During pool export flush the ARC asynchronously
[zfs.git] / module / zfs / dsl_pool.c
blob39f97d7547c6a5cb4de80152bdd7d9445281a7e4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/mmp.h>
55 * ZFS Write Throttle
56 * ------------------
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
75 * Implementation
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
93 * The delay is also calculated based on the amount of dirty data. See the
94 * comment above dmu_tx_delay() for details.
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
100 * parameter.
102 uint64_t zfs_dirty_data_max = 0;
103 uint64_t zfs_dirty_data_max_max = 0;
104 uint_t zfs_dirty_data_max_percent = 10;
105 uint_t zfs_dirty_data_max_max_percent = 25;
108 * The upper limit of TX_WRITE log data. Write operations are throttled
109 * when approaching the limit until log data is cleared out after txg sync.
110 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
112 uint64_t zfs_wrlog_data_max = 0;
115 * If there's at least this much dirty data (as a percentage of
116 * zfs_dirty_data_max), push out a txg. This should be less than
117 * zfs_vdev_async_write_active_min_dirty_percent.
119 static uint_t zfs_dirty_data_sync_percent = 20;
122 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
123 * and delay each transaction.
124 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
126 uint_t zfs_delay_min_dirty_percent = 60;
129 * This controls how quickly the delay approaches infinity.
130 * Larger values cause it to delay more for a given amount of dirty data.
131 * Therefore larger values will cause there to be less dirty data for a
132 * given throughput.
134 * For the smoothest delay, this value should be about 1 billion divided
135 * by the maximum number of operations per second. This will smoothly
136 * handle between 10x and 1/10th this number.
138 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
139 * multiply in dmu_tx_delay().
141 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
144 * These tunables determine the behavior of how zil_itxg_clean() is
145 * called via zil_clean() in the context of spa_sync(). When an itxg
146 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
147 * If the dispatch fails, the call to zil_itxg_clean() will occur
148 * synchronously in the context of spa_sync(), which can negatively
149 * impact the performance of spa_sync() (e.g. in the case of the itxg
150 * list having a large number of itxs that needs to be cleaned).
152 * Thus, these tunables can be used to manipulate the behavior of the
153 * taskq used by zil_clean(); they determine the number of taskq entries
154 * that are pre-populated when the taskq is first created (via the
155 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
156 * taskq entries that are cached after an on-demand allocation (via the
157 * "zfs_zil_clean_taskq_maxalloc").
159 * The idea being, we want to try reasonably hard to ensure there will
160 * already be a taskq entry pre-allocated by the time that it is needed
161 * by zil_clean(). This way, we can avoid the possibility of an
162 * on-demand allocation of a new taskq entry from failing, which would
163 * result in zil_itxg_clean() being called synchronously from zil_clean()
164 * (which can adversely affect performance of spa_sync()).
166 * Additionally, the number of threads used by the taskq can be
167 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
169 static int zfs_zil_clean_taskq_nthr_pct = 100;
170 static int zfs_zil_clean_taskq_minalloc = 1024;
171 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
174 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
176 uint64_t obj;
177 int err;
179 err = zap_lookup(dp->dp_meta_objset,
180 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
181 name, sizeof (obj), 1, &obj);
182 if (err)
183 return (err);
185 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
188 static dsl_pool_t *
189 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
191 dsl_pool_t *dp;
192 blkptr_t *bp = spa_get_rootblkptr(spa);
194 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
195 dp->dp_spa = spa;
196 dp->dp_meta_rootbp = *bp;
197 rrw_init(&dp->dp_config_rwlock, B_TRUE);
198 txg_init(dp, txg);
199 mmp_init(spa);
201 txg_list_create(&dp->dp_dirty_datasets, spa,
202 offsetof(dsl_dataset_t, ds_dirty_link));
203 txg_list_create(&dp->dp_dirty_zilogs, spa,
204 offsetof(zilog_t, zl_dirty_link));
205 txg_list_create(&dp->dp_dirty_dirs, spa,
206 offsetof(dsl_dir_t, dd_dirty_link));
207 txg_list_create(&dp->dp_sync_tasks, spa,
208 offsetof(dsl_sync_task_t, dst_node));
209 txg_list_create(&dp->dp_early_sync_tasks, spa,
210 offsetof(dsl_sync_task_t, dst_node));
212 dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq");
214 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
215 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
216 zfs_zil_clean_taskq_minalloc,
217 zfs_zil_clean_taskq_maxalloc,
218 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
220 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
221 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
223 aggsum_init(&dp->dp_wrlog_total, 0);
224 for (int i = 0; i < TXG_SIZE; i++) {
225 aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
228 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
229 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
230 TASKQ_THREADS_CPU_PCT);
231 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
232 100, defclsyspri, boot_ncpus, INT_MAX,
233 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
235 return (dp);
239 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
241 int err;
242 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
245 * Initialize the caller's dsl_pool_t structure before we actually open
246 * the meta objset. This is done because a self-healing write zio may
247 * be issued as part of dmu_objset_open_impl() and the spa needs its
248 * dsl_pool_t initialized in order to handle the write.
