4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
52 #include <sys/zfeature.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_racct.h>
56 #include <sys/zfs_rlock.h>
58 #include <sys/vmsystm.h>
59 #include <sys/zfs_znode.h>
63 * Enable/disable nopwrite feature.
65 int zfs_nopwrite_enabled
= 1;
68 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69 * one TXG. After this threshold is crossed, additional dirty blocks from frees
70 * will wait until the next TXG.
71 * A value of zero will disable this throttle.
73 unsigned long zfs_per_txg_dirty_frees_percent
= 5;
76 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
78 int zfs_dmu_offset_next_sync
= 0;
81 * Limit the amount we can prefetch with one call to this amount. This
82 * helps to limit the amount of memory that can be used by prefetching.
83 * Larger objects should be prefetched a bit at a time.
85 int dmu_prefetch_max
= 8 * SPA_MAXBLOCKSIZE
;
87 const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
] = {
88 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "unallocated" },
89 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "object directory" },
90 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "object array" },
91 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "packed nvlist" },
92 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "packed nvlist size" },
93 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj" },
94 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj header" },
95 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map header" },
96 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map" },
97 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, TRUE
, "ZIL intent log" },
98 {DMU_BSWAP_DNODE
, TRUE
, FALSE
, TRUE
, "DMU dnode" },
99 {DMU_BSWAP_OBJSET
, TRUE
, TRUE
, FALSE
, "DMU objset" },
100 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL directory" },
101 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL directory child map"},
102 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset snap map" },
103 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL props" },
104 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL dataset" },
105 {DMU_BSWAP_ZNODE
, TRUE
, FALSE
, FALSE
, "ZFS znode" },
106 {DMU_BSWAP_OLDACL
, TRUE
, FALSE
, TRUE
, "ZFS V0 ACL" },
107 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "ZFS plain file" },
108 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS directory" },
109 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "ZFS master node" },
110 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS delete queue" },
111 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "zvol object" },
112 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "zvol prop" },
113 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "other uint8[]" },
114 {DMU_BSWAP_UINT64
, FALSE
, FALSE
, TRUE
, "other uint64[]" },
115 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "other ZAP" },
116 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "persistent error log" },
117 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "SPA history" },
118 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA history offsets" },
119 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "Pool properties" },
120 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL permissions" },
121 {DMU_BSWAP_ACL
, TRUE
, FALSE
, TRUE
, "ZFS ACL" },
122 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "ZFS SYSACL" },
123 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "FUID table" },
124 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "FUID table size" },
125 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset next clones"},
126 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan work queue" },
127 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project used" },
128 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project quota"},
129 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "snapshot refcount tags"},
130 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT ZAP algorithm" },
131 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT statistics" },
132 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "System attributes" },
133 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA master node" },
134 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr registration" },
135 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr layouts" },
136 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan translations" },
137 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "deduplicated block" },
138 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL deadlist map" },
139 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL deadlist map hdr" },
140 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dir clones" },
141 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj subobj" }
144 const dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
] = {
145 { byteswap_uint8_array
, "uint8" },
146 { byteswap_uint16_array
, "uint16" },
147 { byteswap_uint32_array
, "uint32" },
148 { byteswap_uint64_array
, "uint64" },
149 { zap_byteswap
, "zap" },
150 { dnode_buf_byteswap
, "dnode" },
151 { dmu_objset_byteswap
, "objset" },
152 { zfs_znode_byteswap
, "znode" },
153 { zfs_oldacl_byteswap
, "oldacl" },
154 { zfs_acl_byteswap
, "acl" }
158 dmu_buf_hold_noread_by_dnode(dnode_t
*dn
, uint64_t offset
,
159 void *tag
, dmu_buf_t
**dbp
)
164 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
165 blkid
= dbuf_whichblock(dn
, 0, offset
);
166 db
= dbuf_hold(dn
, blkid
, tag
);
167 rw_exit(&dn
->dn_struct_rwlock
);
171 return (SET_ERROR(EIO
));
178 dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
179 void *tag
, dmu_buf_t
**dbp
)
186 err
= dnode_hold(os
, object
, FTAG
, &dn
);
189 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
190 blkid
= dbuf_whichblock(dn
, 0, offset
);
191 db
= dbuf_hold(dn
, blkid
, tag
);
192 rw_exit(&dn
->dn_struct_rwlock
);
193 dnode_rele(dn
, FTAG
);
197 return (SET_ERROR(EIO
));
205 dmu_buf_hold_by_dnode(dnode_t
*dn
, uint64_t offset
,
206 void *tag
, dmu_buf_t
**dbp
, int flags
)
209 int db_flags
= DB_RF_CANFAIL
;
211 if (flags
& DMU_READ_NO_PREFETCH
)
212 db_flags
|= DB_RF_NOPREFETCH
;
213 if (flags
& DMU_READ_NO_DECRYPT
)
214 db_flags
|= DB_RF_NO_DECRYPT
;
216 err
= dmu_buf_hold_noread_by_dnode(dn
, offset
, tag
, dbp
);
218 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
219 err
= dbuf_read(db
, NULL
, db_flags
);
230 dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
231 void *tag
, dmu_buf_t
**dbp
, int flags
)
234 int db_flags
= DB_RF_CANFAIL
;
236 if (flags
& DMU_READ_NO_PREFETCH
)
237 db_flags
|= DB_RF_NOPREFETCH
;
238 if (flags
& DMU_READ_NO_DECRYPT
)
239 db_flags
|= DB_RF_NO_DECRYPT
;
241 err
= dmu_buf_hold_noread(os
, object
, offset
, tag
, dbp
);
243 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
244 err
= dbuf_read(db
, NULL
, db_flags
);
257 return (DN_OLD_MAX_BONUSLEN
);
261 dmu_set_bonus(dmu_buf_t
*db_fake
, int newsize
, dmu_tx_t
*tx
)
263 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
270 if (dn
->dn_bonus
!= db
) {
271 error
= SET_ERROR(EINVAL
);
272 } else if (newsize
< 0 || newsize
> db_fake
->db_size
) {
273 error
= SET_ERROR(EINVAL
);
275 dnode_setbonuslen(dn
, newsize
, tx
);
284 dmu_set_bonustype(dmu_buf_t
*db_fake
, dmu_object_type_t type
, dmu_tx_t
*tx
)
286 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
293 if (!DMU_OT_IS_VALID(type
)) {
294 error
= SET_ERROR(EINVAL
);
295 } else if (dn
->dn_bonus
!= db
) {
296 error
= SET_ERROR(EINVAL
);
298 dnode_setbonus_type(dn
, type
, tx
);
307 dmu_get_bonustype(dmu_buf_t
*db_fake
)
309 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
311 dmu_object_type_t type
;
315 type
= dn
->dn_bonustype
;
322 dmu_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
)
327 error
= dnode_hold(os
, object
, FTAG
, &dn
);
328 dbuf_rm_spill(dn
, tx
);
329 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
330 dnode_rm_spill(dn
, tx
);
331 rw_exit(&dn
->dn_struct_rwlock
);
332 dnode_rele(dn
, FTAG
);
337 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
338 * has not yet been allocated a new bonus dbuf a will be allocated.
339 * Returns ENOENT, EIO, or 0.
341 int dmu_bonus_hold_by_dnode(dnode_t
*dn
, void *tag
, dmu_buf_t
**dbp
,
346 uint32_t db_flags
= DB_RF_MUST_SUCCEED
;
348 if (flags
& DMU_READ_NO_PREFETCH
)
349 db_flags
|= DB_RF_NOPREFETCH
;
350 if (flags
& DMU_READ_NO_DECRYPT
)
351 db_flags
|= DB_RF_NO_DECRYPT
;
353 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
354 if (dn
->dn_bonus
== NULL
) {
355 rw_exit(&dn
->dn_struct_rwlock
);
356 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
357 if (dn
->dn_bonus
== NULL
)
358 dbuf_create_bonus(dn
);
362 /* as long as the bonus buf is held, the dnode will be held */
363 if (zfs_refcount_add(&db
->db_holds
, tag
) == 1) {
364 VERIFY(dnode_add_ref(dn
, db
));
365 atomic_inc_32(&dn
->dn_dbufs_count
);
369 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
370 * hold and incrementing the dbuf count to ensure that dnode_move() sees
371 * a dnode hold for every dbuf.
