4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP.
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
53 #include <sys/fs/zfs.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/vdev_raidz.h>
63 #include <sys/zfs_ratelimit.h>
67 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
68 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
69 * part of the spa_embedded_log_class. The metaslab with the most free space
70 * in each vdev is selected for this purpose when the pool is opened (or a
71 * vdev is added). See vdev_metaslab_init().
73 * Log blocks can be allocated from the following locations. Each one is tried
74 * in order until the allocation succeeds:
75 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
76 * 2. embedded slog metaslabs (spa_embedded_log_class)
77 * 3. other metaslabs in normal vdevs (spa_normal_class)
79 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
80 * than this number of metaslabs in the vdev. This ensures that we don't set
81 * aside an unreasonable amount of space for the ZIL. If set to less than
82 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
83 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
85 static uint_t zfs_embedded_slog_min_ms
= 64;
87 /* default target for number of metaslabs per top-level vdev */
88 static uint_t zfs_vdev_default_ms_count
= 200;
90 /* minimum number of metaslabs per top-level vdev */
91 static uint_t zfs_vdev_min_ms_count
= 16;
93 /* practical upper limit of total metaslabs per top-level vdev */
94 static uint_t zfs_vdev_ms_count_limit
= 1ULL << 17;
96 /* lower limit for metaslab size (512M) */
97 static uint_t zfs_vdev_default_ms_shift
= 29;
99 /* upper limit for metaslab size (16G) */
100 static uint_t zfs_vdev_max_ms_shift
= 34;
102 int vdev_validate_skip
= B_FALSE
;
105 * Since the DTL space map of a vdev is not expected to have a lot of
106 * entries, we default its block size to 4K.
108 int zfs_vdev_dtl_sm_blksz
= (1 << 12);
111 * Rate limit slow IO (delay) events to this many per second.
113 static unsigned int zfs_slow_io_events_per_second
= 20;
116 * Rate limit deadman "hung IO" events to this many per second.
118 static unsigned int zfs_deadman_events_per_second
= 1;
121 * Rate limit direct write IO verify failures to this many per scond.
123 static unsigned int zfs_dio_write_verify_events_per_second
= 20;
126 * Rate limit checksum events after this many checksum errors per second.
128 static unsigned int zfs_checksum_events_per_second
= 20;
131 * Ignore errors during scrub/resilver. Allows to work around resilver
132 * upon import when there are pool errors.
134 static int zfs_scan_ignore_errors
= 0;
137 * vdev-wide space maps that have lots of entries written to them at
138 * the end of each transaction can benefit from a higher I/O bandwidth
139 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
141 int zfs_vdev_standard_sm_blksz
= (1 << 17);
144 * Tunable parameter for debugging or performance analysis. Setting this
145 * will cause pool corruption on power loss if a volatile out-of-order
146 * write cache is enabled.
148 int zfs_nocacheflush
= 0;
151 * Maximum and minimum ashift values that can be automatically set based on
152 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
153 * is higher than the maximum value, it is intentionally limited here to not
154 * excessively impact pool space efficiency. Higher ashift values may still
155 * be forced by vdev logical ashift or by user via ashift property, but won't
156 * be set automatically as a performance optimization.
158 uint_t zfs_vdev_max_auto_ashift
= 14;
159 uint_t zfs_vdev_min_auto_ashift
= ASHIFT_MIN
;
162 * VDEV checksum verification for Direct I/O writes. This is neccessary for
163 * Linux, because anonymous pages can not be placed under write protection
164 * during Direct I/O writes.
166 #if !defined(__FreeBSD__)
167 uint_t zfs_vdev_direct_write_verify
= 1;
169 uint_t zfs_vdev_direct_write_verify
= 0;
173 vdev_dbgmsg(vdev_t
*vd
, const char *fmt
, ...)
179 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
182 if (vd
->vdev_path
!= NULL
) {
183 zfs_dbgmsg("%s vdev '%s': %s", vd
->vdev_ops
->vdev_op_type
,
186 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
187 vd
->vdev_ops
->vdev_op_type
,
188 (u_longlong_t
)vd
->vdev_id
,
189 (u_longlong_t
)vd
->vdev_guid
, buf
);
194 vdev_dbgmsg_print_tree(vdev_t
*vd
, int indent
)
198 if (vd
->vdev_ishole
|| vd
->vdev_ops
== &vdev_missing_ops
) {
199 zfs_dbgmsg("%*svdev %llu: %s", indent
, "",
200 (u_longlong_t
)vd
->vdev_id
,
201 vd
->vdev_ops
->vdev_op_type
);
205 switch (vd
->vdev_state
) {
206 case VDEV_STATE_UNKNOWN
:
207 (void) snprintf(state
, sizeof (state
), "unknown");
209 case VDEV_STATE_CLOSED
:
210 (void) snprintf(state
, sizeof (state
), "closed");
212 case VDEV_STATE_OFFLINE
:
213 (void) snprintf(state
, sizeof (state
), "offline");
215 case VDEV_STATE_REMOVED
:
216 (void) snprintf(state
, sizeof (state
), "removed");
218 case VDEV_STATE_CANT_OPEN
:
219 (void) snprintf(state
, sizeof (state
), "can't open");
221 case VDEV_STATE_FAULTED
:
222 (void) snprintf(state
, sizeof (state
), "faulted");
224 case VDEV_STATE_DEGRADED
:
225 (void) snprintf(state
, sizeof (state
), "degraded");
227 case VDEV_STATE_HEALTHY
:
228 (void) snprintf(state
, sizeof (state
), "healthy");
231 (void) snprintf(state
, sizeof (state
), "<state %u>",
232 (uint_t
)vd
->vdev_state
);
235 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent
,
236 "", (int)vd
->vdev_id
, vd
->vdev_ops
->vdev_op_type
,
237 vd
->vdev_islog
? " (log)" : "",
238 (u_longlong_t
)vd
->vdev_guid
,
239 vd
->vdev_path
? vd
->vdev_path
: "N/A", state
);
241 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
242 vdev_dbgmsg_print_tree(vd
->vdev_child
[i
], indent
+ 2);
246 * Virtual device management.
249 static vdev_ops_t
*const vdev_ops_table
[] = {
253 &vdev_draid_spare_ops
,
266 * Given a vdev type, return the appropriate ops vector.
269 vdev_getops(const char *type
)
271 vdev_ops_t
*ops
, *const *opspp
;
273 for (opspp
= vdev_ops_table
; (ops
= *opspp
) != NULL
; opspp
++)
274 if (strcmp(ops
->vdev_op_type
, type
) == 0)
281 * Given a vdev and a metaslab class, find which metaslab group we're
282 * interested in. All vdevs may belong to two different metaslab classes.
283 * Dedicated slog devices use only the primary metaslab group, rather than a
284 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
287 vdev_get_mg(vdev_t
*vd
, metaslab_class_t
*mc
)
289 if (mc
== spa_embedded_log_class(vd
->vdev_spa
) &&
290 vd
->vdev_log_mg
!= NULL
)
291 return (vd
->vdev_log_mg
);
293 return (vd
->vdev_mg
);
297 vdev_default_xlate(vdev_t
*vd
, const range_seg64_t
*logical_rs
,
298 range_seg64_t
*physical_rs
, range_seg64_t
*remain_rs
)
300 (void) vd
, (void) remain_rs
;
302 physical_rs
->rs_start
= logical_rs
->rs_start
;
303 physical_rs
->rs_end
= logical_rs
->rs_end
;
307 * Derive the enumerated allocation bias from string input.
308 * String origin is either the per-vdev zap or zpool(8).
310 static vdev_alloc_bias_t
311 vdev_derive_alloc_bias(const char *bias
)
313 vdev_alloc_bias_t alloc_bias
= VDEV_BIAS_NONE
;
315 if (strcmp(bias
, VDEV_ALLOC_BIAS_LOG
) == 0)
316 alloc_bias
= VDEV_BIAS_LOG
;
317 else if (strcmp(bias
, VDEV_ALLOC_BIAS_SPECIAL
) == 0)
318 alloc_bias
= VDEV_BIAS_SPECIAL
;
319 else if (strcmp(bias
, VDEV_ALLOC_BIAS_DEDUP
) == 0)
320 alloc_bias
= VDEV_BIAS_DEDUP
;
326 * Default asize function: return the MAX of psize with the asize of
327 * all children. This is what's used by anything other than RAID-Z.
330 vdev_default_asize(vdev_t
*vd
, uint64_t psize
, uint64_t txg
)
332 uint64_t asize
= P2ROUNDUP(psize
, 1ULL << vd
->vdev_top
->vdev_ashift
);
335 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
336 csize
= vdev_psize_to_asize_txg(vd
->vdev_child
[c
], psize
, txg
);
337 asize
= MAX(asize
, csize
);
344 vdev_default_min_asize(vdev_t
*vd
)
346 return (vd
->vdev_min_asize
);
350 * Get the minimum allocatable size. We define the allocatable size as
351 * the vdev's asize rounded to the nearest metaslab. This allows us to
352 * replace or attach devices which don't have the same physical size but
353 * can still satisfy the same number of allocations.
356 vdev_get_min_asize(vdev_t
*vd
)
358 vdev_t
*pvd
= vd
->vdev_parent
;
361 * If our parent is NULL (inactive spare or cache) or is the root,
362 * just return our own asize.
365 return (vd
->vdev_asize
);
368 * The top-level vdev just returns the allocatable size rounded
369 * to the nearest metaslab.
371 if (vd
== vd
->vdev_top
)
372 return (P2ALIGN_TYPED(vd
->vdev_asize
, 1ULL << vd
->vdev_ms_shift
,
375 return (pvd
->vdev_ops
->vdev_op_min_asize(pvd
));
379 vdev_set_min_asize(vdev_t
*vd
)
381 vd
->vdev_min_asize
= vdev_get_min_asize(vd
);
383 for (int c
= 0; c
< vd
->vdev_children
; c
++)
384 vdev_set_min_asize(vd
->vdev_child
[c
]);
388 * Get the minimal allocation size for the top-level vdev.
391 vdev_get_min_alloc(vdev_t
*vd
)
393 uint64_t min_alloc
= 1ULL << vd
->vdev_ashift
;
395 if (vd
->vdev_ops
->vdev_op_min_alloc
!= NULL
)
396 min_alloc
= vd
->vdev_ops
->vdev_op_min_alloc(vd
);
402 * Get the parity level for a top-level vdev.
405 vdev_get_nparity(vdev_t
*vd
)
407 uint64_t nparity
= 0;
409 if (vd
->vdev_ops
->vdev_op_nparity
!= NULL
)
410 nparity
= vd
->vdev_ops
->vdev_op_nparity(vd
);
416 vdev_prop_get_int(vdev_t
*vd
, vdev_prop_t prop
, uint64_t *value
)
418 spa_t
*spa
= vd
->vdev_spa
;
419 objset_t
*mos
= spa
->spa_meta_objset
;
423 if (vd
->vdev_root_zap
!= 0) {
424 objid
= vd
->vdev_root_zap
;
425 } else if (vd
->vdev_top_zap
!= 0) {
426 objid
= vd
->vdev_top_zap
;
427 } else if (vd
->vdev_leaf_zap
!= 0) {
428 objid
= vd
->vdev_leaf_zap
;
433 err
= zap_lookup(mos
, objid
, vdev_prop_to_name(prop
),
434 sizeof (uint64_t), 1, value
);
437 *value
= vdev_prop_default_numeric(prop
);
443 * Get the number of data disks for a top-level vdev.
446 vdev_get_ndisks(vdev_t
*vd
)
450 if (vd
->vdev_ops
->vdev_op_ndisks
!= NULL
)
451 ndisks
= vd
->vdev_ops
->vdev_op_ndisks(vd
);
457 vdev_lookup_top(spa_t
*spa
, uint64_t vdev
)
459 vdev_t
*rvd
= spa
->spa_root_vdev
;
461 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
463 if (vdev
< rvd
->vdev_children
) {
464 ASSERT(rvd
->vdev_child
[vdev
] != NULL
);
465 return (rvd
->vdev_child
[vdev
]);
472 vdev_lookup_by_guid(vdev_t
*vd
, uint64_t guid
)
476 if (vd
->vdev_guid
== guid
)
479 for (int c
= 0; c
< vd
->vdev_children
; c
++)
480 if ((mvd
= vdev_lookup_by_guid(vd
->vdev_child
[c
], guid
)) !=
488 vdev_count_leaves_impl(vdev_t
*vd
)
492 if (vd
->vdev_ops
->vdev_op_leaf
)
495 for (int c
= 0; c
< vd
->vdev_children
; c
++)
496 n
+= vdev_count_leaves_impl(vd
->vdev_child
[c
]);
502 vdev_count_leaves(spa_t
*spa
)
506 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
507 rc
= vdev_count_leaves_impl(spa
->spa_root_vdev
);
508 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
514 vdev_add_child(vdev_t
*pvd
, vdev_t
*cvd
)
516 size_t oldsize
, newsize
;
517 uint64_t id
= cvd
->vdev_id
;
520 ASSERT(spa_config_held(cvd
->vdev_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
521 ASSERT(cvd
->vdev_parent
== NULL
);
523 cvd
->vdev_parent
= pvd
;
528 ASSERT(id
>= pvd
->vdev_children
|| pvd
->vdev_child
[id
] == NULL
);
530 oldsize
= pvd
->vdev_children
* sizeof (vdev_t
*);
531 pvd
->vdev_children
= MAX(pvd
->vdev_children
, id
+ 1);
532 newsize
= pvd
->vdev_children
* sizeof (vdev_t
*);
534 newchild
= kmem_alloc(newsize
, KM_SLEEP
);
535 if (pvd
->vdev_child
!= NULL
) {
536 memcpy(newchild
, pvd
->vdev_child
, oldsize
);
537 kmem_free(pvd
->vdev_child
, oldsize
);
540 pvd
->vdev_child
= newchild
;
541 pvd
->vdev_child
[id
] = cvd
;
543 cvd
->vdev_top
= (pvd
->vdev_top
? pvd
->vdev_top
: cvd
);
544 ASSERT(cvd
->vdev_top
->vdev_parent
->vdev_parent
== NULL
);
547 * Walk up all ancestors to update guid sum.
549 for (; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
550 pvd
->vdev_guid_sum
+= cvd
->vdev_guid_sum
;
552 if (cvd
->vdev_ops
->vdev_op_leaf
) {
553 list_insert_head(&cvd
->vdev_spa
->spa_leaf_list
, cvd
);
554 cvd
->vdev_spa
->spa_leaf_list_gen
++;
559 vdev_remove_child(vdev_t
*pvd
, vdev_t
*cvd
)
562 uint_t id
= cvd
->vdev_id
;
564 ASSERT(cvd
->vdev_parent
== pvd
);
569 ASSERT(id
< pvd
->vdev_children
);
570 ASSERT(pvd
->vdev_child
[id
] == cvd
);
572 pvd
->vdev_child
[id
] = NULL
;
573 cvd
->vdev_parent
= NULL
;
575 for (c
= 0; c
< pvd
->vdev_children
; c
++)
576 if (pvd
->vdev_child
[c
])
579 if (c
== pvd
->vdev_children
) {
580 kmem_free(pvd
->vdev_child
, c
* sizeof (vdev_t
*));
581 pvd
->vdev_child
= NULL
;
582 pvd
->vdev_children
= 0;
585 if (cvd
->vdev_ops
->vdev_op_leaf
) {
586 spa_t
*spa
= cvd
->vdev_spa
;
587 list_remove(&spa
->spa_leaf_list
, cvd
);
588 spa
->spa_leaf_list_gen
++;
592 * Walk up all ancestors to update guid sum.
594 for (; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
595 pvd
->vdev_guid_sum
-= cvd
->vdev_guid_sum
;
599 * Remove any holes in the child array.
602 vdev_compact_children(vdev_t
*pvd
)
604 vdev_t
**newchild
, *cvd
;
605 int oldc
= pvd
->vdev_children
;
608 ASSERT(spa_config_held(pvd
->vdev_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
613 for (int c
= newc
= 0; c
< oldc
; c
++)
614 if (pvd
->vdev_child
[c
])
618 newchild
= kmem_zalloc(newc
* sizeof (vdev_t
*), KM_SLEEP
);
620 for (int c
= newc
= 0; c
< oldc
; c
++) {
621 if ((cvd
= pvd
->vdev_child
[c
]) != NULL
) {
622 newchild
[newc
] = cvd
;
623 cvd
->vdev_id
= newc
++;
630 kmem_free(pvd
->vdev_child
, oldc
* sizeof (vdev_t
*));
631 pvd
->vdev_child
= newchild
;
632 pvd
->vdev_children
= newc
;
636 * Allocate and minimally initialize a vdev_t.
639 vdev_alloc_common(spa_t
*spa
, uint_t id
, uint64_t guid
, vdev_ops_t
*ops
)
642 vdev_indirect_config_t
*vic
;
644 vd
= kmem_zalloc(sizeof (vdev_t
), KM_SLEEP
);
645 vic
= &vd
->vdev_indirect_config
;
647 if (spa
->spa_root_vdev
== NULL
) {
648 ASSERT(ops
== &vdev_root_ops
);
649 spa
->spa_root_vdev
= vd
;
650 spa
->spa_load_guid
= spa_generate_load_guid();
653 if (guid
== 0 && ops
!= &vdev_hole_ops
) {
654 if (spa
->spa_root_vdev
== vd
) {
656 * The root vdev's guid will also be the pool guid,
657 * which must be unique among all pools.
659 guid
= spa_generate_guid(NULL
);
662 * Any other vdev's guid must be unique within the pool.
664 guid
= spa_generate_guid(spa
);
666 ASSERT(!spa_guid_exists(spa_guid(spa
), guid
));
671 vd
->vdev_guid
= guid
;
672 vd
->vdev_guid_sum
= guid
;
674 vd
->vdev_state
= VDEV_STATE_CLOSED
;
675 vd
->vdev_ishole
= (ops
== &vdev_hole_ops
);
676 vic
->vic_prev_indirect_vdev
= UINT64_MAX
;
678 rw_init(&vd
->vdev_indirect_rwlock
, NULL
, RW_DEFAULT
, NULL
);
679 mutex_init(&vd
->vdev_obsolete_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
680 vd
->vdev_obsolete_segments
= range_tree_create(NULL
, RANGE_SEG64
, NULL
,
684 * Initialize rate limit structs for events. We rate limit ZIO delay
685 * and checksum events so that we don't overwhelm ZED with thousands
686 * of events when a disk is acting up.
688 zfs_ratelimit_init(&vd
->vdev_delay_rl
, &zfs_slow_io_events_per_second
,
690 zfs_ratelimit_init(&vd
->vdev_deadman_rl
, &zfs_deadman_events_per_second
,
692 zfs_ratelimit_init(&vd
->vdev_dio_verify_rl
,
693 &zfs_dio_write_verify_events_per_second
, 1);
694 zfs_ratelimit_init(&vd
->vdev_checksum_rl
,
695 &zfs_checksum_events_per_second
, 1);
698 * Default Thresholds for tuning ZED
700 vd
->vdev_checksum_n
= vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N
);
701 vd
->vdev_checksum_t
= vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T
);
702 vd
->vdev_io_n
= vdev_prop_default_numeric(VDEV_PROP_IO_N
);
703 vd
->vdev_io_t
= vdev_prop_default_numeric(VDEV_PROP_IO_T
);
704 vd
->vdev_slow_io_n
= vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N
);
705 vd
->vdev_slow_io_t
= vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T
);
707 list_link_init(&vd
->vdev_config_dirty_node
);
708 list_link_init(&vd
->vdev_state_dirty_node
);
709 list_link_init(&vd
->vdev_initialize_node
);
710 list_link_init(&vd
->vdev_leaf_node
);
711 list_link_init(&vd
->vdev_trim_node
);
713 mutex_init(&vd
->vdev_dtl_lock
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
714 mutex_init(&vd
->vdev_stat_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
715 mutex_init(&vd
->vdev_probe_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
716 mutex_init(&vd
->vdev_scan_io_queue_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
718 mutex_init(&vd
->vdev_initialize_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
719 mutex_init(&vd
->vdev_initialize_io_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
720 cv_init(&vd
->vdev_initialize_cv
, NULL
, CV_DEFAULT
, NULL
);
721 cv_init(&vd
->vdev_initialize_io_cv
, NULL
, CV_DEFAULT
, NULL
);
723 mutex_init(&vd
->vdev_trim_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
724 mutex_init(&vd
->vdev_autotrim_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
725 mutex_init(&vd
->vdev_trim_io_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
726 cv_init(&vd
->vdev_trim_cv
, NULL
, CV_DEFAULT
, NULL
);
727 cv_init(&vd
->vdev_autotrim_cv
, NULL
, CV_DEFAULT
, NULL
);
728 cv_init(&vd
->vdev_autotrim_kick_cv
, NULL
, CV_DEFAULT
, NULL
);
729 cv_init(&vd
->vdev_trim_io_cv
, NULL
, CV_DEFAULT
, NULL
);
731 mutex_init(&vd
->vdev_rebuild_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
732 cv_init(&vd
->vdev_rebuild_cv
, NULL
, CV_DEFAULT
, NULL
);
734 for (int t
= 0; t
< DTL_TYPES
; t
++) {
735 vd
->vdev_dtl
[t
] = range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0,
739 txg_list_create(&vd
->vdev_ms_list
, spa
,
740 offsetof(struct metaslab
, ms_txg_node
));
741 txg_list_create(&vd
->vdev_dtl_list
, spa
,
742 offsetof(struct vdev
, vdev_dtl_node
));
743 vd
->vdev_stat
.vs_timestamp
= gethrtime();
750 * Allocate a new vdev. The 'alloctype' is used to control whether we are
751 * creating a new vdev or loading an existing one - the behavior is slightly
752 * different for each case.
755 vdev_alloc(spa_t
*spa
, vdev_t
**vdp
, nvlist_t
*nv
, vdev_t
*parent
, uint_t id
,
760 uint64_t guid
= 0, islog
;
762 vdev_indirect_config_t
*vic
;
763 const char *tmp
= NULL
;
765 vdev_alloc_bias_t alloc_bias
= VDEV_BIAS_NONE
;
766 boolean_t top_level
= (parent
&& !parent
->vdev_parent
);
768 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
770 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_TYPE
, &type
) != 0)
771 return (SET_ERROR(EINVAL
));
773 if ((ops
= vdev_getops(type
)) == NULL
)
774 return (SET_ERROR(EINVAL
));
777 * If this is a load, get the vdev guid from the nvlist.
778 * Otherwise, vdev_alloc_common() will generate one for us.
780 if (alloctype
== VDEV_ALLOC_LOAD
) {
783 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_ID
, &label_id
) ||
785 return (SET_ERROR(EINVAL
));
787 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_GUID
, &guid
) != 0)
788 return (SET_ERROR(EINVAL
));
789 } else if (alloctype
== VDEV_ALLOC_SPARE
) {
790 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_GUID
, &guid
) != 0)
791 return (SET_ERROR(EINVAL
));
792 } else if (alloctype
== VDEV_ALLOC_L2CACHE
) {
793 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_GUID
, &guid
) != 0)
794 return (SET_ERROR(EINVAL
));
795 } else if (alloctype
== VDEV_ALLOC_ROOTPOOL
) {
796 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_GUID
, &guid
) != 0)
797 return (SET_ERROR(EINVAL
));
801 * The first allocated vdev must be of type 'root'.
803 if (ops
!= &vdev_root_ops
&& spa
->spa_root_vdev
== NULL
)
804 return (SET_ERROR(EINVAL
));
807 * Determine whether we're a log vdev.
810 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_IS_LOG
, &islog
);
811 if (islog
&& spa_version(spa
) < SPA_VERSION_SLOGS
)
812 return (SET_ERROR(ENOTSUP
));
814 if (ops
== &vdev_hole_ops
&& spa_version(spa
) < SPA_VERSION_HOLES
)
815 return (SET_ERROR(ENOTSUP
));
817 if (top_level
&& alloctype
== VDEV_ALLOC_ADD
) {
821 * If creating a top-level vdev, check for allocation
824 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_ALLOCATION_BIAS
,
826 alloc_bias
= vdev_derive_alloc_bias(bias
);
828 /* spa_vdev_add() expects feature to be enabled */
829 if (spa
->spa_load_state
!= SPA_LOAD_CREATE
&&
830 !spa_feature_is_enabled(spa
,
831 SPA_FEATURE_ALLOCATION_CLASSES
)) {
832 return (SET_ERROR(ENOTSUP
));
836 /* spa_vdev_add() expects feature to be enabled */
837 if (ops
== &vdev_draid_ops
&&
838 spa
->spa_load_state
!= SPA_LOAD_CREATE
&&
839 !spa_feature_is_enabled(spa
, SPA_FEATURE_DRAID
)) {
840 return (SET_ERROR(ENOTSUP
));
845 * Initialize the vdev specific data. This is done before calling
846 * vdev_alloc_common() since it may fail and this simplifies the
847 * error reporting and cleanup code paths.
850 if (ops
->vdev_op_init
!= NULL
) {
851 rc
= ops
->vdev_op_init(spa
, nv
, &tsd
);
857 vd
= vdev_alloc_common(spa
, id
, guid
, ops
);
859 vd
->vdev_islog
= islog
;
861 if (top_level
&& alloc_bias
!= VDEV_BIAS_NONE
)
862 vd
->vdev_alloc_bias
= alloc_bias
;
864 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_PATH
, &tmp
) == 0)
865 vd
->vdev_path
= spa_strdup(tmp
);
868 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
869 * fault on a vdev and want it to persist across imports (like with
872 rc
= nvlist_lookup_string(nv
, ZPOOL_CONFIG_AUX_STATE
, &tmp
);
873 if (rc
== 0 && tmp
!= NULL
&& strcmp(tmp
, "external") == 0) {
874 vd
->vdev_stat
.vs_aux
= VDEV_AUX_EXTERNAL
;
875 vd
->vdev_faulted
= 1;
876 vd
->vdev_label_aux
= VDEV_AUX_EXTERNAL
;
879 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_DEVID
, &tmp
) == 0)
880 vd
->vdev_devid
= spa_strdup(tmp
);
881 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_PHYS_PATH
, &tmp
) == 0)
882 vd
->vdev_physpath
= spa_strdup(tmp
);
884 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH
,
886 vd
->vdev_enc_sysfs_path
= spa_strdup(tmp
);
888 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_FRU
, &tmp
) == 0)
889 vd
->vdev_fru
= spa_strdup(tmp
);
892 * Set the whole_disk property. If it's not specified, leave the value
895 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_WHOLE_DISK
,
896 &vd
->vdev_wholedisk
) != 0)
897 vd
->vdev_wholedisk
= -1ULL;
899 vic
= &vd
->vdev_indirect_config
;
901 ASSERT0(vic
->vic_mapping_object
);
902 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_INDIRECT_OBJECT
,
903 &vic
->vic_mapping_object
);
904 ASSERT0(vic
->vic_births_object
);
905 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_INDIRECT_BIRTHS
,
906 &vic
->vic_births_object
);
907 ASSERT3U(vic
->vic_prev_indirect_vdev
, ==, UINT64_MAX
);
908 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_PREV_INDIRECT_VDEV
,
909 &vic
->vic_prev_indirect_vdev
);
912 * Look for the 'not present' flag. This will only be set if the device
913 * was not present at the time of import.
915 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_NOT_PRESENT
,
916 &vd
->vdev_not_present
);
919 * Get the alignment requirement. Ignore pool ashift for vdev
922 if (alloctype
!= VDEV_ALLOC_ATTACH
) {
923 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_ASHIFT
,
926 vd
->vdev_attaching
= B_TRUE
;
930 * Retrieve the vdev creation time.
932 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_CREATE_TXG
,
935 if (vd
->vdev_ops
== &vdev_root_ops
&&
936 (alloctype
== VDEV_ALLOC_LOAD
||
937 alloctype
== VDEV_ALLOC_SPLIT
||
938 alloctype
== VDEV_ALLOC_ROOTPOOL
)) {
939 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_VDEV_ROOT_ZAP
,
944 * If we're a top-level vdev, try to load the allocation parameters.
