTRACE_PROBE1(l2arc__miss,
6177 arc_buf_hdr_t *, hdr);
6178 ARCSTAT_BUMP(arcstat_l2_misses);
6179 if (HDR_L2_WRITING(hdr))
6180 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6181 spa_config_exit(spa, SCL_L2ARC, vd);
6183 } else {
6184 if (vd != NULL)
6185 spa_config_exit(spa, SCL_L2ARC, vd);
6188 * Only a spa with l2 should contribute to l2
6189 * miss stats. (Including the case of having a
6190 * faulted cache device - that's also a miss.)
6192 if (spa_has_l2) {
6194 * Skip ARC stat bump for block pointers with
6195 * embedded data. The data are read from the
6196 * blkptr itself via
6197 * decode_embedded_bp_compressed().
6199 if (!embedded_bp) {
6200 DTRACE_PROBE1(l2arc__miss,
6201 arc_buf_hdr_t *, hdr);
6202 ARCSTAT_BUMP(arcstat_l2_misses);
6207 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6208 arc_read_done, hdr, priority, zio_flags, zb);
6209 acb->acb_zio_head = rzio;
6211 if (hash_lock != NULL)
6212 mutex_exit(hash_lock);
6214 if (*arc_flags & ARC_FLAG_WAIT) {
6215 rc = zio_wait(rzio);
6216 goto out;
6219 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6220 zio_nowait(rzio);
6223 out:
6224 /* embedded bps don't actually go to disk */
6225 if (!embedded_bp)
6226 spa_read_history_add(spa, zb, *arc_flags);
6227 spl_fstrans_unmark(cookie);
6228 return (rc);
6230 done:
6231 if (done)
6232 done(NULL, zb, bp, buf, private);
6233 if (pio && rc != 0) {
6234 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6235 zio->io_error = rc;
6236 zio_nowait(zio);
6238 goto out;
6241 arc_prune_t *
6242 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6244 arc_prune_t *p;
6246 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6247 p->p_pfunc = func;
6248 p->p_private = private;
6249 list_link_init(&p->p_node);
6250 zfs_refcount_create(&p->p_refcnt);
6252 mutex_enter(&arc_prune_mtx);
6253 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6254 list_insert_head(&arc_prune_list, p);
6255 mutex_exit(&arc_prune_mtx);
6257 return (p);
6260 void
6261 arc_remove_prune_callback(arc_prune_t *p)
6263 boolean_t wait = B_FALSE;
6264 mutex_enter(&arc_prune_mtx);
6265 list_remove(&arc_prune_list, p);
6266 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6267 wait = B_TRUE;
6268 mutex_exit(&arc_prune_mtx);
6270 /* wait for arc_prune_task to finish */
6271 if (wait)
6272 taskq_wait_outstanding(arc_prune_taskq, 0);
6273 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6274 zfs_refcount_destroy(&p->p_refcnt);
6275 kmem_free(p, sizeof (*p));
6279 * Helper function for arc_prune_async() it is responsible for safely
6280 * handling the execution of a registered arc_prune_func_t.
6282 static void
6283 arc_prune_task(void *ptr)
6285 arc_prune_t *ap = (arc_prune_t *)ptr;
6286 arc_prune_func_t *func = ap->p_pfunc;
6288 if (func != NULL)
6289 func(ap->p_adjust, ap->p_private);
6291 (void) zfs_refcount_remove(&ap->p_refcnt, func);
6295 * Notify registered consumers they must drop holds on a portion of the ARC
6296 * buffers they reference. This provides a mechanism to ensure the ARC can
6297 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6299 * This operation is performed asynchronously so it may be safely called
6300 * in the context of the arc_reclaim_thread(). A reference is taken here
6301 * for each registered arc_prune_t and the arc_prune_task() is responsible
6302 * for releasing it once the registered arc_prune_func_t has completed.
6304 static void
6305 arc_prune_async(uint64_t adjust)
6307 arc_prune_t *ap;
6309 mutex_enter(&arc_prune_mtx);
6310 for (ap = list_head(&arc_prune_list); ap != NULL;
6311 ap = list_next(&arc_prune_list, ap)) {
6313 if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6314 continue;
6316 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6317 ap->p_adjust = adjust;
6318 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6319 ap, TQ_SLEEP) == TASKQID_INVALID) {
6320 (void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6321 continue;
6323 ARCSTAT_BUMP(arcstat_prune);
6325 mutex_exit(&arc_prune_mtx);
6329 * Notify the arc that a block was freed, and thus will never be used again.
6331 void
6332 arc_freed(spa_t *spa, const blkptr_t *bp)
6334 arc_buf_hdr_t *hdr;
6335 kmutex_t *hash_lock;
6336 uint64_t guid = spa_load_guid(spa);
6338 ASSERT(!BP_IS_EMBEDDED(bp));
6340 hdr = buf_hash_find(guid, bp, &hash_lock);
6341 if (hdr == NULL)
6342 return;
6345 * We might be trying to free a block that is still doing I/O
6346 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6347 * dmu_sync-ed block). A block may also have a reference if it is
6348 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6349 * have written the new block to its final resting place on disk but
6350 * without the dedup flag set. This would have left the hdr in the MRU
6351 * state and discoverable. When the txg finally syncs it detects that
6352 * the block was overridden in open context and issues an override I/O.
6353 * Since this is a dedup block, the override I/O will determine if the
6354 * block is already in the DDT. If so, then it will replace the io_bp
6355 * with the bp from the DDT and allow the I/O to finish. When the I/O
6356 * reaches the done callback, dbuf_write_override_done, it will
6357 * check to see if the io_bp and io_bp_override are identical.
6358 * If they are not, then it indicates that the bp was replaced with
6359 * the bp in the DDT and the override bp is freed. This allows
6360 * us to arrive here with a reference on a block that is being
6361 * freed. So if we have an I/O in progress, or a reference to
6362 * this hdr, then we don't destroy the hdr.
6364 if (!HDR_HAS_L1HDR(hdr) ||
6365 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6366 arc_change_state(arc_anon, hdr);
6367 arc_hdr_destroy(hdr);
6368 mutex_exit(hash_lock);
6369 } else {
6370 mutex_exit(hash_lock);
6376 * Release this buffer from the cache, making it an anonymous buffer. This
6377 * must be done after a read and prior to modifying the buffer contents.
6378 * If the buffer has more than one reference, we must make
6379 * a new hdr for the buffer.
6381 void
6382 arc_release(arc_buf_t *buf, const void *tag)
6384 arc_buf_hdr_t *hdr = buf->b_hdr;
6387 * It would be nice to assert that if its DMU metadata (level >
6388 * 0 || it's the dnode file), then it must be syncing context.
6389 * But we don't know that information at this level.
6392 ASSERT(HDR_HAS_L1HDR(hdr));
6395 * We don't grab the hash lock prior to this check, because if
6396 * the buffer's header is in the arc_anon state, it won't be
6397 * linked into the hash table.
6399 if (hdr->b_l1hdr.b_state == arc_anon) {
6400 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6401 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6402 ASSERT(!HDR_HAS_L2HDR(hdr));
6404 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6405 ASSERT(ARC_BUF_LAST(buf));
6406 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6407 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6409 hdr->b_l1hdr.b_arc_access = 0;
6412 * If the buf is being overridden then it may already
6413 * have a hdr that is not empty.
6415 buf_discard_identity(hdr);
6416 arc_buf_thaw(buf);
6418 return;
6421 kmutex_t *hash_lock = HDR_LOCK(hdr);
6422 mutex_enter(hash_lock);
6425 * This assignment is only valid as long as the hash_lock is
6426 * held, we must be careful not to reference state or the
6427 * b_state field after dropping the lock.
6429 arc_state_t *state = hdr->b_l1hdr.b_state;
6430 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6431 ASSERT3P(state, !=, arc_anon);
6433 /* this buffer is not on any list */
6434 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6436 if (HDR_HAS_L2HDR(hdr)) {
6437 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6440 * We have to recheck this conditional again now that
6441 * we're holding the l2ad_mtx to prevent a race with
6442 * another thread which might be concurrently calling
6443 * l2arc_evict(). In that case, l2arc_evict() might have
6444 * destroyed the header's L2 portion as we were waiting
6445 * to acquire the l2ad_mtx.
6447 if (HDR_HAS_L2HDR(hdr))
6448 arc_hdr_l2hdr_destroy(hdr);
6450 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6454 * Do we have more than one buf?
6456 if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6457 arc_buf_hdr_t *nhdr;
6458 uint64_t spa = hdr->b_spa;
6459 uint64_t psize = HDR_GET_PSIZE(hdr);
6460 uint64_t lsize = HDR_GET_LSIZE(hdr);
6461 boolean_t protected = HDR_PROTECTED(hdr);
6462 enum zio_compress compress = arc_hdr_get_compress(hdr);
6463 arc_buf_contents_t type = arc_buf_type(hdr);
6464 VERIFY3U(hdr->b_type, ==, type);
6466 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6467 VERIFY3S(remove_reference(hdr, tag), >, 0);
6469 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6470 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6471 ASSERT(ARC_BUF_LAST(buf));
6475 * Pull the data off of this hdr and attach it to
6476 * a new anonymous hdr. Also find the last buffer
6477 * in the hdr's buffer list.
6479 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6480 ASSERT3P(lastbuf, !=, NULL);
6483 * If the current arc_buf_t and the hdr are sharing their data
6484 * buffer, then we must stop sharing that block.
6486 if (ARC_BUF_SHARED(buf)) {
6487 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6488 ASSERT(!arc_buf_is_shared(lastbuf));
6491 * First, sever the block sharing relationship between
6492 * buf and the arc_buf_hdr_t.
6494 arc_unshare_buf(hdr, buf);
6497 * Now we need to recreate the hdr's b_pabd. Since we
6498 * have lastbuf handy, we try to share with it, but if
6499 * we can't then we allocate a new b_pabd and copy the
6500 * data from buf into it.
6502 if (arc_can_share(hdr, lastbuf)) {
6503 arc_share_buf(hdr, lastbuf);
6504 } else {
6505 arc_hdr_alloc_abd(hdr, 0);
6506 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6507 buf->b_data, psize);
6509 VERIFY3P(lastbuf->b_data, !=, NULL);
6510 } else if (HDR_SHARED_DATA(hdr)) {
6512 * Uncompressed shared buffers are always at the end
6513 * of the list. Compressed buffers don't have the
6514 * same requirements. This makes it hard to
6515 * simply assert that the lastbuf is shared so
6516 * we rely on the hdr's compression flags to determine
6517 * if we have a compressed, shared buffer.
6519 ASSERT(arc_buf_is_shared(lastbuf) ||
6520 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6521 ASSERT(!arc_buf_is_shared(buf));
6524 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6525 ASSERT3P(state, !=, arc_l2c_only);
6527 (void) zfs_refcount_remove_many(&state->arcs_size[type],
6528 arc_buf_size(buf), buf);
6530 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6531 ASSERT3P(state, !=, arc_l2c_only);
6532 (void) zfs_refcount_remove_many(
6533 &state->arcs_esize[type],
6534 arc_buf_size(buf), buf);
6537 arc_cksum_verify(buf);
6538 arc_buf_unwatch(buf);
6540 /* if this is the last uncompressed buf free the checksum */
6541 if (!arc_hdr_has_uncompressed_buf(hdr))
6542 arc_cksum_free(hdr);
6544 mutex_exit(hash_lock);
6546 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6547 compress, hdr->b_complevel, type);
6548 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6549 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6550 VERIFY3U(nhdr->b_type, ==, type);
6551 ASSERT(!HDR_SHARED_DATA(nhdr));
6553 nhdr->b_l1hdr.b_buf = buf;
6554 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6555 buf->b_hdr = nhdr;
6557 (void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6558 arc_buf_size(buf), buf);
6559 } else {
6560 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6561 /* protected by hash lock, or hdr is on arc_anon */
6562 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6563 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6564 hdr->b_l1hdr.b_mru_hits = 0;
6565 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6566 hdr->b_l1hdr.b_mfu_hits = 0;
6567 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6568 arc_change_state(arc_anon, hdr);
6569 hdr->b_l1hdr.b_arc_access = 0;
6571 mutex_exit(hash_lock);
6572 buf_discard_identity(hdr);
6573 arc_buf_thaw(buf);
6578 arc_released(arc_buf_t *buf)
6580 return (buf->b_data != NULL &&
6581 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6584 #ifdef ZFS_DEBUG
6586 arc_referenced(arc_buf_t *buf)
6588 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6590 #endif
6592 static void
6593 arc_write_ready(zio_t *zio)
6595 arc_write_callback_t *callback = zio->io_private;
6596 arc_buf_t *buf = callback->awcb_buf;
6597 arc_buf_hdr_t *hdr = buf->b_hdr;
6598 blkptr_t *bp = zio->io_bp;
6599 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6600 fstrans_cookie_t cookie = spl_fstrans_mark();
6602 ASSERT(HDR_HAS_L1HDR(hdr));
6603 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6604 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6607 * If we're reexecuting this zio because the pool suspended, then
6608 * cleanup any state that was previously set the first time the
6609 * callback was invoked.
6611 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6612 arc_cksum_free(hdr);
6613 arc_buf_unwatch(buf);
6614 if (hdr->b_l1hdr.b_pabd != NULL) {
6615 if (ARC_BUF_SHARED(buf)) {
6616 arc_unshare_buf(hdr, buf);
6617 } else {
6618 ASSERT(!arc_buf_is_shared(buf));
6619 arc_hdr_free_abd(hdr, B_FALSE);
6623 if (HDR_HAS_RABD(hdr))
6624 arc_hdr_free_abd(hdr, B_TRUE);
6626 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6627 ASSERT(!HDR_HAS_RABD(hdr));
6628 ASSERT(!HDR_SHARED_DATA(hdr));
6629 ASSERT(!arc_buf_is_shared(buf));
6631 callback->awcb_ready(zio, buf, callback->awcb_private);
6633 if (HDR_IO_IN_PROGRESS(hdr)) {
6634 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6635 } else {
6636 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6637 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6640 if (BP_IS_PROTECTED(bp)) {
6641 /* ZIL blocks are written through zio_rewrite */
6642 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6644 if (BP_SHOULD_BYTESWAP(bp)) {
6645 if (BP_GET_LEVEL(bp) > 0) {
6646 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6647 } else {
6648 hdr->b_l1hdr.b_byteswap =
6649 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6651 } else {
6652 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6655 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6656 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6657 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6658 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6659 hdr->b_crypt_hdr.b_iv);
6660 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6661 } else {
6662 arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6666 * If this block was written for raw encryption but the zio layer
6667 * ended up only authenticating it, adjust the buffer flags now.
6669 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6670 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6671 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6672 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6673 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6674 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6675 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6676 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6679 /* this must be done after the buffer flags are adjusted */
6680 arc_cksum_compute(buf);
6682 enum zio_compress compress;
6683 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6684 compress = ZIO_COMPRESS_OFF;
6685 } else {
6686 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6687 compress = BP_GET_COMPRESS(bp);
6689 HDR_SET_PSIZE(hdr, psize);
6690 arc_hdr_set_compress(hdr, compress);
6691 hdr->b_complevel = zio->io_prop.zp_complevel;
6693 if (zio->io_error != 0 || psize == 0)
6694 goto out;
6697 * Fill the hdr with data. If the buffer is encrypted we have no choice
6698 * but to copy the data into b_radb. If the hdr is compressed, the data
6699 * we want is available from the zio, otherwise we can take it from
6700 * the buf.
6702 * We might be able to share the buf's data with the hdr here. However,
6703 * doing so would cause the ARC to be full of linear ABDs if we write a
6704 * lot of shareable data. As a compromise, we check whether scattered
6705 * ABDs are allowed, and assume that if they are then the user wants
6706 * the ARC to be primarily filled with them regardless of the data being
6707 * written. Therefore, if they're allowed then we allocate one and copy
6708 * the data into it; otherwise, we share the data directly if we can.
6710 if (ARC_BUF_ENCRYPTED(buf)) {
6711 ASSERT3U(psize, >, 0);
6712 ASSERT(ARC_BUF_COMPRESSED(buf));
6713 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6714 ARC_HDR_USE_RESERVE);
6715 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6716 } else if (!(HDR_UNCACHED(hdr) ||
6717 abd_size_alloc_linear(arc_buf_size(buf))) ||
6718 !arc_can_share(hdr, buf)) {
6720 * Ideally, we would always copy the io_abd into b_pabd, but the
6721 * user may have disabled compressed ARC, thus we must check the
6722 * hdr's compression setting rather than the io_bp's.
6724 if (BP_IS_ENCRYPTED(bp)) {
6725 ASSERT3U(psize, >, 0);
6726 arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6727 ARC_HDR_USE_RESERVE);
6728 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6729 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6730 !ARC_BUF_COMPRESSED(buf)) {
6731 ASSERT3U(psize, >, 0);
6732 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6733 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6734 } else {
6735 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6736 arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6737 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6738 arc_buf_size(buf));
6740 } else {
6741 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6742 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6743 ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6744 ASSERT(ARC_BUF_LAST(buf));
6746 arc_share_buf(hdr, buf);
6749 out:
6750 arc_hdr_verify(hdr, bp);
6751 spl_fstrans_unmark(cookie);
6754 static void
6755 arc_write_children_ready(zio_t *zio)
6757 arc_write_callback_t *callback = zio->io_private;
6758 arc_buf_t *buf = callback->awcb_buf;
6760 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6763 static void
6764 arc_write_done(zio_t *zio)
6766 arc_write_callback_t *callback = zio->io_private;
6767 arc_buf_t *buf = callback->awcb_buf;
6768 arc_buf_hdr_t *hdr = buf->b_hdr;
6770 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6772 if (zio->io_error == 0) {
6773 arc_hdr_verify(hdr, zio->io_bp);
6775 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6776 buf_discard_identity(hdr);
6777 } else {
6778 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6779 hdr->b_birth = BP_GET_BIRTH(zio->io_bp);
6781 } else {
6782 ASSERT(HDR_EMPTY(hdr));
6786 * If the block to be written was all-zero or compressed enough to be
6787 * embedded in the BP, no write was performed so there will be no
6788 * dva/birth/checksum. The buffer must therefore remain anonymous
6789 * (and uncached).
