Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / dmu_redact.c
blobfdbdf7d6e86845f4d52e881b1b896973b6c694eb
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
25 #include <sys/zfs_context.h>
26 #include <sys/txg.h>
27 #include <sys/dmu_objset.h>
28 #include <sys/dmu_traverse.h>
29 #include <sys/dmu_redact.h>
30 #include <sys/bqueue.h>
31 #include <sys/objlist.h>
32 #include <sys/dmu_tx.h>
33 #ifdef _KERNEL
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zap.h>
36 #include <sys/zfs_znode.h>
37 #endif
40 * This controls the number of entries in the buffer the redaction_list_update
41 * synctask uses to buffer writes to the redaction list.
43 int redact_sync_bufsize = 1024;
46 * Controls how often to update the redaction list when creating a redaction
47 * list.
49 uint64_t redaction_list_update_interval_ns = 1000 * 1000 * 1000ULL; /* NS */
52 * This tunable controls the length of the queues that zfs redact worker threads
53 * use to communicate. If the dmu_redact_snap thread is blocking on these
54 * queues, this variable may need to be increased. If there is a significant
55 * slowdown at the start of a redact operation as these threads consume all the
56 * available IO resources, or the queues are consuming too much memory, this
57 * variable may need to be decreased.
59 int zfs_redact_queue_length = 1024 * 1024;
62 * These tunables control the fill fraction of the queues by zfs redact. The
63 * fill fraction controls the frequency with which threads have to be
64 * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
65 * should be tuned down. If the queues empty before the signalled thread can
66 * catch up, then these should be tuned up.
68 uint64_t zfs_redact_queue_ff = 20;
70 struct redact_record {
71 bqueue_node_t ln;
72 boolean_t eos_marker; /* Marks the end of the stream */
73 uint64_t start_object;
74 uint64_t start_blkid;
75 uint64_t end_object;
76 uint64_t end_blkid;
77 uint8_t indblkshift;
78 uint32_t datablksz;
81 struct redact_thread_arg {
82 bqueue_t q;
83 objset_t *os; /* Objset to traverse */
84 dsl_dataset_t *ds; /* Dataset to traverse */
85 struct redact_record *current_record;
86 int error_code;
87 boolean_t cancel;
88 zbookmark_phys_t resume;
89 objlist_t *deleted_objs;
90 uint64_t *num_blocks_visited;
91 uint64_t ignore_object; /* ignore further callbacks on this */
92 uint64_t txg; /* txg to traverse since */
96 * The redaction node is a wrapper around the redaction record that is used
97 * by the redaction merging thread to sort the records and determine overlaps.
99 * It contains two nodes; one sorts the records by their start_zb, and the other
100 * sorts the records by their end_zb.
102 struct redact_node {
103 avl_node_t avl_node_start;
104 avl_node_t avl_node_end;
105 struct redact_record *record;
106 struct redact_thread_arg *rt_arg;
107 uint32_t thread_num;
110 struct merge_data {
111 list_t md_redact_block_pending;
112 redact_block_phys_t md_coalesce_block;
113 uint64_t md_last_time;
114 redact_block_phys_t md_furthest[TXG_SIZE];
115 /* Lists of struct redact_block_list_node. */
116 list_t md_blocks[TXG_SIZE];
117 boolean_t md_synctask_txg[TXG_SIZE];
118 uint64_t md_latest_synctask_txg;
119 redaction_list_t *md_redaction_list;
123 * A wrapper around struct redact_block so it can be stored in a list_t.
125 struct redact_block_list_node {
126 redact_block_phys_t block;
127 list_node_t node;
131 * We've found a new redaction candidate. In order to improve performance, we
132 * coalesce these blocks when they're adjacent to each other. This function
133 * handles that. If the new candidate block range is immediately after the
134 * range we're building, coalesce it into the range we're building. Otherwise,
135 * put the record we're building on the queue, and update the build pointer to
136 * point to the new record.