250 *dpp = dp;
252 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
253 &dp->dp_meta_objset);
254 if (err != 0) {
255 dsl_pool_close(dp);
256 *dpp = NULL;
259 return (err);
263 dsl_pool_open(dsl_pool_t *dp)
265 int err;
266 dsl_dir_t *dd;
267 dsl_dataset_t *ds;
268 uint64_t obj;
270 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
271 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
273 &dp->dp_root_dir_obj);
274 if (err)
275 goto out;
277 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
278 NULL, dp, &dp->dp_root_dir);
279 if (err)
280 goto out;
282 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
283 if (err)
284 goto out;
286 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
287 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
288 if (err)
289 goto out;
290 err = dsl_dataset_hold_obj(dp,
291 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
292 if (err == 0) {
293 err = dsl_dataset_hold_obj(dp,
294 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
295 &dp->dp_origin_snap);
296 dsl_dataset_rele(ds, FTAG);
298 dsl_dir_rele(dd, dp);
299 if (err)
300 goto out;
303 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
304 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
305 &dp->dp_free_dir);
306 if (err)
307 goto out;
309 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
310 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
311 if (err)
312 goto out;
313 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
314 dp->dp_meta_objset, obj));
317 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
318 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
319 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
320 if (err == 0) {
321 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
322 dp->dp_meta_objset, obj));
323 } else if (err == ENOENT) {
325 * We might not have created the remap bpobj yet.
327 } else {
328 goto out;
333 * Note: errors ignored, because the these special dirs, used for
334 * space accounting, are only created on demand.
336 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
337 &dp->dp_leak_dir);
339 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
340 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
341 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
342 &dp->dp_bptree_obj);
343 if (err != 0)
344 goto out;
347 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
348 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
349 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
350 &dp->dp_empty_bpobj);
351 if (err != 0)
352 goto out;
355 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
356 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
357 &dp->dp_tmp_userrefs_obj);
358 if (err == ENOENT)
359 err = 0;
360 if (err)
361 goto out;
363 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
365 out:
366 rrw_exit(&dp->dp_config_rwlock, FTAG);
367 return (err);
370 void
371 dsl_pool_close(dsl_pool_t *dp)
374 * Drop our references from dsl_pool_open().
376 * Since we held the origin_snap from "syncing" context (which
377 * includes pool-opening context), it actually only got a "ref"
378 * and not a hold, so just drop that here.
380 if (dp->dp_origin_snap != NULL)
381 dsl_dataset_rele(dp->dp_origin_snap, dp);
382 if (dp->dp_mos_dir != NULL)
383 dsl_dir_rele(dp->dp_mos_dir, dp);
384 if (dp->dp_free_dir != NULL)
385 dsl_dir_rele(dp->dp_free_dir, dp);
386 if (dp->dp_leak_dir != NULL)
387 dsl_dir_rele(dp->dp_leak_dir, dp);
388 if (dp->dp_root_dir != NULL)
389 dsl_dir_rele(dp->dp_root_dir, dp);
391 bpobj_close(&dp->dp_free_bpobj);
392 bpobj_close(&dp->dp_obsolete_bpobj);
394 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
395 if (dp->dp_meta_objset != NULL)
396 dmu_objset_evict(dp->dp_meta_objset);
398 txg_list_destroy(&dp->dp_dirty_datasets);
399 txg_list_destroy(&dp->dp_dirty_zilogs);
400 txg_list_destroy(&dp->dp_sync_tasks);
401 txg_list_destroy(&dp->dp_early_sync_tasks);
402 txg_list_destroy(&dp->dp_dirty_dirs);
404 taskq_destroy(dp->dp_zil_clean_taskq);
405 spa_sync_tq_destroy(dp->dp_spa);
407 if (dp->dp_spa->spa_state == POOL_STATE_EXPORTED ||
408 dp->dp_spa->spa_state == POOL_STATE_DESTROYED) {
410 * On export/destroy perform the ARC flush asynchronously.
