Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / spa.c
blob8ca9b49ba3b38cb819ebf396f6de3315ce445600
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
39 * SPA: Storage Pool Allocator
41 * This file contains all the routines used when modifying on-disk SPA state.
42 * This includes opening, importing, destroying, exporting a pool, and syncing a
43 * pool.
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/ddt.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/vdev_removal.h>
58 #include <sys/vdev_indirect_mapping.h>
59 #include <sys/vdev_indirect_births.h>
60 #include <sys/vdev_initialize.h>
61 #include <sys/vdev_rebuild.h>
62 #include <sys/vdev_trim.h>
63 #include <sys/vdev_disk.h>
64 #include <sys/vdev_draid.h>
65 #include <sys/metaslab.h>
66 #include <sys/metaslab_impl.h>
67 #include <sys/mmp.h>
68 #include <sys/uberblock_impl.h>
69 #include <sys/txg.h>
70 #include <sys/avl.h>
71 #include <sys/bpobj.h>
72 #include <sys/dmu_traverse.h>
73 #include <sys/dmu_objset.h>
74 #include <sys/unique.h>
75 #include <sys/dsl_pool.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_dir.h>
78 #include <sys/dsl_prop.h>
79 #include <sys/dsl_synctask.h>
80 #include <sys/fs/zfs.h>
81 #include <sys/arc.h>
82 #include <sys/callb.h>
83 #include <sys/systeminfo.h>
84 #include <sys/spa_boot.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
91 #ifdef _KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif /* _KERNEL */
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
103 * The interval, in seconds, at which failed configuration cache file writes
104 * should be retried.
106 int zfs_ccw_retry_interval = 300;
108 typedef enum zti_modes {
109 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
110 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
111 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
112 ZTI_MODE_NULL, /* don't create a taskq */
113 ZTI_NMODES
114 } zti_modes_t;
116 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
117 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
119 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
120 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
122 #define ZTI_N(n) ZTI_P(n, 1)
123 #define ZTI_ONE ZTI_N(1)
125 typedef struct zio_taskq_info {
126 zti_modes_t zti_mode;
127 uint_t zti_value;
128 uint_t zti_count;
129 } zio_taskq_info_t;
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 "iss", "iss_h", "int", "int_h"
136 * This table defines the taskq settings for each ZFS I/O type. When
137 * initializing a pool, we use this table to create an appropriately sized
138 * taskq. Some operations are low volume and therefore have a small, static
139 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140 * macros. Other operations process a large amount of data; the ZTI_BATCH
141 * macro causes us to create a taskq oriented for throughput. Some operations
142 * are so high frequency and short-lived that the taskq itself can become a
143 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144 * additional degree of parallelism specified by the number of threads per-
145 * taskq and the number of taskqs; when dispatching an event in this case, the
146 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147 * but with number of taskqs also scaling with number of CPUs.
149 * The different taskq priorities are to handle the different contexts (issue
150 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151 * need to be handled with minimum delay.
153 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
156 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
157 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
158 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
159 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
160 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
161 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
168 static void spa_vdev_resilver_done(spa_t *spa);
170 uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
171 uint_t zio_taskq_batch_tpq; /* threads per taskq */
172 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
173 uint_t zio_taskq_basedc = 80; /* base duty cycle */
175 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
178 * Report any spa_load_verify errors found, but do not fail spa_load.
179 * This is used by zdb to analyze non-idle pools.
181 boolean_t spa_load_verify_dryrun = B_FALSE;
184 * This (illegal) pool name is used when temporarily importing a spa_t in order
185 * to get the vdev stats associated with the imported devices.
187 #define TRYIMPORT_NAME "$import"
190 * For debugging purposes: print out vdev tree during pool import.
192 int spa_load_print_vdev_tree = B_FALSE;
195 * A non-zero value for zfs_max_missing_tvds means that we allow importing
196 * pools with missing top-level vdevs. This is strictly intended for advanced
197 * pool recovery cases since missing data is almost inevitable. Pools with
198 * missing devices can only be imported read-only for safety reasons, and their
199 * fail-mode will be automatically set to "continue".
201 * With 1 missing vdev we should be able to import the pool and mount all
202 * datasets. User data that was not modified after the missing device has been
203 * added should be recoverable. This means that snapshots created prior to the
204 * addition of that device should be completely intact.
206 * With 2 missing vdevs, some datasets may fail to mount since there are
207 * dataset statistics that are stored as regular metadata. Some data might be
208 * recoverable if those vdevs were added recently.
210 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
211 * may be missing entirely. Chances of data recovery are very low. Note that
212 * there are also risks of performing an inadvertent rewind as we might be
213 * missing all the vdevs with the latest uberblocks.
