Switch from _Noreturn to __attribute__((noreturn))
[zfs.git] / module / zfs / vdev_rebuild.c
bloba965912ac7a07875d627148c92b289365ec81236
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2018, Intel Corporation.
24 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
27 #include <sys/vdev_impl.h>
28 #include <sys/vdev_draid.h>
29 #include <sys/dsl_scan.h>
30 #include <sys/spa_impl.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_rebuild.h>
33 #include <sys/zio.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/arc.h>
36 #include <sys/zap.h>
39 * This file contains the sequential reconstruction implementation for
40 * resilvering. This form of resilvering is internally referred to as device
41 * rebuild to avoid conflating it with the traditional healing reconstruction
42 * performed by the dsl scan code.
44 * When replacing a device, or scrubbing the pool, ZFS has historically used
45 * a process called resilvering which is a form of healing reconstruction.
46 * This approach has the advantage that as blocks are read from disk their
47 * checksums can be immediately verified and the data repaired. Unfortunately,
48 * it also results in a random IO pattern to the disk even when extra care
49 * is taken to sequentialize the IO as much as possible. This substantially
50 * increases the time required to resilver the pool and restore redundancy.
52 * For mirrored devices it's possible to implement an alternate sequential
53 * reconstruction strategy when resilvering. Sequential reconstruction
54 * behaves like a traditional RAID rebuild and reconstructs a device in LBA
55 * order without verifying the checksum. After this phase completes a second
56 * scrub phase is started to verify all of the checksums. This two phase
57 * process will take longer than the healing reconstruction described above.
58 * However, it has that advantage that after the reconstruction first phase
59 * completes redundancy has been restored. At this point the pool can incur
60 * another device failure without risking data loss.
62 * There are a few noteworthy limitations and other advantages of resilvering
63 * using sequential reconstruction vs healing reconstruction.
65 * Limitations:
67 * - Sequential reconstruction is not possible on RAIDZ due to its
68 * variable stripe width. Note dRAID uses a fixed stripe width which
69 * avoids this issue, but comes at the expense of some usable capacity.
71 * - Block checksums are not verified during sequential reconstruction.
72 * Similar to traditional RAID the parity/mirror data is reconstructed
73 * but cannot be immediately double checked. For this reason when the
74 * last active resilver completes the pool is automatically scrubbed
75 * by default.
77 * - Deferred resilvers using sequential reconstruction are not currently
78 * supported. When adding another vdev to an active top-level resilver
79 * it must be restarted.
81 * Advantages:
83 * - Sequential reconstruction is performed in LBA order which may be faster
84 * than healing reconstruction particularly when using HDDs (or
85 * especially with SMR devices). Only allocated capacity is resilvered.
87 * - Sequential reconstruction is not constrained by ZFS block boundaries.
88 * This allows it to issue larger IOs to disk which span multiple blocks
89 * allowing all of these logical blocks to be repaired with a single IO.
91 * - Unlike a healing resilver or scrub which are pool wide operations,
92 * sequential reconstruction is handled by the top-level vdevs. This
93 * allows for it to be started or canceled on a top-level vdev without
94 * impacting any other top-level vdevs in the pool.
96 * - Data only referenced by a pool checkpoint will be repaired because
97 * that space is reflected in the space maps. This differs for a
98 * healing resilver or scrub which will not repair that data.
103 * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
104 * SPA_MAXBLOCKSIZE.
106 static unsigned long zfs_rebuild_max_segment = 1024 * 1024;
109 * Maximum number of parallelly executed bytes per leaf vdev caused by a
110 * sequential resilver. We attempt to strike a balance here between keeping
111 * the vdev queues full of I/Os at all times and not overflowing the queues
112 * to cause long latency, which would cause long txg sync times.
114 * A large default value can be safely used here because the default target
115 * segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
116 * the queue depth short.
118 * 32MB was selected as the default value to achieve good performance with
119 * a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
120 * rebuild was unable to saturate all of the drives using smaller values.
121 * With a value of 32MB the sequential resilver write rate was measured at
122 * 800MB/s sustained while rebuilding to a distributed spare.
