4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2018, Intel Corporation.
24 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
27 #include <sys/vdev_impl.h>
28 #include <sys/vdev_draid.h>
29 #include <sys/dsl_scan.h>
30 #include <sys/spa_impl.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_rebuild.h>
34 #include <sys/dmu_tx.h>
39 * This file contains the sequential reconstruction implementation for
40 * resilvering. This form of resilvering is internally referred to as device
41 * rebuild to avoid conflating it with the traditional healing reconstruction
42 * performed by the dsl scan code.
44 * When replacing a device, or scrubbing the pool, ZFS has historically used
45 * a process called resilvering which is a form of healing reconstruction.
46 * This approach has the advantage that as blocks are read from disk their
47 * checksums can be immediately verified and the data repaired. Unfortunately,
48 * it also results in a random IO pattern to the disk even when extra care
49 * is taken to sequentialize the IO as much as possible. This substantially
50 * increases the time required to resilver the pool and restore redundancy.
52 * For mirrored devices it's possible to implement an alternate sequential
53 * reconstruction strategy when resilvering. Sequential reconstruction
54 * behaves like a traditional RAID rebuild and reconstructs a device in LBA
55 * order without verifying the checksum. After this phase completes a second
56 * scrub phase is started to verify all of the checksums. This two phase
57 * process will take longer than the healing reconstruction described above.
58 * However, it has that advantage that after the reconstruction first phase
59 * completes redundancy has been restored. At this point the pool can incur
60 * another device failure without risking data loss.
62 * There are a few noteworthy limitations and other advantages of resilvering
63 * using sequential reconstruction vs healing reconstruction.
67 * - Sequential reconstruction is not possible on RAIDZ due to its
68 * variable stripe width. Note dRAID uses a fixed stripe width which
69 * avoids this issue, but comes at the expense of some usable capacity.
71 * - Block checksums are not verified during sequential reconstruction.
72 * Similar to traditional RAID the parity/mirror data is reconstructed
73 * but cannot be immediately double checked. For this reason when the
74 * last active resilver completes the pool is automatically scrubbed
77 * - Deferred resilvers using sequential reconstruction are not currently
78 * supported. When adding another vdev to an active top-level resilver
79 * it must be restarted.
83 * - Sequential reconstruction is performed in LBA order which may be faster
84 * than healing reconstruction particularly when using HDDs (or
85 * especially with SMR devices). Only allocated capacity is resilvered.
87 * - Sequential reconstruction is not constrained by ZFS block boundaries.
88 * This allows it to issue larger IOs to disk which span multiple blocks
89 * allowing all of these logical blocks to be repaired with a single IO.
91 * - Unlike a healing resilver or scrub which are pool wide operations,
92 * sequential reconstruction is handled by the top-level vdevs. This
93 * allows for it to be started or canceled on a top-level vdev without
94 * impacting any other top-level vdevs in the pool.
96 * - Data only referenced by a pool checkpoint will be repaired because
97 * that space is reflected in the space maps. This differs for a
98 * healing resilver or scrub which will not repair that data.
103 * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
106 static unsigned long zfs_rebuild_max_segment
= 1024 * 1024;
109 * Maximum number of parallelly executed bytes per leaf vdev caused by a
110 * sequential resilver. We attempt to strike a balance here between keeping
111 * the vdev queues full of I/Os at all times and not overflowing the queues
112 * to cause long latency, which would cause long txg sync times.
114 * A large default value can be safely used here because the default target
115 * segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
116 * the queue depth short.
118 * 32MB was selected as the default value to achieve good performance with
119 * a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
120 * rebuild was unable to saturate all of the drives using smaller values.
121 * With a value of 32MB the sequential resilver write rate was measured at
122 * 800MB/s sustained while rebuilding to a distributed spare.
124 static unsigned long zfs_rebuild_vdev_limit
= 32 << 20;
127 * Automatically start a pool scrub when the last active sequential resilver
128 * completes in order to verify the checksums of all blocks which have been
129 * resilvered. This option is enabled by default and is strongly recommended.
131 static int zfs_rebuild_scrub_enabled
= 1;
134 * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
136 static __attribute__((noreturn
)) void vdev_rebuild_thread(void *arg
);
139 * Clear the per-vdev rebuild bytes value for a vdev tree.
142 clear_rebuild_bytes(vdev_t
*vd
)
144 vdev_stat_t
*vs
= &vd
->vdev_stat
;
146 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
147 clear_rebuild_bytes(vd
->vdev_child
[i
]);
149 mutex_enter(&vd
->vdev_stat_lock
);
150 vs
->vs_rebuild_processed
= 0;
151 mutex_exit(&vd
->vdev_stat_lock
);
155 * Determines whether a vdev_rebuild_thread() should be stopped.