373 rw_exit(&dn
->dn_struct_rwlock
);
375 error
= dbuf_read(db
, NULL
, db_flags
);
377 dnode_evict_bonus(dn
);
388 dmu_bonus_hold(objset_t
*os
, uint64_t object
, void *tag
, dmu_buf_t
**dbp
)
393 error
= dnode_hold(os
, object
, FTAG
, &dn
);
397 error
= dmu_bonus_hold_by_dnode(dn
, tag
, dbp
, DMU_READ_NO_PREFETCH
);
398 dnode_rele(dn
, FTAG
);
404 * returns ENOENT, EIO, or 0.
406 * This interface will allocate a blank spill dbuf when a spill blk
407 * doesn't already exist on the dnode.
409 * if you only want to find an already existing spill db, then
410 * dmu_spill_hold_existing() should be used.
413 dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
, void *tag
, dmu_buf_t
**dbp
)
415 dmu_buf_impl_t
*db
= NULL
;
418 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
419 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
421 db
= dbuf_hold(dn
, DMU_SPILL_BLKID
, tag
);
423 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
424 rw_exit(&dn
->dn_struct_rwlock
);
428 return (SET_ERROR(EIO
));
430 err
= dbuf_read(db
, NULL
, flags
);
441 dmu_spill_hold_existing(dmu_buf_t
*bonus
, void *tag
, dmu_buf_t
**dbp
)
443 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
450 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_SA
) {
451 err
= SET_ERROR(EINVAL
);
453 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
455 if (!dn
->dn_have_spill
) {
456 err
= SET_ERROR(ENOENT
);
458 err
= dmu_spill_hold_by_dnode(dn
,
459 DB_RF_HAVESTRUCT
| DB_RF_CANFAIL
, tag
, dbp
);
462 rw_exit(&dn
->dn_struct_rwlock
);
470 dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, uint32_t flags
, void *tag
,
473 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
476 uint32_t db_flags
= DB_RF_CANFAIL
;
478 if (flags
& DMU_READ_NO_DECRYPT
)
479 db_flags
|= DB_RF_NO_DECRYPT
;
483 err
= dmu_spill_hold_by_dnode(dn
, db_flags
, tag
, dbp
);
490 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
491 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
492 * and can induce severe lock contention when writing to several files
493 * whose dnodes are in the same block.
496 dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t length
,
497 boolean_t read
, void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
, uint32_t flags
)
500 zstream_t
*zs
= NULL
;
501 uint64_t blkid
, nblks
, i
;
505 boolean_t missed
= B_FALSE
;
507 ASSERT(length
<= DMU_MAX_ACCESS
);
510 * Note: We directly notify the prefetch code of this read, so that
511 * we can tell it about the multi-block read. dbuf_read() only knows
512 * about the one block it is accessing.
514 dbuf_flags
= DB_RF_CANFAIL
| DB_RF_NEVERWAIT
| DB_RF_HAVESTRUCT
|
517 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
518 if (dn
->dn_datablkshift
) {
519 int blkshift
= dn
->dn_datablkshift
;
520 nblks
= (P2ROUNDUP(offset
+ length
, 1ULL << blkshift
) -
521 P2ALIGN(offset
, 1ULL << blkshift
)) >> blkshift
;
523 if (offset
+ length
> dn
->dn_datablksz
) {
524 zfs_panic_recover("zfs: accessing past end of object "
525 "%llx/%llx (size=%u access=%llu+%llu)",
526 (longlong_t
)dn
->dn_objset
->
527 os_dsl_dataset
->ds_object
,
528 (longlong_t
)dn
->dn_object
, dn
->dn_datablksz
,
529 (longlong_t
)offset
, (longlong_t
)length
);
530 rw_exit(&dn
->dn_struct_rwlock
);
531 return (SET_ERROR(EIO
));
535 dbp
= kmem_zalloc(sizeof (dmu_buf_t
*) * nblks
, KM_SLEEP
);
538 zio
= zio_root(dn
->dn_objset
->os_spa
, NULL
, NULL
,
540 blkid
= dbuf_whichblock(dn
, 0, offset
);
541 if ((flags
& DMU_READ_NO_PREFETCH
) == 0 &&
542 DNODE_META_IS_CACHEABLE(dn
) && length
<= zfetch_array_rd_sz
) {
544 * Prepare the zfetch before initiating the demand reads, so
545 * that if multiple threads block on same indirect block, we
546 * base predictions on the original less racy request order.
548 zs
= dmu_zfetch_prepare(&dn
->dn_zfetch
, blkid
, nblks
,
549 read
&& DNODE_IS_CACHEABLE(dn
), B_TRUE
);
551 for (i
= 0; i
< nblks
; i
++) {
552 dmu_buf_impl_t
*db
= dbuf_hold(dn
, blkid
+ i
, tag
);
555 dmu_zfetch_run(zs
, missed
, B_TRUE
);
556 rw_exit(&dn
->dn_struct_rwlock
);
557 dmu_buf_rele_array(dbp
, nblks
, tag
);
560 return (SET_ERROR(EIO
));
564 * Initiate async demand data read.
565 * We check the db_state after calling dbuf_read() because
566 * (1) dbuf_read() may change the state to CACHED due to a
567 * hit in the ARC, and (2) on a cache miss, a child will
568 * have been added to "zio" but not yet completed, so the
569 * state will not yet be CACHED.
572 (void) dbuf_read(db
, zio
, dbuf_flags
);
573 if (db
->db_state
!= DB_CACHED
)
580 zfs_racct_write(length
, nblks
);
583 dmu_zfetch_run(zs
, missed
, B_TRUE
);
584 rw_exit(&dn
->dn_struct_rwlock
);
587 /* wait for async read i/o */
590 dmu_buf_rele_array(dbp
, nblks
, tag
);
594 /* wait for other io to complete */
595 for (i
= 0; i
< nblks
; i
++) {
596 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbp
[i
];
597 mutex_enter(&db
->db_mtx
);
598 while (db
->db_state
== DB_READ
||
599 db
->db_state
== DB_FILL
)
600 cv_wait(&db
->db_changed
, &db
->db_mtx
);
601 if (db
->db_state
== DB_UNCACHED
)
602 err
= SET_ERROR(EIO
);
603 mutex_exit(&db
->db_mtx
);
605 dmu_buf_rele_array(dbp
, nblks
, tag
);
617 dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
618 uint64_t length
, int read
, void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
)
623 err
= dnode_hold(os
, object
, FTAG
, &dn
);
627 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
628 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
630 dnode_rele(dn
, FTAG
);
636 dmu_buf_hold_array_by_bonus(dmu_buf_t
*db_fake
, uint64_t offset
,
637 uint64_t length
, boolean_t read
, void *tag
, int *numbufsp
,
640 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
646 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
647 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
654 dmu_buf_rele_array(dmu_buf_t
**dbp_fake
, int numbufs
, void *tag
)
657 dmu_buf_impl_t
**dbp
= (dmu_buf_impl_t
**)dbp_fake
;
662 for (i
= 0; i
< numbufs
; i
++) {
664 dbuf_rele(dbp
[i
], tag
);
667 kmem_free(dbp
, sizeof (dmu_buf_t
*) * numbufs
);
671 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
672 * indirect blocks prefetched will be those that point to the blocks containing
673 * the data starting at offset, and continuing to offset + len.