124 static unsigned long zfs_rebuild_vdev_limit = 32 << 20;
127 * Automatically start a pool scrub when the last active sequential resilver
128 * completes in order to verify the checksums of all blocks which have been
129 * resilvered. This option is enabled by default and is strongly recommended.
131 static int zfs_rebuild_scrub_enabled = 1;
134 * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
136 static __attribute__((noreturn)) void vdev_rebuild_thread(void *arg);
139 * Clear the per-vdev rebuild bytes value for a vdev tree.
141 static void
142 clear_rebuild_bytes(vdev_t *vd)
144 vdev_stat_t *vs = &vd->vdev_stat;
146 for (uint64_t i = 0; i < vd->vdev_children; i++)
147 clear_rebuild_bytes(vd->vdev_child[i]);
149 mutex_enter(&vd->vdev_stat_lock);
150 vs->vs_rebuild_processed = 0;
151 mutex_exit(&vd->vdev_stat_lock);
155 * Determines whether a vdev_rebuild_thread() should be stopped.
157 static boolean_t
158 vdev_rebuild_should_stop(vdev_t *vd)
160 return (!vdev_writeable(vd) || vd->vdev_removing ||
161 vd->vdev_rebuild_exit_wanted ||
162 vd->vdev_rebuild_cancel_wanted ||
163 vd->vdev_rebuild_reset_wanted);
167 * Determine if the rebuild should be canceled. This may happen when all
168 * vdevs with MISSING DTLs are detached.
170 static boolean_t
171 vdev_rebuild_should_cancel(vdev_t *vd)
173 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
174 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
176 if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
177 return (B_TRUE);
179 return (B_FALSE);
183 * The sync task for updating the on-disk state of a rebuild. This is
184 * scheduled by vdev_rebuild_range().
186 static void
187 vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
189 int vdev_id = (uintptr_t)arg;
190 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
191 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
192 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
193 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
194 uint64_t txg = dmu_tx_get_txg(tx);
196 mutex_enter(&vd->vdev_rebuild_lock);
198 if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
199 vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
200 vr->vr_scan_offset[txg & TXG_MASK] = 0;
203 vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
204 NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
206 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
207 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
208 REBUILD_PHYS_ENTRIES, vrp, tx));
210 mutex_exit(&vd->vdev_rebuild_lock);
214 * Initialize the on-disk state for a new rebuild, start the rebuild thread.
216 static void
217 vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
219 int vdev_id = (uintptr_t)arg;
220 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
221 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
222 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
223 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
225 ASSERT(vd->vdev_rebuilding);
227 spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
229 mutex_enter(&vd->vdev_rebuild_lock);
230 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
231 vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
232 vrp->vrp_min_txg = 0;
233 vrp->vrp_max_txg = dmu_tx_get_txg(tx);
234 vrp->vrp_start_time = gethrestime_sec();
235 vrp->vrp_scan_time_ms = 0;
236 vr->vr_prev_scan_time_ms = 0;
239 * Rebuilds are currently only used when replacing a device, in which
240 * case there must be DTL_MISSING entries. In the future, we could
241 * allow rebuilds to be used in a way similar to a scrub. This would
242 * be useful because it would allow us to rebuild the space used by
243 * pool checkpoints.
245 VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
247 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
248 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
249 REBUILD_PHYS_ENTRIES, vrp, tx));
251 spa_history_log_internal(spa, "rebuild", tx,
252 "vdev_id=%llu vdev_guid=%llu started",
253 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
255 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
256 vd->vdev_rebuild_thread = thread_create(NULL, 0,
257 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
259 mutex_exit(&vd->vdev_rebuild_lock);
262 static void
263 vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, char *name)
265 nvlist_t *aux = fnvlist_alloc();
267 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
268 spa_event_notify(spa, vd, aux, name);
269 nvlist_free(aux);
273 * Called to request that a new rebuild be started. The feature will remain
274 * active for the duration of the rebuild, then revert to the enabled state.
276 static void
277 vdev_rebuild_initiate(vdev_t *vd)
279 spa_t *spa = vd->vdev_spa;
281 ASSERT(vd->vdev_top == vd);
282 ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
283 ASSERT(!vd->vdev_rebuilding);
285 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
286 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
288 vd->vdev_rebuilding = B_TRUE;
290 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
291 (void *)(uintptr_t)vd->vdev_id, tx);
292 dmu_tx_commit(tx);
294 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
298 * Update the on-disk state to completed when a rebuild finishes.