138 static void
139 record_merge_enqueue(bqueue_t *q, struct redact_record **build,
140 struct redact_record *new)
142 if (new->eos_marker) {
143 if (*build != NULL)
144 bqueue_enqueue(q, *build, sizeof (*build));
145 bqueue_enqueue_flush(q, new, sizeof (*new));
146 return;
148 if (*build == NULL) {
149 *build = new;
150 return;
152 struct redact_record *curbuild = *build;
153 if ((curbuild->end_object == new->start_object &&
154 curbuild->end_blkid + 1 == new->start_blkid &&
155 curbuild->end_blkid != UINT64_MAX) ||
156 (curbuild->end_object + 1 == new->start_object &&
157 curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
158 curbuild->end_object = new->end_object;
159 curbuild->end_blkid = new->end_blkid;
160 kmem_free(new, sizeof (*new));
161 } else {
162 bqueue_enqueue(q, curbuild, sizeof (*curbuild));
163 *build = new;
166 #ifdef _KERNEL
167 struct objnode {
168 avl_node_t node;
169 uint64_t obj;
172 static int
173 objnode_compare(const void *o1, const void *o2)
175 const struct objnode *obj1 = o1;
176 const struct objnode *obj2 = o2;
177 if (obj1->obj < obj2->obj)
178 return (-1);
179 if (obj1->obj > obj2->obj)
180 return (1);
181 return (0);
185 static objlist_t *
186 zfs_get_deleteq(objset_t *os)
188 objlist_t *deleteq_objlist = objlist_create();
189 uint64_t deleteq_obj;
190 zap_cursor_t zc;
191 zap_attribute_t za;
192 dmu_object_info_t doi;
194 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
195 VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
196 ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
198 VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
199 ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
202 * In order to insert objects into the objlist, they must be in sorted
203 * order. We don't know what order we'll get them out of the ZAP in, so
204 * we insert them into and remove them from an avl_tree_t to sort them.
206 avl_tree_t at;
207 avl_create(&at, objnode_compare, sizeof (struct objnode),
208 offsetof(struct objnode, node));
210 for (zap_cursor_init(&zc, os, deleteq_obj);
211 zap_cursor_retrieve(&zc, &za) == 0; zap_cursor_advance(&zc)) {
212 struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
213 obj->obj = za.za_first_integer;
214 avl_add(&at, obj);
216 zap_cursor_fini(&zc);
218 struct objnode *next, *found = avl_first(&at);
219 while (found != NULL) {
220 next = AVL_NEXT(&at, found);
221 objlist_insert(deleteq_objlist, found->obj);
222 found = next;
225 void *cookie = NULL;
226 while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
227 kmem_free(found, sizeof (*found));
228 avl_destroy(&at);
229 return (deleteq_objlist);
231 #endif
234 * This is the callback function to traverse_dataset for the redaction threads
235 * for dmu_redact_snap. This thread is responsible for creating redaction
236 * records for all the data that is modified by the snapshots we're redacting
237 * with respect to. Redaction records represent ranges of data that have been
238 * modified by one of the redaction snapshots, and are stored in the
239 * redact_record struct. We need to create redaction records for three
240 * cases:
242 * First, if there's a normal write, we need to create a redaction record for
243 * that block.
245 * Second, if there's a hole, we need to create a redaction record that covers
246 * the whole range of the hole. If the hole is in the meta-dnode, it must cover
247 * every block in all of the objects in the hole.
249 * Third, if there is a deleted object, we need to create a redaction record for
250 * all of the blocks in that object.
252 /*ARGSUSED*/
253 static int
254 redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
255 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
257 struct redact_thread_arg *rta = arg;
258 struct redact_record *record;
260 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
261 zb->zb_object >= rta->resume.zb_object);
263 if (rta->cancel)
264 return (SET_ERROR(EINTR));
266 if (rta->ignore_object == zb->zb_object)
267 return (0);
270 * If we're visiting a dnode, we need to handle the case where the
271 * object has been deleted.
273 if (zb->zb_level == ZB_DNODE_LEVEL) {
274 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
276 if (zb->zb_object == 0)
277 return (0);
280 * If the object has been deleted, redact all of the blocks in
281 * it.
283 if (dnp->dn_type == DMU_OT_NONE ||
284 objlist_exists(rta->deleted_objs, zb->zb_object)) {
285 rta->ignore_object = zb->zb_object;
286 record = kmem_zalloc(sizeof (struct redact_record),
287 KM_SLEEP);
289 record->eos_marker = B_FALSE;
290 record->start_object = record->end_object =
291 zb->zb_object;
292 record->start_blkid = 0;
293 record->end_blkid = UINT64_MAX;
294 record_merge_enqueue(&rta->q,
295 &rta->current_record, record);
297 return (0);
298 } else if (zb->zb_level < 0) {
299 return (0);
300 } else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
302 * If this is an indirect block, but not a hole, it doesn't
303 * provide any useful information for redaction, so ignore it.
305 return (0);
309 * At this point, there are two options left for the type of block we're
310 * looking at. Either this is a hole (which could be in the dnode or
311 * the meta-dnode), or it's a level 0 block of some sort. If it's a
312 * hole, we create a redaction record that covers the whole range. If
313 * the hole is in a dnode, we need to redact all the blocks in that
314 * hole. If the hole is in the meta-dnode, we instead need to redact
315 * all blocks in every object covered by that hole. If it's a level 0
316 * block, we only need to redact that single block.