675 * Note that if the indirect blocks above the blocks being prefetched are not
676 * in cache, they will be asynchronously read in.
679 dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
680 uint64_t len
, zio_priority_t pri
)
686 if (len
== 0) { /* they're interested in the bonus buffer */
687 dn
= DMU_META_DNODE(os
);
689 if (object
== 0 || object
>= DN_MAX_OBJECT
)
692 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
693 blkid
= dbuf_whichblock(dn
, level
,
694 object
* sizeof (dnode_phys_t
));
695 dbuf_prefetch(dn
, level
, blkid
, pri
, 0);
696 rw_exit(&dn
->dn_struct_rwlock
);
701 * See comment before the definition of dmu_prefetch_max.
703 len
= MIN(len
, dmu_prefetch_max
);
706 * XXX - Note, if the dnode for the requested object is not
707 * already cached, we will do a *synchronous* read in the
708 * dnode_hold() call. The same is true for any indirects.
710 err
= dnode_hold(os
, object
, FTAG
, &dn
);
715 * offset + len - 1 is the last byte we want to prefetch for, and offset
716 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
717 * last block we want to prefetch, and dbuf_whichblock(dn, level,
718 * offset) is the first. Then the number we need to prefetch is the
721 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
722 if (level
> 0 || dn
->dn_datablkshift
!= 0) {
723 nblks
= dbuf_whichblock(dn
, level
, offset
+ len
- 1) -
724 dbuf_whichblock(dn
, level
, offset
) + 1;
726 nblks
= (offset
< dn
->dn_datablksz
);
730 blkid
= dbuf_whichblock(dn
, level
, offset
);
731 for (int i
= 0; i
< nblks
; i
++)
732 dbuf_prefetch(dn
, level
, blkid
+ i
, pri
, 0);
734 rw_exit(&dn
->dn_struct_rwlock
);
736 dnode_rele(dn
, FTAG
);
740 * Get the next "chunk" of file data to free. We traverse the file from
741 * the end so that the file gets shorter over time (if we crashes in the
742 * middle, this will leave us in a better state). We find allocated file
743 * data by simply searching the allocated level 1 indirects.
745 * On input, *start should be the first offset that does not need to be
746 * freed (e.g. "offset + length"). On return, *start will be the first
747 * offset that should be freed and l1blks is set to the number of level 1
748 * indirect blocks found within the chunk.
751 get_next_chunk(dnode_t
*dn
, uint64_t *start
, uint64_t minimum
, uint64_t *l1blks
)
754 uint64_t maxblks
= DMU_MAX_ACCESS
>> (dn
->dn_indblkshift
+ 1);
755 /* bytes of data covered by a level-1 indirect block */
756 uint64_t iblkrange
= (uint64_t)dn
->dn_datablksz
*
757 EPB(dn
->dn_indblkshift
, SPA_BLKPTRSHIFT
);
759 ASSERT3U(minimum
, <=, *start
);
762 * Check if we can free the entire range assuming that all of the
763 * L1 blocks in this range have data. If we can, we use this
764 * worst case value as an estimate so we can avoid having to look
765 * at the object's actual data.
767 uint64_t total_l1blks
=
768 (roundup(*start
, iblkrange
) - (minimum
/ iblkrange
* iblkrange
)) /
770 if (total_l1blks
<= maxblks
) {
771 *l1blks
= total_l1blks
;
775 ASSERT(ISP2(iblkrange
));
777 for (blks
= 0; *start
> minimum
&& blks
< maxblks
; blks
++) {
781 * dnode_next_offset(BACKWARDS) will find an allocated L1
782 * indirect block at or before the input offset. We must
783 * decrement *start so that it is at the end of the region
788 err
= dnode_next_offset(dn
,
789 DNODE_FIND_BACKWARDS
, start
, 2, 1, 0);
791 /* if there are no indirect blocks before start, we are done */
795 } else if (err
!= 0) {
800 /* set start to the beginning of this L1 indirect */
801 *start
= P2ALIGN(*start
, iblkrange
);
803 if (*start
< minimum
)
811 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
812 * otherwise return false.
813 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
817 dmu_objset_zfs_unmounting(objset_t
*os
)
820 if (dmu_objset_type(os
) == DMU_OST_ZFS
)
821 return (zfs_get_vfs_flag_unmounted(os
));
827 dmu_free_long_range_impl(objset_t
*os
, dnode_t
*dn
, uint64_t offset
,
830 uint64_t object_size
;
832 uint64_t dirty_frees_threshold
;
833 dsl_pool_t
*dp
= dmu_objset_pool(os
);
836 return (SET_ERROR(EINVAL
));
838 object_size
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
839 if (offset
>= object_size
)
842 if (zfs_per_txg_dirty_frees_percent
<= 100)
843 dirty_frees_threshold
=
844 zfs_per_txg_dirty_frees_percent
* zfs_dirty_data_max
/ 100;
846 dirty_frees_threshold
= zfs_dirty_data_max
/ 20;
848 if (length
== DMU_OBJECT_END
|| offset
+ length
> object_size
)
849 length
= object_size
- offset
;
851 while (length
!= 0) {
852 uint64_t chunk_end
, chunk_begin
, chunk_len
;
856 if (dmu_objset_zfs_unmounting(dn
->dn_objset
))
857 return (SET_ERROR(EINTR
));
859 chunk_end
= chunk_begin
= offset
+ length
;
861 /* move chunk_begin backwards to the beginning of this chunk */
862 err
= get_next_chunk(dn
, &chunk_begin
, offset
, &l1blks
);
865 ASSERT3U(chunk_begin
, >=, offset
);
866 ASSERT3U(chunk_begin
, <=, chunk_end
);
868 chunk_len
= chunk_end
- chunk_begin
;
870 tx
= dmu_tx_create(os
);
871 dmu_tx_hold_free(tx
, dn
->dn_object
, chunk_begin
, chunk_len
);
874 * Mark this transaction as typically resulting in a net
875 * reduction in space used.
877 dmu_tx_mark_netfree(tx
);
878 err
= dmu_tx_assign(tx
, TXG_WAIT
);
884 uint64_t txg
= dmu_tx_get_txg(tx
);
886 mutex_enter(&dp
->dp_lock
);
887 uint64_t long_free_dirty
=
888 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
];
889 mutex_exit(&dp
->dp_lock
);
892 * To avoid filling up a TXG with just frees, wait for
893 * the next TXG to open before freeing more chunks if
894 * we have reached the threshold of frees.
896 if (dirty_frees_threshold
!= 0 &&
897 long_free_dirty
>= dirty_frees_threshold
) {
898 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay
);
900 txg_wait_open(dp
, 0, B_TRUE
);
905 * In order to prevent unnecessary write throttling, for each
906 * TXG, we track the cumulative size of L1 blocks being dirtied
907 * in dnode_free_range() below. We compare this number to a
908 * tunable threshold, past which we prevent new L1 dirty freeing
909 * blocks from being added into the open TXG. See
910 * dmu_free_long_range_impl() for details. The threshold
911 * prevents write throttle activation due to dirty freeing L1
912 * blocks taking up a large percentage of zfs_dirty_data_max.
914 mutex_enter(&dp
->dp_lock
);
915 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
] +=
916 l1blks
<< dn
->dn_indblkshift
;
917 mutex_exit(&dp
->dp_lock
);
918 DTRACE_PROBE3(free__long__range
,
919 uint64_t, long_free_dirty
, uint64_t, chunk_len
,
921 dnode_free_range(dn
, chunk_begin
, chunk_len
, tx
);
931 dmu_free_long_range(objset_t
*os
, uint64_t object
,
932 uint64_t offset
, uint64_t length
)
937 err
= dnode_hold(os
, object
, FTAG
, &dn
);
940 err
= dmu_free_long_range_impl(os
, dn
, offset
, length
);
943 * It is important to zero out the maxblkid when freeing the entire
944 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
945 * will take the fast path, and (b) dnode_reallocate() can verify
946 * that the entire file has been freed.
