Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / btree.c
blob57b9dbbb2b50136b07d221f67e3f4110bb7b9524
1 /*
2 * CDDL HEADER START
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
13 * CDDL HEADER END
16 * Copyright (c) 2019 by Delphix. All rights reserved.
19 #include <sys/btree.h>
20 #include <sys/bitops.h>
21 #include <sys/zfs_context.h>
23 kmem_cache_t *zfs_btree_leaf_cache;
26 * Control the extent of the verification that occurs when zfs_btree_verify is
27 * called. Primarily used for debugging when extending the btree logic and
28 * functionality. As the intensity is increased, new verification steps are
29 * added. These steps are cumulative; intensity = 3 includes the intensity = 1
30 * and intensity = 2 steps as well.
32 * Intensity 1: Verify that the tree's height is consistent throughout.
33 * Intensity 2: Verify that a core node's children's parent pointers point
34 * to the core node.
35 * Intensity 3: Verify that the total number of elements in the tree matches the
36 * sum of the number of elements in each node. Also verifies that each node's
37 * count obeys the invariants (less than or equal to maximum value, greater than
38 * or equal to half the maximum minus one).
39 * Intensity 4: Verify that each element compares less than the element
40 * immediately after it and greater than the one immediately before it using the
41 * comparator function. For core nodes, also checks that each element is greater
42 * than the last element in the first of the two nodes it separates, and less
43 * than the first element in the second of the two nodes.
44 * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
45 * of each node is poisoned appropriately. Note that poisoning always occurs if
46 * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
47 * operation.
49 * Intensity 4 and 5 are particularly expensive to perform; the previous levels
50 * are a few memory operations per node, while these levels require multiple
51 * operations per element. In addition, when creating large btrees, these
52 * operations are called at every step, resulting in extremely slow operation
53 * (while the asymptotic complexity of the other steps is the same, the
54 * importance of the constant factors cannot be denied).
56 int zfs_btree_verify_intensity = 0;
59 * A convenience function to silence warnings from memmove's return value and
60 * change argument order to src, dest.
62 static void
63 bmov(const void *src, void *dest, size_t size)
65 (void) memmove(dest, src, size);
68 #ifdef _ILP32
69 #define BTREE_POISON 0xabadb10c
70 #else
71 #define BTREE_POISON 0xabadb10cdeadbeef
72 #endif
74 static void
75 zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
77 #ifdef ZFS_DEBUG
78 size_t size = tree->bt_elem_size;
79 if (!hdr->bth_core) {
80 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
81 (void) memset(leaf->btl_elems + hdr->bth_count * size, 0x0f,
82 BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t) -
83 hdr->bth_count * size);
84 } else {
85 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
86 for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) {
87 node->btc_children[i] =
88 (zfs_btree_hdr_t *)BTREE_POISON;
90 (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
91 (BTREE_CORE_ELEMS - hdr->bth_count) * size);
93 #endif
96 static inline void
97 zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
98 uint64_t offset)
100 #ifdef ZFS_DEBUG
101 size_t size = tree->bt_elem_size;
102 ASSERT3U(offset, >=, hdr->bth_count);
103 if (!hdr->bth_core) {
104 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
105 (void) memset(leaf->btl_elems + offset * size, 0x0f, size);
106 } else {
107 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
108 node->btc_children[offset + 1] =
109 (zfs_btree_hdr_t *)BTREE_POISON;
110 (void) memset(node->btc_elems + offset * size, 0x0f, size);
112 #endif
115 static inline void
116 zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
117 uint64_t offset)
119 #ifdef ZFS_DEBUG
120 size_t size = tree->bt_elem_size;
121 uint8_t eval = 0x0f;
122 if (hdr->bth_core) {
123 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
124 zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
125 VERIFY3P(node->btc_children[offset + 1], ==, cval);
126 for (int i = 0; i < size; i++)
127 VERIFY3U(node->btc_elems[offset * size + i], ==, eval);
128 } else {
129 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
130 for (int i = 0; i < size; i++)
131 VERIFY3U(leaf->btl_elems[offset * size + i], ==, eval);
133 #endif
136 void
137 zfs_btree_init(void)
139 zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
140 BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL,
141 NULL, 0);
144 void
145 zfs_btree_fini(void)
147 kmem_cache_destroy(zfs_btree_leaf_cache);
150 void
151 zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
152 size_t size)
155 * We need a minimmum of 4 elements so that when we split a node we
156 * always have at least two elements in each node. This simplifies the
157 * logic in zfs_btree_bulk_finish, since it means the last leaf will
158 * always have a left sibling to share with (unless it's the root).
160 ASSERT3U(size, <=, (BTREE_LEAF_SIZE - sizeof (zfs_btree_hdr_t)) / 4);
162 bzero(tree, sizeof (*tree));
163 tree->bt_compar = compar;
164 tree->bt_elem_size = size;
165 tree->bt_height = -1;
166 tree->bt_bulk = NULL;
170 * Find value in the array of elements provided. Uses a simple binary search.
172 static void *
173 zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint64_t nelems,
174 const void *value, zfs_btree_index_t *where)
176 uint64_t max = nelems;
177 uint64_t min = 0;
178 while (max > min) {
179 uint64_t idx = (min + max) / 2;
180 uint8_t *cur = buf + idx * tree->bt_elem_size;
181 int comp = tree->bt_compar(cur, value);
182 if (comp == -1) {
183 min = idx + 1;
184 } else if (comp == 1) {
185 max = idx;
186 } else {
187 ASSERT0(comp);
188 where->bti_offset = idx;
189 where->bti_before = B_FALSE;
190 return (cur);
194 where->bti_offset = max;
195 where->bti_before = B_TRUE;
196 return (NULL);
200 * Find the given value in the tree. where may be passed as null to use as a
201 * membership test or if the btree is being used as a map.
203 void *
204 zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
206 if (tree->bt_height == -1) {
207 if (where != NULL) {
208 where->bti_node = NULL;
209 where->bti_offset = 0;
211 ASSERT0(tree->bt_num_elems);
212 return (NULL);
216 * If we're in bulk-insert mode, we check the last spot in the tree
217 * and the last leaf in the tree before doing the normal search,
218 * because for most workloads the vast majority of finds in
219 * bulk-insert mode are to insert new elements.
221 zfs_btree_index_t idx;
222 if (tree->bt_bulk != NULL) {
223 zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
224 int compar = tree->bt_compar(last_leaf->btl_elems +
225 ((last_leaf->btl_hdr.bth_count - 1) * tree->bt_elem_size),
226 value);
227 if (compar < 0) {
229 * If what they're looking for is after the last
230 * element, it's not in the tree.
232 if (where != NULL) {
233 where->bti_node = (zfs_btree_hdr_t *)last_leaf;
234 where->bti_offset =
235 last_leaf->btl_hdr.bth_count;
236 where->bti_before = B_TRUE;
238 return (NULL);
239 } else if (compar == 0) {
240 if (where != NULL) {
241 where->bti_node = (zfs_btree_hdr_t *)last_leaf;
242 where->bti_offset =
243 last_leaf->btl_hdr.bth_count - 1;
244 where->bti_before = B_FALSE;
246 return (last_leaf->btl_elems +
247 ((last_leaf->btl_hdr.bth_count - 1) *
248 tree->bt_elem_size));
250 if (tree->bt_compar(last_leaf->btl_elems, value) <= 0) {
252 * If what they're looking for is after the first
253 * element in the last leaf, it's in the last leaf or
254 * it's not in the tree.
256 void *d = zfs_btree_find_in_buf(tree,
257 last_leaf->btl_elems, last_leaf->btl_hdr.bth_count,
258 value, &idx);
260 if (where != NULL) {
261 idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
262 *where = idx;
264 return (d);
268 zfs_btree_core_t *node = NULL;
269 uint64_t child = 0;
270 uint64_t depth = 0;
273 * Iterate down the tree, finding which child the value should be in
274 * by comparing with the separators.
276 for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
277 node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
278 ASSERT3P(node, !=, NULL);
279 void *d = zfs_btree_find_in_buf(tree, node->btc_elems,
280 node->btc_hdr.bth_count, value, &idx);
281 EQUIV(d != NULL, !idx.bti_before);
282 if (d != NULL) {
283 if (where != NULL) {
284 idx.bti_node = (zfs_btree_hdr_t *)node;
285 *where = idx;
287 return (d);
289 ASSERT(idx.bti_before);
290 child = idx.bti_offset;
294 * The value is in this leaf, or it would be if it were in the
295 * tree. Find its proper location and return it.
