Switch from _Noreturn to __attribute__((noreturn))
[zfs.git] / lib / libzpool / kernel.c
blob89151f70ecb1161032518673175f7bbe3e0d1f42
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <libgen.h>
30 #include <poll.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <string.h>
34 #include <libzutil.h>
35 #include <sys/crypto/icp.h>
36 #include <sys/processor.h>
37 #include <sys/rrwlock.h>
38 #include <sys/spa.h>
39 #include <sys/stat.h>
40 #include <sys/systeminfo.h>
41 #include <sys/time.h>
42 #include <sys/utsname.h>
43 #include <sys/zfs_context.h>
44 #include <sys/zfs_onexit.h>
45 #include <sys/zfs_vfsops.h>
46 #include <sys/zstd/zstd.h>
47 #include <sys/zvol.h>
48 #include <zfs_fletcher.h>
49 #include <zlib.h>
52 * Emulation of kernel services in userland.
55 uint64_t physmem;
56 char hw_serial[HW_HOSTID_LEN];
57 struct utsname hw_utsname;
59 /* If set, all blocks read will be copied to the specified directory. */
60 char *vn_dumpdir = NULL;
62 /* this only exists to have its address taken */
63 struct proc p0;
66 * =========================================================================
67 * threads
68 * =========================================================================
70 * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While
71 * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for
72 * the expected stack depth while small enough to avoid exhausting address
73 * space with high thread counts.
75 #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768)
76 #define TS_STACK_MAX (256 * 1024)
78 struct zk_thread_wrapper {
79 void (*func)(void *);
80 void *arg;
83 static void *
84 zk_thread_wrapper(void *arg)
86 struct zk_thread_wrapper ztw;
87 memcpy(&ztw, arg, sizeof (ztw));
88 free(arg);
89 ztw.func(ztw.arg);
90 return (NULL);
93 kthread_t *
94 zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state)
96 pthread_attr_t attr;
97 pthread_t tid;
98 char *stkstr;
99 struct zk_thread_wrapper *ztw;
100 int detachstate = PTHREAD_CREATE_DETACHED;
102 VERIFY0(pthread_attr_init(&attr));
104 if (state & TS_JOINABLE)
105 detachstate = PTHREAD_CREATE_JOINABLE;
107 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
110 * We allow the default stack size in user space to be specified by
111 * setting the ZFS_STACK_SIZE environment variable. This allows us
112 * the convenience of observing and debugging stack overruns in
113 * user space. Explicitly specified stack sizes will be honored.
114 * The usage of ZFS_STACK_SIZE is discussed further in the
115 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
117 if (stksize == 0) {
118 stkstr = getenv("ZFS_STACK_SIZE");
120 if (stkstr == NULL)
121 stksize = TS_STACK_MAX;
122 else
123 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
126 VERIFY3S(stksize, >, 0);
127 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
130 * If this ever fails, it may be because the stack size is not a
131 * multiple of system page size.