947 (alloctype
== VDEV_ALLOC_LOAD
|| alloctype
== VDEV_ALLOC_SPLIT
)) {
948 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_METASLAB_ARRAY
,
950 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_METASLAB_SHIFT
,
952 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_ASIZE
,
954 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_NONALLOCATING
,
956 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_REMOVING
,
958 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_VDEV_TOP_ZAP
,
960 vd
->vdev_rz_expanding
= nvlist_exists(nv
,
961 ZPOOL_CONFIG_RAIDZ_EXPANDING
);
963 ASSERT0(vd
->vdev_top_zap
);
966 if (top_level
&& alloctype
!= VDEV_ALLOC_ATTACH
) {
967 ASSERT(alloctype
== VDEV_ALLOC_LOAD
||
968 alloctype
== VDEV_ALLOC_ADD
||
969 alloctype
== VDEV_ALLOC_SPLIT
||
970 alloctype
== VDEV_ALLOC_ROOTPOOL
);
971 /* Note: metaslab_group_create() is now deferred */
974 if (vd
->vdev_ops
->vdev_op_leaf
&&
975 (alloctype
== VDEV_ALLOC_LOAD
|| alloctype
== VDEV_ALLOC_SPLIT
)) {
976 (void) nvlist_lookup_uint64(nv
,
977 ZPOOL_CONFIG_VDEV_LEAF_ZAP
, &vd
->vdev_leaf_zap
);
979 ASSERT0(vd
->vdev_leaf_zap
);
983 * If we're a leaf vdev, try to load the DTL object and other state.
986 if (vd
->vdev_ops
->vdev_op_leaf
&&
987 (alloctype
== VDEV_ALLOC_LOAD
|| alloctype
== VDEV_ALLOC_L2CACHE
||
988 alloctype
== VDEV_ALLOC_ROOTPOOL
)) {
989 if (alloctype
== VDEV_ALLOC_LOAD
) {
990 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_DTL
,
991 &vd
->vdev_dtl_object
);
992 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_UNSPARE
,
996 if (alloctype
== VDEV_ALLOC_ROOTPOOL
) {
999 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_IS_SPARE
,
1000 &spare
) == 0 && spare
)
1004 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_OFFLINE
,
1007 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_RESILVER_TXG
,
1008 &vd
->vdev_resilver_txg
);
1010 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_REBUILD_TXG
,
1011 &vd
->vdev_rebuild_txg
);
1013 if (nvlist_exists(nv
, ZPOOL_CONFIG_RESILVER_DEFER
))
1014 vdev_defer_resilver(vd
);
1017 * In general, when importing a pool we want to ignore the
1018 * persistent fault state, as the diagnosis made on another
1019 * system may not be valid in the current context. The only
1020 * exception is if we forced a vdev to a persistently faulted
1021 * state with 'zpool offline -f'. The persistent fault will
1022 * remain across imports until cleared.
1024 * Local vdevs will remain in the faulted state.
1026 if (spa_load_state(spa
) == SPA_LOAD_OPEN
||
1027 spa_load_state(spa
) == SPA_LOAD_IMPORT
) {
1028 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_FAULTED
,
1030 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_DEGRADED
,
1031 &vd
->vdev_degraded
);
1032 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_REMOVED
,
1035 if (vd
->vdev_faulted
|| vd
->vdev_degraded
) {
1038 vd
->vdev_label_aux
=
1039 VDEV_AUX_ERR_EXCEEDED
;
1040 if (nvlist_lookup_string(nv
,
1041 ZPOOL_CONFIG_AUX_STATE
, &aux
) == 0 &&
1042 strcmp(aux
, "external") == 0)
1043 vd
->vdev_label_aux
= VDEV_AUX_EXTERNAL
;
1045 vd
->vdev_faulted
= 0ULL;
1051 * Add ourselves to the parent's list of children.
1053 vdev_add_child(parent
, vd
);
1061 vdev_free(vdev_t
*vd
)
1063 spa_t
*spa
= vd
->vdev_spa
;
1065 ASSERT3P(vd
->vdev_initialize_thread
, ==, NULL
);
1066 ASSERT3P(vd
->vdev_trim_thread
, ==, NULL
);
1067 ASSERT3P(vd
->vdev_autotrim_thread
, ==, NULL
);
1068 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
1071 * Scan queues are normally destroyed at the end of a scan. If the
1072 * queue exists here, that implies the vdev is being removed while
1073 * the scan is still running.
1075 if (vd
->vdev_scan_io_queue
!= NULL
) {
1076 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
1077 dsl_scan_io_queue_destroy(vd
->vdev_scan_io_queue
);
1078 vd
->vdev_scan_io_queue
= NULL
;
1079 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
1083 * vdev_free() implies closing the vdev first. This is simpler than
1084 * trying to ensure complicated semantics for all callers.
1088 ASSERT(!list_link_active(&vd
->vdev_config_dirty_node
));
1089 ASSERT(!list_link_active(&vd
->vdev_state_dirty_node
));
1092 * Free all children.
1094 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1095 vdev_free(vd
->vdev_child
[c
]);
1097 ASSERT(vd
->vdev_child
== NULL
);
1098 ASSERT(vd
->vdev_guid_sum
== vd
->vdev_guid
);
1100 if (vd
->vdev_ops
->vdev_op_fini
!= NULL
)
1101 vd
->vdev_ops
->vdev_op_fini(vd
);
1104 * Discard allocation state.
1106 if (vd
->vdev_mg
!= NULL
) {
1107 vdev_metaslab_fini(vd
);
1108 metaslab_group_destroy(vd
->vdev_mg
);
1111 if (vd
->vdev_log_mg
!= NULL
) {
1112 ASSERT0(vd
->vdev_ms_count
);
1113 metaslab_group_destroy(vd
->vdev_log_mg
);
1114 vd
->vdev_log_mg
= NULL
;
1117 ASSERT0(vd
->vdev_stat
.vs_space
);
1118 ASSERT0(vd
->vdev_stat
.vs_dspace
);
1119 ASSERT0(vd
->vdev_stat
.vs_alloc
);
1122 * Remove this vdev from its parent's child list.
1124 vdev_remove_child(vd
->vdev_parent
, vd
);
1126 ASSERT(vd
->vdev_parent
== NULL
);
1127 ASSERT(!list_link_active(&vd
->vdev_leaf_node
));
1130 * Clean up vdev structure.
1132 vdev_queue_fini(vd
);
1135 spa_strfree(vd
->vdev_path
);
1137 spa_strfree(vd
->vdev_devid
);
1138 if (vd
->vdev_physpath
)
1139 spa_strfree(vd
->vdev_physpath
);
1141 if (vd
->vdev_enc_sysfs_path
)
1142 spa_strfree(vd
->vdev_enc_sysfs_path
);
1145 spa_strfree(vd
->vdev_fru
);
1147 if (vd
->vdev_isspare
)
1148 spa_spare_remove(vd
);
1149 if (vd
->vdev_isl2cache
)
1150 spa_l2cache_remove(vd
);
1152 txg_list_destroy(&vd
->vdev_ms_list
);
1153 txg_list_destroy(&vd
->vdev_dtl_list
);
1155 mutex_enter(&vd
->vdev_dtl_lock
);
1156 space_map_close(vd
->vdev_dtl_sm
);
1157 for (int t
= 0; t
< DTL_TYPES
; t
++) {
1158 range_tree_vacate(vd
->vdev_dtl
[t
], NULL
, NULL
);
1159 range_tree_destroy(vd
->vdev_dtl
[t
]);
1161 mutex_exit(&vd
->vdev_dtl_lock
);
1163 EQUIV(vd
->vdev_indirect_births
!= NULL
,
1164 vd
->vdev_indirect_mapping
!= NULL
);
1165 if (vd
->vdev_indirect_births
!= NULL
) {
1166 vdev_indirect_mapping_close(vd
->vdev_indirect_mapping
);
1167 vdev_indirect_births_close(vd
->vdev_indirect_births
);
1170 if (vd
->vdev_obsolete_sm
!= NULL
) {
1171 ASSERT(vd
->vdev_removing
||
1172 vd
->vdev_ops
== &vdev_indirect_ops
);
1173 space_map_close(vd
->vdev_obsolete_sm
);
1174 vd
->vdev_obsolete_sm
= NULL
;
1176 range_tree_destroy(vd
->vdev_obsolete_segments
);
1177 rw_destroy(&vd
->vdev_indirect_rwlock
);
1178 mutex_destroy(&vd
->vdev_obsolete_lock
);
1180 mutex_destroy(&vd
->vdev_dtl_lock
);
1181 mutex_destroy(&vd
->vdev_stat_lock
);
1182 mutex_destroy(&vd
->vdev_probe_lock
);
1183 mutex_destroy(&vd
->vdev_scan_io_queue_lock
);
1185 mutex_destroy(&vd
->vdev_initialize_lock
);
1186 mutex_destroy(&vd
->vdev_initialize_io_lock
);
1187 cv_destroy(&vd
->vdev_initialize_io_cv
);
1188 cv_destroy(&vd
->vdev_initialize_cv
);
1190 mutex_destroy(&vd
->vdev_trim_lock
);
1191 mutex_destroy(&vd
->vdev_autotrim_lock
);
1192 mutex_destroy(&vd
->vdev_trim_io_lock
);
1193 cv_destroy(&vd
->vdev_trim_cv
);
1194 cv_destroy(&vd
->vdev_autotrim_cv
);
1195 cv_destroy(&vd
->vdev_autotrim_kick_cv
);
1196 cv_destroy(&vd
->vdev_trim_io_cv
);
1198 mutex_destroy(&vd
->vdev_rebuild_lock
);
1199 cv_destroy(&vd
->vdev_rebuild_cv
);
1201 zfs_ratelimit_fini(&vd
->vdev_delay_rl
);
1202 zfs_ratelimit_fini(&vd
->vdev_deadman_rl
);
1203 zfs_ratelimit_fini(&vd
->vdev_dio_verify_rl
);
1204 zfs_ratelimit_fini(&vd
->vdev_checksum_rl
);
1206 if (vd
== spa
->spa_root_vdev
)
1207 spa
->spa_root_vdev
= NULL
;
1209 kmem_free(vd
, sizeof (vdev_t
));
1213 * Transfer top-level vdev state from svd to tvd.
1216 vdev_top_transfer(vdev_t
*svd
, vdev_t
*tvd
)
1218 spa_t
*spa
= svd
->vdev_spa
;
1223 ASSERT(tvd
== tvd
->vdev_top
);
1225 tvd
->vdev_ms_array
= svd
->vdev_ms_array
;
1226 tvd
->vdev_ms_shift
= svd
->vdev_ms_shift
;
1227 tvd
->vdev_ms_count
= svd
->vdev_ms_count
;
1228 tvd
->vdev_top_zap
= svd
->vdev_top_zap
;
1230 svd
->vdev_ms_array
= 0;
1231 svd
->vdev_ms_shift
= 0;
1232 svd
->vdev_ms_count
= 0;
1233 svd
->vdev_top_zap
= 0;
1236 ASSERT3P(tvd
->vdev_mg
, ==, svd
->vdev_mg
);
1237 if (tvd
->vdev_log_mg
)
1238 ASSERT3P(tvd
->vdev_log_mg
, ==, svd
->vdev_log_mg
);
1239 tvd
->vdev_mg
= svd
->vdev_mg
;
1240 tvd
->vdev_log_mg
= svd
->vdev_log_mg
;
1241 tvd
->vdev_ms
= svd
->vdev_ms
;
1243 svd
->vdev_mg
= NULL
;
1244 svd
->vdev_log_mg
= NULL
;
1245 svd
->vdev_ms
= NULL
;
1247 if (tvd
->vdev_mg
!= NULL
)
1248 tvd
->vdev_mg
->mg_vd
= tvd
;
1249 if (tvd
->vdev_log_mg
!= NULL
)
1250 tvd
->vdev_log_mg
->mg_vd
= tvd
;
1252 tvd
->vdev_checkpoint_sm
= svd
->vdev_checkpoint_sm
;
1253 svd
->vdev_checkpoint_sm
= NULL
;
1255 tvd
->vdev_alloc_bias
= svd
->vdev_alloc_bias
;
1256 svd
->vdev_alloc_bias
= VDEV_BIAS_NONE
;
1258 tvd
->vdev_stat
.vs_alloc
= svd
->vdev_stat
.vs_alloc
;
1259 tvd
->vdev_stat
.vs_space
= svd
->vdev_stat
.vs_space
;
1260 tvd
->vdev_stat
.vs_dspace
= svd
->vdev_stat
.vs_dspace
;
1262 svd
->vdev_stat
.vs_alloc
= 0;
1263 svd
->vdev_stat
.vs_space
= 0;
1264 svd
->vdev_stat
.vs_dspace
= 0;
1267 * State which may be set on a top-level vdev that's in the
1268 * process of being removed.
1270 ASSERT0(tvd
->vdev_indirect_config
.vic_births_object
);
1271 ASSERT0(tvd
->vdev_indirect_config
.vic_mapping_object
);
1272 ASSERT3U(tvd
->vdev_indirect_config
.vic_prev_indirect_vdev
, ==, -1ULL);
1273 ASSERT3P(tvd
->vdev_indirect_mapping
, ==, NULL
);
1274 ASSERT3P(tvd
->vdev_indirect_births
, ==, NULL
);
1275 ASSERT3P(tvd
->vdev_obsolete_sm
, ==, NULL
);
1276 ASSERT0(tvd
->vdev_noalloc
);
1277 ASSERT0(tvd
->vdev_removing
);
1278 ASSERT0(tvd
->vdev_rebuilding
);
1279 tvd
->vdev_noalloc
= svd
->vdev_noalloc
;
1280 tvd
->vdev_removing
= svd
->vdev_removing
;
1281 tvd
->vdev_rebuilding
= svd
->vdev_rebuilding
;
1282 tvd
->vdev_rebuild_config
= svd
->vdev_rebuild_config
;
1283 tvd
->vdev_indirect_config
= svd
->vdev_indirect_config
;
1284 tvd
->vdev_indirect_mapping
= svd
->vdev_indirect_mapping
;
1285 tvd
->vdev_indirect_births
= svd
->vdev_indirect_births
;
1286 range_tree_swap(&svd
->vdev_obsolete_segments
,
1287 &tvd
->vdev_obsolete_segments
);
1288 tvd
->vdev_obsolete_sm
= svd
->vdev_obsolete_sm
;
1289 svd
->vdev_indirect_config
.vic_mapping_object
= 0;
1290 svd
->vdev_indirect_config
.vic_births_object
= 0;
1291 svd
->vdev_indirect_config
.vic_prev_indirect_vdev
= -1ULL;
1292 svd
->vdev_indirect_mapping
= NULL
;
1293 svd
->vdev_indirect_births
= NULL
;
1294 svd
->vdev_obsolete_sm
= NULL
;
1295 svd
->vdev_noalloc
= 0;
1296 svd
->vdev_removing
= 0;
1297 svd
->vdev_rebuilding
= 0;
1299 for (t
= 0; t
< TXG_SIZE
; t
++) {
1300 while ((msp
= txg_list_remove(&svd
->vdev_ms_list
, t
)) != NULL
)
1301 (void) txg_list_add(&tvd
->vdev_ms_list
, msp
, t
);
1302 while ((vd
= txg_list_remove(&svd
->vdev_dtl_list
, t
)) != NULL
)
1303 (void) txg_list_add(&tvd
->vdev_dtl_list
, vd
, t
);
1304 if (txg_list_remove_this(&spa
->spa_vdev_txg_list
, svd
, t
))
1305 (void) txg_list_add(&spa
->spa_vdev_txg_list
, tvd
, t
);
1308 if (list_link_active(&svd
->vdev_config_dirty_node
)) {
1309 vdev_config_clean(svd
);
1310 vdev_config_dirty(tvd
);
1313 if (list_link_active(&svd
->vdev_state_dirty_node
)) {
1314 vdev_state_clean(svd
);
1315 vdev_state_dirty(tvd
);
1318 tvd
->vdev_deflate_ratio
= svd
->vdev_deflate_ratio
;
1319 svd
->vdev_deflate_ratio
= 0;
1321 tvd
->vdev_islog
= svd
->vdev_islog
;
1322 svd
->vdev_islog
= 0;
1324 dsl_scan_io_queue_vdev_xfer(svd
, tvd
);
1328 vdev_top_update(vdev_t
*tvd
, vdev_t
*vd
)
1335 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1336 vdev_top_update(tvd
, vd
->vdev_child
[c
]);
1340 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1341 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1344 vdev_add_parent(vdev_t
*cvd
, vdev_ops_t
*ops
)
1346 spa_t
*spa
= cvd
->vdev_spa
;
1347 vdev_t
*pvd
= cvd
->vdev_parent
;
1350 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1352 mvd
= vdev_alloc_common(spa
, cvd
->vdev_id
, 0, ops
);
1354 mvd
->vdev_asize
= cvd
->vdev_asize
;
1355 mvd
->vdev_min_asize
= cvd
->vdev_min_asize
;
1356 mvd
->vdev_max_asize
= cvd
->vdev_max_asize
;
1357 mvd
->vdev_psize
= cvd
->vdev_psize
;
1358 mvd
->vdev_ashift
= cvd
->vdev_ashift
;
1359 mvd
->vdev_logical_ashift
= cvd
->vdev_logical_ashift
;
1360 mvd
->vdev_physical_ashift
= cvd
->vdev_physical_ashift
;
1361 mvd
->vdev_state
= cvd
->vdev_state
;
1362 mvd
->vdev_crtxg
= cvd
->vdev_crtxg
;
1364 vdev_remove_child(pvd
, cvd
);
1365 vdev_add_child(pvd
, mvd
);
1366 cvd
->vdev_id
= mvd
->vdev_children
;
1367 vdev_add_child(mvd
, cvd
);
1368 vdev_top_update(cvd
->vdev_top
, cvd
->vdev_top
);
1370 if (mvd
== mvd
->vdev_top
)
1371 vdev_top_transfer(cvd
, mvd
);
1377 * Remove a 1-way mirror/replacing vdev from the tree.
1380 vdev_remove_parent(vdev_t
*cvd
)
1382 vdev_t
*mvd
= cvd
->vdev_parent
;
1383 vdev_t
*pvd
= mvd
->vdev_parent
;
1385 ASSERT(spa_config_held(cvd
->vdev_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1387 ASSERT(mvd
->vdev_children
== 1);
1388 ASSERT(mvd
->vdev_ops
== &vdev_mirror_ops
||
1389 mvd
->vdev_ops
== &vdev_replacing_ops
||
1390 mvd
->vdev_ops
== &vdev_spare_ops
);
1391 cvd
->vdev_ashift
= mvd
->vdev_ashift
;
1392 cvd
->vdev_logical_ashift
= mvd
->vdev_logical_ashift
;
1393 cvd
->vdev_physical_ashift
= mvd
->vdev_physical_ashift
;
1394 vdev_remove_child(mvd
, cvd
);
1395 vdev_remove_child(pvd
, mvd
);
1398 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1399 * Otherwise, we could have detached an offline device, and when we
1400 * go to import the pool we'll think we have two top-level vdevs,
1401 * instead of a different version of the same top-level vdev.
1403 if (mvd
->vdev_top
== mvd
) {
1404 uint64_t guid_delta
= mvd
->vdev_guid
- cvd
->vdev_guid
;
1405 cvd
->vdev_orig_guid
= cvd
->vdev_guid
;
1406 cvd
->vdev_guid
+= guid_delta
;
1407 cvd
->vdev_guid_sum
+= guid_delta
;
1410 * If pool not set for autoexpand, we need to also preserve
1411 * mvd's asize to prevent automatic expansion of cvd.
1412 * Otherwise if we are adjusting the mirror by attaching and
1413 * detaching children of non-uniform sizes, the mirror could
1414 * autoexpand, unexpectedly requiring larger devices to
1415 * re-establish the mirror.
1417 if (!cvd
->vdev_spa
->spa_autoexpand
)
1418 cvd
->vdev_asize
= mvd
->vdev_asize
;
1420 cvd
->vdev_id
= mvd
->vdev_id
;
1421 vdev_add_child(pvd
, cvd
);
1422 vdev_top_update(cvd
->vdev_top
, cvd
->vdev_top
);
1424 if (cvd
== cvd
->vdev_top
)
1425 vdev_top_transfer(mvd
, cvd
);
1427 ASSERT(mvd
->vdev_children
== 0);
1432 * Choose GCD for spa_gcd_alloc.
1435 vdev_gcd(uint64_t a
, uint64_t b
)
1446 * Set spa_min_alloc and spa_gcd_alloc.
1449 vdev_spa_set_alloc(spa_t
*spa
, uint64_t min_alloc
)
1451 if (min_alloc
< spa
->spa_min_alloc
)
1452 spa
->spa_min_alloc
= min_alloc
;
1453 if (spa
->spa_gcd_alloc
== INT_MAX
) {
1454 spa
->spa_gcd_alloc
= min_alloc
;
1456 spa
->spa_gcd_alloc
= vdev_gcd(min_alloc
,
1457 spa
->spa_gcd_alloc
);
1462 vdev_metaslab_group_create(vdev_t
*vd
)
1464 spa_t
*spa
= vd
->vdev_spa
;
1467 * metaslab_group_create was delayed until allocation bias was available
1469 if (vd
->vdev_mg
== NULL
) {
1470 metaslab_class_t
*mc
;
1472 if (vd
->vdev_islog
&& vd
->vdev_alloc_bias
== VDEV_BIAS_NONE
)
1473 vd
->vdev_alloc_bias
= VDEV_BIAS_LOG
;
1475 ASSERT3U(vd
->vdev_islog
, ==,
1476 (vd
->vdev_alloc_bias
== VDEV_BIAS_LOG
));
1478 switch (vd
->vdev_alloc_bias
) {
1480 mc
= spa_log_class(spa
);
1482 case VDEV_BIAS_SPECIAL
:
1483 mc
= spa_special_class(spa
);
1485 case VDEV_BIAS_DEDUP
:
1486 mc
= spa_dedup_class(spa
);
1489 mc
= spa_normal_class(spa
);
1492 vd
->vdev_mg
= metaslab_group_create(mc
, vd
,
1493 spa
->spa_alloc_count
);
1495 if (!vd
->vdev_islog
) {
1496 vd
->vdev_log_mg
= metaslab_group_create(
1497 spa_embedded_log_class(spa
), vd
, 1);
1501 * The spa ashift min/max only apply for the normal metaslab
1502 * class. Class destination is late binding so ashift boundary
1503 * setting had to wait until now.
1505 if (vd
->vdev_top
== vd
&& vd
->vdev_ashift
!= 0 &&
1506 mc
== spa_normal_class(spa
) && vd
->vdev_aux
== NULL
) {
1507 if (vd
->vdev_ashift
> spa
->spa_max_ashift
)
1508 spa
->spa_max_ashift
= vd
->vdev_ashift
;
1509 if (vd
->vdev_ashift
< spa
->spa_min_ashift
)
1510 spa
->spa_min_ashift
= vd
->vdev_ashift
;
1512 uint64_t min_alloc
= vdev_get_min_alloc(vd
);
1513 vdev_spa_set_alloc(spa
, min_alloc
);
1519 vdev_metaslab_init(vdev_t
*vd
, uint64_t txg
)
1521 spa_t
*spa
= vd
->vdev_spa
;
1522 uint64_t oldc
= vd
->vdev_ms_count
;
1523 uint64_t newc
= vd
->vdev_asize
>> vd
->vdev_ms_shift
;
1526 boolean_t expanding
= (oldc
!= 0);
1528 ASSERT(txg
== 0 || spa_config_held(spa
, SCL_ALLOC
, RW_WRITER
));
1531 * This vdev is not being allocated from yet or is a hole.
1533 if (vd
->vdev_ms_shift
== 0)
1536 ASSERT(!vd
->vdev_ishole
);
1538 ASSERT(oldc
<= newc
);
1540 mspp
= vmem_zalloc(newc
* sizeof (*mspp
), KM_SLEEP
);
1543 memcpy(mspp
, vd
->vdev_ms
, oldc
* sizeof (*mspp
));
1544 vmem_free(vd
->vdev_ms
, oldc
* sizeof (*mspp
));
1548 vd
->vdev_ms_count
= newc
;
1550 for (uint64_t m
= oldc
; m
< newc
; m
++) {
1551 uint64_t object
= 0;
1553 * vdev_ms_array may be 0 if we are creating the "fake"
1554 * metaslabs for an indirect vdev for zdb's leak detection.
1555 * See zdb_leak_init().
1557 if (txg
== 0 && vd
->vdev_ms_array
!= 0) {
1558 error
= dmu_read(spa
->spa_meta_objset
,
1560 m
* sizeof (uint64_t), sizeof (uint64_t), &object
,
1563 vdev_dbgmsg(vd
, "unable to read the metaslab "
1564 "array [error=%d]", error
);
1569 error
= metaslab_init(vd
->vdev_mg
, m
, object
, txg
,
1572 vdev_dbgmsg(vd
, "metaslab_init failed [error=%d]",
1579 * Find the emptiest metaslab on the vdev and mark it for use for
1580 * embedded slog by moving it from the regular to the log metaslab
1583 if (vd
->vdev_mg
->mg_class
== spa_normal_class(spa
) &&
1584 vd
->vdev_ms_count
> zfs_embedded_slog_min_ms
&&
1585 avl_is_empty(&vd
->vdev_log_mg
->mg_metaslab_tree
)) {
1586 uint64_t slog_msid
= 0;
1587 uint64_t smallest
= UINT64_MAX
;
1590 * Note, we only search the new metaslabs, because the old
1591 * (pre-existing) ones may be active (e.g. have non-empty
1592 * range_tree's), and we don't move them to the new
1595 for (uint64_t m
= oldc
; m
< newc
; m
++) {
1597 space_map_allocated(vd
->vdev_ms
[m
]->ms_sm
);
1598 if (alloc
< smallest
) {
1603 metaslab_t
*slog_ms
= vd
->vdev_ms
[slog_msid
];
1605 * The metaslab was marked as dirty at the end of
1606 * metaslab_init(). Remove it from the dirty list so that we
1607 * can uninitialize and reinitialize it to the new class.
1610 (void) txg_list_remove_this(&vd
->vdev_ms_list
,
1613 uint64_t sm_obj
= space_map_object(slog_ms
->ms_sm
);
1614 metaslab_fini(slog_ms
);
1615 VERIFY0(metaslab_init(vd
->vdev_log_mg
, slog_msid
, sm_obj
, txg
,
1616 &vd
->vdev_ms
[slog_msid
]));
1620 spa_config_enter(spa
, SCL_ALLOC
, FTAG
, RW_WRITER
);
1623 * If the vdev is marked as non-allocating then don't
1624 * activate the metaslabs since we want to ensure that
1625 * no allocations are performed on this device.
1627 if (vd
->vdev_noalloc
) {
1628 /* track non-allocating vdev space */
1629 spa
->spa_nonallocating_dspace
+= spa_deflate(spa
) ?
1630 vd
->vdev_stat
.vs_dspace
: vd
->vdev_stat
.vs_space
;
1631 } else if (!expanding
) {
1632 metaslab_group_activate(vd
->vdev_mg
);
1633 if (vd
->vdev_log_mg
!= NULL
)
1634 metaslab_group_activate(vd
->vdev_log_mg
);
1638 spa_config_exit(spa
, SCL_ALLOC
, FTAG
);
1644 vdev_metaslab_fini(vdev_t
*vd
)
1646 if (vd
->vdev_checkpoint_sm
!= NULL
) {
1647 ASSERT(spa_feature_is_active(vd
->vdev_spa
,
1648 SPA_FEATURE_POOL_CHECKPOINT
));
1649 space_map_close(vd
->vdev_checkpoint_sm
);
1651 * Even though we close the space map, we need to set its
1652 * pointer to NULL. The reason is that vdev_metaslab_fini()
1653 * may be called multiple times for certain operations
1654 * (i.e. when destroying a pool) so we need to ensure that
1655 * this clause never executes twice. This logic is similar
1656 * to the one used for the vdev_ms clause below.