412 arc_flush_async(dp->dp_spa);
413 } else {
415 * We can't set retry to TRUE since we're explicitly specifying
416 * a spa to flush. This is good enough; any missed buffers for
417 * this spa won't cause trouble, and they'll eventually fall
418 * out of the ARC just like any other unused buffer.
420 arc_flush(dp->dp_spa, FALSE);
423 mmp_fini(dp->dp_spa);
424 txg_fini(dp);
425 dsl_scan_fini(dp);
426 dmu_buf_user_evict_wait();
428 rrw_destroy(&dp->dp_config_rwlock);
429 mutex_destroy(&dp->dp_lock);
430 cv_destroy(&dp->dp_spaceavail_cv);
432 ASSERT0(aggsum_value(&dp->dp_wrlog_total));
433 aggsum_fini(&dp->dp_wrlog_total);
434 for (int i = 0; i < TXG_SIZE; i++) {
435 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
436 aggsum_fini(&dp->dp_wrlog_pertxg[i]);
439 taskq_destroy(dp->dp_unlinked_drain_taskq);
440 taskq_destroy(dp->dp_zrele_taskq);
441 if (dp->dp_blkstats != NULL)
442 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
443 kmem_free(dp, sizeof (dsl_pool_t));
446 void
447 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
449 uint64_t obj;
451 * Currently, we only create the obsolete_bpobj where there are
452 * indirect vdevs with referenced mappings.
454 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
455 /* create and open the obsolete_bpobj */
456 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
457 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
458 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
459 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
460 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
463 void
464 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
466 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
467 VERIFY0(zap_remove(dp->dp_meta_objset,
468 DMU_POOL_DIRECTORY_OBJECT,
469 DMU_POOL_OBSOLETE_BPOBJ, tx));
470 bpobj_free(dp->dp_meta_objset,
471 dp->dp_obsolete_bpobj.bpo_object, tx);
472 bpobj_close(&dp->dp_obsolete_bpobj);
475 dsl_pool_t *
476 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
477 dsl_crypto_params_t *dcp, uint64_t txg)
479 int err;
480 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
481 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
482 #ifdef _KERNEL
483 objset_t *os;
484 #else
485 objset_t *os __attribute__((unused));
486 #endif
487 dsl_dataset_t *ds;
488 uint64_t obj;
490 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
492 /* create and open the MOS (meta-objset) */
493 dp->dp_meta_objset = dmu_objset_create_impl(spa,
494 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
495 spa->spa_meta_objset = dp->dp_meta_objset;
497 /* create the pool directory */
498 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
499 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
500 ASSERT0(err);
502 /* Initialize scan structures */
503 VERIFY0(dsl_scan_init(dp, txg));
505 /* create and open the root dir */
506 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
507 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
508 NULL, dp, &dp->dp_root_dir));
510 /* create and open the meta-objset dir */
511 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
512 VERIFY0(dsl_pool_open_special_dir(dp,
513 MOS_DIR_NAME, &dp->dp_mos_dir));
515 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
516 /* create and open the free dir */
517 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
518 FREE_DIR_NAME, tx);
519 VERIFY0(dsl_pool_open_special_dir(dp,
520 FREE_DIR_NAME, &dp->dp_free_dir));
522 /* create and open the free_bplist */
523 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
524 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
525 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
526 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
527 dp->dp_meta_objset, obj));
530 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
531 dsl_pool_create_origin(dp, tx);
534 * Some features may be needed when creating the root dataset, so we
535 * create the feature objects here.
537 if (spa_version(spa) >= SPA_VERSION_FEATURES)
538 spa_feature_create_zap_objects(spa, tx);
540 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
541 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
542 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
544 /* create the root dataset */
545 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
547 /* create the root objset */
548 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
549 DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
550 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
551 os = dmu_objset_create_impl(dp->dp_spa, ds,
552 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
553 rrw_exit(&ds->ds_bp_rwlock, FTAG);
554 #ifdef _KERNEL
555 zfs_create_fs(os, kcred, zplprops, tx);
556 #endif
557 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
559 dmu_tx_commit(tx);
561 rrw_exit(&dp->dp_config_rwlock, FTAG);
563 return (dp);
567 * Account for the meta-objset space in its placeholder dsl_dir.
569 void
570 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
571 int64_t used, int64_t comp, int64_t uncomp)
573 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
574 mutex_enter(&dp->dp_lock);
575 dp->dp_mos_used_delta += used;
576 dp->dp_mos_compressed_delta += comp;
577 dp->dp_mos_uncompressed_delta += uncomp;
578 mutex_exit(&dp->dp_lock);
581 static void
582 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
584 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
585 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
586 VERIFY0(zio_wait(zio));
587 dmu_objset_sync_done(dp->dp_meta_objset, tx);
588 taskq_wait(dp->dp_sync_taskq);
589 multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
591 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
592 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
595 static void
596 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
598 ASSERT(MUTEX_HELD(&dp->dp_lock));
600 if (delta < 0)
601 ASSERT3U(-delta, <=, dp->dp_dirty_total);
603 dp->dp_dirty_total += delta;
606 * Note: we signal even when increasing dp_dirty_total.