6791 if (!HDR_EMPTY(hdr)) {
6792 arc_buf_hdr_t *exists;
6793 kmutex_t *hash_lock;
6795 ASSERT3U(zio->io_error, ==, 0);
6797 arc_cksum_verify(buf);
6799 exists = buf_hash_insert(hdr, &hash_lock);
6800 if (exists != NULL) {
6802 * This can only happen if we overwrite for
6803 * sync-to-convergence, because we remove
6804 * buffers from the hash table when we arc_free().
6806 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6807 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6808 panic("bad overwrite, hdr=%p exists=%p",
6809 (void *)hdr, (void *)exists);
6810 ASSERT(zfs_refcount_is_zero(
6811 &exists->b_l1hdr.b_refcnt));
6812 arc_change_state(arc_anon, exists);
6813 arc_hdr_destroy(exists);
6814 mutex_exit(hash_lock);
6815 exists = buf_hash_insert(hdr, &hash_lock);
6816 ASSERT3P(exists, ==, NULL);
6817 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6818 /* nopwrite */
6819 ASSERT(zio->io_prop.zp_nopwrite);
6820 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6821 panic("bad nopwrite, hdr=%p exists=%p",
6822 (void *)hdr, (void *)exists);
6823 } else {
6824 /* Dedup */
6825 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6826 ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
6827 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6828 ASSERT(BP_GET_DEDUP(zio->io_bp));
6829 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6832 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6833 VERIFY3S(remove_reference(hdr, hdr), >, 0);
6834 /* if it's not anon, we are doing a scrub */
6835 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6836 arc_access(hdr, 0, B_FALSE);
6837 mutex_exit(hash_lock);
6838 } else {
6839 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6840 VERIFY3S(remove_reference(hdr, hdr), >, 0);
6843 callback->awcb_done(zio, buf, callback->awcb_private);
6845 abd_free(zio->io_abd);
6846 kmem_free(callback, sizeof (arc_write_callback_t));
6849 zio_t *
6850 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6851 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
6852 const zio_prop_t *zp, arc_write_done_func_t *ready,
6853 arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
6854 void *private, zio_priority_t priority, int zio_flags,
6855 const zbookmark_phys_t *zb)
6857 arc_buf_hdr_t *hdr = buf->b_hdr;
6858 arc_write_callback_t *callback;
6859 zio_t *zio;
6860 zio_prop_t localprop = *zp;
6862 ASSERT3P(ready, !=, NULL);
6863 ASSERT3P(done, !=, NULL);
6864 ASSERT(!HDR_IO_ERROR(hdr));
6865 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6866 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6867 ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6868 if (uncached)
6869 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6870 else if (l2arc)
6871 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6873 if (ARC_BUF_ENCRYPTED(buf)) {
6874 ASSERT(ARC_BUF_COMPRESSED(buf));
6875 localprop.zp_encrypt = B_TRUE;
6876 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6877 localprop.zp_complevel = hdr->b_complevel;
6878 localprop.zp_byteorder =
6879 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6880 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6881 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
6882 ZIO_DATA_SALT_LEN);
6883 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
6884 ZIO_DATA_IV_LEN);
6885 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
6886 ZIO_DATA_MAC_LEN);
6887 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6888 localprop.zp_nopwrite = B_FALSE;
6889 localprop.zp_copies =
6890 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6892 zio_flags |= ZIO_FLAG_RAW;
6893 } else if (ARC_BUF_COMPRESSED(buf)) {
6894 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6895 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6896 localprop.zp_complevel = hdr->b_complevel;
6897 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6899 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6900 callback->awcb_ready = ready;
6901 callback->awcb_children_ready = children_ready;
6902 callback->awcb_done = done;
6903 callback->awcb_private = private;
6904 callback->awcb_buf = buf;
6907 * The hdr's b_pabd is now stale, free it now. A new data block
6908 * will be allocated when the zio pipeline calls arc_write_ready().
6910 if (hdr->b_l1hdr.b_pabd != NULL) {
6912 * If the buf is currently sharing the data block with
6913 * the hdr then we need to break that relationship here.
6914 * The hdr will remain with a NULL data pointer and the
6915 * buf will take sole ownership of the block.
6917 if (ARC_BUF_SHARED(buf)) {
6918 arc_unshare_buf(hdr, buf);
6919 } else {
6920 ASSERT(!arc_buf_is_shared(buf));
6921 arc_hdr_free_abd(hdr, B_FALSE);
6923 VERIFY3P(buf->b_data, !=, NULL);
6926 if (HDR_HAS_RABD(hdr))
6927 arc_hdr_free_abd(hdr, B_TRUE);
6929 if (!(zio_flags & ZIO_FLAG_RAW))
6930 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6932 ASSERT(!arc_buf_is_shared(buf));
6933 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6935 zio = zio_write(pio, spa, txg, bp,
6936 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6937 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6938 (children_ready != NULL) ? arc_write_children_ready : NULL,
6939 arc_write_done, callback, priority, zio_flags, zb);
6941 return (zio);
6944 void
6945 arc_tempreserve_clear(uint64_t reserve)
6947 atomic_add_64(&arc_tempreserve, -reserve);
6948 ASSERT((int64_t)arc_tempreserve >= 0);
6952 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
6954 int error;
6955 uint64_t anon_size;
6957 if (!arc_no_grow &&
6958 reserve > arc_c/4 &&
6959 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6960 arc_c = MIN(arc_c_max, reserve * 4);
6963 * Throttle when the calculated memory footprint for the TXG
6964 * exceeds the target ARC size.
6966 if (reserve > arc_c) {
6967 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6968 return (SET_ERROR(ERESTART));
6972 * Don't count loaned bufs as in flight dirty data to prevent long
6973 * network delays from blocking transactions that are ready to be
6974 * assigned to a txg.
6977 /* assert that it has not wrapped around */
6978 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6980 anon_size = MAX((int64_t)
6981 (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
6982 zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
6983 arc_loaned_bytes), 0);
6986 * Writes will, almost always, require additional memory allocations
6987 * in order to compress/encrypt/etc the data. We therefore need to
6988 * make sure that there is sufficient available memory for this.
6990 error = arc_memory_throttle(spa, reserve, txg);
6991 if (error != 0)
6992 return (error);
6995 * Throttle writes when the amount of dirty data in the cache
6996 * gets too large. We try to keep the cache less than half full
6997 * of dirty blocks so that our sync times don't grow too large.
6999 * In the case of one pool being built on another pool, we want
7000 * to make sure we don't end up throttling the lower (backing)
7001 * pool when the upper pool is the majority contributor to dirty
7002 * data. To insure we make forward progress during throttling, we
7003 * also check the current pool's net dirty data and only throttle
7004 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7005 * data in the cache.
7007 * Note: if two requests come in concurrently, we might let them
7008 * both succeed, when one of them should fail. Not a huge deal.
7010 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7011 uint64_t spa_dirty_anon = spa_dirty_data(spa);
7012 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7013 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7014 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7015 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7016 #ifdef ZFS_DEBUG
7017 uint64_t meta_esize = zfs_refcount_count(
7018 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7019 uint64_t data_esize =
7020 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7021 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7022 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7023 (u_longlong_t)arc_tempreserve >> 10,
7024 (u_longlong_t)meta_esize >> 10,
7025 (u_longlong_t)data_esize >> 10,
7026 (u_longlong_t)reserve >> 10,
7027 (u_longlong_t)rarc_c >> 10);
7028 #endif
7029 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7030 return (SET_ERROR(ERESTART));
7032 atomic_add_64(&arc_tempreserve, reserve);
7033 return (0);
7036 static void
7037 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7038 kstat_named_t *data, kstat_named_t *metadata,
7039 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7041 data->value.ui64 =
7042 zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
7043 metadata->value.ui64 =
7044 zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
7045 size->value.ui64 = data->value.ui64 + metadata->value.ui64;
7046 evict_data->value.ui64 =
7047 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7048 evict_metadata->value.ui64 =
7049 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7052 static int
7053 arc_kstat_update(kstat_t *ksp, int rw)
7055 arc_stats_t *as = ksp->ks_data;
7057 if (rw == KSTAT_WRITE)
7058 return (SET_ERROR(EACCES));
7060 as->arcstat_hits.value.ui64 =
7061 wmsum_value(&arc_sums.arcstat_hits);
7062 as->arcstat_iohits.value.ui64 =
7063 wmsum_value(&arc_sums.arcstat_iohits);
7064 as->arcstat_misses.value.ui64 =
7065 wmsum_value(&arc_sums.arcstat_misses);
7066 as->arcstat_demand_data_hits.value.ui64 =
7067 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7068 as->arcstat_demand_data_iohits.value.ui64 =
7069 wmsum_value(&arc_sums.arcstat_demand_data_iohits);
7070 as->arcstat_demand_data_misses.value.ui64 =
7071 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7072 as->arcstat_demand_metadata_hits.value.ui64 =
7073 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7074 as->arcstat_demand_metadata_iohits.value.ui64 =
7075 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
7076 as->arcstat_demand_metadata_misses.value.ui64 =
7077 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7078 as->arcstat_prefetch_data_hits.value.ui64 =
7079 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7080 as->arcstat_prefetch_data_iohits.value.ui64 =
7081 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
7082 as->arcstat_prefetch_data_misses.value.ui64 =
7083 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7084 as->arcstat_prefetch_metadata_hits.value.ui64 =
7085 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7086 as->arcstat_prefetch_metadata_iohits.value.ui64 =
7087 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
7088 as->arcstat_prefetch_metadata_misses.value.ui64 =
7089 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7090 as->arcstat_mru_hits.value.ui64 =
7091 wmsum_value(&arc_sums.arcstat_mru_hits);
7092 as->arcstat_mru_ghost_hits.value.ui64 =
7093 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7094 as->arcstat_mfu_hits.value.ui64 =
7095 wmsum_value(&arc_sums.arcstat_mfu_hits);
7096 as->arcstat_mfu_ghost_hits.value.ui64 =
7097 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7098 as->arcstat_uncached_hits.value.ui64 =
7099 wmsum_value(&arc_sums.arcstat_uncached_hits);
7100 as->arcstat_deleted.value.ui64 =
7101 wmsum_value(&arc_sums.arcstat_deleted);
7102 as->arcstat_mutex_miss.value.ui64 =
7103 wmsum_value(&arc_sums.arcstat_mutex_miss);
7104 as->arcstat_access_skip.value.ui64 =
7105 wmsum_value(&arc_sums.arcstat_access_skip);
7106 as->arcstat_evict_skip.value.ui64 =
7107 wmsum_value(&arc_sums.arcstat_evict_skip);
7108 as->arcstat_evict_not_enough.value.ui64 =
7109 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7110 as->arcstat_evict_l2_cached.value.ui64 =
7111 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7112 as->arcstat_evict_l2_eligible.value.ui64 =
7113 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7114 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7115 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7116 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7117 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7118 as->arcstat_evict_l2_ineligible.value.ui64 =
7119 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7120 as->arcstat_evict_l2_skip.value.ui64 =
7121 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7122 as->arcstat_hash_elements.value.ui64 =
7123 as->arcstat_hash_elements_max.value.ui64 =
7124 wmsum_value(&arc_sums.arcstat_hash_elements);
7125 as->arcstat_hash_collisions.value.ui64 =
7126 wmsum_value(&arc_sums.arcstat_hash_collisions);
7127 as->arcstat_hash_chains.value.ui64 =
7128 wmsum_value(&arc_sums.arcstat_hash_chains);
7129 as->arcstat_size.value.ui64 =
7130 aggsum_value(&arc_sums.arcstat_size);
7131 as->arcstat_compressed_size.value.ui64 =
7132 wmsum_value(&arc_sums.arcstat_compressed_size);
7133 as->arcstat_uncompressed_size.value.ui64 =
7134 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7135 as->arcstat_overhead_size.value.ui64 =
7136 wmsum_value(&arc_sums.arcstat_overhead_size);
7137 as->arcstat_hdr_size.value.ui64 =
7138 wmsum_value(&arc_sums.arcstat_hdr_size);
7139 as->arcstat_data_size.value.ui64 =
7140 wmsum_value(&arc_sums.arcstat_data_size);
7141 as->arcstat_metadata_size.value.ui64 =
7142 wmsum_value(&arc_sums.arcstat_metadata_size);
7143 as->arcstat_dbuf_size.value.ui64 =
7144 wmsum_value(&arc_sums.arcstat_dbuf_size);
7145 #if defined(COMPAT_FREEBSD11)
7146 as->arcstat_other_size.value.ui64 =
7147 wmsum_value(&arc_sums.arcstat_bonus_size) +
7148 wmsum_value(&arc_sums.arcstat_dnode_size) +
7149 wmsum_value(&arc_sums.arcstat_dbuf_size);
7150 #endif
7152 arc_kstat_update_state(arc_anon,
7153 &as->arcstat_anon_size,
7154 &as->arcstat_anon_data,
7155 &as->arcstat_anon_metadata,
7156 &as->arcstat_anon_evictable_data,
7157 &as->arcstat_anon_evictable_metadata);
7158 arc_kstat_update_state(arc_mru,
7159 &as->arcstat_mru_size,
7160 &as->arcstat_mru_data,
7161 &as->arcstat_mru_metadata,
7162 &as->arcstat_mru_evictable_data,
7163 &as->arcstat_mru_evictable_metadata);
7164 arc_kstat_update_state(arc_mru_ghost,
7165 &as->arcstat_mru_ghost_size,
7166 &as->arcstat_mru_ghost_data,
7167 &as->arcstat_mru_ghost_metadata,
7168 &as->arcstat_mru_ghost_evictable_data,
7169 &as->arcstat_mru_ghost_evictable_metadata);
7170 arc_kstat_update_state(arc_mfu,
7171 &as->arcstat_mfu_size,
7172 &as->arcstat_mfu_data,
7173 &as->arcstat_mfu_metadata,
7174 &as->arcstat_mfu_evictable_data,
7175 &as->arcstat_mfu_evictable_metadata);
7176 arc_kstat_update_state(arc_mfu_ghost,
7177 &as->arcstat_mfu_ghost_size,
7178 &as->arcstat_mfu_ghost_data,
7179 &as->arcstat_mfu_ghost_metadata,
7180 &as->arcstat_mfu_ghost_evictable_data,
7181 &as->arcstat_mfu_ghost_evictable_metadata);
7182 arc_kstat_update_state(arc_uncached,
7183 &as->arcstat_uncached_size,
7184 &as->arcstat_uncached_data,
7185 &as->arcstat_uncached_metadata,
7186 &as->arcstat_uncached_evictable_data,
7187 &as->arcstat_uncached_evictable_metadata);
7189 as->arcstat_dnode_size.value.ui64 =
7190 wmsum_value(&arc_sums.arcstat_dnode_size);
7191 as->arcstat_bonus_size.value.ui64 =
7192 wmsum_value(&arc_sums.arcstat_bonus_size);
7193 as->arcstat_l2_hits.value.ui64 =
7194 wmsum_value(&arc_sums.arcstat_l2_hits);
7195 as->arcstat_l2_misses.value.ui64 =
7196 wmsum_value(&arc_sums.arcstat_l2_misses);
7197 as->arcstat_l2_prefetch_asize.value.ui64 =
7198 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7199 as->arcstat_l2_mru_asize.value.ui64 =
7200 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7201 as->arcstat_l2_mfu_asize.value.ui64 =
7202 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7203 as->arcstat_l2_bufc_data_asize.value.ui64 =
7204 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7205 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7206 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7207 as->arcstat_l2_feeds.value.ui64 =
7208 wmsum_value(&arc_sums.arcstat_l2_feeds);
7209 as->arcstat_l2_rw_clash.value.ui64 =
7210 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7211 as->arcstat_l2_read_bytes.value.ui64 =
7212 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7213 as->arcstat_l2_write_bytes.value.ui64 =
7214 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7215 as->arcstat_l2_writes_sent.value.ui64 =
7216 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7217 as->arcstat_l2_writes_done.value.ui64 =
7218 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7219 as->arcstat_l2_writes_error.value.ui64 =
7220 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7221 as->arcstat_l2_writes_lock_retry.value.ui64 =
7222 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7223 as->arcstat_l2_evict_lock_retry.value.ui64 =
7224 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7225 as->arcstat_l2_evict_reading.value.ui64 =
7226 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7227 as->arcstat_l2_evict_l1cached.value.ui64 =
7228 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7229 as->arcstat_l2_free_on_write.value.ui64 =
7230 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7231 as->arcstat_l2_abort_lowmem.value.ui64 =
7232 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7233 as->arcstat_l2_cksum_bad.value.ui64 =
7234 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7235 as->arcstat_l2_io_error.value.ui64 =
7236 wmsum_value(&arc_sums.arcstat_l2_io_error);
7237 as->arcstat_l2_lsize.value.ui64 =
7238 wmsum_value(&arc_sums.arcstat_l2_lsize);
7239 as->arcstat_l2_psize.value.ui64 =
7240 wmsum_value(&arc_sums.arcstat_l2_psize);
7241 as->arcstat_l2_hdr_size.value.ui64 =
7242 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7243 as->arcstat_l2_log_blk_writes.value.ui64 =
7244 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7245 as->arcstat_l2_log_blk_asize.value.ui64 =
7246 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7247 as->arcstat_l2_log_blk_count.value.ui64 =
7248 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7249 as->arcstat_l2_rebuild_success.value.ui64 =
7250 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7251 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7252 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7253 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7254 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7255 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7256 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7257 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7258 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7259 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7260 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7261 as->arcstat_l2_rebuild_size.value.ui64 =
7262 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7263 as->arcstat_l2_rebuild_asize.value.ui64 =
7264 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7265 as->arcstat_l2_rebuild_bufs.value.ui64 =
7266 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7267 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7268 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7269 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7270 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7271 as->arcstat_memory_throttle_count.value.ui64 =
7272 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7273 as->arcstat_memory_direct_count.value.ui64 =
7274 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7275 as->arcstat_memory_indirect_count.value.ui64 =
7276 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7278 as->arcstat_memory_all_bytes.value.ui64 =
7279 arc_all_memory();
7280 as->arcstat_memory_free_bytes.value.ui64 =
7281 arc_free_memory();
7282 as->arcstat_memory_available_bytes.value.i64 =
7283 arc_available_memory();
7285 as->arcstat_prune.value.ui64 =
7286 wmsum_value(&arc_sums.arcstat_prune);
7287 as->arcstat_meta_used.value.ui64 =
7288 wmsum_value(&arc_sums.arcstat_meta_used);
7289 as->arcstat_async_upgrade_sync.value.ui64 =
7290 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7291 as->arcstat_predictive_prefetch.value.ui64 =
7292 wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7293 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7294 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7295 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7296 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7297 as->arcstat_prescient_prefetch.value.ui64 =
7298 wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7299 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7300 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7301 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7302 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7303 as->arcstat_raw_size.value.ui64 =
7304 wmsum_value(&arc_sums.arcstat_raw_size);
7305 as->arcstat_cached_only_in_progress.value.ui64 =
7306 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7307 as->arcstat_abd_chunk_waste_size.value.ui64 =
7308 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7310 return (0);
7314 * This function *must* return indices evenly distributed between all
7315 * sublists of the multilist. This is needed due to how the ARC eviction
7316 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7317 * distributed between all sublists and uses this assumption when
7318 * deciding which sublist to evict from and how much to evict from it.