300 static void
301 vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
303 int vdev_id = (uintptr_t)arg;
304 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
305 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
306 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
307 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
309 mutex_enter(&vd->vdev_rebuild_lock);
310 vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
311 vrp->vrp_end_time = gethrestime_sec();
313 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
314 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
315 REBUILD_PHYS_ENTRIES, vrp, tx));
317 vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
318 spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
320 spa_history_log_internal(spa, "rebuild", tx,
321 "vdev_id=%llu vdev_guid=%llu complete",
322 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
323 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
325 /* Handles detaching of spares */
326 spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
327 vd->vdev_rebuilding = B_FALSE;
328 mutex_exit(&vd->vdev_rebuild_lock);
331 * While we're in syncing context take the opportunity to
332 * setup the scrub when there are no more active rebuilds.
334 pool_scan_func_t func = POOL_SCAN_SCRUB;
335 if (dsl_scan_setup_check(&func, tx) == 0 &&
336 zfs_rebuild_scrub_enabled) {
337 dsl_scan_setup_sync(&func, tx);
340 cv_broadcast(&vd->vdev_rebuild_cv);
342 /* Clear recent error events (i.e. duplicate events tracking) */
343 zfs_ereport_clear(spa, NULL);
347 * Update the on-disk state to canceled when a rebuild finishes.
349 static void
350 vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
352 int vdev_id = (uintptr_t)arg;
353 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
354 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
355 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
356 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
358 mutex_enter(&vd->vdev_rebuild_lock);
359 vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
360 vrp->vrp_end_time = gethrestime_sec();
362 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
363 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
364 REBUILD_PHYS_ENTRIES, vrp, tx));
366 spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
368 spa_history_log_internal(spa, "rebuild", tx,
369 "vdev_id=%llu vdev_guid=%llu canceled",
370 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
371 vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
373 vd->vdev_rebuild_cancel_wanted = B_FALSE;
374 vd->vdev_rebuilding = B_FALSE;
375 mutex_exit(&vd->vdev_rebuild_lock);
377 spa_notify_waiters(spa);
378 cv_broadcast(&vd->vdev_rebuild_cv);
382 * Resets the progress of a running rebuild. This will occur when a new
383 * vdev is added to rebuild.
385 static void
386 vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
388 int vdev_id = (uintptr_t)arg;
389 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
390 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
391 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
392 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
394 mutex_enter(&vd->vdev_rebuild_lock);
396 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
397 ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
399 vrp->vrp_last_offset = 0;
400 vrp->vrp_min_txg = 0;
401 vrp->vrp_max_txg = dmu_tx_get_txg(tx);
402 vrp->vrp_bytes_scanned = 0;
403 vrp->vrp_bytes_issued = 0;
404 vrp->vrp_bytes_rebuilt = 0;
405 vrp->vrp_bytes_est = 0;
406 vrp->vrp_scan_time_ms = 0;
407 vr->vr_prev_scan_time_ms = 0;
409 /* See vdev_rebuild_initiate_sync comment */
410 VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
412 VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
413 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
414 REBUILD_PHYS_ENTRIES, vrp, tx));
416 spa_history_log_internal(spa, "rebuild", tx,
417 "vdev_id=%llu vdev_guid=%llu reset",
418 (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
420 vd->vdev_rebuild_reset_wanted = B_FALSE;
421 ASSERT(vd->vdev_rebuilding);
423 vd->vdev_rebuild_thread = thread_create(NULL, 0,
424 vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
426 mutex_exit(&vd->vdev_rebuild_lock);
430 * Clear the last rebuild status.
432 void
433 vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
435 int vdev_id = (uintptr_t)arg;
436 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
437 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
438 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
439 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
440 objset_t *mos = spa_meta_objset(spa);
442 mutex_enter(&vd->vdev_rebuild_lock);
444 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
445 vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
446 mutex_exit(&vd->vdev_rebuild_lock);
447 return;
450 clear_rebuild_bytes(vd);
451 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
453 if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
454 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
455 VERIFY0(zap_update(mos, vd->vdev_top_zap,
456 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
457 REBUILD_PHYS_ENTRIES, vrp, tx));
460 mutex_exit(&vd->vdev_rebuild_lock);
464 * The zio_done_func_t callback for each rebuild I/O issued. It's responsible
465 * for updating the rebuild stats and limiting the number of in flight I/Os.
