Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / dmu_tx.c
blob5fa5168666689bf693898b271328fef45ae1e8fa
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_zfs.h>
42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43 uint64_t arg1, uint64_t arg2);
45 dmu_tx_stats_t dmu_tx_stats = {
46 { "dmu_tx_assigned", KSTAT_DATA_UINT64 },
47 { "dmu_tx_delay", KSTAT_DATA_UINT64 },
48 { "dmu_tx_error", KSTAT_DATA_UINT64 },
49 { "dmu_tx_suspended", KSTAT_DATA_UINT64 },
50 { "dmu_tx_group", KSTAT_DATA_UINT64 },
51 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 },
52 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
53 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
54 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
55 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
56 { "dmu_tx_wrlog_over_max", KSTAT_DATA_UINT64 },
57 { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 },
58 { "dmu_tx_quota", KSTAT_DATA_UINT64 },
61 static kstat_t *dmu_tx_ksp;
63 dmu_tx_t *
64 dmu_tx_create_dd(dsl_dir_t *dd)
66 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
67 tx->tx_dir = dd;
68 if (dd != NULL)
69 tx->tx_pool = dd->dd_pool;
70 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
71 offsetof(dmu_tx_hold_t, txh_node));
72 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
73 offsetof(dmu_tx_callback_t, dcb_node));
74 tx->tx_start = gethrtime();
75 return (tx);
78 dmu_tx_t *
79 dmu_tx_create(objset_t *os)
81 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
82 tx->tx_objset = os;
83 return (tx);
86 dmu_tx_t *
87 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
89 dmu_tx_t *tx = dmu_tx_create_dd(NULL);
91 TXG_VERIFY(dp->dp_spa, txg);
92 tx->tx_pool = dp;
93 tx->tx_txg = txg;
94 tx->tx_anyobj = TRUE;
96 return (tx);
99 int
100 dmu_tx_is_syncing(dmu_tx_t *tx)
102 return (tx->tx_anyobj);
106 dmu_tx_private_ok(dmu_tx_t *tx)
108 return (tx->tx_anyobj);
111 static dmu_tx_hold_t *
112 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
113 uint64_t arg1, uint64_t arg2)
115 dmu_tx_hold_t *txh;
117 if (dn != NULL) {
118 (void) zfs_refcount_add(&dn->dn_holds, tx);
119 if (tx->tx_txg != 0) {
120 mutex_enter(&dn->dn_mtx);
122 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
123 * problem, but there's no way for it to happen (for
124 * now, at least).
126 ASSERT(dn->dn_assigned_txg == 0);
127 dn->dn_assigned_txg = tx->tx_txg;
128 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
129 mutex_exit(&dn->dn_mtx);
133 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
134 txh->txh_tx = tx;
135 txh->txh_dnode = dn;
136 zfs_refcount_create(&txh->txh_space_towrite);
137 zfs_refcount_create(&txh->txh_memory_tohold);
138 txh->txh_type = type;
139 txh->txh_arg1 = arg1;
140 txh->txh_arg2 = arg2;
141 list_insert_tail(&tx->tx_holds, txh);
143 return (txh);
146 static dmu_tx_hold_t *
147 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
148 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
150 dnode_t *dn = NULL;
151 dmu_tx_hold_t *txh;
152 int err;
154 if (object != DMU_NEW_OBJECT) {
155 err = dnode_hold(os, object, FTAG, &dn);
156 if (err != 0) {
157 tx->tx_err = err;
158 return (NULL);
161 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
162 if (dn != NULL)
163 dnode_rele(dn, FTAG);
164 return (txh);
167 void
168 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
171 * If we're syncing, they can manipulate any object anyhow, and
172 * the hold on the dnode_t can cause problems.
174 if (!dmu_tx_is_syncing(tx))
175 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
179 * This function reads specified data from disk. The specified data will
180 * be needed to perform the transaction -- i.e, it will be read after
181 * we do dmu_tx_assign(). There are two reasons that we read the data now
182 * (before dmu_tx_assign()):
184 * 1. Reading it now has potentially better performance. The transaction
185 * has not yet been assigned, so the TXG is not held open, and also the
186 * caller typically has less locks held when calling dmu_tx_hold_*() than
187 * after the transaction has been assigned. This reduces the lock (and txg)
188 * hold times, thus reducing lock contention.
190 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
191 * that are detected before they start making changes to the DMU state
192 * (i.e. now). Once the transaction has been assigned, and some DMU
193 * state has been changed, it can be difficult to recover from an i/o
194 * error (e.g. to undo the changes already made in memory at the DMU
195 * layer). Typically code to do so does not exist in the caller -- it
196 * assumes that the data has already been cached and thus i/o errors are
197 * not possible.