948 if (err
== 0 && offset
== 0 && length
== DMU_OBJECT_END
)
951 dnode_rele(dn
, FTAG
);
956 dmu_free_long_object(objset_t
*os
, uint64_t object
)
961 err
= dmu_free_long_range(os
, object
, 0, DMU_OBJECT_END
);
965 tx
= dmu_tx_create(os
);
966 dmu_tx_hold_bonus(tx
, object
);
967 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
968 dmu_tx_mark_netfree(tx
);
969 err
= dmu_tx_assign(tx
, TXG_WAIT
);
972 err
= dmu_object_free(os
, object
, tx
);
983 dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
984 uint64_t size
, dmu_tx_t
*tx
)
987 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
990 ASSERT(offset
< UINT64_MAX
);
991 ASSERT(size
== DMU_OBJECT_END
|| size
<= UINT64_MAX
- offset
);
992 dnode_free_range(dn
, offset
, size
, tx
);
993 dnode_rele(dn
, FTAG
);
998 dmu_read_impl(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
999 void *buf
, uint32_t flags
)
1002 int numbufs
, err
= 0;
1005 * Deal with odd block sizes, where there can't be data past the first
1006 * block. If we ever do the tail block optimization, we will need to
1007 * handle that here as well.
1009 if (dn
->dn_maxblkid
== 0) {
1010 uint64_t newsz
= offset
> dn
->dn_datablksz
? 0 :
1011 MIN(size
, dn
->dn_datablksz
- offset
);
1012 bzero((char *)buf
+ newsz
, size
- newsz
);
1017 uint64_t mylen
= MIN(size
, DMU_MAX_ACCESS
/ 2);
1021 * NB: we could do this block-at-a-time, but it's nice
1022 * to be reading in parallel.
1024 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, mylen
,
1025 TRUE
, FTAG
, &numbufs
, &dbp
, flags
);
1029 for (i
= 0; i
< numbufs
; i
++) {
1032 dmu_buf_t
*db
= dbp
[i
];
1036 bufoff
= offset
- db
->db_offset
;
1037 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1039 (void) memcpy(buf
, (char *)db
->db_data
+ bufoff
, tocpy
);
1043 buf
= (char *)buf
+ tocpy
;
1045 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1051 dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1052 void *buf
, uint32_t flags
)
1057 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1061 err
= dmu_read_impl(dn
, offset
, size
, buf
, flags
);
1062 dnode_rele(dn
, FTAG
);
1067 dmu_read_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
, void *buf
,
1070 return (dmu_read_impl(dn
, offset
, size
, buf
, flags
));
1074 dmu_write_impl(dmu_buf_t
**dbp
, int numbufs
, uint64_t offset
, uint64_t size
,
1075 const void *buf
, dmu_tx_t
*tx
)
1079 for (i
= 0; i
< numbufs
; i
++) {
1082 dmu_buf_t
*db
= dbp
[i
];
1086 bufoff
= offset
- db
->db_offset
;
1087 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1089 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1091 if (tocpy
== db
->db_size
)
1092 dmu_buf_will_fill(db
, tx
);
1094 dmu_buf_will_dirty(db
, tx
);
1096 (void) memcpy((char *)db
->db_data
+ bufoff
, buf
, tocpy
);
1098 if (tocpy
== db
->db_size
)
1099 dmu_buf_fill_done(db
, tx
);
1103 buf
= (char *)buf
+ tocpy
;
1108 dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1109 const void *buf
, dmu_tx_t
*tx
)
1117 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
,
1118 FALSE
, FTAG
, &numbufs
, &dbp
));
1119 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1120 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1124 * Note: Lustre is an external consumer of this interface.
1127 dmu_write_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1128 const void *buf
, dmu_tx_t
*tx
)
1136 VERIFY0(dmu_buf_hold_array_by_dnode(dn
, offset
, size
,
1137 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
));
1138 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1139 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1143 dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1152 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
1153 FALSE
, FTAG
, &numbufs
, &dbp
));
1155 for (i
= 0; i
< numbufs
; i
++) {
1156 dmu_buf_t
*db
= dbp
[i
];
1158 dmu_buf_will_not_fill(db
, tx
);
1160 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1164 dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
1165 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
1166 int compressed_size
, int byteorder
, dmu_tx_t
*tx
)
1170 ASSERT3U(etype
, <, NUM_BP_EMBEDDED_TYPES
);
1171 ASSERT3U(comp
, <, ZIO_COMPRESS_FUNCTIONS
);
1172 VERIFY0(dmu_buf_hold_noread(os
, object
, offset
,
1175 dmu_buf_write_embedded(db
,
1176 data
, (bp_embedded_type_t
)etype
, (enum zio_compress
)comp
,
1177 uncompressed_size
, compressed_size
, byteorder
, tx
);
1179 dmu_buf_rele(db
, FTAG
);
1183 dmu_redact(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1189 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
, FALSE
, FTAG
,
1191 for (i
= 0; i
< numbufs
; i
++)
1192 dmu_buf_redact(dbp
[i
], tx
);
1193 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1198 dmu_read_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
)
1201 int numbufs
, i
, err
;
1204 * NB: we could do this block-at-a-time, but it's nice
1205 * to be reading in parallel.
1207 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1208 TRUE
, FTAG
, &numbufs
, &dbp
, 0);
1212 for (i
= 0; i
< numbufs
; i
++) {
1215 dmu_buf_t
*db
= dbp
[i
];
1219 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1220 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1222 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
, tocpy
,
1230 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1236 * Read 'size' bytes into the uio buffer.
1237 * From object zdb->db_object.
1238 * Starting at zfs_uio_offset(uio).
1240 * If the caller already has a dbuf in the target object
1241 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1242 * because we don't have to find the dnode_t for the object.
1245 dmu_read_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
)
1247 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1256 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1263 * Read 'size' bytes into the uio buffer.
1264 * From the specified object
1265 * Starting at offset zfs_uio_offset(uio).
1268 dmu_read_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
)
1276 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1280 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1282 dnode_rele(dn
, FTAG
);
1288 dmu_write_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
, dmu_tx_t
*tx
)
1295 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1296 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
);
1300 for (i
= 0; i
< numbufs
; i
++) {
1303 dmu_buf_t
*db
= dbp
[i
];
1307 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1308 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1310 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1312 if (tocpy
== db
->db_size
)
1313 dmu_buf_will_fill(db
, tx
);
1315 dmu_buf_will_dirty(db
, tx
);
1318 * XXX zfs_uiomove could block forever (eg.nfs-backed
1319 * pages). There needs to be a uiolockdown() function
1320 * to lock the pages in memory, so that zfs_uiomove won't
1323 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
,
1324 tocpy
, UIO_WRITE
, uio
);
1326 if (tocpy
== db
->db_size
)
1327 dmu_buf_fill_done(db
, tx
);
1335 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1340 * Write 'size' bytes from the uio buffer.
1341 * To object zdb->db_object.
1342 * Starting at offset zfs_uio_offset(uio).
1344 * If the caller already has a dbuf in the target object
1345 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1346 * because we don't have to find the dnode_t for the object.
1349 dmu_write_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
,
1352 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1361 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1368 * Write 'size' bytes from the uio buffer.
1369 * To the specified object.
1370 * Starting at offset zfs_uio_offset(uio).
1373 dmu_write_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
,
1382 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1386 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1388 dnode_rele(dn
, FTAG
);
1392 #endif /* _KERNEL */
1395 * Allocate a loaned anonymous arc buffer.
1398 dmu_request_arcbuf(dmu_buf_t
*handle
, int size
)
1400 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1402 return (arc_loan_buf(db
->db_objset
->os_spa
, B_FALSE
, size
));
1406 * Free a loaned arc buffer.