318 record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
319 record->eos_marker = B_FALSE;
321 record->start_object = record->end_object = zb->zb_object;
322 if (BP_IS_HOLE(bp)) {
323 record->start_blkid = zb->zb_blkid *
324 bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
326 record->end_blkid = ((zb->zb_blkid + 1) *
327 bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
329 if (zb->zb_object == DMU_META_DNODE_OBJECT) {
330 record->start_object = record->start_blkid *
331 ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
332 sizeof (dnode_phys_t));
333 record->start_blkid = 0;
334 record->end_object = ((record->end_blkid +
335 1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
336 sizeof (dnode_phys_t))) - 1;
337 record->end_blkid = UINT64_MAX;
339 } else if (zb->zb_level != 0 ||
340 zb->zb_object == DMU_META_DNODE_OBJECT) {
341 kmem_free(record, sizeof (*record));
342 return (0);
343 } else {
344 record->start_blkid = record->end_blkid = zb->zb_blkid;
346 record->indblkshift = dnp->dn_indblkshift;
347 record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
348 record_merge_enqueue(&rta->q, &rta->current_record, record);
350 return (0);
353 static void
354 redact_traverse_thread(void *arg)
356 struct redact_thread_arg *rt_arg = arg;
357 int err;
358 struct redact_record *data;
359 #ifdef _KERNEL
360 if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
361 rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
362 else
363 rt_arg->deleted_objs = objlist_create();
364 #else
365 rt_arg->deleted_objs = objlist_create();
366 #endif
368 err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
369 &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
370 redact_cb, rt_arg);
372 if (err != EINTR)
373 rt_arg->error_code = err;
374 objlist_destroy(rt_arg->deleted_objs);
375 data = kmem_zalloc(sizeof (*data), KM_SLEEP);
376 data->eos_marker = B_TRUE;
377 record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
378 thread_exit();
381 static inline void
382 create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
383 uint64_t blkid)
385 zb->zb_object = object;
386 zb->zb_level = 0;
387 zb->zb_blkid = blkid;
391 * This is a utility function that can do the comparison for the start or ends
392 * of the ranges in a redact_record.
394 static int
395 redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
396 uint64_t obj2, uint64_t off2, uint32_t dbss2)
398 zbookmark_phys_t z1, z2;
399 create_zbookmark_from_obj_off(&z1, obj1, off1);
400 create_zbookmark_from_obj_off(&z2, obj2, off2);
402 return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
403 dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
407 * Compare two redaction records by their range's start location. Also makes
408 * eos records always compare last. We use the thread number in the redact_node
409 * to ensure that records do not compare equal (which is not allowed in our avl
410 * trees).
412 static int
413 redact_node_compare_start(const void *arg1, const void *arg2)
415 const struct redact_node *rn1 = arg1;
416 const struct redact_node *rn2 = arg2;
417 const struct redact_record *rr1 = rn1->record;
418 const struct redact_record *rr2 = rn2->record;
419 if (rr1->eos_marker)
420 return (1);
421 if (rr2->eos_marker)
422 return (-1);
424 int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
425 rr1->datablksz, rr2->start_object, rr2->start_blkid,
426 rr2->datablksz);
427 if (cmp == 0)
428 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
429 return (cmp);
433 * Compare two redaction records by their range's end location. Also makes
434 * eos records always compare last. We use the thread number in the redact_node
435 * to ensure that records do not compare equal (which is not allowed in our avl
436 * trees).
438 static int
439 redact_node_compare_end(const void *arg1, const void *arg2)
441 const struct redact_node *rn1 = arg1;
442 const struct redact_node *rn2 = arg2;
443 const struct redact_record *srr1 = rn1->record;
444 const struct redact_record *srr2 = rn2->record;
445 if (srr1->eos_marker)
446 return (1);
447 if (srr2->eos_marker)
448 return (-1);
450 int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
451 srr1->datablksz, srr2->end_object, srr2->end_blkid,
452 srr2->datablksz);
453 if (cmp == 0)
454 cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
455 return (cmp);
459 * Utility function that compares two redaction records to determine if any part
460 * of the "from" record is before any part of the "to" record. Also causes End
461 * of Stream redaction records to compare after all others, so that the
462 * redaction merging logic can stay simple.
464 static boolean_t
465 redact_record_before(const struct redact_record *from,
466 const struct redact_record *to)
468 if (from->eos_marker == B_TRUE)
469 return (B_FALSE);
470 else if (to->eos_marker == B_TRUE)
471 return (B_TRUE);
472 return (redact_range_compare(from->start_object, from->start_blkid,
473 from->datablksz, to->end_object, to->end_blkid,
474 to->datablksz) <= 0);
478 * Pop a new redaction record off the queue, check that the records are in the
479 * right order, and free the old data.
481 static struct redact_record *
482 get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
484 struct redact_record *next = bqueue_dequeue(bq);
485 ASSERT(redact_record_before(prev, next));
486 kmem_free(prev, sizeof (*prev));
487 return (next);
491 * Remove the given redaction node from both trees, pull a new redaction record
492 * off the queue, free the old redaction record, update the redaction node, and
493 * reinsert the node into the trees.