467 static void
468 vdev_rebuild_cb(zio_t *zio)
470 vdev_rebuild_t *vr = zio->io_private;
471 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
472 vdev_t *vd = vr->vr_top_vdev;
474 mutex_enter(&vr->vr_io_lock);
475 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
477 * The I/O failed because the top-level vdev was unavailable.
478 * Attempt to roll back to the last completed offset, in order
479 * resume from the correct location if the pool is resumed.
480 * (This works because spa_sync waits on spa_txg_zio before
481 * it runs sync tasks.)
483 uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
484 *off = MIN(*off, zio->io_offset);
485 } else if (zio->io_error) {
486 vrp->vrp_errors++;
489 abd_free(zio->io_abd);
491 ASSERT3U(vr->vr_bytes_inflight, >, 0);
492 vr->vr_bytes_inflight -= zio->io_size;
493 cv_broadcast(&vr->vr_io_cv);
494 mutex_exit(&vr->vr_io_lock);
496 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
500 * Initialize a block pointer that can be used to read the given segment
501 * for sequential rebuild.
503 static void
504 vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
505 uint64_t asize)
507 ASSERT(vd->vdev_ops == &vdev_draid_ops ||
508 vd->vdev_ops == &vdev_mirror_ops ||
509 vd->vdev_ops == &vdev_replacing_ops ||
510 vd->vdev_ops == &vdev_spare_ops);
512 uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
513 vdev_draid_asize_to_psize(vd, asize) : asize;
515 BP_ZERO(bp);
517 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
518 DVA_SET_OFFSET(&bp->blk_dva[0], start);
519 DVA_SET_GANG(&bp->blk_dva[0], 0);
520 DVA_SET_ASIZE(&bp->blk_dva[0], asize);
522 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
523 BP_SET_LSIZE(bp, psize);
524 BP_SET_PSIZE(bp, psize);
525 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
526 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
527 BP_SET_TYPE(bp, DMU_OT_NONE);
528 BP_SET_LEVEL(bp, 0);
529 BP_SET_DEDUP(bp, 0);
530 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
534 * Issues a rebuild I/O and takes care of rate limiting the number of queued
535 * rebuild I/Os. The provided start and size must be properly aligned for the
536 * top-level vdev type being rebuilt.
538 static int
539 vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
541 uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
542 vdev_t *vd = vr->vr_top_vdev;
543 spa_t *spa = vd->vdev_spa;
544 blkptr_t blk;
546 ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
547 ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
549 vr->vr_pass_bytes_scanned += size;
550 vr->vr_rebuild_phys.vrp_bytes_scanned += size;
553 * Rebuild the data in this range by constructing a special block
554 * pointer. It has no relation to any existing blocks in the pool.
555 * However, by disabling checksum verification and issuing a scrub IO
556 * we can reconstruct and repair any children with missing data.