1658 vd
->vdev_checkpoint_sm
= NULL
;
1661 if (vd
->vdev_ms
!= NULL
) {
1662 metaslab_group_t
*mg
= vd
->vdev_mg
;
1664 metaslab_group_passivate(mg
);
1665 if (vd
->vdev_log_mg
!= NULL
) {
1666 ASSERT(!vd
->vdev_islog
);
1667 metaslab_group_passivate(vd
->vdev_log_mg
);
1670 uint64_t count
= vd
->vdev_ms_count
;
1671 for (uint64_t m
= 0; m
< count
; m
++) {
1672 metaslab_t
*msp
= vd
->vdev_ms
[m
];
1676 vmem_free(vd
->vdev_ms
, count
* sizeof (metaslab_t
*));
1678 vd
->vdev_ms_count
= 0;
1680 for (int i
= 0; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++) {
1681 ASSERT0(mg
->mg_histogram
[i
]);
1682 if (vd
->vdev_log_mg
!= NULL
)
1683 ASSERT0(vd
->vdev_log_mg
->mg_histogram
[i
]);
1686 ASSERT0(vd
->vdev_ms_count
);
1689 typedef struct vdev_probe_stats
{
1690 boolean_t vps_readable
;
1691 boolean_t vps_writeable
;
1692 boolean_t vps_zio_done_probe
;
1694 } vdev_probe_stats_t
;
1697 vdev_probe_done(zio_t
*zio
)
1699 spa_t
*spa
= zio
->io_spa
;
1700 vdev_t
*vd
= zio
->io_vd
;
1701 vdev_probe_stats_t
*vps
= zio
->io_private
;
1703 ASSERT(vd
->vdev_probe_zio
!= NULL
);
1705 if (zio
->io_type
== ZIO_TYPE_READ
) {
1706 if (zio
->io_error
== 0)
1707 vps
->vps_readable
= 1;
1708 if (zio
->io_error
== 0 && spa_writeable(spa
)) {
1709 zio_nowait(zio_write_phys(vd
->vdev_probe_zio
, vd
,
1710 zio
->io_offset
, zio
->io_size
, zio
->io_abd
,
1711 ZIO_CHECKSUM_OFF
, vdev_probe_done
, vps
,
1712 ZIO_PRIORITY_SYNC_WRITE
, vps
->vps_flags
, B_TRUE
));
1714 abd_free(zio
->io_abd
);
1716 } else if (zio
->io_type
== ZIO_TYPE_WRITE
) {
1717 if (zio
->io_error
== 0)
1718 vps
->vps_writeable
= 1;
1719 abd_free(zio
->io_abd
);
1720 } else if (zio
->io_type
== ZIO_TYPE_NULL
) {
1724 vd
->vdev_cant_read
|= !vps
->vps_readable
;
1725 vd
->vdev_cant_write
|= !vps
->vps_writeable
;
1726 vdev_dbgmsg(vd
, "probe done, cant_read=%u cant_write=%u",
1727 vd
->vdev_cant_read
, vd
->vdev_cant_write
);
1729 if (vdev_readable(vd
) &&
1730 (vdev_writeable(vd
) || !spa_writeable(spa
))) {
1733 ASSERT(zio
->io_error
!= 0);
1734 vdev_dbgmsg(vd
, "failed probe");
1735 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE
,
1736 spa
, vd
, NULL
, NULL
, 0);
1737 zio
->io_error
= SET_ERROR(ENXIO
);
1740 * If this probe was initiated from zio pipeline, then
1741 * change the state in a spa_async_request. Probes that
1742 * were initiated from a vdev_open can change the state
1743 * as part of the open call.
1745 if (vps
->vps_zio_done_probe
) {
1746 vd
->vdev_fault_wanted
= B_TRUE
;
1747 spa_async_request(spa
, SPA_ASYNC_FAULT_VDEV
);
1751 mutex_enter(&vd
->vdev_probe_lock
);
1752 ASSERT(vd
->vdev_probe_zio
== zio
);
1753 vd
->vdev_probe_zio
= NULL
;
1754 mutex_exit(&vd
->vdev_probe_lock
);
1757 while ((pio
= zio_walk_parents(zio
, &zl
)) != NULL
)
1758 if (!vdev_accessible(vd
, pio
))
1759 pio
->io_error
= SET_ERROR(ENXIO
);
1761 kmem_free(vps
, sizeof (*vps
));
1766 * Determine whether this device is accessible.
1768 * Read and write to several known locations: the pad regions of each
1769 * vdev label but the first, which we leave alone in case it contains
1773 vdev_probe(vdev_t
*vd
, zio_t
*zio
)
1775 spa_t
*spa
= vd
->vdev_spa
;
1776 vdev_probe_stats_t
*vps
= NULL
;
1779 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1782 * Don't probe the probe.
1784 if (zio
&& (zio
->io_flags
& ZIO_FLAG_PROBE
))
1788 * To prevent 'probe storms' when a device fails, we create
1789 * just one probe i/o at a time. All zios that want to probe
1790 * this vdev will become parents of the probe io.
1792 mutex_enter(&vd
->vdev_probe_lock
);
1794 if ((pio
= vd
->vdev_probe_zio
) == NULL
) {
1795 vps
= kmem_zalloc(sizeof (*vps
), KM_SLEEP
);
1797 vps
->vps_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_PROBE
|
1798 ZIO_FLAG_DONT_AGGREGATE
| ZIO_FLAG_TRYHARD
;
1799 vps
->vps_zio_done_probe
= (zio
!= NULL
);
1801 if (spa_config_held(spa
, SCL_ZIO
, RW_WRITER
)) {
1803 * vdev_cant_read and vdev_cant_write can only
1804 * transition from TRUE to FALSE when we have the
1805 * SCL_ZIO lock as writer; otherwise they can only
1806 * transition from FALSE to TRUE. This ensures that
1807 * any zio looking at these values can assume that
1808 * failures persist for the life of the I/O. That's
1809 * important because when a device has intermittent
1810 * connectivity problems, we want to ensure that
1811 * they're ascribed to the device (ENXIO) and not
1814 * Since we hold SCL_ZIO as writer here, clear both
1815 * values so the probe can reevaluate from first
1818 vps
->vps_flags
|= ZIO_FLAG_CONFIG_WRITER
;
1819 vd
->vdev_cant_read
= B_FALSE
;
1820 vd
->vdev_cant_write
= B_FALSE
;
1823 vd
->vdev_probe_zio
= pio
= zio_null(NULL
, spa
, vd
,
1824 vdev_probe_done
, vps
,
1825 vps
->vps_flags
| ZIO_FLAG_DONT_PROPAGATE
);
1829 zio_add_child(zio
, pio
);
1831 mutex_exit(&vd
->vdev_probe_lock
);
1834 ASSERT(zio
!= NULL
);
1838 for (int l
= 1; l
< VDEV_LABELS
; l
++) {
1839 zio_nowait(zio_read_phys(pio
, vd
,
1840 vdev_label_offset(vd
->vdev_psize
, l
,
1841 offsetof(vdev_label_t
, vl_be
)), VDEV_PAD_SIZE
,
1842 abd_alloc_for_io(VDEV_PAD_SIZE
, B_TRUE
),
1843 ZIO_CHECKSUM_OFF
, vdev_probe_done
, vps
,
1844 ZIO_PRIORITY_SYNC_READ
, vps
->vps_flags
, B_TRUE
));
1855 vdev_load_child(void *arg
)
1859 vd
->vdev_load_error
= vdev_load(vd
);
1863 vdev_open_child(void *arg
)
1867 vd
->vdev_open_thread
= curthread
;
1868 vd
->vdev_open_error
= vdev_open(vd
);
1869 vd
->vdev_open_thread
= NULL
;
1873 vdev_uses_zvols(vdev_t
*vd
)
1876 if (zvol_is_zvol(vd
->vdev_path
))
1880 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1881 if (vdev_uses_zvols(vd
->vdev_child
[c
]))
1888 * Returns B_TRUE if the passed child should be opened.
1891 vdev_default_open_children_func(vdev_t
*vd
)
1898 * Open the requested child vdevs. If any of the leaf vdevs are using
1899 * a ZFS volume then do the opens in a single thread. This avoids a
1900 * deadlock when the current thread is holding the spa_namespace_lock.
1903 vdev_open_children_impl(vdev_t
*vd
, vdev_open_children_func_t
*open_func
)
1905 int children
= vd
->vdev_children
;
1907 taskq_t
*tq
= taskq_create("vdev_open", children
, minclsyspri
,
1908 children
, children
, TASKQ_PREPOPULATE
);
1909 vd
->vdev_nonrot
= B_TRUE
;
1911 for (int c
= 0; c
< children
; c
++) {
1912 vdev_t
*cvd
= vd
->vdev_child
[c
];
1914 if (open_func(cvd
) == B_FALSE
)
1917 if (tq
== NULL
|| vdev_uses_zvols(vd
)) {
1918 cvd
->vdev_open_error
= vdev_open(cvd
);
1920 VERIFY(taskq_dispatch(tq
, vdev_open_child
,
1921 cvd
, TQ_SLEEP
) != TASKQID_INVALID
);
1924 vd
->vdev_nonrot
&= cvd
->vdev_nonrot
;
1934 * Open all child vdevs.
1937 vdev_open_children(vdev_t
*vd
)
1939 vdev_open_children_impl(vd
, vdev_default_open_children_func
);
1943 * Conditionally open a subset of child vdevs.
1946 vdev_open_children_subset(vdev_t
*vd
, vdev_open_children_func_t
*open_func
)
1948 vdev_open_children_impl(vd
, open_func
);
1952 * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17)
1953 * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE
1954 * changed, this algorithm can not change, otherwise it would inconsistently
1955 * account for existing bp's. We also hard-code txg 0 for the same reason
1956 * since expanded RAIDZ vdevs can use a different asize for different birth
1960 vdev_set_deflate_ratio(vdev_t
*vd
)
1962 if (vd
== vd
->vdev_top
&& !vd
->vdev_ishole
&& vd
->vdev_ashift
!= 0) {
1963 vd
->vdev_deflate_ratio
= (1 << 17) /
1964 (vdev_psize_to_asize_txg(vd
, 1 << 17, 0) >>
1970 * Choose the best of two ashifts, preferring one between logical ashift
1971 * (absolute minimum) and administrator defined maximum, otherwise take
1972 * the biggest of the two.
1975 vdev_best_ashift(uint64_t logical
, uint64_t a
, uint64_t b
)
1977 if (a
> logical
&& a
<= zfs_vdev_max_auto_ashift
) {
1978 if (b
<= logical
|| b
> zfs_vdev_max_auto_ashift
)
1982 } else if (b
<= logical
|| b
> zfs_vdev_max_auto_ashift
)
1988 * Maximize performance by inflating the configured ashift for top level
1989 * vdevs to be as close to the physical ashift as possible while maintaining
1990 * administrator defined limits and ensuring it doesn't go below the
1994 vdev_ashift_optimize(vdev_t
*vd
)
1996 ASSERT(vd
== vd
->vdev_top
);
1998 if (vd
->vdev_ashift
< vd
->vdev_physical_ashift
&&
1999 vd
->vdev_physical_ashift
<= zfs_vdev_max_auto_ashift
) {
2000 vd
->vdev_ashift
= MIN(
2001 MAX(zfs_vdev_max_auto_ashift
, vd
->vdev_ashift
),
2002 MAX(zfs_vdev_min_auto_ashift
,
2003 vd
->vdev_physical_ashift
));
2006 * If the logical and physical ashifts are the same, then
2007 * we ensure that the top-level vdev's ashift is not smaller
2008 * than our minimum ashift value. For the unusual case
2009 * where logical ashift > physical ashift, we can't cap
2010 * the calculated ashift based on max ashift as that
2011 * would cause failures.
2012 * We still check if we need to increase it to match
2015 vd
->vdev_ashift
= MAX(zfs_vdev_min_auto_ashift
,
2021 * Prepare a virtual device for access.
2024 vdev_open(vdev_t
*vd
)
2026 spa_t
*spa
= vd
->vdev_spa
;
2029 uint64_t max_osize
= 0;
2030 uint64_t asize
, max_asize
, psize
;
2031 uint64_t logical_ashift
= 0;
2032 uint64_t physical_ashift
= 0;
2034 ASSERT(vd
->vdev_open_thread
== curthread
||
2035 spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
2036 ASSERT(vd
->vdev_state
== VDEV_STATE_CLOSED
||
2037 vd
->vdev_state
== VDEV_STATE_CANT_OPEN
||
2038 vd
->vdev_state
== VDEV_STATE_OFFLINE
);
2040 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NONE
;
2041 vd
->vdev_cant_read
= B_FALSE
;
2042 vd
->vdev_cant_write
= B_FALSE
;
2043 vd
->vdev_fault_wanted
= B_FALSE
;
2044 vd
->vdev_min_asize
= vdev_get_min_asize(vd
);
2047 * If this vdev is not removed, check its fault status. If it's
2048 * faulted, bail out of the open.
2050 if (!vd
->vdev_removed
&& vd
->vdev_faulted
) {
2051 ASSERT(vd
->vdev_children
== 0);
2052 ASSERT(vd
->vdev_label_aux
== VDEV_AUX_ERR_EXCEEDED
||
2053 vd
->vdev_label_aux
== VDEV_AUX_EXTERNAL
);
2054 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_FAULTED
,
2055 vd
->vdev_label_aux
);
2056 return (SET_ERROR(ENXIO
));
2057 } else if (vd
->vdev_offline
) {
2058 ASSERT(vd
->vdev_children
== 0);
2059 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_OFFLINE
, VDEV_AUX_NONE
);
2060 return (SET_ERROR(ENXIO
));
2063 error
= vd
->vdev_ops
->vdev_op_open(vd
, &osize
, &max_osize
,
2064 &logical_ashift
, &physical_ashift
);
2066 /* Keep the device in removed state if unplugged */
2067 if (error
== ENOENT
&& vd
->vdev_removed
) {
2068 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_REMOVED
,
2074 * Physical volume size should never be larger than its max size, unless
2075 * the disk has shrunk while we were reading it or the device is buggy
2076 * or damaged: either way it's not safe for use, bail out of the open.
2078 if (osize
> max_osize
) {
2079 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2080 VDEV_AUX_OPEN_FAILED
);
2081 return (SET_ERROR(ENXIO
));
2085 * Reset the vdev_reopening flag so that we actually close
2086 * the vdev on error.
2088 vd
->vdev_reopening
= B_FALSE
;
2089 if (zio_injection_enabled
&& error
== 0)
2090 error
= zio_handle_device_injection(vd
, NULL
, SET_ERROR(ENXIO
));
2093 if (vd
->vdev_removed
&&
2094 vd
->vdev_stat
.vs_aux
!= VDEV_AUX_OPEN_FAILED
)
2095 vd
->vdev_removed
= B_FALSE
;
2097 if (vd
->vdev_stat
.vs_aux
== VDEV_AUX_CHILDREN_OFFLINE
) {
2098 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_OFFLINE
,
2099 vd
->vdev_stat
.vs_aux
);
2101 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2102 vd
->vdev_stat
.vs_aux
);
2107 vd
->vdev_removed
= B_FALSE
;
2110 * Recheck the faulted flag now that we have confirmed that
2111 * the vdev is accessible. If we're faulted, bail.
2113 if (vd
->vdev_faulted
) {
2114 ASSERT(vd
->vdev_children
== 0);
2115 ASSERT(vd
->vdev_label_aux
== VDEV_AUX_ERR_EXCEEDED
||
2116 vd
->vdev_label_aux
== VDEV_AUX_EXTERNAL
);
2117 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_FAULTED
,
2118 vd
->vdev_label_aux
);
2119 return (SET_ERROR(ENXIO
));
2122 if (vd
->vdev_degraded
) {
2123 ASSERT(vd
->vdev_children
== 0);
2124 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_DEGRADED
,
2125 VDEV_AUX_ERR_EXCEEDED
);
2127 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_HEALTHY
, 0);
2131 * For hole or missing vdevs we just return success.
2133 if (vd
->vdev_ishole
|| vd
->vdev_ops
== &vdev_missing_ops
)
2136 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
2137 if (vd
->vdev_child
[c
]->vdev_state
!= VDEV_STATE_HEALTHY
) {
2138 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_DEGRADED
,
2144 osize
= P2ALIGN_TYPED(osize
, sizeof (vdev_label_t
), uint64_t);
2145 max_osize
= P2ALIGN_TYPED(max_osize
, sizeof (vdev_label_t
), uint64_t);
2147 if (vd
->vdev_children
== 0) {
2148 if (osize
< SPA_MINDEVSIZE
) {
2149 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2150 VDEV_AUX_TOO_SMALL
);
2151 return (SET_ERROR(EOVERFLOW
));
2154 asize
= osize
- (VDEV_LABEL_START_SIZE
+ VDEV_LABEL_END_SIZE
);
2155 max_asize
= max_osize
- (VDEV_LABEL_START_SIZE
+
2156 VDEV_LABEL_END_SIZE
);
2158 if (vd
->vdev_parent
!= NULL
&& osize
< SPA_MINDEVSIZE
-
2159 (VDEV_LABEL_START_SIZE
+ VDEV_LABEL_END_SIZE
)) {
2160 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2161 VDEV_AUX_TOO_SMALL
);
2162 return (SET_ERROR(EOVERFLOW
));
2166 max_asize
= max_osize
;
2170 * If the vdev was expanded, record this so that we can re-create the
2171 * uberblock rings in labels {2,3}, during the next sync.
2173 if ((psize
> vd
->vdev_psize
) && (vd
->vdev_psize
!= 0))
2174 vd
->vdev_copy_uberblocks
= B_TRUE
;
2176 vd
->vdev_psize
= psize
;
2179 * Make sure the allocatable size hasn't shrunk too much.
2181 if (asize
< vd
->vdev_min_asize
) {
2182 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2183 VDEV_AUX_BAD_LABEL
);
2184 return (SET_ERROR(EINVAL
));
2188 * We can always set the logical/physical ashift members since
2189 * their values are only used to calculate the vdev_ashift when
2190 * the device is first added to the config. These values should
2191 * not be used for anything else since they may change whenever
2192 * the device is reopened and we don't store them in the label.
2194 vd
->vdev_physical_ashift
=
2195 MAX(physical_ashift
, vd
->vdev_physical_ashift
);
2196 vd
->vdev_logical_ashift
= MAX(logical_ashift
,
2197 vd
->vdev_logical_ashift
);
2199 if (vd
->vdev_asize
== 0) {
2201 * This is the first-ever open, so use the computed values.
2202 * For compatibility, a different ashift can be requested.
2204 vd
->vdev_asize
= asize
;
2205 vd
->vdev_max_asize
= max_asize
;
2208 * If the vdev_ashift was not overridden at creation time
2209 * (0) or the override value is impossible for the device,
2210 * then set it the logical ashift and optimize the ashift.
2212 if (vd
->vdev_ashift
< vd
->vdev_logical_ashift
) {
2213 vd
->vdev_ashift
= vd
->vdev_logical_ashift
;
2215 if (vd
->vdev_logical_ashift
> ASHIFT_MAX
) {
2216 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2217 VDEV_AUX_ASHIFT_TOO_BIG
);
2218 return (SET_ERROR(EDOM
));
2221 if (vd
->vdev_top
== vd
&& vd
->vdev_attaching
== B_FALSE
)
2222 vdev_ashift_optimize(vd
);
2223 vd
->vdev_attaching
= B_FALSE
;
2225 if (vd
->vdev_ashift
!= 0 && (vd
->vdev_ashift
< ASHIFT_MIN
||
2226 vd
->vdev_ashift
> ASHIFT_MAX
)) {
2227 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2228 VDEV_AUX_BAD_ASHIFT
);
2229 return (SET_ERROR(EDOM
));
2233 * Make sure the alignment required hasn't increased.
2235 if (vd
->vdev_ashift
> vd
->vdev_top
->vdev_ashift
&&
2236 vd
->vdev_ops
->vdev_op_leaf
) {
2237 (void) zfs_ereport_post(
2238 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT
,
2239 spa
, vd
, NULL
, NULL
, 0);
2240 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2241 VDEV_AUX_BAD_LABEL
);
2242 return (SET_ERROR(EDOM
));
2244 vd
->vdev_max_asize
= max_asize
;
2248 * If all children are healthy we update asize if either:
2249 * The asize has increased, due to a device expansion caused by dynamic
2250 * LUN growth or vdev replacement, and automatic expansion is enabled;
2251 * making the additional space available.
2253 * The asize has decreased, due to a device shrink usually caused by a
2254 * vdev replace with a smaller device. This ensures that calculations
2255 * based of max_asize and asize e.g. esize are always valid. It's safe
2256 * to do this as we've already validated that asize is greater than
2259 if (vd
->vdev_state
== VDEV_STATE_HEALTHY
&&
2260 ((asize
> vd
->vdev_asize
&&
2261 (vd
->vdev_expanding
|| spa
->spa_autoexpand
)) ||
2262 (asize
< vd
->vdev_asize
)))
2263 vd
->vdev_asize
= asize
;
2265 vdev_set_min_asize(vd
);
2268 * Ensure we can issue some IO before declaring the
2269 * vdev open for business.
2271 if (vd
->vdev_ops
->vdev_op_leaf
&&
2272 (error
= zio_wait(vdev_probe(vd
, NULL
))) != 0) {
2273 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_FAULTED
,
2274 VDEV_AUX_ERR_EXCEEDED
);
2279 * Track the minimum allocation size.
2281 if (vd
->vdev_top
== vd
&& vd
->vdev_ashift
!= 0 &&
2282 vd
->vdev_islog
== 0 && vd
->vdev_aux
== NULL
) {
2283 uint64_t min_alloc
= vdev_get_min_alloc(vd
);
2284 vdev_spa_set_alloc(spa
, min_alloc
);
2288 * If this is a leaf vdev, assess whether a resilver is needed.
2289 * But don't do this if we are doing a reopen for a scrub, since
2290 * this would just restart the scrub we are already doing.
2292 if (vd
->vdev_ops
->vdev_op_leaf
&& !spa
->spa_scrub_reopen
)
2293 dsl_scan_assess_vdev(spa
->spa_dsl_pool
, vd
);
2299 vdev_validate_child(void *arg
)
2303 vd
->vdev_validate_thread
= curthread
;
2304 vd
->vdev_validate_error
= vdev_validate(vd
);
2305 vd
->vdev_validate_thread
= NULL
;
2309 * Called once the vdevs are all opened, this routine validates the label
2310 * contents. This needs to be done before vdev_load() so that we don't
2311 * inadvertently do repair I/Os to the wrong device.
2313 * This function will only return failure if one of the vdevs indicates that it
2314 * has since been destroyed or exported. This is only possible if
2315 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2316 * will be updated but the function will return 0.
2319 vdev_validate(vdev_t
*vd
)
2321 spa_t
*spa
= vd
->vdev_spa
;
2324 uint64_t guid
= 0, aux_guid
= 0, top_guid
;
2328 int children
= vd
->vdev_children
;
2330 if (vdev_validate_skip
)
2334 tq
= taskq_create("vdev_validate", children
, minclsyspri
,
2335 children
, children
, TASKQ_PREPOPULATE
);
2338 for (uint64_t c
= 0; c
< children
; c
++) {
2339 vdev_t
*cvd
= vd
->vdev_child
[c
];
2341 if (tq
== NULL
|| vdev_uses_zvols(cvd
)) {
2342 vdev_validate_child(cvd
);
2344 VERIFY(taskq_dispatch(tq
, vdev_validate_child
, cvd
,
2345 TQ_SLEEP
) != TASKQID_INVALID
);
2352 for (int c
= 0; c
< children
; c
++) {
2353 int error
= vd
->vdev_child
[c
]->vdev_validate_error
;
2356 return (SET_ERROR(EBADF
));
2361 * If the device has already failed, or was marked offline, don't do
2362 * any further validation. Otherwise, label I/O will fail and we will
2363 * overwrite the previous state.
2365 if (!vd
->vdev_ops
->vdev_op_leaf
|| !vdev_readable(vd
))
2369 * If we are performing an extreme rewind, we allow for a label that
2370 * was modified at a point after the current txg.
2371 * If config lock is not held do not check for the txg. spa_sync could
2372 * be updating the vdev's label before updating spa_last_synced_txg.
2374 if (spa
->spa_extreme_rewind
|| spa_last_synced_txg(spa
) == 0 ||
2375 spa_config_held(spa
, SCL_CONFIG
, RW_WRITER
) != SCL_CONFIG
)
2378 txg
= spa_last_synced_txg(spa
);
2380 if ((label
= vdev_label_read_config(vd
, txg
)) == NULL
) {
2381 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2382 VDEV_AUX_BAD_LABEL
);
2383 vdev_dbgmsg(vd
, "vdev_validate: failed reading config for "
2384 "txg %llu", (u_longlong_t
)txg
);
2389 * Determine if this vdev has been split off into another
2390 * pool. If so, then refuse to open it.
2392 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_SPLIT_GUID
,
2393 &aux_guid
) == 0 && aux_guid
== spa_guid(spa
)) {
2394 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2395 VDEV_AUX_SPLIT_POOL
);
2397 vdev_dbgmsg(vd
, "vdev_validate: vdev split into other pool");
2401 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_GUID
, &guid
) != 0) {
2402 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2403 VDEV_AUX_CORRUPT_DATA
);
2405 vdev_dbgmsg(vd
, "vdev_validate: '%s' missing from label",
2406 ZPOOL_CONFIG_POOL_GUID
);
2411 * If config is not trusted then ignore the spa guid check. This is
2412 * necessary because if the machine crashed during a re-guid the new
2413 * guid might have been written to all of the vdev labels, but not the
2414 * cached config. The check will be performed again once we have the
2415 * trusted config from the MOS.
2417 if (spa
->spa_trust_config
&& guid
!= spa_guid(spa
)) {
2418 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2419 VDEV_AUX_CORRUPT_DATA
);
2421 vdev_dbgmsg(vd
, "vdev_validate: vdev label pool_guid doesn't "
2422 "match config (%llu != %llu)", (u_longlong_t
)guid
,
2423 (u_longlong_t
)spa_guid(spa
));
2427 if (nvlist_lookup_nvlist(label
, ZPOOL_CONFIG_VDEV_TREE
, &nvl
)
2428 != 0 || nvlist_lookup_uint64(nvl
, ZPOOL_CONFIG_ORIG_GUID
,
2432 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_GUID
, &guid
) != 0) {
2433 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2434 VDEV_AUX_CORRUPT_DATA
);
2436 vdev_dbgmsg(vd
, "vdev_validate: '%s' missing from label",
2441 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_TOP_GUID
, &top_guid
)
2443 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2444 VDEV_AUX_CORRUPT_DATA
);
2446 vdev_dbgmsg(vd
, "vdev_validate: '%s' missing from label",
2447 ZPOOL_CONFIG_TOP_GUID
);
2452 * If this vdev just became a top-level vdev because its sibling was
2453 * detached, it will have adopted the parent's vdev guid -- but the
2454 * label may or may not be on disk yet. Fortunately, either version
2455 * of the label will have the same top guid, so if we're a top-level
2456 * vdev, we can safely compare to that instead.
2457 * However, if the config comes from a cachefile that failed to update
2458 * after the detach, a top-level vdev will appear as a non top-level
2459 * vdev in the config. Also relax the constraints if we perform an
2462 * If we split this vdev off instead, then we also check the
2463 * original pool's guid. We don't want to consider the vdev
2464 * corrupt if it is partway through a split operation.
2466 if (vd
->vdev_guid
!= guid
&& vd
->vdev_guid
!= aux_guid
) {
2467 boolean_t mismatch
= B_FALSE
;
2468 if (spa
->spa_trust_config
&& !spa
->spa_extreme_rewind
) {
2469 if (vd
!= vd
->vdev_top
|| vd
->vdev_guid
!= top_guid
)
2472 if (vd
->vdev_guid
!= top_guid
&&
2473 vd
->vdev_top
->vdev_guid
!= guid
)
2478 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2479 VDEV_AUX_CORRUPT_DATA
);
2481 vdev_dbgmsg(vd
, "vdev_validate: config guid "
2482 "doesn't match label guid");
2483 vdev_dbgmsg(vd
, "CONFIG: guid %llu, top_guid %llu",
2484 (u_longlong_t
)vd
->vdev_guid
,
2485 (u_longlong_t
)vd
->vdev_top
->vdev_guid
);
2486 vdev_dbgmsg(vd
, "LABEL: guid %llu, top_guid %llu, "
2487 "aux_guid %llu", (u_longlong_t
)guid
,
2488 (u_longlong_t
)top_guid
, (u_longlong_t
)aux_guid
);
2493 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
2495 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2496 VDEV_AUX_CORRUPT_DATA
);
2498 vdev_dbgmsg(vd
, "vdev_validate: '%s' missing from label",
2499 ZPOOL_CONFIG_POOL_STATE
);
2506 * If this is a verbatim import, no need to check the
2507 * state of the pool.