495 static int
496 update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
497 struct redact_node *redact_node)
499 avl_remove(start_tree, redact_node);
500 avl_remove(end_tree, redact_node);
501 redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
502 redact_node->record);
503 avl_add(end_tree, redact_node);
504 avl_add(start_tree, redact_node);
505 return (redact_node->rt_arg->error_code);
509 * Synctask for updating redaction lists. We first take this txg's list of
510 * redacted blocks and append those to the redaction list. We then update the
511 * redaction list's bonus buffer. We store the furthest blocks we visited and
512 * the list of snapshots that we're redacting with respect to. We need these so
513 * that redacted sends and receives can be correctly resumed.
515 static void
516 redaction_list_update_sync(void *arg, dmu_tx_t *tx)
518 struct merge_data *md = arg;
519 uint64_t txg = dmu_tx_get_txg(tx);
520 list_t *list = &md->md_blocks[txg & TXG_MASK];
521 redact_block_phys_t *furthest_visited =
522 &md->md_furthest[txg & TXG_MASK];
523 objset_t *mos = tx->tx_pool->dp_meta_objset;
524 redaction_list_t *rl = md->md_redaction_list;
525 int bufsize = redact_sync_bufsize;
526 redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
527 KM_SLEEP);
528 int index = 0;
530 dmu_buf_will_dirty(rl->rl_dbuf, tx);
532 for (struct redact_block_list_node *rbln = list_remove_head(list);
533 rbln != NULL; rbln = list_remove_head(list)) {
534 ASSERT3U(rbln->block.rbp_object, <=,
535 furthest_visited->rbp_object);
536 ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
537 rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
538 buf[index] = rbln->block;
539 index++;
540 if (index == bufsize) {
541 dmu_write(mos, rl->rl_object,
542 rl->rl_phys->rlp_num_entries * sizeof (*buf),
543 bufsize * sizeof (*buf), buf, tx);
544 rl->rl_phys->rlp_num_entries += bufsize;
545 index = 0;
547 kmem_free(rbln, sizeof (*rbln));
549 if (index > 0) {
550 dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
551 sizeof (*buf), index * sizeof (*buf), buf, tx);
552 rl->rl_phys->rlp_num_entries += index;
554 kmem_free(buf, bufsize * sizeof (*buf));
556 md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
557 rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
558 rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
561 static void
562 commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
563 uint64_t blkid)
565 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
566 dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
567 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
568 uint64_t txg = dmu_tx_get_txg(tx);
569 if (!md->md_synctask_txg[txg & TXG_MASK]) {
570 dsl_sync_task_nowait(dmu_tx_pool(tx),
571 redaction_list_update_sync, md, tx);
572 md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
573 md->md_latest_synctask_txg = txg;
575 md->md_furthest[txg & TXG_MASK].rbp_object = object;
576 md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
577 list_move_tail(&md->md_blocks[txg & TXG_MASK],
578 &md->md_redact_block_pending);
579 dmu_tx_commit(tx);
580 md->md_last_time = gethrtime();
584 * We want to store the list of blocks that we're redacting in the bookmark's
585 * redaction list. However, this list is stored in the MOS, which means it can
586 * only be written to in syncing context. To get around this, we create a
587 * synctask that will write to the mos for us. We tell it what to write by
588 * a linked list for each current transaction group; every time we decide to
589 * redact a block, we append it to the transaction group that is currently in
590 * open context. We also update some progress information that the synctask
591 * will store to enable resumable redacted sends.