215 unsigned long zfs_max_missing_tvds = 0;
218 * The parameters below are similar to zfs_max_missing_tvds but are only
219 * intended for a preliminary open of the pool with an untrusted config which
220 * might be incomplete or out-dated.
222 * We are more tolerant for pools opened from a cachefile since we could have
223 * an out-dated cachefile where a device removal was not registered.
224 * We could have set the limit arbitrarily high but in the case where devices
225 * are really missing we would want to return the proper error codes; we chose
226 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
227 * and we get a chance to retrieve the trusted config.
229 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
232 * In the case where config was assembled by scanning device paths (/dev/dsks
233 * by default) we are less tolerant since all the existing devices should have
234 * been detected and we want spa_load to return the right error codes.
236 uint64_t zfs_max_missing_tvds_scan = 0;
239 * Debugging aid that pauses spa_sync() towards the end.
241 boolean_t zfs_pause_spa_sync = B_FALSE;
244 * Variables to indicate the livelist condense zthr func should wait at certain
245 * points for the livelist to be removed - used to test condense/destroy races
247 int zfs_livelist_condense_zthr_pause = 0;
248 int zfs_livelist_condense_sync_pause = 0;
251 * Variables to track whether or not condense cancellation has been
252 * triggered in testing.
254 int zfs_livelist_condense_sync_cancel = 0;
255 int zfs_livelist_condense_zthr_cancel = 0;
258 * Variable to track whether or not extra ALLOC blkptrs were added to a
259 * livelist entry while it was being condensed (caused by the way we track
260 * remapped blkptrs in dbuf_remap_impl)
262 int zfs_livelist_condense_new_alloc = 0;
265 * ==========================================================================
266 * SPA properties routines
267 * ==========================================================================
271 * Add a (source=src, propname=propval) list to an nvlist.
273 static void
274 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
275 uint64_t intval, zprop_source_t src)
277 const char *propname = zpool_prop_to_name(prop);
278 nvlist_t *propval;
280 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
281 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
283 if (strval != NULL)
284 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
285 else
286 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
288 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
289 nvlist_free(propval);
293 * Get property values from the spa configuration.
295 static void
296 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
298 vdev_t *rvd = spa->spa_root_vdev;
299 dsl_pool_t *pool = spa->spa_dsl_pool;
300 uint64_t size, alloc, cap, version;
301 const zprop_source_t src = ZPROP_SRC_NONE;
302 spa_config_dirent_t *dp;
303 metaslab_class_t *mc = spa_normal_class(spa);
305 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
307 if (rvd != NULL) {
308 alloc = metaslab_class_get_alloc(mc);
309 alloc += metaslab_class_get_alloc(spa_special_class(spa));
310 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
311 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
313 size = metaslab_class_get_space(mc);
314 size += metaslab_class_get_space(spa_special_class(spa));
315 size += metaslab_class_get_space(spa_dedup_class(spa));
316 size += metaslab_class_get_space(spa_embedded_log_class(spa));
318 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
319 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
320 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
321 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
322 size - alloc, src);
323 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
324 spa->spa_checkpoint_info.sci_dspace, src);
326 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
327 metaslab_class_fragmentation(mc), src);
328 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
329 metaslab_class_expandable_space(mc), src);
330 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
331 (spa_mode(spa) == SPA_MODE_READ), src);
333 cap = (size == 0) ? 0 : (alloc * 100 / size);
334 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
336 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
337 ddt_get_pool_dedup_ratio(spa), src);
339 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
340 rvd->vdev_state, src);
342 version = spa_version(spa);
343 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
344 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
345 version, ZPROP_SRC_DEFAULT);
346 } else {
347 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
348 version, ZPROP_SRC_LOCAL);
350 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
351 NULL, spa_load_guid(spa), src);
354 if (pool != NULL) {
356 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
357 * when opening pools before this version freedir will be NULL.
359 if (pool->dp_free_dir != NULL) {
360 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
361 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
362 src);
363 } else {
364 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
365 NULL, 0, src);
368 if (pool->dp_leak_dir != NULL) {
369 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
370 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
371 src);
372 } else {
373 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
374 NULL, 0, src);
378 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
380 if (spa->spa_comment != NULL) {
381 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
382 0, ZPROP_SRC_LOCAL);
385 if (spa->spa_compatibility != NULL) {
386 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
387 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
390 if (spa->spa_root != NULL)
391 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
392 0, ZPROP_SRC_LOCAL);
394 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
395 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
396 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
397 } else {
398 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
399 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
402 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
403 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
404 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
405 } else {
406 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
407 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
410 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
411 if (dp->scd_path == NULL) {
412 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
413 "none", 0, ZPROP_SRC_LOCAL);
414 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
415 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
416 dp->scd_path, 0, ZPROP_SRC_LOCAL);
422 * Get zpool property values.