297 zfs_btree_leaf_t *leaf = (depth == 0 ?
298 (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
299 void *d = zfs_btree_find_in_buf(tree, leaf->btl_elems,
300 leaf->btl_hdr.bth_count, value, &idx);
302 if (where != NULL) {
303 idx.bti_node = (zfs_btree_hdr_t *)leaf;
304 *where = idx;
307 return (d);
311 * To explain the following functions, it is useful to understand the four
312 * kinds of shifts used in btree operation. First, a shift is a movement of
313 * elements within a node. It is used to create gaps for inserting new
314 * elements and children, or cover gaps created when things are removed. A
315 * shift has two fundamental properties, each of which can be one of two
316 * values, making four types of shifts. There is the direction of the shift
317 * (left or right) and the shape of the shift (parallelogram or isoceles
318 * trapezoid (shortened to trapezoid hereafter)). The shape distinction only
319 * applies to shifts of core nodes.
321 * The names derive from the following imagining of the layout of a node:
323 * Elements: * * * * * * * ... * * *
324 * Children: * * * * * * * * ... * * *
326 * This layout follows from the fact that the elements act as separators
327 * between pairs of children, and that children root subtrees "below" the
328 * current node. A left and right shift are fairly self-explanatory; a left
329 * shift moves things to the left, while a right shift moves things to the
330 * right. A parallelogram shift is a shift with the same number of elements
331 * and children being moved, while a trapezoid shift is a shift that moves one
332 * more children than elements. An example follows:
334 * A parallelogram shift could contain the following:
335 * _______________
336 * \* * * * \ * * * ... * * *
337 * * \ * * * *\ * * * ... * * *
338 * ---------------
339 * A trapezoid shift could contain the following:
340 * ___________
341 * * / * * * \ * * * ... * * *
342 * * / * * * *\ * * * ... * * *
343 * ---------------
345 * Note that a parallelogram shift is always shaped like a "left-leaning"
346 * parallelogram, where the starting index of the children being moved is
347 * always one higher than the starting index of the elements being moved. No
348 * "right-leaning" parallelogram shifts are needed (shifts where the starting
349 * element index and starting child index being moved are the same) to achieve
350 * any btree operations, so we ignore them.
353 enum bt_shift_shape {
354 BSS_TRAPEZOID,
355 BSS_PARALLELOGRAM
358 enum bt_shift_direction {
359 BSD_LEFT,
360 BSD_RIGHT
364 * Shift elements and children in the provided core node by off spots. The
365 * first element moved is idx, and count elements are moved. The shape of the
366 * shift is determined by shape. The direction is determined by dir.
368 static inline void
369 bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
370 uint64_t count, uint64_t off, enum bt_shift_shape shape,
371 enum bt_shift_direction dir)
373 size_t size = tree->bt_elem_size;
374 ASSERT(node->btc_hdr.bth_core);
376 uint8_t *e_start = node->btc_elems + idx * size;
377 int sign = (dir == BSD_LEFT ? -1 : +1);
378 uint8_t *e_out = e_start + sign * off * size;
379 uint64_t e_count = count;
380 bmov(e_start, e_out, e_count * size);
382 zfs_btree_hdr_t **c_start = node->btc_children + idx +
383 (shape == BSS_TRAPEZOID ? 0 : 1);
384 zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
385 c_start + off);
386 uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
387 bmov(c_start, c_out, c_count * sizeof (*c_start));
391 * Shift elements and children in the provided core node left by one spot.
392 * The first element moved is idx, and count elements are moved. The
393 * shape of the shift is determined by trap; true if the shift is a trapezoid,
394 * false if it is a parallelogram.
396 static inline void
397 bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
398 uint64_t count, enum bt_shift_shape shape)
400 bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
404 * Shift elements and children in the provided core node right by one spot.
405 * Starts with elements[idx] and children[idx] and one more child than element.
407 static inline void
408 bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint64_t idx,
409 uint64_t count, enum bt_shift_shape shape)
411 bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
415 * Shift elements and children in the provided leaf node by off spots.
416 * The first element moved is idx, and count elements are moved. The direction
417 * is determined by left.
419 static inline void
420 bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint64_t idx,
421 uint64_t count, uint64_t off, enum bt_shift_direction dir)
423 size_t size = tree->bt_elem_size;
424 ASSERT(!node->btl_hdr.bth_core);
426 uint8_t *start = node->btl_elems + idx * size;
427 int sign = (dir == BSD_LEFT ? -1 : +1);
428 uint8_t *out = start + sign * off * size;
429 bmov(start, out, count * size);
432 static inline void
433 bt_shift_leaf_right(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx,
434 uint64_t count)
436 bt_shift_leaf(tree, leaf, idx, count, 1, BSD_RIGHT);
439 static inline void
440 bt_shift_leaf_left(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint64_t idx,
441 uint64_t count)
443 bt_shift_leaf(tree, leaf, idx, count, 1, BSD_LEFT);
447 * Move children and elements from one core node to another. The shape
448 * parameter behaves the same as it does in the shift logic.
450 static inline void
451 bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint64_t sidx,
452 uint64_t count, zfs_btree_core_t *dest, uint64_t didx,
453 enum bt_shift_shape shape)
455 size_t size = tree->bt_elem_size;
456 ASSERT(source->btc_hdr.bth_core);
457 ASSERT(dest->btc_hdr.bth_core);
459 bmov(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
460 count * size);
462 uint64_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
463 bmov(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
464 dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
465 c_count * sizeof (*source->btc_children));
468 static inline void
469 bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint64_t sidx,
470 uint64_t count, zfs_btree_leaf_t *dest, uint64_t didx)
472 size_t size = tree->bt_elem_size;
473 ASSERT(!source->btl_hdr.bth_core);
474 ASSERT(!dest->btl_hdr.bth_core);
476 bmov(source->btl_elems + sidx * size, dest->btl_elems + didx * size,
477 count * size);
481 * Find the first element in the subtree rooted at hdr, return its value and
482 * put its location in where if non-null.
484 static void *
485 zfs_btree_first_helper(zfs_btree_hdr_t *hdr, zfs_btree_index_t *where)
487 zfs_btree_hdr_t *node;
489 for (node = hdr; node->bth_core; node =
490 ((zfs_btree_core_t *)node)->btc_children[0])
493 ASSERT(!node->bth_core);
494 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
495 if (where != NULL) {
496 where->bti_node = node;
497 where->bti_offset = 0;
498 where->bti_before = B_FALSE;
500 return (&leaf->btl_elems[0]);
503 /* Insert an element and a child into a core node at the given offset. */
504 static void
505 zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
506 uint64_t offset, zfs_btree_hdr_t *new_node, void *buf)
508 uint64_t size = tree->bt_elem_size;
509 zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
510 ASSERT3P(par_hdr, ==, new_node->bth_parent);
511 ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
513 if (zfs_btree_verify_intensity >= 5) {
514 zfs_btree_verify_poison_at(tree, par_hdr,
515 par_hdr->bth_count);
517 /* Shift existing elements and children */
518 uint64_t count = par_hdr->bth_count - offset;
519 bt_shift_core_right(tree, parent, offset, count,
520 BSS_PARALLELOGRAM);
522 /* Insert new values */
523 parent->btc_children[offset + 1] = new_node;
524 bmov(buf, parent->btc_elems + offset * size, size);
525 par_hdr->bth_count++;
529 * Insert new_node into the parent of old_node directly after old_node, with
530 * buf as the dividing element between the two.
532 static void
533 zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
534 zfs_btree_hdr_t *new_node, void *buf)
536 ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
537 uint64_t size = tree->bt_elem_size;
538 zfs_btree_core_t *parent = old_node->bth_parent;
539 zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
542 * If this is the root node we were splitting, we create a new root
543 * and increase the height of the tree.