607 * This ensures forward progress -- each thread wakes the next waiter.
609 if (dp->dp_dirty_total < zfs_dirty_data_max)
610 cv_signal(&dp->dp_spaceavail_cv);
613 void
614 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
616 ASSERT3S(size, >=, 0);
618 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
619 aggsum_add(&dp->dp_wrlog_total, size);
621 /* Choose a value slightly bigger than min dirty sync bytes */
622 uint64_t sync_min =
623 zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
624 if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
625 txg_kick(dp, txg);
628 boolean_t
629 dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
631 uint64_t delay_min_bytes =
632 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
634 return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
637 static void
638 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
640 int64_t delta;
641 delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
642 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
643 aggsum_add(&dp->dp_wrlog_total, delta);
644 /* Compact per-CPU sums after the big change. */
645 (void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
646 (void) aggsum_value(&dp->dp_wrlog_total);
649 #ifdef ZFS_DEBUG
650 static boolean_t
651 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
653 spa_t *spa = dp->dp_spa;
654 vdev_t *rvd = spa->spa_root_vdev;
656 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
657 vdev_t *vd = rvd->vdev_child[c];
658 txg_list_t *tl = &vd->vdev_ms_list;
659 metaslab_t *ms;
661 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
662 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
663 VERIFY(range_tree_is_empty(ms->ms_freeing));
664 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
668 return (B_TRUE);
670 #else
671 #define dsl_early_sync_task_verify(dp, txg) \
672 ((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
673 #endif
675 void
676 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
678 zio_t *rio; /* root zio for all dirty dataset syncs */
679 dmu_tx_t *tx;
680 dsl_dir_t *dd;
681 dsl_dataset_t *ds;
682 objset_t *mos = dp->dp_meta_objset;
683 list_t synced_datasets;
685 list_create(&synced_datasets, sizeof (dsl_dataset_t),
686 offsetof(dsl_dataset_t, ds_synced_link));
688 tx = dmu_tx_create_assigned(dp, txg);
691 * Run all early sync tasks before writing out any dirty blocks.
692 * For more info on early sync tasks see block comment in
693 * dsl_early_sync_task().
695 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
696 dsl_sync_task_t *dst;
698 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
699 while ((dst =
700 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
701 ASSERT(dsl_early_sync_task_verify(dp, txg));
702 dsl_sync_task_sync(dst, tx);
704 ASSERT(dsl_early_sync_task_verify(dp, txg));
708 * Write out all dirty blocks of dirty datasets. Note, this could
709 * create a very large (+10k) zio tree.
711 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
712 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
714 * We must not sync any non-MOS datasets twice, because
715 * we may have taken a snapshot of them. However, we
716 * may sync newly-created datasets on pass 2.
718 ASSERT(!list_link_active(&ds->ds_synced_link));
719 list_insert_tail(&synced_datasets, ds);
720 dsl_dataset_sync(ds, rio, tx);
722 VERIFY0(zio_wait(rio));
725 * Update the long range free counter after
726 * we're done syncing user data
728 mutex_enter(&dp->dp_lock);
729 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
730 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
731 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
732 mutex_exit(&dp->dp_lock);
735 * After the data blocks have been written (ensured by the zio_wait()
736 * above), update the user/group/project space accounting. This happens
737 * in tasks dispatched to dp_sync_taskq, so wait for them before
738 * continuing.
740 for (ds = list_head(&synced_datasets); ds != NULL;
741 ds = list_next(&synced_datasets, ds)) {
742 dmu_objset_sync_done(ds->ds_objset, tx);
744 taskq_wait(dp->dp_sync_taskq);
747 * Sync the datasets again to push out the changes due to
748 * userspace updates. This must be done before we process the
749 * sync tasks, so that any snapshots will have the correct
750 * user accounting information (and we won't get confused
751 * about which blocks are part of the snapshot).
753 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
754 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
755 objset_t *os = ds->ds_objset;
757 ASSERT(list_link_active(&ds->ds_synced_link));
758 dmu_buf_rele(ds->ds_dbuf, ds);
759 dsl_dataset_sync(ds, rio, tx);
762 * Release any key mappings created by calls to
763 * dsl_dataset_dirty() from the userquota accounting
764 * code paths.