199 * It has been observed that the i/o initiated here can be a performance
200 * problem, and it appears to be optional, because we don't look at the
201 * data which is read. However, removing this read would only serve to
202 * move the work elsewhere (after the dmu_tx_assign()), where it may
203 * have a greater impact on performance (in addition to the impact on
204 * fault tolerance noted above).
206 static int
207 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
209 int err;
210 dmu_buf_impl_t *db;
212 rw_enter(&dn->dn_struct_rwlock, RW_READER);
213 db = dbuf_hold_level(dn, level, blkid, FTAG);
214 rw_exit(&dn->dn_struct_rwlock);
215 if (db == NULL)
216 return (SET_ERROR(EIO));
217 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
218 dbuf_rele(db, FTAG);
219 return (err);
222 /* ARGSUSED */
223 static void
224 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
226 dnode_t *dn = txh->txh_dnode;
227 int err = 0;
229 if (len == 0)
230 return;
232 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
234 if (dn == NULL)
235 return;
238 * For i/o error checking, read the blocks that will be needed
239 * to perform the write: the first and last level-0 blocks (if
240 * they are not aligned, i.e. if they are partial-block writes),
241 * and all the level-1 blocks.
243 if (dn->dn_maxblkid == 0) {
244 if (off < dn->dn_datablksz &&
245 (off > 0 || len < dn->dn_datablksz)) {
246 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
247 if (err != 0) {
248 txh->txh_tx->tx_err = err;
251 } else {
252 zio_t *zio = zio_root(dn->dn_objset->os_spa,
253 NULL, NULL, ZIO_FLAG_CANFAIL);
255 /* first level-0 block */
256 uint64_t start = off >> dn->dn_datablkshift;
257 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
258 err = dmu_tx_check_ioerr(zio, dn, 0, start);
259 if (err != 0) {
260 txh->txh_tx->tx_err = err;
264 /* last level-0 block */
265 uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
266 if (end != start && end <= dn->dn_maxblkid &&
267 P2PHASE(off + len, dn->dn_datablksz)) {
268 err = dmu_tx_check_ioerr(zio, dn, 0, end);
269 if (err != 0) {
270 txh->txh_tx->tx_err = err;
274 /* level-1 blocks */
275 if (dn->dn_nlevels > 1) {
276 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
277 for (uint64_t i = (start >> shft) + 1;
278 i < end >> shft; i++) {
279 err = dmu_tx_check_ioerr(zio, dn, 1, i);
280 if (err != 0) {
281 txh->txh_tx->tx_err = err;
286 err = zio_wait(zio);
287 if (err != 0) {
288 txh->txh_tx->tx_err = err;
293 static void
294 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
296 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
297 DNODE_MIN_SIZE, FTAG);
300 void
301 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
303 dmu_tx_hold_t *txh;
305 ASSERT0(tx->tx_txg);
306 ASSERT3U(len, <=, DMU_MAX_ACCESS);
307 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
309 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
310 object, THT_WRITE, off, len);
311 if (txh != NULL) {
312 dmu_tx_count_write(txh, off, len);
313 dmu_tx_count_dnode(txh);
317 void
318 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
320 dmu_tx_hold_t *txh;
322 ASSERT0(tx->tx_txg);
323 ASSERT3U(len, <=, DMU_MAX_ACCESS);
324 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
326 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
327 if (txh != NULL) {
328 dmu_tx_count_write(txh, off, len);
329 dmu_tx_count_dnode(txh);
334 * This function marks the transaction as being a "net free". The end
335 * result is that refquotas will be disabled for this transaction, and
336 * this transaction will be able to use half of the pool space overhead
337 * (see dsl_pool_adjustedsize()). Therefore this function should only
338 * be called for transactions that we expect will not cause a net increase
339 * in the amount of space used (but it's OK if that is occasionally not true).
341 void
342 dmu_tx_mark_netfree(dmu_tx_t *tx)
344 tx->tx_netfree = B_TRUE;
347 static void
348 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
350 dmu_tx_t *tx = txh->txh_tx;
351 dnode_t *dn = txh->txh_dnode;
352 int err;
354 ASSERT(tx->tx_txg == 0);
356 dmu_tx_count_dnode(txh);
358 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
359 return;
360 if (len == DMU_OBJECT_END)
361 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
363 dmu_tx_count_dnode(txh);
366 * For i/o error checking, we read the first and last level-0
367 * blocks if they are not aligned, and all the level-1 blocks.
369 * Note: dbuf_free_range() assumes that we have not instantiated
370 * any level-0 dbufs that will be completely freed. Therefore we must
371 * exercise care to not read or count the first and last blocks
372 * if they are blocksize-aligned.
374 if (dn->dn_datablkshift == 0) {
375 if (off != 0 || len < dn->dn_datablksz)
376 dmu_tx_count_write(txh, 0, dn->dn_datablksz);
377 } else {
378 /* first block will be modified if it is not aligned */
379 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
380 dmu_tx_count_write(txh, off, 1);
381 /* last block will be modified if it is not aligned */
382 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
383 dmu_tx_count_write(txh, off + len, 1);
387 * Check level-1 blocks.