593 static void
594 update_redaction_list(struct merge_data *md, objset_t *os,
595 uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
597 boolean_t enqueue = B_FALSE;
598 redact_block_phys_t cur = {0};
599 uint64_t count = endblkid - blkid + 1;
600 while (count > REDACT_BLOCK_MAX_COUNT) {
601 update_redaction_list(md, os, object, blkid,
602 blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
603 blkid += REDACT_BLOCK_MAX_COUNT;
604 count -= REDACT_BLOCK_MAX_COUNT;
606 redact_block_phys_t *coalesce = &md->md_coalesce_block;
607 boolean_t new;
608 if (coalesce->rbp_size_count == 0) {
609 new = B_TRUE;
610 enqueue = B_FALSE;
611 } else {
612 uint64_t old_count = redact_block_get_count(coalesce);
613 if (coalesce->rbp_object == object &&
614 coalesce->rbp_blkid + old_count == blkid &&
615 old_count + count <= REDACT_BLOCK_MAX_COUNT) {
616 ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
617 redact_block_set_count(coalesce, old_count + count);
618 new = B_FALSE;
619 enqueue = B_FALSE;
620 } else {
621 new = B_TRUE;
622 enqueue = B_TRUE;
626 if (new) {
627 cur = *coalesce;
628 coalesce->rbp_blkid = blkid;
629 coalesce->rbp_object = object;
631 redact_block_set_count(coalesce, count);
632 redact_block_set_size(coalesce, blksz);
635 if (enqueue && redact_block_get_size(&cur) != 0) {
636 struct redact_block_list_node *rbln =
637 kmem_alloc(sizeof (struct redact_block_list_node),
638 KM_SLEEP);
639 rbln->block = cur;
640 list_insert_tail(&md->md_redact_block_pending, rbln);
643 if (gethrtime() > md->md_last_time +
644 redaction_list_update_interval_ns) {
645 commit_rl_updates(os, md, object, blkid);
650 * This thread merges all the redaction records provided by the worker threads,
651 * and determines which blocks are redacted by all the snapshots. The algorithm
652 * for doing so is similar to performing a merge in mergesort with n sub-lists
653 * instead of 2, with some added complexity due to the fact that the entries are
654 * ranges, not just single blocks. This algorithm relies on the fact that the
655 * queues are sorted, which is ensured by the fact that traverse_dataset
656 * traverses the dataset in a consistent order. We pull one entry off the front
657 * of the queues of each secure dataset traversal thread. Then we repeat the
658 * following: each record represents a range of blocks modified by one of the
659 * redaction snapshots, and each block in that range may need to be redacted in
660 * the send stream. Find the record with the latest start of its range, and the
661 * record with the earliest end of its range. If the last start is before the
662 * first end, then we know that the blocks in the range [last_start, first_end]
663 * are covered by all of the ranges at the front of the queues, which means
664 * every thread redacts that whole range. For example, let's say the ranges on
665 * each queue look like this:
667 * Block Id 1 2 3 4 5 6 7 8 9 10 11
668 * Thread 1 | [====================]
669 * Thread 2 | [========]
670 * Thread 3 | [=================]
672 * Thread 3 has the last start (5), and the thread 2 has the last end (6). All
673 * three threads modified the range [5,6], so that data should not be sent over
674 * the wire. After we've determined whether or not to redact anything, we take
675 * the record with the first end. We discard that record, and pull a new one
676 * off the front of the queue it came from. In the above example, we would
677 * discard Thread 2's record, and pull a new one. Let's say the next record we
678 * pulled from Thread 2 covered range [10,11]. The new layout would look like
679 * this:
681 * Block Id 1 2 3 4 5 6 7 8 9 10 11
682 * Thread 1 | [====================]
683 * Thread 2 | [==]
684 * Thread 3 | [=================]
686 * When we compare the last start (10, from Thread 2) and the first end (9, from
687 * Thread 1), we see that the last start is greater than the first end.
688 * Therefore, we do not redact anything from these records. We'll iterate by
689 * replacing the record from Thread 1.
691 * We iterate by replacing the record with the lowest end because we know
692 * that the record with the lowest end has helped us as much as it can. All the
693 * ranges before it that we will ever redact have been redacted. In addition,
694 * by replacing the one with the lowest end, we guarantee we catch all ranges
695 * that need to be redacted. For example, if in the case above we had replaced
696 * the record from Thread 1 instead, we might have ended up with the following:
698 * Block Id 1 2 3 4 5 6 7 8 9 10 11 12
699 * Thread 1 | [==]
700 * Thread 2 | [========]
701 * Thread 3 | [=================]
703 * If the next record from Thread 2 had been [8,10], for example, we should have
704 * redacted part of that range, but because we updated Thread 1's record, we
705 * missed it.
707 * We implement this algorithm by using two trees. The first sorts the
708 * redaction records by their start_zb, and the second sorts them by their
709 * end_zb. We use these to find the record with the last start and the record
710 * with the first end. We create a record with that start and end, and send it
711 * on. The overall runtime of this implementation is O(n log m), where n is the
712 * total number of redaction records from all the different redaction snapshots,
713 * and m is the number of redaction snapshots.
715 * If we redact with respect to zero snapshots, we create a redaction
716 * record with the start object and blkid to 0, and the end object and blkid to
717 * UINT64_MAX. This will result in us redacting every block.
719 static int
720 perform_thread_merge(bqueue_t *q, uint32_t num_threads,
721 struct redact_thread_arg *thread_args, boolean_t *cancel)
723 struct redact_node *redact_nodes = NULL;
724 avl_tree_t start_tree, end_tree;
725 struct redact_record *record;
726 struct redact_record *current_record = NULL;
727 int err = 0;
728 struct merge_data md = { {0} };
729 list_create(&md.md_redact_block_pending,
730 sizeof (struct redact_block_list_node),
731 offsetof(struct redact_block_list_node, node));
734 * If we're redacting with respect to zero snapshots, then no data is
735 * permitted to be sent. We enqueue a record that redacts all blocks,
736 * and an eos marker.