133 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
134 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
136 VERIFY(ztw = malloc(sizeof (*ztw)));
137 ztw->func = func;
138 ztw->arg = arg;
139 VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw));
140 VERIFY0(pthread_attr_destroy(&attr));
142 return ((void *)(uintptr_t)tid);
146 * =========================================================================
147 * kstats
148 * =========================================================================
150 kstat_t *
151 kstat_create(const char *module, int instance, const char *name,
152 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
154 (void) module, (void) instance, (void) name, (void) class, (void) type,
155 (void) ndata, (void) ks_flag;
156 return (NULL);
159 void
160 kstat_install(kstat_t *ksp)
162 (void) ksp;
165 void
166 kstat_delete(kstat_t *ksp)
168 (void) ksp;
171 void
172 kstat_set_raw_ops(kstat_t *ksp,
173 int (*headers)(char *buf, size_t size),
174 int (*data)(char *buf, size_t size, void *data),
175 void *(*addr)(kstat_t *ksp, loff_t index))
177 (void) ksp, (void) headers, (void) data, (void) addr;
181 * =========================================================================
182 * mutexes
183 * =========================================================================
186 void
187 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
189 (void) name, (void) type, (void) cookie;
190 VERIFY0(pthread_mutex_init(&mp->m_lock, NULL));
191 memset(&mp->m_owner, 0, sizeof (pthread_t));
194 void
195 mutex_destroy(kmutex_t *mp)
197 VERIFY0(pthread_mutex_destroy(&mp->m_lock));
200 void
201 mutex_enter(kmutex_t *mp)
203 VERIFY0(pthread_mutex_lock(&mp->m_lock));
204 mp->m_owner = pthread_self();
208 mutex_tryenter(kmutex_t *mp)
210 int error = pthread_mutex_trylock(&mp->m_lock);
211 if (error == 0) {
212 mp->m_owner = pthread_self();
213 return (1);
214 } else {
215 VERIFY3S(error, ==, EBUSY);
216 return (0);
220 void
221 mutex_exit(kmutex_t *mp)
223 memset(&mp->m_owner, 0, sizeof (pthread_t));
224 VERIFY0(pthread_mutex_unlock(&mp->m_lock));
228 * =========================================================================
229 * rwlocks
230 * =========================================================================
233 void
234 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
236 (void) name, (void) type, (void) arg;
237 VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL));
238 rwlp->rw_readers = 0;
239 rwlp->rw_owner = 0;
242 void
243 rw_destroy(krwlock_t *rwlp)
245 VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock));
248 void
249 rw_enter(krwlock_t *rwlp, krw_t rw)
251 if (rw == RW_READER) {
252 VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock));
253 atomic_inc_uint(&rwlp->rw_readers);
254 } else {
255 VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock));
256 rwlp->rw_owner = pthread_self();
260 void
261 rw_exit(krwlock_t *rwlp)
263 if (RW_READ_HELD(rwlp))
264 atomic_dec_uint(&rwlp->rw_readers);
265 else
266 rwlp->rw_owner = 0;
268 VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock));
272 rw_tryenter(krwlock_t *rwlp, krw_t rw)
274 int error;
276 if (rw == RW_READER)
277 error = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
278 else
279 error = pthread_rwlock_trywrlock(&rwlp->rw_lock);
281 if (error == 0) {
282 if (rw == RW_READER)
283 atomic_inc_uint(&rwlp->rw_readers);
284 else
285 rwlp->rw_owner = pthread_self();
287 return (1);
290 VERIFY3S(error, ==, EBUSY);
292 return (0);
295 uint32_t
296 zone_get_hostid(void *zonep)
299 * We're emulating the system's hostid in userland.
301 (void) zonep;
302 return (strtoul(hw_serial, NULL, 10));
306 rw_tryupgrade(krwlock_t *rwlp)
308 (void) rwlp;
309 return (0);
313 * =========================================================================
314 * condition variables
315 * =========================================================================
318 void
319 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
321 (void) name, (void) type, (void) arg;
322 VERIFY0(pthread_cond_init(cv, NULL));
325 void
326 cv_destroy(kcondvar_t *cv)
328 VERIFY0(pthread_cond_destroy(cv));