389 if (dn->dn_nlevels > 1) {
390 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
391 SPA_BLKPTRSHIFT;
392 uint64_t start = off >> shift;
393 uint64_t end = (off + len) >> shift;
395 ASSERT(dn->dn_indblkshift != 0);
398 * dnode_reallocate() can result in an object with indirect
399 * blocks having an odd data block size. In this case,
400 * just check the single block.
402 if (dn->dn_datablkshift == 0)
403 start = end = 0;
405 zio_t *zio = zio_root(tx->tx_pool->dp_spa,
406 NULL, NULL, ZIO_FLAG_CANFAIL);
407 for (uint64_t i = start; i <= end; i++) {
408 uint64_t ibyte = i << shift;
409 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
410 i = ibyte >> shift;
411 if (err == ESRCH || i > end)
412 break;
413 if (err != 0) {
414 tx->tx_err = err;
415 (void) zio_wait(zio);
416 return;
419 (void) zfs_refcount_add_many(&txh->txh_memory_tohold,
420 1 << dn->dn_indblkshift, FTAG);
422 err = dmu_tx_check_ioerr(zio, dn, 1, i);
423 if (err != 0) {
424 tx->tx_err = err;
425 (void) zio_wait(zio);
426 return;
429 err = zio_wait(zio);
430 if (err != 0) {
431 tx->tx_err = err;
432 return;
437 void
438 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
440 dmu_tx_hold_t *txh;
442 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
443 object, THT_FREE, off, len);
444 if (txh != NULL)
445 (void) dmu_tx_hold_free_impl(txh, off, len);
448 void
449 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
451 dmu_tx_hold_t *txh;
453 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
454 if (txh != NULL)
455 (void) dmu_tx_hold_free_impl(txh, off, len);
458 static void
459 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
461 dmu_tx_t *tx = txh->txh_tx;
462 dnode_t *dn = txh->txh_dnode;
463 int err;
465 ASSERT(tx->tx_txg == 0);
467 dmu_tx_count_dnode(txh);
470 * Modifying a almost-full microzap is around the worst case (128KB)
472 * If it is a fat zap, the worst case would be 7*16KB=112KB:
473 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
474 * - 4 new blocks written if adding:
475 * - 2 blocks for possibly split leaves,
476 * - 2 grown ptrtbl blocks
478 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
479 MZAP_MAX_BLKSZ, FTAG);
481 if (dn == NULL)
482 return;
484 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
486 if (dn->dn_maxblkid == 0 || name == NULL) {
488 * This is a microzap (only one block), or we don't know
489 * the name. Check the first block for i/o errors.
491 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
492 if (err != 0) {
493 tx->tx_err = err;
495 } else {
497 * Access the name so that we'll check for i/o errors to
498 * the leaf blocks, etc. We ignore ENOENT, as this name
499 * may not yet exist.
501 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
502 if (err == EIO || err == ECKSUM || err == ENXIO) {
503 tx->tx_err = err;
508 void
509 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
511 dmu_tx_hold_t *txh;
513 ASSERT0(tx->tx_txg);
515 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
516 object, THT_ZAP, add, (uintptr_t)name);
517 if (txh != NULL)
518 dmu_tx_hold_zap_impl(txh, name);
521 void
522 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
524 dmu_tx_hold_t *txh;
526 ASSERT0(tx->tx_txg);
527 ASSERT(dn != NULL);
529 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
530 if (txh != NULL)
531 dmu_tx_hold_zap_impl(txh, name);
534 void
535 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
537 dmu_tx_hold_t *txh;
539 ASSERT(tx->tx_txg == 0);
541 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
542 object, THT_BONUS, 0, 0);
543 if (txh)
544 dmu_tx_count_dnode(txh);
547 void
548 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
550 dmu_tx_hold_t *txh;
552 ASSERT0(tx->tx_txg);
554 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
555 if (txh)
556 dmu_tx_count_dnode(txh);
559 void
560 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
562 dmu_tx_hold_t *txh;
564 ASSERT(tx->tx_txg == 0);
566 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
567 DMU_NEW_OBJECT, THT_SPACE, space, 0);
568 if (txh) {
569 (void) zfs_refcount_add_many(
570 &txh->txh_space_towrite, space, FTAG);
574 #ifdef ZFS_DEBUG
575 void
576 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
578 boolean_t match_object = B_FALSE;
579 boolean_t match_offset = B_FALSE;
581 DB_DNODE_ENTER(db);
582 dnode_t *dn = DB_DNODE(db);
583 ASSERT(tx->tx_txg != 0);
584 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
585 ASSERT3U(dn->dn_object, ==, db->db.db_object);
587 if (tx->tx_anyobj) {
588 DB_DNODE_EXIT(db);
589 return;
592 /* XXX No checking on the meta dnode for now */
593 if (db->db.db_object == DMU_META_DNODE_OBJECT) {
594 DB_DNODE_EXIT(db);
595 return;
598 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
599 txh = list_next(&tx->tx_holds, txh)) {
600 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
601 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
602 match_object = TRUE;
603 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
604 int datablkshift = dn->dn_datablkshift ?