545 if (parent == NULL) {
546 ASSERT3P(old_node, ==, tree->bt_root);
547 tree->bt_num_nodes++;
548 zfs_btree_core_t *new_root =
549 kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
550 size, KM_SLEEP);
551 zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
552 new_root_hdr->bth_parent = NULL;
553 new_root_hdr->bth_core = B_TRUE;
554 new_root_hdr->bth_count = 1;
556 old_node->bth_parent = new_node->bth_parent = new_root;
557 new_root->btc_children[0] = old_node;
558 new_root->btc_children[1] = new_node;
559 bmov(buf, new_root->btc_elems, size);
561 tree->bt_height++;
562 tree->bt_root = new_root_hdr;
563 zfs_btree_poison_node(tree, new_root_hdr);
564 return;
568 * Since we have the new separator, binary search for where to put
569 * new_node.
571 zfs_btree_index_t idx;
572 ASSERT(par_hdr->bth_core);
573 VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
574 par_hdr->bth_count, buf, &idx), ==, NULL);
575 ASSERT(idx.bti_before);
576 uint64_t offset = idx.bti_offset;
577 ASSERT3U(offset, <=, par_hdr->bth_count);
578 ASSERT3P(parent->btc_children[offset], ==, old_node);
581 * If the parent isn't full, shift things to accommodate our insertions
582 * and return.
584 if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
585 zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
586 return;
590 * We need to split this core node into two. Currently there are
591 * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
592 * BTREE_CORE_ELEMS + 2. Some of the children will be part of the
593 * current node, and the others will be moved to the new core node.
594 * There are BTREE_CORE_ELEMS + 1 elements including the new one. One
595 * will be used as the new separator in our parent, and the others
596 * will be split among the two core nodes.
598 * Usually we will split the node in half evenly, with
599 * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
600 * instead move only about a quarter of the elements (and children) to
601 * the new node. Since the average state after a long time is a 3/4
602 * full node, shortcutting directly to that state improves efficiency.
604 * We do this in two stages: first we split into two nodes, and then we
605 * reuse our existing logic to insert the new element and child.
607 uint64_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
608 2 : 4)) - 1, 2);
609 uint64_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
610 ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
611 tree->bt_num_nodes++;
612 zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
613 BTREE_CORE_ELEMS * size, KM_SLEEP);
614 zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
615 new_par_hdr->bth_parent = par_hdr->bth_parent;
616 new_par_hdr->bth_core = B_TRUE;
617 new_par_hdr->bth_count = move_count;
618 zfs_btree_poison_node(tree, new_par_hdr);
620 par_hdr->bth_count = keep_count;
622 bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
623 0, BSS_TRAPEZOID);
625 /* Store the new separator in a buffer. */
626 uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
627 bmov(parent->btc_elems + keep_count * size, tmp_buf,
628 size);
629 zfs_btree_poison_node(tree, par_hdr);
631 if (offset < keep_count) {
632 /* Insert the new node into the left half */
633 zfs_btree_insert_core_impl(tree, parent, offset, new_node,
634 buf);
637 * Move the new separator to the existing buffer.
639 bmov(tmp_buf, buf, size);
640 } else if (offset > keep_count) {
641 /* Insert the new node into the right half */
642 new_node->bth_parent = new_parent;
643 zfs_btree_insert_core_impl(tree, new_parent,
644 offset - keep_count - 1, new_node, buf);
647 * Move the new separator to the existing buffer.
649 bmov(tmp_buf, buf, size);
650 } else {
652 * Move the new separator into the right half, and replace it
653 * with buf. We also need to shift back the elements in the
654 * right half to accommodate new_node.
656 bt_shift_core_right(tree, new_parent, 0, move_count,
657 BSS_TRAPEZOID);
658 new_parent->btc_children[0] = new_node;
659 bmov(tmp_buf, new_parent->btc_elems, size);
660 new_par_hdr->bth_count++;
662 kmem_free(tmp_buf, size);
663 zfs_btree_poison_node(tree, par_hdr);
665 for (int i = 0; i <= new_parent->btc_hdr.bth_count; i++)
666 new_parent->btc_children[i]->bth_parent = new_parent;
668 for (int i = 0; i <= parent->btc_hdr.bth_count; i++)
669 ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
672 * Now that the node is split, we need to insert the new node into its
673 * parent. This may cause further splitting.
675 zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
676 &new_parent->btc_hdr, buf);
679 /* Insert an element into a leaf node at the given offset. */
680 static void
681 zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
682 uint64_t idx, const void *value)
684 uint64_t size = tree->bt_elem_size;
685 uint8_t *start = leaf->btl_elems + (idx * size);
686 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
687 uint64_t capacity __maybe_unused = P2ALIGN((BTREE_LEAF_SIZE -
688 sizeof (zfs_btree_hdr_t)) / size, 2);
689 uint64_t count = leaf->btl_hdr.bth_count - idx;
690 ASSERT3U(leaf->btl_hdr.bth_count, <, capacity);
692 if (zfs_btree_verify_intensity >= 5) {
693 zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
694 leaf->btl_hdr.bth_count);
697 bt_shift_leaf_right(tree, leaf, idx, count);
698 bmov(value, start, size);
699 hdr->bth_count++;
702 /* Helper function for inserting a new value into leaf at the given index. */
703 static void
704 zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
705 const void *value, uint64_t idx)
707 uint64_t size = tree->bt_elem_size;
708 uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
709 sizeof (zfs_btree_hdr_t)) / size, 2);
712 * If the leaf isn't full, shift the elements after idx and insert
713 * value.
715 if (leaf->btl_hdr.bth_count != capacity) {
716 zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
717 return;
721 * Otherwise, we split the leaf node into two nodes. If we're not bulk
722 * inserting, each is of size (capacity / 2). If we are bulk
723 * inserting, we move a quarter of the elements to the new node so
724 * inserts into the old node don't cause immediate splitting but the
725 * tree stays relatively dense. Since the average state after a long
726 * time is a 3/4 full node, shortcutting directly to that state
727 * improves efficiency. At the end of the bulk insertion process
728 * we'll need to go through and fix up any nodes (the last leaf and
729 * its ancestors, potentially) that are below the minimum.
731 * In either case, we're left with one extra element. The leftover
732 * element will become the new dividing element between the two nodes.
734 uint64_t move_count = MAX(capacity / (tree->bt_bulk == NULL ? 2 : 4) -
735 1, 2);
736 uint64_t keep_count = capacity - move_count - 1;
737 ASSERT3U(capacity - move_count, >=, 2);
738 tree->bt_num_nodes++;
739 zfs_btree_leaf_t *new_leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
740 KM_SLEEP);
741 zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
742 new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
743 new_hdr->bth_core = B_FALSE;
744 new_hdr->bth_count = move_count;
745 zfs_btree_poison_node(tree, new_hdr);
747 leaf->btl_hdr.bth_count = keep_count;
749 if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
750 tree->bt_bulk = new_leaf;
752 /* Copy the back part to the new leaf. */
753 bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf,
756 /* We store the new separator in a buffer we control for simplicity. */
757 uint8_t *buf = kmem_alloc(size, KM_SLEEP);
758 bmov(leaf->btl_elems + (keep_count * size), buf, size);
759 zfs_btree_poison_node(tree, &leaf->btl_hdr);
761 if (idx < keep_count) {
762 /* Insert into the existing leaf. */
763 zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
764 } else if (idx > keep_count) {
765 /* Insert into the new leaf. */
766 zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
767 1, value);
768 } else {
770 * Shift the elements in the new leaf to make room for the
771 * separator, and use the new value as the new separator.
773 bt_shift_leaf_right(tree, new_leaf, 0, move_count);
774 bmov(buf, new_leaf->btl_elems, size);
775 bmov(value, buf, size);
776 new_hdr->bth_count++;
780 * Now that the node is split, we need to insert the new node into its
781 * parent. This may cause further splitting, bur only of core nodes.
783 zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
784 buf);
785 kmem_free(buf, size);
788 static uint64_t
789 zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
791 void *buf;
792 if (hdr->bth_core) {
793 buf = ((zfs_btree_core_t *)hdr)->btc_elems;
794 } else {
795 buf = ((zfs_btree_leaf_t *)hdr)->btl_elems;
797 zfs_btree_index_t idx;
798 zfs_btree_core_t *parent = hdr->bth_parent;
799 VERIFY3P(zfs_btree_find_in_buf(tree, parent->btc_elems,
800 parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
801 ASSERT(idx.bti_before);
802 ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
803 ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
804 return (idx.bti_offset);
808 * Take the b-tree out of bulk insert mode. During bulk-insert mode, some
809 * nodes may violate the invariant that non-root nodes must be at least half
810 * full. All nodes violating this invariant should be the last node in their
811 * particular level. To correct the invariant, we take values from their left
812 * neighbor until they are half full. They must have a left neighbor at their
813 * level because the last node at a level is not the first node unless it's
814 * the root.