158 vdev_rebuild_should_stop(vdev_t
*vd
)
160 return (!vdev_writeable(vd
) || vd
->vdev_removing
||
161 vd
->vdev_rebuild_exit_wanted
||
162 vd
->vdev_rebuild_cancel_wanted
||
163 vd
->vdev_rebuild_reset_wanted
);
167 * Determine if the rebuild should be canceled. This may happen when all
168 * vdevs with MISSING DTLs are detached.
171 vdev_rebuild_should_cancel(vdev_t
*vd
)
173 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
174 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
176 if (!vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
))
183 * The sync task for updating the on-disk state of a rebuild. This is
184 * scheduled by vdev_rebuild_range().
187 vdev_rebuild_update_sync(void *arg
, dmu_tx_t
*tx
)
189 int vdev_id
= (uintptr_t)arg
;
190 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
191 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
192 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
193 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
194 uint64_t txg
= dmu_tx_get_txg(tx
);
196 mutex_enter(&vd
->vdev_rebuild_lock
);
198 if (vr
->vr_scan_offset
[txg
& TXG_MASK
] > 0) {
199 vrp
->vrp_last_offset
= vr
->vr_scan_offset
[txg
& TXG_MASK
];
200 vr
->vr_scan_offset
[txg
& TXG_MASK
] = 0;
203 vrp
->vrp_scan_time_ms
= vr
->vr_prev_scan_time_ms
+
204 NSEC2MSEC(gethrtime() - vr
->vr_pass_start_time
);
206 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
207 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
208 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
210 mutex_exit(&vd
->vdev_rebuild_lock
);
214 * Initialize the on-disk state for a new rebuild, start the rebuild thread.
217 vdev_rebuild_initiate_sync(void *arg
, dmu_tx_t
*tx
)
219 int vdev_id
= (uintptr_t)arg
;
220 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
221 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
222 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
223 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
225 ASSERT(vd
->vdev_rebuilding
);
227 spa_feature_incr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
229 mutex_enter(&vd
->vdev_rebuild_lock
);
230 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
231 vrp
->vrp_rebuild_state
= VDEV_REBUILD_ACTIVE
;
232 vrp
->vrp_min_txg
= 0;
233 vrp
->vrp_max_txg
= dmu_tx_get_txg(tx
);
234 vrp
->vrp_start_time
= gethrestime_sec();
235 vrp
->vrp_scan_time_ms
= 0;
236 vr
->vr_prev_scan_time_ms
= 0;
239 * Rebuilds are currently only used when replacing a device, in which
240 * case there must be DTL_MISSING entries. In the future, we could
241 * allow rebuilds to be used in a way similar to a scrub. This would
242 * be useful because it would allow us to rebuild the space used by
245 VERIFY(vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
));
247 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
248 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
249 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
251 spa_history_log_internal(spa
, "rebuild", tx
,
252 "vdev_id=%llu vdev_guid=%llu started",
253 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
255 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
256 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
257 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
, maxclsyspri
);
259 mutex_exit(&vd
->vdev_rebuild_lock
);
263 vdev_rebuild_log_notify(spa_t
*spa
, vdev_t
*vd
, char *name
)
265 nvlist_t
*aux
= fnvlist_alloc();
267 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
, "sequential");
268 spa_event_notify(spa
, vd
, aux
, name
);
273 * Called to request that a new rebuild be started. The feature will remain
274 * active for the duration of the rebuild, then revert to the enabled state.
277 vdev_rebuild_initiate(vdev_t
*vd
)
279 spa_t
*spa
= vd
->vdev_spa
;
281 ASSERT(vd
->vdev_top
== vd
);
282 ASSERT(MUTEX_HELD(&vd
->vdev_rebuild_lock
));
283 ASSERT(!vd
->vdev_rebuilding
);
285 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
286 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
288 vd
->vdev_rebuilding
= B_TRUE
;
290 dsl_sync_task_nowait(spa_get_dsl(spa
), vdev_rebuild_initiate_sync
,
291 (void *)(uintptr_t)vd
->vdev_id
, tx
);
294 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_START
);
298 * Update the on-disk state to completed when a rebuild finishes.
301 vdev_rebuild_complete_sync(void *arg
, dmu_tx_t
*tx
)
303 int vdev_id
= (uintptr_t)arg
;
304 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
305 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
306 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
307 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
309 mutex_enter(&vd
->vdev_rebuild_lock
);
310 vrp
->vrp_rebuild_state
= VDEV_REBUILD_COMPLETE
;
311 vrp
->vrp_end_time
= gethrestime_sec();
313 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
314 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
315 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
317 vdev_dtl_reassess(vd
, tx
->tx_txg
, vrp
->vrp_max_txg
, B_TRUE
, B_TRUE
);
318 spa_feature_decr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
320 spa_history_log_internal(spa
, "rebuild", tx
,
321 "vdev_id=%llu vdev_guid=%llu complete",
322 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
323 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_FINISH
);
325 /* Handles detaching of spares */
326 spa_async_request(spa
, SPA_ASYNC_REBUILD_DONE
);
327 vd
->vdev_rebuilding
= B_FALSE
;
328 mutex_exit(&vd
->vdev_rebuild_lock
);
331 * While we're in syncing context take the opportunity to
332 * setup the scrub when there are no more active rebuilds.