558 vdev_rebuild_blkptr_init(&blk, vd, start, size);
559 uint64_t psize = BP_GET_PSIZE(&blk);
561 if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN))
562 return (0);
564 mutex_enter(&vr->vr_io_lock);
566 /* Limit in flight rebuild I/Os */
567 while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
568 cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
570 vr->vr_bytes_inflight += psize;
571 mutex_exit(&vr->vr_io_lock);
573 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
574 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
575 uint64_t txg = dmu_tx_get_txg(tx);
577 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
578 mutex_enter(&vd->vdev_rebuild_lock);
580 /* This is the first I/O for this txg. */
581 if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
582 vr->vr_scan_offset[txg & TXG_MASK] = start;
583 dsl_sync_task_nowait(spa_get_dsl(spa),
584 vdev_rebuild_update_sync,
585 (void *)(uintptr_t)vd->vdev_id, tx);
588 /* When exiting write out our progress. */
589 if (vdev_rebuild_should_stop(vd)) {
590 mutex_enter(&vr->vr_io_lock);
591 vr->vr_bytes_inflight -= psize;
592 mutex_exit(&vr->vr_io_lock);
593 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
594 mutex_exit(&vd->vdev_rebuild_lock);
595 dmu_tx_commit(tx);
596 return (SET_ERROR(EINTR));
598 mutex_exit(&vd->vdev_rebuild_lock);
599 dmu_tx_commit(tx);
601 vr->vr_scan_offset[txg & TXG_MASK] = start + size;
602 vr->vr_pass_bytes_issued += size;
603 vr->vr_rebuild_phys.vrp_bytes_issued += size;
605 zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
606 abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
607 ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
608 ZIO_FLAG_RESILVER, NULL));
610 return (0);
614 * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
616 static int
617 vdev_rebuild_ranges(vdev_rebuild_t *vr)
619 vdev_t *vd = vr->vr_top_vdev;
620 zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
621 zfs_btree_index_t idx;
622 int error;
624 for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
625 rs = zfs_btree_next(t, &idx, &idx)) {
626 uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
627 uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
630 * zfs_scan_suspend_progress can be set to disable rebuild
631 * progress for testing. See comment in dsl_scan_sync().
633 while (zfs_scan_suspend_progress &&
634 !vdev_rebuild_should_stop(vd)) {
635 delay(hz);
638 while (size > 0) {
639 uint64_t chunk_size;
642 * Split range into legally-sized logical chunks
643 * given the constraints of the top-level vdev
644 * being rebuilt (dRAID or mirror).
646 ASSERT3P(vd->vdev_ops, !=, NULL);
647 chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
648 start, size, zfs_rebuild_max_segment);
650 error = vdev_rebuild_range(vr, start, chunk_size);
651 if (error != 0)
652 return (error);
654 size -= chunk_size;
655 start += chunk_size;
659 return (0);
663 * Calculates the estimated capacity which remains to be scanned. Since
664 * we traverse the pool in metaslab order only allocated capacity beyond
665 * the vrp_last_offset need be considered. All lower offsets must have
666 * already been rebuilt and are thus already included in vrp_bytes_scanned.
668 static void
669 vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
671 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
672 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
673 uint64_t bytes_est = vrp->vrp_bytes_scanned;
675 if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
676 return;
678 for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
679 metaslab_t *msp = vd->vdev_ms[i];
681 mutex_enter(&msp->ms_lock);
682 bytes_est += metaslab_allocated_space(msp);
683 mutex_exit(&msp->ms_lock);
686 vrp->vrp_bytes_est = bytes_est;
690 * Load from disk the top-level vdev's rebuild information.
693 vdev_rebuild_load(vdev_t *vd)
695 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
696 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
697 spa_t *spa = vd->vdev_spa;
698 int err = 0;
700 mutex_enter(&vd->vdev_rebuild_lock);
701 vd->vdev_rebuilding = B_FALSE;
703 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
704 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
705 mutex_exit(&vd->vdev_rebuild_lock);
706 return (SET_ERROR(ENOTSUP));
709 ASSERT(vd->vdev_top == vd);
711 err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
712 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
713 REBUILD_PHYS_ENTRIES, vrp);
716 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
717 * not prevent a pool from being imported. Clear the rebuild
718 * status allowing a new resilver/rebuild to be started.
720 if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
721 memset(vrp, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
722 } else if (err) {
723 mutex_exit(&vd->vdev_rebuild_lock);
724 return (err);
727 vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
728 vr->vr_top_vdev = vd;
730 mutex_exit(&vd->vdev_rebuild_lock);
732 return (0);
736 * Each scan thread is responsible for rebuilding a top-level vdev. The
737 * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
739 static __attribute__((noreturn)) void
740 vdev_rebuild_thread(void *arg)
742 vdev_t *vd = arg;
743 spa_t *spa = vd->vdev_spa;
744 int error = 0;
747 * If there's a scrub in process request that it be stopped. This
748 * is not required for a correct rebuild, but we do want rebuilds to
749 * emulate the resilver behavior as much as possible.