766 if (os->os_encrypted && !os->os_raw_receive &&
767 !os->os_next_write_raw[txg & TXG_MASK]) {
768 ASSERT3P(ds->ds_key_mapping, !=, NULL);
769 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
772 VERIFY0(zio_wait(rio));
775 * Now that the datasets have been completely synced, we can
776 * clean up our in-memory structures accumulated while syncing:
778 * - move dead blocks from the pending deadlist and livelists
779 * to the on-disk versions
780 * - release hold from dsl_dataset_dirty()
781 * - release key mapping hold from dsl_dataset_dirty()
783 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
784 objset_t *os = ds->ds_objset;
786 if (os->os_encrypted && !os->os_raw_receive &&
787 !os->os_next_write_raw[txg & TXG_MASK]) {
788 ASSERT3P(ds->ds_key_mapping, !=, NULL);
789 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
792 dsl_dataset_sync_done(ds, tx);
793 dmu_buf_rele(ds->ds_dbuf, ds);
796 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
797 dsl_dir_sync(dd, tx);
801 * The MOS's space is accounted for in the pool/$MOS
802 * (dp_mos_dir). We can't modify the mos while we're syncing
803 * it, so we remember the deltas and apply them here.
805 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
806 dp->dp_mos_uncompressed_delta != 0) {
807 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
808 dp->dp_mos_used_delta,
809 dp->dp_mos_compressed_delta,
810 dp->dp_mos_uncompressed_delta, tx);
811 dp->dp_mos_used_delta = 0;
812 dp->dp_mos_compressed_delta = 0;
813 dp->dp_mos_uncompressed_delta = 0;
816 if (dmu_objset_is_dirty(mos, txg)) {
817 dsl_pool_sync_mos(dp, tx);
821 * We have written all of the accounted dirty data, so our
822 * dp_space_towrite should now be zero. However, some seldom-used
823 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
824 * the accounting of any dirtied space now.
826 * Note that, besides any dirty data from datasets, the amount of
827 * dirty data in the MOS is also accounted by the pool. Therefore,
828 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
829 * attempt to update the accounting for the same dirty data twice.
830 * (i.e. at this point we only update the accounting for the space
831 * that we know that we "leaked").
833 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
836 * If we modify a dataset in the same txg that we want to destroy it,
837 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
838 * dsl_dir_destroy_check() will fail if there are unexpected holds.
839 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
840 * and clearing the hold on it) before we process the sync_tasks.
841 * The MOS data dirtied by the sync_tasks will be synced on the next
842 * pass.
844 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
845 dsl_sync_task_t *dst;
847 * No more sync tasks should have been added while we
848 * were syncing.
850 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
851 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
852 dsl_sync_task_sync(dst, tx);
855 dmu_tx_commit(tx);
857 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
860 void
861 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
863 zilog_t *zilog;
865 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
866 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
868 * We don't remove the zilog from the dp_dirty_zilogs
869 * list until after we've cleaned it. This ensures that
870 * callers of zilog_is_dirty() receive an accurate
871 * answer when they are racing with the spa sync thread.
873 zil_clean(zilog, txg);
874 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
875 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
876 dmu_buf_rele(ds->ds_dbuf, zilog);
879 dsl_pool_wrlog_clear(dp, txg);
881 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
885 * TRUE if the current thread is the tx_sync_thread or if we
886 * are being called from SPA context during pool initialization.
889 dsl_pool_sync_context(dsl_pool_t *dp)
891 return (curthread == dp->dp_tx.tx_sync_thread ||
892 spa_is_initializing(dp->dp_spa) ||
893 taskq_member(dp->dp_sync_taskq, curthread));
897 * This function returns the amount of allocatable space in the pool
898 * minus whatever space is currently reserved by ZFS for specific
899 * purposes. Specifically:
901 * 1] Any reserved SLOP space
902 * 2] Any space used by the checkpoint
903 * 3] Any space used for deferred frees
905 * The latter 2 are especially important because they are needed to
906 * rectify the SPA's and DMU's different understanding of how much space
907 * is used. Now the DMU is aware of that extra space tracked by the SPA
908 * without having to maintain a separate special dir (e.g similar to
909 * $MOS, $FREEING, and $LEAKED).
911 * Note: By deferred frees here, we mean the frees that were deferred
912 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
913 * segments placed in ms_defer trees during metaslab_sync_done().