816 static void
817 zfs_btree_bulk_finish(zfs_btree_t *tree)
819 ASSERT3P(tree->bt_bulk, !=, NULL);
820 ASSERT3P(tree->bt_root, !=, NULL);
821 zfs_btree_leaf_t *leaf = tree->bt_bulk;
822 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
823 zfs_btree_core_t *parent = hdr->bth_parent;
824 uint64_t size = tree->bt_elem_size;
825 uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
826 sizeof (zfs_btree_hdr_t)) / size, 2);
829 * The invariant doesn't apply to the root node, if that's the only
830 * node in the tree we're done.
832 if (parent == NULL) {
833 tree->bt_bulk = NULL;
834 return;
837 /* First, take elements to rebalance the leaf node. */
838 if (hdr->bth_count < capacity / 2) {
840 * First, find the left neighbor. The simplest way to do this
841 * is to call zfs_btree_prev twice; the first time finds some
842 * ancestor of this node, and the second time finds the left
843 * neighbor. The ancestor found is the lowest common ancestor
844 * of leaf and the neighbor.
846 zfs_btree_index_t idx = {
847 .bti_node = hdr,
848 .bti_offset = 0
850 VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
851 ASSERT(idx.bti_node->bth_core);
852 zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
853 uint64_t common_idx = idx.bti_offset;
855 VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
856 ASSERT(!idx.bti_node->bth_core);
857 zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
858 zfs_btree_hdr_t *l_hdr = idx.bti_node;
859 uint64_t move_count = (capacity / 2) - hdr->bth_count;
860 ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
861 capacity / 2);
863 if (zfs_btree_verify_intensity >= 5) {
864 for (int i = 0; i < move_count; i++) {
865 zfs_btree_verify_poison_at(tree, hdr,
866 leaf->btl_hdr.bth_count + i);
870 /* First, shift elements in leaf back. */
871 bt_shift_leaf(tree, leaf, 0, hdr->bth_count, move_count,
872 BSD_RIGHT);
874 /* Next, move the separator from the common ancestor to leaf. */
875 uint8_t *separator = common->btc_elems + (common_idx * size);
876 uint8_t *out = leaf->btl_elems + ((move_count - 1) * size);
877 bmov(separator, out, size);
878 move_count--;
881 * Now we move elements from the tail of the left neighbor to
882 * fill the remaining spots in leaf.
884 bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
885 move_count, move_count, leaf, 0);
888 * Finally, move the new last element in the left neighbor to
889 * the separator.
891 bmov(l_neighbor->btl_elems + (l_hdr->bth_count -
892 move_count - 1) * size, separator, size);
894 /* Adjust the node's counts, and we're done. */
895 l_hdr->bth_count -= move_count + 1;
896 hdr->bth_count += move_count + 1;
898 ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
899 ASSERT3U(hdr->bth_count, >=, capacity / 2);
900 zfs_btree_poison_node(tree, l_hdr);
904 * Now we have to rebalance any ancestors of leaf that may also
905 * violate the invariant.
907 capacity = BTREE_CORE_ELEMS;
908 while (parent->btc_hdr.bth_parent != NULL) {
909 zfs_btree_core_t *cur = parent;
910 zfs_btree_hdr_t *hdr = &cur->btc_hdr;
911 parent = hdr->bth_parent;
913 * If the invariant isn't violated, move on to the next
914 * ancestor.
916 if (hdr->bth_count >= capacity / 2)
917 continue;
920 * Because the smallest number of nodes we can move when
921 * splitting is 2, we never need to worry about not having a
922 * left sibling (a sibling is a neighbor with the same parent).
924 uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
925 ASSERT3U(parent_idx, >, 0);
926 zfs_btree_core_t *l_neighbor =
927 (zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
928 uint64_t move_count = (capacity / 2) - hdr->bth_count;
929 ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
930 capacity / 2);
932 if (zfs_btree_verify_intensity >= 5) {
933 for (int i = 0; i < move_count; i++) {
934 zfs_btree_verify_poison_at(tree, hdr,
935 hdr->bth_count + i);
938 /* First, shift things in the right node back. */
939 bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
940 BSS_TRAPEZOID, BSD_RIGHT);
942 /* Next, move the separator to the right node. */
943 uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
944 size);
945 uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
946 bmov(separator, e_out, size);
949 * Now, move elements and children from the left node to the
950 * right. We move one more child than elements.
952 move_count--;
953 uint64_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
954 bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
955 BSS_TRAPEZOID);
958 * Finally, move the last element in the left node to the
959 * separator's position.
961 move_idx--;
962 bmov(l_neighbor->btc_elems + move_idx * size, separator, size);
964 l_neighbor->btc_hdr.bth_count -= move_count + 1;
965 hdr->bth_count += move_count + 1;
967 ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
968 ASSERT3U(hdr->bth_count, >=, capacity / 2);
970 zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
972 for (int i = 0; i <= hdr->bth_count; i++)
973 cur->btc_children[i]->bth_parent = cur;
976 tree->bt_bulk = NULL;
980 * Insert value into tree at the location specified by where.
982 void
983 zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
984 const zfs_btree_index_t *where)
986 zfs_btree_index_t idx = {0};
988 /* If we're not inserting in the last leaf, end bulk insert mode. */
989 if (tree->bt_bulk != NULL) {
990 if (where->bti_node != &tree->bt_bulk->btl_hdr) {
991 zfs_btree_bulk_finish(tree);
992 VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
993 where = &idx;
997 tree->bt_num_elems++;
999 * If this is the first element in the tree, create a leaf root node
1000 * and add the value to it.
1002 if (where->bti_node == NULL) {
1003 ASSERT3U(tree->bt_num_elems, ==, 1);
1004 ASSERT3S(tree->bt_height, ==, -1);
1005 ASSERT3P(tree->bt_root, ==, NULL);
1006 ASSERT0(where->bti_offset);
1008 tree->bt_num_nodes++;
1009 zfs_btree_leaf_t *leaf = kmem_cache_alloc(zfs_btree_leaf_cache,
1010 KM_SLEEP);
1011 tree->bt_root = &leaf->btl_hdr;
1012 tree->bt_height++;
1014 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
1015 hdr->bth_parent = NULL;
1016 hdr->bth_core = B_FALSE;
1017 hdr->bth_count = 0;
1018 zfs_btree_poison_node(tree, hdr);
1020 zfs_btree_insert_into_leaf(tree, leaf, value, 0);
1021 tree->bt_bulk = leaf;
1022 } else if (!where->bti_node->bth_core) {
1024 * If we're inserting into a leaf, go directly to the helper
1025 * function.
1027 zfs_btree_insert_into_leaf(tree,
1028 (zfs_btree_leaf_t *)where->bti_node, value,
1029 where->bti_offset);
1030 } else {
1032 * If we're inserting into a core node, we can't just shift
1033 * the existing element in that slot in the same node without
1034 * breaking our ordering invariants. Instead we place the new
1035 * value in the node at that spot and then insert the old
1036 * separator into the first slot in the subtree to the right.
1038 ASSERT(where->bti_node->bth_core);
1039 zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
1042 * We can ignore bti_before, because either way the value
1043 * should end up in bti_offset.
1045 uint64_t off = where->bti_offset;
1046 zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
1047 size_t size = tree->bt_elem_size;
1048 uint8_t *buf = kmem_alloc(size, KM_SLEEP);
1049 bmov(node->btc_elems + off * size, buf, size);
1050 bmov(value, node->btc_elems + off * size, size);
1053 * Find the first slot in the subtree to the right, insert
1054 * there.
1056 zfs_btree_index_t new_idx;
1057 VERIFY3P(zfs_btree_first_helper(subtree, &new_idx), !=, NULL);
1058 ASSERT0(new_idx.bti_offset);
1059 ASSERT(!new_idx.bti_node->bth_core);
1060 zfs_btree_insert_into_leaf(tree,
1061 (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
1062 kmem_free(buf, size);
1064 zfs_btree_verify(tree);
1068 * Return the first element in the tree, and put its location in where if
1069 * non-null.