1409 dmu_return_arcbuf(arc_buf_t
*buf
)
1411 arc_return_buf(buf
, FTAG
);
1412 arc_buf_destroy(buf
, FTAG
);
1416 * A "lightweight" write is faster than a regular write (e.g.
1417 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1418 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1419 * data can not be read or overwritten until the transaction's txg has been
1420 * synced. This makes it appropriate for workloads that are known to be
1421 * (temporarily) write-only, like "zfs receive".
1423 * A single block is written, starting at the specified offset in bytes. If
1424 * the call is successful, it returns 0 and the provided abd has been
1425 * consumed (the caller should not free it).
1428 dmu_lightweight_write_by_dnode(dnode_t
*dn
, uint64_t offset
, abd_t
*abd
,
1429 const zio_prop_t
*zp
, enum zio_flag flags
, dmu_tx_t
*tx
)
1431 dbuf_dirty_record_t
*dr
=
1432 dbuf_dirty_lightweight(dn
, dbuf_whichblock(dn
, 0, offset
), tx
);
1434 return (SET_ERROR(EIO
));
1435 dr
->dt
.dll
.dr_abd
= abd
;
1436 dr
->dt
.dll
.dr_props
= *zp
;
1437 dr
->dt
.dll
.dr_flags
= flags
;
1442 * When possible directly assign passed loaned arc buffer to a dbuf.
1443 * If this is not possible copy the contents of passed arc buf via
1447 dmu_assign_arcbuf_by_dnode(dnode_t
*dn
, uint64_t offset
, arc_buf_t
*buf
,
1451 objset_t
*os
= dn
->dn_objset
;
1452 uint64_t object
= dn
->dn_object
;
1453 uint32_t blksz
= (uint32_t)arc_buf_lsize(buf
);
1456 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1457 blkid
= dbuf_whichblock(dn
, 0, offset
);
1458 db
= dbuf_hold(dn
, blkid
, FTAG
);
1460 return (SET_ERROR(EIO
));
1461 rw_exit(&dn
->dn_struct_rwlock
);
1464 * We can only assign if the offset is aligned and the arc buf is the
1465 * same size as the dbuf.
1467 if (offset
== db
->db
.db_offset
&& blksz
== db
->db
.db_size
) {
1468 zfs_racct_write(blksz
, 1);
1469 dbuf_assign_arcbuf(db
, buf
, tx
);
1470 dbuf_rele(db
, FTAG
);
1472 /* compressed bufs must always be assignable to their dbuf */
1473 ASSERT3U(arc_get_compression(buf
), ==, ZIO_COMPRESS_OFF
);
1474 ASSERT(!(buf
->b_flags
& ARC_BUF_FLAG_COMPRESSED
));
1476 dbuf_rele(db
, FTAG
);
1477 dmu_write(os
, object
, offset
, blksz
, buf
->b_data
, tx
);
1478 dmu_return_arcbuf(buf
);
1485 dmu_assign_arcbuf_by_dbuf(dmu_buf_t
*handle
, uint64_t offset
, arc_buf_t
*buf
,
1489 dmu_buf_impl_t
*dbuf
= (dmu_buf_impl_t
*)handle
;
1491 DB_DNODE_ENTER(dbuf
);
1492 err
= dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf
), offset
, buf
, tx
);
1493 DB_DNODE_EXIT(dbuf
);
1499 dbuf_dirty_record_t
*dsa_dr
;
1500 dmu_sync_cb_t
*dsa_done
;
1507 dmu_sync_ready(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1509 dmu_sync_arg_t
*dsa
= varg
;
1510 dmu_buf_t
*db
= dsa
->dsa_zgd
->zgd_db
;
1511 blkptr_t
*bp
= zio
->io_bp
;
1513 if (zio
->io_error
== 0) {
1514 if (BP_IS_HOLE(bp
)) {
1516 * A block of zeros may compress to a hole, but the
1517 * block size still needs to be known for replay.
1519 BP_SET_LSIZE(bp
, db
->db_size
);
1520 } else if (!BP_IS_EMBEDDED(bp
)) {
1521 ASSERT(BP_GET_LEVEL(bp
) == 0);
1528 dmu_sync_late_arrival_ready(zio_t
*zio
)
1530 dmu_sync_ready(zio
, NULL
, zio
->io_private
);
1535 dmu_sync_done(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1537 dmu_sync_arg_t
*dsa
= varg
;
1538 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1539 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1540 zgd_t
*zgd
= dsa
->dsa_zgd
;
1543 * Record the vdev(s) backing this blkptr so they can be flushed after
1544 * the writes for the lwb have completed.
1546 if (zio
->io_error
== 0) {
1547 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1550 mutex_enter(&db
->db_mtx
);
1551 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
);
1552 if (zio
->io_error
== 0) {
1553 dr
->dt
.dl
.dr_nopwrite
= !!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
1554 if (dr
->dt
.dl
.dr_nopwrite
) {
1555 blkptr_t
*bp
= zio
->io_bp
;
1556 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1557 uint8_t chksum
= BP_GET_CHECKSUM(bp_orig
);
1559 ASSERT(BP_EQUAL(bp
, bp_orig
));
1560 VERIFY(BP_EQUAL(bp
, db
->db_blkptr
));
1561 ASSERT(zio
->io_prop
.zp_compress
!= ZIO_COMPRESS_OFF
);
1562 VERIFY(zio_checksum_table
[chksum
].ci_flags
&
1563 ZCHECKSUM_FLAG_NOPWRITE
);
1565 dr
->dt
.dl
.dr_overridden_by
= *zio
->io_bp
;
1566 dr
->dt
.dl
.dr_override_state
= DR_OVERRIDDEN
;
1567 dr
->dt
.dl
.dr_copies
= zio
->io_prop
.zp_copies
;
1570 * Old style holes are filled with all zeros, whereas
1571 * new-style holes maintain their lsize, type, level,
1572 * and birth time (see zio_write_compress). While we
1573 * need to reset the BP_SET_LSIZE() call that happened
1574 * in dmu_sync_ready for old style holes, we do *not*
1575 * want to wipe out the information contained in new
1576 * style holes. Thus, only zero out the block pointer if
1577 * it's an old style hole.
1579 if (BP_IS_HOLE(&dr
->dt
.dl
.dr_overridden_by
) &&
1580 dr
->dt
.dl
.dr_overridden_by
.blk_birth
== 0)
1581 BP_ZERO(&dr
->dt
.dl
.dr_overridden_by
);
1583 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1585 cv_broadcast(&db
->db_changed
);
1586 mutex_exit(&db
->db_mtx
);
1588 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1590 kmem_free(dsa
, sizeof (*dsa
));
1594 dmu_sync_late_arrival_done(zio_t
*zio
)
1596 blkptr_t
*bp
= zio
->io_bp
;
1597 dmu_sync_arg_t
*dsa
= zio
->io_private
;
1598 zgd_t
*zgd
= dsa
->dsa_zgd
;
1600 if (zio
->io_error
== 0) {
1602 * Record the vdev(s) backing this blkptr so they can be
1603 * flushed after the writes for the lwb have completed.