7320 static unsigned int
7321 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7323 arc_buf_hdr_t *hdr = obj;
7326 * We rely on b_dva to generate evenly distributed index
7327 * numbers using buf_hash below. So, as an added precaution,
7328 * let's make sure we never add empty buffers to the arc lists.
7330 ASSERT(!HDR_EMPTY(hdr));
7333 * The assumption here, is the hash value for a given
7334 * arc_buf_hdr_t will remain constant throughout its lifetime
7335 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7336 * Thus, we don't need to store the header's sublist index
7337 * on insertion, as this index can be recalculated on removal.
7339 * Also, the low order bits of the hash value are thought to be
7340 * distributed evenly. Otherwise, in the case that the multilist
7341 * has a power of two number of sublists, each sublists' usage
7342 * would not be evenly distributed. In this context full 64bit
7343 * division would be a waste of time, so limit it to 32 bits.
7345 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7346 multilist_get_num_sublists(ml));
7349 static unsigned int
7350 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7352 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7355 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7356 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7357 cmn_err(CE_WARN, \
7358 "ignoring tunable %s (using %llu instead)", \
7359 (#tuning), (u_longlong_t)(value)); \
7361 } while (0)
7364 * Called during module initialization and periodically thereafter to
7365 * apply reasonable changes to the exposed performance tunings. Can also be
7366 * called explicitly by param_set_arc_*() functions when ARC tunables are
7367 * updated manually. Non-zero zfs_* values which differ from the currently set
7368 * values will be applied.
7370 void
7371 arc_tuning_update(boolean_t verbose)
7373 uint64_t allmem = arc_all_memory();
7375 /* Valid range: 32M - <arc_c_max> */
7376 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7377 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7378 (zfs_arc_min <= arc_c_max)) {
7379 arc_c_min = zfs_arc_min;
7380 arc_c = MAX(arc_c, arc_c_min);
7382 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7384 /* Valid range: 64M - <all physical memory> */
7385 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7386 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7387 (zfs_arc_max > arc_c_min)) {
7388 arc_c_max = zfs_arc_max;
7389 arc_c = MIN(arc_c, arc_c_max);
7390 if (arc_dnode_limit > arc_c_max)
7391 arc_dnode_limit = arc_c_max;
7393 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7395 /* Valid range: 0 - <all physical memory> */
7396 arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7397 MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7398 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7400 /* Valid range: 1 - N */
7401 if (zfs_arc_grow_retry)
7402 arc_grow_retry = zfs_arc_grow_retry;
7404 /* Valid range: 1 - N */
7405 if (zfs_arc_shrink_shift) {
7406 arc_shrink_shift = zfs_arc_shrink_shift;
7407 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7410 /* Valid range: 1 - N ms */
7411 if (zfs_arc_min_prefetch_ms)
7412 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7414 /* Valid range: 1 - N ms */
7415 if (zfs_arc_min_prescient_prefetch_ms) {
7416 arc_min_prescient_prefetch_ms =
7417 zfs_arc_min_prescient_prefetch_ms;
7420 /* Valid range: 0 - 100 */
7421 if (zfs_arc_lotsfree_percent <= 100)
7422 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7423 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7424 verbose);
7426 /* Valid range: 0 - <all physical memory> */
7427 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7428 arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7429 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7432 static void
7433 arc_state_multilist_init(multilist_t *ml,
7434 multilist_sublist_index_func_t *index_func, int *maxcountp)
7436 multilist_create(ml, sizeof (arc_buf_hdr_t),
7437 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7438 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7441 static void
7442 arc_state_init(void)
7444 int num_sublists = 0;
7446 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7447 arc_state_multilist_index_func, &num_sublists);
7448 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7449 arc_state_multilist_index_func, &num_sublists);
7450 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7451 arc_state_multilist_index_func, &num_sublists);
7452 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7453 arc_state_multilist_index_func, &num_sublists);
7454 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7455 arc_state_multilist_index_func, &num_sublists);
7456 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7457 arc_state_multilist_index_func, &num_sublists);
7458 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7459 arc_state_multilist_index_func, &num_sublists);
7460 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7461 arc_state_multilist_index_func, &num_sublists);
7462 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7463 arc_state_multilist_index_func, &num_sublists);
7464 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7465 arc_state_multilist_index_func, &num_sublists);
7468 * L2 headers should never be on the L2 state list since they don't
7469 * have L1 headers allocated. Special index function asserts that.
7471 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7472 arc_state_l2c_multilist_index_func, &num_sublists);
7473 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7474 arc_state_l2c_multilist_index_func, &num_sublists);
7477 * Keep track of the number of markers needed to reclaim buffers from
7478 * any ARC state. The markers will be pre-allocated so as to minimize
7479 * the number of memory allocations performed by the eviction thread.
7481 arc_state_evict_marker_count = num_sublists;
7483 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7484 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7485 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7486 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7487 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7488 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7489 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7490 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7491 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7492 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7493 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7494 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7495 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7496 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7498 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7499 zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7500 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7501 zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7502 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7503 zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7504 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7505 zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7506 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7507 zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7508 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7509 zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7510 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7511 zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7513 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7514 wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7515 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7516 wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7518 wmsum_init(&arc_sums.arcstat_hits, 0);
7519 wmsum_init(&arc_sums.arcstat_iohits, 0);
7520 wmsum_init(&arc_sums.arcstat_misses, 0);
7521 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7522 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7523 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7524 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7525 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7526 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7527 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7528 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7529 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7530 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7531 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7532 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7533 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7534 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7535 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7536 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7537 wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7538 wmsum_init(&arc_sums.arcstat_deleted, 0);
7539 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7540 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7541 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7542 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7543 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7544 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7545 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7546 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7547 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7548 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7549 wmsum_init(&arc_sums.arcstat_hash_elements, 0);
7550 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7551 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7552 aggsum_init(&arc_sums.arcstat_size, 0);
7553 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7554 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7555 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7556 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7557 wmsum_init(&arc_sums.arcstat_data_size, 0);
7558 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7559 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7560 wmsum_init(&arc_sums.arcstat_dnode_size, 0);
7561 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7562 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7563 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7564 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7565 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7566 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7567 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7568 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7569 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7570 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7571 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7572 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7573 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7574 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7575 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7576 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7577 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7578 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7579 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7580 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7581 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7582 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7583 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7584 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7585 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7586 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7587 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7588 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7589 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7590 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7591 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7592 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7593 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7594 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7595 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7596 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7597 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7598 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7599 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7600 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7601 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7602 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7603 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7604 wmsum_init(&arc_sums.arcstat_prune, 0);
7605 wmsum_init(&arc_sums.arcstat_meta_used, 0);
7606 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7607 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7608 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7609 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7610 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7611 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7612 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7613 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7614 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7615 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7617 arc_anon->arcs_state = ARC_STATE_ANON;
7618 arc_mru->arcs_state = ARC_STATE_MRU;
7619 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7620 arc_mfu->arcs_state = ARC_STATE_MFU;
7621 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7622 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7623 arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7626 static void
7627 arc_state_fini(void)
7629 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7630 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7631 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7632 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7633 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7634 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7635 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7636 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7637 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7638 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7639 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7640 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7641 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7642 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7644 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7645 zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7646 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7647 zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7648 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7649 zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7650 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7651 zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7652 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7653 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7654 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7655 zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7656 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7657 zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7659 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7660 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7661 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7662 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7663 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7664 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7665 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7666 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7667 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7668 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7669 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7670 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7672 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7673 wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7674 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7675 wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7677 wmsum_fini(&arc_sums.arcstat_hits);
7678 wmsum_fini(&arc_sums.arcstat_iohits);
7679 wmsum_fini(&arc_sums.arcstat_misses);
7680 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7681 wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7682 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7683 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7684 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7685 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7686 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7687 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7688 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7689 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7690 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7691 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7692 wmsum_fini(&arc_sums.arcstat_mru_hits);
7693 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7694 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7695 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7696 wmsum_fini(&arc_sums.arcstat_uncached_hits);
7697 wmsum_fini(&arc_sums.arcstat_deleted);
7698 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7699 wmsum_fini(&arc_sums.arcstat_access_skip);
7700 wmsum_fini(&arc_sums.arcstat_evict_skip);
7701 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7702 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7703 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7704 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7705 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7706 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7707 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7708 wmsum_fini(&arc_sums.arcstat_hash_elements);
7709 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7710 wmsum_fini(&arc_sums.arcstat_hash_chains);
7711 aggsum_fini(&arc_sums.arcstat_size);
7712 wmsum_fini(&arc_sums.arcstat_compressed_size);
7713 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7714 wmsum_fini(&arc_sums.arcstat_overhead_size);
7715 wmsum_fini(&arc_sums.arcstat_hdr_size);
7716 wmsum_fini(&arc_sums.arcstat_data_size);
7717 wmsum_fini(&arc_sums.arcstat_metadata_size);
7718 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7719 wmsum_fini(&arc_sums.arcstat_dnode_size);
7720 wmsum_fini(&arc_sums.arcstat_bonus_size);
7721 wmsum_fini(&arc_sums.arcstat_l2_hits);
7722 wmsum_fini(&arc_sums.arcstat_l2_misses);
7723 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7724 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7725 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7726 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7727 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7728 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7729 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7730 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7731 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7732 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7733 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7734 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7735 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7736 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7737 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7738 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7739 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7740 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7741 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7742 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7743 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7744 wmsum_fini(&arc_sums.arcstat_l2_psize);
7745 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7746 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7747 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7748 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7749 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7750 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7751 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7752 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7753 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7754 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7755 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7756 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7757 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7758 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7759 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7760 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7761 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7762 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7763 wmsum_fini(&arc_sums.arcstat_prune);
7764 wmsum_fini(&arc_sums.arcstat_meta_used);
7765 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7766 wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7767 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7768 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7769 wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7770 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7771 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7772 wmsum_fini(&arc_sums.arcstat_raw_size);
7773 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7774 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7777 uint64_t
7778 arc_target_bytes(void)
7780 return (arc_c);
7783 void
7784 arc_set_limits(uint64_t allmem)
7786 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7787 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7789 /* How to set default max varies by platform. */
7790 arc_c_max = arc_default_max(arc_c_min, allmem);
7792 void
7793 arc_init(void)
7795 uint64_t percent, allmem = arc_all_memory();
7796 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7797 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7798 offsetof(arc_evict_waiter_t, aew_node));
7800 arc_min_prefetch_ms = 1000;
7801 arc_min_prescient_prefetch_ms = 6000;
7803 #if defined(_KERNEL)
7804 arc_lowmem_init();
7805 #endif
7807 arc_set_limits(allmem);
7809 #ifdef _KERNEL
7811 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7812 * environment before the module was loaded, don't block setting the
7813 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7814 * to a lower value.
7815 * zfs_arc_min will be handled by arc_tuning_update().
7817 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7818 zfs_arc_max < allmem) {
7819 arc_c_max = zfs_arc_max;
7820 if (arc_c_min >= arc_c_max) {
7821 arc_c_min = MAX(zfs_arc_max / 2,
7822 2ULL << SPA_MAXBLOCKSHIFT);
7825 #else
7827 * In userland, there's only the memory pressure that we artificially
7828 * create (see arc_available_memory()). Don't let arc_c get too
7829 * small, because it can cause transactions to be larger than
7830 * arc_c, causing arc_tempreserve_space() to fail.
7832 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
7833 #endif
7835 arc_c = arc_c_min;
7837 * 32-bit fixed point fractions of metadata from total ARC size,
7838 * MRU data from all data and MRU metadata from all metadata.
7840 arc_meta = (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */
7841 arc_pd = (1ULL << 32) / 2; /* Data MRU is 50% of data. */
7842 arc_pm = (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */
7844 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7845 arc_dnode_limit = arc_c_max * percent / 100;
7847 /* Apply user specified tunings */
7848 arc_tuning_update(B_TRUE);
7850 /* if kmem_flags are set, lets try to use less memory */
7851 if (kmem_debugging())
7852 arc_c = arc_c / 2;
7853 if (arc_c < arc_c_min)
7854 arc_c = arc_c_min;
7856 arc_register_hotplug();
7858 arc_state_init();
7860 buf_init();
7862 list_create(&arc_prune_list, sizeof (arc_prune_t),
7863 offsetof(arc_prune_t, p_node));
7864 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
7866 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
7867 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
7869 list_create(&arc_async_flush_list, sizeof (arc_async_flush_t),
7870 offsetof(arc_async_flush_t, af_node));
7871 mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL);
7872 arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4),
7873 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
7875 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7876 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7878 if (arc_ksp != NULL) {
7879 arc_ksp->ks_data = &arc_stats;
7880 arc_ksp->ks_update = arc_kstat_update;
7881 kstat_install(arc_ksp);
7884 arc_state_evict_markers =
7885 arc_state_alloc_markers(arc_state_evict_marker_count);
7886 arc_evict_zthr = zthr_create_timer("arc_evict",
7887 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
7888 arc_reap_zthr = zthr_create_timer("arc_reap",
7889 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
7891 arc_warm = B_FALSE;
7894 * Calculate maximum amount of dirty data per pool.
7896 * If it has been set by a module parameter, take that.
7897 * Otherwise, use a percentage of physical memory defined by
7898 * zfs_dirty_data_max_percent (default 10%) with a cap at
7899 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7901 #ifdef __LP64__
7902 if (zfs_dirty_data_max_max == 0)
7903 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7904 allmem * zfs_dirty_data_max_max_percent / 100);
7905 #else
7906 if (zfs_dirty_data_max_max == 0)
7907 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7908 allmem * zfs_dirty_data_max_max_percent / 100);
7909 #endif
7911 if (zfs_dirty_data_max == 0) {
7912 zfs_dirty_data_max = allmem *
7913 zfs_dirty_data_max_percent / 100;
7914 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7915 zfs_dirty_data_max_max);
7918 if (zfs_wrlog_data_max == 0) {
7921 * dp_wrlog_total is reduced for each txg at the end of
7922 * spa_sync(). However, dp_dirty_total is reduced every time
7923 * a block is written out. Thus under normal operation,
7924 * dp_wrlog_total could grow 2 times as big as
7925 * zfs_dirty_data_max.
7927 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7931 void
7932 arc_fini(void)
7934 arc_prune_t *p;
7936 #ifdef _KERNEL
7937 arc_lowmem_fini();
7938 #endif /* _KERNEL */
7940 /* Wait for any background flushes */
7941 taskq_wait(arc_flush_taskq);
7942 taskq_destroy(arc_flush_taskq);
7944 /* Use B_TRUE to ensure *all* buffers are evicted */
7945 arc_flush(NULL, B_TRUE);
7947 if (arc_ksp != NULL) {
7948 kstat_delete(arc_ksp);
7949 arc_ksp = NULL;
7952 taskq_wait(arc_prune_taskq);
7953 taskq_destroy(arc_prune_taskq);
7955 list_destroy(&arc_async_flush_list);
7956 mutex_destroy(&arc_async_flush_lock);
7958 mutex_enter(&arc_prune_mtx);
7959 while ((p = list_remove_head(&arc_prune_list)) != NULL) {
7960 (void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7961 zfs_refcount_destroy(&p->p_refcnt);
7962 kmem_free(p, sizeof (*p));
7964 mutex_exit(&arc_prune_mtx);
7966 list_destroy(&arc_prune_list);
7967 mutex_destroy(&arc_prune_mtx);
7969 (void) zthr_cancel(arc_evict_zthr);
7970 (void) zthr_cancel(arc_reap_zthr);
7971 arc_state_free_markers(arc_state_evict_markers,
7972 arc_state_evict_marker_count);
7974 mutex_destroy(&arc_evict_lock);
7975 list_destroy(&arc_evict_waiters);
7978 * Free any buffers that were tagged for destruction. This needs
7979 * to occur before arc_state_fini() runs and destroys the aggsum
7980 * values which are updated when freeing scatter ABDs.