334 pool_scan_func_t func
= POOL_SCAN_SCRUB
;
335 if (dsl_scan_setup_check(&func
, tx
) == 0 &&
336 zfs_rebuild_scrub_enabled
) {
337 dsl_scan_setup_sync(&func
, tx
);
340 cv_broadcast(&vd
->vdev_rebuild_cv
);
342 /* Clear recent error events (i.e. duplicate events tracking) */
343 zfs_ereport_clear(spa
, NULL
);
347 * Update the on-disk state to canceled when a rebuild finishes.
350 vdev_rebuild_cancel_sync(void *arg
, dmu_tx_t
*tx
)
352 int vdev_id
= (uintptr_t)arg
;
353 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
354 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
355 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
356 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
358 mutex_enter(&vd
->vdev_rebuild_lock
);
359 vrp
->vrp_rebuild_state
= VDEV_REBUILD_CANCELED
;
360 vrp
->vrp_end_time
= gethrestime_sec();
362 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
363 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
364 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
366 spa_feature_decr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
368 spa_history_log_internal(spa
, "rebuild", tx
,
369 "vdev_id=%llu vdev_guid=%llu canceled",
370 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
371 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_FINISH
);
373 vd
->vdev_rebuild_cancel_wanted
= B_FALSE
;
374 vd
->vdev_rebuilding
= B_FALSE
;
375 mutex_exit(&vd
->vdev_rebuild_lock
);
377 spa_notify_waiters(spa
);
378 cv_broadcast(&vd
->vdev_rebuild_cv
);
382 * Resets the progress of a running rebuild. This will occur when a new
383 * vdev is added to rebuild.
386 vdev_rebuild_reset_sync(void *arg
, dmu_tx_t
*tx
)
388 int vdev_id
= (uintptr_t)arg
;
389 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
390 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
391 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
392 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
394 mutex_enter(&vd
->vdev_rebuild_lock
);
396 ASSERT(vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
397 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
399 vrp
->vrp_last_offset
= 0;
400 vrp
->vrp_min_txg
= 0;
401 vrp
->vrp_max_txg
= dmu_tx_get_txg(tx
);
402 vrp
->vrp_bytes_scanned
= 0;
403 vrp
->vrp_bytes_issued
= 0;
404 vrp
->vrp_bytes_rebuilt
= 0;
405 vrp
->vrp_bytes_est
= 0;
406 vrp
->vrp_scan_time_ms
= 0;
407 vr
->vr_prev_scan_time_ms
= 0;
409 /* See vdev_rebuild_initiate_sync comment */
410 VERIFY(vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
));
412 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
413 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
414 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
416 spa_history_log_internal(spa
, "rebuild", tx
,
417 "vdev_id=%llu vdev_guid=%llu reset",
418 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
420 vd
->vdev_rebuild_reset_wanted
= B_FALSE
;
421 ASSERT(vd
->vdev_rebuilding
);
423 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
424 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
, maxclsyspri
);
426 mutex_exit(&vd
->vdev_rebuild_lock
);
430 * Clear the last rebuild status.
433 vdev_rebuild_clear_sync(void *arg
, dmu_tx_t
*tx
)
435 int vdev_id
= (uintptr_t)arg
;
436 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
437 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
438 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
439 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
440 objset_t
*mos
= spa_meta_objset(spa
);
442 mutex_enter(&vd
->vdev_rebuild_lock
);
444 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
) ||
445 vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
) {
446 mutex_exit(&vd
->vdev_rebuild_lock
);
450 clear_rebuild_bytes(vd
);
451 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
453 if (vd
->vdev_top_zap
!= 0 && zap_contains(mos
, vd
->vdev_top_zap
,
454 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
) == 0) {
455 VERIFY0(zap_update(mos
, vd
->vdev_top_zap
,
456 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
457 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
460 mutex_exit(&vd
->vdev_rebuild_lock
);
464 * The zio_done_func_t callback for each rebuild I/O issued. It's responsible
465 * for updating the rebuild stats and limiting the number of in flight I/Os.
468 vdev_rebuild_cb(zio_t
*zio
)
470 vdev_rebuild_t
*vr
= zio
->io_private
;
471 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
472 vdev_t
*vd
= vr
->vr_top_vdev
;
474 mutex_enter(&vr
->vr_io_lock
);
475 if (zio
->io_error
== ENXIO
&& !vdev_writeable(vd
)) {
477 * The I/O failed because the top-level vdev was unavailable.
478 * Attempt to roll back to the last completed offset, in order
479 * resume from the correct location if the pool is resumed.
480 * (This works because spa_sync waits on spa_txg_zio before
481 * it runs sync tasks.)