751 dsl_pool_t *dsl = spa_get_dsl(spa);
752 if (dsl_scan_scrubbing(dsl))
753 dsl_scan_cancel(dsl);
755 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
756 mutex_enter(&vd->vdev_rebuild_lock);
758 ASSERT3P(vd->vdev_top, ==, vd);
759 ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
760 ASSERT(vd->vdev_rebuilding);
761 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
762 ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
763 ASSERT3B(vd->vdev_rebuild_reset_wanted, ==, B_FALSE);
765 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
766 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
767 vr->vr_top_vdev = vd;
768 vr->vr_scan_msp = NULL;
769 vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
770 mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
771 cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
773 vr->vr_pass_start_time = gethrtime();
774 vr->vr_pass_bytes_scanned = 0;
775 vr->vr_pass_bytes_issued = 0;
777 vr->vr_bytes_inflight_max = MAX(1ULL << 20,
778 zfs_rebuild_vdev_limit * vd->vdev_children);
780 uint64_t update_est_time = gethrtime();
781 vdev_rebuild_update_bytes_est(vd, 0);
783 clear_rebuild_bytes(vr->vr_top_vdev);
785 mutex_exit(&vd->vdev_rebuild_lock);
788 * Systematically walk the metaslabs and issue rebuild I/Os for
789 * all ranges in the allocated space map.
791 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
792 metaslab_t *msp = vd->vdev_ms[i];
793 vr->vr_scan_msp = msp;
796 * Removal of vdevs from the vdev tree may eliminate the need
797 * for the rebuild, in which case it should be canceled. The
798 * vdev_rebuild_cancel_wanted flag is set until the sync task
799 * completes. This may be after the rebuild thread exits.
801 if (vdev_rebuild_should_cancel(vd)) {
802 vd->vdev_rebuild_cancel_wanted = B_TRUE;
803 error = EINTR;
804 break;
807 ASSERT0(range_tree_space(vr->vr_scan_tree));
809 /* Disable any new allocations to this metaslab */
810 spa_config_exit(spa, SCL_CONFIG, FTAG);
811 metaslab_disable(msp);
813 mutex_enter(&msp->ms_sync_lock);
814 mutex_enter(&msp->ms_lock);
817 * If there are outstanding allocations wait for them to be
818 * synced. This is needed to ensure all allocated ranges are
819 * on disk and therefore will be rebuilt.
821 for (int j = 0; j < TXG_SIZE; j++) {
822 if (range_tree_space(msp->ms_allocating[j])) {
823 mutex_exit(&msp->ms_lock);
824 mutex_exit(&msp->ms_sync_lock);
825 txg_wait_synced(dsl, 0);
826 mutex_enter(&msp->ms_sync_lock);
827 mutex_enter(&msp->ms_lock);
828 break;
833 * When a metaslab has been allocated from read its allocated
834 * ranges from the space map object into the vr_scan_tree.
835 * Then add inflight / unflushed ranges and remove inflight /
836 * unflushed frees. This is the minimum range to be rebuilt.
838 if (msp->ms_sm != NULL) {
839 VERIFY0(space_map_load(msp->ms_sm,
840 vr->vr_scan_tree, SM_ALLOC));
842 for (int i = 0; i < TXG_SIZE; i++) {
843 ASSERT0(range_tree_space(
844 msp->ms_allocating[i]));
847 range_tree_walk(msp->ms_unflushed_allocs,
848 range_tree_add, vr->vr_scan_tree);
849 range_tree_walk(msp->ms_unflushed_frees,
850 range_tree_remove, vr->vr_scan_tree);
853 * Remove ranges which have already been rebuilt based
854 * on the last offset. This can happen when restarting
855 * a scan after exporting and re-importing the pool.
857 range_tree_clear(vr->vr_scan_tree, 0,
858 vrp->vrp_last_offset);
861 mutex_exit(&msp->ms_lock);
862 mutex_exit(&msp->ms_sync_lock);
865 * To provide an accurate estimate re-calculate the estimated
866 * size every 5 minutes to account for recent allocations and
867 * frees made to space maps which have not yet been rebuilt.
869 if (gethrtime() > update_est_time + SEC2NSEC(300)) {
870 update_est_time = gethrtime();
871 vdev_rebuild_update_bytes_est(vd, i);
875 * Walk the allocated space map and issue the rebuild I/O.