7982 l2arc_do_free_on_write();
7985 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7986 * trigger the release of kmem magazines, which can callback to
7987 * arc_space_return() which accesses aggsums freed in act_state_fini().
7989 buf_fini();
7990 arc_state_fini();
7992 arc_unregister_hotplug();
7995 * We destroy the zthrs after all the ARC state has been
7996 * torn down to avoid the case of them receiving any
7997 * wakeup() signals after they are destroyed.
7999 zthr_destroy(arc_evict_zthr);
8000 zthr_destroy(arc_reap_zthr);
8002 ASSERT0(arc_loaned_bytes);
8006 * Level 2 ARC
8008 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8009 * It uses dedicated storage devices to hold cached data, which are populated
8010 * using large infrequent writes. The main role of this cache is to boost
8011 * the performance of random read workloads. The intended L2ARC devices
8012 * include short-stroked disks, solid state disks, and other media with
8013 * substantially faster read latency than disk.
8015 * +-----------------------+
8016 * | ARC |
8017 * +-----------------------+
8018 * | ^ ^
8019 * | | |
8020 * l2arc_feed_thread() arc_read()
8021 * | | |
8022 * | l2arc read |
8023 * V | |
8024 * +---------------+ |
8025 * | L2ARC | |
8026 * +---------------+ |
8027 * | ^ |
8028 * l2arc_write() | |
8029 * | | |
8030 * V | |
8031 * +-------+ +-------+
8032 * | vdev | | vdev |
8033 * | cache | | cache |
8034 * +-------+ +-------+
8035 * +=========+ .-----.
8036 * : L2ARC : |-_____-|
8037 * : devices : | Disks |
8038 * +=========+ `-_____-'
8040 * Read requests are satisfied from the following sources, in order:
8042 * 1) ARC
8043 * 2) vdev cache of L2ARC devices
8044 * 3) L2ARC devices
8045 * 4) vdev cache of disks
8046 * 5) disks
8048 * Some L2ARC device types exhibit extremely slow write performance.
8049 * To accommodate for this there are some significant differences between
8050 * the L2ARC and traditional cache design:
8052 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8053 * the ARC behave as usual, freeing buffers and placing headers on ghost
8054 * lists. The ARC does not send buffers to the L2ARC during eviction as
8055 * this would add inflated write latencies for all ARC memory pressure.
8057 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8058 * It does this by periodically scanning buffers from the eviction-end of
8059 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8060 * not already there. It scans until a headroom of buffers is satisfied,
8061 * which itself is a buffer for ARC eviction. If a compressible buffer is
8062 * found during scanning and selected for writing to an L2ARC device, we
8063 * temporarily boost scanning headroom during the next scan cycle to make
8064 * sure we adapt to compression effects (which might significantly reduce
8065 * the data volume we write to L2ARC). The thread that does this is
8066 * l2arc_feed_thread(), illustrated below; example sizes are included to
8067 * provide a better sense of ratio than this diagram:
8069 * head --> tail
8070 * +---------------------+----------+
8071 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8072 * +---------------------+----------+ | o L2ARC eligible
8073 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8074 * +---------------------+----------+ |
8075 * 15.9 Gbytes ^ 32 Mbytes |
8076 * headroom |
8077 * l2arc_feed_thread()
8079 * l2arc write hand <--[oooo]--'
8080 * | 8 Mbyte
8081 * | write max
8083 * +==============================+
8084 * L2ARC dev |####|#|###|###| |####| ... |
8085 * +==============================+
8086 * 32 Gbytes
8088 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8089 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8090 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8091 * safe to say that this is an uncommon case, since buffers at the end of
8092 * the ARC lists have moved there due to inactivity.
8094 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8095 * then the L2ARC simply misses copying some buffers. This serves as a
8096 * pressure valve to prevent heavy read workloads from both stalling the ARC
8097 * with waits and clogging the L2ARC with writes. This also helps prevent
8098 * the potential for the L2ARC to churn if it attempts to cache content too
8099 * quickly, such as during backups of the entire pool.
8101 * 5. After system boot and before the ARC has filled main memory, there are
8102 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8103 * lists can remain mostly static. Instead of searching from tail of these
8104 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8105 * for eligible buffers, greatly increasing its chance of finding them.
8107 * The L2ARC device write speed is also boosted during this time so that
8108 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8109 * there are no L2ARC reads, and no fear of degrading read performance
8110 * through increased writes.
8112 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8113 * the vdev queue can aggregate them into larger and fewer writes. Each
8114 * device is written to in a rotor fashion, sweeping writes through
8115 * available space then repeating.
8117 * 7. The L2ARC does not store dirty content. It never needs to flush
8118 * write buffers back to disk based storage.
8120 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8121 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8123 * The performance of the L2ARC can be tweaked by a number of tunables, which
8124 * may be necessary for different workloads:
8126 * l2arc_write_max max write bytes per interval
8127 * l2arc_write_boost extra write bytes during device warmup
8128 * l2arc_noprefetch skip caching prefetched buffers
8129 * l2arc_headroom number of max device writes to precache
8130 * l2arc_headroom_boost when we find compressed buffers during ARC
8131 * scanning, we multiply headroom by this
8132 * percentage factor for the next scan cycle,
8133 * since more compressed buffers are likely to
8134 * be present
8135 * l2arc_feed_secs seconds between L2ARC writing
8137 * Tunables may be removed or added as future performance improvements are
8138 * integrated, and also may become zpool properties.
8140 * There are three key functions that control how the L2ARC warms up:
8142 * l2arc_write_eligible() check if a buffer is eligible to cache
8143 * l2arc_write_size() calculate how much to write
8144 * l2arc_write_interval() calculate sleep delay between writes
8146 * These three functions determine what to write, how much, and how quickly
8147 * to send writes.
8149 * L2ARC persistence:
8151 * When writing buffers to L2ARC, we periodically add some metadata to
8152 * make sure we can pick them up after reboot, thus dramatically reducing
8153 * the impact that any downtime has on the performance of storage systems
8154 * with large caches.
8156 * The implementation works fairly simply by integrating the following two
8157 * modifications:
8159 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8160 * which is an additional piece of metadata which describes what's been
8161 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8162 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8163 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8164 * time-wise and offset-wise interleaved, but that is an optimization rather
8165 * than for correctness. The log block also includes a pointer to the
8166 * previous block in its chain.
8168 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8169 * for our header bookkeeping purposes. This contains a device header,
8170 * which contains our top-level reference structures. We update it each
8171 * time we write a new log block, so that we're able to locate it in the
8172 * L2ARC device. If this write results in an inconsistent device header
8173 * (e.g. due to power failure), we detect this by verifying the header's
8174 * checksum and simply fail to reconstruct the L2ARC after reboot.
8176 * Implementation diagram:
8178 * +=== L2ARC device (not to scale) ======================================+
8179 * | ___two newest log block pointers__.__________ |
8180 * | / \dh_start_lbps[1] |
8181 * | / \ \dh_start_lbps[0]|
8182 * |.___/__. V V |
8183 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8184 * || hdr| ^ /^ /^ / / |
8185 * |+------+ ...--\-------/ \-----/--\------/ / |
8186 * | \--------------/ \--------------/ |
8187 * +======================================================================+
8189 * As can be seen on the diagram, rather than using a simple linked list,
8190 * we use a pair of linked lists with alternating elements. This is a
8191 * performance enhancement due to the fact that we only find out the
8192 * address of the next log block access once the current block has been
8193 * completely read in. Obviously, this hurts performance, because we'd be
8194 * keeping the device's I/O queue at only a 1 operation deep, thus
8195 * incurring a large amount of I/O round-trip latency. Having two lists
8196 * allows us to fetch two log blocks ahead of where we are currently
8197 * rebuilding L2ARC buffers.
8199 * On-device data structures:
8201 * L2ARC device header: l2arc_dev_hdr_phys_t
8202 * L2ARC log block: l2arc_log_blk_phys_t
8204 * L2ARC reconstruction:
8206 * When writing data, we simply write in the standard rotary fashion,
8207 * evicting buffers as we go and simply writing new data over them (writing
8208 * a new log block every now and then). This obviously means that once we
8209 * loop around the end of the device, we will start cutting into an already
8210 * committed log block (and its referenced data buffers), like so:
8212 * current write head__ __old tail
8213 * \ /
8214 * V V
8215 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8216 * ^ ^^^^^^^^^___________________________________
8217 * | \
8218 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8220 * When importing the pool, we detect this situation and use it to stop
8221 * our scanning process (see l2arc_rebuild).
8223 * There is one significant caveat to consider when rebuilding ARC contents
8224 * from an L2ARC device: what about invalidated buffers? Given the above
8225 * construction, we cannot update blocks which we've already written to amend
8226 * them to remove buffers which were invalidated. Thus, during reconstruction,
8227 * we might be populating the cache with buffers for data that's not on the
8228 * main pool anymore, or may have been overwritten!
8230 * As it turns out, this isn't a problem. Every arc_read request includes
8231 * both the DVA and, crucially, the birth TXG of the BP the caller is
8232 * looking for. So even if the cache were populated by completely rotten
8233 * blocks for data that had been long deleted and/or overwritten, we'll
8234 * never actually return bad data from the cache, since the DVA with the
8235 * birth TXG uniquely identify a block in space and time - once created,
8236 * a block is immutable on disk. The worst thing we have done is wasted
8237 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8238 * entries that will get dropped from the l2arc as it is being updated
8239 * with new blocks.
8241 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8242 * hand are not restored. This is done by saving the offset (in bytes)
8243 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8244 * into account when restoring buffers.
8247 static boolean_t
8248 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8251 * A buffer is *not* eligible for the L2ARC if it:
8252 * 1. belongs to a different spa.
8253 * 2. is already cached on the L2ARC.
8254 * 3. has an I/O in progress (it may be an incomplete read).
8255 * 4. is flagged not eligible (zfs property).
8257 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8258 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8259 return (B_FALSE);
8261 return (B_TRUE);
8264 static uint64_t
8265 l2arc_write_size(l2arc_dev_t *dev)
8267 uint64_t size;
8270 * Make sure our globals have meaningful values in case the user
8271 * altered them.
8273 size = l2arc_write_max;
8274 if (size == 0) {
8275 cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8276 "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8277 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8280 if (arc_warm == B_FALSE)
8281 size += l2arc_write_boost;
8283 /* We need to add in the worst case scenario of log block overhead. */
8284 size += l2arc_log_blk_overhead(size, dev);
8285 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8287 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8288 * times the writesize, whichever is greater.
8290 size += MAX(64 * 1024 * 1024,
8291 (size * l2arc_trim_ahead) / 100);
8295 * Make sure the write size does not exceed the size of the cache
8296 * device. This is important in l2arc_evict(), otherwise infinite
8297 * iteration can occur.
8299 size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8301 size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8303 return (size);
8307 static clock_t
8308 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8310 clock_t interval, next, now;
8313 * If the ARC lists are busy, increase our write rate; if the
8314 * lists are stale, idle back. This is achieved by checking
8315 * how much we previously wrote - if it was more than half of
8316 * what we wanted, schedule the next write much sooner.
8318 if (l2arc_feed_again && wrote > (wanted / 2))
8319 interval = (hz * l2arc_feed_min_ms) / 1000;
8320 else
8321 interval = hz * l2arc_feed_secs;
8323 now = ddi_get_lbolt();
8324 next = MAX(now, MIN(now + interval, began + interval));
8326 return (next);
8329 static boolean_t
8330 l2arc_dev_invalid(const l2arc_dev_t *dev)
8333 * We want to skip devices that are being rebuilt, trimmed,
8334 * removed, or belong to a spa that is being exported.
8336 return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) ||
8337 dev->l2ad_rebuild || dev->l2ad_trim_all ||
8338 dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting);
8342 * Cycle through L2ARC devices. This is how L2ARC load balances.
8343 * If a device is returned, this also returns holding the spa config lock.
8345 static l2arc_dev_t *
8346 l2arc_dev_get_next(void)
8348 l2arc_dev_t *first, *next = NULL;
8351 * Lock out the removal of spas (spa_namespace_lock), then removal
8352 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8353 * both locks will be dropped and a spa config lock held instead.
8355 mutex_enter(&spa_namespace_lock);
8356 mutex_enter(&l2arc_dev_mtx);
8358 /* if there are no vdevs, there is nothing to do */
8359 if (l2arc_ndev == 0)
8360 goto out;
8362 first = NULL;
8363 next = l2arc_dev_last;
8364 do {
8365 /* loop around the list looking for a non-faulted vdev */
8366 if (next == NULL) {
8367 next = list_head(l2arc_dev_list);
8368 } else {
8369 next = list_next(l2arc_dev_list, next);
8370 if (next == NULL)
8371 next = list_head(l2arc_dev_list);
8374 /* if we have come back to the start, bail out */
8375 if (first == NULL)
8376 first = next;
8377 else if (next == first)
8378 break;
8380 ASSERT3P(next, !=, NULL);
8381 } while (l2arc_dev_invalid(next));
8383 /* if we were unable to find any usable vdevs, return NULL */
8384 if (l2arc_dev_invalid(next))
8385 next = NULL;
8387 l2arc_dev_last = next;
8389 out:
8390 mutex_exit(&l2arc_dev_mtx);
8393 * Grab the config lock to prevent the 'next' device from being
8394 * removed while we are writing to it.
8396 if (next != NULL)
8397 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8398 mutex_exit(&spa_namespace_lock);
8400 return (next);
8404 * Free buffers that were tagged for destruction.
8406 static void
8407 l2arc_do_free_on_write(void)
8409 l2arc_data_free_t *df;
8411 mutex_enter(&l2arc_free_on_write_mtx);
8412 while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8413 ASSERT3P(df->l2df_abd, !=, NULL);
8414 abd_free(df->l2df_abd);
8415 kmem_free(df, sizeof (l2arc_data_free_t));
8417 mutex_exit(&l2arc_free_on_write_mtx);
8421 * A write to a cache device has completed. Update all headers to allow
8422 * reads from these buffers to begin.
8424 static void
8425 l2arc_write_done(zio_t *zio)
8427 l2arc_write_callback_t *cb;
8428 l2arc_lb_abd_buf_t *abd_buf;
8429 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8430 l2arc_dev_t *dev;
8431 l2arc_dev_hdr_phys_t *l2dhdr;
8432 list_t *buflist;
8433 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8434 kmutex_t *hash_lock;
8435 int64_t bytes_dropped = 0;
8437 cb = zio->io_private;
8438 ASSERT3P(cb, !=, NULL);
8439 dev = cb->l2wcb_dev;
8440 l2dhdr = dev->l2ad_dev_hdr;
8441 ASSERT3P(dev, !=, NULL);
8442 head = cb->l2wcb_head;
8443 ASSERT3P(head, !=, NULL);
8444 buflist = &dev->l2ad_buflist;
8445 ASSERT3P(buflist, !=, NULL);
8446 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8447 l2arc_write_callback_t *, cb);
8450 * All writes completed, or an error was hit.
8452 top:
8453 mutex_enter(&dev->l2ad_mtx);
8454 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8455 hdr_prev = list_prev(buflist, hdr);
8457 hash_lock = HDR_LOCK(hdr);
8460 * We cannot use mutex_enter or else we can deadlock
8461 * with l2arc_write_buffers (due to swapping the order
8462 * the hash lock and l2ad_mtx are taken).
8464 if (!mutex_tryenter(hash_lock)) {
8466 * Missed the hash lock. We must retry so we
8467 * don't leave the ARC_FLAG_L2_WRITING bit set.
8469 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8472 * We don't want to rescan the headers we've
8473 * already marked as having been written out, so
8474 * we reinsert the head node so we can pick up
8475 * where we left off.
8477 list_remove(buflist, head);
8478 list_insert_after(buflist, hdr, head);
8480 mutex_exit(&dev->l2ad_mtx);
8483 * We wait for the hash lock to become available
8484 * to try and prevent busy waiting, and increase
8485 * the chance we'll be able to acquire the lock
8486 * the next time around.
8488 mutex_enter(hash_lock);
8489 mutex_exit(hash_lock);
8490 goto top;
8494 * We could not have been moved into the arc_l2c_only
8495 * state while in-flight due to our ARC_FLAG_L2_WRITING
8496 * bit being set. Let's just ensure that's being enforced.
8498 ASSERT(HDR_HAS_L1HDR(hdr));
8501 * Skipped - drop L2ARC entry and mark the header as no
8502 * longer L2 eligibile.
8504 if (zio->io_error != 0) {
8506 * Error - drop L2ARC entry.
8508 list_remove(buflist, hdr);
8509 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8511 uint64_t psize = HDR_GET_PSIZE(hdr);
8512 l2arc_hdr_arcstats_decrement(hdr);
8514 ASSERT(dev->l2ad_vdev != NULL);
8516 bytes_dropped +=
8517 vdev_psize_to_asize(dev->l2ad_vdev, psize);
8518 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8519 arc_hdr_size(hdr), hdr);
8523 * Allow ARC to begin reads and ghost list evictions to
8524 * this L2ARC entry.