483 uint64_t *off
= &vr
->vr_scan_offset
[zio
->io_txg
& TXG_MASK
];
484 *off
= MIN(*off
, zio
->io_offset
);
485 } else if (zio
->io_error
) {
489 abd_free(zio
->io_abd
);
491 ASSERT3U(vr
->vr_bytes_inflight
, >, 0);
492 vr
->vr_bytes_inflight
-= zio
->io_size
;
493 cv_broadcast(&vr
->vr_io_cv
);
494 mutex_exit(&vr
->vr_io_lock
);
496 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
500 * Initialize a block pointer that can be used to read the given segment
501 * for sequential rebuild.
504 vdev_rebuild_blkptr_init(blkptr_t
*bp
, vdev_t
*vd
, uint64_t start
,
507 ASSERT(vd
->vdev_ops
== &vdev_draid_ops
||
508 vd
->vdev_ops
== &vdev_mirror_ops
||
509 vd
->vdev_ops
== &vdev_replacing_ops
||
510 vd
->vdev_ops
== &vdev_spare_ops
);
512 uint64_t psize
= vd
->vdev_ops
== &vdev_draid_ops
?
513 vdev_draid_asize_to_psize(vd
, asize
) : asize
;
517 DVA_SET_VDEV(&bp
->blk_dva
[0], vd
->vdev_id
);
518 DVA_SET_OFFSET(&bp
->blk_dva
[0], start
);
519 DVA_SET_GANG(&bp
->blk_dva
[0], 0);
520 DVA_SET_ASIZE(&bp
->blk_dva
[0], asize
);
522 BP_SET_BIRTH(bp
, TXG_INITIAL
, TXG_INITIAL
);
523 BP_SET_LSIZE(bp
, psize
);
524 BP_SET_PSIZE(bp
, psize
);
525 BP_SET_COMPRESS(bp
, ZIO_COMPRESS_OFF
);
526 BP_SET_CHECKSUM(bp
, ZIO_CHECKSUM_OFF
);
527 BP_SET_TYPE(bp
, DMU_OT_NONE
);
530 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
534 * Issues a rebuild I/O and takes care of rate limiting the number of queued
535 * rebuild I/Os. The provided start and size must be properly aligned for the
536 * top-level vdev type being rebuilt.
539 vdev_rebuild_range(vdev_rebuild_t
*vr
, uint64_t start
, uint64_t size
)
541 uint64_t ms_id __maybe_unused
= vr
->vr_scan_msp
->ms_id
;
542 vdev_t
*vd
= vr
->vr_top_vdev
;
543 spa_t
*spa
= vd
->vdev_spa
;
546 ASSERT3U(ms_id
, ==, start
>> vd
->vdev_ms_shift
);
547 ASSERT3U(ms_id
, ==, (start
+ size
- 1) >> vd
->vdev_ms_shift
);
549 vr
->vr_pass_bytes_scanned
+= size
;
550 vr
->vr_rebuild_phys
.vrp_bytes_scanned
+= size
;
553 * Rebuild the data in this range by constructing a special block
554 * pointer. It has no relation to any existing blocks in the pool.
555 * However, by disabling checksum verification and issuing a scrub IO
556 * we can reconstruct and repair any children with missing data.
558 vdev_rebuild_blkptr_init(&blk
, vd
, start
, size
);
559 uint64_t psize
= BP_GET_PSIZE(&blk
);
561 if (!vdev_dtl_need_resilver(vd
, &blk
.blk_dva
[0], psize
, TXG_UNKNOWN
))
564 mutex_enter(&vr
->vr_io_lock
);
566 /* Limit in flight rebuild I/Os */
567 while (vr
->vr_bytes_inflight
>= vr
->vr_bytes_inflight_max
)
568 cv_wait(&vr
->vr_io_cv
, &vr
->vr_io_lock
);
570 vr
->vr_bytes_inflight
+= psize
;
571 mutex_exit(&vr
->vr_io_lock
);
573 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
574 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
575 uint64_t txg
= dmu_tx_get_txg(tx
);
577 spa_config_enter(spa
, SCL_STATE_ALL
, vd
, RW_READER
);
578 mutex_enter(&vd
->vdev_rebuild_lock
);
580 /* This is the first I/O for this txg. */
581 if (vr
->vr_scan_offset
[txg
& TXG_MASK
] == 0) {
582 vr
->vr_scan_offset
[txg
& TXG_MASK
] = start
;
583 dsl_sync_task_nowait(spa_get_dsl(spa
),
584 vdev_rebuild_update_sync
,
585 (void *)(uintptr_t)vd
->vdev_id
, tx
);
588 /* When exiting write out our progress. */
589 if (vdev_rebuild_should_stop(vd
)) {
590 mutex_enter(&vr
->vr_io_lock
);
591 vr
->vr_bytes_inflight
-= psize
;
592 mutex_exit(&vr
->vr_io_lock
);
593 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
594 mutex_exit(&vd
->vdev_rebuild_lock
);
596 return (SET_ERROR(EINTR
));
598 mutex_exit(&vd
->vdev_rebuild_lock
);
601 vr
->vr_scan_offset
[txg
& TXG_MASK
] = start
+ size
;
602 vr
->vr_pass_bytes_issued
+= size
;
603 vr
->vr_rebuild_phys
.vrp_bytes_issued
+= size