1071 void *
1072 zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
1074 if (tree->bt_height == -1) {
1075 ASSERT0(tree->bt_num_elems);
1076 return (NULL);
1078 return (zfs_btree_first_helper(tree->bt_root, where));
1082 * Find the last element in the subtree rooted at hdr, return its value and
1083 * put its location in where if non-null.
1085 static void *
1086 zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
1087 zfs_btree_index_t *where)
1089 zfs_btree_hdr_t *node;
1091 for (node = hdr; node->bth_core; node =
1092 ((zfs_btree_core_t *)node)->btc_children[node->bth_count])
1095 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
1096 if (where != NULL) {
1097 where->bti_node = node;
1098 where->bti_offset = node->bth_count - 1;
1099 where->bti_before = B_FALSE;
1101 return (leaf->btl_elems + (node->bth_count - 1) * btree->bt_elem_size);
1105 * Return the last element in the tree, and put its location in where if
1106 * non-null.
1108 void *
1109 zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
1111 if (tree->bt_height == -1) {
1112 ASSERT0(tree->bt_num_elems);
1113 return (NULL);
1115 return (zfs_btree_last_helper(tree, tree->bt_root, where));
1119 * This function contains the logic to find the next node in the tree. A
1120 * helper function is used because there are multiple internal consumemrs of
1121 * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
1122 * node after we've finished with it.
1124 static void *
1125 zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1126 zfs_btree_index_t *out_idx,
1127 void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
1129 if (idx->bti_node == NULL) {
1130 ASSERT3S(tree->bt_height, ==, -1);
1131 return (NULL);
1134 uint64_t offset = idx->bti_offset;
1135 if (!idx->bti_node->bth_core) {
1137 * When finding the next element of an element in a leaf,
1138 * there are two cases. If the element isn't the last one in
1139 * the leaf, in which case we just return the next element in
1140 * the leaf. Otherwise, we need to traverse up our parents
1141 * until we find one where our ancestor isn't the last child
1142 * of its parent. Once we do, the next element is the
1143 * separator after our ancestor in its parent.
1145 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1146 uint64_t new_off = offset + (idx->bti_before ? 0 : 1);
1147 if (leaf->btl_hdr.bth_count > new_off) {
1148 out_idx->bti_node = &leaf->btl_hdr;
1149 out_idx->bti_offset = new_off;
1150 out_idx->bti_before = B_FALSE;
1151 return (leaf->btl_elems + new_off * tree->bt_elem_size);
1154 zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1155 for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1156 node != NULL; node = node->btc_hdr.bth_parent) {
1157 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1158 ASSERT(hdr->bth_core);
1159 uint64_t i = zfs_btree_find_parent_idx(tree, prev);
1160 if (done_func != NULL)
1161 done_func(tree, prev);
1162 if (i == hdr->bth_count) {
1163 prev = hdr;
1164 continue;
1166 out_idx->bti_node = hdr;
1167 out_idx->bti_offset = i;
1168 out_idx->bti_before = B_FALSE;
1169 return (node->btc_elems + i * tree->bt_elem_size);
1171 if (done_func != NULL)
1172 done_func(tree, prev);
1174 * We've traversed all the way up and been at the end of the
1175 * node every time, so this was the last element in the tree.
1177 return (NULL);
1180 /* If we were before an element in a core node, return that element. */
1181 ASSERT(idx->bti_node->bth_core);
1182 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1183 if (idx->bti_before) {
1184 out_idx->bti_before = B_FALSE;
1185 return (node->btc_elems + offset * tree->bt_elem_size);
1189 * The next element from one in a core node is the first element in
1190 * the subtree just to the right of the separator.
1192 zfs_btree_hdr_t *child = node->btc_children[offset + 1];
1193 return (zfs_btree_first_helper(child, out_idx));
1197 * Return the next valued node in the tree. The same address can be safely
1198 * passed for idx and out_idx.
1200 void *
1201 zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1202 zfs_btree_index_t *out_idx)
1204 return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
1208 * Return the previous valued node in the tree. The same value can be safely
1209 * passed for idx and out_idx.
1211 void *
1212 zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1213 zfs_btree_index_t *out_idx)
1215 if (idx->bti_node == NULL) {
1216 ASSERT3S(tree->bt_height, ==, -1);
1217 return (NULL);
1220 uint64_t offset = idx->bti_offset;
1221 if (!idx->bti_node->bth_core) {
1223 * When finding the previous element of an element in a leaf,
1224 * there are two cases. If the element isn't the first one in
1225 * the leaf, in which case we just return the previous element
1226 * in the leaf. Otherwise, we need to traverse up our parents
1227 * until we find one where our previous ancestor isn't the
1228 * first child. Once we do, the previous element is the
1229 * separator after our previous ancestor.
1231 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1232 if (offset != 0) {
1233 out_idx->bti_node = &leaf->btl_hdr;
1234 out_idx->bti_offset = offset - 1;
1235 out_idx->bti_before = B_FALSE;
1236 return (leaf->btl_elems + (offset - 1) *
1237 tree->bt_elem_size);
1239 zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1240 for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1241 node != NULL; node = node->btc_hdr.bth_parent) {
1242 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1243 ASSERT(hdr->bth_core);
1244 uint64_t i = zfs_btree_find_parent_idx(tree, prev);
1245 if (i == 0) {
1246 prev = hdr;
1247 continue;
1249 out_idx->bti_node = hdr;
1250 out_idx->bti_offset = i - 1;
1251 out_idx->bti_before = B_FALSE;
1252 return (node->btc_elems + (i - 1) * tree->bt_elem_size);
1255 * We've traversed all the way up and been at the start of the
1256 * node every time, so this was the first node in the tree.
1258 return (NULL);
1262 * The previous element from one in a core node is the last element in
1263 * the subtree just to the left of the separator.
1265 ASSERT(idx->bti_node->bth_core);
1266 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1267 zfs_btree_hdr_t *child = node->btc_children[offset];
1268 return (zfs_btree_last_helper(tree, child, out_idx));
1272 * Get the value at the provided index in the tree.
1274 * Note that the value returned from this function can be mutated, but only
1275 * if it will not change the ordering of the element with respect to any other
1276 * elements that could be in the tree.
1278 void *
1279 zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
1281 ASSERT(!idx->bti_before);
1282 if (!idx->bti_node->bth_core) {
1283 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1284 return (leaf->btl_elems + idx->bti_offset * tree->bt_elem_size);
1286 ASSERT(idx->bti_node->bth_core);
1287 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1288 return (node->btc_elems + idx->bti_offset * tree->bt_elem_size);
1291 /* Add the given value to the tree. Must not already be in the tree. */
1292 void
1293 zfs_btree_add(zfs_btree_t *tree, const void *node)
1295 zfs_btree_index_t where = {0};
1296 VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
1297 zfs_btree_add_idx(tree, node, &where);
1300 /* Helper function to free a tree node. */
1301 static void
1302 zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
1304 tree->bt_num_nodes--;
1305 if (!node->bth_core) {
1306 kmem_cache_free(zfs_btree_leaf_cache, node);
1307 } else {
1308 kmem_free(node, sizeof (zfs_btree_core_t) +
1309 BTREE_CORE_ELEMS * tree->bt_elem_size);
1314 * Remove the rm_hdr and the separator to its left from the parent node. The
1315 * buffer that rm_hdr was stored in may already be freed, so its contents
1316 * cannot be accessed.
1318 static void
1319 zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
1320 zfs_btree_hdr_t *rm_hdr)
1322 size_t size = tree->bt_elem_size;
1323 uint64_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
1324 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1326 * If the node is the root node and rm_hdr is one of two children,
1327 * promote the other child to the root.
1329 if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
1330 ASSERT3U(hdr->bth_count, ==, 1);
1331 ASSERT3P(tree->bt_root, ==, node);
1332 ASSERT3P(node->btc_children[1], ==, rm_hdr);
1333 tree->bt_root = node->btc_children[0];
1334 node->btc_children[0]->bth_parent = NULL;
1335 zfs_btree_node_destroy(tree, hdr);
1336 tree->bt_height--;
1337 return;
1340 uint64_t idx;
1341 for (idx = 0; idx <= hdr->bth_count; idx++) {
1342 if (node->btc_children[idx] == rm_hdr)
1343 break;
1345 ASSERT3U(idx, <=, hdr->bth_count);
1348 * If the node is the root or it has more than the minimum number of
1349 * children, just remove the child and separator, and return.