8526 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8528 mutex_exit(hash_lock);
8532 * Free the allocated abd buffers for writing the log blocks.
8533 * If the zio failed reclaim the allocated space and remove the
8534 * pointers to these log blocks from the log block pointer list
8535 * of the L2ARC device.
8537 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8538 abd_free(abd_buf->abd);
8539 zio_buf_free(abd_buf, sizeof (*abd_buf));
8540 if (zio->io_error != 0) {
8541 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8543 * L2BLK_GET_PSIZE returns aligned size for log
8544 * blocks.
8546 uint64_t asize =
8547 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8548 bytes_dropped += asize;
8549 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8550 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8551 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8552 lb_ptr_buf);
8553 (void) zfs_refcount_remove(&dev->l2ad_lb_count,
8554 lb_ptr_buf);
8555 kmem_free(lb_ptr_buf->lb_ptr,
8556 sizeof (l2arc_log_blkptr_t));
8557 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8560 list_destroy(&cb->l2wcb_abd_list);
8562 if (zio->io_error != 0) {
8563 ARCSTAT_BUMP(arcstat_l2_writes_error);
8566 * Restore the lbps array in the header to its previous state.
8567 * If the list of log block pointers is empty, zero out the
8568 * log block pointers in the device header.
8570 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8571 for (int i = 0; i < 2; i++) {
8572 if (lb_ptr_buf == NULL) {
8574 * If the list is empty zero out the device
8575 * header. Otherwise zero out the second log
8576 * block pointer in the header.
8578 if (i == 0) {
8579 memset(l2dhdr, 0,
8580 dev->l2ad_dev_hdr_asize);
8581 } else {
8582 memset(&l2dhdr->dh_start_lbps[i], 0,
8583 sizeof (l2arc_log_blkptr_t));
8585 break;
8587 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8588 sizeof (l2arc_log_blkptr_t));
8589 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8590 lb_ptr_buf);
8594 ARCSTAT_BUMP(arcstat_l2_writes_done);
8595 list_remove(buflist, head);
8596 ASSERT(!HDR_HAS_L1HDR(head));
8597 kmem_cache_free(hdr_l2only_cache, head);
8598 mutex_exit(&dev->l2ad_mtx);
8600 ASSERT(dev->l2ad_vdev != NULL);
8601 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8603 l2arc_do_free_on_write();
8605 kmem_free(cb, sizeof (l2arc_write_callback_t));
8608 static int
8609 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8611 int ret;
8612 spa_t *spa = zio->io_spa;
8613 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8614 blkptr_t *bp = zio->io_bp;
8615 uint8_t salt[ZIO_DATA_SALT_LEN];
8616 uint8_t iv[ZIO_DATA_IV_LEN];
8617 uint8_t mac[ZIO_DATA_MAC_LEN];
8618 boolean_t no_crypt = B_FALSE;
8621 * ZIL data is never be written to the L2ARC, so we don't need
8622 * special handling for its unique MAC storage.
8624 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8625 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8626 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8629 * If the data was encrypted, decrypt it now. Note that
8630 * we must check the bp here and not the hdr, since the
8631 * hdr does not have its encryption parameters updated
8632 * until arc_read_done().
8634 if (BP_IS_ENCRYPTED(bp)) {
8635 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8636 ARC_HDR_USE_RESERVE);
8638 zio_crypt_decode_params_bp(bp, salt, iv);
8639 zio_crypt_decode_mac_bp(bp, mac);
8641 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8642 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8643 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8644 hdr->b_l1hdr.b_pabd, &no_crypt);
8645 if (ret != 0) {
8646 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8647 goto error;
8651 * If we actually performed decryption, replace b_pabd
8652 * with the decrypted data. Otherwise we can just throw
8653 * our decryption buffer away.
8655 if (!no_crypt) {
8656 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8657 arc_hdr_size(hdr), hdr);
8658 hdr->b_l1hdr.b_pabd = eabd;
8659 zio->io_abd = eabd;
8660 } else {
8661 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8666 * If the L2ARC block was compressed, but ARC compression
8667 * is disabled we decompress the data into a new buffer and
8668 * replace the existing data.
8670 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8671 !HDR_COMPRESSION_ENABLED(hdr)) {
8672 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8673 ARC_HDR_USE_RESERVE);
8675 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8676 hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
8677 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8678 if (ret != 0) {
8679 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8680 goto error;
8683 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8684 arc_hdr_size(hdr), hdr);
8685 hdr->b_l1hdr.b_pabd = cabd;
8686 zio->io_abd = cabd;
8687 zio->io_size = HDR_GET_LSIZE(hdr);
8690 return (0);
8692 error:
8693 return (ret);
8698 * A read to a cache device completed. Validate buffer contents before
8699 * handing over to the regular ARC routines.
8701 static void
8702 l2arc_read_done(zio_t *zio)
8704 int tfm_error = 0;
8705 l2arc_read_callback_t *cb = zio->io_private;
8706 arc_buf_hdr_t *hdr;
8707 kmutex_t *hash_lock;
8708 boolean_t valid_cksum;
8709 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8710 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8712 ASSERT3P(zio->io_vd, !=, NULL);
8713 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8715 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8717 ASSERT3P(cb, !=, NULL);
8718 hdr = cb->l2rcb_hdr;
8719 ASSERT3P(hdr, !=, NULL);
8721 hash_lock = HDR_LOCK(hdr);
8722 mutex_enter(hash_lock);
8723 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8726 * If the data was read into a temporary buffer,
8727 * move it and free the buffer.
8729 if (cb->l2rcb_abd != NULL) {
8730 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8731 if (zio->io_error == 0) {
8732 if (using_rdata) {
8733 abd_copy(hdr->b_crypt_hdr.b_rabd,
8734 cb->l2rcb_abd, arc_hdr_size(hdr));
8735 } else {
8736 abd_copy(hdr->b_l1hdr.b_pabd,
8737 cb->l2rcb_abd, arc_hdr_size(hdr));
8742 * The following must be done regardless of whether
8743 * there was an error:
8744 * - free the temporary buffer
8745 * - point zio to the real ARC buffer
8746 * - set zio size accordingly
8747 * These are required because zio is either re-used for
8748 * an I/O of the block in the case of the error
8749 * or the zio is passed to arc_read_done() and it
8750 * needs real data.
8752 abd_free(cb->l2rcb_abd);
8753 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8755 if (using_rdata) {
8756 ASSERT(HDR_HAS_RABD(hdr));
8757 zio->io_abd = zio->io_orig_abd =
8758 hdr->b_crypt_hdr.b_rabd;
8759 } else {
8760 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8761 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8765 ASSERT3P(zio->io_abd, !=, NULL);
8768 * Check this survived the L2ARC journey.
8770 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8771 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8772 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8773 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8774 zio->io_prop.zp_complevel = hdr->b_complevel;
8776 valid_cksum = arc_cksum_is_equal(hdr, zio);
8779 * b_rabd will always match the data as it exists on disk if it is
8780 * being used. Therefore if we are reading into b_rabd we do not
8781 * attempt to untransform the data.
8783 if (valid_cksum && !using_rdata)
8784 tfm_error = l2arc_untransform(zio, cb);
8786 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8787 !HDR_L2_EVICTED(hdr)) {
8788 mutex_exit(hash_lock);
8789 zio->io_private = hdr;
8790 arc_read_done(zio);
8791 } else {
8793 * Buffer didn't survive caching. Increment stats and
8794 * reissue to the original storage device.
8796 if (zio->io_error != 0) {
8797 ARCSTAT_BUMP(arcstat_l2_io_error);
8798 } else {
8799 zio->io_error = SET_ERROR(EIO);
8801 if (!valid_cksum || tfm_error != 0)
8802 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8805 * If there's no waiter, issue an async i/o to the primary
8806 * storage now. If there *is* a waiter, the caller must
8807 * issue the i/o in a context where it's OK to block.
8809 if (zio->io_waiter == NULL) {
8810 zio_t *pio = zio_unique_parent(zio);
8811 void *abd = (using_rdata) ?
8812 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8814 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8816 zio = zio_read(pio, zio->io_spa, zio->io_bp,
8817 abd, zio->io_size, arc_read_done,
8818 hdr, zio->io_priority, cb->l2rcb_flags,
8819 &cb->l2rcb_zb);
8822 * Original ZIO will be freed, so we need to update
8823 * ARC header with the new ZIO pointer to be used
8824 * by zio_change_priority() in arc_read().
8826 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8827 acb != NULL; acb = acb->acb_next)
8828 acb->acb_zio_head = zio;
8830 mutex_exit(hash_lock);
8831 zio_nowait(zio);
8832 } else {
8833 mutex_exit(hash_lock);
8837 kmem_free(cb, sizeof (l2arc_read_callback_t));
8841 * This is the list priority from which the L2ARC will search for pages to
8842 * cache. This is used within loops (0..3) to cycle through lists in the
8843 * desired order. This order can have a significant effect on cache
8844 * performance.
8846 * Currently the metadata lists are hit first, MFU then MRU, followed by
8847 * the data lists. This function returns a locked list, and also returns
8848 * the lock pointer.
8850 static multilist_sublist_t *
8851 l2arc_sublist_lock(int list_num)
8853 multilist_t *ml = NULL;
8854 unsigned int idx;
8856 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
8858 switch (list_num) {
8859 case 0:
8860 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
8861 break;
8862 case 1:
8863 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
8864 break;
8865 case 2:
8866 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
8867 break;
8868 case 3:
8869 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
8870 break;
8871 default:
8872 return (NULL);
8876 * Return a randomly-selected sublist. This is acceptable
8877 * because the caller feeds only a little bit of data for each
8878 * call (8MB). Subsequent calls will result in different
8879 * sublists being selected.
8881 idx = multilist_get_random_index(ml);
8882 return (multilist_sublist_lock_idx(ml, idx));
8886 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8887 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8888 * overhead in processing to make sure there is enough headroom available
8889 * when writing buffers.
8891 static inline uint64_t
8892 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8894 if (dev->l2ad_log_entries == 0) {
8895 return (0);
8896 } else {
8897 ASSERT(dev->l2ad_vdev != NULL);
8899 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8901 uint64_t log_blocks = (log_entries +
8902 dev->l2ad_log_entries - 1) /
8903 dev->l2ad_log_entries;
8905 return (vdev_psize_to_asize(dev->l2ad_vdev,
8906 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8911 * Evict buffers from the device write hand to the distance specified in
8912 * bytes. This distance may span populated buffers, it may span nothing.
8913 * This is clearing a region on the L2ARC device ready for writing.
8914 * If the 'all' boolean is set, every buffer is evicted.
8916 static void
8917 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8919 list_t *buflist;
8920 arc_buf_hdr_t *hdr, *hdr_prev;
8921 kmutex_t *hash_lock;
8922 uint64_t taddr;
8923 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
8924 vdev_t *vd = dev->l2ad_vdev;
8925 boolean_t rerun;
8927 ASSERT(vd != NULL || all);
8928 ASSERT(dev->l2ad_spa != NULL || all);
8930 buflist = &dev->l2ad_buflist;
8932 top:
8933 rerun = B_FALSE;
8934 if (dev->l2ad_hand + distance > dev->l2ad_end) {
8936 * When there is no space to accommodate upcoming writes,
8937 * evict to the end. Then bump the write and evict hands
8938 * to the start and iterate. This iteration does not
8939 * happen indefinitely as we make sure in
8940 * l2arc_write_size() that when the write hand is reset,
8941 * the write size does not exceed the end of the device.
8943 rerun = B_TRUE;
8944 taddr = dev->l2ad_end;
8945 } else {
8946 taddr = dev->l2ad_hand + distance;
8948 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8949 uint64_t, taddr, boolean_t, all);
8951 if (!all) {
8953 * This check has to be placed after deciding whether to
8954 * iterate (rerun).
8956 if (dev->l2ad_first) {
8958 * This is the first sweep through the device. There is
8959 * nothing to evict. We have already trimmmed the
8960 * whole device.
8962 goto out;
8963 } else {
8965 * Trim the space to be evicted.
8967 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
8968 l2arc_trim_ahead > 0) {
8970 * We have to drop the spa_config lock because
8971 * vdev_trim_range() will acquire it.
8972 * l2ad_evict already accounts for the label
8973 * size. To prevent vdev_trim_ranges() from
8974 * adding it again, we subtract it from
8975 * l2ad_evict.
8977 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
8978 vdev_trim_simple(vd,
8979 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
8980 taddr - dev->l2ad_evict);
8981 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
8982 RW_READER);
8986 * When rebuilding L2ARC we retrieve the evict hand
8987 * from the header of the device. Of note, l2arc_evict()
8988 * does not actually delete buffers from the cache
8989 * device, but trimming may do so depending on the
8990 * hardware implementation. Thus keeping track of the
8991 * evict hand is useful.
8993 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
8997 retry:
8998 mutex_enter(&dev->l2ad_mtx);
9000 * We have to account for evicted log blocks. Run vdev_space_update()
9001 * on log blocks whose offset (in bytes) is before the evicted offset
9002 * (in bytes) by searching in the list of pointers to log blocks
9003 * present in the L2ARC device.
9005 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9006 lb_ptr_buf = lb_ptr_buf_prev) {
9008 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9010 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9011 uint64_t asize = L2BLK_GET_PSIZE(
9012 (lb_ptr_buf->lb_ptr)->lbp_prop);
9015 * We don't worry about log blocks left behind (ie
9016 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9017 * will never write more than l2arc_evict() evicts.
9019 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9020 break;
9021 } else {
9022 if (vd != NULL)
9023 vdev_space_update(vd, -asize, 0, 0);
9024 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9025 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9026 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9027 lb_ptr_buf);
9028 (void) zfs_refcount_remove(&dev->l2ad_lb_count,
9029 lb_ptr_buf);
9030 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9031 kmem_free(lb_ptr_buf->lb_ptr,
9032 sizeof (l2arc_log_blkptr_t));
9033 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9037 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9038 hdr_prev = list_prev(buflist, hdr);
9040 ASSERT(!HDR_EMPTY(hdr));
9041 hash_lock = HDR_LOCK(hdr);
9044 * We cannot use mutex_enter or else we can deadlock
9045 * with l2arc_write_buffers (due to swapping the order
9046 * the hash lock and l2ad_mtx are taken).
9048 if (!mutex_tryenter(hash_lock)) {
9050 * Missed the hash lock. Retry.
9052 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9053 mutex_exit(&dev->l2ad_mtx);
9054 mutex_enter(hash_lock);
9055 mutex_exit(hash_lock);
9056 goto retry;
9060 * A header can't be on this list if it doesn't have L2 header.
9062 ASSERT(HDR_HAS_L2HDR(hdr));
9064 /* Ensure this header has finished being written. */
9065 ASSERT(!HDR_L2_WRITING(hdr));
9066 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9068 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9069 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9071 * We've evicted to the target address,
9072 * or the end of the device.
9074 mutex_exit(hash_lock);
9075 break;
9078 if (!HDR_HAS_L1HDR(hdr)) {
9079 ASSERT(!HDR_L2_READING(hdr));
9081 * This doesn't exist in the ARC. Destroy.
9082 * arc_hdr_destroy() will call list_remove()
9083 * and decrement arcstat_l2_lsize.
9085 arc_change_state(arc_anon, hdr);
9086 arc_hdr_destroy(hdr);
9087 } else {
9088 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9089 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9091 * Invalidate issued or about to be issued
9092 * reads, since we may be about to write
9093 * over this location.
9095 if (HDR_L2_READING(hdr)) {
9096 ARCSTAT_BUMP(arcstat_l2_evict_reading);
9097 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9100 arc_hdr_l2hdr_destroy(hdr);
9102 mutex_exit(hash_lock);
9104 mutex_exit(&dev->l2ad_mtx);
9106 out:
9108 * We need to check if we evict all buffers, otherwise we may iterate
9109 * unnecessarily.
9111 if (!all && rerun) {
9113 * Bump device hand to the device start if it is approaching the
9114 * end. l2arc_evict() has already evicted ahead for this case.
9116 dev->l2ad_hand = dev->l2ad_start;
9117 dev->l2ad_evict = dev->l2ad_start;
9118 dev->l2ad_first = B_FALSE;
9119 goto top;
9122 if (!all) {
9124 * In case of cache device removal (all) the following
9125 * assertions may be violated without functional consequences
9126 * as the device is about to be removed.
9128 ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
9129 if (!dev->l2ad_first)
9130 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9135 * Handle any abd transforms that might be required for writing to the L2ARC.
9136 * If successful, this function will always return an abd with the data
9137 * transformed as it is on disk in a new abd of asize bytes.
9139 static int
9140 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9141 abd_t **abd_out)
9143 int ret;
9144 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9145 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9146 uint64_t psize = HDR_GET_PSIZE(hdr);
9147 uint64_t size = arc_hdr_size(hdr);
9148 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9149 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9150 dsl_crypto_key_t *dck = NULL;
9151 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9152 boolean_t no_crypt = B_FALSE;
9154 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9155 !HDR_COMPRESSION_ENABLED(hdr)) ||
9156 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9157 ASSERT3U(psize, <=, asize);
9160 * If this data simply needs its own buffer, we simply allocate it
9161 * and copy the data. This may be done to eliminate a dependency on a
9162 * shared buffer or to reallocate the buffer to match asize.