331 void
332 cv_wait(kcondvar_t *cv, kmutex_t *mp)
334 memset(&mp->m_owner, 0, sizeof (pthread_t));
335 VERIFY0(pthread_cond_wait(cv, &mp->m_lock));
336 mp->m_owner = pthread_self();
340 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
342 cv_wait(cv, mp);
343 return (1);
347 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
349 int error;
350 struct timeval tv;
351 struct timespec ts;
352 clock_t delta;
354 delta = abstime - ddi_get_lbolt();
355 if (delta <= 0)
356 return (-1);
358 VERIFY(gettimeofday(&tv, NULL) == 0);
360 ts.tv_sec = tv.tv_sec + delta / hz;
361 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
362 if (ts.tv_nsec >= NANOSEC) {
363 ts.tv_sec++;
364 ts.tv_nsec -= NANOSEC;
367 memset(&mp->m_owner, 0, sizeof (pthread_t));
368 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
369 mp->m_owner = pthread_self();
371 if (error == ETIMEDOUT)
372 return (-1);
374 VERIFY0(error);
376 return (1);
380 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
381 int flag)
383 (void) res;
384 int error;
385 struct timeval tv;
386 struct timespec ts;
387 hrtime_t delta;
389 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
391 delta = tim;
392 if (flag & CALLOUT_FLAG_ABSOLUTE)
393 delta -= gethrtime();
395 if (delta <= 0)
396 return (-1);
398 VERIFY0(gettimeofday(&tv, NULL));
400 ts.tv_sec = tv.tv_sec + delta / NANOSEC;
401 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
402 if (ts.tv_nsec >= NANOSEC) {
403 ts.tv_sec++;
404 ts.tv_nsec -= NANOSEC;
407 memset(&mp->m_owner, 0, sizeof (pthread_t));
408 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
409 mp->m_owner = pthread_self();
411 if (error == ETIMEDOUT)
412 return (-1);
414 VERIFY0(error);
416 return (1);
419 void
420 cv_signal(kcondvar_t *cv)
422 VERIFY0(pthread_cond_signal(cv));
425 void
426 cv_broadcast(kcondvar_t *cv)
428 VERIFY0(pthread_cond_broadcast(cv));
432 * =========================================================================
433 * procfs list
434 * =========================================================================
437 void
438 seq_printf(struct seq_file *m, const char *fmt, ...)
440 (void) m, (void) fmt;
443 void
444 procfs_list_install(const char *module,
445 const char *submodule,
446 const char *name,
447 mode_t mode,
448 procfs_list_t *procfs_list,
449 int (*show)(struct seq_file *f, void *p),
450 int (*show_header)(struct seq_file *f),
451 int (*clear)(procfs_list_t *procfs_list),
452 size_t procfs_list_node_off)
454 (void) module, (void) submodule, (void) name, (void) mode, (void) show,
455 (void) show_header, (void) clear;
456 mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL);
457 list_create(&procfs_list->pl_list,
458 procfs_list_node_off + sizeof (procfs_list_node_t),
459 procfs_list_node_off + offsetof(procfs_list_node_t, pln_link));
460 procfs_list->pl_next_id = 1;
461 procfs_list->pl_node_offset = procfs_list_node_off;
464 void
465 procfs_list_uninstall(procfs_list_t *procfs_list)
467 (void) procfs_list;
470 void
471 procfs_list_destroy(procfs_list_t *procfs_list)
473 ASSERT(list_is_empty(&procfs_list->pl_list));
474 list_destroy(&procfs_list->pl_list);
475 mutex_destroy(&procfs_list->pl_lock);
478 #define NODE_ID(procfs_list, obj) \
479 (((procfs_list_node_t *)(((char *)obj) + \
480 (procfs_list)->pl_node_offset))->pln_id)
482 void
483 procfs_list_add(procfs_list_t *procfs_list, void *p)
485 ASSERT(MUTEX_HELD(&procfs_list->pl_lock));
486 NODE_ID(procfs_list, p) = procfs_list->pl_next_id++;
487 list_insert_tail(&procfs_list->pl_list, p);
491 * =========================================================================
492 * vnode operations
493 * =========================================================================
497 * =========================================================================
498 * Figure out which debugging statements to print
499 * =========================================================================
502 static char *dprintf_string;
503 static int dprintf_print_all;
506 dprintf_find_string(const char *string)
508 char *tmp_str = dprintf_string;
509 int len = strlen(string);
512 * Find out if this is a string we want to print.