738 if (num_threads == 0) {
739 record = kmem_zalloc(sizeof (struct redact_record),
740 KM_SLEEP);
741 // We can't redact object 0, so don't try.
742 record->start_object = 1;
743 record->start_blkid = 0;
744 record->end_object = record->end_blkid = UINT64_MAX;
745 bqueue_enqueue(q, record, sizeof (*record));
746 return (0);
748 if (num_threads > 0) {
749 redact_nodes = kmem_zalloc(num_threads *
750 sizeof (*redact_nodes), KM_SLEEP);
753 avl_create(&start_tree, redact_node_compare_start,
754 sizeof (struct redact_node),
755 offsetof(struct redact_node, avl_node_start));
756 avl_create(&end_tree, redact_node_compare_end,
757 sizeof (struct redact_node),
758 offsetof(struct redact_node, avl_node_end));
760 for (int i = 0; i < num_threads; i++) {
761 struct redact_node *node = &redact_nodes[i];
762 struct redact_thread_arg *targ = &thread_args[i];
763 node->record = bqueue_dequeue(&targ->q);
764 node->rt_arg = targ;
765 node->thread_num = i;
766 avl_add(&start_tree, node);
767 avl_add(&end_tree, node);
771 * Once the first record in the end tree has returned EOS, every record
772 * must be an EOS record, so we should stop.
774 while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
775 record->eos_marker) {
776 if (*cancel) {
777 err = EINTR;
778 break;
780 struct redact_node *last_start = avl_last(&start_tree);
781 struct redact_node *first_end = avl_first(&end_tree);
784 * If the last start record is before the first end record,
785 * then we have blocks that are redacted by all threads.
786 * Therefore, we should redact them. Copy the record, and send
787 * it to the main thread.
789 if (redact_record_before(last_start->record,
790 first_end->record)) {
791 record = kmem_zalloc(sizeof (struct redact_record),
792 KM_SLEEP);
793 *record = *first_end->record;
794 record->start_object = last_start->record->start_object;
795 record->start_blkid = last_start->record->start_blkid;
796 record_merge_enqueue(q, &current_record,
797 record);
799 err = update_avl_trees(&start_tree, &end_tree, first_end);
803 * We're done; if we were cancelled, we need to cancel our workers and
804 * clear out their queues. Either way, we need to remove every thread's
805 * redact_node struct from the avl trees.
807 for (int i = 0; i < num_threads; i++) {
808 if (err != 0) {
809 thread_args[i].cancel = B_TRUE;
810 while (!redact_nodes[i].record->eos_marker) {
811 (void) update_avl_trees(&start_tree, &end_tree,
812 &redact_nodes[i]);
815 avl_remove(&start_tree, &redact_nodes[i]);
816 avl_remove(&end_tree, &redact_nodes[i]);
817 kmem_free(redact_nodes[i].record,
818 sizeof (struct redact_record));
819 bqueue_destroy(&thread_args[i].q);
822 avl_destroy(&start_tree);
823 avl_destroy(&end_tree);
824 kmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
825 if (current_record != NULL)
826 bqueue_enqueue(q, current_record, sizeof (current_record));
827 return (err);
830 struct redact_merge_thread_arg {
831 bqueue_t q;
832 spa_t *spa;
833 int numsnaps;
834 struct redact_thread_arg *thr_args;
835 boolean_t cancel;
836 int error_code;
839 static void
840 redact_merge_thread(void *arg)
842 struct redact_merge_thread_arg *rmta = arg;
843 rmta->error_code = perform_thread_merge(&rmta->q,
844 rmta->numsnaps, rmta->thr_args, &rmta->cancel);
845 struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
846 rec->eos_marker = B_TRUE;
847 bqueue_enqueue_flush(&rmta->q, rec, 1);
848 thread_exit();
852 * Find the next object in or after the redaction range passed in, and hold
853 * its dnode with the provided tag. Also update *object to contain the new
854 * object number.