2509 if (!(spa
->spa_import_flags
& ZFS_IMPORT_VERBATIM
) &&
2510 spa_load_state(spa
) == SPA_LOAD_OPEN
&&
2511 state
!= POOL_STATE_ACTIVE
) {
2512 vdev_dbgmsg(vd
, "vdev_validate: invalid pool state (%llu) "
2513 "for spa %s", (u_longlong_t
)state
, spa
->spa_name
);
2514 return (SET_ERROR(EBADF
));
2518 * If we were able to open and validate a vdev that was
2519 * previously marked permanently unavailable, clear that state
2522 if (vd
->vdev_not_present
)
2523 vd
->vdev_not_present
= 0;
2529 vdev_update_path(const char *prefix
, char *svd
, char **dvd
, uint64_t guid
)
2531 if (svd
!= NULL
&& *dvd
!= NULL
) {
2532 if (strcmp(svd
, *dvd
) != 0) {
2533 zfs_dbgmsg("vdev_copy_path: vdev %llu: %s changed "
2534 "from '%s' to '%s'", (u_longlong_t
)guid
, prefix
,
2537 *dvd
= spa_strdup(svd
);
2539 } else if (svd
!= NULL
) {
2540 *dvd
= spa_strdup(svd
);
2541 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2542 (u_longlong_t
)guid
, *dvd
);
2547 vdev_copy_path_impl(vdev_t
*svd
, vdev_t
*dvd
)
2551 vdev_update_path("vdev_path", svd
->vdev_path
, &dvd
->vdev_path
,
2554 vdev_update_path("vdev_devid", svd
->vdev_devid
, &dvd
->vdev_devid
,
2557 vdev_update_path("vdev_physpath", svd
->vdev_physpath
,
2558 &dvd
->vdev_physpath
, dvd
->vdev_guid
);
2561 * Our enclosure sysfs path may have changed between imports
2563 old
= dvd
->vdev_enc_sysfs_path
;
2564 new = svd
->vdev_enc_sysfs_path
;
2565 if ((old
!= NULL
&& new == NULL
) ||
2566 (old
== NULL
&& new != NULL
) ||
2567 ((old
!= NULL
&& new != NULL
) && strcmp(new, old
) != 0)) {
2568 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2569 "changed from '%s' to '%s'", (u_longlong_t
)dvd
->vdev_guid
,
2572 if (dvd
->vdev_enc_sysfs_path
)
2573 spa_strfree(dvd
->vdev_enc_sysfs_path
);
2575 if (svd
->vdev_enc_sysfs_path
) {
2576 dvd
->vdev_enc_sysfs_path
= spa_strdup(
2577 svd
->vdev_enc_sysfs_path
);
2579 dvd
->vdev_enc_sysfs_path
= NULL
;
2585 * Recursively copy vdev paths from one vdev to another. Source and destination
2586 * vdev trees must have same geometry otherwise return error. Intended to copy
2587 * paths from userland config into MOS config.
2590 vdev_copy_path_strict(vdev_t
*svd
, vdev_t
*dvd
)
2592 if ((svd
->vdev_ops
== &vdev_missing_ops
) ||
2593 (svd
->vdev_ishole
&& dvd
->vdev_ishole
) ||
2594 (dvd
->vdev_ops
== &vdev_indirect_ops
))
2597 if (svd
->vdev_ops
!= dvd
->vdev_ops
) {
2598 vdev_dbgmsg(svd
, "vdev_copy_path: vdev type mismatch: %s != %s",
2599 svd
->vdev_ops
->vdev_op_type
, dvd
->vdev_ops
->vdev_op_type
);
2600 return (SET_ERROR(EINVAL
));
2603 if (svd
->vdev_guid
!= dvd
->vdev_guid
) {
2604 vdev_dbgmsg(svd
, "vdev_copy_path: guids mismatch (%llu != "
2605 "%llu)", (u_longlong_t
)svd
->vdev_guid
,
2606 (u_longlong_t
)dvd
->vdev_guid
);
2607 return (SET_ERROR(EINVAL
));
2610 if (svd
->vdev_children
!= dvd
->vdev_children
) {
2611 vdev_dbgmsg(svd
, "vdev_copy_path: children count mismatch: "
2612 "%llu != %llu", (u_longlong_t
)svd
->vdev_children
,
2613 (u_longlong_t
)dvd
->vdev_children
);
2614 return (SET_ERROR(EINVAL
));
2617 for (uint64_t i
= 0; i
< svd
->vdev_children
; i
++) {
2618 int error
= vdev_copy_path_strict(svd
->vdev_child
[i
],
2619 dvd
->vdev_child
[i
]);
2624 if (svd
->vdev_ops
->vdev_op_leaf
)
2625 vdev_copy_path_impl(svd
, dvd
);
2631 vdev_copy_path_search(vdev_t
*stvd
, vdev_t
*dvd
)
2633 ASSERT(stvd
->vdev_top
== stvd
);
2634 ASSERT3U(stvd
->vdev_id
, ==, dvd
->vdev_top
->vdev_id
);
2636 for (uint64_t i
= 0; i
< dvd
->vdev_children
; i
++) {
2637 vdev_copy_path_search(stvd
, dvd
->vdev_child
[i
]);
2640 if (!dvd
->vdev_ops
->vdev_op_leaf
|| !vdev_is_concrete(dvd
))
2644 * The idea here is that while a vdev can shift positions within
2645 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2646 * step outside of it.
2648 vdev_t
*vd
= vdev_lookup_by_guid(stvd
, dvd
->vdev_guid
);
2650 if (vd
== NULL
|| vd
->vdev_ops
!= dvd
->vdev_ops
)
2653 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
2655 vdev_copy_path_impl(vd
, dvd
);
2659 * Recursively copy vdev paths from one root vdev to another. Source and
2660 * destination vdev trees may differ in geometry. For each destination leaf
2661 * vdev, search a vdev with the same guid and top vdev id in the source.
2662 * Intended to copy paths from userland config into MOS config.
2665 vdev_copy_path_relaxed(vdev_t
*srvd
, vdev_t
*drvd
)
2667 uint64_t children
= MIN(srvd
->vdev_children
, drvd
->vdev_children
);
2668 ASSERT(srvd
->vdev_ops
== &vdev_root_ops
);
2669 ASSERT(drvd
->vdev_ops
== &vdev_root_ops
);
2671 for (uint64_t i
= 0; i
< children
; i
++) {
2672 vdev_copy_path_search(srvd
->vdev_child
[i
],
2673 drvd
->vdev_child
[i
]);
2678 * Close a virtual device.
2681 vdev_close(vdev_t
*vd
)
2683 vdev_t
*pvd
= vd
->vdev_parent
;
2684 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
2687 ASSERT(vd
->vdev_open_thread
== curthread
||
2688 spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
2691 * If our parent is reopening, then we are as well, unless we are
2694 if (pvd
!= NULL
&& pvd
->vdev_reopening
)
2695 vd
->vdev_reopening
= (pvd
->vdev_reopening
&& !vd
->vdev_offline
);
2697 vd
->vdev_ops
->vdev_op_close(vd
);
2700 * We record the previous state before we close it, so that if we are
2701 * doing a reopen(), we don't generate FMA ereports if we notice that
2702 * it's still faulted.
2704 vd
->vdev_prevstate
= vd
->vdev_state
;
2706 if (vd
->vdev_offline
)
2707 vd
->vdev_state
= VDEV_STATE_OFFLINE
;
2709 vd
->vdev_state
= VDEV_STATE_CLOSED
;
2710 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NONE
;
2714 vdev_hold(vdev_t
*vd
)
2716 spa_t
*spa
= vd
->vdev_spa
;
2718 ASSERT(spa_is_root(spa
));
2719 if (spa
->spa_state
== POOL_STATE_UNINITIALIZED
)
2722 for (int c
= 0; c
< vd
->vdev_children
; c
++)
2723 vdev_hold(vd
->vdev_child
[c
]);
2725 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_ops
->vdev_op_hold
!= NULL
)
2726 vd
->vdev_ops
->vdev_op_hold(vd
);
2730 vdev_rele(vdev_t
*vd
)
2732 ASSERT(spa_is_root(vd
->vdev_spa
));
2733 for (int c
= 0; c
< vd
->vdev_children
; c
++)
2734 vdev_rele(vd
->vdev_child
[c
]);
2736 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_ops
->vdev_op_rele
!= NULL
)
2737 vd
->vdev_ops
->vdev_op_rele(vd
);
2741 * Reopen all interior vdevs and any unopened leaves. We don't actually
2742 * reopen leaf vdevs which had previously been opened as they might deadlock
2743 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2744 * If the leaf has never been opened then open it, as usual.
2747 vdev_reopen(vdev_t
*vd
)
2749 spa_t
*spa
= vd
->vdev_spa
;
2751 ASSERT(spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
2753 /* set the reopening flag unless we're taking the vdev offline */
2754 vd
->vdev_reopening
= !vd
->vdev_offline
;
2756 (void) vdev_open(vd
);
2759 * Call vdev_validate() here to make sure we have the same device.
2760 * Otherwise, a device with an invalid label could be successfully
2761 * opened in response to vdev_reopen().
2764 (void) vdev_validate_aux(vd
);
2765 if (vdev_readable(vd
) && vdev_writeable(vd
) &&
2766 vd
->vdev_aux
== &spa
->spa_l2cache
) {
2768 * In case the vdev is present we should evict all ARC
2769 * buffers and pointers to log blocks and reclaim their
2770 * space before restoring its contents to L2ARC.
2772 if (l2arc_vdev_present(vd
)) {
2773 l2arc_rebuild_vdev(vd
, B_TRUE
);
2775 l2arc_add_vdev(spa
, vd
);
2777 spa_async_request(spa
, SPA_ASYNC_L2CACHE_REBUILD
);
2778 spa_async_request(spa
, SPA_ASYNC_L2CACHE_TRIM
);
2781 (void) vdev_validate(vd
);
2785 * Recheck if resilver is still needed and cancel any
2786 * scheduled resilver if resilver is unneeded.
2788 if (!vdev_resilver_needed(spa
->spa_root_vdev
, NULL
, NULL
) &&
2789 spa
->spa_async_tasks
& SPA_ASYNC_RESILVER
) {
2790 mutex_enter(&spa
->spa_async_lock
);
2791 spa
->spa_async_tasks
&= ~SPA_ASYNC_RESILVER
;
2792 mutex_exit(&spa
->spa_async_lock
);
2796 * Reassess parent vdev's health.
2798 vdev_propagate_state(vd
);
2802 vdev_create(vdev_t
*vd
, uint64_t txg
, boolean_t isreplacing
)
2807 * Normally, partial opens (e.g. of a mirror) are allowed.
2808 * For a create, however, we want to fail the request if
2809 * there are any components we can't open.
2811 error
= vdev_open(vd
);
2813 if (error
|| vd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
2815 return (error
? error
: SET_ERROR(ENXIO
));
2819 * Recursively load DTLs and initialize all labels.
2821 if ((error
= vdev_dtl_load(vd
)) != 0 ||
2822 (error
= vdev_label_init(vd
, txg
, isreplacing
?
2823 VDEV_LABEL_REPLACE
: VDEV_LABEL_CREATE
)) != 0) {
2832 vdev_metaslab_set_size(vdev_t
*vd
)
2834 uint64_t asize
= vd
->vdev_asize
;
2835 uint64_t ms_count
= asize
>> zfs_vdev_default_ms_shift
;
2839 * There are two dimensions to the metaslab sizing calculation:
2840 * the size of the metaslab and the count of metaslabs per vdev.
2842 * The default values used below are a good balance between memory
2843 * usage (larger metaslab size means more memory needed for loaded
2844 * metaslabs; more metaslabs means more memory needed for the
2845 * metaslab_t structs), metaslab load time (larger metaslabs take
2846 * longer to load), and metaslab sync time (more metaslabs means
2847 * more time spent syncing all of them).
2849 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2850 * The range of the dimensions are as follows:
2852 * 2^29 <= ms_size <= 2^34
2853 * 16 <= ms_count <= 131,072
2855 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2856 * at least 512MB (2^29) to minimize fragmentation effects when
2857 * testing with smaller devices. However, the count constraint
2858 * of at least 16 metaslabs will override this minimum size goal.
2860 * On the upper end of vdev sizes, we aim for a maximum metaslab
2861 * size of 16GB. However, we will cap the total count to 2^17
2862 * metaslabs to keep our memory footprint in check and let the
2863 * metaslab size grow from there if that limit is hit.
2865 * The net effect of applying above constrains is summarized below.
2867 * vdev size metaslab count
2868 * --------------|-----------------
2870 * 8GB - 100GB one per 512MB
2872 * 3TB - 2PB one per 16GB
2874 * --------------------------------
2876 * Finally, note that all of the above calculate the initial
2877 * number of metaslabs. Expanding a top-level vdev will result
2878 * in additional metaslabs being allocated making it possible
2879 * to exceed the zfs_vdev_ms_count_limit.
2882 if (ms_count
< zfs_vdev_min_ms_count
)
2883 ms_shift
= highbit64(asize
/ zfs_vdev_min_ms_count
);
2884 else if (ms_count
> zfs_vdev_default_ms_count
)
2885 ms_shift
= highbit64(asize
/ zfs_vdev_default_ms_count
);
2887 ms_shift
= zfs_vdev_default_ms_shift
;
2889 if (ms_shift
< SPA_MAXBLOCKSHIFT
) {
2890 ms_shift
= SPA_MAXBLOCKSHIFT
;
2891 } else if (ms_shift
> zfs_vdev_max_ms_shift
) {
2892 ms_shift
= zfs_vdev_max_ms_shift
;
2893 /* cap the total count to constrain memory footprint */
2894 if ((asize
>> ms_shift
) > zfs_vdev_ms_count_limit
)
2895 ms_shift
= highbit64(asize
/ zfs_vdev_ms_count_limit
);
2898 vd
->vdev_ms_shift
= ms_shift
;
2899 ASSERT3U(vd
->vdev_ms_shift
, >=, SPA_MAXBLOCKSHIFT
);
2903 vdev_dirty(vdev_t
*vd
, int flags
, void *arg
, uint64_t txg
)
2905 ASSERT(vd
== vd
->vdev_top
);
2906 /* indirect vdevs don't have metaslabs or dtls */
2907 ASSERT(vdev_is_concrete(vd
) || flags
== 0);
2908 ASSERT(ISP2(flags
));
2909 ASSERT(spa_writeable(vd
->vdev_spa
));
2911 if (flags
& VDD_METASLAB
)
2912 (void) txg_list_add(&vd
->vdev_ms_list
, arg
, txg
);
2914 if (flags
& VDD_DTL
)
2915 (void) txg_list_add(&vd
->vdev_dtl_list
, arg
, txg
);
2917 (void) txg_list_add(&vd
->vdev_spa
->spa_vdev_txg_list
, vd
, txg
);
2921 vdev_dirty_leaves(vdev_t
*vd
, int flags
, uint64_t txg
)
2923 for (int c
= 0; c
< vd
->vdev_children
; c
++)
2924 vdev_dirty_leaves(vd
->vdev_child
[c
], flags
, txg
);
2926 if (vd
->vdev_ops
->vdev_op_leaf
)
2927 vdev_dirty(vd
->vdev_top
, flags
, vd
, txg
);
2933 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2934 * the vdev has less than perfect replication. There are four kinds of DTL:
2936 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2938 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2940 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2941 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2942 * txgs that was scrubbed.
2944 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2945 * persistent errors or just some device being offline.
2946 * Unlike the other three, the DTL_OUTAGE map is not generally
2947 * maintained; it's only computed when needed, typically to
2948 * determine whether a device can be detached.
2950 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2951 * either has the data or it doesn't.
2953 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2954 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2955 * if any child is less than fully replicated, then so is its parent.
2956 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2957 * comprising only those txgs which appear in 'maxfaults' or more children;
2958 * those are the txgs we don't have enough replication to read. For example,
2959 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2960 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2961 * two child DTL_MISSING maps.
2963 * It should be clear from the above that to compute the DTLs and outage maps
2964 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2965 * Therefore, that is all we keep on disk. When loading the pool, or after
2966 * a configuration change, we generate all other DTLs from first principles.
2969 vdev_dtl_dirty(vdev_t
*vd
, vdev_dtl_type_t t
, uint64_t txg
, uint64_t size
)
2971 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
2973 ASSERT(t
< DTL_TYPES
);
2974 ASSERT(vd
!= vd
->vdev_spa
->spa_root_vdev
);
2975 ASSERT(spa_writeable(vd
->vdev_spa
));
2977 mutex_enter(&vd
->vdev_dtl_lock
);
2978 if (!range_tree_contains(rt
, txg
, size
))
2979 range_tree_add(rt
, txg
, size
);
2980 mutex_exit(&vd
->vdev_dtl_lock
);
2984 vdev_dtl_contains(vdev_t
*vd
, vdev_dtl_type_t t
, uint64_t txg
, uint64_t size
)
2986 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
2987 boolean_t dirty
= B_FALSE
;
2989 ASSERT(t
< DTL_TYPES
);
2990 ASSERT(vd
!= vd
->vdev_spa
->spa_root_vdev
);
2993 * While we are loading the pool, the DTLs have not been loaded yet.
2994 * This isn't a problem but it can result in devices being tried
2995 * which are known to not have the data. In which case, the import
2996 * is relying on the checksum to ensure that we get the right data.
2997 * Note that while importing we are only reading the MOS, which is
2998 * always checksummed.
3000 mutex_enter(&vd
->vdev_dtl_lock
);
3001 if (!range_tree_is_empty(rt
))
3002 dirty
= range_tree_contains(rt
, txg
, size
);
3003 mutex_exit(&vd
->vdev_dtl_lock
);
3009 vdev_dtl_empty(vdev_t
*vd
, vdev_dtl_type_t t
)
3011 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
3014 mutex_enter(&vd
->vdev_dtl_lock
);
3015 empty
= range_tree_is_empty(rt
);
3016 mutex_exit(&vd
->vdev_dtl_lock
);
3022 * Check if the txg falls within the range which must be
3023 * resilvered. DVAs outside this range can always be skipped.
3026 vdev_default_need_resilver(vdev_t
*vd
, const dva_t
*dva
, size_t psize
,
3027 uint64_t phys_birth
)
3029 (void) dva
, (void) psize
;
3031 /* Set by sequential resilver. */
3032 if (phys_birth
== TXG_UNKNOWN
)
3035 return (vdev_dtl_contains(vd
, DTL_PARTIAL
, phys_birth
, 1));
3039 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
3042 vdev_dtl_need_resilver(vdev_t
*vd
, const dva_t
*dva
, size_t psize
,
3043 uint64_t phys_birth
)
3045 ASSERT(vd
!= vd
->vdev_spa
->spa_root_vdev
);
3047 if (vd
->vdev_ops
->vdev_op_need_resilver
== NULL
||
3048 vd
->vdev_ops
->vdev_op_leaf
)
3051 return (vd
->vdev_ops
->vdev_op_need_resilver(vd
, dva
, psize
,
3056 * Returns the lowest txg in the DTL range.
3059 vdev_dtl_min(vdev_t
*vd
)
3061 ASSERT(MUTEX_HELD(&vd
->vdev_dtl_lock
));
3062 ASSERT3U(range_tree_space(vd
->vdev_dtl
[DTL_MISSING
]), !=, 0);
3063 ASSERT0(vd
->vdev_children
);
3065 return (range_tree_min(vd
->vdev_dtl
[DTL_MISSING
]) - 1);
3069 * Returns the highest txg in the DTL.
3072 vdev_dtl_max(vdev_t
*vd
)
3074 ASSERT(MUTEX_HELD(&vd
->vdev_dtl_lock
));
3075 ASSERT3U(range_tree_space(vd
->vdev_dtl
[DTL_MISSING
]), !=, 0);
3076 ASSERT0(vd
->vdev_children
);
3078 return (range_tree_max(vd
->vdev_dtl
[DTL_MISSING
]));
3082 * Determine if a resilvering vdev should remove any DTL entries from
3083 * its range. If the vdev was resilvering for the entire duration of the
3084 * scan then it should excise that range from its DTLs. Otherwise, this
3085 * vdev is considered partially resilvered and should leave its DTL
3086 * entries intact. The comment in vdev_dtl_reassess() describes how we
3090 vdev_dtl_should_excise(vdev_t
*vd
, boolean_t rebuild_done
)
3092 ASSERT0(vd
->vdev_children
);
3094 if (vd
->vdev_state
< VDEV_STATE_DEGRADED
)
3097 if (vd
->vdev_resilver_deferred
)
3100 if (range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
]))
3104 vdev_rebuild_t
*vr
= &vd
->vdev_top
->vdev_rebuild_config
;
3105 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
3107 /* Rebuild not initiated by attach */
3108 if (vd
->vdev_rebuild_txg
== 0)
3112 * When a rebuild completes without error then all missing data
3113 * up to the rebuild max txg has been reconstructed and the DTL
3114 * is eligible for excision.
3116 if (vrp
->vrp_rebuild_state
== VDEV_REBUILD_COMPLETE
&&
3117 vdev_dtl_max(vd
) <= vrp
->vrp_max_txg
) {
3118 ASSERT3U(vrp
->vrp_min_txg
, <=, vdev_dtl_min(vd
));
3119 ASSERT3U(vrp
->vrp_min_txg
, <, vd
->vdev_rebuild_txg
);
3120 ASSERT3U(vd
->vdev_rebuild_txg
, <=, vrp
->vrp_max_txg
);
3124 dsl_scan_t
*scn
= vd
->vdev_spa
->spa_dsl_pool
->dp_scan
;
3125 dsl_scan_phys_t
*scnp __maybe_unused
= &scn
->scn_phys
;
3127 /* Resilver not initiated by attach */
3128 if (vd
->vdev_resilver_txg
== 0)
3132 * When a resilver is initiated the scan will assign the
3133 * scn_max_txg value to the highest txg value that exists
3134 * in all DTLs. If this device's max DTL is not part of this
3135 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3136 * then it is not eligible for excision.
3138 if (vdev_dtl_max(vd
) <= scn
->scn_phys
.scn_max_txg
) {
3139 ASSERT3U(scnp
->scn_min_txg
, <=, vdev_dtl_min(vd
));
3140 ASSERT3U(scnp
->scn_min_txg
, <, vd
->vdev_resilver_txg
);
3141 ASSERT3U(vd
->vdev_resilver_txg
, <=, scnp
->scn_max_txg
);
3150 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3151 * write operations will be issued to the pool.
3154 vdev_dtl_reassess_impl(vdev_t
*vd
, uint64_t txg
, uint64_t scrub_txg
,
3155 boolean_t scrub_done
, boolean_t rebuild_done
, boolean_t faulting
)
3157 spa_t
*spa
= vd
->vdev_spa
;
3161 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
3163 for (int c
= 0; c
< vd
->vdev_children
; c
++)
3164 vdev_dtl_reassess_impl(vd
->vdev_child
[c
], txg
,
3165 scrub_txg
, scrub_done
, rebuild_done
, faulting
);
3167 if (vd
== spa
->spa_root_vdev
|| !vdev_is_concrete(vd
) || vd
->vdev_aux
)
3170 if (vd
->vdev_ops
->vdev_op_leaf
) {
3171 dsl_scan_t
*scn
= spa
->spa_dsl_pool
->dp_scan
;
3172 vdev_rebuild_t
*vr
= &vd
->vdev_top
->vdev_rebuild_config
;
3173 boolean_t check_excise
= B_FALSE
;
3174 boolean_t wasempty
= B_TRUE
;
3176 mutex_enter(&vd
->vdev_dtl_lock
);
3179 * If requested, pretend the scan or rebuild completed cleanly.
3181 if (zfs_scan_ignore_errors
) {
3183 scn
->scn_phys
.scn_errors
= 0;
3185 vr
->vr_rebuild_phys
.vrp_errors
= 0;
3188 if (scrub_txg
!= 0 &&
3189 !range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
])) {
3191 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3192 "dtl:%llu/%llu errors:%llu",
3193 (u_longlong_t
)vd
->vdev_guid
, (u_longlong_t
)txg
,
3194 (u_longlong_t
)scrub_txg
, spa
->spa_scrub_started
,
3195 (u_longlong_t
)vdev_dtl_min(vd
),
3196 (u_longlong_t
)vdev_dtl_max(vd
),
3197 (u_longlong_t
)(scn
? scn
->scn_phys
.scn_errors
: 0));
3201 * If we've completed a scrub/resilver or a rebuild cleanly
3202 * then determine if this vdev should remove any DTLs. We
3203 * only want to excise regions on vdevs that were available
3204 * during the entire duration of this scan.
3207 vr
!= NULL
&& vr
->vr_rebuild_phys
.vrp_errors
== 0) {
3208 check_excise
= B_TRUE
;
3210 if (spa
->spa_scrub_started
||
3211 (scn
!= NULL
&& scn
->scn_phys
.scn_errors
== 0)) {
3212 check_excise
= B_TRUE
;
3216 if (scrub_txg
&& check_excise
&&
3217 vdev_dtl_should_excise(vd
, rebuild_done
)) {
3219 * We completed a scrub, resilver or rebuild up to
3220 * scrub_txg. If we did it without rebooting, then
3221 * the scrub dtl will be valid, so excise the old
3222 * region and fold in the scrub dtl. Otherwise,
3223 * leave the dtl as-is if there was an error.
3225 * There's little trick here: to excise the beginning
3226 * of the DTL_MISSING map, we put it into a reference
3227 * tree and then add a segment with refcnt -1 that
3228 * covers the range [0, scrub_txg). This means
3229 * that each txg in that range has refcnt -1 or 0.
3230 * We then add DTL_SCRUB with a refcnt of 2, so that
3231 * entries in the range [0, scrub_txg) will have a
3232 * positive refcnt -- either 1 or 2. We then convert
3233 * the reference tree into the new DTL_MISSING map.
3235 space_reftree_create(&reftree
);
3236 space_reftree_add_map(&reftree
,
3237 vd
->vdev_dtl
[DTL_MISSING
], 1);
3238 space_reftree_add_seg(&reftree
, 0, scrub_txg
, -1);
3239 space_reftree_add_map(&reftree
,
3240 vd
->vdev_dtl
[DTL_SCRUB
], 2);
3241 space_reftree_generate_map(&reftree
,
3242 vd
->vdev_dtl
[DTL_MISSING
], 1);
3243 space_reftree_destroy(&reftree
);
3245 if (!range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
])) {
3246 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3247 (u_longlong_t
)vdev_dtl_min(vd
),
3248 (u_longlong_t
)vdev_dtl_max(vd
));
3249 } else if (!wasempty
) {
3250 zfs_dbgmsg("DTL_MISSING is now empty");
3253 range_tree_vacate(vd
->vdev_dtl
[DTL_PARTIAL
], NULL
, NULL
);
3254 range_tree_walk(vd
->vdev_dtl
[DTL_MISSING
],
3255 range_tree_add
, vd
->vdev_dtl
[DTL_PARTIAL
]);
3257 range_tree_vacate(vd
->vdev_dtl
[DTL_SCRUB
], NULL
, NULL
);
3258 range_tree_vacate(vd
->vdev_dtl
[DTL_OUTAGE
], NULL
, NULL
);
3261 * For the faulting case, treat members of a replacing vdev
3262 * as if they are not available. It's more likely than not that
3263 * a vdev in a replacing vdev could encounter read errors so
3264 * treat it as not being able to contribute.
3266 if (!vdev_readable(vd
) ||
3267 (faulting
&& vd
->vdev_parent
!= NULL
&&
3268 vd
->vdev_parent
->vdev_ops
== &vdev_replacing_ops
)) {
3269 range_tree_add(vd
->vdev_dtl
[DTL_OUTAGE
], 0, -1ULL);
3271 range_tree_walk(vd
->vdev_dtl
[DTL_MISSING
],
3272 range_tree_add
, vd
->vdev_dtl
[DTL_OUTAGE
]);
3276 * If the vdev was resilvering or rebuilding and no longer
3277 * has any DTLs then reset the appropriate flag and dirty
3278 * the top level so that we persist the change.
3281 range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
]) &&
3282 range_tree_is_empty(vd
->vdev_dtl
[DTL_OUTAGE
])) {
3283 if (vd
->vdev_rebuild_txg
!= 0) {
3284 vd
->vdev_rebuild_txg
= 0;
3285 vdev_config_dirty(vd
->vdev_top
);
3286 } else if (vd
->vdev_resilver_txg
!= 0) {
3287 vd
->vdev_resilver_txg
= 0;
3288 vdev_config_dirty(vd
->vdev_top
);
3292 mutex_exit(&vd
->vdev_dtl_lock
);
3295 vdev_dirty(vd
->vdev_top
, VDD_DTL
, vd
, txg
);
3297 mutex_enter(&vd
->vdev_dtl_lock
);
3298 for (int t
= 0; t
< DTL_TYPES
; t
++) {
3299 /* account for child's outage in parent's missing map */
3300 int s
= (t
== DTL_MISSING
) ? DTL_OUTAGE
: t
;
3301 if (t
== DTL_SCRUB
) {
3302 /* leaf vdevs only */
3305 if (t
== DTL_PARTIAL
) {
3308 } else if (vdev_get_nparity(vd
) != 0) {
3310 minref
= vdev_get_nparity(vd
) + 1;
3312 /* any kind of mirror */
3313 minref
= vd
->vdev_children
;
3315 space_reftree_create(&reftree
);
3316 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3317 vdev_t
*cvd
= vd
->vdev_child
[c
];
3318 mutex_enter(&cvd
->vdev_dtl_lock
);
3319 space_reftree_add_map(&reftree
,
3320 cvd
->vdev_dtl
[s
], 1);
3321 mutex_exit(&cvd
->vdev_dtl_lock
);
3323 space_reftree_generate_map(&reftree
,
3324 vd
->vdev_dtl
[t
], minref
);
3325 space_reftree_destroy(&reftree
);
3327 mutex_exit(&vd
->vdev_dtl_lock
);
3330 if (vd
->vdev_top
->vdev_ops
== &vdev_raidz_ops
) {
3331 raidz_dtl_reassessed(vd
);
3336 vdev_dtl_reassess(vdev_t
*vd
, uint64_t txg
, uint64_t scrub_txg
,
3337 boolean_t scrub_done
, boolean_t rebuild_done
)
3339 return (vdev_dtl_reassess_impl(vd
, txg
, scrub_txg
, scrub_done
,
3340 rebuild_done
, B_FALSE
));
3344 * Iterate over all the vdevs except spare, and post kobj events
3347 vdev_post_kobj_evt(vdev_t
*vd
)
3349 if (vd
->vdev_ops
->vdev_op_kobj_evt_post
&&
3350 vd
->vdev_kobj_flag
== B_FALSE
) {
3351 vd
->vdev_kobj_flag
= B_TRUE
;
3352 vd
->vdev_ops
->vdev_op_kobj_evt_post(vd
);
3355 for (int c
= 0; c
< vd
->vdev_children
; c
++)
3356 vdev_post_kobj_evt(vd
->vdev_child
[c
]);
3360 * Iterate over all the vdevs except spare, and clear kobj events
3363 vdev_clear_kobj_evt(vdev_t
*vd
)
3365 vd
->vdev_kobj_flag
= B_FALSE
;
3367 for (int c
= 0; c
< vd
->vdev_children
; c
++)
3368 vdev_clear_kobj_evt(vd
->vdev_child
[c
]);
3372 vdev_dtl_load(vdev_t
*vd
)
3374 spa_t
*spa
= vd
->vdev_spa
;
3375 objset_t
*mos
= spa
->spa_meta_objset
;
3379 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_dtl_object
!= 0) {
3380 ASSERT(vdev_is_concrete(vd
));
3383 * If the dtl cannot be sync'd there is no need to open it.