9164 if (HDR_HAS_RABD(hdr)) {
9165 ASSERT3U(asize, >, psize);
9166 to_write = abd_alloc_for_io(asize, ismd);
9167 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9168 abd_zero_off(to_write, psize, asize - psize);
9169 goto out;
9172 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9173 !HDR_ENCRYPTED(hdr)) {
9174 ASSERT3U(size, ==, psize);
9175 to_write = abd_alloc_for_io(asize, ismd);
9176 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9177 if (asize > size)
9178 abd_zero_off(to_write, size, asize - size);
9179 goto out;
9182 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9183 cabd = abd_alloc_for_io(MAX(size, asize), ismd);
9184 uint64_t csize = zio_compress_data(compress, to_write, &cabd,
9185 size, MIN(size, psize), hdr->b_complevel);
9186 if (csize >= size || csize > psize) {
9188 * We can't re-compress the block into the original
9189 * psize. Even if it fits into asize, it does not
9190 * matter, since checksum will never match on read.
9192 abd_free(cabd);
9193 return (SET_ERROR(EIO));
9195 if (asize > csize)
9196 abd_zero_off(cabd, csize, asize - csize);
9197 to_write = cabd;
9200 if (HDR_ENCRYPTED(hdr)) {
9201 eabd = abd_alloc_for_io(asize, ismd);
9204 * If the dataset was disowned before the buffer
9205 * made it to this point, the key to re-encrypt
9206 * it won't be available. In this case we simply
9207 * won't write the buffer to the L2ARC.
9209 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9210 FTAG, &dck);
9211 if (ret != 0)
9212 goto error;
9214 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9215 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9216 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9217 &no_crypt);
9218 if (ret != 0)
9219 goto error;
9221 if (no_crypt)
9222 abd_copy(eabd, to_write, psize);
9224 if (psize != asize)
9225 abd_zero_off(eabd, psize, asize - psize);
9227 /* assert that the MAC we got here matches the one we saved */
9228 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9229 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9231 if (to_write == cabd)
9232 abd_free(cabd);
9234 to_write = eabd;
9237 out:
9238 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9239 *abd_out = to_write;
9240 return (0);
9242 error:
9243 if (dck != NULL)
9244 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9245 if (cabd != NULL)
9246 abd_free(cabd);
9247 if (eabd != NULL)
9248 abd_free(eabd);
9250 *abd_out = NULL;
9251 return (ret);
9254 static void
9255 l2arc_blk_fetch_done(zio_t *zio)
9257 l2arc_read_callback_t *cb;
9259 cb = zio->io_private;
9260 if (cb->l2rcb_abd != NULL)
9261 abd_free(cb->l2rcb_abd);
9262 kmem_free(cb, sizeof (l2arc_read_callback_t));
9266 * Find and write ARC buffers to the L2ARC device.
9268 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9269 * for reading until they have completed writing.
9270 * The headroom_boost is an in-out parameter used to maintain headroom boost
9271 * state between calls to this function.
9273 * Returns the number of bytes actually written (which may be smaller than
9274 * the delta by which the device hand has changed due to alignment and the
9275 * writing of log blocks).
9277 static uint64_t
9278 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9280 arc_buf_hdr_t *hdr, *head, *marker;
9281 uint64_t write_asize, write_psize, headroom;
9282 boolean_t full, from_head = !arc_warm;
9283 l2arc_write_callback_t *cb = NULL;
9284 zio_t *pio, *wzio;
9285 uint64_t guid = spa_load_guid(spa);
9286 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9288 ASSERT3P(dev->l2ad_vdev, !=, NULL);
9290 pio = NULL;
9291 write_asize = write_psize = 0;
9292 full = B_FALSE;
9293 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9294 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9295 marker = arc_state_alloc_marker();
9298 * Copy buffers for L2ARC writing.
9300 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9302 * pass == 0: MFU meta
9303 * pass == 1: MRU meta
9304 * pass == 2: MFU data
9305 * pass == 3: MRU data
9307 if (l2arc_mfuonly == 1) {
9308 if (pass == 1 || pass == 3)
9309 continue;
9310 } else if (l2arc_mfuonly > 1) {
9311 if (pass == 3)
9312 continue;
9315 uint64_t passed_sz = 0;
9316 headroom = target_sz * l2arc_headroom;
9317 if (zfs_compressed_arc_enabled)
9318 headroom = (headroom * l2arc_headroom_boost) / 100;
9321 * Until the ARC is warm and starts to evict, read from the
9322 * head of the ARC lists rather than the tail.
9324 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9325 ASSERT3P(mls, !=, NULL);
9326 if (from_head)
9327 hdr = multilist_sublist_head(mls);
9328 else
9329 hdr = multilist_sublist_tail(mls);
9331 while (hdr != NULL) {
9332 kmutex_t *hash_lock;
9333 abd_t *to_write = NULL;
9335 hash_lock = HDR_LOCK(hdr);
9336 if (!mutex_tryenter(hash_lock)) {
9337 skip:
9338 /* Skip this buffer rather than waiting. */
9339 if (from_head)
9340 hdr = multilist_sublist_next(mls, hdr);
9341 else
9342 hdr = multilist_sublist_prev(mls, hdr);
9343 continue;
9346 passed_sz += HDR_GET_LSIZE(hdr);
9347 if (l2arc_headroom != 0 && passed_sz > headroom) {
9349 * Searched too far.
9351 mutex_exit(hash_lock);
9352 break;
9355 if (!l2arc_write_eligible(guid, hdr)) {
9356 mutex_exit(hash_lock);
9357 goto skip;
9360 ASSERT(HDR_HAS_L1HDR(hdr));
9361 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9362 ASSERT3U(arc_hdr_size(hdr), >, 0);
9363 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9364 HDR_HAS_RABD(hdr));
9365 uint64_t psize = HDR_GET_PSIZE(hdr);
9366 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9367 psize);
9370 * If the allocated size of this buffer plus the max
9371 * size for the pending log block exceeds the evicted
9372 * target size, terminate writing buffers for this run.
9374 if (write_asize + asize +
9375 sizeof (l2arc_log_blk_phys_t) > target_sz) {
9376 full = B_TRUE;
9377 mutex_exit(hash_lock);
9378 break;
9382 * We should not sleep with sublist lock held or it
9383 * may block ARC eviction. Insert a marker to save
9384 * the position and drop the lock.
9386 if (from_head) {
9387 multilist_sublist_insert_after(mls, hdr,
9388 marker);
9389 } else {
9390 multilist_sublist_insert_before(mls, hdr,
9391 marker);
9393 multilist_sublist_unlock(mls);
9396 * If this header has b_rabd, we can use this since it
9397 * must always match the data exactly as it exists on
9398 * disk. Otherwise, the L2ARC can normally use the
9399 * hdr's data, but if we're sharing data between the
9400 * hdr and one of its bufs, L2ARC needs its own copy of
9401 * the data so that the ZIO below can't race with the
9402 * buf consumer. To ensure that this copy will be
9403 * available for the lifetime of the ZIO and be cleaned
9404 * up afterwards, we add it to the l2arc_free_on_write
9405 * queue. If we need to apply any transforms to the
9406 * data (compression, encryption) we will also need the
9407 * extra buffer.
9409 if (HDR_HAS_RABD(hdr) && psize == asize) {
9410 to_write = hdr->b_crypt_hdr.b_rabd;
9411 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9412 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9413 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9414 psize == asize) {
9415 to_write = hdr->b_l1hdr.b_pabd;
9416 } else {
9417 int ret;
9418 arc_buf_contents_t type = arc_buf_type(hdr);
9420 ret = l2arc_apply_transforms(spa, hdr, asize,
9421 &to_write);
9422 if (ret != 0) {
9423 arc_hdr_clear_flags(hdr,
9424 ARC_FLAG_L2CACHE);
9425 mutex_exit(hash_lock);
9426 goto next;
9429 l2arc_free_abd_on_write(to_write, asize, type);
9432 hdr->b_l2hdr.b_dev = dev;
9433 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9434 hdr->b_l2hdr.b_hits = 0;
9435 hdr->b_l2hdr.b_arcs_state =
9436 hdr->b_l1hdr.b_state->arcs_state;
9437 /* l2arc_hdr_arcstats_update() expects a valid asize */
9438 HDR_SET_L2SIZE(hdr, asize);
9439 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9440 ARC_FLAG_L2_WRITING);
9442 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9443 arc_hdr_size(hdr), hdr);
9444 l2arc_hdr_arcstats_increment(hdr);
9445 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9447 mutex_enter(&dev->l2ad_mtx);
9448 if (pio == NULL) {
9450 * Insert a dummy header on the buflist so
9451 * l2arc_write_done() can find where the
9452 * write buffers begin without searching.
9454 list_insert_head(&dev->l2ad_buflist, head);
9456 list_insert_head(&dev->l2ad_buflist, hdr);
9457 mutex_exit(&dev->l2ad_mtx);
9459 boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9460 mutex_exit(hash_lock);
9462 if (pio == NULL) {
9463 cb = kmem_alloc(
9464 sizeof (l2arc_write_callback_t), KM_SLEEP);
9465 cb->l2wcb_dev = dev;
9466 cb->l2wcb_head = head;
9467 list_create(&cb->l2wcb_abd_list,
9468 sizeof (l2arc_lb_abd_buf_t),
9469 offsetof(l2arc_lb_abd_buf_t, node));
9470 pio = zio_root(spa, l2arc_write_done, cb,
9471 ZIO_FLAG_CANFAIL);
9474 wzio = zio_write_phys(pio, dev->l2ad_vdev,
9475 dev->l2ad_hand, asize, to_write,
9476 ZIO_CHECKSUM_OFF, NULL, hdr,
9477 ZIO_PRIORITY_ASYNC_WRITE,
9478 ZIO_FLAG_CANFAIL, B_FALSE);
9480 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9481 zio_t *, wzio);
9482 zio_nowait(wzio);
9484 write_psize += psize;
9485 write_asize += asize;
9486 dev->l2ad_hand += asize;
9488 if (commit) {
9489 /* l2ad_hand will be adjusted inside. */
9490 write_asize +=
9491 l2arc_log_blk_commit(dev, pio, cb);
9494 next:
9495 multilist_sublist_lock(mls);
9496 if (from_head)
9497 hdr = multilist_sublist_next(mls, marker);
9498 else
9499 hdr = multilist_sublist_prev(mls, marker);
9500 multilist_sublist_remove(mls, marker);
9503 multilist_sublist_unlock(mls);
9505 if (full == B_TRUE)
9506 break;
9509 arc_state_free_marker(marker);
9511 /* No buffers selected for writing? */
9512 if (pio == NULL) {
9513 ASSERT0(write_psize);
9514 ASSERT(!HDR_HAS_L1HDR(head));
9515 kmem_cache_free(hdr_l2only_cache, head);
9518 * Although we did not write any buffers l2ad_evict may
9519 * have advanced.
9521 if (dev->l2ad_evict != l2dhdr->dh_evict)
9522 l2arc_dev_hdr_update(dev);
9524 return (0);
9527 if (!dev->l2ad_first)
9528 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9530 ASSERT3U(write_asize, <=, target_sz);
9531 ARCSTAT_BUMP(arcstat_l2_writes_sent);
9532 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9534 dev->l2ad_writing = B_TRUE;
9535 (void) zio_wait(pio);
9536 dev->l2ad_writing = B_FALSE;
9539 * Update the device header after the zio completes as
9540 * l2arc_write_done() may have updated the memory holding the log block
9541 * pointers in the device header.
9543 l2arc_dev_hdr_update(dev);
9545 return (write_asize);
9548 static boolean_t
9549 l2arc_hdr_limit_reached(void)
9551 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9553 return (arc_reclaim_needed() ||
9554 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9558 * This thread feeds the L2ARC at regular intervals. This is the beating
9559 * heart of the L2ARC.
9561 static __attribute__((noreturn)) void
9562 l2arc_feed_thread(void *unused)
9564 (void) unused;
9565 callb_cpr_t cpr;
9566 l2arc_dev_t *dev;
9567 spa_t *spa;
9568 uint64_t size, wrote;
9569 clock_t begin, next = ddi_get_lbolt();
9570 fstrans_cookie_t cookie;
9572 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9574 mutex_enter(&l2arc_feed_thr_lock);
9576 cookie = spl_fstrans_mark();
9577 while (l2arc_thread_exit == 0) {
9578 CALLB_CPR_SAFE_BEGIN(&cpr);
9579 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9580 &l2arc_feed_thr_lock, next);
9581 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9582 next = ddi_get_lbolt() + hz;
9585 * Quick check for L2ARC devices.
9587 mutex_enter(&l2arc_dev_mtx);
9588 if (l2arc_ndev == 0) {
9589 mutex_exit(&l2arc_dev_mtx);
9590 continue;
9592 mutex_exit(&l2arc_dev_mtx);
9593 begin = ddi_get_lbolt();
9596 * This selects the next l2arc device to write to, and in
9597 * doing so the next spa to feed from: dev->l2ad_spa. This
9598 * will return NULL if there are now no l2arc devices or if
9599 * they are all faulted.
9601 * If a device is returned, its spa's config lock is also
9602 * held to prevent device removal. l2arc_dev_get_next()
9603 * will grab and release l2arc_dev_mtx.
9605 if ((dev = l2arc_dev_get_next()) == NULL)
9606 continue;
9608 spa = dev->l2ad_spa;
9609 ASSERT3P(spa, !=, NULL);
9612 * If the pool is read-only then force the feed thread to
9613 * sleep a little longer.
9615 if (!spa_writeable(spa)) {
9616 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9617 spa_config_exit(spa, SCL_L2ARC, dev);
9618 continue;
9622 * Avoid contributing to memory pressure.
9624 if (l2arc_hdr_limit_reached()) {
9625 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9626 spa_config_exit(spa, SCL_L2ARC, dev);
9627 continue;
9630 ARCSTAT_BUMP(arcstat_l2_feeds);
9632 size = l2arc_write_size(dev);
9635 * Evict L2ARC buffers that will be overwritten.
9637 l2arc_evict(dev, size, B_FALSE);
9640 * Write ARC buffers.
9642 wrote = l2arc_write_buffers(spa, dev, size);
9645 * Calculate interval between writes.
9647 next = l2arc_write_interval(begin, size, wrote);
9648 spa_config_exit(spa, SCL_L2ARC, dev);
9650 spl_fstrans_unmark(cookie);
9652 l2arc_thread_exit = 0;
9653 cv_broadcast(&l2arc_feed_thr_cv);
9654 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9655 thread_exit();
9658 boolean_t
9659 l2arc_vdev_present(vdev_t *vd)
9661 return (l2arc_vdev_get(vd) != NULL);
9665 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9666 * the vdev_t isn't an L2ARC device.
9668 l2arc_dev_t *
9669 l2arc_vdev_get(vdev_t *vd)
9671 l2arc_dev_t *dev;
9673 mutex_enter(&l2arc_dev_mtx);
9674 for (dev = list_head(l2arc_dev_list); dev != NULL;
9675 dev = list_next(l2arc_dev_list, dev)) {
9676 if (dev->l2ad_vdev == vd)
9677 break;
9679 mutex_exit(&l2arc_dev_mtx);
9681 return (dev);
9684 static void
9685 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9687 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9688 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9689 spa_t *spa = dev->l2ad_spa;
9692 * After a l2arc_remove_vdev(), the spa_t will no longer be valid
9694 if (spa == NULL)
9695 return;
9698 * The L2ARC has to hold at least the payload of one log block for
9699 * them to be restored (persistent L2ARC). The payload of a log block
9700 * depends on the amount of its log entries. We always write log blocks
9701 * with 1022 entries. How many of them are committed or restored depends
9702 * on the size of the L2ARC device. Thus the maximum payload of
9703 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9704 * is less than that, we reduce the amount of committed and restored
9705 * log entries per block so as to enable persistence.
9707 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9708 dev->l2ad_log_entries = 0;
9709 } else {
9710 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9711 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9712 L2ARC_LOG_BLK_MAX_ENTRIES);
9716 * Read the device header, if an error is returned do not rebuild L2ARC.
9718 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9720 * If we are onlining a cache device (vdev_reopen) that was
9721 * still present (l2arc_vdev_present()) and rebuild is enabled,
9722 * we should evict all ARC buffers and pointers to log blocks
9723 * and reclaim their space before restoring its contents to
9724 * L2ARC.
9726 if (reopen) {
9727 if (!l2arc_rebuild_enabled) {
9728 return;
9729 } else {
9730 l2arc_evict(dev, 0, B_TRUE);
9731 /* start a new log block */
9732 dev->l2ad_log_ent_idx = 0;
9733 dev->l2ad_log_blk_payload_asize = 0;
9734 dev->l2ad_log_blk_payload_start = 0;
9738 * Just mark the device as pending for a rebuild. We won't
9739 * be starting a rebuild in line here as it would block pool
9740 * import. Instead spa_load_impl will hand that off to an
9741 * async task which will call l2arc_spa_rebuild_start.
9743 dev->l2ad_rebuild = B_TRUE;
9744 } else if (spa_writeable(spa)) {
9746 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9747 * otherwise create a new header. We zero out the memory holding
9748 * the header to reset dh_start_lbps. If we TRIM the whole
9749 * device the new header will be written by
9750 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9751 * trim_state in the header too. When reading the header, if
9752 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9753 * we opt to TRIM the whole device again.
9755 if (l2arc_trim_ahead > 0) {
9756 dev->l2ad_trim_all = B_TRUE;
9757 } else {
9758 memset(l2dhdr, 0, l2dhdr_asize);
9759 l2arc_dev_hdr_update(dev);
9765 * Add a vdev for use by the L2ARC. By this point the spa has already
9766 * validated the vdev and opened it.
9768 void
9769 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9771 l2arc_dev_t *adddev;
9772 uint64_t l2dhdr_asize;
9774 ASSERT(!l2arc_vdev_present(vd));
9777 * Create a new l2arc device entry.