1605 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1607 if (!BP_IS_HOLE(bp
)) {
1608 blkptr_t
*bp_orig __maybe_unused
= &zio
->io_bp_orig
;
1609 ASSERT(!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
1610 ASSERT(BP_IS_HOLE(bp_orig
) || !BP_EQUAL(bp
, bp_orig
));
1611 ASSERT(zio
->io_bp
->blk_birth
== zio
->io_txg
);
1612 ASSERT(zio
->io_txg
> spa_syncing_txg(zio
->io_spa
));
1613 zio_free(zio
->io_spa
, zio
->io_txg
, zio
->io_bp
);
1617 dmu_tx_commit(dsa
->dsa_tx
);
1619 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1621 abd_free(zio
->io_abd
);
1622 kmem_free(dsa
, sizeof (*dsa
));
1626 dmu_sync_late_arrival(zio_t
*pio
, objset_t
*os
, dmu_sync_cb_t
*done
, zgd_t
*zgd
,
1627 zio_prop_t
*zp
, zbookmark_phys_t
*zb
)
1629 dmu_sync_arg_t
*dsa
;
1632 tx
= dmu_tx_create(os
);
1633 dmu_tx_hold_space(tx
, zgd
->zgd_db
->db_size
);
1634 if (dmu_tx_assign(tx
, TXG_WAIT
) != 0) {
1636 /* Make zl_get_data do txg_waited_synced() */
1637 return (SET_ERROR(EIO
));
1641 * In order to prevent the zgd's lwb from being free'd prior to
1642 * dmu_sync_late_arrival_done() being called, we have to ensure
1643 * the lwb's "max txg" takes this tx's txg into account.
1645 zil_lwb_add_txg(zgd
->zgd_lwb
, dmu_tx_get_txg(tx
));
1647 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1649 dsa
->dsa_done
= done
;
1654 * Since we are currently syncing this txg, it's nontrivial to
1655 * determine what BP to nopwrite against, so we disable nopwrite.
1657 * When syncing, the db_blkptr is initially the BP of the previous
1658 * txg. We can not nopwrite against it because it will be changed
1659 * (this is similar to the non-late-arrival case where the dbuf is
1660 * dirty in a future txg).
1662 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1663 * We can not nopwrite against it because although the BP will not
1664 * (typically) be changed, the data has not yet been persisted to this
1667 * Finally, when dbuf_write_done() is called, it is theoretically
1668 * possible to always nopwrite, because the data that was written in
1669 * this txg is the same data that we are trying to write. However we
1670 * would need to check that this dbuf is not dirty in any future
1671 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1672 * don't nopwrite in this case.
1674 zp
->zp_nopwrite
= B_FALSE
;
1676 zio_nowait(zio_write(pio
, os
->os_spa
, dmu_tx_get_txg(tx
), zgd
->zgd_bp
,
1677 abd_get_from_buf(zgd
->zgd_db
->db_data
, zgd
->zgd_db
->db_size
),
1678 zgd
->zgd_db
->db_size
, zgd
->zgd_db
->db_size
, zp
,
1679 dmu_sync_late_arrival_ready
, NULL
, NULL
, dmu_sync_late_arrival_done
,
1680 dsa
, ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, zb
));
1686 * Intent log support: sync the block associated with db to disk.
1687 * N.B. and XXX: the caller is responsible for making sure that the
1688 * data isn't changing while dmu_sync() is writing it.
1692 * EEXIST: this txg has already been synced, so there's nothing to do.
1693 * The caller should not log the write.
1695 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1696 * The caller should not log the write.
1698 * EALREADY: this block is already in the process of being synced.
1699 * The caller should track its progress (somehow).
1701 * EIO: could not do the I/O.
1702 * The caller should do a txg_wait_synced().
1704 * 0: the I/O has been initiated.
1705 * The caller should log this blkptr in the done callback.
1706 * It is possible that the I/O will fail, in which case
1707 * the error will be reported to the done callback and
1708 * propagated to pio from zio_done().
1711 dmu_sync(zio_t
*pio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
)
1713 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zgd
->zgd_db
;
1714 objset_t
*os
= db
->db_objset
;
1715 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
1716 dbuf_dirty_record_t
*dr
, *dr_next
;
1717 dmu_sync_arg_t
*dsa
;
1718 zbookmark_phys_t zb
;
1722 ASSERT(pio
!= NULL
);
1725 SET_BOOKMARK(&zb
, ds
->ds_object
,
1726 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1730 dmu_write_policy(os
, dn
, db
->db_level
, WP_DMU_SYNC
, &zp
);
1734 * If we're frozen (running ziltest), we always need to generate a bp.
1736 if (txg
> spa_freeze_txg(os
->os_spa
))
1737 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1740 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1741 * and us. If we determine that this txg is not yet syncing,
1742 * but it begins to sync a moment later, that's OK because the
1743 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1745 mutex_enter(&db
->db_mtx
);
1747 if (txg
<= spa_last_synced_txg(os
->os_spa
)) {
1749 * This txg has already synced. There's nothing to do.
1751 mutex_exit(&db
->db_mtx
);
1752 return (SET_ERROR(EEXIST
));
1755 if (txg
<= spa_syncing_txg(os
->os_spa
)) {
1757 * This txg is currently syncing, so we can't mess with
1758 * the dirty record anymore; just write a new log block.
1760 mutex_exit(&db
->db_mtx
);
1761 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1764 dr
= dbuf_find_dirty_eq(db
, txg
);
1768 * There's no dr for this dbuf, so it must have been freed.
1769 * There's no need to log writes to freed blocks, so we're done.
1771 mutex_exit(&db
->db_mtx
);
1772 return (SET_ERROR(ENOENT
));
1775 dr_next
= list_next(&db
->db_dirty_records
, dr
);
1776 ASSERT(dr_next
== NULL
|| dr_next
->dr_txg
< txg
);
1778 if (db
->db_blkptr
!= NULL
) {
1780 * We need to fill in zgd_bp with the current blkptr so that
1781 * the nopwrite code can check if we're writing the same
1782 * data that's already on disk. We can only nopwrite if we
1783 * are sure that after making the copy, db_blkptr will not
1784 * change until our i/o completes. We ensure this by
1785 * holding the db_mtx, and only allowing nopwrite if the
1786 * block is not already dirty (see below). This is verified
1787 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1790 *zgd
->zgd_bp
= *db
->db_blkptr
;
1794 * Assume the on-disk data is X, the current syncing data (in
1795 * txg - 1) is Y, and the current in-memory data is Z (currently
1798 * We usually want to perform a nopwrite if X and Z are the
1799 * same. However, if Y is different (i.e. the BP is going to
1800 * change before this write takes effect), then a nopwrite will
1801 * be incorrect - we would override with X, which could have
1802 * been freed when Y was written.
1804 * (Note that this is not a concern when we are nop-writing from
1805 * syncing context, because X and Y must be identical, because
1806 * all previous txgs have been synced.)
1808 * Therefore, we disable nopwrite if the current BP could change
1809 * before this TXG. There are two ways it could change: by
1810 * being dirty (dr_next is non-NULL), or by being freed
1811 * (dnode_block_freed()). This behavior is verified by
1812 * zio_done(), which VERIFYs that the override BP is identical
1813 * to the on-disk BP.
1817 if (dr_next
!= NULL
|| dnode_block_freed(dn
, db
->db_blkid
))
1818 zp
.zp_nopwrite
= B_FALSE
;
1821 ASSERT(dr
->dr_txg
== txg
);
1822 if (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
||
1823 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
1825 * We have already issued a sync write for this buffer,
1826 * or this buffer has already been synced. It could not
1827 * have been dirtied since, or we would have cleared the state.
1829 mutex_exit(&db
->db_mtx
);
1830 return (SET_ERROR(EALREADY
));
1833 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
1834 dr
->dt
.dl
.dr_override_state
= DR_IN_DMU_SYNC
;
1835 mutex_exit(&db
->db_mtx
);
1837 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1839 dsa
->dsa_done
= done
;
1843 zio_nowait(arc_write(pio
, os
->os_spa
, txg
,
1844 zgd
->zgd_bp
, dr
->dt
.dl
.dr_data
, DBUF_IS_L2CACHEABLE(db
),
1845 &zp
, dmu_sync_ready
, NULL
, NULL
, dmu_sync_done
, dsa
,
1846 ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, &zb
));
1852 dmu_object_set_nlevels(objset_t
*os
, uint64_t object
, int nlevels
, dmu_tx_t
*tx
)
1857 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1860 err
= dnode_set_nlevels(dn
, nlevels
, tx
);
1861 dnode_rele(dn
, FTAG
);
1866 dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
, int ibs
,
1872 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1875 err
= dnode_set_blksz(dn
, size
, ibs
, tx
);
1876 dnode_rele(dn
, FTAG
);
1881 dmu_object_set_maxblkid(objset_t
*os
, uint64_t object
, uint64_t maxblkid
,
1887 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1890 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
1891 dnode_new_blkid(dn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
1892 rw_exit(&dn
->dn_struct_rwlock
);
1893 dnode_rele(dn
, FTAG
);
1898 dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
1904 * Send streams include each object's checksum function. This
1905 * check ensures that the receiving system can understand the
1906 * checksum function transmitted.