605 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
606 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
607 int shift = datablkshift + epbs * db->db_level;
608 uint64_t beginblk = shift >= 64 ? 0 :
609 (txh->txh_arg1 >> shift);
610 uint64_t endblk = shift >= 64 ? 0 :
611 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
612 uint64_t blkid = db->db_blkid;
614 /* XXX txh_arg2 better not be zero... */
616 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
617 txh->txh_type, (u_longlong_t)beginblk,
618 (u_longlong_t)endblk);
620 switch (txh->txh_type) {
621 case THT_WRITE:
622 if (blkid >= beginblk && blkid <= endblk)
623 match_offset = TRUE;
625 * We will let this hold work for the bonus
626 * or spill buffer so that we don't need to
627 * hold it when creating a new object.
629 if (blkid == DMU_BONUS_BLKID ||
630 blkid == DMU_SPILL_BLKID)
631 match_offset = TRUE;
633 * They might have to increase nlevels,
634 * thus dirtying the new TLIBs. Or the
635 * might have to change the block size,
636 * thus dirying the new lvl=0 blk=0.
638 if (blkid == 0)
639 match_offset = TRUE;
640 break;
641 case THT_FREE:
643 * We will dirty all the level 1 blocks in
644 * the free range and perhaps the first and
645 * last level 0 block.
647 if (blkid >= beginblk && (blkid <= endblk ||
648 txh->txh_arg2 == DMU_OBJECT_END))
649 match_offset = TRUE;
650 break;
651 case THT_SPILL:
652 if (blkid == DMU_SPILL_BLKID)
653 match_offset = TRUE;
654 break;
655 case THT_BONUS:
656 if (blkid == DMU_BONUS_BLKID)
657 match_offset = TRUE;
658 break;
659 case THT_ZAP:
660 match_offset = TRUE;
661 break;
662 case THT_NEWOBJECT:
663 match_object = TRUE;
664 break;
665 default:
666 cmn_err(CE_PANIC, "bad txh_type %d",
667 txh->txh_type);
670 if (match_object && match_offset) {
671 DB_DNODE_EXIT(db);
672 return;
675 DB_DNODE_EXIT(db);
676 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
677 (u_longlong_t)db->db.db_object, db->db_level,
678 (u_longlong_t)db->db_blkid);
680 #endif
683 * If we can't do 10 iops, something is wrong. Let us go ahead
684 * and hit zfs_dirty_data_max.
686 hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
687 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
690 * We delay transactions when we've determined that the backend storage
691 * isn't able to accommodate the rate of incoming writes.
693 * If there is already a transaction waiting, we delay relative to when
694 * that transaction finishes waiting. This way the calculated min_time
695 * is independent of the number of threads concurrently executing
696 * transactions.
698 * If we are the only waiter, wait relative to when the transaction
699 * started, rather than the current time. This credits the transaction for
700 * "time already served", e.g. reading indirect blocks.
702 * The minimum time for a transaction to take is calculated as:
703 * min_time = scale * (dirty - min) / (max - dirty)
704 * min_time is then capped at zfs_delay_max_ns.
706 * The delay has two degrees of freedom that can be adjusted via tunables.
707 * The percentage of dirty data at which we start to delay is defined by
708 * zfs_delay_min_dirty_percent. This should typically be at or above
709 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
710 * delay after writing at full speed has failed to keep up with the incoming
711 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
712 * speaking, this variable determines the amount of delay at the midpoint of
713 * the curve.
715 * delay
716 * 10ms +-------------------------------------------------------------*+
717 * | *|
718 * 9ms + *+
719 * | *|
720 * 8ms + *+
721 * | * |
722 * 7ms + * +
723 * | * |
724 * 6ms + * +
725 * | * |
726 * 5ms + * +
727 * | * |
728 * 4ms + * +
729 * | * |
730 * 3ms + * +
731 * | * |
732 * 2ms + (midpoint) * +
733 * | | ** |
734 * 1ms + v *** +
735 * | zfs_delay_scale ----------> ******** |
736 * 0 +-------------------------------------*********----------------+
737 * 0% <- zfs_dirty_data_max -> 100%
739 * Note that since the delay is added to the outstanding time remaining on the
740 * most recent transaction, the delay is effectively the inverse of IOPS.
741 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
742 * was chosen such that small changes in the amount of accumulated dirty data
743 * in the first 3/4 of the curve yield relatively small differences in the
744 * amount of delay.