856 static int
857 hold_next_object(objset_t *os, struct redact_record *rec, void *tag,
858 uint64_t *object, dnode_t **dn)
860 int err = 0;
861 if (*dn != NULL)
862 dnode_rele(*dn, tag);
863 *dn = NULL;
864 if (*object < rec->start_object) {
865 *object = rec->start_object - 1;
867 err = dmu_object_next(os, object, B_FALSE, 0);
868 if (err != 0)
869 return (err);
871 err = dnode_hold(os, *object, tag, dn);
872 while (err == 0 && (*object < rec->start_object ||
873 DMU_OT_IS_METADATA((*dn)->dn_type))) {
874 dnode_rele(*dn, tag);
875 *dn = NULL;
876 err = dmu_object_next(os, object, B_FALSE, 0);
877 if (err != 0)
878 break;
879 err = dnode_hold(os, *object, tag, dn);
881 return (err);
884 static int
885 perform_redaction(objset_t *os, redaction_list_t *rl,
886 struct redact_merge_thread_arg *rmta)
888 int err = 0;
889 bqueue_t *q = &rmta->q;
890 struct redact_record *rec = NULL;
891 struct merge_data md = { {0} };
893 list_create(&md.md_redact_block_pending,
894 sizeof (struct redact_block_list_node),
895 offsetof(struct redact_block_list_node, node));
896 md.md_redaction_list = rl;
898 for (int i = 0; i < TXG_SIZE; i++) {
899 list_create(&md.md_blocks[i],
900 sizeof (struct redact_block_list_node),
901 offsetof(struct redact_block_list_node, node));
903 dnode_t *dn = NULL;
904 uint64_t prev_obj = 0;
905 for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
906 rec = get_next_redact_record(q, rec)) {
907 ASSERT3U(rec->start_object, !=, 0);
908 uint64_t object;
909 if (prev_obj != rec->start_object) {
910 object = rec->start_object - 1;
911 err = hold_next_object(os, rec, FTAG, &object, &dn);
912 } else {
913 object = prev_obj;
915 while (err == 0 && object <= rec->end_object) {
916 if (issig(JUSTLOOKING) && issig(FORREAL)) {
917 err = EINTR;
918 break;
921 * Part of the current object is contained somewhere in
922 * the range covered by rec.
924 uint64_t startblkid;
925 uint64_t endblkid;
926 uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
928 if (rec->start_object < object)
929 startblkid = 0;
930 else if (rec->start_blkid > maxblkid)
931 break;
932 else
933 startblkid = rec->start_blkid;
935 if (rec->end_object > object || rec->end_blkid >
936 maxblkid) {
937 endblkid = maxblkid;
938 } else {
939 endblkid = rec->end_blkid;
941 update_redaction_list(&md, os, object, startblkid,
942 endblkid, dn->dn_datablksz);
944 if (object == rec->end_object)
945 break;
946 err = hold_next_object(os, rec, FTAG, &object, &dn);
948 if (err == ESRCH)
949 err = 0;
950 if (dn != NULL)
951 prev_obj = object;
953 if (err == 0 && dn != NULL)
954 dnode_rele(dn, FTAG);
956 if (err == ESRCH)
957 err = 0;
958 rmta->cancel = B_TRUE;
959 while (!rec->eos_marker)
960 rec = get_next_redact_record(q, rec);
961 kmem_free(rec, sizeof (*rec));
964 * There may be a block that's being coalesced, sync that out before we
965 * return.
967 if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
968 struct redact_block_list_node *rbln =
969 kmem_alloc(sizeof (struct redact_block_list_node),
970 KM_SLEEP);
971 rbln->block = md.md_coalesce_block;
972 list_insert_tail(&md.md_redact_block_pending, rbln);
974 commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
977 * Wait for all the redaction info to sync out before we return, so that
978 * anyone who attempts to resume this redaction will have all the data
979 * they need.
981 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
982 if (md.md_latest_synctask_txg != 0)
983 txg_wait_synced(dp, md.md_latest_synctask_txg);
984 for (int i = 0; i < TXG_SIZE; i++)
985 list_destroy(&md.md_blocks[i]);
986 return (err);
989 static boolean_t
990 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
992 for (int i = 0; i < num_snaps; i++) {
993 if (snaps[i] == guid)
994 return (B_TRUE);
996 return (B_FALSE);
1000 dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
1001 const char *redactbook)
1003 int err = 0;
1004 dsl_pool_t *dp = NULL;
1005 dsl_dataset_t *ds = NULL;
1006 int numsnaps = 0;
1007 objset_t *os;
1008 struct redact_thread_arg *args = NULL;
1009 redaction_list_t *new_rl = NULL;
1010 char *newredactbook;
1012 if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
1013 return (err);
1015 newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
1016 KM_SLEEP);
1018 if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
1019 FTAG, &ds)) != 0) {
1020 goto out;
1022 dsl_dataset_long_hold(ds, FTAG);
1023 if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
1024 err = EINVAL;
1025 goto out;
1027 if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
1028 err = EALREADY;
1029 goto out;
1032 numsnaps = fnvlist_num_pairs(redactnvl);
1033 if (numsnaps > 0)
1034 args = kmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
1036 nvpair_t *pair = NULL;
1037 for (int i = 0; i < numsnaps; i++) {
1038 pair = nvlist_next_nvpair(redactnvl, pair);
1039 const char *name = nvpair_name(pair);
1040 struct redact_thread_arg *rta = &args[i];
1041 err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
1042 FTAG, &rta->ds);
1043 if (err != 0)
1044 break;
1046 * We want to do the long hold before we can get any other
1047 * errors, because the cleanup code will release the long
1048 * hold if rta->ds is filled in.