513 * String format: file1.c,function_name1,file2.c,file3.c
516 while (tmp_str != NULL) {
517 if (strncmp(tmp_str, string, len) == 0 &&
518 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
519 return (1);
520 tmp_str = strchr(tmp_str, ',');
521 if (tmp_str != NULL)
522 tmp_str++; /* Get rid of , */
524 return (0);
527 void
528 dprintf_setup(int *argc, char **argv)
530 int i, j;
533 * Debugging can be specified two ways: by setting the
534 * environment variable ZFS_DEBUG, or by including a
535 * "debug=..." argument on the command line. The command
536 * line setting overrides the environment variable.
539 for (i = 1; i < *argc; i++) {
540 int len = strlen("debug=");
541 /* First look for a command line argument */
542 if (strncmp("debug=", argv[i], len) == 0) {
543 dprintf_string = argv[i] + len;
544 /* Remove from args */
545 for (j = i; j < *argc; j++)
546 argv[j] = argv[j+1];
547 argv[j] = NULL;
548 (*argc)--;
552 if (dprintf_string == NULL) {
553 /* Look for ZFS_DEBUG environment variable */
554 dprintf_string = getenv("ZFS_DEBUG");
558 * Are we just turning on all debugging?
560 if (dprintf_find_string("on"))
561 dprintf_print_all = 1;
563 if (dprintf_string != NULL)
564 zfs_flags |= ZFS_DEBUG_DPRINTF;
568 * =========================================================================
569 * debug printfs
570 * =========================================================================
572 void
573 __dprintf(boolean_t dprint, const char *file, const char *func,
574 int line, const char *fmt, ...)
576 /* Get rid of annoying "../common/" prefix to filename. */
577 const char *newfile = zfs_basename(file);
579 va_list adx;
580 if (dprint) {
581 /* dprintf messages are printed immediately */
583 if (!dprintf_print_all &&
584 !dprintf_find_string(newfile) &&
585 !dprintf_find_string(func))
586 return;
588 /* Print out just the function name if requested */
589 flockfile(stdout);
590 if (dprintf_find_string("pid"))
591 (void) printf("%d ", getpid());
592 if (dprintf_find_string("tid"))
593 (void) printf("%ju ",
594 (uintmax_t)(uintptr_t)pthread_self());
595 if (dprintf_find_string("cpu"))
596 (void) printf("%u ", getcpuid());
597 if (dprintf_find_string("time"))
598 (void) printf("%llu ", gethrtime());
599 if (dprintf_find_string("long"))
600 (void) printf("%s, line %d: ", newfile, line);
601 (void) printf("dprintf: %s: ", func);
602 va_start(adx, fmt);
603 (void) vprintf(fmt, adx);
604 va_end(adx);
605 funlockfile(stdout);
606 } else {
607 /* zfs_dbgmsg is logged for dumping later */
608 size_t size;
609 char *buf;
610 int i;
612 size = 1024;
613 buf = umem_alloc(size, UMEM_NOFAIL);
614 i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func);
616 if (i < size) {
617 va_start(adx, fmt);
618 (void) vsnprintf(buf + i, size - i, fmt, adx);
619 va_end(adx);
622 __zfs_dbgmsg(buf);
624 umem_free(buf, size);
629 * =========================================================================
630 * cmn_err() and panic()
631 * =========================================================================
633 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
634 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
636 __attribute__((noreturn)) void
637 vpanic(const char *fmt, va_list adx)
639 (void) fprintf(stderr, "error: ");
640 (void) vfprintf(stderr, fmt, adx);
641 (void) fprintf(stderr, "\n");
643 abort(); /* think of it as a "user-level crash dump" */
646 __attribute__((noreturn)) void
647 panic(const char *fmt, ...)