3385 if (spa
->spa_mode
== SPA_MODE_READ
&& !spa
->spa_read_spacemaps
)
3388 error
= space_map_open(&vd
->vdev_dtl_sm
, mos
,
3389 vd
->vdev_dtl_object
, 0, -1ULL, 0);
3392 ASSERT(vd
->vdev_dtl_sm
!= NULL
);
3394 rt
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
3395 error
= space_map_load(vd
->vdev_dtl_sm
, rt
, SM_ALLOC
);
3397 mutex_enter(&vd
->vdev_dtl_lock
);
3398 range_tree_walk(rt
, range_tree_add
,
3399 vd
->vdev_dtl
[DTL_MISSING
]);
3400 mutex_exit(&vd
->vdev_dtl_lock
);
3403 range_tree_vacate(rt
, NULL
, NULL
);
3404 range_tree_destroy(rt
);
3409 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3410 error
= vdev_dtl_load(vd
->vdev_child
[c
]);
3419 vdev_zap_allocation_data(vdev_t
*vd
, dmu_tx_t
*tx
)
3421 spa_t
*spa
= vd
->vdev_spa
;
3422 objset_t
*mos
= spa
->spa_meta_objset
;
3423 vdev_alloc_bias_t alloc_bias
= vd
->vdev_alloc_bias
;
3426 ASSERT(alloc_bias
!= VDEV_BIAS_NONE
);
3429 (alloc_bias
== VDEV_BIAS_LOG
) ? VDEV_ALLOC_BIAS_LOG
:
3430 (alloc_bias
== VDEV_BIAS_SPECIAL
) ? VDEV_ALLOC_BIAS_SPECIAL
:
3431 (alloc_bias
== VDEV_BIAS_DEDUP
) ? VDEV_ALLOC_BIAS_DEDUP
: NULL
;
3433 ASSERT(string
!= NULL
);
3434 VERIFY0(zap_add(mos
, vd
->vdev_top_zap
, VDEV_TOP_ZAP_ALLOCATION_BIAS
,
3435 1, strlen(string
) + 1, string
, tx
));
3437 if (alloc_bias
== VDEV_BIAS_SPECIAL
|| alloc_bias
== VDEV_BIAS_DEDUP
) {
3438 spa_activate_allocation_classes(spa
, tx
);
3443 vdev_destroy_unlink_zap(vdev_t
*vd
, uint64_t zapobj
, dmu_tx_t
*tx
)
3445 spa_t
*spa
= vd
->vdev_spa
;
3447 VERIFY0(zap_destroy(spa
->spa_meta_objset
, zapobj
, tx
));
3448 VERIFY0(zap_remove_int(spa
->spa_meta_objset
, spa
->spa_all_vdev_zaps
,
3453 vdev_create_link_zap(vdev_t
*vd
, dmu_tx_t
*tx
)
3455 spa_t
*spa
= vd
->vdev_spa
;
3456 uint64_t zap
= zap_create(spa
->spa_meta_objset
, DMU_OTN_ZAP_METADATA
,
3457 DMU_OT_NONE
, 0, tx
);
3460 VERIFY0(zap_add_int(spa
->spa_meta_objset
, spa
->spa_all_vdev_zaps
,
3467 vdev_construct_zaps(vdev_t
*vd
, dmu_tx_t
*tx
)
3469 if (vd
->vdev_ops
!= &vdev_hole_ops
&&
3470 vd
->vdev_ops
!= &vdev_missing_ops
&&
3471 vd
->vdev_ops
!= &vdev_root_ops
&&
3472 !vd
->vdev_top
->vdev_removing
) {
3473 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_leaf_zap
== 0) {
3474 vd
->vdev_leaf_zap
= vdev_create_link_zap(vd
, tx
);
3476 if (vd
== vd
->vdev_top
&& vd
->vdev_top_zap
== 0) {
3477 vd
->vdev_top_zap
= vdev_create_link_zap(vd
, tx
);
3478 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_NONE
)
3479 vdev_zap_allocation_data(vd
, tx
);
3482 if (vd
->vdev_ops
== &vdev_root_ops
&& vd
->vdev_root_zap
== 0 &&
3483 spa_feature_is_enabled(vd
->vdev_spa
, SPA_FEATURE_AVZ_V2
)) {
3484 if (!spa_feature_is_active(vd
->vdev_spa
, SPA_FEATURE_AVZ_V2
))
3485 spa_feature_incr(vd
->vdev_spa
, SPA_FEATURE_AVZ_V2
, tx
);
3486 vd
->vdev_root_zap
= vdev_create_link_zap(vd
, tx
);
3489 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
3490 vdev_construct_zaps(vd
->vdev_child
[i
], tx
);
3495 vdev_dtl_sync(vdev_t
*vd
, uint64_t txg
)
3497 spa_t
*spa
= vd
->vdev_spa
;
3498 range_tree_t
*rt
= vd
->vdev_dtl
[DTL_MISSING
];
3499 objset_t
*mos
= spa
->spa_meta_objset
;
3500 range_tree_t
*rtsync
;
3502 uint64_t object
= space_map_object(vd
->vdev_dtl_sm
);
3504 ASSERT(vdev_is_concrete(vd
));
3505 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3507 tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, txg
);
3509 if (vd
->vdev_detached
|| vd
->vdev_top
->vdev_removing
) {
3510 mutex_enter(&vd
->vdev_dtl_lock
);
3511 space_map_free(vd
->vdev_dtl_sm
, tx
);
3512 space_map_close(vd
->vdev_dtl_sm
);
3513 vd
->vdev_dtl_sm
= NULL
;
3514 mutex_exit(&vd
->vdev_dtl_lock
);
3517 * We only destroy the leaf ZAP for detached leaves or for
3518 * removed log devices. Removed data devices handle leaf ZAP
3519 * cleanup later, once cancellation is no longer possible.
3521 if (vd
->vdev_leaf_zap
!= 0 && (vd
->vdev_detached
||
3522 vd
->vdev_top
->vdev_islog
)) {
3523 vdev_destroy_unlink_zap(vd
, vd
->vdev_leaf_zap
, tx
);
3524 vd
->vdev_leaf_zap
= 0;
3531 if (vd
->vdev_dtl_sm
== NULL
) {
3532 uint64_t new_object
;
3534 new_object
= space_map_alloc(mos
, zfs_vdev_dtl_sm_blksz
, tx
);
3535 VERIFY3U(new_object
, !=, 0);
3537 VERIFY0(space_map_open(&vd
->vdev_dtl_sm
, mos
, new_object
,
3539 ASSERT(vd
->vdev_dtl_sm
!= NULL
);
3542 rtsync
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
3544 mutex_enter(&vd
->vdev_dtl_lock
);
3545 range_tree_walk(rt
, range_tree_add
, rtsync
);
3546 mutex_exit(&vd
->vdev_dtl_lock
);
3548 space_map_truncate(vd
->vdev_dtl_sm
, zfs_vdev_dtl_sm_blksz
, tx
);
3549 space_map_write(vd
->vdev_dtl_sm
, rtsync
, SM_ALLOC
, SM_NO_VDEVID
, tx
);
3550 range_tree_vacate(rtsync
, NULL
, NULL
);
3552 range_tree_destroy(rtsync
);
3555 * If the object for the space map has changed then dirty
3556 * the top level so that we update the config.
3558 if (object
!= space_map_object(vd
->vdev_dtl_sm
)) {
3559 vdev_dbgmsg(vd
, "txg %llu, spa %s, DTL old object %llu, "
3560 "new object %llu", (u_longlong_t
)txg
, spa_name(spa
),
3561 (u_longlong_t
)object
,
3562 (u_longlong_t
)space_map_object(vd
->vdev_dtl_sm
));
3563 vdev_config_dirty(vd
->vdev_top
);
3570 * Determine whether the specified vdev can be
3575 * without losing data.
3578 vdev_dtl_required(vdev_t
*vd
)
3580 spa_t
*spa
= vd
->vdev_spa
;
3581 vdev_t
*tvd
= vd
->vdev_top
;
3582 uint8_t cant_read
= vd
->vdev_cant_read
;
3584 boolean_t faulting
= vd
->vdev_state
== VDEV_STATE_FAULTED
;
3586 ASSERT(spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
3588 if (vd
== spa
->spa_root_vdev
|| vd
== tvd
)
3592 * Temporarily mark the device as unreadable, and then determine
3593 * whether this results in any DTL outages in the top-level vdev.
3594 * If not, we can safely offline/detach/remove the device.
3596 vd
->vdev_cant_read
= B_TRUE
;
3597 vdev_dtl_reassess_impl(tvd
, 0, 0, B_FALSE
, B_FALSE
, faulting
);
3598 required
= !vdev_dtl_empty(tvd
, DTL_OUTAGE
);
3599 vd
->vdev_cant_read
= cant_read
;
3600 vdev_dtl_reassess_impl(tvd
, 0, 0, B_FALSE
, B_FALSE
, faulting
);
3602 if (!required
&& zio_injection_enabled
) {
3603 required
= !!zio_handle_device_injection(vd
, NULL
,
3611 * Determine if resilver is needed, and if so the txg range.
3614 vdev_resilver_needed(vdev_t
*vd
, uint64_t *minp
, uint64_t *maxp
)
3616 boolean_t needed
= B_FALSE
;
3617 uint64_t thismin
= UINT64_MAX
;
3618 uint64_t thismax
= 0;
3620 if (vd
->vdev_children
== 0) {
3621 mutex_enter(&vd
->vdev_dtl_lock
);
3622 if (!range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
]) &&
3623 vdev_writeable(vd
)) {
3625 thismin
= vdev_dtl_min(vd
);
3626 thismax
= vdev_dtl_max(vd
);
3629 mutex_exit(&vd
->vdev_dtl_lock
);
3631 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3632 vdev_t
*cvd
= vd
->vdev_child
[c
];
3633 uint64_t cmin
, cmax
;
3635 if (vdev_resilver_needed(cvd
, &cmin
, &cmax
)) {
3636 thismin
= MIN(thismin
, cmin
);
3637 thismax
= MAX(thismax
, cmax
);
3643 if (needed
&& minp
) {
3651 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3652 * will contain either the checkpoint spacemap object or zero if none exists.
3653 * All other errors are returned to the caller.
3656 vdev_checkpoint_sm_object(vdev_t
*vd
, uint64_t *sm_obj
)
3658 ASSERT0(spa_config_held(vd
->vdev_spa
, SCL_ALL
, RW_WRITER
));
3660 if (vd
->vdev_top_zap
== 0) {
3665 int error
= zap_lookup(spa_meta_objset(vd
->vdev_spa
), vd
->vdev_top_zap
,
3666 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
, sizeof (uint64_t), 1, sm_obj
);
3667 if (error
== ENOENT
) {
3676 vdev_load(vdev_t
*vd
)
3678 int children
= vd
->vdev_children
;
3683 * It's only worthwhile to use the taskq for the root vdev, because the
3684 * slow part is metaslab_init, and that only happens for top-level
3687 if (vd
->vdev_ops
== &vdev_root_ops
&& vd
->vdev_children
> 0) {
3688 tq
= taskq_create("vdev_load", children
, minclsyspri
,
3689 children
, children
, TASKQ_PREPOPULATE
);
3693 * Recursively load all children.
3695 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3696 vdev_t
*cvd
= vd
->vdev_child
[c
];
3698 if (tq
== NULL
|| vdev_uses_zvols(cvd
)) {
3699 cvd
->vdev_load_error
= vdev_load(cvd
);
3701 VERIFY(taskq_dispatch(tq
, vdev_load_child
,
3702 cvd
, TQ_SLEEP
) != TASKQID_INVALID
);
3711 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3712 int error
= vd
->vdev_child
[c
]->vdev_load_error
;
3718 vdev_set_deflate_ratio(vd
);
3720 if (vd
->vdev_ops
== &vdev_raidz_ops
) {
3721 error
= vdev_raidz_load(vd
);
3727 * On spa_load path, grab the allocation bias from our zap
3729 if (vd
== vd
->vdev_top
&& vd
->vdev_top_zap
!= 0) {
3730 spa_t
*spa
= vd
->vdev_spa
;
3733 error
= zap_lookup(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
3734 VDEV_TOP_ZAP_ALLOCATION_BIAS
, 1, sizeof (bias_str
),
3737 ASSERT(vd
->vdev_alloc_bias
== VDEV_BIAS_NONE
);
3738 vd
->vdev_alloc_bias
= vdev_derive_alloc_bias(bias_str
);
3739 } else if (error
!= ENOENT
) {
3740 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3741 VDEV_AUX_CORRUPT_DATA
);
3742 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(top_zap=%llu) "
3743 "failed [error=%d]",
3744 (u_longlong_t
)vd
->vdev_top_zap
, error
);
3749 if (vd
== vd
->vdev_top
&& vd
->vdev_top_zap
!= 0) {
3750 spa_t
*spa
= vd
->vdev_spa
;
3753 error
= zap_lookup(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
3754 vdev_prop_to_name(VDEV_PROP_FAILFAST
), sizeof (failfast
),
3757 vd
->vdev_failfast
= failfast
& 1;
3758 } else if (error
== ENOENT
) {
3759 vd
->vdev_failfast
= vdev_prop_default_numeric(
3760 VDEV_PROP_FAILFAST
);
3763 "vdev_load: zap_lookup(top_zap=%llu) "
3764 "failed [error=%d]",
3765 (u_longlong_t
)vd
->vdev_top_zap
, error
);
3770 * Load any rebuild state from the top-level vdev zap.
3772 if (vd
== vd
->vdev_top
&& vd
->vdev_top_zap
!= 0) {
3773 error
= vdev_rebuild_load(vd
);
3774 if (error
&& error
!= ENOTSUP
) {
3775 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3776 VDEV_AUX_CORRUPT_DATA
);
3777 vdev_dbgmsg(vd
, "vdev_load: vdev_rebuild_load "
3778 "failed [error=%d]", error
);
3783 if (vd
->vdev_top_zap
!= 0 || vd
->vdev_leaf_zap
!= 0) {
3786 if (vd
->vdev_top_zap
!= 0)
3787 zapobj
= vd
->vdev_top_zap
;
3789 zapobj
= vd
->vdev_leaf_zap
;
3791 error
= vdev_prop_get_int(vd
, VDEV_PROP_CHECKSUM_N
,
3792 &vd
->vdev_checksum_n
);
3793 if (error
&& error
!= ENOENT
)
3794 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3795 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3797 error
= vdev_prop_get_int(vd
, VDEV_PROP_CHECKSUM_T
,
3798 &vd
->vdev_checksum_t
);
3799 if (error
&& error
!= ENOENT
)
3800 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3801 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3803 error
= vdev_prop_get_int(vd
, VDEV_PROP_IO_N
,
3805 if (error
&& error
!= ENOENT
)
3806 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3807 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3809 error
= vdev_prop_get_int(vd
, VDEV_PROP_IO_T
,
3811 if (error
&& error
!= ENOENT
)
3812 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3813 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3815 error
= vdev_prop_get_int(vd
, VDEV_PROP_SLOW_IO_N
,
3816 &vd
->vdev_slow_io_n
);
3817 if (error
&& error
!= ENOENT
)
3818 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3819 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3821 error
= vdev_prop_get_int(vd
, VDEV_PROP_SLOW_IO_T
,
3822 &vd
->vdev_slow_io_t
);
3823 if (error
&& error
!= ENOENT
)
3824 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3825 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3829 * If this is a top-level vdev, initialize its metaslabs.
3831 if (vd
== vd
->vdev_top
&& vdev_is_concrete(vd
)) {
3832 vdev_metaslab_group_create(vd
);
3834 if (vd
->vdev_ashift
== 0 || vd
->vdev_asize
== 0) {
3835 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3836 VDEV_AUX_CORRUPT_DATA
);
3837 vdev_dbgmsg(vd
, "vdev_load: invalid size. ashift=%llu, "
3838 "asize=%llu", (u_longlong_t
)vd
->vdev_ashift
,
3839 (u_longlong_t
)vd
->vdev_asize
);
3840 return (SET_ERROR(ENXIO
));
3843 error
= vdev_metaslab_init(vd
, 0);
3845 vdev_dbgmsg(vd
, "vdev_load: metaslab_init failed "
3846 "[error=%d]", error
);
3847 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3848 VDEV_AUX_CORRUPT_DATA
);
3852 uint64_t checkpoint_sm_obj
;
3853 error
= vdev_checkpoint_sm_object(vd
, &checkpoint_sm_obj
);
3854 if (error
== 0 && checkpoint_sm_obj
!= 0) {
3855 objset_t
*mos
= spa_meta_objset(vd
->vdev_spa
);
3856 ASSERT(vd
->vdev_asize
!= 0);
3857 ASSERT3P(vd
->vdev_checkpoint_sm
, ==, NULL
);
3859 error
= space_map_open(&vd
->vdev_checkpoint_sm
,
3860 mos
, checkpoint_sm_obj
, 0, vd
->vdev_asize
,
3863 vdev_dbgmsg(vd
, "vdev_load: space_map_open "
3864 "failed for checkpoint spacemap (obj %llu) "
3866 (u_longlong_t
)checkpoint_sm_obj
, error
);
3869 ASSERT3P(vd
->vdev_checkpoint_sm
, !=, NULL
);
3872 * Since the checkpoint_sm contains free entries
3873 * exclusively we can use space_map_allocated() to
3874 * indicate the cumulative checkpointed space that
3877 vd
->vdev_stat
.vs_checkpoint_space
=
3878 -space_map_allocated(vd
->vdev_checkpoint_sm
);
3879 vd
->vdev_spa
->spa_checkpoint_info
.sci_dspace
+=
3880 vd
->vdev_stat
.vs_checkpoint_space
;
3881 } else if (error
!= 0) {
3882 vdev_dbgmsg(vd
, "vdev_load: failed to retrieve "
3883 "checkpoint space map object from vdev ZAP "
3884 "[error=%d]", error
);
3890 * If this is a leaf vdev, load its DTL.
3892 if (vd
->vdev_ops
->vdev_op_leaf
&& (error
= vdev_dtl_load(vd
)) != 0) {
3893 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3894 VDEV_AUX_CORRUPT_DATA
);
3895 vdev_dbgmsg(vd
, "vdev_load: vdev_dtl_load failed "
3896 "[error=%d]", error
);
3900 uint64_t obsolete_sm_object
;
3901 error
= vdev_obsolete_sm_object(vd
, &obsolete_sm_object
);
3902 if (error
== 0 && obsolete_sm_object
!= 0) {
3903 objset_t
*mos
= vd
->vdev_spa
->spa_meta_objset
;
3904 ASSERT(vd
->vdev_asize
!= 0);
3905 ASSERT3P(vd
->vdev_obsolete_sm
, ==, NULL
);
3907 if ((error
= space_map_open(&vd
->vdev_obsolete_sm
, mos
,
3908 obsolete_sm_object
, 0, vd
->vdev_asize
, 0))) {
3909 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3910 VDEV_AUX_CORRUPT_DATA
);
3911 vdev_dbgmsg(vd
, "vdev_load: space_map_open failed for "
3912 "obsolete spacemap (obj %llu) [error=%d]",
3913 (u_longlong_t
)obsolete_sm_object
, error
);
3916 } else if (error
!= 0) {
3917 vdev_dbgmsg(vd
, "vdev_load: failed to retrieve obsolete "
3918 "space map object from vdev ZAP [error=%d]", error
);
3926 * The special vdev case is used for hot spares and l2cache devices. Its
3927 * sole purpose it to set the vdev state for the associated vdev. To do this,
3928 * we make sure that we can open the underlying device, then try to read the
3929 * label, and make sure that the label is sane and that it hasn't been
3930 * repurposed to another pool.
3933 vdev_validate_aux(vdev_t
*vd
)
3936 uint64_t guid
, version
;
3939 if (!vdev_readable(vd
))
3942 if ((label
= vdev_label_read_config(vd
, -1ULL)) == NULL
) {
3943 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
3944 VDEV_AUX_CORRUPT_DATA
);
3948 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_VERSION
, &version
) != 0 ||
3949 !SPA_VERSION_IS_SUPPORTED(version
) ||
3950 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_GUID
, &guid
) != 0 ||
3951 guid
!= vd
->vdev_guid
||
3952 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_STATE
, &state
) != 0) {
3953 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
3954 VDEV_AUX_CORRUPT_DATA
);
3960 * We don't actually check the pool state here. If it's in fact in
3961 * use by another pool, we update this fact on the fly when requested.
3968 vdev_destroy_ms_flush_data(vdev_t
*vd
, dmu_tx_t
*tx
)
3970 objset_t
*mos
= spa_meta_objset(vd
->vdev_spa
);
3972 if (vd
->vdev_top_zap
== 0)
3975 uint64_t object
= 0;
3976 int err
= zap_lookup(mos
, vd
->vdev_top_zap
,
3977 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
, sizeof (uint64_t), 1, &object
);
3982 VERIFY0(dmu_object_free(mos
, object
, tx
));
3983 VERIFY0(zap_remove(mos
, vd
->vdev_top_zap
,
3984 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
, tx
));
3988 * Free the objects used to store this vdev's spacemaps, and the array
3989 * that points to them.
3992 vdev_destroy_spacemaps(vdev_t
*vd
, dmu_tx_t
*tx
)
3994 if (vd
->vdev_ms_array
== 0)
3997 objset_t
*mos
= vd
->vdev_spa
->spa_meta_objset
;
3998 uint64_t array_count
= vd
->vdev_asize
>> vd
->vdev_ms_shift
;
3999 size_t array_bytes
= array_count
* sizeof (uint64_t);
4000 uint64_t *smobj_array
= kmem_alloc(array_bytes
, KM_SLEEP
);
4001 VERIFY0(dmu_read(mos
, vd
->vdev_ms_array
, 0,
4002 array_bytes
, smobj_array
, 0));
4004 for (uint64_t i
= 0; i
< array_count
; i
++) {
4005 uint64_t smobj
= smobj_array
[i
];
4009 space_map_free_obj(mos
, smobj
, tx
);
4012 kmem_free(smobj_array
, array_bytes
);
4013 VERIFY0(dmu_object_free(mos
, vd
->vdev_ms_array
, tx
));
4014 vdev_destroy_ms_flush_data(vd
, tx
);
4015 vd
->vdev_ms_array
= 0;
4019 vdev_remove_empty_log(vdev_t
*vd
, uint64_t txg
)
4021 spa_t
*spa
= vd
->vdev_spa
;
4023 ASSERT(vd
->vdev_islog
);
4024 ASSERT(vd
== vd
->vdev_top
);
4025 ASSERT3U(txg
, ==, spa_syncing_txg(spa
));
4027 dmu_tx_t
*tx
= dmu_tx_create_assigned(spa_get_dsl(spa
), txg
);
4029 vdev_destroy_spacemaps(vd
, tx
);
4030 if (vd
->vdev_top_zap
!= 0) {
4031 vdev_destroy_unlink_zap(vd
, vd
->vdev_top_zap
, tx
);
4032 vd
->vdev_top_zap
= 0;
4039 vdev_sync_done(vdev_t
*vd
, uint64_t txg
)
4042 boolean_t reassess
= !txg_list_empty(&vd
->vdev_ms_list
, TXG_CLEAN(txg
));
4044 ASSERT(vdev_is_concrete(vd
));
4046 while ((msp
= txg_list_remove(&vd
->vdev_ms_list
, TXG_CLEAN(txg
)))
4048 metaslab_sync_done(msp
, txg
);
4051 metaslab_sync_reassess(vd
->vdev_mg
);
4052 if (vd
->vdev_log_mg
!= NULL
)
4053 metaslab_sync_reassess(vd
->vdev_log_mg
);
4058 vdev_sync(vdev_t
*vd
, uint64_t txg
)
4060 spa_t
*spa
= vd
->vdev_spa
;
4064 ASSERT3U(txg
, ==, spa
->spa_syncing_txg
);
4065 dmu_tx_t
*tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, txg
);
4066 if (range_tree_space(vd
->vdev_obsolete_segments
) > 0) {
4067 ASSERT(vd
->vdev_removing
||
4068 vd
->vdev_ops
== &vdev_indirect_ops
);
4070 vdev_indirect_sync_obsolete(vd
, tx
);
4073 * If the vdev is indirect, it can't have dirty
4074 * metaslabs or DTLs.
4076 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
4077 ASSERT(txg_list_empty(&vd
->vdev_ms_list
, txg
));
4078 ASSERT(txg_list_empty(&vd
->vdev_dtl_list
, txg
));
4084 ASSERT(vdev_is_concrete(vd
));
4086 if (vd
->vdev_ms_array
== 0 && vd
->vdev_ms_shift
!= 0 &&
4087 !vd
->vdev_removing
) {
4088 ASSERT(vd
== vd
->vdev_top
);
4089 ASSERT0(vd
->vdev_indirect_config
.vic_mapping_object
);
4090 vd
->vdev_ms_array
= dmu_object_alloc(spa
->spa_meta_objset
,
4091 DMU_OT_OBJECT_ARRAY
, 0, DMU_OT_NONE
, 0, tx
);
4092 ASSERT(vd
->vdev_ms_array
!= 0);
4093 vdev_config_dirty(vd
);
4096 while ((msp
= txg_list_remove(&vd
->vdev_ms_list
, txg
)) != NULL
) {
4097 metaslab_sync(msp
, txg
);
4098 (void) txg_list_add(&vd
->vdev_ms_list
, msp
, TXG_CLEAN(txg
));
4101 while ((lvd
= txg_list_remove(&vd
->vdev_dtl_list
, txg
)) != NULL
)
4102 vdev_dtl_sync(lvd
, txg
);
4105 * If this is an empty log device being removed, destroy the
4106 * metadata associated with it.
4108 if (vd
->vdev_islog
&& vd
->vdev_stat
.vs_alloc
== 0 && vd
->vdev_removing
)
4109 vdev_remove_empty_log(vd
, txg
);
4111 (void) txg_list_add(&spa
->spa_vdev_txg_list
, vd
, TXG_CLEAN(txg
));
4116 * Return the amount of space that should be (or was) allocated for the given
4117 * psize (compressed block size) in the given TXG. Note that for expanded
4118 * RAIDZ vdevs, the size allocated for older BP's may be larger. See
4119 * vdev_raidz_asize().
4122 vdev_psize_to_asize_txg(vdev_t
*vd
, uint64_t psize
, uint64_t txg
)
4124 return (vd
->vdev_ops
->vdev_op_asize(vd
, psize
, txg
));
4128 vdev_psize_to_asize(vdev_t
*vd
, uint64_t psize
)
4130 return (vdev_psize_to_asize_txg(vd
, psize
, 0));
4134 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
4135 * not be opened, and no I/O is attempted.
4138 vdev_fault(spa_t
*spa
, uint64_t guid
, vdev_aux_t aux
)
4142 spa_vdev_state_enter(spa
, SCL_NONE
);
4144 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4145 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4147 if (!vd
->vdev_ops
->vdev_op_leaf
)
4148 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENOTSUP
)));
4153 * If user did a 'zpool offline -f' then make the fault persist across
4156 if (aux
== VDEV_AUX_EXTERNAL_PERSIST
) {
4158 * There are two kinds of forced faults: temporary and
4159 * persistent. Temporary faults go away at pool import, while
4160 * persistent faults stay set. Both types of faults can be
4161 * cleared with a zpool clear.