1908 ASSERT3U(checksum
, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
1910 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1911 ASSERT3U(checksum
, <, ZIO_CHECKSUM_FUNCTIONS
);
1912 dn
->dn_checksum
= checksum
;
1913 dnode_setdirty(dn
, tx
);
1914 dnode_rele(dn
, FTAG
);
1918 dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
1924 * Send streams include each object's compression function. This
1925 * check ensures that the receiving system can understand the
1926 * compression function transmitted.
1928 ASSERT3U(compress
, <, ZIO_COMPRESS_LEGACY_FUNCTIONS
);
1930 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1931 dn
->dn_compress
= compress
;
1932 dnode_setdirty(dn
, tx
);
1933 dnode_rele(dn
, FTAG
);
1937 * When the "redundant_metadata" property is set to "most", only indirect
1938 * blocks of this level and higher will have an additional ditto block.
1940 int zfs_redundant_metadata_most_ditto_level
= 2;
1943 dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
, zio_prop_t
*zp
)
1945 dmu_object_type_t type
= dn
? dn
->dn_type
: DMU_OT_OBJSET
;
1946 boolean_t ismd
= (level
> 0 || DMU_OT_IS_METADATA(type
) ||
1948 enum zio_checksum checksum
= os
->os_checksum
;
1949 enum zio_compress compress
= os
->os_compress
;
1950 uint8_t complevel
= os
->os_complevel
;
1951 enum zio_checksum dedup_checksum
= os
->os_dedup_checksum
;
1952 boolean_t dedup
= B_FALSE
;
1953 boolean_t nopwrite
= B_FALSE
;
1954 boolean_t dedup_verify
= os
->os_dedup_verify
;
1955 boolean_t encrypt
= B_FALSE
;
1956 int copies
= os
->os_copies
;
1959 * We maintain different write policies for each of the following
1962 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1963 * 3. all other level 0 blocks
1967 * XXX -- we should design a compression algorithm
1968 * that specializes in arrays of bps.
1970 compress
= zio_compress_select(os
->os_spa
,
1971 ZIO_COMPRESS_ON
, ZIO_COMPRESS_ON
);
1974 * Metadata always gets checksummed. If the data
1975 * checksum is multi-bit correctable, and it's not a
1976 * ZBT-style checksum, then it's suitable for metadata
1977 * as well. Otherwise, the metadata checksum defaults
1980 if (!(zio_checksum_table
[checksum
].ci_flags
&
1981 ZCHECKSUM_FLAG_METADATA
) ||
1982 (zio_checksum_table
[checksum
].ci_flags
&
1983 ZCHECKSUM_FLAG_EMBEDDED
))
1984 checksum
= ZIO_CHECKSUM_FLETCHER_4
;
1986 if (os
->os_redundant_metadata
== ZFS_REDUNDANT_METADATA_ALL
||
1987 (os
->os_redundant_metadata
==
1988 ZFS_REDUNDANT_METADATA_MOST
&&
1989 (level
>= zfs_redundant_metadata_most_ditto_level
||
1990 DMU_OT_IS_METADATA(type
) || (wp
& WP_SPILL
))))
1992 } else if (wp
& WP_NOFILL
) {
1996 * If we're writing preallocated blocks, we aren't actually
1997 * writing them so don't set any policy properties. These
1998 * blocks are currently only used by an external subsystem
1999 * outside of zfs (i.e. dump) and not written by the zio
2002 compress
= ZIO_COMPRESS_OFF
;
2003 checksum
= ZIO_CHECKSUM_OFF
;
2005 compress
= zio_compress_select(os
->os_spa
, dn
->dn_compress
,
2007 complevel
= zio_complevel_select(os
->os_spa
, compress
,
2008 complevel
, complevel
);
2010 checksum
= (dedup_checksum
== ZIO_CHECKSUM_OFF
) ?
2011 zio_checksum_select(dn
->dn_checksum
, checksum
) :
2015 * Determine dedup setting. If we are in dmu_sync(),
2016 * we won't actually dedup now because that's all
2017 * done in syncing context; but we do want to use the
2018 * dedup checksum. If the checksum is not strong
2019 * enough to ensure unique signatures, force
2022 if (dedup_checksum
!= ZIO_CHECKSUM_OFF
) {
2023 dedup
= (wp
& WP_DMU_SYNC
) ? B_FALSE
: B_TRUE
;
2024 if (!(zio_checksum_table
[checksum
].ci_flags
&
2025 ZCHECKSUM_FLAG_DEDUP
))
2026 dedup_verify
= B_TRUE
;
2030 * Enable nopwrite if we have secure enough checksum
2031 * algorithm (see comment in zio_nop_write) and
2032 * compression is enabled. We don't enable nopwrite if
2033 * dedup is enabled as the two features are mutually
2036 nopwrite
= (!dedup
&& (zio_checksum_table
[checksum
].ci_flags
&
2037 ZCHECKSUM_FLAG_NOPWRITE
) &&
2038 compress
!= ZIO_COMPRESS_OFF
&& zfs_nopwrite_enabled
);
2042 * All objects in an encrypted objset are protected from modification
2043 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2044 * in the bp, so we cannot use all copies. Encrypted objects are also
2045 * not subject to nopwrite since writing the same data will still
2046 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2047 * to avoid ambiguity in the dedup code since the DDT does not store
2050 if (os
->os_encrypted
&& (wp
& WP_NOFILL
) == 0) {
2053 if (DMU_OT_IS_ENCRYPTED(type
)) {
2054 copies
= MIN(copies
, SPA_DVAS_PER_BP
- 1);
2061 (type
== DMU_OT_DNODE
|| type
== DMU_OT_OBJSET
)) {
2062 compress
= ZIO_COMPRESS_EMPTY
;
2066 zp
->zp_compress
= compress
;
2067 zp
->zp_complevel
= complevel
;
2068 zp
->zp_checksum
= checksum
;
2069 zp
->zp_type
= (wp
& WP_SPILL
) ? dn
->dn_bonustype
: type
;
2070 zp
->zp_level
= level
;
2071 zp
->zp_copies
= MIN(copies
, spa_max_replication(os
->os_spa
));
2072 zp
->zp_dedup
= dedup
;
2073 zp
->zp_dedup_verify
= dedup
&& dedup_verify
;
2074 zp
->zp_nopwrite
= nopwrite
;
2075 zp
->zp_encrypt
= encrypt
;
2076 zp
->zp_byteorder
= ZFS_HOST_BYTEORDER
;
2077 bzero(zp
->zp_salt
, ZIO_DATA_SALT_LEN
);
2078 bzero(zp
->zp_iv
, ZIO_DATA_IV_LEN
);
2079 bzero(zp
->zp_mac
, ZIO_DATA_MAC_LEN
);
2080 zp
->zp_zpl_smallblk
= DMU_OT_IS_FILE(zp
->zp_type
) ?
2081 os
->os_zpl_special_smallblock
: 0;
2083 ASSERT3U(zp
->zp_compress
, !=, ZIO_COMPRESS_INHERIT
);
2087 * This function is only called from zfs_holey_common() for zpl_llseek()
2088 * in order to determine the location of holes. In order to accurately
2089 * report holes all dirty data must be synced to disk. This causes extremely
2090 * poor performance when seeking for holes in a dirty file. As a compromise,
2091 * only provide hole data when the dnode is clean. When a dnode is dirty
2092 * report the dnode as having no holes which is always a safe thing to do.