;
605 zio_nowait(zio_read(spa
->spa_txg_zio
[txg
& TXG_MASK
], spa
, &blk
,
606 abd_alloc(psize
, B_FALSE
), psize
, vdev_rebuild_cb
, vr
,
607 ZIO_PRIORITY_REBUILD
, ZIO_FLAG_RAW
| ZIO_FLAG_CANFAIL
|
608 ZIO_FLAG_RESILVER
, NULL
));
614 * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
617 vdev_rebuild_ranges(vdev_rebuild_t
*vr
)
619 vdev_t
*vd
= vr
->vr_top_vdev
;
620 zfs_btree_t
*t
= &vr
->vr_scan_tree
->rt_root
;
621 zfs_btree_index_t idx
;
624 for (range_seg_t
*rs
= zfs_btree_first(t
, &idx
); rs
!= NULL
;
625 rs
= zfs_btree_next(t
, &idx
, &idx
)) {
626 uint64_t start
= rs_get_start(rs
, vr
->vr_scan_tree
);
627 uint64_t size
= rs_get_end(rs
, vr
->vr_scan_tree
) - start
;
630 * zfs_scan_suspend_progress can be set to disable rebuild
631 * progress for testing. See comment in dsl_scan_sync().
633 while (zfs_scan_suspend_progress
&&
634 !vdev_rebuild_should_stop(vd
)) {
642 * Split range into legally-sized logical chunks
643 * given the constraints of the top-level vdev
644 * being rebuilt (dRAID or mirror).
646 ASSERT3P(vd
->vdev_ops
, !=, NULL
);
647 chunk_size
= vd
->vdev_ops
->vdev_op_rebuild_asize(vd
,
648 start
, size
, zfs_rebuild_max_segment
);
650 error
= vdev_rebuild_range(vr
, start
, chunk_size
);
663 * Calculates the estimated capacity which remains to be scanned. Since
664 * we traverse the pool in metaslab order only allocated capacity beyond
665 * the vrp_last_offset need be considered. All lower offsets must have
666 * already been rebuilt and are thus already included in vrp_bytes_scanned.
669 vdev_rebuild_update_bytes_est(vdev_t
*vd
, uint64_t ms_id
)
671 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
672 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
673 uint64_t bytes_est
= vrp
->vrp_bytes_scanned
;
675 if (vrp
->vrp_last_offset
< vd
->vdev_ms
[ms_id
]->ms_start
)
678 for (uint64_t i
= ms_id
; i
< vd
->vdev_ms_count
; i
++) {
679 metaslab_t
*msp
= vd
->vdev_ms
[i
];
681 mutex_enter(&msp
->ms_lock
);
682 bytes_est
+= metaslab_allocated_space(msp
);
683 mutex_exit(&msp
->ms_lock
);
686 vrp
->vrp_bytes_est
= bytes_est
;
690 * Load from disk the top-level vdev's rebuild information.
693 vdev_rebuild_load(vdev_t
*vd
)
695 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
696 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
697 spa_t
*spa
= vd
->vdev_spa
;
700 mutex_enter(&vd
->vdev_rebuild_lock
);
701 vd
->vdev_rebuilding
= B_FALSE
;
703 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
)) {
704 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
705 mutex_exit(&vd
->vdev_rebuild_lock
);
706 return (SET_ERROR(ENOTSUP
));
709 ASSERT(vd
->vdev_top
== vd
);
711 err
= zap_lookup(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
712 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
713 REBUILD_PHYS_ENTRIES
, vrp
);
716 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
717 * not prevent a pool from being imported. Clear the rebuild
718 * status allowing a new resilver/rebuild to be started.
720 if (err
== ENOENT
|| err
== EOVERFLOW
|| err
== ECKSUM
) {
721 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
723 mutex_exit(&vd
->vdev_rebuild_lock
);
727 vr
->vr_prev_scan_time_ms
= vrp
->vrp_scan_time_ms
;
728 vr
->vr_top_vdev
= vd
;
730 mutex_exit(&vd
->vdev_rebuild_lock
);
736 * Each scan thread is responsible for rebuilding a top-level vdev. The
737 * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
739 static __attribute__((noreturn
)) void
740 vdev_rebuild_thread(void *arg
)
743 spa_t
*spa
= vd
->vdev_spa
;
747 * If there's a scrub in process request that it be stopped. This
748 * is not required for a correct rebuild, but we do want rebuilds to
749 * emulate the resilver behavior as much as possible.