649 va_list adx;
651 va_start(adx, fmt);
652 vpanic(fmt, adx);
653 va_end(adx);
656 void
657 vcmn_err(int ce, const char *fmt, va_list adx)
659 if (ce == CE_PANIC)
660 vpanic(fmt, adx);
661 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
662 (void) fprintf(stderr, "%s", ce_prefix[ce]);
663 (void) vfprintf(stderr, fmt, adx);
664 (void) fprintf(stderr, "%s", ce_suffix[ce]);
668 void
669 cmn_err(int ce, const char *fmt, ...)
671 va_list adx;
673 va_start(adx, fmt);
674 vcmn_err(ce, fmt, adx);
675 va_end(adx);
679 * =========================================================================
680 * misc routines
681 * =========================================================================
684 void
685 delay(clock_t ticks)
687 (void) poll(0, 0, ticks * (1000 / hz));
691 * Find highest one bit set.
692 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
693 * The __builtin_clzll() function is supported by both GCC and Clang.
696 highbit64(uint64_t i)
698 if (i == 0)
699 return (0);
701 return (NBBY * sizeof (uint64_t) - __builtin_clzll(i));
705 * Find lowest one bit set.
706 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
707 * The __builtin_ffsll() function is supported by both GCC and Clang.
710 lowbit64(uint64_t i)
712 if (i == 0)
713 return (0);
715 return (__builtin_ffsll(i));
718 const char *random_path = "/dev/random";
719 const char *urandom_path = "/dev/urandom";
720 static int random_fd = -1, urandom_fd = -1;
722 void
723 random_init(void)
725 VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1);
726 VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1);
729 void
730 random_fini(void)
732 close(random_fd);
733 close(urandom_fd);
735 random_fd = -1;
736 urandom_fd = -1;
739 static int
740 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
742 size_t resid = len;
743 ssize_t bytes;
745 ASSERT(fd != -1);
747 while (resid != 0) {
748 bytes = read(fd, ptr, resid);
749 ASSERT3S(bytes, >=, 0);
750 ptr += bytes;
751 resid -= bytes;
754 return (0);
758 random_get_bytes(uint8_t *ptr, size_t len)
760 return (random_get_bytes_common(ptr, len, random_fd));
764 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
766 return (random_get_bytes_common(ptr, len, urandom_fd));
770 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
772 (void) nptr;
773 char *end;
775 *result = strtoul(hw_serial, &end, base);
776 if (*result == 0)
777 return (errno);
778 return (0);
782 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
784 (void) nptr;
785 char *end;
787 *result = strtoull(str, &end, base);
788 if (*result == 0)
789 return (errno);
790 return (0);
793 utsname_t *
794 utsname(void)
796 return (&hw_utsname);
800 * =========================================================================
801 * kernel emulation setup & teardown
802 * =========================================================================
804 static int
805 umem_out_of_memory(void)
807 char errmsg[] = "out of memory -- generating core dump\n";
809 (void) fprintf(stderr, "%s", errmsg);
810 abort();
811 return (0);
814 void
815 kernel_init(int mode)
817 extern uint_t rrw_tsd_key;
819 umem_nofail_callback(umem_out_of_memory);
821 physmem = sysconf(_SC_PHYS_PAGES);
823 dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem,
824 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
826 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
827 (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0);
829 random_init();
831 VERIFY0(uname(&hw_utsname));
833 system_taskq_init();
834 icp_init();
836 zstd_init();
838 spa_init((spa_mode_t)mode);
840 fletcher_4_init();
842 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
845 void
846 kernel_fini(void)
848 fletcher_4_fini();
849 spa_fini();
851 zstd_fini();
853 icp_fini();
854 system_taskq_fini();
856 random_fini();
859 uid_t
860 crgetuid(cred_t *cr)
862 (void) cr;
863 return (0);
866 uid_t
867 crgetruid(cred_t *cr)
869 (void) cr;
870 return (0);
873 gid_t
874 crgetgid(cred_t *cr)
876 (void) cr;
877 return (0);
881 crgetngroups(cred_t *cr)
883 (void) cr;
884 return (0);
887 gid_t *
888 crgetgroups(cred_t *cr)
890 (void) cr;
891 return (NULL);
895 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
897 (void) name, (void) cr;
898 return (0);
902 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
904 (void) from, (void) to, (void) cr;
905 return (0);
909 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
911 (void) name, (void) cr;
912 return (0);
916 secpolicy_zfs(const cred_t *cr)
918 (void) cr;
919 return (0);
923 secpolicy_zfs_proc(const cred_t *cr, proc_t *proc)
925 (void) cr, (void) proc;
926 return (0);
929 ksiddomain_t *
930 ksid_lookupdomain(const char *dom)
932 ksiddomain_t *kd;
934 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
935 kd->kd_name = spa_strdup(dom);
936 return (kd);
939 void
940 ksiddomain_rele(ksiddomain_t *ksid)
942 spa_strfree(ksid->kd_name);
943 umem_free(ksid, sizeof (ksiddomain_t));
946 char *
947 kmem_vasprintf(const char *fmt, va_list adx)
949 char *buf = NULL;
950 va_list adx_copy;
952 va_copy(adx_copy, adx);
953 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
954 va_end(adx_copy);
956 return (buf);
959 char *
960 kmem_asprintf(const char *fmt, ...)