915 uint64_t
916 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
918 spa_t *spa = dp->dp_spa;
919 uint64_t space, resv, adjustedsize;
920 uint64_t spa_deferred_frees =
921 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
923 space = spa_get_dspace(spa)
924 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
925 resv = spa_get_slop_space(spa);
927 switch (slop_policy) {
928 case ZFS_SPACE_CHECK_NORMAL:
929 break;
930 case ZFS_SPACE_CHECK_RESERVED:
931 resv >>= 1;
932 break;
933 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
934 resv >>= 2;
935 break;
936 case ZFS_SPACE_CHECK_NONE:
937 resv = 0;
938 break;
939 default:
940 panic("invalid slop policy value: %d", slop_policy);
941 break;
943 adjustedsize = (space >= resv) ? (space - resv) : 0;
945 return (adjustedsize);
948 uint64_t
949 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
951 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
952 uint64_t deferred =
953 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
954 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
955 return (quota);
958 uint64_t
959 dsl_pool_deferred_space(dsl_pool_t *dp)
961 return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
964 boolean_t
965 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
967 uint64_t delay_min_bytes =
968 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
971 * We are not taking the dp_lock here and few other places, since torn
972 * reads are unlikely: on 64-bit systems due to register size and on
973 * 32-bit due to memory constraints. Pool-wide locks in hot path may
974 * be too expensive, while we do not need a precise result here.
976 return (dp->dp_dirty_total > delay_min_bytes);
979 static boolean_t
980 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
982 uint64_t dirty_min_bytes =
983 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
984 uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
986 return (dirty > dirty_min_bytes);
989 void
990 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
992 if (space > 0) {
993 mutex_enter(&dp->dp_lock);
994 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
995 dsl_pool_dirty_delta(dp, space);
996 boolean_t needsync = !dmu_tx_is_syncing(tx) &&
997 dsl_pool_need_dirty_sync(dp, tx->tx_txg);
998 mutex_exit(&dp->dp_lock);
1000 if (needsync)
1001 txg_kick(dp, tx->tx_txg);
1005 void
1006 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
1008 ASSERT3S(space, >=, 0);
1009 if (space == 0)
1010 return;
1012 mutex_enter(&dp->dp_lock);
1013 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1014 /* XXX writing something we didn't dirty? */
1015 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
1017 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1018 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1019 ASSERT3U(dp->dp_dirty_total, >=, space);
1020 dsl_pool_dirty_delta(dp, -space);
1021 mutex_exit(&dp->dp_lock);
1024 static int
1025 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
1027 dmu_tx_t *tx = arg;
1028 dsl_dataset_t *ds, *prev = NULL;
1029 int err;
1031 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
1032 if (err)
1033 return (err);
1035 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1036 err = dsl_dataset_hold_obj(dp,
1037 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
1038 if (err) {
1039 dsl_dataset_rele(ds, FTAG);
1040 return (err);
1043 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
1044 break;
1045 dsl_dataset_rele(ds, FTAG);
1046 ds = prev;
1047 prev = NULL;
1050 if (prev == NULL) {
1051 prev = dp->dp_origin_snap;
1054 * The $ORIGIN can't have any data, or the accounting
1055 * will be wrong.
1057 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1058 ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp));
1059 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1061 /* The origin doesn't get attached to itself */
1062 if (ds->ds_object == prev->ds_object) {
1063 dsl_dataset_rele(ds, FTAG);
1064 return (0);
1067 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1068 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1069 dsl_dataset_phys(ds)->ds_prev_snap_txg =
1070 dsl_dataset_phys(prev)->ds_creation_txg;
1072 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1073 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
1075 dmu_buf_will_dirty(prev->ds_dbuf, tx);
1076 dsl_dataset_phys(prev)->ds_num_children++;
1078 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1079 ASSERT(ds->ds_prev == NULL);
1080 VERIFY0(dsl_dataset_hold_obj(dp,
1081 dsl_dataset_phys(ds)->ds_prev_snap_obj,
1082 ds, &ds->ds_prev));
1086 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1087 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1089 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1090 dmu_buf_will_dirty(prev->ds_dbuf, tx);
1091 dsl_dataset_phys(prev)->ds_next_clones_obj =
1092 zap_create(dp->dp_meta_objset,
1093 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1095 VERIFY0(zap_add_int(dp->dp_meta_objset,
1096 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1098 dsl_dataset_rele(ds, FTAG);
1099 if (prev != dp->dp_origin_snap)
1100 dsl_dataset_rele(prev, FTAG);
1101 return (0);
1104 void
1105 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1107 ASSERT(dmu_tx_is_syncing(tx));
1108 ASSERT(dp->dp_origin_snap != NULL);
1110 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1111 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1114 static int
1115 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1117 dmu_tx_t *tx = arg;
1118 objset_t *mos = dp->dp_meta_objset;
1120 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1121 dsl_dataset_t *origin;
1123 VERIFY0(dsl_dataset_hold_obj(dp,
1124 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1126 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1127 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1128 dsl_dir_phys(origin->ds_dir)->dd_clones =
1129 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1130 0, tx);
1133 VERIFY0(zap_add_int(dp->dp_meta_objset,
1134 dsl_dir_phys(origin->ds_dir)->dd_clones,
1135 ds->ds_object, tx));
1137 dsl_dataset_rele(origin, FTAG);
1139 return (0);
1142 void
1143 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1145 uint64_t obj;
1147 ASSERT(dmu_tx_is_syncing(tx));
1149 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1150 VERIFY0(dsl_pool_open_special_dir(dp,
1151 FREE_DIR_NAME, &dp->dp_free_dir));
1154 * We can't use bpobj_alloc(), because spa_version() still
1155 * returns the old version, and we need a new-version bpobj with
1156 * subobj support. So call dmu_object_alloc() directly.