746 * The effects can be easier to understand when the amount of delay is
747 * represented on a log scale:
749 * delay
750 * 100ms +-------------------------------------------------------------++
751 * + +
752 * | |
753 * + *+
754 * 10ms + *+
755 * + ** +
756 * | (midpoint) ** |
757 * + | ** +
758 * 1ms + v **** +
759 * + zfs_delay_scale ----------> ***** +
760 * | **** |
761 * + **** +
762 * 100us + ** +
763 * + * +
764 * | * |
765 * + * +
766 * 10us + * +
767 * + +
768 * | |
769 * + +
770 * +--------------------------------------------------------------+
771 * 0% <- zfs_dirty_data_max -> 100%
773 * Note here that only as the amount of dirty data approaches its limit does
774 * the delay start to increase rapidly. The goal of a properly tuned system
775 * should be to keep the amount of dirty data out of that range by first
776 * ensuring that the appropriate limits are set for the I/O scheduler to reach
777 * optimal throughput on the backend storage, and then by changing the value
778 * of zfs_delay_scale to increase the steepness of the curve.
780 static void
781 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
783 dsl_pool_t *dp = tx->tx_pool;
784 uint64_t delay_min_bytes =
785 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
786 hrtime_t wakeup, min_tx_time, now;
788 if (dirty <= delay_min_bytes)
789 return;
792 * The caller has already waited until we are under the max.
793 * We make them pass us the amount of dirty data so we don't
794 * have to handle the case of it being >= the max, which could
795 * cause a divide-by-zero if it's == the max.
797 ASSERT3U(dirty, <, zfs_dirty_data_max);
799 now = gethrtime();
800 min_tx_time = zfs_delay_scale *
801 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
802 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
803 if (now > tx->tx_start + min_tx_time)
804 return;
806 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
807 uint64_t, min_tx_time);
809 mutex_enter(&dp->dp_lock);
810 wakeup = MAX(tx->tx_start + min_tx_time,
811 dp->dp_last_wakeup + min_tx_time);
812 dp->dp_last_wakeup = wakeup;
813 mutex_exit(&dp->dp_lock);
815 zfs_sleep_until(wakeup);
819 * This routine attempts to assign the transaction to a transaction group.
820 * To do so, we must determine if there is sufficient free space on disk.
822 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
823 * on it), then it is assumed that there is sufficient free space,
824 * unless there's insufficient slop space in the pool (see the comment
825 * above spa_slop_shift in spa_misc.c).
827 * If it is not a "netfree" transaction, then if the data already on disk
828 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
829 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
830 * plus the rough estimate of this transaction's changes, may exceed the
831 * allowed usage, then this will fail with ERESTART, which will cause the
832 * caller to wait for the pending changes to be written to disk (by waiting
833 * for the next TXG to open), and then check the space usage again.
835 * The rough estimate of pending changes is comprised of the sum of:
837 * - this transaction's holds' txh_space_towrite
839 * - dd_tempreserved[], which is the sum of in-flight transactions'
840 * holds' txh_space_towrite (i.e. those transactions that have called
841 * dmu_tx_assign() but not yet called dmu_tx_commit()).
843 * - dd_space_towrite[], which is the amount of dirtied dbufs.
845 * Note that all of these values are inflated by spa_get_worst_case_asize(),
846 * which means that we may get ERESTART well before we are actually in danger
847 * of running out of space, but this also mitigates any small inaccuracies
848 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
849 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
850 * to the MOS).
852 * Note that due to this algorithm, it is possible to exceed the allowed
853 * usage by one transaction. Also, as we approach the allowed usage,
854 * we will allow a very limited amount of changes into each TXG, thus
855 * decreasing performance.
857 static int
858 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
860 spa_t *spa = tx->tx_pool->dp_spa;
862 ASSERT0(tx->tx_txg);
864 if (tx->tx_err) {
865 DMU_TX_STAT_BUMP(dmu_tx_error);
866 return (tx->tx_err);
869 if (spa_suspended(spa)) {
870 DMU_TX_STAT_BUMP(dmu_tx_suspended);
873 * If the user has indicated a blocking failure mode
874 * then return ERESTART which will block in dmu_tx_wait().
875 * Otherwise, return EIO so that an error can get
876 * propagated back to the VOP calls.
878 * Note that we always honor the txg_how flag regardless
879 * of the failuremode setting.
881 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
882 !(txg_how & TXG_WAIT))
883 return (SET_ERROR(EIO));
885 return (SET_ERROR(ERESTART));
888 if (!tx->tx_dirty_delayed &&
889 dsl_pool_wrlog_over_max(tx->tx_pool)) {
890 DMU_TX_STAT_BUMP(dmu_tx_wrlog_over_max);
891 return (SET_ERROR(ERESTART));
894 if (!tx->tx_dirty_delayed &&
895 dsl_pool_need_dirty_delay(tx->tx_pool)) {
896 tx->tx_wait_dirty = B_TRUE;
897 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
898 return (SET_ERROR(ERESTART));
901 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
902 tx->tx_needassign_txh = NULL;
905 * NB: No error returns are allowed after txg_hold_open, but
906 * before processing the dnode holds, due to the
907 * dmu_tx_unassign() logic.