962 char *buf = NULL;
963 va_list adx;
965 va_start(adx, fmt);
966 VERIFY(vasprintf(&buf, fmt, adx) != -1);
967 va_end(adx);
969 return (buf);
972 zfs_file_t *
973 zfs_onexit_fd_hold(int fd, minor_t *minorp)
975 (void) fd;
976 *minorp = 0;
977 return (NULL);
980 void
981 zfs_onexit_fd_rele(zfs_file_t *fp)
983 (void) fp;
987 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
988 uint64_t *action_handle)
990 (void) minor, (void) func, (void) data, (void) action_handle;
991 return (0);
994 fstrans_cookie_t
995 spl_fstrans_mark(void)
997 return ((fstrans_cookie_t)0);
1000 void
1001 spl_fstrans_unmark(fstrans_cookie_t cookie)
1003 (void) cookie;
1007 __spl_pf_fstrans_check(void)
1009 return (0);
1013 kmem_cache_reap_active(void)
1015 return (0);
1018 void *zvol_tag = "zvol_tag";
1020 void
1021 zvol_create_minor(const char *name)
1023 (void) name;
1026 void
1027 zvol_create_minors_recursive(const char *name)
1029 (void) name;
1032 void
1033 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1035 (void) spa, (void) name, (void) async;
1038 void
1039 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1040 boolean_t async)
1042 (void) spa, (void) oldname, (void) newname, (void) async;
1046 * Open file
1048 * path - fully qualified path to file
1049 * flags - file attributes O_READ / O_WRITE / O_EXCL
1050 * fpp - pointer to return file pointer
1052 * Returns 0 on success underlying error on failure.
1055 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp)
1057 int fd = -1;
1058 int dump_fd = -1;
1059 int err;
1060 int old_umask = 0;
1061 zfs_file_t *fp;
1062 struct stat64 st;
1064 if (!(flags & O_CREAT) && stat64(path, &st) == -1)
1065 return (errno);
1067 if (!(flags & O_CREAT) && S_ISBLK(st.st_mode))
1068 flags |= O_DIRECT;
1070 if (flags & O_CREAT)
1071 old_umask = umask(0);
1073 fd = open64(path, flags, mode);
1074 if (fd == -1)
1075 return (errno);
1077 if (flags & O_CREAT)
1078 (void) umask(old_umask);
1080 if (vn_dumpdir != NULL) {
1081 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
1082 const char *inpath = zfs_basename(path);
1084 (void) snprintf(dumppath, MAXPATHLEN,
1085 "%s/%s", vn_dumpdir, inpath);
1086 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
1087 umem_free(dumppath, MAXPATHLEN);
1088 if (dump_fd == -1) {
1089 err = errno;
1090 close(fd);
1091 return (err);
1093 } else {
1094 dump_fd = -1;
1097 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
1099 fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL);
1100 fp->f_fd = fd;
1101 fp->f_dump_fd = dump_fd;
1102 *fpp = fp;
1104 return (0);
1107 void
1108 zfs_file_close(zfs_file_t *fp)
1110 close(fp->f_fd);
1111 if (fp->f_dump_fd != -1)
1112 close(fp->f_dump_fd);
1114 umem_free(fp, sizeof (zfs_file_t));
1118 * Stateful write - use os internal file pointer to determine where to
1119 * write and update on successful completion.