4163 * We tell if a vdev is persistently faulted by looking at the
4164 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4165 * import then it's a persistent fault. Otherwise, it's
4166 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4167 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4168 * tells vdev_config_generate() (which gets run later) to set
4169 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4171 vd
->vdev_stat
.vs_aux
= VDEV_AUX_EXTERNAL
;
4172 vd
->vdev_tmpoffline
= B_FALSE
;
4173 aux
= VDEV_AUX_EXTERNAL
;
4175 vd
->vdev_tmpoffline
= B_TRUE
;
4179 * We don't directly use the aux state here, but if we do a
4180 * vdev_reopen(), we need this value to be present to remember why we
4183 vd
->vdev_label_aux
= aux
;
4186 * Faulted state takes precedence over degraded.
4188 vd
->vdev_delayed_close
= B_FALSE
;
4189 vd
->vdev_faulted
= 1ULL;
4190 vd
->vdev_degraded
= 0ULL;
4191 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_FAULTED
, aux
);
4194 * If this device has the only valid copy of the data, then
4195 * back off and simply mark the vdev as degraded instead.
4197 if (!tvd
->vdev_islog
&& vd
->vdev_aux
== NULL
&& vdev_dtl_required(vd
)) {
4198 vd
->vdev_degraded
= 1ULL;
4199 vd
->vdev_faulted
= 0ULL;
4202 * If we reopen the device and it's not dead, only then do we
4207 if (vdev_readable(vd
))
4208 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_DEGRADED
, aux
);
4211 return (spa_vdev_state_exit(spa
, vd
, 0));
4215 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4216 * user that something is wrong. The vdev continues to operate as normal as far
4217 * as I/O is concerned.
4220 vdev_degrade(spa_t
*spa
, uint64_t guid
, vdev_aux_t aux
)
4224 spa_vdev_state_enter(spa
, SCL_NONE
);
4226 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4227 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4229 if (!vd
->vdev_ops
->vdev_op_leaf
)
4230 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENOTSUP
)));
4233 * If the vdev is already faulted, then don't do anything.
4235 if (vd
->vdev_faulted
|| vd
->vdev_degraded
)
4236 return (spa_vdev_state_exit(spa
, NULL
, 0));
4238 vd
->vdev_degraded
= 1ULL;
4239 if (!vdev_is_dead(vd
))
4240 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_DEGRADED
,
4243 return (spa_vdev_state_exit(spa
, vd
, 0));
4247 vdev_remove_wanted(spa_t
*spa
, uint64_t guid
)
4251 spa_vdev_state_enter(spa
, SCL_NONE
);
4253 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4254 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4257 * If the vdev is already removed, or expanding which can trigger
4258 * repartition add/remove events, then don't do anything.
4260 if (vd
->vdev_removed
|| vd
->vdev_expanding
)
4261 return (spa_vdev_state_exit(spa
, NULL
, 0));
4264 * Confirm the vdev has been removed, otherwise don't do anything.
4266 if (vd
->vdev_ops
->vdev_op_leaf
&& !zio_wait(vdev_probe(vd
, NULL
)))
4267 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(EEXIST
)));
4269 vd
->vdev_remove_wanted
= B_TRUE
;
4270 spa_async_request(spa
, SPA_ASYNC_REMOVE
);
4272 return (spa_vdev_state_exit(spa
, vd
, 0));
4277 * Online the given vdev.
4279 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4280 * spare device should be detached when the device finishes resilvering.
4281 * Second, the online should be treated like a 'test' online case, so no FMA
4282 * events are generated if the device fails to open.
4285 vdev_online(spa_t
*spa
, uint64_t guid
, uint64_t flags
, vdev_state_t
*newstate
)
4287 vdev_t
*vd
, *tvd
, *pvd
, *rvd
= spa
->spa_root_vdev
;
4288 boolean_t wasoffline
;
4289 vdev_state_t oldstate
;
4291 spa_vdev_state_enter(spa
, SCL_NONE
);
4293 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4294 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4296 wasoffline
= (vd
->vdev_offline
|| vd
->vdev_tmpoffline
);
4297 oldstate
= vd
->vdev_state
;
4300 vd
->vdev_offline
= B_FALSE
;
4301 vd
->vdev_tmpoffline
= B_FALSE
;
4302 vd
->vdev_checkremove
= !!(flags
& ZFS_ONLINE_CHECKREMOVE
);
4303 vd
->vdev_forcefault
= !!(flags
& ZFS_ONLINE_FORCEFAULT
);
4305 /* XXX - L2ARC 1.0 does not support expansion */
4306 if (!vd
->vdev_aux
) {
4307 for (pvd
= vd
; pvd
!= rvd
; pvd
= pvd
->vdev_parent
)
4308 pvd
->vdev_expanding
= !!((flags
& ZFS_ONLINE_EXPAND
) ||
4309 spa
->spa_autoexpand
);
4310 vd
->vdev_expansion_time
= gethrestime_sec();
4314 vd
->vdev_checkremove
= vd
->vdev_forcefault
= B_FALSE
;
4316 if (!vd
->vdev_aux
) {
4317 for (pvd
= vd
; pvd
!= rvd
; pvd
= pvd
->vdev_parent
)
4318 pvd
->vdev_expanding
= B_FALSE
;
4322 *newstate
= vd
->vdev_state
;
4323 if ((flags
& ZFS_ONLINE_UNSPARE
) &&
4324 !vdev_is_dead(vd
) && vd
->vdev_parent
&&
4325 vd
->vdev_parent
->vdev_ops
== &vdev_spare_ops
&&
4326 vd
->vdev_parent
->vdev_child
[0] == vd
)
4327 vd
->vdev_unspare
= B_TRUE
;
4329 if ((flags
& ZFS_ONLINE_EXPAND
) || spa
->spa_autoexpand
) {
4331 /* XXX - L2ARC 1.0 does not support expansion */
4333 return (spa_vdev_state_exit(spa
, vd
, ENOTSUP
));
4334 spa
->spa_ccw_fail_time
= 0;
4335 spa_async_request(spa
, SPA_ASYNC_CONFIG_UPDATE
);
4338 /* Restart initializing if necessary */
4339 mutex_enter(&vd
->vdev_initialize_lock
);
4340 if (vdev_writeable(vd
) &&
4341 vd
->vdev_initialize_thread
== NULL
&&
4342 vd
->vdev_initialize_state
== VDEV_INITIALIZE_ACTIVE
) {
4343 (void) vdev_initialize(vd
);
4345 mutex_exit(&vd
->vdev_initialize_lock
);
4348 * Restart trimming if necessary. We do not restart trimming for cache
4349 * devices here. This is triggered by l2arc_rebuild_vdev()
4350 * asynchronously for the whole device or in l2arc_evict() as it evicts
4351 * space for upcoming writes.
4353 mutex_enter(&vd
->vdev_trim_lock
);
4354 if (vdev_writeable(vd
) && !vd
->vdev_isl2cache
&&
4355 vd
->vdev_trim_thread
== NULL
&&
4356 vd
->vdev_trim_state
== VDEV_TRIM_ACTIVE
) {
4357 (void) vdev_trim(vd
, vd
->vdev_trim_rate
, vd
->vdev_trim_partial
,
4358 vd
->vdev_trim_secure
);
4360 mutex_exit(&vd
->vdev_trim_lock
);
4363 (oldstate
< VDEV_STATE_DEGRADED
&&
4364 vd
->vdev_state
>= VDEV_STATE_DEGRADED
)) {
4365 spa_event_notify(spa
, vd
, NULL
, ESC_ZFS_VDEV_ONLINE
);
4368 * Asynchronously detach spare vdev if resilver or
4369 * rebuild is not required
4371 if (vd
->vdev_unspare
&&
4372 !dsl_scan_resilvering(spa
->spa_dsl_pool
) &&
4373 !dsl_scan_resilver_scheduled(spa
->spa_dsl_pool
) &&
4374 !vdev_rebuild_active(tvd
))
4375 spa_async_request(spa
, SPA_ASYNC_DETACH_SPARE
);
4377 return (spa_vdev_state_exit(spa
, vd
, 0));
4381 vdev_offline_locked(spa_t
*spa
, uint64_t guid
, uint64_t flags
)
4385 uint64_t generation
;
4386 metaslab_group_t
*mg
;
4389 spa_vdev_state_enter(spa
, SCL_ALLOC
);
4391 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4392 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4394 if (!vd
->vdev_ops
->vdev_op_leaf
)
4395 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENOTSUP
)));
4397 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
4398 return (spa_vdev_state_exit(spa
, NULL
, ENOTSUP
));
4402 generation
= spa
->spa_config_generation
+ 1;
4405 * If the device isn't already offline, try to offline it.
4407 if (!vd
->vdev_offline
) {
4409 * If this device has the only valid copy of some data,
4410 * don't allow it to be offlined. Log devices are always
4413 if (!tvd
->vdev_islog
&& vd
->vdev_aux
== NULL
&&
4414 vdev_dtl_required(vd
))
4415 return (spa_vdev_state_exit(spa
, NULL
,
4419 * If the top-level is a slog and it has had allocations
4420 * then proceed. We check that the vdev's metaslab group
4421 * is not NULL since it's possible that we may have just
4422 * added this vdev but not yet initialized its metaslabs.
4424 if (tvd
->vdev_islog
&& mg
!= NULL
) {
4426 * Prevent any future allocations.
4428 ASSERT3P(tvd
->vdev_log_mg
, ==, NULL
);
4429 metaslab_group_passivate(mg
);
4430 (void) spa_vdev_state_exit(spa
, vd
, 0);
4432 error
= spa_reset_logs(spa
);
4435 * If the log device was successfully reset but has
4436 * checkpointed data, do not offline it.
4439 tvd
->vdev_checkpoint_sm
!= NULL
) {
4440 ASSERT3U(space_map_allocated(
4441 tvd
->vdev_checkpoint_sm
), !=, 0);
4442 error
= ZFS_ERR_CHECKPOINT_EXISTS
;
4445 spa_vdev_state_enter(spa
, SCL_ALLOC
);
4448 * Check to see if the config has changed.
4450 if (error
|| generation
!= spa
->spa_config_generation
) {
4451 metaslab_group_activate(mg
);
4453 return (spa_vdev_state_exit(spa
,
4455 (void) spa_vdev_state_exit(spa
, vd
, 0);
4458 ASSERT0(tvd
->vdev_stat
.vs_alloc
);
4462 * Offline this device and reopen its top-level vdev.
4463 * If the top-level vdev is a log device then just offline
4464 * it. Otherwise, if this action results in the top-level
4465 * vdev becoming unusable, undo it and fail the request.
4467 vd
->vdev_offline
= B_TRUE
;
4470 if (!tvd
->vdev_islog
&& vd
->vdev_aux
== NULL
&&
4471 vdev_is_dead(tvd
)) {
4472 vd
->vdev_offline
= B_FALSE
;
4474 return (spa_vdev_state_exit(spa
, NULL
,
4479 * Add the device back into the metaslab rotor so that
4480 * once we online the device it's open for business.
4482 if (tvd
->vdev_islog
&& mg
!= NULL
)
4483 metaslab_group_activate(mg
);
4486 vd
->vdev_tmpoffline
= !!(flags
& ZFS_OFFLINE_TEMPORARY
);
4488 return (spa_vdev_state_exit(spa
, vd
, 0));
4492 vdev_offline(spa_t
*spa
, uint64_t guid
, uint64_t flags
)
4496 mutex_enter(&spa
->spa_vdev_top_lock
);
4497 error
= vdev_offline_locked(spa
, guid
, flags
);
4498 mutex_exit(&spa
->spa_vdev_top_lock
);
4504 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4505 * vdev_offline(), we assume the spa config is locked. We also clear all
4506 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4509 vdev_clear(spa_t
*spa
, vdev_t
*vd
)
4511 vdev_t
*rvd
= spa
->spa_root_vdev
;
4513 ASSERT(spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
4518 vd
->vdev_stat
.vs_read_errors
= 0;
4519 vd
->vdev_stat
.vs_write_errors
= 0;
4520 vd
->vdev_stat
.vs_checksum_errors
= 0;
4521 vd
->vdev_stat
.vs_dio_verify_errors
= 0;
4522 vd
->vdev_stat
.vs_slow_ios
= 0;
4524 for (int c
= 0; c
< vd
->vdev_children
; c
++)
4525 vdev_clear(spa
, vd
->vdev_child
[c
]);
4528 * It makes no sense to "clear" an indirect or removed vdev.
4530 if (!vdev_is_concrete(vd
) || vd
->vdev_removed
)
4534 * If we're in the FAULTED state or have experienced failed I/O, then
4535 * clear the persistent state and attempt to reopen the device. We
4536 * also mark the vdev config dirty, so that the new faulted state is
4537 * written out to disk.
4539 if (vd
->vdev_faulted
|| vd
->vdev_degraded
||
4540 !vdev_readable(vd
) || !vdev_writeable(vd
)) {
4542 * When reopening in response to a clear event, it may be due to
4543 * a fmadm repair request. In this case, if the device is
4544 * still broken, we want to still post the ereport again.
4546 vd
->vdev_forcefault
= B_TRUE
;
4548 vd
->vdev_faulted
= vd
->vdev_degraded
= 0ULL;
4549 vd
->vdev_cant_read
= B_FALSE
;
4550 vd
->vdev_cant_write
= B_FALSE
;
4551 vd
->vdev_stat
.vs_aux
= 0;
4553 vdev_reopen(vd
== rvd
? rvd
: vd
->vdev_top
);
4555 vd
->vdev_forcefault
= B_FALSE
;
4557 if (vd
!= rvd
&& vdev_writeable(vd
->vdev_top
))
4558 vdev_state_dirty(vd
->vdev_top
);
4560 /* If a resilver isn't required, check if vdevs can be culled */
4561 if (vd
->vdev_aux
== NULL
&& !vdev_is_dead(vd
) &&
4562 !dsl_scan_resilvering(spa
->spa_dsl_pool
) &&
4563 !dsl_scan_resilver_scheduled(spa
->spa_dsl_pool
))
4564 spa_async_request(spa
, SPA_ASYNC_RESILVER_DONE
);
4566 spa_event_notify(spa
, vd
, NULL
, ESC_ZFS_VDEV_CLEAR
);
4570 * When clearing a FMA-diagnosed fault, we always want to
4571 * unspare the device, as we assume that the original spare was
4572 * done in response to the FMA fault.
4574 if (!vdev_is_dead(vd
) && vd
->vdev_parent
!= NULL
&&
4575 vd
->vdev_parent
->vdev_ops
== &vdev_spare_ops
&&
4576 vd
->vdev_parent
->vdev_child
[0] == vd
)
4577 vd
->vdev_unspare
= B_TRUE
;
4579 /* Clear recent error events cache (i.e. duplicate events tracking) */
4580 zfs_ereport_clear(spa
, vd
);
4584 vdev_is_dead(vdev_t
*vd
)
4587 * Holes and missing devices are always considered "dead".
4588 * This simplifies the code since we don't have to check for
4589 * these types of devices in the various code paths.
4590 * Instead we rely on the fact that we skip over dead devices
4591 * before issuing I/O to them.
4593 return (vd
->vdev_state
< VDEV_STATE_DEGRADED
||
4594 vd
->vdev_ops
== &vdev_hole_ops
||
4595 vd
->vdev_ops
== &vdev_missing_ops
);
4599 vdev_readable(vdev_t
*vd
)
4601 return (!vdev_is_dead(vd
) && !vd
->vdev_cant_read
);
4605 vdev_writeable(vdev_t
*vd
)
4607 return (!vdev_is_dead(vd
) && !vd
->vdev_cant_write
&&
4608 vdev_is_concrete(vd
));
4612 vdev_allocatable(vdev_t
*vd
)
4614 uint64_t state
= vd
->vdev_state
;
4617 * We currently allow allocations from vdevs which may be in the
4618 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4619 * fails to reopen then we'll catch it later when we're holding
4620 * the proper locks. Note that we have to get the vdev state
4621 * in a local variable because although it changes atomically,
4622 * we're asking two separate questions about it.
4624 return (!(state
< VDEV_STATE_DEGRADED
&& state
!= VDEV_STATE_CLOSED
) &&
4625 !vd
->vdev_cant_write
&& vdev_is_concrete(vd
) &&
4626 vd
->vdev_mg
->mg_initialized
);
4630 vdev_accessible(vdev_t
*vd
, zio_t
*zio
)
4632 ASSERT(zio
->io_vd
== vd
);
4634 if (vdev_is_dead(vd
) || vd
->vdev_remove_wanted
)
4637 if (zio
->io_type
== ZIO_TYPE_READ
)
4638 return (!vd
->vdev_cant_read
);
4640 if (zio
->io_type
== ZIO_TYPE_WRITE
)
4641 return (!vd
->vdev_cant_write
);
4647 vdev_get_child_stat(vdev_t
*cvd
, vdev_stat_t
*vs
, vdev_stat_t
*cvs
)
4650 * Exclude the dRAID spare when aggregating to avoid double counting
4651 * the ops and bytes. These IOs are counted by the physical leaves.
4653 if (cvd
->vdev_ops
== &vdev_draid_spare_ops
)
4656 for (int t
= 0; t
< VS_ZIO_TYPES
; t
++) {
4657 vs
->vs_ops
[t
] += cvs
->vs_ops
[t
];
4658 vs
->vs_bytes
[t
] += cvs
->vs_bytes
[t
];
4661 cvs
->vs_scan_removing
= cvd
->vdev_removing
;
4665 * Get extended stats
4668 vdev_get_child_stat_ex(vdev_t
*cvd
, vdev_stat_ex_t
*vsx
, vdev_stat_ex_t
*cvsx
)
4673 for (t
= 0; t
< ZIO_TYPES
; t
++) {
4674 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_disk_histo
[0]); b
++)
4675 vsx
->vsx_disk_histo
[t
][b
] += cvsx
->vsx_disk_histo
[t
][b
];
4677 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_total_histo
[0]); b
++) {
4678 vsx
->vsx_total_histo
[t
][b
] +=
4679 cvsx
->vsx_total_histo
[t
][b
];
4683 for (t
= 0; t
< ZIO_PRIORITY_NUM_QUEUEABLE
; t
++) {
4684 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_queue_histo
[0]); b
++) {
4685 vsx
->vsx_queue_histo
[t
][b
] +=
4686 cvsx
->vsx_queue_histo
[t
][b
];
4688 vsx
->vsx_active_queue
[t
] += cvsx
->vsx_active_queue
[t
];
4689 vsx
->vsx_pend_queue
[t
] += cvsx
->vsx_pend_queue
[t
];
4691 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_ind_histo
[0]); b
++)
4692 vsx
->vsx_ind_histo
[t
][b
] += cvsx
->vsx_ind_histo
[t
][b
];
4694 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_agg_histo
[0]); b
++)
4695 vsx
->vsx_agg_histo
[t
][b
] += cvsx
->vsx_agg_histo
[t
][b
];
4701 vdev_is_spacemap_addressable(vdev_t
*vd
)
4703 if (spa_feature_is_active(vd
->vdev_spa
, SPA_FEATURE_SPACEMAP_V2
))
4707 * If double-word space map entries are not enabled we assume
4708 * 47 bits of the space map entry are dedicated to the entry's
4709 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4710 * to calculate the maximum address that can be described by a
4711 * space map entry for the given device.
4713 uint64_t shift
= vd
->vdev_ashift
+ SM_OFFSET_BITS
;
4715 if (shift
>= 63) /* detect potential overflow */
4718 return (vd
->vdev_asize
< (1ULL << shift
));
4722 * Get statistics for the given vdev.
4725 vdev_get_stats_ex_impl(vdev_t
*vd
, vdev_stat_t
*vs
, vdev_stat_ex_t
*vsx
)
4729 * If we're getting stats on the root vdev, aggregate the I/O counts
4730 * over all top-level vdevs (i.e. the direct children of the root).
4732 if (!vd
->vdev_ops
->vdev_op_leaf
) {
4734 memset(vs
->vs_ops
, 0, sizeof (vs
->vs_ops
));
4735 memset(vs
->vs_bytes
, 0, sizeof (vs
->vs_bytes
));
4738 memset(vsx
, 0, sizeof (*vsx
));
4740 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
4741 vdev_t
*cvd
= vd
->vdev_child
[c
];
4742 vdev_stat_t
*cvs
= &cvd
->vdev_stat
;
4743 vdev_stat_ex_t
*cvsx
= &cvd
->vdev_stat_ex
;
4745 vdev_get_stats_ex_impl(cvd
, cvs
, cvsx
);
4747 vdev_get_child_stat(cvd
, vs
, cvs
);
4749 vdev_get_child_stat_ex(cvd
, vsx
, cvsx
);
4753 * We're a leaf. Just copy our ZIO active queue stats in. The
4754 * other leaf stats are updated in vdev_stat_update().
4759 memcpy(vsx
, &vd
->vdev_stat_ex
, sizeof (vd
->vdev_stat_ex
));
4761 for (t
= 0; t
< ZIO_PRIORITY_NUM_QUEUEABLE
; t
++) {
4762 vsx
->vsx_active_queue
[t
] = vd
->vdev_queue
.vq_cactive
[t
];
4763 vsx
->vsx_pend_queue
[t
] = vdev_queue_class_length(vd
, t
);
4769 vdev_get_stats_ex(vdev_t
*vd
, vdev_stat_t
*vs
, vdev_stat_ex_t
*vsx
)
4771 vdev_t
*tvd
= vd
->vdev_top
;
4772 mutex_enter(&vd
->vdev_stat_lock
);
4774 memcpy(vs
, &vd
->vdev_stat
, sizeof (*vs
));
4775 vs
->vs_timestamp
= gethrtime() - vs
->vs_timestamp
;
4776 vs
->vs_state
= vd
->vdev_state
;
4777 vs
->vs_rsize
= vdev_get_min_asize(vd
);
4779 if (vd
->vdev_ops
->vdev_op_leaf
) {
4780 vs
->vs_pspace
= vd
->vdev_psize
;
4781 vs
->vs_rsize
+= VDEV_LABEL_START_SIZE
+
4782 VDEV_LABEL_END_SIZE
;
4784 * Report initializing progress. Since we don't
4785 * have the initializing locks held, this is only
4786 * an estimate (although a fairly accurate one).
4788 vs
->vs_initialize_bytes_done
=
4789 vd
->vdev_initialize_bytes_done
;
4790 vs
->vs_initialize_bytes_est
=
4791 vd
->vdev_initialize_bytes_est
;
4792 vs
->vs_initialize_state
= vd
->vdev_initialize_state
;
4793 vs
->vs_initialize_action_time
=
4794 vd
->vdev_initialize_action_time
;
4797 * Report manual TRIM progress. Since we don't have
4798 * the manual TRIM locks held, this is only an
4799 * estimate (although fairly accurate one).
4801 vs
->vs_trim_notsup
= !vd
->vdev_has_trim
;
4802 vs
->vs_trim_bytes_done
= vd
->vdev_trim_bytes_done
;
4803 vs
->vs_trim_bytes_est
= vd
->vdev_trim_bytes_est
;
4804 vs
->vs_trim_state
= vd
->vdev_trim_state
;
4805 vs
->vs_trim_action_time
= vd
->vdev_trim_action_time
;
4807 /* Set when there is a deferred resilver. */
4808 vs
->vs_resilver_deferred
= vd
->vdev_resilver_deferred
;
4812 * Report expandable space on top-level, non-auxiliary devices
4813 * only. The expandable space is reported in terms of metaslab
4814 * sized units since that determines how much space the pool
4817 if (vd
->vdev_aux
== NULL
&& tvd
!= NULL
) {
4818 vs
->vs_esize
= P2ALIGN_TYPED(
4819 vd
->vdev_max_asize
- vd
->vdev_asize
,
4820 1ULL << tvd
->vdev_ms_shift
, uint64_t);
4823 vs
->vs_configured_ashift
= vd
->vdev_top
!= NULL
4824 ? vd
->vdev_top
->vdev_ashift
: vd
->vdev_ashift
;
4825 vs
->vs_logical_ashift
= vd
->vdev_logical_ashift
;
4826 if (vd
->vdev_physical_ashift
<= ASHIFT_MAX
)
4827 vs
->vs_physical_ashift
= vd
->vdev_physical_ashift
;
4829 vs
->vs_physical_ashift
= 0;
4832 * Report fragmentation and rebuild progress for top-level,
4833 * non-auxiliary, concrete devices.
4835 if (vd
->vdev_aux
== NULL
&& vd
== vd
->vdev_top
&&
4836 vdev_is_concrete(vd
)) {
4838 * The vdev fragmentation rating doesn't take into
4839 * account the embedded slog metaslab (vdev_log_mg).
4840 * Since it's only one metaslab, it would have a tiny
4841 * impact on the overall fragmentation.
4843 vs
->vs_fragmentation
= (vd
->vdev_mg
!= NULL
) ?
4844 vd
->vdev_mg
->mg_fragmentation
: 0;
4846 vs
->vs_noalloc
= MAX(vd
->vdev_noalloc
,
4847 tvd
? tvd
->vdev_noalloc
: 0);
4850 vdev_get_stats_ex_impl(vd
, vs
, vsx
);
4851 mutex_exit(&vd
->vdev_stat_lock
);
4855 vdev_get_stats(vdev_t
*vd
, vdev_stat_t
*vs
)
4857 return (vdev_get_stats_ex(vd
, vs
, NULL
));
4861 vdev_clear_stats(vdev_t
*vd
)
4863 mutex_enter(&vd
->vdev_stat_lock
);
4864 vd
->vdev_stat
.vs_space
= 0;
4865 vd
->vdev_stat
.vs_dspace
= 0;
4866 vd
->vdev_stat
.vs_alloc
= 0;
4867 mutex_exit(&vd
->vdev_stat_lock
);
4871 vdev_scan_stat_init(vdev_t
*vd
)
4873 vdev_stat_t
*vs
= &vd
->vdev_stat
;
4875 for (int c
= 0; c
< vd
->vdev_children
; c
++)
4876 vdev_scan_stat_init(vd
->vdev_child
[c
]);
4878 mutex_enter(&vd
->vdev_stat_lock
);
4879 vs
->vs_scan_processed
= 0;
4880 mutex_exit(&vd
->vdev_stat_lock
);
4884 vdev_stat_update(zio_t
*zio
, uint64_t psize
)
4886 spa_t
*spa
= zio
->io_spa
;
4887 vdev_t
*rvd
= spa
->spa_root_vdev
;
4888 vdev_t
*vd
= zio
->io_vd
? zio
->io_vd
: rvd
;
4890 uint64_t txg
= zio
->io_txg
;
4891 /* Suppress ASAN false positive */
4892 #ifdef __SANITIZE_ADDRESS__
4893 vdev_stat_t
*vs
= vd
? &vd
->vdev_stat
: NULL
;
4894 vdev_stat_ex_t
*vsx
= vd
? &vd
->vdev_stat_ex
: NULL
;
4896 vdev_stat_t
*vs
= &vd
->vdev_stat
;
4897 vdev_stat_ex_t
*vsx
= &vd
->vdev_stat_ex
;
4899 zio_type_t type
= zio
->io_type
;
4900 int flags
= zio
->io_flags
;
4903 * If this i/o is a gang leader, it didn't do any actual work.
4905 if (zio
->io_gang_tree
)
4908 if (zio
->io_error
== 0) {
4910 * If this is a root i/o, don't count it -- we've already
4911 * counted the top-level vdevs, and vdev_get_stats() will
4912 * aggregate them when asked. This reduces contention on
4913 * the root vdev_stat_lock and implicitly handles blocks
4914 * that compress away to holes, for which there is no i/o.
4915 * (Holes never create vdev children, so all the counters
4916 * remain zero, which is what we want.)
4918 * Note: this only applies to successful i/o (io_error == 0)
4919 * because unlike i/o counts, errors are not additive.
4920 * When reading a ditto block, for example, failure of
4921 * one top-level vdev does not imply a root-level error.
4926 ASSERT(vd
== zio
->io_vd
);
4928 if (flags
& ZIO_FLAG_IO_BYPASS
)
4931 mutex_enter(&vd
->vdev_stat_lock
);
4933 if (flags
& ZIO_FLAG_IO_REPAIR
) {
4935 * Repair is the result of a resilver issued by the
4936 * scan thread (spa_sync).
4938 if (flags
& ZIO_FLAG_SCAN_THREAD
) {
4939 dsl_scan_t
*scn
= spa
->spa_dsl_pool
->dp_scan
;
4940 dsl_scan_phys_t
*scn_phys
= &scn
->scn_phys
;
4941 uint64_t *processed
= &scn_phys
->scn_processed
;
4943 if (vd
->vdev_ops
->vdev_op_leaf
)
4944 atomic_add_64(processed
, psize
);
4945 vs
->vs_scan_processed
+= psize
;
4949 * Repair is the result of a rebuild issued by the
4950 * rebuild thread (vdev_rebuild_thread). To avoid
4951 * double counting repaired bytes the virtual dRAID
4952 * spare vdev is excluded from the processed bytes.