751 dsl_pool_t
*dsl
= spa_get_dsl(spa
);
752 if (dsl_scan_scrubbing(dsl
))
753 dsl_scan_cancel(dsl
);
755 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
756 mutex_enter(&vd
->vdev_rebuild_lock
);
758 ASSERT3P(vd
->vdev_top
, ==, vd
);
759 ASSERT3P(vd
->vdev_rebuild_thread
, !=, NULL
);
760 ASSERT(vd
->vdev_rebuilding
);
761 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_DEVICE_REBUILD
));
762 ASSERT3B(vd
->vdev_rebuild_cancel_wanted
, ==, B_FALSE
);
763 ASSERT3B(vd
->vdev_rebuild_reset_wanted
, ==, B_FALSE
);
765 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
766 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
767 vr
->vr_top_vdev
= vd
;
768 vr
->vr_scan_msp
= NULL
;
769 vr
->vr_scan_tree
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
770 mutex_init(&vr
->vr_io_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
771 cv_init(&vr
->vr_io_cv
, NULL
, CV_DEFAULT
, NULL
);
773 vr
->vr_pass_start_time
= gethrtime();
774 vr
->vr_pass_bytes_scanned
= 0;
775 vr
->vr_pass_bytes_issued
= 0;
777 vr
->vr_bytes_inflight_max
= MAX(1ULL << 20,
778 zfs_rebuild_vdev_limit
* vd
->vdev_children
);
780 uint64_t update_est_time
= gethrtime();
781 vdev_rebuild_update_bytes_est(vd
, 0);
783 clear_rebuild_bytes(vr
->vr_top_vdev
);
785 mutex_exit(&vd
->vdev_rebuild_lock
);
788 * Systematically walk the metaslabs and issue rebuild I/Os for
789 * all ranges in the allocated space map.
791 for (uint64_t i
= 0; i
< vd
->vdev_ms_count
; i
++) {
792 metaslab_t
*msp
= vd
->vdev_ms
[i
];
793 vr
->vr_scan_msp
= msp
;
796 * Removal of vdevs from the vdev tree may eliminate the need
797 * for the rebuild, in which case it should be canceled. The
798 * vdev_rebuild_cancel_wanted flag is set until the sync task
799 * completes. This may be after the rebuild thread exits.
801 if (vdev_rebuild_should_cancel(vd
)) {
802 vd
->vdev_rebuild_cancel_wanted
= B_TRUE
;
807 ASSERT0(range_tree_space(vr
->vr_scan_tree
));
809 /* Disable any new allocations to this metaslab */
810 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
811 metaslab_disable(msp
);
813 mutex_enter(&msp
->ms_sync_lock
);
814 mutex_enter(&msp
->ms_lock
);
817 * If there are outstanding allocations wait for them to be
818 * synced. This is needed to ensure all allocated ranges are
819 * on disk and therefore will be rebuilt.
821 for (int j
= 0; j
< TXG_SIZE
; j
++) {
822 if (range_tree_space(msp
->ms_allocating
[j
])) {
823 mutex_exit(&msp
->ms_lock
);
824 mutex_exit(&msp
->ms_sync_lock
);
825 txg_wait_synced(dsl
, 0);
826 mutex_enter(&msp
->ms_sync_lock
);
827 mutex_enter(&msp
->ms_lock
);
833 * When a metaslab has been allocated from read its allocated
834 * ranges from the space map object into the vr_scan_tree.
835 * Then add inflight / unflushed ranges and remove inflight /
836 * unflushed frees. This is the minimum range to be rebuilt.
838 if (msp
->ms_sm
!= NULL
) {
839 VERIFY0(space_map_load(msp
->ms_sm
,
840 vr
->vr_scan_tree
, SM_ALLOC
));
842 for (int i
= 0; i
< TXG_SIZE
; i
++) {
843 ASSERT0(range_tree_space(
844 msp
->ms_allocating
[i
]));
847 range_tree_walk(msp
->ms_unflushed_allocs
,
848 range_tree_add
, vr
->vr_scan_tree
);
849 range_tree_walk(msp
->ms_unflushed_frees
,
850 range_tree_remove
, vr
->vr_scan_tree
);
853 * Remove ranges which have already been rebuilt based
854 * on the last offset. This can happen when restarting
855 * a scan after exporting and re-importing the pool.
857 range_tree_clear(vr
->vr_scan_tree
, 0,
858 vrp
->vrp_last_offset
);
861 mutex_exit(&msp
->ms_lock
);
862 mutex_exit(&msp
->ms_sync_lock
);
865 * To provide an accurate estimate re-calculate the estimated
866 * size every 5 minutes to account for recent allocations and
867 * frees made to space maps which have not yet been rebuilt.
869 if (gethrtime() > update_est_time
+ SEC2NSEC(300)) {
870 update_est_time
= gethrtime();
871 vdev_rebuild_update_bytes_est(vd
, i
);
875 * Walk the allocated space map and issue the rebuild I/O.