877 error = vdev_rebuild_ranges(vr);
878 range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
880 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
881 metaslab_enable(msp, B_FALSE, B_FALSE);
883 if (error != 0)
884 break;
887 range_tree_destroy(vr->vr_scan_tree);
888 spa_config_exit(spa, SCL_CONFIG, FTAG);
890 /* Wait for any remaining rebuild I/O to complete */
891 mutex_enter(&vr->vr_io_lock);
892 while (vr->vr_bytes_inflight > 0)
893 cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
895 mutex_exit(&vr->vr_io_lock);
897 mutex_destroy(&vr->vr_io_lock);
898 cv_destroy(&vr->vr_io_cv);
900 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
902 dsl_pool_t *dp = spa_get_dsl(spa);
903 dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
904 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
906 mutex_enter(&vd->vdev_rebuild_lock);
907 if (error == 0) {
909 * After a successful rebuild clear the DTLs of all ranges
910 * which were missing when the rebuild was started. These
911 * ranges must have been rebuilt as a consequence of rebuilding
912 * all allocated space. Note that unlike a scrub or resilver
913 * the rebuild operation will reconstruct data only referenced
914 * by a pool checkpoint. See the dsl_scan_done() comments.
916 dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
917 (void *)(uintptr_t)vd->vdev_id, tx);
918 } else if (vd->vdev_rebuild_cancel_wanted) {
920 * The rebuild operation was canceled. This will occur when
921 * a device participating in the rebuild is detached.
923 dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
924 (void *)(uintptr_t)vd->vdev_id, tx);
925 } else if (vd->vdev_rebuild_reset_wanted) {
927 * Reset the running rebuild without canceling and restarting
928 * it. This will occur when a new device is attached and must
929 * participate in the rebuild.
931 dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
932 (void *)(uintptr_t)vd->vdev_id, tx);
933 } else {
935 * The rebuild operation should be suspended. This may occur
936 * when detaching a child vdev or when exporting the pool. The
937 * rebuild is left in the active state so it will be resumed.
939 ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
940 vd->vdev_rebuilding = B_FALSE;
943 dmu_tx_commit(tx);
945 vd->vdev_rebuild_thread = NULL;
946 mutex_exit(&vd->vdev_rebuild_lock);
947 spa_config_exit(spa, SCL_CONFIG, FTAG);
949 cv_broadcast(&vd->vdev_rebuild_cv);
951 thread_exit();
955 * Returns B_TRUE if any top-level vdev are rebuilding.
957 boolean_t
958 vdev_rebuild_active(vdev_t *vd)
960 spa_t *spa = vd->vdev_spa;
961 boolean_t ret = B_FALSE;
963 if (vd == spa->spa_root_vdev) {
964 for (uint64_t i = 0; i < vd->vdev_children; i++) {
965 ret = vdev_rebuild_active(vd->vdev_child[i]);
966 if (ret)
967 return (ret);
969 } else if (vd->vdev_top_zap != 0) {
970 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
971 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
973 mutex_enter(&vd->vdev_rebuild_lock);
974 ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
975 mutex_exit(&vd->vdev_rebuild_lock);
978 return (ret);
982 * Start a rebuild operation. The rebuild may be restarted when the
983 * top-level vdev is currently actively rebuilding.
985 void
986 vdev_rebuild(vdev_t *vd)
988 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
989 vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
991 ASSERT(vd->vdev_top == vd);
992 ASSERT(vdev_is_concrete(vd));
993 ASSERT(!vd->vdev_removing);
994 ASSERT(spa_feature_is_enabled(vd->vdev_spa,
995 SPA_FEATURE_DEVICE_REBUILD));
997 mutex_enter(&vd->vdev_rebuild_lock);
998 if (vd->vdev_rebuilding) {
999 ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
1002 * Signal a running rebuild operation that it should restart
1003 * from the beginning because a new device was attached. The
1004 * vdev_rebuild_reset_wanted flag is set until the sync task
1005 * completes. This may be after the rebuild thread exits.