1351 if (hdr->bth_parent == NULL ||
1352 hdr->bth_count > min_count) {
1354 * Shift the element and children to the right of rm_hdr to
1355 * the left by one spot.
1357 bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1358 BSS_PARALLELOGRAM);
1359 hdr->bth_count--;
1360 zfs_btree_poison_node_at(tree, hdr, hdr->bth_count);
1361 return;
1364 ASSERT3U(hdr->bth_count, ==, min_count);
1367 * Now we try to take a node from a neighbor. We check left, then
1368 * right. If the neighbor exists and has more than the minimum number
1369 * of elements, we move the separator between us and them to our
1370 * node, move their closest element (last for left, first for right)
1371 * to the separator, and move their closest child to our node. Along
1372 * the way we need to collapse the gap made by idx, and (for our right
1373 * neighbor) the gap made by removing their first element and child.
1375 * Note: this logic currently doesn't support taking from a neighbor
1376 * that isn't a sibling (i.e. a neighbor with a different
1377 * parent). This isn't critical functionality, but may be worth
1378 * implementing in the future for completeness' sake.
1380 zfs_btree_core_t *parent = hdr->bth_parent;
1381 uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1383 zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1384 parent->btc_children[parent_idx - 1]);
1385 if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1386 /* We can take a node from the left neighbor. */
1387 ASSERT(l_hdr->bth_core);
1388 zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
1391 * Start by shifting the elements and children in the current
1392 * node to the right by one spot.
1394 bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
1397 * Move the separator between node and neighbor to the first
1398 * element slot in the current node.
1400 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1401 size;
1402 bmov(separator, node->btc_elems, size);
1404 /* Move the last child of neighbor to our first child slot. */
1405 zfs_btree_hdr_t **take_child = neighbor->btc_children +
1406 l_hdr->bth_count;
1407 bmov(take_child, node->btc_children, sizeof (*take_child));
1408 node->btc_children[0]->bth_parent = node;
1410 /* Move the last element of neighbor to the separator spot. */
1411 uint8_t *take_elem = neighbor->btc_elems +
1412 (l_hdr->bth_count - 1) * size;
1413 bmov(take_elem, separator, size);
1414 l_hdr->bth_count--;
1415 zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count);
1416 return;
1419 zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1420 NULL : parent->btc_children[parent_idx + 1]);
1421 if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1422 /* We can take a node from the right neighbor. */
1423 ASSERT(r_hdr->bth_core);
1424 zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
1427 * Shift elements in node left by one spot to overwrite rm_hdr
1428 * and the separator before it.
1430 bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1431 BSS_PARALLELOGRAM);
1434 * Move the separator between node and neighbor to the last
1435 * element spot in node.
1437 uint8_t *separator = parent->btc_elems + parent_idx * size;
1438 bmov(separator, node->btc_elems + (hdr->bth_count - 1) * size,
1439 size);
1442 * Move the first child of neighbor to the last child spot in
1443 * node.
1445 zfs_btree_hdr_t **take_child = neighbor->btc_children;
1446 bmov(take_child, node->btc_children + hdr->bth_count,
1447 sizeof (*take_child));
1448 node->btc_children[hdr->bth_count]->bth_parent = node;
1450 /* Move the first element of neighbor to the separator spot. */
1451 uint8_t *take_elem = neighbor->btc_elems;
1452 bmov(take_elem, separator, size);
1453 r_hdr->bth_count--;
1456 * Shift the elements and children of neighbor to cover the
1457 * stolen elements.
1459 bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
1460 BSS_TRAPEZOID);
1461 zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count);
1462 return;
1466 * In this case, neither of our neighbors can spare an element, so we
1467 * need to merge with one of them. We prefer the left one,
1468 * arbitrarily. Move the separator into the leftmost merging node
1469 * (which may be us or the left neighbor), and then move the right
1470 * merging node's elements. Once that's done, we go back and delete
1471 * the element we're removing. Finally, go into the parent and delete
1472 * the right merging node and the separator. This may cause further
1473 * merging.
1475 zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
1476 uint64_t new_idx = idx;
1477 if (l_hdr != NULL) {
1478 keep_hdr = l_hdr;
1479 new_rm_hdr = hdr;
1480 new_idx += keep_hdr->bth_count + 1;
1481 } else {
1482 ASSERT3P(r_hdr, !=, NULL);
1483 keep_hdr = hdr;
1484 new_rm_hdr = r_hdr;
1485 parent_idx++;
1488 ASSERT(keep_hdr->bth_core);
1489 ASSERT(new_rm_hdr->bth_core);
1491 zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
1492 zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
1494 if (zfs_btree_verify_intensity >= 5) {
1495 for (int i = 0; i < new_rm_hdr->bth_count + 1; i++) {
1496 zfs_btree_verify_poison_at(tree, keep_hdr,
1497 keep_hdr->bth_count + i);
1501 /* Move the separator into the left node. */
1502 uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
1503 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1504 size;
1505 bmov(separator, e_out, size);
1506 keep_hdr->bth_count++;
1508 /* Move all our elements and children into the left node. */
1509 bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
1510 keep_hdr->bth_count, BSS_TRAPEZOID);
1512 uint64_t old_count = keep_hdr->bth_count;
1514 /* Update bookkeeping */
1515 keep_hdr->bth_count += new_rm_hdr->bth_count;
1516 ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
1519 * Shift the element and children to the right of rm_hdr to
1520 * the left by one spot.
1522 ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
1523 bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
1524 BSS_PARALLELOGRAM);
1525 keep_hdr->bth_count--;
1527 /* Reparent all our children to point to the left node. */
1528 zfs_btree_hdr_t **new_start = keep->btc_children +
1529 old_count - 1;
1530 for (int i = 0; i < new_rm_hdr->bth_count + 1; i++)
1531 new_start[i]->bth_parent = keep;
1532 for (int i = 0; i <= keep_hdr->bth_count; i++) {
1533 ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
1534 ASSERT3P(keep->btc_children[i], !=, rm_hdr);
1536 zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count);
1538 new_rm_hdr->bth_count = 0;
1539 zfs_btree_node_destroy(tree, new_rm_hdr);
1540 zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
1543 /* Remove the element at the specific location. */
1544 void
1545 zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
1547 size_t size = tree->bt_elem_size;
1548 zfs_btree_hdr_t *hdr = where->bti_node;
1549 uint64_t idx = where->bti_offset;
1550 uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
1551 sizeof (zfs_btree_hdr_t)) / size, 2);
1553 ASSERT(!where->bti_before);
1554 if (tree->bt_bulk != NULL) {
1556 * Leave bulk insert mode. Note that our index would be
1557 * invalid after we correct the tree, so we copy the value
1558 * we're planning to remove and find it again after
1559 * bulk_finish.
1561 uint8_t *value = zfs_btree_get(tree, where);
1562 uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
1563 bmov(value, tmp, size);
1564 zfs_btree_bulk_finish(tree);
1565 VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
1566 kmem_free(tmp, size);
1567 hdr = where->bti_node;
1568 idx = where->bti_offset;
1571 tree->bt_num_elems--;
1573 * If the element happens to be in a core node, we move a leaf node's
1574 * element into its place and then remove the leaf node element. This
1575 * makes the rebalance logic not need to be recursive both upwards and
1576 * downwards.
1578 if (hdr->bth_core) {
1579 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1580 zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
1581 void *new_value = zfs_btree_last_helper(tree, left_subtree,
1582 where);
1583 ASSERT3P(new_value, !=, NULL);
1585 bmov(new_value, node->btc_elems + idx * size, size);
1587 hdr = where->bti_node;
1588 idx = where->bti_offset;
1589 ASSERT(!where->bti_before);
1593 * First, we'll update the leaf's metadata. Then, we shift any
1594 * elements after the idx to the left. After that, we rebalance if
1595 * needed.
1597 ASSERT(!hdr->bth_core);
1598 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
1599 ASSERT3U(hdr->bth_count, >, 0);
1601 uint64_t min_count = (capacity / 2) - 1;
1604 * If we're over the minimum size or this is the root, just overwrite
1605 * the value and return.