1158 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1159 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1160 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1161 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1162 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1164 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1165 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1168 void
1169 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1171 uint64_t dsobj;
1172 dsl_dataset_t *ds;
1174 ASSERT(dmu_tx_is_syncing(tx));
1175 ASSERT(dp->dp_origin_snap == NULL);
1176 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1178 /* create the origin dir, ds, & snap-ds */
1179 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1180 NULL, 0, kcred, NULL, tx);
1181 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1182 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1183 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1184 dp, &dp->dp_origin_snap));
1185 dsl_dataset_rele(ds, FTAG);
1188 taskq_t *
1189 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1191 return (dp->dp_zrele_taskq);
1194 taskq_t *
1195 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1197 return (dp->dp_unlinked_drain_taskq);
1201 * Walk through the pool-wide zap object of temporary snapshot user holds
1202 * and release them.
1204 void
1205 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1207 zap_attribute_t *za;
1208 zap_cursor_t zc;
1209 objset_t *mos = dp->dp_meta_objset;
1210 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1211 nvlist_t *holds;
1213 if (zapobj == 0)
1214 return;
1215 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1217 holds = fnvlist_alloc();
1219 za = zap_attribute_alloc();
1220 for (zap_cursor_init(&zc, mos, zapobj);
1221 zap_cursor_retrieve(&zc, za) == 0;
1222 zap_cursor_advance(&zc)) {
1223 char *htag;
1224 nvlist_t *tags;
1226 htag = strchr(za->za_name, '-');
1227 *htag = '\0';
1228 ++htag;
1229 if (nvlist_lookup_nvlist(holds, za->za_name, &tags) != 0) {
1230 tags = fnvlist_alloc();
1231 fnvlist_add_boolean(tags, htag);
1232 fnvlist_add_nvlist(holds, za->za_name, tags);
1233 fnvlist_free(tags);
1234 } else {
1235 fnvlist_add_boolean(tags, htag);
1238 dsl_dataset_user_release_tmp(dp, holds);
1239 fnvlist_free(holds);
1240 zap_cursor_fini(&zc);
1241 zap_attribute_free(za);
1245 * Create the pool-wide zap object for storing temporary snapshot holds.
1247 static void
1248 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1250 objset_t *mos = dp->dp_meta_objset;
1252 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1253 ASSERT(dmu_tx_is_syncing(tx));
1255 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1256 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1259 static int
1260 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1261 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1263 objset_t *mos = dp->dp_meta_objset;
1264 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1265 char *name;
1266 int error;
1268 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1269 ASSERT(dmu_tx_is_syncing(tx));
1272 * If the pool was created prior to SPA_VERSION_USERREFS, the
1273 * zap object for temporary holds might not exist yet.
1275 if (zapobj == 0) {
1276 if (holding) {
1277 dsl_pool_user_hold_create_obj(dp, tx);
1278 zapobj = dp->dp_tmp_userrefs_obj;
1279 } else {
1280 return (SET_ERROR(ENOENT));
1284 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1285 if (holding)
1286 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1287 else
1288 error = zap_remove(mos, zapobj, name, tx);
1289 kmem_strfree(name);
1291 return (error);
1295 * Add a temporary hold for the given dataset object and tag.
1298 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1299 uint64_t now, dmu_tx_t *tx)
1301 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1305 * Release a temporary hold for the given dataset object and tag.