1121 * fp - pointer to file (pipe, socket, etc) to write to
1122 * buf - buffer to write
1123 * count - # of bytes to write
1124 * resid - pointer to count of unwritten bytes (if short write)
1126 * Returns 0 on success errno on failure.
1129 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid)
1131 ssize_t rc;
1133 rc = write(fp->f_fd, buf, count);
1134 if (rc < 0)
1135 return (errno);
1137 if (resid) {
1138 *resid = count - rc;
1139 } else if (rc != count) {
1140 return (EIO);
1143 return (0);
1147 * Stateless write - os internal file pointer is not updated.
1149 * fp - pointer to file (pipe, socket, etc) to write to
1150 * buf - buffer to write
1151 * count - # of bytes to write
1152 * off - file offset to write to (only valid for seekable types)
1153 * resid - pointer to count of unwritten bytes
1155 * Returns 0 on success errno on failure.
1158 zfs_file_pwrite(zfs_file_t *fp, const void *buf,
1159 size_t count, loff_t pos, ssize_t *resid)
1161 ssize_t rc, split, done;
1162 int sectors;
1165 * To simulate partial disk writes, we split writes into two
1166 * system calls so that the process can be killed in between.
1167 * This is used by ztest to simulate realistic failure modes.
1169 sectors = count >> SPA_MINBLOCKSHIFT;
1170 split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT;
1171 rc = pwrite64(fp->f_fd, buf, split, pos);
1172 if (rc != -1) {
1173 done = rc;
1174 rc = pwrite64(fp->f_fd, (char *)buf + split,
1175 count - split, pos + split);
1177 #ifdef __linux__
1178 if (rc == -1 && errno == EINVAL) {
1180 * Under Linux, this most likely means an alignment issue
1181 * (memory or disk) due to O_DIRECT, so we abort() in order
1182 * to catch the offender.
1184 abort();
1186 #endif
1188 if (rc < 0)
1189 return (errno);
1191 done += rc;
1193 if (resid) {
1194 *resid = count - done;
1195 } else if (done != count) {
1196 return (EIO);
1199 return (0);
1203 * Stateful read - use os internal file pointer to determine where to
1204 * read and update on successful completion.
1206 * fp - pointer to file (pipe, socket, etc) to read from
1207 * buf - buffer to write
1208 * count - # of bytes to read
1209 * resid - pointer to count of unread bytes (if short read)
1211 * Returns 0 on success errno on failure.
1214 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid)
1216 int rc;
1218 rc = read(fp->f_fd, buf, count);
1219 if (rc < 0)
1220 return (errno);
1222 if (resid) {
1223 *resid = count - rc;
1224 } else if (rc != count) {
1225 return (EIO);
1228 return (0);
1232 * Stateless read - os internal file pointer is not updated.
1234 * fp - pointer to file (pipe, socket, etc) to read from
1235 * buf - buffer to write
1236 * count - # of bytes to write
1237 * off - file offset to read from (only valid for seekable types)
1238 * resid - pointer to count of unwritten bytes (if short write)
1240 * Returns 0 on success errno on failure.
1243 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off,
1244 ssize_t *resid)
1246 ssize_t rc;
1248 rc = pread64(fp->f_fd, buf, count, off);
1249 if (rc < 0) {
1250 #ifdef __linux__
1252 * Under Linux, this most likely means an alignment issue
1253 * (memory or disk) due to O_DIRECT, so we abort() in order to
1254 * catch the offender.