877 error
= vdev_rebuild_ranges(vr
);
878 range_tree_vacate(vr
->vr_scan_tree
, NULL
, NULL
);
880 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
881 metaslab_enable(msp
, B_FALSE
, B_FALSE
);
887 range_tree_destroy(vr
->vr_scan_tree
);
888 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
890 /* Wait for any remaining rebuild I/O to complete */
891 mutex_enter(&vr
->vr_io_lock
);
892 while (vr
->vr_bytes_inflight
> 0)
893 cv_wait(&vr
->vr_io_cv
, &vr
->vr_io_lock
);
895 mutex_exit(&vr
->vr_io_lock
);
897 mutex_destroy(&vr
->vr_io_lock
);
898 cv_destroy(&vr
->vr_io_cv
);
900 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
902 dsl_pool_t
*dp
= spa_get_dsl(spa
);
903 dmu_tx_t
*tx
= dmu_tx_create_dd(dp
->dp_mos_dir
);
904 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
906 mutex_enter(&vd
->vdev_rebuild_lock
);
909 * After a successful rebuild clear the DTLs of all ranges
910 * which were missing when the rebuild was started. These
911 * ranges must have been rebuilt as a consequence of rebuilding
912 * all allocated space. Note that unlike a scrub or resilver
913 * the rebuild operation will reconstruct data only referenced
914 * by a pool checkpoint. See the dsl_scan_done() comments.
916 dsl_sync_task_nowait(dp
, vdev_rebuild_complete_sync
,
917 (void *)(uintptr_t)vd
->vdev_id
, tx
);
918 } else if (vd
->vdev_rebuild_cancel_wanted
) {
920 * The rebuild operation was canceled. This will occur when
921 * a device participating in the rebuild is detached.
923 dsl_sync_task_nowait(dp
, vdev_rebuild_cancel_sync
,
924 (void *)(uintptr_t)vd
->vdev_id
, tx
);
925 } else if (vd
->vdev_rebuild_reset_wanted
) {
927 * Reset the running rebuild without canceling and restarting
928 * it. This will occur when a new device is attached and must
929 * participate in the rebuild.
931 dsl_sync_task_nowait(dp
, vdev_rebuild_reset_sync
,
932 (void *)(uintptr_t)vd
->vdev_id
, tx
);
935 * The rebuild operation should be suspended. This may occur
936 * when detaching a child vdev or when exporting the pool. The
937 * rebuild is left in the active state so it will be resumed.
939 ASSERT(vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
940 vd
->vdev_rebuilding
= B_FALSE
;
945 vd
->vdev_rebuild_thread
= NULL
;
946 mutex_exit(&vd
->vdev_rebuild_lock
);
947 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
949 cv_broadcast(&vd
->vdev_rebuild_cv
);
955 * Returns B_TRUE if any top-level vdev are rebuilding.
958 vdev_rebuild_active(vdev_t
*vd
)
960 spa_t
*spa
= vd
->vdev_spa
;
961 boolean_t ret
= B_FALSE
;
963 if (vd
== spa
->spa_root_vdev
) {
964 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
965 ret
= vdev_rebuild_active(vd
->vdev_child
[i
]);
969 } else if (vd
->vdev_top_zap
!= 0) {
970 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
971 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
973 mutex_enter(&vd
->vdev_rebuild_lock
);
974 ret
= (vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
975 mutex_exit(&vd
->vdev_rebuild_lock
);
982 * Start a rebuild operation. The rebuild may be restarted when the
983 * top-level vdev is currently actively rebuilding.
986 vdev_rebuild(vdev_t
*vd
)
988 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
989 vdev_rebuild_phys_t
*vrp __maybe_unused
= &vr
->vr_rebuild_phys
;
991 ASSERT(vd
->vdev_top
== vd
);
992 ASSERT(vdev_is_concrete(vd
));
993 ASSERT(!vd
->vdev_removing
);
994 ASSERT(spa_feature_is_enabled(vd
->vdev_spa
,
995 SPA_FEATURE_DEVICE_REBUILD
));
997 mutex_enter(&vd
->vdev_rebuild_lock
);
998 if (vd
->vdev_rebuilding
) {
999 ASSERT3U(vrp
->vrp_rebuild_state
, ==, VDEV_REBUILD_ACTIVE
);
1002 * Signal a running rebuild operation that it should restart
1003 * from the beginning because a new device was attached. The
1004 * vdev_rebuild_reset_wanted flag is set until the sync task
1005 * completes. This may be after the rebuild thread exits.