910 uint64_t towrite = 0;
911 uint64_t tohold = 0;
912 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
913 txh = list_next(&tx->tx_holds, txh)) {
914 dnode_t *dn = txh->txh_dnode;
915 if (dn != NULL) {
917 * This thread can't hold the dn_struct_rwlock
918 * while assigning the tx, because this can lead to
919 * deadlock. Specifically, if this dnode is already
920 * assigned to an earlier txg, this thread may need
921 * to wait for that txg to sync (the ERESTART case
922 * below). The other thread that has assigned this
923 * dnode to an earlier txg prevents this txg from
924 * syncing until its tx can complete (calling
925 * dmu_tx_commit()), but it may need to acquire the
926 * dn_struct_rwlock to do so (e.g. via
927 * dmu_buf_hold*()).
929 * Note that this thread can't hold the lock for
930 * read either, but the rwlock doesn't record
931 * enough information to make that assertion.
933 ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
935 mutex_enter(&dn->dn_mtx);
936 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
937 mutex_exit(&dn->dn_mtx);
938 tx->tx_needassign_txh = txh;
939 DMU_TX_STAT_BUMP(dmu_tx_group);
940 return (SET_ERROR(ERESTART));
942 if (dn->dn_assigned_txg == 0)
943 dn->dn_assigned_txg = tx->tx_txg;
944 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
945 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
946 mutex_exit(&dn->dn_mtx);
948 towrite += zfs_refcount_count(&txh->txh_space_towrite);
949 tohold += zfs_refcount_count(&txh->txh_memory_tohold);
952 /* needed allocation: worst-case estimate of write space */
953 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
954 /* calculate memory footprint estimate */
955 uint64_t memory = towrite + tohold;
957 if (tx->tx_dir != NULL && asize != 0) {
958 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
959 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
960 if (err != 0)
961 return (err);
964 DMU_TX_STAT_BUMP(dmu_tx_assigned);
966 return (0);
969 static void
970 dmu_tx_unassign(dmu_tx_t *tx)
972 if (tx->tx_txg == 0)
973 return;
975 txg_rele_to_quiesce(&tx->tx_txgh);
978 * Walk the transaction's hold list, removing the hold on the
979 * associated dnode, and notifying waiters if the refcount drops to 0.
981 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
982 txh && txh != tx->tx_needassign_txh;
983 txh = list_next(&tx->tx_holds, txh)) {
984 dnode_t *dn = txh->txh_dnode;
986 if (dn == NULL)
987 continue;
988 mutex_enter(&dn->dn_mtx);
989 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
991 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
992 dn->dn_assigned_txg = 0;
993 cv_broadcast(&dn->dn_notxholds);
995 mutex_exit(&dn->dn_mtx);
998 txg_rele_to_sync(&tx->tx_txgh);
1000 tx->tx_lasttried_txg = tx->tx_txg;
1001 tx->tx_txg = 0;
1005 * Assign tx to a transaction group; txg_how is a bitmask:
1007 * If TXG_WAIT is set and the currently open txg is full, this function
1008 * will wait until there's a new txg. This should be used when no locks
1009 * are being held. With this bit set, this function will only fail if
1010 * we're truly out of space (or over quota).
1012 * If TXG_WAIT is *not* set and we can't assign into the currently open
1013 * txg without blocking, this function will return immediately with
1014 * ERESTART. This should be used whenever locks are being held. On an
1015 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1016 * and try again.
1018 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1019 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1020 * details on the throttle). This is used by the VFS operations, after
1021 * they have already called dmu_tx_wait() (though most likely on a
1022 * different tx).
1024 * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1025 * will assign the tx to monotonically increasing txgs. Of course this is
1026 * not strong monotonicity, because the same txg can be returned multiple
1027 * times in a row. This guarantee holds both for subsequent calls from
1028 * one thread and for multiple threads. For example, it is impossible to
1029 * observe the following sequence of events:
1031 * Thread 1 Thread 2
1033 * dmu_tx_assign(T1, ...)
1034 * 1 <- dmu_tx_get_txg(T1)
1035 * dmu_tx_assign(T2, ...)
1036 * 2 <- dmu_tx_get_txg(T2)
1037 * dmu_tx_assign(T3, ...)