4954 if (zio
->io_priority
== ZIO_PRIORITY_REBUILD
) {
4955 vdev_t
*tvd
= vd
->vdev_top
;
4956 vdev_rebuild_t
*vr
= &tvd
->vdev_rebuild_config
;
4957 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
4958 uint64_t *rebuilt
= &vrp
->vrp_bytes_rebuilt
;
4960 if (vd
->vdev_ops
->vdev_op_leaf
&&
4961 vd
->vdev_ops
!= &vdev_draid_spare_ops
) {
4962 atomic_add_64(rebuilt
, psize
);
4964 vs
->vs_rebuild_processed
+= psize
;
4967 if (flags
& ZIO_FLAG_SELF_HEAL
)
4968 vs
->vs_self_healed
+= psize
;
4972 * The bytes/ops/histograms are recorded at the leaf level and
4973 * aggregated into the higher level vdevs in vdev_get_stats().
4975 if (vd
->vdev_ops
->vdev_op_leaf
&&
4976 (zio
->io_priority
< ZIO_PRIORITY_NUM_QUEUEABLE
)) {
4977 zio_type_t vs_type
= type
;
4978 zio_priority_t priority
= zio
->io_priority
;
4981 * TRIM ops and bytes are reported to user space as
4982 * ZIO_TYPE_FLUSH. This is done to preserve the
4983 * vdev_stat_t structure layout for user space.
4985 if (type
== ZIO_TYPE_TRIM
)
4986 vs_type
= ZIO_TYPE_FLUSH
;
4989 * Solely for the purposes of 'zpool iostat -lqrw'
4990 * reporting use the priority to categorize the IO.
4991 * Only the following are reported to user space:
4993 * ZIO_PRIORITY_SYNC_READ,
4994 * ZIO_PRIORITY_SYNC_WRITE,
4995 * ZIO_PRIORITY_ASYNC_READ,
4996 * ZIO_PRIORITY_ASYNC_WRITE,
4997 * ZIO_PRIORITY_SCRUB,
4998 * ZIO_PRIORITY_TRIM,
4999 * ZIO_PRIORITY_REBUILD.
5001 if (priority
== ZIO_PRIORITY_INITIALIZING
) {
5002 ASSERT3U(type
, ==, ZIO_TYPE_WRITE
);
5003 priority
= ZIO_PRIORITY_ASYNC_WRITE
;
5004 } else if (priority
== ZIO_PRIORITY_REMOVAL
) {
5005 priority
= ((type
== ZIO_TYPE_WRITE
) ?
5006 ZIO_PRIORITY_ASYNC_WRITE
:
5007 ZIO_PRIORITY_ASYNC_READ
);
5010 vs
->vs_ops
[vs_type
]++;
5011 vs
->vs_bytes
[vs_type
] += psize
;
5013 if (flags
& ZIO_FLAG_DELEGATED
) {
5014 vsx
->vsx_agg_histo
[priority
]
5015 [RQ_HISTO(zio
->io_size
)]++;
5017 vsx
->vsx_ind_histo
[priority
]
5018 [RQ_HISTO(zio
->io_size
)]++;
5021 if (zio
->io_delta
&& zio
->io_delay
) {
5022 vsx
->vsx_queue_histo
[priority
]
5023 [L_HISTO(zio
->io_delta
- zio
->io_delay
)]++;
5024 vsx
->vsx_disk_histo
[type
]
5025 [L_HISTO(zio
->io_delay
)]++;
5026 vsx
->vsx_total_histo
[type
]
5027 [L_HISTO(zio
->io_delta
)]++;
5031 mutex_exit(&vd
->vdev_stat_lock
);
5035 if (flags
& ZIO_FLAG_SPECULATIVE
)
5039 * If this is an I/O error that is going to be retried, then ignore the
5040 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
5041 * hard errors, when in reality they can happen for any number of
5042 * innocuous reasons (bus resets, MPxIO link failure, etc).
5044 if (zio
->io_error
== EIO
&&
5045 !(zio
->io_flags
& ZIO_FLAG_IO_RETRY
))
5049 * Intent logs writes won't propagate their error to the root
5050 * I/O so don't mark these types of failures as pool-level
5053 if (zio
->io_vd
== NULL
&& (zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
))
5056 if (type
== ZIO_TYPE_WRITE
&& txg
!= 0 &&
5057 (!(flags
& ZIO_FLAG_IO_REPAIR
) ||
5058 (flags
& ZIO_FLAG_SCAN_THREAD
) ||
5059 spa
->spa_claiming
)) {
5061 * This is either a normal write (not a repair), or it's
5062 * a repair induced by the scrub thread, or it's a repair
5063 * made by zil_claim() during spa_load() in the first txg.
5064 * In the normal case, we commit the DTL change in the same
5065 * txg as the block was born. In the scrub-induced repair
5066 * case, we know that scrubs run in first-pass syncing context,
5067 * so we commit the DTL change in spa_syncing_txg(spa).
5068 * In the zil_claim() case, we commit in spa_first_txg(spa).
5070 * We currently do not make DTL entries for failed spontaneous
5071 * self-healing writes triggered by normal (non-scrubbing)
5072 * reads, because we have no transactional context in which to
5073 * do so -- and it's not clear that it'd be desirable anyway.
5075 if (vd
->vdev_ops
->vdev_op_leaf
) {
5076 uint64_t commit_txg
= txg
;
5077 if (flags
& ZIO_FLAG_SCAN_THREAD
) {
5078 ASSERT(flags
& ZIO_FLAG_IO_REPAIR
);
5079 ASSERT(spa_sync_pass(spa
) == 1);
5080 vdev_dtl_dirty(vd
, DTL_SCRUB
, txg
, 1);
5081 commit_txg
= spa_syncing_txg(spa
);
5082 } else if (spa
->spa_claiming
) {
5083 ASSERT(flags
& ZIO_FLAG_IO_REPAIR
);
5084 commit_txg
= spa_first_txg(spa
);
5086 ASSERT(commit_txg
>= spa_syncing_txg(spa
));
5087 if (vdev_dtl_contains(vd
, DTL_MISSING
, txg
, 1))
5089 for (pvd
= vd
; pvd
!= rvd
; pvd
= pvd
->vdev_parent
)
5090 vdev_dtl_dirty(pvd
, DTL_PARTIAL
, txg
, 1);
5091 vdev_dirty(vd
->vdev_top
, VDD_DTL
, vd
, commit_txg
);
5094 vdev_dtl_dirty(vd
, DTL_MISSING
, txg
, 1);
5099 vdev_deflated_space(vdev_t
*vd
, int64_t space
)
5101 ASSERT((space
& (SPA_MINBLOCKSIZE
-1)) == 0);
5102 ASSERT(vd
->vdev_deflate_ratio
!= 0 || vd
->vdev_isl2cache
);
5104 return ((space
>> SPA_MINBLOCKSHIFT
) * vd
->vdev_deflate_ratio
);
5108 * Update the in-core space usage stats for this vdev, its metaslab class,
5109 * and the root vdev.
5112 vdev_space_update(vdev_t
*vd
, int64_t alloc_delta
, int64_t defer_delta
,
5113 int64_t space_delta
)
5116 int64_t dspace_delta
;
5117 spa_t
*spa
= vd
->vdev_spa
;
5118 vdev_t
*rvd
= spa
->spa_root_vdev
;
5120 ASSERT(vd
== vd
->vdev_top
);
5123 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
5124 * factor. We must calculate this here and not at the root vdev
5125 * because the root vdev's psize-to-asize is simply the max of its
5126 * children's, thus not accurate enough for us.
5128 dspace_delta
= vdev_deflated_space(vd
, space_delta
);
5130 mutex_enter(&vd
->vdev_stat_lock
);
5131 /* ensure we won't underflow */
5132 if (alloc_delta
< 0) {
5133 ASSERT3U(vd
->vdev_stat
.vs_alloc
, >=, -alloc_delta
);
5136 vd
->vdev_stat
.vs_alloc
+= alloc_delta
;
5137 vd
->vdev_stat
.vs_space
+= space_delta
;
5138 vd
->vdev_stat
.vs_dspace
+= dspace_delta
;
5139 mutex_exit(&vd
->vdev_stat_lock
);
5141 /* every class but log contributes to root space stats */
5142 if (vd
->vdev_mg
!= NULL
&& !vd
->vdev_islog
) {
5143 ASSERT(!vd
->vdev_isl2cache
);
5144 mutex_enter(&rvd
->vdev_stat_lock
);
5145 rvd
->vdev_stat
.vs_alloc
+= alloc_delta
;
5146 rvd
->vdev_stat
.vs_space
+= space_delta
;
5147 rvd
->vdev_stat
.vs_dspace
+= dspace_delta
;
5148 mutex_exit(&rvd
->vdev_stat_lock
);
5150 /* Note: metaslab_class_space_update moved to metaslab_space_update */
5154 * Mark a top-level vdev's config as dirty, placing it on the dirty list
5155 * so that it will be written out next time the vdev configuration is synced.
5156 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
5159 vdev_config_dirty(vdev_t
*vd
)
5161 spa_t
*spa
= vd
->vdev_spa
;
5162 vdev_t
*rvd
= spa
->spa_root_vdev
;
5165 ASSERT(spa_writeable(spa
));
5168 * If this is an aux vdev (as with l2cache and spare devices), then we
5169 * update the vdev config manually and set the sync flag.
5171 if (vd
->vdev_aux
!= NULL
) {
5172 spa_aux_vdev_t
*sav
= vd
->vdev_aux
;
5176 for (c
= 0; c
< sav
->sav_count
; c
++) {
5177 if (sav
->sav_vdevs
[c
] == vd
)
5181 if (c
== sav
->sav_count
) {
5183 * We're being removed. There's nothing more to do.
5185 ASSERT(sav
->sav_sync
== B_TRUE
);
5189 sav
->sav_sync
= B_TRUE
;
5191 if (nvlist_lookup_nvlist_array(sav
->sav_config
,
5192 ZPOOL_CONFIG_L2CACHE
, &aux
, &naux
) != 0) {
5193 VERIFY(nvlist_lookup_nvlist_array(sav
->sav_config
,
5194 ZPOOL_CONFIG_SPARES
, &aux
, &naux
) == 0);
5200 * Setting the nvlist in the middle if the array is a little
5201 * sketchy, but it will work.
5203 nvlist_free(aux
[c
]);
5204 aux
[c
] = vdev_config_generate(spa
, vd
, B_TRUE
, 0);
5210 * The dirty list is protected by the SCL_CONFIG lock. The caller
5211 * must either hold SCL_CONFIG as writer, or must be the sync thread
5212 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5213 * so this is sufficient to ensure mutual exclusion.
5215 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_WRITER
) ||
5216 (dsl_pool_sync_context(spa_get_dsl(spa
)) &&
5217 spa_config_held(spa
, SCL_CONFIG
, RW_READER
)));
5220 for (c
= 0; c
< rvd
->vdev_children
; c
++)
5221 vdev_config_dirty(rvd
->vdev_child
[c
]);
5223 ASSERT(vd
== vd
->vdev_top
);
5225 if (!list_link_active(&vd
->vdev_config_dirty_node
) &&
5226 vdev_is_concrete(vd
)) {
5227 list_insert_head(&spa
->spa_config_dirty_list
, vd
);
5233 vdev_config_clean(vdev_t
*vd
)
5235 spa_t
*spa
= vd
->vdev_spa
;
5237 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_WRITER
) ||
5238 (dsl_pool_sync_context(spa_get_dsl(spa
)) &&
5239 spa_config_held(spa
, SCL_CONFIG
, RW_READER
)));
5241 ASSERT(list_link_active(&vd
->vdev_config_dirty_node
));
5242 list_remove(&spa
->spa_config_dirty_list
, vd
);
5246 * Mark a top-level vdev's state as dirty, so that the next pass of
5247 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5248 * the state changes from larger config changes because they require
5249 * much less locking, and are often needed for administrative actions.
5252 vdev_state_dirty(vdev_t
*vd
)
5254 spa_t
*spa
= vd
->vdev_spa
;
5256 ASSERT(spa_writeable(spa
));
5257 ASSERT(vd
== vd
->vdev_top
);
5260 * The state list is protected by the SCL_STATE lock. The caller
5261 * must either hold SCL_STATE as writer, or must be the sync thread
5262 * (which holds SCL_STATE as reader). There's only one sync thread,
5263 * so this is sufficient to ensure mutual exclusion.
5265 ASSERT(spa_config_held(spa
, SCL_STATE
, RW_WRITER
) ||
5266 (dsl_pool_sync_context(spa_get_dsl(spa
)) &&
5267 spa_config_held(spa
, SCL_STATE
, RW_READER
)));
5269 if (!list_link_active(&vd
->vdev_state_dirty_node
) &&
5270 vdev_is_concrete(vd
))
5271 list_insert_head(&spa
->spa_state_dirty_list
, vd
);
5275 vdev_state_clean(vdev_t
*vd
)
5277 spa_t
*spa
= vd
->vdev_spa
;
5279 ASSERT(spa_config_held(spa
, SCL_STATE
, RW_WRITER
) ||
5280 (dsl_pool_sync_context(spa_get_dsl(spa
)) &&
5281 spa_config_held(spa
, SCL_STATE
, RW_READER
)));
5283 ASSERT(list_link_active(&vd
->vdev_state_dirty_node
));
5284 list_remove(&spa
->spa_state_dirty_list
, vd
);
5288 * Propagate vdev state up from children to parent.
5291 vdev_propagate_state(vdev_t
*vd
)
5293 spa_t
*spa
= vd
->vdev_spa
;
5294 vdev_t
*rvd
= spa
->spa_root_vdev
;
5295 int degraded
= 0, faulted
= 0;
5299 if (vd
->vdev_children
> 0) {
5300 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
5301 child
= vd
->vdev_child
[c
];
5304 * Don't factor holes or indirect vdevs into the
5307 if (!vdev_is_concrete(child
))
5310 if (!vdev_readable(child
) ||
5311 (!vdev_writeable(child
) && spa_writeable(spa
))) {
5313 * Root special: if there is a top-level log
5314 * device, treat the root vdev as if it were
5317 if (child
->vdev_islog
&& vd
== rvd
)
5321 } else if (child
->vdev_state
<= VDEV_STATE_DEGRADED
) {
5325 if (child
->vdev_stat
.vs_aux
== VDEV_AUX_CORRUPT_DATA
)
5329 vd
->vdev_ops
->vdev_op_state_change(vd
, faulted
, degraded
);
5332 * Root special: if there is a top-level vdev that cannot be
5333 * opened due to corrupted metadata, then propagate the root
5334 * vdev's aux state as 'corrupt' rather than 'insufficient
5337 if (corrupted
&& vd
== rvd
&&
5338 rvd
->vdev_state
== VDEV_STATE_CANT_OPEN
)
5339 vdev_set_state(rvd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
5340 VDEV_AUX_CORRUPT_DATA
);
5343 if (vd
->vdev_parent
)
5344 vdev_propagate_state(vd
->vdev_parent
);
5348 * Set a vdev's state. If this is during an open, we don't update the parent
5349 * state, because we're in the process of opening children depth-first.
5350 * Otherwise, we propagate the change to the parent.
5352 * If this routine places a device in a faulted state, an appropriate ereport is
5356 vdev_set_state(vdev_t
*vd
, boolean_t isopen
, vdev_state_t state
, vdev_aux_t aux
)
5358 uint64_t save_state
;
5359 spa_t
*spa
= vd
->vdev_spa
;
5361 if (state
== vd
->vdev_state
) {
5363 * Since vdev_offline() code path is already in an offline
5364 * state we can miss a statechange event to OFFLINE. Check
5365 * the previous state to catch this condition.
5367 if (vd
->vdev_ops
->vdev_op_leaf
&&
5368 (state
== VDEV_STATE_OFFLINE
) &&
5369 (vd
->vdev_prevstate
>= VDEV_STATE_FAULTED
)) {
5370 /* post an offline state change */
5371 zfs_post_state_change(spa
, vd
, vd
->vdev_prevstate
);
5373 vd
->vdev_stat
.vs_aux
= aux
;
5377 save_state
= vd
->vdev_state
;
5379 vd
->vdev_state
= state
;
5380 vd
->vdev_stat
.vs_aux
= aux
;
5383 * If we are setting the vdev state to anything but an open state, then
5384 * always close the underlying device unless the device has requested
5385 * a delayed close (i.e. we're about to remove or fault the device).
5386 * Otherwise, we keep accessible but invalid devices open forever.
5387 * We don't call vdev_close() itself, because that implies some extra
5388 * checks (offline, etc) that we don't want here. This is limited to
5389 * leaf devices, because otherwise closing the device will affect other
5392 if (!vd
->vdev_delayed_close
&& vdev_is_dead(vd
) &&
5393 vd
->vdev_ops
->vdev_op_leaf
)
5394 vd
->vdev_ops
->vdev_op_close(vd
);
5396 if (vd
->vdev_removed
&&
5397 state
== VDEV_STATE_CANT_OPEN
&&
5398 (aux
== VDEV_AUX_OPEN_FAILED
|| vd
->vdev_checkremove
)) {
5400 * If the previous state is set to VDEV_STATE_REMOVED, then this
5401 * device was previously marked removed and someone attempted to
5402 * reopen it. If this failed due to a nonexistent device, then
5403 * keep the device in the REMOVED state. We also let this be if
5404 * it is one of our special test online cases, which is only
5405 * attempting to online the device and shouldn't generate an FMA
5408 vd
->vdev_state
= VDEV_STATE_REMOVED
;
5409 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NONE
;
5410 } else if (state
== VDEV_STATE_REMOVED
) {
5411 vd
->vdev_removed
= B_TRUE
;
5412 } else if (state
== VDEV_STATE_CANT_OPEN
) {
5414 * If we fail to open a vdev during an import or recovery, we
5415 * mark it as "not available", which signifies that it was
5416 * never there to begin with. Failure to open such a device
5417 * is not considered an error.
5419 if ((spa_load_state(spa
) == SPA_LOAD_IMPORT
||
5420 spa_load_state(spa
) == SPA_LOAD_RECOVER
) &&
5421 vd
->vdev_ops
->vdev_op_leaf
)
5422 vd
->vdev_not_present
= 1;
5425 * Post the appropriate ereport. If the 'prevstate' field is
5426 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5427 * that this is part of a vdev_reopen(). In this case, we don't
5428 * want to post the ereport if the device was already in the
5429 * CANT_OPEN state beforehand.
5431 * If the 'checkremove' flag is set, then this is an attempt to
5432 * online the device in response to an insertion event. If we
5433 * hit this case, then we have detected an insertion event for a
5434 * faulted or offline device that wasn't in the removed state.
5435 * In this scenario, we don't post an ereport because we are
5436 * about to replace the device, or attempt an online with
5437 * vdev_forcefault, which will generate the fault for us.
5439 if ((vd
->vdev_prevstate
!= state
|| vd
->vdev_forcefault
) &&
5440 !vd
->vdev_not_present
&& !vd
->vdev_checkremove
&&
5441 vd
!= spa
->spa_root_vdev
) {
5445 case VDEV_AUX_OPEN_FAILED
:
5446 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED
;
5448 case VDEV_AUX_CORRUPT_DATA
:
5449 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA
;
5451 case VDEV_AUX_NO_REPLICAS
:
5452 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS
;
5454 case VDEV_AUX_BAD_GUID_SUM
:
5455 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM
;
5457 case VDEV_AUX_TOO_SMALL
:
5458 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL
;
5460 case VDEV_AUX_BAD_LABEL
:
5461 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL
;
5463 case VDEV_AUX_BAD_ASHIFT
:
5464 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT
;
5467 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN
;
5470 (void) zfs_ereport_post(class, spa
, vd
, NULL
, NULL
,
5474 /* Erase any notion of persistent removed state */
5475 vd
->vdev_removed
= B_FALSE
;
5477 vd
->vdev_removed
= B_FALSE
;
5481 * Notify ZED of any significant state-change on a leaf vdev.
5484 if (vd
->vdev_ops
->vdev_op_leaf
) {
5485 /* preserve original state from a vdev_reopen() */
5486 if ((vd
->vdev_prevstate
!= VDEV_STATE_UNKNOWN
) &&
5487 (vd
->vdev_prevstate
!= vd
->vdev_state
) &&
5488 (save_state
<= VDEV_STATE_CLOSED
))
5489 save_state
= vd
->vdev_prevstate
;
5491 /* filter out state change due to initial vdev_open */
5492 if (save_state
> VDEV_STATE_CLOSED
)
5493 zfs_post_state_change(spa
, vd
, save_state
);
5496 if (!isopen
&& vd
->vdev_parent
)
5497 vdev_propagate_state(vd
->vdev_parent
);
5501 vdev_children_are_offline(vdev_t
*vd
)
5503 ASSERT(!vd
->vdev_ops
->vdev_op_leaf
);
5505 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
5506 if (vd
->vdev_child
[i
]->vdev_state
!= VDEV_STATE_OFFLINE
)
5514 * Check the vdev configuration to ensure that it's capable of supporting
5515 * a root pool. We do not support partial configuration.
5518 vdev_is_bootable(vdev_t
*vd
)
5520 if (!vd
->vdev_ops
->vdev_op_leaf
) {
5521 const char *vdev_type
= vd
->vdev_ops
->vdev_op_type
;
5523 if (strcmp(vdev_type
, VDEV_TYPE_MISSING
) == 0)
5527 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
5528 if (!vdev_is_bootable(vd
->vdev_child
[c
]))
5535 vdev_is_concrete(vdev_t
*vd
)
5537 vdev_ops_t
*ops
= vd
->vdev_ops
;
5538 if (ops
== &vdev_indirect_ops
|| ops
== &vdev_hole_ops
||
5539 ops
== &vdev_missing_ops
|| ops
== &vdev_root_ops
) {
5547 * Determine if a log device has valid content. If the vdev was
5548 * removed or faulted in the MOS config then we know that
5549 * the content on the log device has already been written to the pool.
5552 vdev_log_state_valid(vdev_t
*vd
)
5554 if (vd
->vdev_ops
->vdev_op_leaf
&& !vd
->vdev_faulted
&&
5558 for (int c
= 0; c
< vd
->vdev_children
; c
++)
5559 if (vdev_log_state_valid(vd
->vdev_child
[c
]))
5566 * Expand a vdev if possible.
5569 vdev_expand(vdev_t
*vd
, uint64_t txg
)
5571 ASSERT(vd
->vdev_top
== vd
);
5572 ASSERT(spa_config_held(vd
->vdev_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
5573 ASSERT(vdev_is_concrete(vd
));
5575 vdev_set_deflate_ratio(vd
);
5577 if ((vd
->vdev_spa
->spa_raidz_expand
== NULL
||
5578 vd
->vdev_spa
->spa_raidz_expand
->vre_vdev_id
!= vd
->vdev_id
) &&
5579 (vd
->vdev_asize
>> vd
->vdev_ms_shift
) > vd
->vdev_ms_count
&&
5580 vdev_is_concrete(vd
)) {
5581 vdev_metaslab_group_create(vd
);
5582 VERIFY(vdev_metaslab_init(vd
, txg
) == 0);
5583 vdev_config_dirty(vd
);
5591 vdev_split(vdev_t
*vd
)
5593 vdev_t
*cvd
, *pvd
= vd
->vdev_parent
;
5595 VERIFY3U(pvd
->vdev_children
, >, 1);
5597 vdev_remove_child(pvd
, vd
);
5598 vdev_compact_children(pvd
);
5600 ASSERT3P(pvd
->vdev_child
, !=, NULL
);
5602 cvd
= pvd
->vdev_child
[0];
5603 if (pvd
->vdev_children
== 1) {
5604 vdev_remove_parent(cvd
);
5605 cvd
->vdev_splitting
= B_TRUE
;
5607 vdev_propagate_state(cvd
);
5611 vdev_deadman(vdev_t
*vd
, const char *tag
)
5613 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
5614 vdev_t
*cvd
= vd
->vdev_child
[c
];
5616 vdev_deadman(cvd
, tag
);
5619 if (vd
->vdev_ops
->vdev_op_leaf
) {
5620 vdev_queue_t
*vq
= &vd
->vdev_queue
;
5622 mutex_enter(&vq
->vq_lock
);
5623 if (vq
->vq_active
> 0) {
5624 spa_t
*spa
= vd
->vdev_spa
;
5628 zfs_dbgmsg("slow vdev: %s has %u active IOs",
5629 vd
->vdev_path
, vq
->vq_active
);
5632 * Look at the head of all the pending queues,
5633 * if any I/O has been outstanding for longer than
5634 * the spa_deadman_synctime invoke the deadman logic.
5636 fio
= list_head(&vq
->vq_active_list
);
5637 delta
= gethrtime() - fio
->io_timestamp
;
5638 if (delta
> spa_deadman_synctime(spa
))
5639 zio_deadman(fio
, tag
);
5641 mutex_exit(&vq
->vq_lock
);
5646 vdev_defer_resilver(vdev_t
*vd
)
5648 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
5650 vd
->vdev_resilver_deferred
= B_TRUE
;
5651 vd
->vdev_spa
->spa_resilver_deferred
= B_TRUE
;
5655 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5656 * B_TRUE if we have devices that need to be resilvered and are available to
5657 * accept resilver I/Os.
5660 vdev_clear_resilver_deferred(vdev_t
*vd
, dmu_tx_t
*tx
)
5662 boolean_t resilver_needed
= B_FALSE
;
5663 spa_t
*spa
= vd
->vdev_spa
;
5665 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
5666 vdev_t
*cvd
= vd
->vdev_child
[c
];
5667 resilver_needed
|= vdev_clear_resilver_deferred(cvd
, tx
);
5670 if (vd
== spa
->spa_root_vdev
&&
5671 spa_feature_is_active(spa
, SPA_FEATURE_RESILVER_DEFER
)) {
5672 spa_feature_decr(spa
, SPA_FEATURE_RESILVER_DEFER
, tx
);
5673 vdev_config_dirty(vd
);
5674 spa
->spa_resilver_deferred
= B_FALSE
;
5675 return (resilver_needed
);
5678 if (!vdev_is_concrete(vd
) || vd
->vdev_aux
||
5679 !vd
->vdev_ops
->vdev_op_leaf
)
5680 return (resilver_needed
);
5682 vd
->vdev_resilver_deferred
= B_FALSE
;
5684 return (!vdev_is_dead(vd
) && !vd
->vdev_offline
&&
5685 vdev_resilver_needed(vd
, NULL
, NULL
));
5689 vdev_xlate_is_empty(range_seg64_t
*rs
)
5691 return (rs
->rs_start
== rs
->rs_end
);
5695 * Translate a logical range to the first contiguous physical range for the
5696 * specified vdev_t. This function is initially called with a leaf vdev and
5697 * will walk each parent vdev until it reaches a top-level vdev. Once the
5698 * top-level is reached the physical range is initialized and the recursive
5699 * function begins to unwind. As it unwinds it calls the parent's vdev
5700 * specific translation function to do the real conversion.
5703 vdev_xlate(vdev_t
*vd
, const range_seg64_t
*logical_rs
,
5704 range_seg64_t
*physical_rs
, range_seg64_t
*remain_rs
)
5707 * Walk up the vdev tree
5709 if (vd
!= vd
->vdev_top
) {
5710 vdev_xlate(vd
->vdev_parent
, logical_rs
, physical_rs
,
5714 * We've reached the top-level vdev, initialize the physical
5715 * range to the logical range and set an empty remaining
5716 * range then start to unwind.
5718 physical_rs
->rs_start
= logical_rs
->rs_start
;
5719 physical_rs
->rs_end
= logical_rs
->rs_end
;
5721 remain_rs
->rs_start
= logical_rs
->rs_start
;
5722 remain_rs
->rs_end
= logical_rs
->rs_start
;
5727 vdev_t
*pvd
= vd
->vdev_parent
;
5728 ASSERT3P(pvd
, !=, NULL
);
5729 ASSERT3P(pvd
->vdev_ops
->vdev_op_xlate
, !=, NULL
);
5732 * As this recursive function unwinds, translate the logical
5733 * range into its physical and any remaining components by calling
5734 * the vdev specific translate function.
5736 range_seg64_t intermediate
= { 0 };
5737 pvd
->vdev_ops
->vdev_op_xlate(vd
, physical_rs
, &intermediate
, remain_rs
);
5739 physical_rs
->rs_start
= intermediate
.rs_start
;
5740 physical_rs
->rs_end
= intermediate
.rs_end
;
5744 vdev_xlate_walk(vdev_t
*vd
, const range_seg64_t
*logical_rs
,
5745 vdev_xlate_func_t
*func
, void *arg
)
5747 range_seg64_t iter_rs
= *logical_rs
;
5748 range_seg64_t physical_rs
;
5749 range_seg64_t remain_rs
;
5751 while (!vdev_xlate_is_empty(&iter_rs
)) {
5753 vdev_xlate(vd
, &iter_rs
, &physical_rs
, &remain_rs
);
5756 * With raidz and dRAID, it's possible that the logical range
5757 * does not live on this leaf vdev. Only when there is a non-
5758 * zero physical size call the provided function.