1007 if (!vd
->vdev_rebuild_reset_wanted
)
1008 vd
->vdev_rebuild_reset_wanted
= B_TRUE
;
1010 vdev_rebuild_initiate(vd
);
1012 mutex_exit(&vd
->vdev_rebuild_lock
);
1016 vdev_rebuild_restart_impl(vdev_t
*vd
)
1018 spa_t
*spa
= vd
->vdev_spa
;
1020 if (vd
== spa
->spa_root_vdev
) {
1021 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
1022 vdev_rebuild_restart_impl(vd
->vdev_child
[i
]);
1024 } else if (vd
->vdev_top_zap
!= 0) {
1025 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
1026 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
1028 mutex_enter(&vd
->vdev_rebuild_lock
);
1029 if (vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
&&
1030 vdev_writeable(vd
) && !vd
->vdev_rebuilding
) {
1031 ASSERT(spa_feature_is_active(spa
,
1032 SPA_FEATURE_DEVICE_REBUILD
));
1033 vd
->vdev_rebuilding
= B_TRUE
;
1034 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
1035 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
,
1038 mutex_exit(&vd
->vdev_rebuild_lock
);
1043 * Conditionally restart all of the vdev_rebuild_thread's for a pool. The
1044 * feature flag must be active and the rebuild in the active state. This
1045 * cannot be used to start a new rebuild.
1048 vdev_rebuild_restart(spa_t
*spa
)
1050 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1052 vdev_rebuild_restart_impl(spa
->spa_root_vdev
);
1056 * Stop and wait for all of the vdev_rebuild_thread's associated with the
1057 * vdev tree provide to be terminated (canceled or stopped).
1060 vdev_rebuild_stop_wait(vdev_t
*vd
)
1062 spa_t
*spa
= vd
->vdev_spa
;
1064 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1066 if (vd
== spa
->spa_root_vdev
) {
1067 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
1068 vdev_rebuild_stop_wait(vd
->vdev_child
[i
]);
1070 } else if (vd
->vdev_top_zap
!= 0) {
1071 ASSERT(vd
== vd
->vdev_top
);
1073 mutex_enter(&vd
->vdev_rebuild_lock
);
1074 if (vd
->vdev_rebuild_thread
!= NULL
) {
1075 vd
->vdev_rebuild_exit_wanted
= B_TRUE
;
1076 while (vd
->vdev_rebuilding
) {
1077 cv_wait(&vd
->vdev_rebuild_cv
,
1078 &vd
->vdev_rebuild_lock
);
1080 vd
->vdev_rebuild_exit_wanted
= B_FALSE
;
1082 mutex_exit(&vd
->vdev_rebuild_lock
);
1087 * Stop all rebuild operations but leave them in the active state so they
1088 * will be resumed when importing the pool.
1091 vdev_rebuild_stop_all(spa_t
*spa
)
1093 vdev_rebuild_stop_wait(spa
->spa_root_vdev
);
1097 * Rebuild statistics reported per top-level vdev.
1100 vdev_rebuild_get_stats(vdev_t
*tvd
, vdev_rebuild_stat_t
*vrs
)
1102 spa_t
*spa
= tvd
->vdev_spa
;
1104 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
))
1105 return (SET_ERROR(ENOTSUP
));
1107 if (tvd
!= tvd
->vdev_top
|| tvd
->vdev_top_zap
== 0)
1108 return (SET_ERROR(EINVAL
));
1110 int error
= zap_contains(spa_meta_objset(spa
),
1111 tvd
->vdev_top_zap
, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
);
1113 if (error
== ENOENT
) {
1114 memset(vrs
, 0, sizeof (vdev_rebuild_stat_t
));
1115 vrs
->vrs_state
= VDEV_REBUILD_NONE
;
1117 } else if (error
== 0) {
1118 vdev_rebuild_t
*vr
= &tvd
->vdev_rebuild_config
;
1119 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
1121 mutex_enter(&tvd
->vdev_rebuild_lock
);
1122 vrs
->vrs_state
= vrp
->vrp_rebuild_state
;
1123 vrs
->vrs_start_time
= vrp
->vrp_start_time
;
1124 vrs
->vrs_end_time
= vrp
->vrp_end_time
;
1125 vrs
->vrs_scan_time_ms
= vrp
->vrp_scan_time_ms
;
1126 vrs
->vrs_bytes_scanned
= vrp
->vrp_bytes_scanned
;
1127 vrs
->vrs_bytes_issued
= vrp
->vrp_bytes_issued
;
1128 vrs
->vrs_bytes_rebuilt
= vrp
->vrp_bytes_rebuilt
;
1129 vrs
->vrs_bytes_est
= vrp
->vrp_bytes_est
;
1130 vrs
->vrs_errors
= vrp
->vrp_errors
;
1131 vrs
->vrs_pass_time_ms
= NSEC2MSEC(gethrtime() -
1132 vr
->vr_pass_start_time
);
1133 vrs
->vrs_pass_bytes_scanned
= vr
->vr_pass_bytes_scanned
;
1134 vrs
->vrs_pass_bytes_issued
= vr
->vr_pass_bytes_issued
;
1135 mutex_exit(&tvd
->vdev_rebuild_lock
);
1141 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_max_segment
, ULONG
, ZMOD_RW
,
1142 "Max segment size in bytes of rebuild reads");
1144 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_vdev_limit
, ULONG
, ZMOD_RW
,
1145 "Max bytes in flight per leaf vdev for sequential resilvers");
1147 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_scrub_enabled
, INT
, ZMOD_RW
,
1148 "Automatically scrub after sequential resilver completes");