1038 * 1 <- dmu_tx_get_txg(T3)
1041 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1043 int err;
1045 ASSERT(tx->tx_txg == 0);
1046 ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1047 ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1049 /* If we might wait, we must not hold the config lock. */
1050 IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1052 if ((txg_how & TXG_NOTHROTTLE))
1053 tx->tx_dirty_delayed = B_TRUE;
1055 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1056 dmu_tx_unassign(tx);
1058 if (err != ERESTART || !(txg_how & TXG_WAIT))
1059 return (err);
1061 dmu_tx_wait(tx);
1064 txg_rele_to_quiesce(&tx->tx_txgh);
1066 return (0);
1069 void
1070 dmu_tx_wait(dmu_tx_t *tx)
1072 spa_t *spa = tx->tx_pool->dp_spa;
1073 dsl_pool_t *dp = tx->tx_pool;
1074 hrtime_t before;
1076 ASSERT(tx->tx_txg == 0);
1077 ASSERT(!dsl_pool_config_held(tx->tx_pool));
1079 before = gethrtime();
1081 if (tx->tx_wait_dirty) {
1082 uint64_t dirty;
1085 * dmu_tx_try_assign() has determined that we need to wait
1086 * because we've consumed much or all of the dirty buffer
1087 * space.
1089 mutex_enter(&dp->dp_lock);
1090 if (dp->dp_dirty_total >= zfs_dirty_data_max)
1091 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1092 while (dp->dp_dirty_total >= zfs_dirty_data_max)
1093 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1094 dirty = dp->dp_dirty_total;
1095 mutex_exit(&dp->dp_lock);
1097 dmu_tx_delay(tx, dirty);
1099 tx->tx_wait_dirty = B_FALSE;
1102 * Note: setting tx_dirty_delayed only has effect if the
1103 * caller used TX_WAIT. Otherwise they are going to
1104 * destroy this tx and try again. The common case,
1105 * zfs_write(), uses TX_WAIT.
1107 tx->tx_dirty_delayed = B_TRUE;
1108 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1110 * If the pool is suspended we need to wait until it
1111 * is resumed. Note that it's possible that the pool
1112 * has become active after this thread has tried to
1113 * obtain a tx. If that's the case then tx_lasttried_txg
1114 * would not have been set.
1116 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1117 } else if (tx->tx_needassign_txh) {
1118 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1120 mutex_enter(&dn->dn_mtx);
1121 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1122 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1123 mutex_exit(&dn->dn_mtx);
1124 tx->tx_needassign_txh = NULL;
1125 } else {
1127 * If we have a lot of dirty data just wait until we sync
1128 * out a TXG at which point we'll hopefully have synced
1129 * a portion of the changes.
1131 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1134 spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1137 static void
1138 dmu_tx_destroy(dmu_tx_t *tx)
1140 dmu_tx_hold_t *txh;
1142 while ((txh = list_head(&tx->tx_holds)) != NULL) {
1143 dnode_t *dn = txh->txh_dnode;
1145 list_remove(&tx->tx_holds, txh);
1146 zfs_refcount_destroy_many(&txh->txh_space_towrite,
1147 zfs_refcount_count(&txh->txh_space_towrite));
1148 zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1149 zfs_refcount_count(&txh->txh_memory_tohold));
1150 kmem_free(txh, sizeof (dmu_tx_hold_t));
1151 if (dn != NULL)
1152 dnode_rele(dn, tx);
1155 list_destroy(&tx->tx_callbacks);
1156 list_destroy(&tx->tx_holds);
1157 kmem_free(tx, sizeof (dmu_tx_t));
1160 void
1161 dmu_tx_commit(dmu_tx_t *tx)
1163 ASSERT(tx->tx_txg != 0);
1166 * Go through the transaction's hold list and remove holds on
1167 * associated dnodes, notifying waiters if no holds remain.
1169 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1170 txh = list_next(&tx->tx_holds, txh)) {
1171 dnode_t *dn = txh->txh_dnode;
1173 if (dn == NULL)
1174 continue;
1176 mutex_enter(&dn->dn_mtx);
1177 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1179 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1180 dn->dn_assigned_txg = 0;
1181 cv_broadcast(&dn->dn_notxholds);
1183 mutex_exit(&dn->dn_mtx);
1186 if (tx->tx_tempreserve_cookie)
1187 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1189 if (!list_is_empty(&tx->tx_callbacks))
1190 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1192 if (tx->tx_anyobj == FALSE)
1193 txg_rele_to_sync(&tx->tx_txgh);
1195 dmu_tx_destroy(tx);
1198 void
1199 dmu_tx_abort(dmu_tx_t *tx)
1201 ASSERT(tx->tx_txg == 0);
1204 * Call any registered callbacks with an error code.