9779 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9780 adddev->l2ad_spa = spa;
9781 adddev->l2ad_vdev = vd;
9782 /* leave extra size for an l2arc device header */
9783 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9784 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9785 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9786 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9787 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9788 adddev->l2ad_hand = adddev->l2ad_start;
9789 adddev->l2ad_evict = adddev->l2ad_start;
9790 adddev->l2ad_first = B_TRUE;
9791 adddev->l2ad_writing = B_FALSE;
9792 adddev->l2ad_trim_all = B_FALSE;
9793 list_link_init(&adddev->l2ad_node);
9794 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9796 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9798 * This is a list of all ARC buffers that are still valid on the
9799 * device.
9801 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9802 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9805 * This is a list of pointers to log blocks that are still present
9806 * on the device.
9808 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9809 offsetof(l2arc_lb_ptr_buf_t, node));
9811 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
9812 zfs_refcount_create(&adddev->l2ad_alloc);
9813 zfs_refcount_create(&adddev->l2ad_lb_asize);
9814 zfs_refcount_create(&adddev->l2ad_lb_count);
9817 * Decide if dev is eligible for L2ARC rebuild or whole device
9818 * trimming. This has to happen before the device is added in the
9819 * cache device list and l2arc_dev_mtx is released. Otherwise
9820 * l2arc_feed_thread() might already start writing on the
9821 * device.
9823 l2arc_rebuild_dev(adddev, B_FALSE);
9826 * Add device to global list
9828 mutex_enter(&l2arc_dev_mtx);
9829 list_insert_head(l2arc_dev_list, adddev);
9830 atomic_inc_64(&l2arc_ndev);
9831 mutex_exit(&l2arc_dev_mtx);
9835 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9836 * in case of onlining a cache device.
9838 void
9839 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9841 l2arc_dev_t *dev = NULL;
9843 dev = l2arc_vdev_get(vd);
9844 ASSERT3P(dev, !=, NULL);
9847 * In contrast to l2arc_add_vdev() we do not have to worry about
9848 * l2arc_feed_thread() invalidating previous content when onlining a
9849 * cache device. The device parameters (l2ad*) are not cleared when
9850 * offlining the device and writing new buffers will not invalidate
9851 * all previous content. In worst case only buffers that have not had
9852 * their log block written to the device will be lost.
9853 * When onlining the cache device (ie offline->online without exporting
9854 * the pool in between) this happens:
9855 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9856 * | |
9857 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
9858 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9859 * is set to B_TRUE we might write additional buffers to the device.
9861 l2arc_rebuild_dev(dev, reopen);
9864 typedef struct {
9865 l2arc_dev_t *rva_l2arc_dev;
9866 uint64_t rva_spa_gid;
9867 uint64_t rva_vdev_gid;
9868 boolean_t rva_async;
9870 } remove_vdev_args_t;
9872 static void
9873 l2arc_device_teardown(void *arg)
9875 remove_vdev_args_t *rva = arg;
9876 l2arc_dev_t *remdev = rva->rva_l2arc_dev;
9877 hrtime_t start_time = gethrtime();
9880 * Clear all buflists and ARC references. L2ARC device flush.
9882 l2arc_evict(remdev, 0, B_TRUE);
9883 list_destroy(&remdev->l2ad_buflist);
9884 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9885 list_destroy(&remdev->l2ad_lbptr_list);
9886 mutex_destroy(&remdev->l2ad_mtx);
9887 zfs_refcount_destroy(&remdev->l2ad_alloc);
9888 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9889 zfs_refcount_destroy(&remdev->l2ad_lb_count);
9890 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9891 vmem_free(remdev, sizeof (l2arc_dev_t));
9893 uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
9894 if (elaspsed > 0) {
9895 zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms",
9896 (u_longlong_t)rva->rva_spa_gid,
9897 (u_longlong_t)rva->rva_vdev_gid,
9898 (u_longlong_t)elaspsed);
9901 if (rva->rva_async)
9902 arc_async_flush_remove(rva->rva_spa_gid, 2);
9903 kmem_free(rva, sizeof (remove_vdev_args_t));
9907 * Remove a vdev from the L2ARC.
9909 void
9910 l2arc_remove_vdev(vdev_t *vd)
9912 spa_t *spa = vd->vdev_spa;
9913 boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED ||
9914 spa->spa_state == POOL_STATE_DESTROYED;
9917 * Find the device by vdev
9919 l2arc_dev_t *remdev = l2arc_vdev_get(vd);
9920 ASSERT3P(remdev, !=, NULL);
9923 * Save info for final teardown
9925 remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t),
9926 KM_SLEEP);
9927 rva->rva_l2arc_dev = remdev;
9928 rva->rva_spa_gid = spa_load_guid(spa);
9929 rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid;
9932 * Cancel any ongoing or scheduled rebuild.
9934 mutex_enter(&l2arc_rebuild_thr_lock);
9935 remdev->l2ad_rebuild_cancel = B_TRUE;
9936 if (remdev->l2ad_rebuild_began == B_TRUE) {
9937 while (remdev->l2ad_rebuild == B_TRUE)
9938 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9940 mutex_exit(&l2arc_rebuild_thr_lock);
9941 rva->rva_async = asynchronous;
9944 * Remove device from global list
9946 ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC);
9947 mutex_enter(&l2arc_dev_mtx);
9948 list_remove(l2arc_dev_list, remdev);
9949 l2arc_dev_last = NULL; /* may have been invalidated */
9950 atomic_dec_64(&l2arc_ndev);
9952 /* During a pool export spa & vdev will no longer be valid */
9953 if (asynchronous) {
9954 remdev->l2ad_spa = NULL;
9955 remdev->l2ad_vdev = NULL;
9957 mutex_exit(&l2arc_dev_mtx);
9959 if (!asynchronous) {
9960 l2arc_device_teardown(rva);
9961 return;
9964 arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2);
9966 taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva,
9967 TQ_SLEEP, &af->af_tqent);
9970 void
9971 l2arc_init(void)
9973 l2arc_thread_exit = 0;
9974 l2arc_ndev = 0;
9976 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9977 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9978 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9979 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
9980 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
9981 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9983 l2arc_dev_list = &L2ARC_dev_list;
9984 l2arc_free_on_write = &L2ARC_free_on_write;
9985 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9986 offsetof(l2arc_dev_t, l2ad_node));
9987 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9988 offsetof(l2arc_data_free_t, l2df_list_node));
9991 void
9992 l2arc_fini(void)
9994 mutex_destroy(&l2arc_feed_thr_lock);
9995 cv_destroy(&l2arc_feed_thr_cv);
9996 mutex_destroy(&l2arc_rebuild_thr_lock);
9997 cv_destroy(&l2arc_rebuild_thr_cv);
9998 mutex_destroy(&l2arc_dev_mtx);
9999 mutex_destroy(&l2arc_free_on_write_mtx);
10001 list_destroy(l2arc_dev_list);
10002 list_destroy(l2arc_free_on_write);
10005 void
10006 l2arc_start(void)
10008 if (!(spa_mode_global & SPA_MODE_WRITE))
10009 return;
10011 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10012 TS_RUN, defclsyspri);
10015 void
10016 l2arc_stop(void)
10018 if (!(spa_mode_global & SPA_MODE_WRITE))
10019 return;
10021 mutex_enter(&l2arc_feed_thr_lock);
10022 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10023 l2arc_thread_exit = 1;
10024 while (l2arc_thread_exit != 0)
10025 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10026 mutex_exit(&l2arc_feed_thr_lock);
10030 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10031 * be called after pool import from the spa async thread, since starting
10032 * these threads directly from spa_import() will make them part of the
10033 * "zpool import" context and delay process exit (and thus pool import).
10035 void
10036 l2arc_spa_rebuild_start(spa_t *spa)
10038 ASSERT(MUTEX_HELD(&spa_namespace_lock));
10041 * Locate the spa's l2arc devices and kick off rebuild threads.
10043 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10044 l2arc_dev_t *dev =
10045 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10046 if (dev == NULL) {
10047 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10048 continue;
10050 mutex_enter(&l2arc_rebuild_thr_lock);
10051 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10052 dev->l2ad_rebuild_began = B_TRUE;
10053 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10054 dev, 0, &p0, TS_RUN, minclsyspri);
10056 mutex_exit(&l2arc_rebuild_thr_lock);
10060 void
10061 l2arc_spa_rebuild_stop(spa_t *spa)
10063 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
10064 spa->spa_export_thread == curthread);
10066 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10067 l2arc_dev_t *dev =
10068 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10069 if (dev == NULL)
10070 continue;
10071 mutex_enter(&l2arc_rebuild_thr_lock);
10072 dev->l2ad_rebuild_cancel = B_TRUE;
10073 mutex_exit(&l2arc_rebuild_thr_lock);
10075 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10076 l2arc_dev_t *dev =
10077 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10078 if (dev == NULL)
10079 continue;
10080 mutex_enter(&l2arc_rebuild_thr_lock);
10081 if (dev->l2ad_rebuild_began == B_TRUE) {
10082 while (dev->l2ad_rebuild == B_TRUE) {
10083 cv_wait(&l2arc_rebuild_thr_cv,
10084 &l2arc_rebuild_thr_lock);
10087 mutex_exit(&l2arc_rebuild_thr_lock);
10092 * Main entry point for L2ARC rebuilding.
10094 static __attribute__((noreturn)) void
10095 l2arc_dev_rebuild_thread(void *arg)
10097 l2arc_dev_t *dev = arg;
10099 VERIFY(dev->l2ad_rebuild);
10100 (void) l2arc_rebuild(dev);
10101 mutex_enter(&l2arc_rebuild_thr_lock);
10102 dev->l2ad_rebuild_began = B_FALSE;
10103 dev->l2ad_rebuild = B_FALSE;
10104 cv_signal(&l2arc_rebuild_thr_cv);
10105 mutex_exit(&l2arc_rebuild_thr_lock);
10107 thread_exit();
10111 * This function implements the actual L2ARC metadata rebuild. It:
10112 * starts reading the log block chain and restores each block's contents
10113 * to memory (reconstructing arc_buf_hdr_t's).
10115 * Operation stops under any of the following conditions:
10117 * 1) We reach the end of the log block chain.
10118 * 2) We encounter *any* error condition (cksum errors, io errors)
10120 static int
10121 l2arc_rebuild(l2arc_dev_t *dev)
10123 vdev_t *vd = dev->l2ad_vdev;
10124 spa_t *spa = vd->vdev_spa;
10125 int err = 0;
10126 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10127 l2arc_log_blk_phys_t *this_lb, *next_lb;
10128 zio_t *this_io = NULL, *next_io = NULL;
10129 l2arc_log_blkptr_t lbps[2];
10130 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10131 boolean_t lock_held;
10133 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10134 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10137 * We prevent device removal while issuing reads to the device,
10138 * then during the rebuilding phases we drop this lock again so
10139 * that a spa_unload or device remove can be initiated - this is
10140 * safe, because the spa will signal us to stop before removing
10141 * our device and wait for us to stop.
10143 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10144 lock_held = B_TRUE;
10147 * Retrieve the persistent L2ARC device state.
10148 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10150 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10151 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10152 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10153 dev->l2ad_start);
10154 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10156 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10157 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10160 * In case the zfs module parameter l2arc_rebuild_enabled is false
10161 * we do not start the rebuild process.
10163 if (!l2arc_rebuild_enabled)
10164 goto out;
10166 /* Prepare the rebuild process */
10167 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10169 /* Start the rebuild process */
10170 for (;;) {
10171 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10172 break;
10174 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10175 this_lb, next_lb, this_io, &next_io)) != 0)
10176 goto out;
10179 * Our memory pressure valve. If the system is running low
10180 * on memory, rather than swamping memory with new ARC buf
10181 * hdrs, we opt not to rebuild the L2ARC. At this point,
10182 * however, we have already set up our L2ARC dev to chain in
10183 * new metadata log blocks, so the user may choose to offline/
10184 * online the L2ARC dev at a later time (or re-import the pool)
10185 * to reconstruct it (when there's less memory pressure).
10187 if (l2arc_hdr_limit_reached()) {
10188 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10189 cmn_err(CE_NOTE, "System running low on memory, "
10190 "aborting L2ARC rebuild.");
10191 err = SET_ERROR(ENOMEM);
10192 goto out;
10195 spa_config_exit(spa, SCL_L2ARC, vd);
10196 lock_held = B_FALSE;
10199 * Now that we know that the next_lb checks out alright, we
10200 * can start reconstruction from this log block.
10201 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10203 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10204 l2arc_log_blk_restore(dev, this_lb, asize);
10207 * log block restored, include its pointer in the list of
10208 * pointers to log blocks present in the L2ARC device.
10210 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10211 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10212 KM_SLEEP);
10213 memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10214 sizeof (l2arc_log_blkptr_t));
10215 mutex_enter(&dev->l2ad_mtx);
10216 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10217 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10218 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10219 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10220 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10221 mutex_exit(&dev->l2ad_mtx);
10222 vdev_space_update(vd, asize, 0, 0);
10225 * Protection against loops of log blocks:
10227 * l2ad_hand l2ad_evict
10228 * V V
10229 * l2ad_start |=======================================| l2ad_end
10230 * -----|||----|||---|||----|||
10231 * (3) (2) (1) (0)
10232 * ---|||---|||----|||---|||
10233 * (7) (6) (5) (4)
10235 * In this situation the pointer of log block (4) passes
10236 * l2arc_log_blkptr_valid() but the log block should not be
10237 * restored as it is overwritten by the payload of log block
10238 * (0). Only log blocks (0)-(3) should be restored. We check
10239 * whether l2ad_evict lies in between the payload starting
10240 * offset of the next log block (lbps[1].lbp_payload_start)
10241 * and the payload starting offset of the present log block
10242 * (lbps[0].lbp_payload_start). If true and this isn't the
10243 * first pass, we are looping from the beginning and we should
10244 * stop.
10246 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10247 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10248 !dev->l2ad_first)
10249 goto out;
10251 kpreempt(KPREEMPT_SYNC);
10252 for (;;) {
10253 mutex_enter(&l2arc_rebuild_thr_lock);
10254 if (dev->l2ad_rebuild_cancel) {
10255 mutex_exit(&l2arc_rebuild_thr_lock);
10256 err = SET_ERROR(ECANCELED);
10257 goto out;
10259 mutex_exit(&l2arc_rebuild_thr_lock);
10260 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10261 RW_READER)) {
10262 lock_held = B_TRUE;
10263 break;
10266 * L2ARC config lock held by somebody in writer,
10267 * possibly due to them trying to remove us. They'll
10268 * likely to want us to shut down, so after a little
10269 * delay, we check l2ad_rebuild_cancel and retry
10270 * the lock again.
10272 delay(1);
10276 * Continue with the next log block.
10278 lbps[0] = lbps[1];
10279 lbps[1] = this_lb->lb_prev_lbp;
10280 PTR_SWAP(this_lb, next_lb);
10281 this_io = next_io;
10282 next_io = NULL;
10285 if (this_io != NULL)
10286 l2arc_log_blk_fetch_abort(this_io);
10287 out:
10288 if (next_io != NULL)
10289 l2arc_log_blk_fetch_abort(next_io);
10290 vmem_free(this_lb, sizeof (*this_lb));
10291 vmem_free(next_lb, sizeof (*next_lb));
10293 if (err == ECANCELED) {
10295 * In case the rebuild was canceled do not log to spa history
10296 * log as the pool may be in the process of being removed.
10298 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10299 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10300 return (err);
10301 } else if (!l2arc_rebuild_enabled) {
10302 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10303 "disabled");
10304 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10305 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10306 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10307 "successful, restored %llu blocks",
10308 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10309 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10311 * No error but also nothing restored, meaning the lbps array
10312 * in the device header points to invalid/non-present log
10313 * blocks. Reset the header.
10315 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10316 "no valid log blocks");
10317 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10318 l2arc_dev_hdr_update(dev);
10319 } else if (err != 0) {
10320 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10321 "aborted, restored %llu blocks",
10322 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10325 if (lock_held)
10326 spa_config_exit(spa, SCL_L2ARC, vd);
10328 return (err);
10332 * Attempts to read the device header on the provided L2ARC device and writes
10333 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10334 * error code is returned.
10336 static int
10337 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10339 int err;
10340 uint64_t guid;
10341 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10342 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10343 abd_t *abd;
10345 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10347 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10349 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10350 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10351 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10352 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10353 ZIO_FLAG_SPECULATIVE, B_FALSE));
10355 abd_free(abd);
10357 if (err != 0) {
10358 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10359 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10360 "vdev guid: %llu", err,
10361 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10362 return (err);
10365 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10366 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10368 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10369 l2dhdr->dh_spa_guid != guid ||
10370 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10371 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10372 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10373 l2dhdr->dh_end != dev->l2ad_end ||
10374 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10375 l2dhdr->dh_evict) ||
10376 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10377 l2arc_trim_ahead > 0)) {
10379 * Attempt to rebuild a device containing no actual dev hdr
10380 * or containing a header from some other pool or from another
10381 * version of persistent L2ARC.
10383 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10384 return (SET_ERROR(ENOTSUP));
10387 return (0);
10391 * Reads L2ARC log blocks from storage and validates their contents.
10393 * This function implements a simple fetcher to make sure that while
10394 * we're processing one buffer the L2ARC is already fetching the next
10395 * one in the chain.
10397 * The arguments this_lp and next_lp point to the current and next log block
10398 * address in the block chain. Similarly, this_lb and next_lb hold the
10399 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10401 * The `this_io' and `next_io' arguments are used for block fetching.