2095 dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
, uint64_t *off
)
2099 boolean_t clean
= B_TRUE
;
2101 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2106 * Check if dnode is dirty
2108 for (i
= 0; i
< TXG_SIZE
; i
++) {
2109 if (multilist_link_active(&dn
->dn_dirty_link
[i
])) {
2116 * If compatibility option is on, sync any current changes before
2117 * we go trundling through the block pointers.
2119 if (!clean
&& zfs_dmu_offset_next_sync
) {
2121 dnode_rele(dn
, FTAG
);
2122 txg_wait_synced(dmu_objset_pool(os
), 0);
2123 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2129 err
= dnode_next_offset(dn
,
2130 (hole
? DNODE_FIND_HOLE
: 0), off
, 1, 1, 0);
2132 err
= SET_ERROR(EBUSY
);
2134 dnode_rele(dn
, FTAG
);
2140 __dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2142 dnode_phys_t
*dnp
= dn
->dn_phys
;
2144 doi
->doi_data_block_size
= dn
->dn_datablksz
;
2145 doi
->doi_metadata_block_size
= dn
->dn_indblkshift
?
2146 1ULL << dn
->dn_indblkshift
: 0;
2147 doi
->doi_type
= dn
->dn_type
;
2148 doi
->doi_bonus_type
= dn
->dn_bonustype
;
2149 doi
->doi_bonus_size
= dn
->dn_bonuslen
;
2150 doi
->doi_dnodesize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2151 doi
->doi_indirection
= dn
->dn_nlevels
;
2152 doi
->doi_checksum
= dn
->dn_checksum
;
2153 doi
->doi_compress
= dn
->dn_compress
;
2154 doi
->doi_nblkptr
= dn
->dn_nblkptr
;
2155 doi
->doi_physical_blocks_512
= (DN_USED_BYTES(dnp
) + 256) >> 9;
2156 doi
->doi_max_offset
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
2157 doi
->doi_fill_count
= 0;
2158 for (int i
= 0; i
< dnp
->dn_nblkptr
; i
++)
2159 doi
->doi_fill_count
+= BP_GET_FILL(&dnp
->dn_blkptr
[i
]);
2163 dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2165 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2166 mutex_enter(&dn
->dn_mtx
);
2168 __dmu_object_info_from_dnode(dn
, doi
);
2170 mutex_exit(&dn
->dn_mtx
);
2171 rw_exit(&dn
->dn_struct_rwlock
);
2175 * Get information on a DMU object.
2176 * If doi is NULL, just indicates whether the object exists.
2179 dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
)
2182 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
2188 dmu_object_info_from_dnode(dn
, doi
);
2190 dnode_rele(dn
, FTAG
);
2195 * As above, but faster; can be used when you have a held dbuf in hand.
2198 dmu_object_info_from_db(dmu_buf_t
*db_fake
, dmu_object_info_t
*doi
)
2200 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2203 dmu_object_info_from_dnode(DB_DNODE(db
), doi
);
2208 * Faster still when you only care about the size.
2211 dmu_object_size_from_db(dmu_buf_t
*db_fake
, uint32_t *blksize
,
2212 u_longlong_t
*nblk512
)
2214 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2220 *blksize
= dn
->dn_datablksz
;
2221 /* add in number of slots used for the dnode itself */
2222 *nblk512
= ((DN_USED_BYTES(dn
->dn_phys
) + SPA_MINBLOCKSIZE
/2) >>
2223 SPA_MINBLOCKSHIFT
) + dn
->dn_num_slots
;
2228 dmu_object_dnsize_from_db(dmu_buf_t
*db_fake
, int *dnsize
)
2230 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2235 *dnsize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2240 byteswap_uint64_array(void *vbuf
, size_t size
)
2242 uint64_t *buf
= vbuf
;
2243 size_t count
= size
>> 3;
2246 ASSERT((size
& 7) == 0);
2248 for (i
= 0; i
< count
; i
++)
2249 buf
[i
] = BSWAP_64(buf
[i
]);
2253 byteswap_uint32_array(void *vbuf
, size_t size
)
2255 uint32_t *buf
= vbuf
;
2256 size_t count
= size
>> 2;
2259 ASSERT((size
& 3) == 0);
2261 for (i
= 0; i
< count
; i
++)
2262 buf
[i
] = BSWAP_32(buf
[i
]);
2266 byteswap_uint16_array(void *vbuf
, size_t size
)
2268 uint16_t *buf
= vbuf
;
2269 size_t count
= size
>> 1;
2272 ASSERT((size
& 1) == 0);
2274 for (i
= 0; i
< count
; i
++)
2275 buf
[i
] = BSWAP_16(buf
[i
]);
2280 byteswap_uint8_array(void *vbuf
, size_t size
)
2302 arc_fini(); /* arc depends on l2arc, so arc must go first */
2314 EXPORT_SYMBOL(dmu_bonus_hold
);
2315 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode
);
2316 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus
);
2317 EXPORT_SYMBOL(dmu_buf_rele_array
);
2318 EXPORT_SYMBOL(dmu_prefetch
);
2319 EXPORT_SYMBOL(dmu_free_range
);
2320 EXPORT_SYMBOL(dmu_free_long_range
);
2321 EXPORT_SYMBOL(dmu_free_long_object
);
2322 EXPORT_SYMBOL(dmu_read
);
2323 EXPORT_SYMBOL(dmu_read_by_dnode
);
2324 EXPORT_SYMBOL(dmu_write
);
2325 EXPORT_SYMBOL(dmu_write_by_dnode
);
2326 EXPORT_SYMBOL(dmu_prealloc
);
2327 EXPORT_SYMBOL(dmu_object_info
);
2328 EXPORT_SYMBOL(dmu_object_info_from_dnode
);
2329 EXPORT_SYMBOL(dmu_object_info_from_db
);
2330 EXPORT_SYMBOL(dmu_object_size_from_db
);
2331 EXPORT_SYMBOL(dmu_object_dnsize_from_db
);
2332 EXPORT_SYMBOL(dmu_object_set_nlevels
);
2333 EXPORT_SYMBOL(dmu_object_set_blocksize
);
2334 EXPORT_SYMBOL(dmu_object_set_maxblkid
);
2335 EXPORT_SYMBOL(dmu_object_set_checksum
);
2336 EXPORT_SYMBOL(dmu_object_set_compress
);
2337 EXPORT_SYMBOL(dmu_offset_next
);
2338 EXPORT_SYMBOL(dmu_write_policy
);
2339 EXPORT_SYMBOL(dmu_sync
);
2340 EXPORT_SYMBOL(dmu_request_arcbuf
);
2341 EXPORT_SYMBOL(dmu_return_arcbuf
);
2342 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode
);
2343 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf
);
2344 EXPORT_SYMBOL(dmu_buf_hold
);
2345 EXPORT_SYMBOL(dmu_ot
);
2348 ZFS_MODULE_PARAM(zfs
, zfs_
, nopwrite_enabled
, INT
, ZMOD_RW
,
2349 "Enable NOP writes");
2351 ZFS_MODULE_PARAM(zfs
, zfs_
, per_txg_dirty_frees_percent
, ULONG
, ZMOD_RW
,
2352 "Percentage of dirtied blocks from frees in one TXG");
2354 ZFS_MODULE_PARAM(zfs
, zfs_
, dmu_offset_next_sync
, INT
, ZMOD_RW
,
2355 "Enable forcing txg sync to find holes");
2357 ZFS_MODULE_PARAM(zfs
, , dmu_prefetch_max
, INT
, ZMOD_RW
,
2358 "Limit one prefetch call to this size");