1050 dsl_dataset_long_hold(rta->ds, FTAG);
1052 err = dmu_objset_from_ds(rta->ds, &rta->os);
1053 if (err != 0)
1054 break;
1055 if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
1056 err = EINVAL;
1057 break;
1059 if (dsl_dataset_feature_is_active(rta->ds,
1060 SPA_FEATURE_REDACTED_DATASETS)) {
1061 err = EALREADY;
1062 break;
1066 if (err != 0)
1067 goto out;
1068 VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL);
1070 boolean_t resuming = B_FALSE;
1071 zfs_bookmark_phys_t bookmark;
1073 (void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
1074 char *c = strchr(newredactbook, '@');
1075 ASSERT3P(c, !=, NULL);
1076 int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
1077 "#%s", redactbook);
1078 if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
1079 dsl_pool_rele(dp, FTAG);
1080 kmem_free(newredactbook,
1081 sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1082 if (args != NULL)
1083 kmem_free(args, numsnaps * sizeof (*args));
1084 return (SET_ERROR(ENAMETOOLONG));
1086 err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
1087 if (err == 0) {
1088 resuming = B_TRUE;
1089 if (bookmark.zbm_redaction_obj == 0) {
1090 err = EEXIST;
1091 goto out;
1093 err = dsl_redaction_list_hold_obj(dp,
1094 bookmark.zbm_redaction_obj, FTAG, &new_rl);
1095 if (err != 0) {
1096 err = EIO;
1097 goto out;
1099 dsl_redaction_list_long_hold(dp, new_rl, FTAG);
1100 if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
1101 err = ESRCH;
1102 goto out;
1104 for (int i = 0; i < numsnaps; i++) {
1105 struct redact_thread_arg *rta = &args[i];
1106 if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
1107 new_rl->rl_phys->rlp_num_snaps,
1108 dsl_dataset_phys(rta->ds)->ds_guid)) {
1109 err = ESRCH;
1110 goto out;
1113 if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
1114 new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
1115 err = EEXIST;
1116 goto out;
1118 dsl_pool_rele(dp, FTAG);
1119 dp = NULL;
1120 } else {
1121 uint64_t *guids = NULL;
1122 if (numsnaps > 0) {
1123 guids = kmem_zalloc(numsnaps * sizeof (uint64_t),
1124 KM_SLEEP);
1126 for (int i = 0; i < numsnaps; i++) {
1127 struct redact_thread_arg *rta = &args[i];
1128 guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
1131 dsl_pool_rele(dp, FTAG);
1132 dp = NULL;
1133 err = dsl_bookmark_create_redacted(newredactbook, snapname,
1134 numsnaps, guids, FTAG, &new_rl);
1135 kmem_free(guids, numsnaps * sizeof (uint64_t));
1136 if (err != 0) {
1137 goto out;
1141 for (int i = 0; i < numsnaps; i++) {
1142 struct redact_thread_arg *rta = &args[i];
1143 (void) bqueue_init(&rta->q, zfs_redact_queue_ff,
1144 zfs_redact_queue_length,
1145 offsetof(struct redact_record, ln));
1146 if (resuming) {
1147 rta->resume.zb_blkid =
1148 new_rl->rl_phys->rlp_last_blkid;
1149 rta->resume.zb_object =
1150 new_rl->rl_phys->rlp_last_object;
1152 rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
1153 (void) thread_create(NULL, 0, redact_traverse_thread, rta,
1154 0, curproc, TS_RUN, minclsyspri);
1157 struct redact_merge_thread_arg *rmta;
1158 rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
1160 (void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
1161 zfs_redact_queue_length, offsetof(struct redact_record, ln));
1162 rmta->numsnaps = numsnaps;
1163 rmta->spa = os->os_spa;
1164 rmta->thr_args = args;
1165 (void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
1166 TS_RUN, minclsyspri);
1167 err = perform_redaction(os, new_rl, rmta);
1168 bqueue_destroy(&rmta->q);
1169 kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
1171 out:
1172 kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1174 if (new_rl != NULL) {
1175 dsl_redaction_list_long_rele(new_rl, FTAG);
1176 dsl_redaction_list_rele(new_rl, FTAG);
1178 for (int i = 0; i < numsnaps; i++) {
1179 struct redact_thread_arg *rta = &args[i];
1181 * rta->ds may be NULL if we got an error while filling
1182 * it in.
1184 if (rta->ds != NULL) {
1185 dsl_dataset_long_rele(rta->ds, FTAG);
1186 dsl_dataset_rele_flags(rta->ds,
1187 DS_HOLD_FLAG_DECRYPT, FTAG);
1191 if (args != NULL)
1192 kmem_free(args, numsnaps * sizeof (*args));
1193 if (dp != NULL)
1194 dsl_pool_rele(dp, FTAG);
1195 if (ds != NULL) {
1196 dsl_dataset_long_rele(ds, FTAG);
1197 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1199 return (SET_ERROR(err));