10402 * When issuing the first blk IO during rebuild, you should pass NULL for
10403 * `this_io'. This function will then issue a sync IO to read the block and
10404 * also issue an async IO to fetch the next block in the block chain. The
10405 * fetched IO is returned in `next_io'. On subsequent calls to this
10406 * function, pass the value returned in `next_io' from the previous call
10407 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10408 * Prior to the call, you should initialize your `next_io' pointer to be
10409 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10411 * On success, this function returns 0, otherwise it returns an appropriate
10412 * error code. On error the fetching IO is aborted and cleared before
10413 * returning from this function. Therefore, if we return `success', the
10414 * caller can assume that we have taken care of cleanup of fetch IOs.
10416 static int
10417 l2arc_log_blk_read(l2arc_dev_t *dev,
10418 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10419 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10420 zio_t *this_io, zio_t **next_io)
10422 int err = 0;
10423 zio_cksum_t cksum;
10424 uint64_t asize;
10426 ASSERT(this_lbp != NULL && next_lbp != NULL);
10427 ASSERT(this_lb != NULL && next_lb != NULL);
10428 ASSERT(next_io != NULL && *next_io == NULL);
10429 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10432 * Check to see if we have issued the IO for this log block in a
10433 * previous run. If not, this is the first call, so issue it now.
10435 if (this_io == NULL) {
10436 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10437 this_lb);
10441 * Peek to see if we can start issuing the next IO immediately.
10443 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10445 * Start issuing IO for the next log block early - this
10446 * should help keep the L2ARC device busy while we
10447 * decompress and restore this log block.
10449 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10450 next_lb);
10453 /* Wait for the IO to read this log block to complete */
10454 if ((err = zio_wait(this_io)) != 0) {
10455 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10456 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10457 "offset: %llu, vdev guid: %llu", err,
10458 (u_longlong_t)this_lbp->lbp_daddr,
10459 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10460 goto cleanup;
10464 * Make sure the buffer checks out.
10465 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10467 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10468 fletcher_4_native(this_lb, asize, NULL, &cksum);
10469 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10470 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10471 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10472 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10473 (u_longlong_t)this_lbp->lbp_daddr,
10474 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10475 (u_longlong_t)dev->l2ad_hand,
10476 (u_longlong_t)dev->l2ad_evict);
10477 err = SET_ERROR(ECKSUM);
10478 goto cleanup;
10481 /* Now we can take our time decoding this buffer */
10482 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10483 case ZIO_COMPRESS_OFF:
10484 break;
10485 case ZIO_COMPRESS_LZ4: {
10486 abd_t *abd = abd_alloc_linear(asize, B_TRUE);
10487 abd_copy_from_buf_off(abd, this_lb, 0, asize);
10488 abd_t dabd;
10489 abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
10490 err = zio_decompress_data(
10491 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10492 abd, &dabd, asize, sizeof (*this_lb), NULL);
10493 abd_free(&dabd);
10494 abd_free(abd);
10495 if (err != 0) {
10496 err = SET_ERROR(EINVAL);
10497 goto cleanup;
10499 break;
10501 default:
10502 err = SET_ERROR(EINVAL);
10503 goto cleanup;
10505 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10506 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10507 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10508 err = SET_ERROR(EINVAL);
10509 goto cleanup;
10511 cleanup:
10512 /* Abort an in-flight fetch I/O in case of error */
10513 if (err != 0 && *next_io != NULL) {
10514 l2arc_log_blk_fetch_abort(*next_io);
10515 *next_io = NULL;
10517 return (err);
10521 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10522 * entries which only contain an l2arc hdr, essentially restoring the
10523 * buffers to their L2ARC evicted state. This function also updates space
10524 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10526 static void
10527 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10528 uint64_t lb_asize)
10530 uint64_t size = 0, asize = 0;
10531 uint64_t log_entries = dev->l2ad_log_entries;
10534 * Usually arc_adapt() is called only for data, not headers, but
10535 * since we may allocate significant amount of memory here, let ARC
10536 * grow its arc_c.
10538 arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10540 for (int i = log_entries - 1; i >= 0; i--) {
10542 * Restore goes in the reverse temporal direction to preserve
10543 * correct temporal ordering of buffers in the l2ad_buflist.
10544 * l2arc_hdr_restore also does a list_insert_tail instead of
10545 * list_insert_head on the l2ad_buflist:
10547 * LIST l2ad_buflist LIST
10548 * HEAD <------ (time) ------ TAIL
10549 * direction +-----+-----+-----+-----+-----+ direction
10550 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10551 * fill +-----+-----+-----+-----+-----+
10552 * ^ ^
10553 * | |
10554 * | |
10555 * l2arc_feed_thread l2arc_rebuild
10556 * will place new bufs here restores bufs here
10558 * During l2arc_rebuild() the device is not used by
10559 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10561 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10562 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10563 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10564 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10568 * Record rebuild stats:
10569 * size Logical size of restored buffers in the L2ARC
10570 * asize Aligned size of restored buffers in the L2ARC
10572 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10573 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10574 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10575 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10576 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10577 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10581 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10582 * into a state indicating that it has been evicted to L2ARC.
10584 static void
10585 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10587 arc_buf_hdr_t *hdr, *exists;
10588 kmutex_t *hash_lock;
10589 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10590 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
10591 L2BLK_GET_PSIZE((le)->le_prop));
10594 * Do all the allocation before grabbing any locks, this lets us
10595 * sleep if memory is full and we don't have to deal with failed
10596 * allocations.
10598 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10599 dev, le->le_dva, le->le_daddr,
10600 L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth,
10601 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10602 L2BLK_GET_PROTECTED((le)->le_prop),
10603 L2BLK_GET_PREFETCH((le)->le_prop),
10604 L2BLK_GET_STATE((le)->le_prop));
10607 * vdev_space_update() has to be called before arc_hdr_destroy() to
10608 * avoid underflow since the latter also calls vdev_space_update().
10610 l2arc_hdr_arcstats_increment(hdr);
10611 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10613 mutex_enter(&dev->l2ad_mtx);
10614 list_insert_tail(&dev->l2ad_buflist, hdr);
10615 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10616 mutex_exit(&dev->l2ad_mtx);
10618 exists = buf_hash_insert(hdr, &hash_lock);
10619 if (exists) {
10620 /* Buffer was already cached, no need to restore it. */
10621 arc_hdr_destroy(hdr);
10623 * If the buffer is already cached, check whether it has
10624 * L2ARC metadata. If not, enter them and update the flag.
10625 * This is important is case of onlining a cache device, since
10626 * we previously evicted all L2ARC metadata from ARC.
10628 if (!HDR_HAS_L2HDR(exists)) {
10629 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10630 exists->b_l2hdr.b_dev = dev;
10631 exists->b_l2hdr.b_daddr = le->le_daddr;
10632 exists->b_l2hdr.b_arcs_state =
10633 L2BLK_GET_STATE((le)->le_prop);
10634 /* l2arc_hdr_arcstats_update() expects a valid asize */
10635 HDR_SET_L2SIZE(exists, asize);
10636 mutex_enter(&dev->l2ad_mtx);
10637 list_insert_tail(&dev->l2ad_buflist, exists);
10638 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10639 arc_hdr_size(exists), exists);
10640 mutex_exit(&dev->l2ad_mtx);
10641 l2arc_hdr_arcstats_increment(exists);
10642 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10644 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10647 mutex_exit(hash_lock);
10651 * Starts an asynchronous read IO to read a log block. This is used in log
10652 * block reconstruction to start reading the next block before we are done
10653 * decoding and reconstructing the current block, to keep the l2arc device
10654 * nice and hot with read IO to process.
10655 * The returned zio will contain a newly allocated memory buffers for the IO
10656 * data which should then be freed by the caller once the zio is no longer
10657 * needed (i.e. due to it having completed). If you wish to abort this
10658 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10659 * care of disposing of the allocated buffers correctly.
10661 static zio_t *
10662 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10663 l2arc_log_blk_phys_t *lb)
10665 uint32_t asize;
10666 zio_t *pio;
10667 l2arc_read_callback_t *cb;
10669 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10670 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10671 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10673 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10674 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10675 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10676 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10677 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10678 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10679 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10680 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10682 return (pio);
10686 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10687 * buffers allocated for it.
10689 static void
10690 l2arc_log_blk_fetch_abort(zio_t *zio)
10692 (void) zio_wait(zio);
10696 * Creates a zio to update the device header on an l2arc device.
10698 void
10699 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10701 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10702 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10703 abd_t *abd;
10704 int err;
10706 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10708 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10709 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10710 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10711 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10712 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10713 l2dhdr->dh_evict = dev->l2ad_evict;
10714 l2dhdr->dh_start = dev->l2ad_start;
10715 l2dhdr->dh_end = dev->l2ad_end;
10716 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10717 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10718 l2dhdr->dh_flags = 0;
10719 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10720 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10721 if (dev->l2ad_first)
10722 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10724 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10726 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10727 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10728 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10730 abd_free(abd);
10732 if (err != 0) {
10733 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10734 "vdev guid: %llu", err,
10735 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10740 * Commits a log block to the L2ARC device. This routine is invoked from
10741 * l2arc_write_buffers when the log block fills up.
10742 * This function allocates some memory to temporarily hold the serialized
10743 * buffer to be written. This is then released in l2arc_write_done.
10745 static uint64_t
10746 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10748 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10749 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10750 uint64_t psize, asize;
10751 zio_t *wzio;
10752 l2arc_lb_abd_buf_t *abd_buf;
10753 abd_t *abd = NULL;
10754 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10756 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10758 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10759 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10760 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10761 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10763 /* link the buffer into the block chain */
10764 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10765 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10768 * l2arc_log_blk_commit() may be called multiple times during a single
10769 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10770 * so we can free them in l2arc_write_done() later on.
10772 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10774 /* try to compress the buffer, at least one sector to save */
10775 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10776 abd_buf->abd, &abd, sizeof (*lb),
10777 zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
10778 dev->l2ad_vdev->vdev_ashift,
10779 dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);
10781 /* a log block is never entirely zero */
10782 ASSERT(psize != 0);
10783 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10784 ASSERT(asize <= sizeof (*lb));
10787 * Update the start log block pointer in the device header to point
10788 * to the log block we're about to write.
10790 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10791 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10792 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10793 dev->l2ad_log_blk_payload_asize;
10794 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10795 dev->l2ad_log_blk_payload_start;
10796 L2BLK_SET_LSIZE(
10797 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10798 L2BLK_SET_PSIZE(
10799 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10800 L2BLK_SET_CHECKSUM(
10801 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10802 ZIO_CHECKSUM_FLETCHER_4);
10803 if (asize < sizeof (*lb)) {
10804 /* compression succeeded */
10805 abd_zero_off(abd, psize, asize - psize);
10806 L2BLK_SET_COMPRESS(
10807 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10808 ZIO_COMPRESS_LZ4);
10809 } else {
10810 /* compression failed */
10811 abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
10812 L2BLK_SET_COMPRESS(
10813 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10814 ZIO_COMPRESS_OFF);
10817 /* checksum what we're about to write */
10818 abd_fletcher_4_native(abd, asize, NULL,
10819 &l2dhdr->dh_start_lbps[0].lbp_cksum);
10821 abd_free(abd_buf->abd);
10823 /* perform the write itself */
10824 abd_buf->abd = abd;
10825 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10826 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10827 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10828 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10829 (void) zio_nowait(wzio);
10831 dev->l2ad_hand += asize;
10832 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10835 * Include the committed log block's pointer in the list of pointers
10836 * to log blocks present in the L2ARC device.
10838 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10839 sizeof (l2arc_log_blkptr_t));
10840 mutex_enter(&dev->l2ad_mtx);
10841 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10842 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10843 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10844 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10845 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10846 mutex_exit(&dev->l2ad_mtx);
10848 /* bump the kstats */
10849 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10850 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10851 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10852 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10853 dev->l2ad_log_blk_payload_asize / asize);
10855 /* start a new log block */
10856 dev->l2ad_log_ent_idx = 0;
10857 dev->l2ad_log_blk_payload_asize = 0;
10858 dev->l2ad_log_blk_payload_start = 0;
10860 return (asize);
10864 * Validates an L2ARC log block address to make sure that it can be read
10865 * from the provided L2ARC device.
10867 boolean_t
10868 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10870 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10871 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10872 uint64_t end = lbp->lbp_daddr + asize - 1;
10873 uint64_t start = lbp->lbp_payload_start;
10874 boolean_t evicted = B_FALSE;
10877 * A log block is valid if all of the following conditions are true:
10878 * - it fits entirely (including its payload) between l2ad_start and
10879 * l2ad_end
10880 * - it has a valid size
10881 * - neither the log block itself nor part of its payload was evicted
10882 * by l2arc_evict():
10884 * l2ad_hand l2ad_evict
10885 * | | lbp_daddr
10886 * | start | | end
10887 * | | | | |
10888 * V V V V V
10889 * l2ad_start ============================================ l2ad_end
10890 * --------------------------||||
10891 * ^ ^
10892 * | log block
10893 * payload
10896 evicted =
10897 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10898 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10899 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10900 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10902 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
10903 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
10904 (!evicted || dev->l2ad_first));
10908 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10909 * the device. The buffer being inserted must be present in L2ARC.
10910 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10911 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10913 static boolean_t
10914 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10916 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10917 l2arc_log_ent_phys_t *le;
10919 if (dev->l2ad_log_entries == 0)
10920 return (B_FALSE);
10922 int index = dev->l2ad_log_ent_idx++;
10924 ASSERT3S(index, <, dev->l2ad_log_entries);
10925 ASSERT(HDR_HAS_L2HDR(hdr));
10927 le = &lb->lb_entries[index];
10928 memset(le, 0, sizeof (*le));
10929 le->le_dva = hdr->b_dva;
10930 le->le_birth = hdr->b_birth;
10931 le->le_daddr = hdr->b_l2hdr.b_daddr;
10932 if (index == 0)
10933 dev->l2ad_log_blk_payload_start = le->le_daddr;
10934 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10935 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10936 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10937 le->le_complevel = hdr->b_complevel;
10938 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10939 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10940 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
10941 L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
10943 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10944 HDR_GET_PSIZE(hdr));
10946 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
10950 * Checks whether a given L2ARC device address sits in a time-sequential
10951 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10952 * just do a range comparison, we need to handle the situation in which the
10953 * range wraps around the end of the L2ARC device. Arguments:
10954 * bottom -- Lower end of the range to check (written to earlier).
10955 * top -- Upper end of the range to check (written to later).
10956 * check -- The address for which we want to determine if it sits in
10957 * between the top and bottom.
10959 * The 3-way conditional below represents the following cases:
10961 * bottom < top : Sequentially ordered case:
10962 * <check>--------+-------------------+
10963 * | (overlap here?) |
10964 * L2ARC dev V V
10965 * |---------------<bottom>============<top>--------------|
10967 * bottom > top: Looped-around case:
10968 * <check>--------+------------------+
10969 * | (overlap here?) |
10970 * L2ARC dev V V
10971 * |===============<top>---------------<bottom>===========|
10972 * ^ ^
10973 * | (or here?) |
10974 * +---------------+---------<check>
10976 * top == bottom : Just a single address comparison.
10978 boolean_t
10979 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10981 if (bottom < top)
10982 return (bottom <= check && check <= top);
10983 else if (bottom > top)
10984 return (check <= top || bottom <= check);
10985 else
10986 return (check == top);
10989 EXPORT_SYMBOL(arc_buf_size);
10990 EXPORT_SYMBOL(arc_write);
10991 EXPORT_SYMBOL(arc_read);
10992 EXPORT_SYMBOL(arc_buf_info);
10993 EXPORT_SYMBOL(arc_getbuf_func);
10994 EXPORT_SYMBOL(arc_add_prune_callback);
10995 EXPORT_SYMBOL(arc_remove_prune_callback);
10997 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
10998 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
11000 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11001 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
11003 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
11004 "Balance between metadata and data on ghost hits.");
11006 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11007 param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
11009 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11010 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
11012 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11013 "Percent of pagecache to reclaim ARC to");
11015 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
11016 "Target average block size");
11018 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11019 "Disable compressed ARC buffers");
11021 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11022 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
11024 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11025 param_set_arc_int, param_get_uint, ZMOD_RW,
11026 "Min life of prescient prefetched block in ms");
11028 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
11029 "Max write bytes per interval");
11031 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
11032 "Extra write bytes during device warmup");
11034 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
11035 "Number of max device writes to precache");
11037 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
11038 "Compressed l2arc_headroom multiplier");
11040 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
11041 "TRIM ahead L2ARC write size multiplier");
11043 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
11044 "Seconds between L2ARC writing");
11046 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
11047 "Min feed interval in milliseconds");
11049 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11050 "Skip caching prefetched buffers");
11052 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11053 "Turbo L2ARC warmup");
11055 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11056 "No reads during writes");
11058 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
11059 "Percent of ARC size allowed for L2ARC-only headers");
11061 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11062 "Rebuild the L2ARC when importing a pool");
11064 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
11065 "Min size in bytes to write rebuild log blocks in L2ARC");
11067 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11068 "Cache only MFU data from ARC into L2ARC");
11070 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11071 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11073 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11074 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
11076 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
11077 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
11079 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
11080 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
11082 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11083 param_set_arc_int, param_get_uint, ZMOD_RW,
11084 "Percent of ARC meta buffers for dnodes");
11086 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
11087 "Percentage of excess dnodes to try to unpin");
11089 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
11090 "When full, ARC allocation waits for eviction of this % of alloc size");
11092 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
11093 "The number of headers to evict per sublist before moving to the next");
11095 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11096 "Number of arc_prune threads");