425 spa_prop_get(spa_t *spa, nvlist_t **nvp)
427 objset_t *mos = spa->spa_meta_objset;
428 zap_cursor_t zc;
429 zap_attribute_t za;
430 dsl_pool_t *dp;
431 int err;
433 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
434 if (err)
435 return (err);
437 dp = spa_get_dsl(spa);
438 dsl_pool_config_enter(dp, FTAG);
439 mutex_enter(&spa->spa_props_lock);
442 * Get properties from the spa config.
444 spa_prop_get_config(spa, nvp);
446 /* If no pool property object, no more prop to get. */
447 if (mos == NULL || spa->spa_pool_props_object == 0)
448 goto out;
451 * Get properties from the MOS pool property object.
453 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
454 (err = zap_cursor_retrieve(&zc, &za)) == 0;
455 zap_cursor_advance(&zc)) {
456 uint64_t intval = 0;
457 char *strval = NULL;
458 zprop_source_t src = ZPROP_SRC_DEFAULT;
459 zpool_prop_t prop;
461 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
462 continue;
464 switch (za.za_integer_length) {
465 case 8:
466 /* integer property */
467 if (za.za_first_integer !=
468 zpool_prop_default_numeric(prop))
469 src = ZPROP_SRC_LOCAL;
471 if (prop == ZPOOL_PROP_BOOTFS) {
472 dsl_dataset_t *ds = NULL;
474 err = dsl_dataset_hold_obj(dp,
475 za.za_first_integer, FTAG, &ds);
476 if (err != 0)
477 break;
479 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
480 KM_SLEEP);
481 dsl_dataset_name(ds, strval);
482 dsl_dataset_rele(ds, FTAG);
483 } else {
484 strval = NULL;
485 intval = za.za_first_integer;
488 spa_prop_add_list(*nvp, prop, strval, intval, src);
490 if (strval != NULL)
491 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
493 break;
495 case 1:
496 /* string property */
497 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
498 err = zap_lookup(mos, spa->spa_pool_props_object,
499 za.za_name, 1, za.za_num_integers, strval);
500 if (err) {
501 kmem_free(strval, za.za_num_integers);
502 break;
504 spa_prop_add_list(*nvp, prop, strval, 0, src);
505 kmem_free(strval, za.za_num_integers);
506 break;
508 default:
509 break;
512 zap_cursor_fini(&zc);
513 out:
514 mutex_exit(&spa->spa_props_lock);
515 dsl_pool_config_exit(dp, FTAG);
516 if (err && err != ENOENT) {
517 nvlist_free(*nvp);
518 *nvp = NULL;
519 return (err);
522 return (0);
526 * Validate the given pool properties nvlist and modify the list
527 * for the property values to be set.
529 static int
530 spa_prop_validate(spa_t *spa, nvlist_t *props)
532 nvpair_t *elem;
533 int error = 0, reset_bootfs = 0;
534 uint64_t objnum = 0;
535 boolean_t has_feature = B_FALSE;
537 elem = NULL;
538 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
539 uint64_t intval;
540 char *strval, *slash, *check, *fname;
541 const char *propname = nvpair_name(elem);
542 zpool_prop_t prop = zpool_name_to_prop(propname);
544 switch (prop) {
545 case ZPOOL_PROP_INVAL:
546 if (!zpool_prop_feature(propname)) {
547 error = SET_ERROR(EINVAL);
548 break;
552 * Sanitize the input.