1308 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1309 dmu_tx_t *tx)
1311 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1312 tx, B_FALSE));
1316 * DSL Pool Configuration Lock
1318 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1319 * creation / destruction / rename / property setting). It must be held for
1320 * read to hold a dataset or dsl_dir. I.e. you must call
1321 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1322 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1323 * must be held continuously until all datasets and dsl_dirs are released.
1325 * The only exception to this rule is that if a "long hold" is placed on
1326 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1327 * is still held. The long hold will prevent the dataset from being
1328 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1329 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1330 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1332 * Legitimate long-holders (including owners) should be long-running, cancelable
1333 * tasks that should cause "zfs destroy" to fail. This includes DMU
1334 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1335 * "zfs send", and "zfs diff". There are several other long-holders whose
1336 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1338 * The usual formula for long-holding would be:
1339 * dsl_pool_hold()
1340 * dsl_dataset_hold()
1341 * ... perform checks ...
1342 * dsl_dataset_long_hold()
1343 * dsl_pool_rele()
1344 * ... perform long-running task ...
1345 * dsl_dataset_long_rele()
1346 * dsl_dataset_rele()
1348 * Note that when the long hold is released, the dataset is still held but
1349 * the pool is not held. The dataset may change arbitrarily during this time
1350 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1351 * dataset except release it.
1353 * Operations generally fall somewhere into the following taxonomy:
1355 * Read-Only Modifying
1357 * Dataset Layer / MOS zfs get zfs destroy
1359 * Individual Dataset read() write()
1362 * Dataset Layer Operations
1364 * Modifying operations should generally use dsl_sync_task(). The synctask
1365 * infrastructure enforces proper locking strategy with respect to the
1366 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1368 * Read-only operations will manually hold the pool, then the dataset, obtain
1369 * information from the dataset, then release the pool and dataset.
1370 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1371 * hold/rele.
1374 * Operations On Individual Datasets
1376 * Objects _within_ an objset should only be modified by the current 'owner'
1377 * of the objset to prevent incorrect concurrent modification. Thus, use
1378 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1379 * and fail with EBUSY if there is already an owner. The owner can then
1380 * implement its own locking strategy, independent of the dataset layer's
1381 * locking infrastructure.
1382 * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1383 * vnop will not reach into the dataset layer).
1385 * Ideally, objects would also only be read by the objset’s owner, so that we
1386 * don’t observe state mid-modification.
1387 * (E.g. the ZPL is creating a new object and linking it into a directory; if
1388 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1389 * intermediate state. The ioctl level violates this but in pretty benign
1390 * ways, e.g. reading the zpl props object.)
1394 dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
1396 spa_t *spa;
1397 int error;
1399 error = spa_open(name, &spa, tag);
1400 if (error == 0) {
1401 *dp = spa_get_dsl(spa);
1402 dsl_pool_config_enter(*dp, tag);
1404 return (error);
1407 void
1408 dsl_pool_rele(dsl_pool_t *dp, const void *tag)
1410 dsl_pool_config_exit(dp, tag);
1411 spa_close(dp->dp_spa, tag);
1414 void
1415 dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
1418 * We use a "reentrant" reader-writer lock, but not reentrantly.
1420 * The rrwlock can (with the track_all flag) track all reading threads,
1421 * which is very useful for debugging which code path failed to release
1422 * the lock, and for verifying that the *current* thread does hold
1423 * the lock.
1425 * (Unlike a rwlock, which knows that N threads hold it for
1426 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1427 * if any thread holds it for read, even if this thread doesn't).
1429 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1430 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1433 void
1434 dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
1436 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1437 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1440 void
1441 dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
1443 rrw_exit(&dp->dp_config_rwlock, tag);
1446 boolean_t
1447 dsl_pool_config_held(dsl_pool_t *dp)
1449 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1452 boolean_t
1453 dsl_pool_config_held_writer(dsl_pool_t *dp)
1455 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1458 EXPORT_SYMBOL(dsl_pool_config_enter);
1459 EXPORT_SYMBOL(dsl_pool_config_exit);
1461 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1462 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
1463 "Max percent of RAM allowed to be dirty");
1465 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1466 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
1467 "zfs_dirty_data_max upper bound as % of RAM");
1469 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
1470 "Transaction delay threshold");
1472 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
1473 "Determines the dirty space limit");
1475 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
1476 "The size limit of write-transaction zil log data");
1478 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1479 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
1480 "zfs_dirty_data_max upper bound in bytes");
1482 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
1483 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1485 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
1486 "How quickly delay approaches infinity");
1488 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1489 "Max percent of CPUs that are used per dp_sync_taskq");
1491 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1492 "Number of taskq entries that are pre-populated");
1494 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1495 "Max number of taskq entries that are cached");