1607 if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
1608 hdr->bth_count--;
1609 bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx);
1610 if (hdr->bth_parent == NULL) {
1611 ASSERT0(tree->bt_height);
1612 if (hdr->bth_count == 0) {
1613 tree->bt_root = NULL;
1614 tree->bt_height--;
1615 zfs_btree_node_destroy(tree, &leaf->btl_hdr);
1618 if (tree->bt_root != NULL)
1619 zfs_btree_poison_node_at(tree, hdr, hdr->bth_count);
1620 zfs_btree_verify(tree);
1621 return;
1623 ASSERT3U(hdr->bth_count, ==, min_count);
1626 * Now we try to take a node from a sibling. We check left, then
1627 * right. If they exist and have more than the minimum number of
1628 * elements, we move the separator between us and them to our node
1629 * and move their closest element (last for left, first for right) to
1630 * the separator. Along the way we need to collapse the gap made by
1631 * idx, and (for our right neighbor) the gap made by removing their
1632 * first element.
1634 * Note: this logic currently doesn't support taking from a neighbor
1635 * that isn't a sibling. This isn't critical functionality, but may be
1636 * worth implementing in the future for completeness' sake.
1638 zfs_btree_core_t *parent = hdr->bth_parent;
1639 uint64_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1641 zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1642 parent->btc_children[parent_idx - 1]);
1643 if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1644 /* We can take a node from the left neighbor. */
1645 ASSERT(!l_hdr->bth_core);
1648 * Move our elements back by one spot to make room for the
1649 * stolen element and overwrite the element being removed.
1651 bt_shift_leaf_right(tree, leaf, 0, idx);
1652 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1653 size;
1654 uint8_t *take_elem = ((zfs_btree_leaf_t *)l_hdr)->btl_elems +
1655 (l_hdr->bth_count - 1) * size;
1656 /* Move the separator to our first spot. */
1657 bmov(separator, leaf->btl_elems, size);
1659 /* Move our neighbor's last element to the separator. */
1660 bmov(take_elem, separator, size);
1662 /* Update the bookkeeping. */
1663 l_hdr->bth_count--;
1664 zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count);
1666 zfs_btree_verify(tree);
1667 return;
1670 zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1671 NULL : parent->btc_children[parent_idx + 1]);
1672 if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1673 /* We can take a node from the right neighbor. */
1674 ASSERT(!r_hdr->bth_core);
1675 zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
1678 * Move our elements after the element being removed forwards
1679 * by one spot to make room for the stolen element and
1680 * overwrite the element being removed.
1682 bt_shift_leaf_left(tree, leaf, idx + 1, hdr->bth_count - idx -
1685 uint8_t *separator = parent->btc_elems + parent_idx * size;
1686 uint8_t *take_elem = ((zfs_btree_leaf_t *)r_hdr)->btl_elems;
1687 /* Move the separator between us to our last spot. */
1688 bmov(separator, leaf->btl_elems + (hdr->bth_count - 1) * size,
1689 size);
1691 /* Move our neighbor's first element to the separator. */
1692 bmov(take_elem, separator, size);
1694 /* Update the bookkeeping. */
1695 r_hdr->bth_count--;
1698 * Move our neighbors elements forwards to overwrite the
1699 * stolen element.
1701 bt_shift_leaf_left(tree, neighbor, 1, r_hdr->bth_count);
1702 zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count);
1703 zfs_btree_verify(tree);
1704 return;
1708 * In this case, neither of our neighbors can spare an element, so we
1709 * need to merge with one of them. We prefer the left one,
1710 * arbitrarily. Move the separator into the leftmost merging node
1711 * (which may be us or the left neighbor), and then move the right
1712 * merging node's elements. Once that's done, we go back and delete
1713 * the element we're removing. Finally, go into the parent and delete
1714 * the right merging node and the separator. This may cause further
1715 * merging.
1717 zfs_btree_hdr_t *rm_hdr, *keep_hdr;
1718 uint64_t new_idx = idx;
1719 if (l_hdr != NULL) {
1720 keep_hdr = l_hdr;
1721 rm_hdr = hdr;
1722 new_idx += keep_hdr->bth_count + 1; // 449
1723 } else {
1724 ASSERT3P(r_hdr, !=, NULL);
1725 keep_hdr = hdr;
1726 rm_hdr = r_hdr;
1727 parent_idx++;
1730 ASSERT(!keep_hdr->bth_core);
1731 ASSERT(!rm_hdr->bth_core);
1732 ASSERT3U(keep_hdr->bth_count, ==, min_count);
1733 ASSERT3U(rm_hdr->bth_count, ==, min_count);
1735 zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)keep_hdr;
1736 zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
1738 if (zfs_btree_verify_intensity >= 5) {
1739 for (int i = 0; i < rm_hdr->bth_count + 1; i++) {
1740 zfs_btree_verify_poison_at(tree, keep_hdr,
1741 keep_hdr->bth_count + i);
1745 * Move the separator into the first open spot in the left
1746 * neighbor.
1748 uint8_t *out = keep->btl_elems + keep_hdr->bth_count * size;
1749 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1750 size;
1751 bmov(separator, out, size);
1752 keep_hdr->bth_count++;
1754 /* Move our elements to the left neighbor. */
1755 bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep,
1756 keep_hdr->bth_count);
1758 /* Update the bookkeeping. */
1759 keep_hdr->bth_count += rm_hdr->bth_count;
1760 ASSERT3U(keep_hdr->bth_count, ==, min_count * 2 + 1);
1762 /* Remove the value from the node */
1763 keep_hdr->bth_count--;
1764 bt_shift_leaf_left(tree, keep, new_idx + 1, keep_hdr->bth_count -
1765 new_idx);
1766 zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count);
1768 rm_hdr->bth_count = 0;
1769 zfs_btree_node_destroy(tree, rm_hdr);
1770 /* Remove the emptied node from the parent. */
1771 zfs_btree_remove_from_node(tree, parent, rm_hdr);
1772 zfs_btree_verify(tree);
1775 /* Remove the given value from the tree. */
1776 void
1777 zfs_btree_remove(zfs_btree_t *tree, const void *value)
1779 zfs_btree_index_t where = {0};
1780 VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
1781 zfs_btree_remove_idx(tree, &where);
1784 /* Return the number of elements in the tree. */
1785 ulong_t
1786 zfs_btree_numnodes(zfs_btree_t *tree)
1788 return (tree->bt_num_elems);
1792 * This function is used to visit all the elements in the tree before
1793 * destroying the tree. This allows the calling code to perform any cleanup it
1794 * needs to do. This is more efficient than just removing the first element
1795 * over and over, because it removes all rebalancing. Once the destroy_nodes()
1796 * function has been called, no other btree operations are valid until it
1797 * returns NULL, which point the only valid operation is zfs_btree_destroy().
1799 * example:
1801 * zfs_btree_index_t *cookie = NULL;
1802 * my_data_t *node;
1804 * while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
1805 * free(node->ptr);
1806 * zfs_btree_destroy(tree);
1809 void *
1810 zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
1812 if (*cookie == NULL) {
1813 if (tree->bt_height == -1)
1814 return (NULL);
1815 *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
1816 return (zfs_btree_first(tree, *cookie));
1819 void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
1820 zfs_btree_node_destroy);
1821 if (rval == NULL) {
1822 tree->bt_root = NULL;
1823 tree->bt_height = -1;
1824 tree->bt_num_elems = 0;
1825 kmem_free(*cookie, sizeof (**cookie));
1826 tree->bt_bulk = NULL;
1828 return (rval);
1831 static void
1832 zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1834 if (hdr->bth_core) {
1835 zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
1836 for (int i = 0; i <= hdr->bth_count; i++) {
1837 zfs_btree_clear_helper(tree, btc->btc_children[i]);
1841 zfs_btree_node_destroy(tree, hdr);
1844 void
1845 zfs_btree_clear(zfs_btree_t *tree)
1847 if (tree->bt_root == NULL) {
1848 ASSERT0(tree->bt_num_elems);
1849 return;
1852 zfs_btree_clear_helper(tree, tree->bt_root);
1853 tree->bt_num_elems = 0;
1854 tree->bt_root = NULL;
1855 tree->bt_num_nodes = 0;
1856 tree->bt_height = -1;
1857 tree->bt_bulk = NULL;
1860 void
1861 zfs_btree_destroy(zfs_btree_t *tree)
1863 ASSERT0(tree->bt_num_elems);
1864 ASSERT3P(tree->bt_root, ==, NULL);
1867 /* Verify that every child of this node has the correct parent pointer. */
1868 static void
1869 zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1871 if (!hdr->bth_core)
1872 return;
1874 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1875 for (int i = 0; i <= hdr->bth_count; i++) {
1876 VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
1877 zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
1881 /* Verify that every node has the correct parent pointer. */
1882 static void
1883 zfs_btree_verify_pointers(zfs_btree_t *tree)
1885 if (tree->bt_height == -1) {
1886 VERIFY3P(tree->bt_root, ==, NULL);
1887 return;
1889 VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
1890 zfs_btree_verify_pointers_helper(tree, tree->bt_root);
1894 * Verify that all the current node and its children satisfy the count
1895 * invariants, and return the total count in the subtree rooted in this node.