554 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
555 error = SET_ERROR(EINVAL);
556 break;
559 if (nvpair_value_uint64(elem, &intval) != 0) {
560 error = SET_ERROR(EINVAL);
561 break;
564 if (intval != 0) {
565 error = SET_ERROR(EINVAL);
566 break;
569 fname = strchr(propname, '@') + 1;
570 if (zfeature_lookup_name(fname, NULL) != 0) {
571 error = SET_ERROR(EINVAL);
572 break;
575 has_feature = B_TRUE;
576 break;
578 case ZPOOL_PROP_VERSION:
579 error = nvpair_value_uint64(elem, &intval);
580 if (!error &&
581 (intval < spa_version(spa) ||
582 intval > SPA_VERSION_BEFORE_FEATURES ||
583 has_feature))
584 error = SET_ERROR(EINVAL);
585 break;
587 case ZPOOL_PROP_DELEGATION:
588 case ZPOOL_PROP_AUTOREPLACE:
589 case ZPOOL_PROP_LISTSNAPS:
590 case ZPOOL_PROP_AUTOEXPAND:
591 case ZPOOL_PROP_AUTOTRIM:
592 error = nvpair_value_uint64(elem, &intval);
593 if (!error && intval > 1)
594 error = SET_ERROR(EINVAL);
595 break;
597 case ZPOOL_PROP_MULTIHOST:
598 error = nvpair_value_uint64(elem, &intval);
599 if (!error && intval > 1)
600 error = SET_ERROR(EINVAL);
602 if (!error) {
603 uint32_t hostid = zone_get_hostid(NULL);
604 if (hostid)
605 spa->spa_hostid = hostid;
606 else
607 error = SET_ERROR(ENOTSUP);
610 break;
612 case ZPOOL_PROP_BOOTFS:
614 * If the pool version is less than SPA_VERSION_BOOTFS,
615 * or the pool is still being created (version == 0),
616 * the bootfs property cannot be set.
618 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
619 error = SET_ERROR(ENOTSUP);
620 break;
624 * Make sure the vdev config is bootable
626 if (!vdev_is_bootable(spa->spa_root_vdev)) {
627 error = SET_ERROR(ENOTSUP);
628 break;
631 reset_bootfs = 1;
633 error = nvpair_value_string(elem, &strval);
635 if (!error) {
636 objset_t *os;
638 if (strval == NULL || strval[0] == '\0') {
639 objnum = zpool_prop_default_numeric(
640 ZPOOL_PROP_BOOTFS);
641 break;
644 error = dmu_objset_hold(strval, FTAG, &os);
645 if (error != 0)
646 break;
648 /* Must be ZPL. */
649 if (dmu_objset_type(os) != DMU_OST_ZFS) {
650 error = SET_ERROR(ENOTSUP);
651 } else {
652 objnum = dmu_objset_id(os);
654 dmu_objset_rele(os, FTAG);
656 break;
658 case ZPOOL_PROP_FAILUREMODE:
659 error = nvpair_value_uint64(elem, &intval);
660 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
661 error = SET_ERROR(EINVAL);
664 * This is a special case which only occurs when
665 * the pool has completely failed. This allows
666 * the user to change the in-core failmode property
667 * without syncing it out to disk (I/Os might
668 * currently be blocked). We do this by returning
669 * EIO to the caller (spa_prop_set) to trick it
670 * into thinking we encountered a property validation
671 * error.
673 if (!error && spa_suspended(spa)) {
674 spa->spa_failmode = intval;
675 error = SET_ERROR(EIO);
677 break;
679 case ZPOOL_PROP_CACHEFILE:
680 if ((error = nvpair_value_string(elem, &strval)) != 0)
681 break;
683 if (strval[0] == '\0')
684 break;
686 if (strcmp(strval, "none") == 0)
687 break;
689 if (strval[0] != '/') {
690 error = SET_ERROR(EINVAL);
691 break;
694 slash = strrchr(strval, '/');
695 ASSERT(slash != NULL);
697 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
698 strcmp(slash, "/..") == 0)
699 error = SET_ERROR(EINVAL);
700 break;
702 case ZPOOL_PROP_COMMENT:
703 if ((error = nvpair_value_string(elem, &strval)) != 0)
704 break;
705 for (check = strval; *check != '\0'; check++) {
706 if (!isprint(*check)) {
707 error = SET_ERROR(EINVAL);
708 break;
711 if (strlen(strval) > ZPROP_MAX_COMMENT)
712 error = SET_ERROR(E2BIG);
713 break;
715 default:
716 break;
719 if (error)
720 break;
723 (void) nvlist_remove_all(props,
724 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
726 if (!error && reset_bootfs) {
727 error = nvlist_remove(props,
728 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
730 if (!error) {
731 error = nvlist_add_uint64(props,
732 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
736 return (error);
739 void
740 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
742 char *cachefile;
743 spa_config_dirent_t *dp;
745 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
746 &cachefile) != 0)
747 return;
749 dp = kmem_alloc(sizeof (spa_config_dirent_t),
750 KM_SLEEP);
752 if (cachefile[0] == '\0')
753 dp->scd_path = spa_strdup(spa_config_path);
754 else if (strcmp(cachefile, "none") == 0)
755 dp->scd_path = NULL;
756 else
757 dp->scd_path = spa_strdup(cachefile);
759 list_insert_head(&spa->spa_config_list, dp);
760 if (need_sync)
761 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
765 spa_prop_set(spa_t *spa, nvlist_t *nvp)
767 int error;
768 nvpair_t *elem = NULL;
769 boolean_t need_sync = B_FALSE;
771 if ((error = spa_prop_validate(spa, nvp)) != 0)
772 return (error);
774 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
775 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
777 if (prop == ZPOOL_PROP_CACHEFILE ||
778 prop == ZPOOL_PROP_ALTROOT ||
779 prop == ZPOOL_PROP_READONLY)
780 continue;
782 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
783 uint64_t ver;
785 if (prop == ZPOOL_PROP_VERSION) {
786 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
787 } else {
788 ASSERT(zpool_prop_feature(nvpair_name(elem)));
789 ver = SPA_VERSION_FEATURES;
790 need_sync = B_TRUE;
793 /* Save time if the version is already set. */
794 if (ver == spa_version(spa))
795 continue;
798 * In addition to the pool directory object, we might
799 * create the pool properties object, the features for
800 * read object, the features for write object, or the
801 * feature descriptions object.