1007 if (!vd->vdev_rebuild_reset_wanted)
1008 vd->vdev_rebuild_reset_wanted = B_TRUE;
1009 } else {
1010 vdev_rebuild_initiate(vd);
1012 mutex_exit(&vd->vdev_rebuild_lock);
1015 static void
1016 vdev_rebuild_restart_impl(vdev_t *vd)
1018 spa_t *spa = vd->vdev_spa;
1020 if (vd == spa->spa_root_vdev) {
1021 for (uint64_t i = 0; i < vd->vdev_children; i++)
1022 vdev_rebuild_restart_impl(vd->vdev_child[i]);
1024 } else if (vd->vdev_top_zap != 0) {
1025 vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
1026 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1028 mutex_enter(&vd->vdev_rebuild_lock);
1029 if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
1030 vdev_writeable(vd) && !vd->vdev_rebuilding) {
1031 ASSERT(spa_feature_is_active(spa,
1032 SPA_FEATURE_DEVICE_REBUILD));
1033 vd->vdev_rebuilding = B_TRUE;
1034 vd->vdev_rebuild_thread = thread_create(NULL, 0,
1035 vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
1036 maxclsyspri);
1038 mutex_exit(&vd->vdev_rebuild_lock);
1043 * Conditionally restart all of the vdev_rebuild_thread's for a pool. The
1044 * feature flag must be active and the rebuild in the active state. This
1045 * cannot be used to start a new rebuild.
1047 void
1048 vdev_rebuild_restart(spa_t *spa)
1050 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1052 vdev_rebuild_restart_impl(spa->spa_root_vdev);
1056 * Stop and wait for all of the vdev_rebuild_thread's associated with the
1057 * vdev tree provide to be terminated (canceled or stopped).
1059 void
1060 vdev_rebuild_stop_wait(vdev_t *vd)
1062 spa_t *spa = vd->vdev_spa;
1064 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1066 if (vd == spa->spa_root_vdev) {
1067 for (uint64_t i = 0; i < vd->vdev_children; i++)
1068 vdev_rebuild_stop_wait(vd->vdev_child[i]);
1070 } else if (vd->vdev_top_zap != 0) {
1071 ASSERT(vd == vd->vdev_top);
1073 mutex_enter(&vd->vdev_rebuild_lock);
1074 if (vd->vdev_rebuild_thread != NULL) {
1075 vd->vdev_rebuild_exit_wanted = B_TRUE;
1076 while (vd->vdev_rebuilding) {
1077 cv_wait(&vd->vdev_rebuild_cv,
1078 &vd->vdev_rebuild_lock);
1080 vd->vdev_rebuild_exit_wanted = B_FALSE;
1082 mutex_exit(&vd->vdev_rebuild_lock);
1087 * Stop all rebuild operations but leave them in the active state so they
1088 * will be resumed when importing the pool.
1090 void
1091 vdev_rebuild_stop_all(spa_t *spa)
1093 vdev_rebuild_stop_wait(spa->spa_root_vdev);
1097 * Rebuild statistics reported per top-level vdev.
1100 vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
1102 spa_t *spa = tvd->vdev_spa;
1104 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
1105 return (SET_ERROR(ENOTSUP));
1107 if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
1108 return (SET_ERROR(EINVAL));
1110 int error = zap_contains(spa_meta_objset(spa),
1111 tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
1113 if (error == ENOENT) {
1114 memset(vrs, 0, sizeof (vdev_rebuild_stat_t));
1115 vrs->vrs_state = VDEV_REBUILD_NONE;
1116 error = 0;
1117 } else if (error == 0) {
1118 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
1119 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
1121 mutex_enter(&tvd->vdev_rebuild_lock);
1122 vrs->vrs_state = vrp->vrp_rebuild_state;
1123 vrs->vrs_start_time = vrp->vrp_start_time;
1124 vrs->vrs_end_time = vrp->vrp_end_time;
1125 vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
1126 vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
1127 vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
1128 vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
1129 vrs->vrs_bytes_est = vrp->vrp_bytes_est;
1130 vrs->vrs_errors = vrp->vrp_errors;
1131 vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
1132 vr->vr_pass_start_time);
1133 vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
1134 vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
1135 mutex_exit(&tvd->vdev_rebuild_lock);
1138 return (error);
1141 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
1142 "Max segment size in bytes of rebuild reads");
1144 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, ULONG, ZMOD_RW,
1145 "Max bytes in flight per leaf vdev for sequential resilvers");
1147 ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
1148 "Automatically scrub after sequential resilver completes");