1206 if (!list_is_empty(&tx->tx_callbacks))
1207 dmu_tx_do_callbacks(&tx->tx_callbacks, SET_ERROR(ECANCELED));
1209 dmu_tx_destroy(tx);
1212 uint64_t
1213 dmu_tx_get_txg(dmu_tx_t *tx)
1215 ASSERT(tx->tx_txg != 0);
1216 return (tx->tx_txg);
1219 dsl_pool_t *
1220 dmu_tx_pool(dmu_tx_t *tx)
1222 ASSERT(tx->tx_pool != NULL);
1223 return (tx->tx_pool);
1226 void
1227 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1229 dmu_tx_callback_t *dcb;
1231 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1233 dcb->dcb_func = func;
1234 dcb->dcb_data = data;
1236 list_insert_tail(&tx->tx_callbacks, dcb);
1240 * Call all the commit callbacks on a list, with a given error code.
1242 void
1243 dmu_tx_do_callbacks(list_t *cb_list, int error)
1245 dmu_tx_callback_t *dcb;
1247 while ((dcb = list_tail(cb_list)) != NULL) {
1248 list_remove(cb_list, dcb);
1249 dcb->dcb_func(dcb->dcb_data, error);
1250 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1255 * Interface to hold a bunch of attributes.
1256 * used for creating new files.
1257 * attrsize is the total size of all attributes
1258 * to be added during object creation
1260 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1264 * hold necessary attribute name for attribute registration.
1265 * should be a very rare case where this is needed. If it does
1266 * happen it would only happen on the first write to the file system.
1268 static void
1269 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1271 if (!sa->sa_need_attr_registration)
1272 return;
1274 for (int i = 0; i != sa->sa_num_attrs; i++) {
1275 if (!sa->sa_attr_table[i].sa_registered) {
1276 if (sa->sa_reg_attr_obj)
1277 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1278 B_TRUE, sa->sa_attr_table[i].sa_name);
1279 else
1280 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1281 B_TRUE, sa->sa_attr_table[i].sa_name);
1286 void
1287 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1289 dmu_tx_hold_t *txh;
1291 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1292 THT_SPILL, 0, 0);
1293 if (txh != NULL)
1294 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
1295 SPA_OLD_MAXBLOCKSIZE, FTAG);
1298 void
1299 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1301 sa_os_t *sa = tx->tx_objset->os_sa;
1303 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1305 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1306 return;
1308 if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1309 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1310 } else {
1311 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1312 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1313 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1314 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1317 dmu_tx_sa_registration_hold(sa, tx);
1319 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1320 return;
1322 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1323 THT_SPILL, 0, 0);
1327 * Hold SA attribute
1329 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1331 * variable_size is the total size of all variable sized attributes
1332 * passed to this function. It is not the total size of all
1333 * variable size attributes that *may* exist on this object.
1335 void
1336 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1338 uint64_t object;
1339 sa_os_t *sa = tx->tx_objset->os_sa;
1341 ASSERT(hdl != NULL);
1343 object = sa_handle_object(hdl);
1345 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1346 DB_DNODE_ENTER(db);
1347 dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1348 DB_DNODE_EXIT(db);
1350 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1351 return;
1353 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1354 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1355 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1356 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1357 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1358 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1361 dmu_tx_sa_registration_hold(sa, tx);
1363 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1364 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1366 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1367 ASSERT(tx->tx_txg == 0);
1368 dmu_tx_hold_spill(tx, object);
1369 } else {
1370 dnode_t *dn;
1372 DB_DNODE_ENTER(db);
1373 dn = DB_DNODE(db);
1374 if (dn->dn_have_spill) {
1375 ASSERT(tx->tx_txg == 0);
1376 dmu_tx_hold_spill(tx, object);
1378 DB_DNODE_EXIT(db);
1382 void
1383 dmu_tx_init(void)
1385 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1386 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1387 KSTAT_FLAG_VIRTUAL);
1389 if (dmu_tx_ksp != NULL) {
1390 dmu_tx_ksp->ks_data = &dmu_tx_stats;
1391 kstat_install(dmu_tx_ksp);
1395 void
1396 dmu_tx_fini(void)
1398 if (dmu_tx_ksp != NULL) {
1399 kstat_delete(dmu_tx_ksp);
1400 dmu_tx_ksp = NULL;
1404 #if defined(_KERNEL)
1405 EXPORT_SYMBOL(dmu_tx_create);
1406 EXPORT_SYMBOL(dmu_tx_hold_write);
1407 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1408 EXPORT_SYMBOL(dmu_tx_hold_free);
1409 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1410 EXPORT_SYMBOL(dmu_tx_hold_zap);
1411 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1412 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1413 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1414 EXPORT_SYMBOL(dmu_tx_abort);
1415 EXPORT_SYMBOL(dmu_tx_assign);
1416 EXPORT_SYMBOL(dmu_tx_wait);
1417 EXPORT_SYMBOL(dmu_tx_commit);
1418 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1419 EXPORT_SYMBOL(dmu_tx_get_txg);
1420 EXPORT_SYMBOL(dmu_tx_callback_register);
1421 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1422 EXPORT_SYMBOL(dmu_tx_hold_spill);
1423 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1424 EXPORT_SYMBOL(dmu_tx_hold_sa);
1425 #endif