1256 if (errno == EINVAL)
1257 abort();
1258 #endif
1259 return (errno);
1262 if (fp->f_dump_fd != -1) {
1263 int status;
1265 status = pwrite64(fp->f_dump_fd, buf, rc, off);
1266 ASSERT(status != -1);
1269 if (resid) {
1270 *resid = count - rc;
1271 } else if (rc != count) {
1272 return (EIO);
1275 return (0);
1279 * lseek - set / get file pointer
1281 * fp - pointer to file (pipe, socket, etc) to read from
1282 * offp - value to seek to, returns current value plus passed offset
1283 * whence - see man pages for standard lseek whence values
1285 * Returns 0 on success errno on failure (ESPIPE for non seekable types)
1288 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence)
1290 loff_t rc;
1292 rc = lseek(fp->f_fd, *offp, whence);
1293 if (rc < 0)
1294 return (errno);
1296 *offp = rc;
1298 return (0);
1302 * Get file attributes
1304 * filp - file pointer
1305 * zfattr - pointer to file attr structure
1307 * Currently only used for fetching size and file mode
1309 * Returns 0 on success or error code of underlying getattr call on failure.
1312 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr)
1314 struct stat64 st;
1316 if (fstat64_blk(fp->f_fd, &st) == -1)
1317 return (errno);
1319 zfattr->zfa_size = st.st_size;
1320 zfattr->zfa_mode = st.st_mode;
1322 return (0);
1326 * Sync file to disk
1328 * filp - file pointer
1329 * flags - O_SYNC and or O_DSYNC
1331 * Returns 0 on success or error code of underlying sync call on failure.
1334 zfs_file_fsync(zfs_file_t *fp, int flags)
1336 (void) flags;
1338 if (fsync(fp->f_fd) < 0)
1339 return (errno);
1341 return (0);
1345 * fallocate - allocate or free space on disk
1347 * fp - file pointer
1348 * mode (non-standard options for hole punching etc)
1349 * offset - offset to start allocating or freeing from
1350 * len - length to free / allocate
1352 * OPTIONAL
1355 zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len)
1357 #ifdef __linux__
1358 return (fallocate(fp->f_fd, mode, offset, len));
1359 #else
1360 (void) fp, (void) mode, (void) offset, (void) len;
1361 return (EOPNOTSUPP);
1362 #endif
1366 * Request current file pointer offset
1368 * fp - pointer to file
1370 * Returns current file offset.
1372 loff_t
1373 zfs_file_off(zfs_file_t *fp)
1375 return (lseek(fp->f_fd, SEEK_CUR, 0));
1379 * unlink file
1381 * path - fully qualified file path
1383 * Returns 0 on success.
1385 * OPTIONAL
1388 zfs_file_unlink(const char *path)
1390 return (remove(path));
1394 * Get reference to file pointer
1396 * fd - input file descriptor
1398 * Returns pointer to file struct or NULL.
1399 * Unsupported in user space.
1401 zfs_file_t *
1402 zfs_file_get(int fd)
1404 (void) fd;
1405 abort();
1406 return (NULL);
1409 * Drop reference to file pointer
1411 * fp - pointer to file struct
1413 * Unsupported in user space.
1415 void
1416 zfs_file_put(zfs_file_t *fp)
1418 abort();
1419 (void) fp;
1422 void
1423 zfsvfs_update_fromname(const char *oldname, const char *newname)
1425 (void) oldname, (void) newname;
1428 void
1429 spa_import_os(spa_t *spa)
1431 (void) spa;
1434 void
1435 spa_export_os(spa_t *spa)
1437 (void) spa;
1440 void
1441 spa_activate_os(spa_t *spa)
1443 (void) spa;
1446 void
1447 spa_deactivate_os(spa_t *spa)
1449 (void) spa;