1897 static uint64_t
1898 zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1900 if (!hdr->bth_core) {
1901 if (tree->bt_root != hdr && hdr != &tree->bt_bulk->btl_hdr) {
1902 uint64_t capacity = P2ALIGN((BTREE_LEAF_SIZE -
1903 sizeof (zfs_btree_hdr_t)) / tree->bt_elem_size, 2);
1904 VERIFY3U(hdr->bth_count, >=, (capacity / 2) - 1);
1907 return (hdr->bth_count);
1908 } else {
1910 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1911 uint64_t ret = hdr->bth_count;
1912 if (tree->bt_root != hdr && tree->bt_bulk == NULL)
1913 VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
1914 for (int i = 0; i <= hdr->bth_count; i++) {
1915 ret += zfs_btree_verify_counts_helper(tree,
1916 node->btc_children[i]);
1919 return (ret);
1924 * Verify that all nodes satisfy the invariants and that the total number of
1925 * elements is correct.
1927 static void
1928 zfs_btree_verify_counts(zfs_btree_t *tree)
1930 EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
1931 if (tree->bt_height == -1) {
1932 return;
1934 VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
1935 tree->bt_num_elems);
1939 * Check that the subtree rooted at this node has a uniform height. Returns
1940 * the number of nodes under this node, to help verify bt_num_nodes.
1942 static uint64_t
1943 zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
1944 int64_t height)
1946 if (!hdr->bth_core) {
1947 VERIFY0(height);
1948 return (1);
1951 VERIFY(hdr->bth_core);
1952 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1953 uint64_t ret = 1;
1954 for (int i = 0; i <= hdr->bth_count; i++) {
1955 ret += zfs_btree_verify_height_helper(tree,
1956 node->btc_children[i], height - 1);
1958 return (ret);
1962 * Check that the tree rooted at this node has a uniform height, and that the
1963 * bt_height in the tree is correct.
1965 static void
1966 zfs_btree_verify_height(zfs_btree_t *tree)
1968 EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
1969 if (tree->bt_height == -1) {
1970 return;
1973 VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
1974 tree->bt_height), ==, tree->bt_num_nodes);
1978 * Check that the elements in this node are sorted, and that if this is a core
1979 * node, the separators are properly between the subtrees they separaate and
1980 * that the children also satisfy this requirement.
1982 static void
1983 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1985 size_t size = tree->bt_elem_size;
1986 if (!hdr->bth_core) {
1987 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
1988 for (int i = 1; i < hdr->bth_count; i++) {
1989 VERIFY3S(tree->bt_compar(leaf->btl_elems + (i - 1) *
1990 size, leaf->btl_elems + i * size), ==, -1);
1992 return;
1995 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1996 for (int i = 1; i < hdr->bth_count; i++) {
1997 VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
1998 node->btc_elems + i * size), ==, -1);
2000 for (int i = 0; i < hdr->bth_count; i++) {
2001 uint8_t *left_child_last = NULL;
2002 zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
2003 if (left_child_hdr->bth_core) {
2004 zfs_btree_core_t *left_child =
2005 (zfs_btree_core_t *)left_child_hdr;
2006 left_child_last = left_child->btc_elems +
2007 (left_child_hdr->bth_count - 1) * size;
2008 } else {
2009 zfs_btree_leaf_t *left_child =
2010 (zfs_btree_leaf_t *)left_child_hdr;
2011 left_child_last = left_child->btl_elems +
2012 (left_child_hdr->bth_count - 1) * size;
2014 if (tree->bt_compar(node->btc_elems + i * size,
2015 left_child_last) != 1) {
2016 panic("btree: compar returned %d (expected 1) at "
2017 "%px %d: compar(%px, %px)", tree->bt_compar(
2018 node->btc_elems + i * size, left_child_last),
2019 (void *)node, i, (void *)(node->btc_elems + i *
2020 size), (void *)left_child_last);
2023 uint8_t *right_child_first = NULL;
2024 zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
2025 if (right_child_hdr->bth_core) {
2026 zfs_btree_core_t *right_child =
2027 (zfs_btree_core_t *)right_child_hdr;
2028 right_child_first = right_child->btc_elems;
2029 } else {
2030 zfs_btree_leaf_t *right_child =
2031 (zfs_btree_leaf_t *)right_child_hdr;
2032 right_child_first = right_child->btl_elems;
2034 if (tree->bt_compar(node->btc_elems + i * size,
2035 right_child_first) != -1) {
2036 panic("btree: compar returned %d (expected -1) at "
2037 "%px %d: compar(%px, %px)", tree->bt_compar(
2038 node->btc_elems + i * size, right_child_first),
2039 (void *)node, i, (void *)(node->btc_elems + i *
2040 size), (void *)right_child_first);
2043 for (int i = 0; i <= hdr->bth_count; i++) {
2044 zfs_btree_verify_order_helper(tree, node->btc_children[i]);
2048 /* Check that all elements in the tree are in sorted order. */
2049 static void
2050 zfs_btree_verify_order(zfs_btree_t *tree)
2052 EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2053 if (tree->bt_height == -1) {
2054 return;
2057 zfs_btree_verify_order_helper(tree, tree->bt_root);
2060 #ifdef ZFS_DEBUG
2061 /* Check that all unused memory is poisoned correctly. */
2062 static void
2063 zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2065 size_t size = tree->bt_elem_size;
2066 if (!hdr->bth_core) {
2067 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2068 uint8_t val = 0x0f;
2069 for (int i = hdr->bth_count * size; i < BTREE_LEAF_SIZE -
2070 sizeof (zfs_btree_hdr_t); i++) {
2071 VERIFY3U(leaf->btl_elems[i], ==, val);
2073 } else {
2074 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2075 uint8_t val = 0x0f;
2076 for (int i = hdr->bth_count * size; i < BTREE_CORE_ELEMS * size;
2077 i++) {
2078 VERIFY3U(node->btc_elems[i], ==, val);
2081 for (int i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; i++) {
2082 VERIFY3P(node->btc_children[i], ==,
2083 (zfs_btree_hdr_t *)BTREE_POISON);
2086 for (int i = 0; i <= hdr->bth_count; i++) {
2087 zfs_btree_verify_poison_helper(tree,
2088 node->btc_children[i]);
2092 #endif
2094 /* Check that unused memory in the tree is still poisoned. */
2095 static void
2096 zfs_btree_verify_poison(zfs_btree_t *tree)
2098 #ifdef ZFS_DEBUG
2099 if (tree->bt_height == -1)
2100 return;
2101 zfs_btree_verify_poison_helper(tree, tree->bt_root);
2102 #endif
2105 void
2106 zfs_btree_verify(zfs_btree_t *tree)
2108 if (zfs_btree_verify_intensity == 0)
2109 return;
2110 zfs_btree_verify_height(tree);
2111 if (zfs_btree_verify_intensity == 1)
2112 return;
2113 zfs_btree_verify_pointers(tree);
2114 if (zfs_btree_verify_intensity == 2)
2115 return;
2116 zfs_btree_verify_counts(tree);
2117 if (zfs_btree_verify_intensity == 3)
2118 return;
2119 zfs_btree_verify_order(tree);
2121 if (zfs_btree_verify_intensity == 4)
2122 return;
2123 zfs_btree_verify_poison(tree);