5760 if (!vdev_xlate_is_empty(&physical_rs
))
5761 func(arg
, &physical_rs
);
5763 iter_rs
= remain_rs
;
5768 vdev_name(vdev_t
*vd
, char *buf
, int buflen
)
5770 if (vd
->vdev_path
== NULL
) {
5771 if (strcmp(vd
->vdev_ops
->vdev_op_type
, "root") == 0) {
5772 strlcpy(buf
, vd
->vdev_spa
->spa_name
, buflen
);
5773 } else if (!vd
->vdev_ops
->vdev_op_leaf
) {
5774 snprintf(buf
, buflen
, "%s-%llu",
5775 vd
->vdev_ops
->vdev_op_type
,
5776 (u_longlong_t
)vd
->vdev_id
);
5779 strlcpy(buf
, vd
->vdev_path
, buflen
);
5785 * Look at the vdev tree and determine whether any devices are currently being
5789 vdev_replace_in_progress(vdev_t
*vdev
)
5791 ASSERT(spa_config_held(vdev
->vdev_spa
, SCL_ALL
, RW_READER
) != 0);
5793 if (vdev
->vdev_ops
== &vdev_replacing_ops
)
5797 * A 'spare' vdev indicates that we have a replace in progress, unless
5798 * it has exactly two children, and the second, the hot spare, has
5799 * finished being resilvered.
5801 if (vdev
->vdev_ops
== &vdev_spare_ops
&& (vdev
->vdev_children
> 2 ||
5802 !vdev_dtl_empty(vdev
->vdev_child
[1], DTL_MISSING
)))
5805 for (int i
= 0; i
< vdev
->vdev_children
; i
++) {
5806 if (vdev_replace_in_progress(vdev
->vdev_child
[i
]))
5814 * Add a (source=src, propname=propval) list to an nvlist.
5817 vdev_prop_add_list(nvlist_t
*nvl
, const char *propname
, const char *strval
,
5818 uint64_t intval
, zprop_source_t src
)
5822 propval
= fnvlist_alloc();
5823 fnvlist_add_uint64(propval
, ZPROP_SOURCE
, src
);
5826 fnvlist_add_string(propval
, ZPROP_VALUE
, strval
);
5828 fnvlist_add_uint64(propval
, ZPROP_VALUE
, intval
);
5830 fnvlist_add_nvlist(nvl
, propname
, propval
);
5831 nvlist_free(propval
);
5835 vdev_props_set_sync(void *arg
, dmu_tx_t
*tx
)
5838 nvlist_t
*nvp
= arg
;
5839 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
5840 objset_t
*mos
= spa
->spa_meta_objset
;
5841 nvpair_t
*elem
= NULL
;
5846 vdev_guid
= fnvlist_lookup_uint64(nvp
, ZPOOL_VDEV_PROPS_SET_VDEV
);
5847 nvprops
= fnvlist_lookup_nvlist(nvp
, ZPOOL_VDEV_PROPS_SET_PROPS
);
5848 vd
= spa_lookup_by_guid(spa
, vdev_guid
, B_TRUE
);
5850 /* this vdev could get removed while waiting for this sync task */
5855 * Set vdev property values in the vdev props mos object.
5857 if (vd
->vdev_root_zap
!= 0) {
5858 objid
= vd
->vdev_root_zap
;
5859 } else if (vd
->vdev_top_zap
!= 0) {
5860 objid
= vd
->vdev_top_zap
;
5861 } else if (vd
->vdev_leaf_zap
!= 0) {
5862 objid
= vd
->vdev_leaf_zap
;
5864 panic("unexpected vdev type");
5867 mutex_enter(&spa
->spa_props_lock
);
5869 while ((elem
= nvlist_next_nvpair(nvprops
, elem
)) != NULL
) {
5873 const char *propname
= nvpair_name(elem
);
5874 zprop_type_t proptype
;
5876 switch (prop
= vdev_name_to_prop(propname
)) {
5877 case VDEV_PROP_USERPROP
:
5878 if (vdev_prop_user(propname
)) {
5879 strval
= fnvpair_value_string(elem
);
5880 if (strlen(strval
) == 0) {
5881 /* remove the property if value == "" */
5882 (void) zap_remove(mos
, objid
, propname
,
5885 VERIFY0(zap_update(mos
, objid
, propname
,
5886 1, strlen(strval
) + 1, strval
, tx
));
5888 spa_history_log_internal(spa
, "vdev set", tx
,
5889 "vdev_guid=%llu: %s=%s",
5890 (u_longlong_t
)vdev_guid
, nvpair_name(elem
),
5895 /* normalize the property name */
5896 propname
= vdev_prop_to_name(prop
);
5897 proptype
= vdev_prop_get_type(prop
);
5899 if (nvpair_type(elem
) == DATA_TYPE_STRING
) {
5900 ASSERT(proptype
== PROP_TYPE_STRING
);
5901 strval
= fnvpair_value_string(elem
);
5902 VERIFY0(zap_update(mos
, objid
, propname
,
5903 1, strlen(strval
) + 1, strval
, tx
));
5904 spa_history_log_internal(spa
, "vdev set", tx
,
5905 "vdev_guid=%llu: %s=%s",
5906 (u_longlong_t
)vdev_guid
, nvpair_name(elem
),
5908 } else if (nvpair_type(elem
) == DATA_TYPE_UINT64
) {
5909 intval
= fnvpair_value_uint64(elem
);
5911 if (proptype
== PROP_TYPE_INDEX
) {
5913 VERIFY0(vdev_prop_index_to_string(
5914 prop
, intval
, &unused
));
5916 VERIFY0(zap_update(mos
, objid
, propname
,
5917 sizeof (uint64_t), 1, &intval
, tx
));
5918 spa_history_log_internal(spa
, "vdev set", tx
,
5919 "vdev_guid=%llu: %s=%lld",
5920 (u_longlong_t
)vdev_guid
,
5921 nvpair_name(elem
), (longlong_t
)intval
);
5923 panic("invalid vdev property type %u",
5930 mutex_exit(&spa
->spa_props_lock
);
5934 vdev_prop_set(vdev_t
*vd
, nvlist_t
*innvl
, nvlist_t
*outnvl
)
5936 spa_t
*spa
= vd
->vdev_spa
;
5937 nvpair_t
*elem
= NULL
;
5944 /* Check that vdev has a zap we can use */
5945 if (vd
->vdev_root_zap
== 0 &&
5946 vd
->vdev_top_zap
== 0 &&
5947 vd
->vdev_leaf_zap
== 0)
5948 return (SET_ERROR(EINVAL
));
5950 if (nvlist_lookup_uint64(innvl
, ZPOOL_VDEV_PROPS_SET_VDEV
,
5952 return (SET_ERROR(EINVAL
));
5954 if (nvlist_lookup_nvlist(innvl
, ZPOOL_VDEV_PROPS_SET_PROPS
,
5956 return (SET_ERROR(EINVAL
));
5958 if ((vd
= spa_lookup_by_guid(spa
, vdev_guid
, B_TRUE
)) == NULL
)
5959 return (SET_ERROR(EINVAL
));
5961 while ((elem
= nvlist_next_nvpair(nvprops
, elem
)) != NULL
) {
5962 const char *propname
= nvpair_name(elem
);
5963 vdev_prop_t prop
= vdev_name_to_prop(propname
);
5964 uint64_t intval
= 0;
5965 const char *strval
= NULL
;
5967 if (prop
== VDEV_PROP_USERPROP
&& !vdev_prop_user(propname
)) {
5972 if (vdev_prop_readonly(prop
)) {
5977 /* Special Processing */
5979 case VDEV_PROP_PATH
:
5980 if (vd
->vdev_path
== NULL
) {
5984 if (nvpair_value_string(elem
, &strval
) != 0) {
5988 /* New path must start with /dev/ */
5989 if (strncmp(strval
, "/dev/", 5)) {
5993 error
= spa_vdev_setpath(spa
, vdev_guid
, strval
);
5995 case VDEV_PROP_ALLOCATING
:
5996 if (nvpair_value_uint64(elem
, &intval
) != 0) {
6000 if (intval
!= vd
->vdev_noalloc
)
6003 error
= spa_vdev_noalloc(spa
, vdev_guid
);
6005 error
= spa_vdev_alloc(spa
, vdev_guid
);
6007 case VDEV_PROP_FAILFAST
:
6008 if (nvpair_value_uint64(elem
, &intval
) != 0) {
6012 vd
->vdev_failfast
= intval
& 1;
6014 case VDEV_PROP_CHECKSUM_N
:
6015 if (nvpair_value_uint64(elem
, &intval
) != 0) {
6019 vd
->vdev_checksum_n
= intval
;
6021 case VDEV_PROP_CHECKSUM_T
:
6022 if (nvpair_value_uint64(elem
, &intval
) != 0) {
6026 vd
->vdev_checksum_t
= intval
;
6028 case VDEV_PROP_IO_N
:
6029 if (nvpair_value_uint64(elem
, &intval
) != 0) {
6033 vd
->vdev_io_n
= intval
;
6035 case VDEV_PROP_IO_T
:
6036 if (nvpair_value_uint64(elem
, &intval
) != 0) {
6040 vd
->vdev_io_t
= intval
;
6042 case VDEV_PROP_SLOW_IO_N
:
6043 if (nvpair_value_uint64(elem
, &intval
) != 0) {
6047 vd
->vdev_slow_io_n
= intval
;
6049 case VDEV_PROP_SLOW_IO_T
:
6050 if (nvpair_value_uint64(elem
, &intval
) != 0) {
6054 vd
->vdev_slow_io_t
= intval
;
6057 /* Most processing is done in vdev_props_set_sync */
6063 vdev_prop_add_list(outnvl
, propname
, strval
, intval
, 0);
6068 return (dsl_sync_task(spa
->spa_name
, NULL
, vdev_props_set_sync
,
6069 innvl
, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED
));
6073 vdev_prop_get(vdev_t
*vd
, nvlist_t
*innvl
, nvlist_t
*outnvl
)
6075 spa_t
*spa
= vd
->vdev_spa
;
6076 objset_t
*mos
= spa
->spa_meta_objset
;
6080 nvpair_t
*elem
= NULL
;
6081 nvlist_t
*nvprops
= NULL
;
6082 uint64_t intval
= 0;
6083 char *strval
= NULL
;
6084 const char *propname
= NULL
;
6088 ASSERT(mos
!= NULL
);
6090 if (nvlist_lookup_uint64(innvl
, ZPOOL_VDEV_PROPS_GET_VDEV
,
6092 return (SET_ERROR(EINVAL
));
6094 nvlist_lookup_nvlist(innvl
, ZPOOL_VDEV_PROPS_GET_PROPS
, &nvprops
);
6096 if (vd
->vdev_root_zap
!= 0) {
6097 objid
= vd
->vdev_root_zap
;
6098 } else if (vd
->vdev_top_zap
!= 0) {
6099 objid
= vd
->vdev_top_zap
;
6100 } else if (vd
->vdev_leaf_zap
!= 0) {
6101 objid
= vd
->vdev_leaf_zap
;
6103 return (SET_ERROR(EINVAL
));
6107 mutex_enter(&spa
->spa_props_lock
);
6109 if (nvprops
!= NULL
) {
6110 char namebuf
[64] = { 0 };
6112 while ((elem
= nvlist_next_nvpair(nvprops
, elem
)) != NULL
) {
6115 propname
= nvpair_name(elem
);
6116 prop
= vdev_name_to_prop(propname
);
6117 zprop_source_t src
= ZPROP_SRC_DEFAULT
;
6118 uint64_t integer_size
, num_integers
;
6121 /* Special Read-only Properties */
6122 case VDEV_PROP_NAME
:
6123 strval
= vdev_name(vd
, namebuf
,
6127 vdev_prop_add_list(outnvl
, propname
, strval
, 0,
6130 case VDEV_PROP_CAPACITY
:
6132 intval
= (vd
->vdev_stat
.vs_dspace
== 0) ? 0 :
6133 (vd
->vdev_stat
.vs_alloc
* 100 /
6134 vd
->vdev_stat
.vs_dspace
);
6135 vdev_prop_add_list(outnvl
, propname
, NULL
,
6136 intval
, ZPROP_SRC_NONE
);
6138 case VDEV_PROP_STATE
:
6139 vdev_prop_add_list(outnvl
, propname
, NULL
,
6140 vd
->vdev_state
, ZPROP_SRC_NONE
);
6142 case VDEV_PROP_GUID
:
6143 vdev_prop_add_list(outnvl
, propname
, NULL
,
6144 vd
->vdev_guid
, ZPROP_SRC_NONE
);
6146 case VDEV_PROP_ASIZE
:
6147 vdev_prop_add_list(outnvl
, propname
, NULL
,
6148 vd
->vdev_asize
, ZPROP_SRC_NONE
);
6150 case VDEV_PROP_PSIZE
:
6151 vdev_prop_add_list(outnvl
, propname
, NULL
,
6152 vd
->vdev_psize
, ZPROP_SRC_NONE
);
6154 case VDEV_PROP_ASHIFT
:
6155 vdev_prop_add_list(outnvl
, propname
, NULL
,
6156 vd
->vdev_ashift
, ZPROP_SRC_NONE
);
6158 case VDEV_PROP_SIZE
:
6159 vdev_prop_add_list(outnvl
, propname
, NULL
,
6160 vd
->vdev_stat
.vs_dspace
, ZPROP_SRC_NONE
);
6162 case VDEV_PROP_FREE
:
6163 vdev_prop_add_list(outnvl
, propname
, NULL
,
6164 vd
->vdev_stat
.vs_dspace
-
6165 vd
->vdev_stat
.vs_alloc
, ZPROP_SRC_NONE
);
6167 case VDEV_PROP_ALLOCATED
:
6168 vdev_prop_add_list(outnvl
, propname
, NULL
,
6169 vd
->vdev_stat
.vs_alloc
, ZPROP_SRC_NONE
);
6171 case VDEV_PROP_EXPANDSZ
:
6172 vdev_prop_add_list(outnvl
, propname
, NULL
,
6173 vd
->vdev_stat
.vs_esize
, ZPROP_SRC_NONE
);
6175 case VDEV_PROP_FRAGMENTATION
:
6176 vdev_prop_add_list(outnvl
, propname
, NULL
,
6177 vd
->vdev_stat
.vs_fragmentation
,
6180 case VDEV_PROP_PARITY
:
6181 vdev_prop_add_list(outnvl
, propname
, NULL
,
6182 vdev_get_nparity(vd
), ZPROP_SRC_NONE
);
6184 case VDEV_PROP_PATH
:
6185 if (vd
->vdev_path
== NULL
)
6187 vdev_prop_add_list(outnvl
, propname
,
6188 vd
->vdev_path
, 0, ZPROP_SRC_NONE
);
6190 case VDEV_PROP_DEVID
:
6191 if (vd
->vdev_devid
== NULL
)
6193 vdev_prop_add_list(outnvl
, propname
,
6194 vd
->vdev_devid
, 0, ZPROP_SRC_NONE
);
6196 case VDEV_PROP_PHYS_PATH
:
6197 if (vd
->vdev_physpath
== NULL
)
6199 vdev_prop_add_list(outnvl
, propname
,
6200 vd
->vdev_physpath
, 0, ZPROP_SRC_NONE
);
6202 case VDEV_PROP_ENC_PATH
:
6203 if (vd
->vdev_enc_sysfs_path
== NULL
)
6205 vdev_prop_add_list(outnvl
, propname
,
6206 vd
->vdev_enc_sysfs_path
, 0, ZPROP_SRC_NONE
);
6209 if (vd
->vdev_fru
== NULL
)
6211 vdev_prop_add_list(outnvl
, propname
,
6212 vd
->vdev_fru
, 0, ZPROP_SRC_NONE
);
6214 case VDEV_PROP_PARENT
:
6215 if (vd
->vdev_parent
!= NULL
) {
6216 strval
= vdev_name(vd
->vdev_parent
,
6217 namebuf
, sizeof (namebuf
));
6218 vdev_prop_add_list(outnvl
, propname
,
6219 strval
, 0, ZPROP_SRC_NONE
);
6222 case VDEV_PROP_CHILDREN
:
6223 if (vd
->vdev_children
> 0)
6224 strval
= kmem_zalloc(ZAP_MAXVALUELEN
,
6226 for (uint64_t i
= 0; i
< vd
->vdev_children
;
6230 vname
= vdev_name(vd
->vdev_child
[i
],
6231 namebuf
, sizeof (namebuf
));
6233 vname
= "(unknown)";
6234 if (strlen(strval
) > 0)
6235 strlcat(strval
, ",",
6237 strlcat(strval
, vname
, ZAP_MAXVALUELEN
);
6239 if (strval
!= NULL
) {
6240 vdev_prop_add_list(outnvl
, propname
,
6241 strval
, 0, ZPROP_SRC_NONE
);
6242 kmem_free(strval
, ZAP_MAXVALUELEN
);
6245 case VDEV_PROP_NUMCHILDREN
:
6246 vdev_prop_add_list(outnvl
, propname
, NULL
,
6247 vd
->vdev_children
, ZPROP_SRC_NONE
);
6249 case VDEV_PROP_READ_ERRORS
:
6250 vdev_prop_add_list(outnvl
, propname
, NULL
,
6251 vd
->vdev_stat
.vs_read_errors
,
6254 case VDEV_PROP_WRITE_ERRORS
:
6255 vdev_prop_add_list(outnvl
, propname
, NULL
,
6256 vd
->vdev_stat
.vs_write_errors
,
6259 case VDEV_PROP_CHECKSUM_ERRORS
:
6260 vdev_prop_add_list(outnvl
, propname
, NULL
,
6261 vd
->vdev_stat
.vs_checksum_errors
,
6264 case VDEV_PROP_INITIALIZE_ERRORS
:
6265 vdev_prop_add_list(outnvl
, propname
, NULL
,
6266 vd
->vdev_stat
.vs_initialize_errors
,
6269 case VDEV_PROP_TRIM_ERRORS
:
6270 vdev_prop_add_list(outnvl
, propname
, NULL
,
6271 vd
->vdev_stat
.vs_trim_errors
,
6274 case VDEV_PROP_SLOW_IOS
:
6275 vdev_prop_add_list(outnvl
, propname
, NULL
,
6276 vd
->vdev_stat
.vs_slow_ios
,
6279 case VDEV_PROP_OPS_NULL
:
6280 vdev_prop_add_list(outnvl
, propname
, NULL
,
6281 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_NULL
],
6284 case VDEV_PROP_OPS_READ
:
6285 vdev_prop_add_list(outnvl
, propname
, NULL
,
6286 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_READ
],
6289 case VDEV_PROP_OPS_WRITE
:
6290 vdev_prop_add_list(outnvl
, propname
, NULL
,
6291 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_WRITE
],
6294 case VDEV_PROP_OPS_FREE
:
6295 vdev_prop_add_list(outnvl
, propname
, NULL
,
6296 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_FREE
],
6299 case VDEV_PROP_OPS_CLAIM
:
6300 vdev_prop_add_list(outnvl
, propname
, NULL
,
6301 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_CLAIM
],
6304 case VDEV_PROP_OPS_TRIM
:
6306 * TRIM ops and bytes are reported to user
6307 * space as ZIO_TYPE_FLUSH. This is done to
6308 * preserve the vdev_stat_t structure layout
6311 vdev_prop_add_list(outnvl
, propname
, NULL
,
6312 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_FLUSH
],
6315 case VDEV_PROP_BYTES_NULL
:
6316 vdev_prop_add_list(outnvl
, propname
, NULL
,
6317 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_NULL
],
6320 case VDEV_PROP_BYTES_READ
:
6321 vdev_prop_add_list(outnvl
, propname
, NULL
,
6322 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_READ
],
6325 case VDEV_PROP_BYTES_WRITE
:
6326 vdev_prop_add_list(outnvl
, propname
, NULL
,
6327 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_WRITE
],
6330 case VDEV_PROP_BYTES_FREE
:
6331 vdev_prop_add_list(outnvl
, propname
, NULL
,
6332 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_FREE
],
6335 case VDEV_PROP_BYTES_CLAIM
:
6336 vdev_prop_add_list(outnvl
, propname
, NULL
,
6337 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_CLAIM
],
6340 case VDEV_PROP_BYTES_TRIM
:
6342 * TRIM ops and bytes are reported to user
6343 * space as ZIO_TYPE_FLUSH. This is done to
6344 * preserve the vdev_stat_t structure layout
6347 vdev_prop_add_list(outnvl
, propname
, NULL
,
6348 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_FLUSH
],
6351 case VDEV_PROP_REMOVING
:
6352 vdev_prop_add_list(outnvl
, propname
, NULL
,
6353 vd
->vdev_removing
, ZPROP_SRC_NONE
);
6355 case VDEV_PROP_RAIDZ_EXPANDING
:
6356 /* Only expose this for raidz */
6357 if (vd
->vdev_ops
== &vdev_raidz_ops
) {
6358 vdev_prop_add_list(outnvl
, propname
,
6359 NULL
, vd
->vdev_rz_expanding
,
6363 case VDEV_PROP_TRIM_SUPPORT
:
6364 /* only valid for leaf vdevs */
6365 if (vd
->vdev_ops
->vdev_op_leaf
) {
6366 vdev_prop_add_list(outnvl
, propname
,
6367 NULL
, vd
->vdev_has_trim
,
6371 /* Numeric Properites */
6372 case VDEV_PROP_ALLOCATING
:
6373 /* Leaf vdevs cannot have this property */
6374 if (vd
->vdev_mg
== NULL
&&
6375 vd
->vdev_top
!= NULL
) {
6376 src
= ZPROP_SRC_NONE
;
6377 intval
= ZPROP_BOOLEAN_NA
;
6379 err
= vdev_prop_get_int(vd
, prop
,
6381 if (err
&& err
!= ENOENT
)
6385 vdev_prop_default_numeric(prop
))
6386 src
= ZPROP_SRC_DEFAULT
;
6388 src
= ZPROP_SRC_LOCAL
;
6391 vdev_prop_add_list(outnvl
, propname
, NULL
,
6394 case VDEV_PROP_FAILFAST
:
6395 src
= ZPROP_SRC_LOCAL
;
6398 err
= zap_lookup(mos
, objid
, nvpair_name(elem
),
6399 sizeof (uint64_t), 1, &intval
);
6400 if (err
== ENOENT
) {
6401 intval
= vdev_prop_default_numeric(
6407 if (intval
== vdev_prop_default_numeric(prop
))
6408 src
= ZPROP_SRC_DEFAULT
;
6410 vdev_prop_add_list(outnvl
, propname
, strval
,
6413 case VDEV_PROP_CHECKSUM_N
:
6414 case VDEV_PROP_CHECKSUM_T
:
6415 case VDEV_PROP_IO_N
:
6416 case VDEV_PROP_IO_T
:
6417 case VDEV_PROP_SLOW_IO_N
:
6418 case VDEV_PROP_SLOW_IO_T
:
6419 err
= vdev_prop_get_int(vd
, prop
, &intval
);
6420 if (err
&& err
!= ENOENT
)
6423 if (intval
== vdev_prop_default_numeric(prop
))
6424 src
= ZPROP_SRC_DEFAULT
;
6426 src
= ZPROP_SRC_LOCAL
;
6428 vdev_prop_add_list(outnvl
, propname
, NULL
,
6431 /* Text Properties */
6432 case VDEV_PROP_COMMENT
:
6433 /* Exists in the ZAP below */
6435 case VDEV_PROP_USERPROP
:
6436 /* User Properites */
6437 src
= ZPROP_SRC_LOCAL
;
6439 err
= zap_length(mos
, objid
, nvpair_name(elem
),
6440 &integer_size
, &num_integers
);
6444 switch (integer_size
) {
6446 /* User properties cannot be integers */
6450 /* string property */
6451 strval
= kmem_alloc(num_integers
,
6453 err
= zap_lookup(mos
, objid
,
6454 nvpair_name(elem
), 1,
6455 num_integers
, strval
);
6461 vdev_prop_add_list(outnvl
, propname
,
6463 kmem_free(strval
, num_integers
);
6476 * Get all properties from the MOS vdev property object.
6479 zap_attribute_t
*za
= zap_attribute_alloc();
6480 for (zap_cursor_init(&zc
, mos
, objid
);
6481 (err
= zap_cursor_retrieve(&zc
, za
)) == 0;
6482 zap_cursor_advance(&zc
)) {
6485 zprop_source_t src
= ZPROP_SRC_DEFAULT
;
6486 propname
= za
->za_name
;
6488 switch (za
->za_integer_length
) {
6490 /* We do not allow integer user properties */
6491 /* This is likely an internal value */
6494 /* string property */
6495 strval
= kmem_alloc(za
->za_num_integers
,
6497 err
= zap_lookup(mos
, objid
, za
->za_name
, 1,
6498 za
->za_num_integers
, strval
);
6500 kmem_free(strval
, za
->za_num_integers
);
6503 vdev_prop_add_list(outnvl
, propname
, strval
, 0,
6505 kmem_free(strval
, za
->za_num_integers
);
6512 zap_cursor_fini(&zc
);
6513 zap_attribute_free(za
);
6516 mutex_exit(&spa
->spa_props_lock
);
6517 if (err
&& err
!= ENOENT
) {
6524 EXPORT_SYMBOL(vdev_fault
);
6525 EXPORT_SYMBOL(vdev_degrade
);
6526 EXPORT_SYMBOL(vdev_online
);
6527 EXPORT_SYMBOL(vdev_offline
);
6528 EXPORT_SYMBOL(vdev_clear
);
6530 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, default_ms_count
, UINT
, ZMOD_RW
,
6531 "Target number of metaslabs per top-level vdev");
6533 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, default_ms_shift
, UINT
, ZMOD_RW
,
6534 "Default lower limit for metaslab size");
6536 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, max_ms_shift
, UINT
, ZMOD_RW
,
6537 "Default upper limit for metaslab size");
6539 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, min_ms_count
, UINT
, ZMOD_RW
,
6540 "Minimum number of metaslabs per top-level vdev");
6542 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, ms_count_limit
, UINT
, ZMOD_RW
,
6543 "Practical upper limit of total metaslabs per top-level vdev");
6545 ZFS_MODULE_PARAM(zfs
, zfs_
, slow_io_events_per_second
, UINT
, ZMOD_RW
,
6546 "Rate limit slow IO (delay) events to this many per second");
6548 ZFS_MODULE_PARAM(zfs
, zfs_
, deadman_events_per_second
, UINT
, ZMOD_RW
,
6549 "Rate limit hung IO (deadman) events to this many per second");
6551 ZFS_MODULE_PARAM(zfs
, zfs_
, dio_write_verify_events_per_second
, UINT
, ZMOD_RW
,
6552 "Rate Direct I/O write verify events to this many per second");
6555 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, direct_write_verify
, UINT
, ZMOD_RW
,
6556 "Direct I/O writes will perform for checksum verification before "
6559 ZFS_MODULE_PARAM(zfs
, zfs_
, checksum_events_per_second
, UINT
, ZMOD_RW
,
6560 "Rate limit checksum events to this many checksum errors per second "
6561 "(do not set below ZED threshold).");
6564 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_ignore_errors
, INT
, ZMOD_RW
,
6565 "Ignore errors during resilver/scrub");
6567 ZFS_MODULE_PARAM(zfs_vdev
, vdev_
, validate_skip
, INT
, ZMOD_RW
,
6568 "Bypass vdev_validate()");
6570 ZFS_MODULE_PARAM(zfs
, zfs_
, nocacheflush
, INT
, ZMOD_RW
,
6571 "Disable cache flushes");
6573 ZFS_MODULE_PARAM(zfs
, zfs_
, embedded_slog_min_ms
, UINT
, ZMOD_RW
,
6574 "Minimum number of metaslabs required to dedicate one for log blocks");
6577 ZFS_MODULE_PARAM_CALL(zfs_vdev
, zfs_vdev_
, min_auto_ashift
,
6578 param_set_min_auto_ashift
, param_get_uint
, ZMOD_RW
,
6579 "Minimum ashift used when creating new top-level vdevs");
6581 ZFS_MODULE_PARAM_CALL(zfs_vdev
, zfs_vdev_
, max_auto_ashift
,
6582 param_set_max_auto_ashift
, param_get_uint
, ZMOD_RW
,
6583 "Maximum ashift used when optimizing for logical -> physical sector "
6584 "size on new top-level vdevs");