803 error = dsl_sync_task(spa->spa_name, NULL,
804 spa_sync_version, &ver,
805 6, ZFS_SPACE_CHECK_RESERVED);
806 if (error)
807 return (error);
808 continue;
811 need_sync = B_TRUE;
812 break;
815 if (need_sync) {
816 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
817 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
820 return (0);
824 * If the bootfs property value is dsobj, clear it.
826 void
827 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
829 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
830 VERIFY(zap_remove(spa->spa_meta_objset,
831 spa->spa_pool_props_object,
832 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
833 spa->spa_bootfs = 0;
837 /*ARGSUSED*/
838 static int
839 spa_change_guid_check(void *arg, dmu_tx_t *tx)
841 uint64_t *newguid __maybe_unused = arg;
842 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
843 vdev_t *rvd = spa->spa_root_vdev;
844 uint64_t vdev_state;
846 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
847 int error = (spa_has_checkpoint(spa)) ?
848 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
849 return (SET_ERROR(error));
852 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
853 vdev_state = rvd->vdev_state;
854 spa_config_exit(spa, SCL_STATE, FTAG);
856 if (vdev_state != VDEV_STATE_HEALTHY)
857 return (SET_ERROR(ENXIO));
859 ASSERT3U(spa_guid(spa), !=, *newguid);
861 return (0);
864 static void
865 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
867 uint64_t *newguid = arg;
868 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
869 uint64_t oldguid;
870 vdev_t *rvd = spa->spa_root_vdev;
872 oldguid = spa_guid(spa);
874 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
875 rvd->vdev_guid = *newguid;
876 rvd->vdev_guid_sum += (*newguid - oldguid);
877 vdev_config_dirty(rvd);
878 spa_config_exit(spa, SCL_STATE, FTAG);
880 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
881 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
885 * Change the GUID for the pool. This is done so that we can later
886 * re-import a pool built from a clone of our own vdevs. We will modify
887 * the root vdev's guid, our own pool guid, and then mark all of our
888 * vdevs dirty. Note that we must make sure that all our vdevs are
889 * online when we do this, or else any vdevs that weren't present
890 * would be orphaned from our pool. We are also going to issue a
891 * sysevent to update any watchers.
894 spa_change_guid(spa_t *spa)
896 int error;
897 uint64_t guid;
899 mutex_enter(&spa->spa_vdev_top_lock);
900 mutex_enter(&spa_namespace_lock);
901 guid = spa_generate_guid(NULL);
903 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
904 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
906 if (error == 0) {
907 spa_write_cachefile(spa, B_FALSE, B_TRUE);
908 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
911 mutex_exit(&spa_namespace_lock);
912 mutex_exit(&spa->spa_vdev_top_lock);
914 return (error);
918 * ==========================================================================
919 * SPA state manipulation (open/create/destroy/import/export)
920 * ==========================================================================
923 static int
924 spa_error_entry_compare(const void *a, const void *b)
926 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
927 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
928 int ret;
930 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
931 sizeof (zbookmark_phys_t));
933 return (TREE_ISIGN(ret));
937 * Utility function which retrieves copies of the current logs and
938 * re-initializes them in the process.
940 void
941 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
943 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
945 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
946 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
948 avl_create(&spa->spa_errlist_scrub,
949 spa_error_entry_compare, sizeof (spa_error_entry_t),
950 offsetof(spa_error_entry_t, se_avl));
951 avl_create(&spa->spa_errlist_last,
952 spa_error_entry_compare, sizeof (spa_error_entry_t),
953 offsetof(spa_error_entry_t, se_avl));
956 static void
957 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
959 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
960 enum zti_modes mode = ztip->zti_mode;
961 uint_t value = ztip->zti_value;
962 uint_t count = ztip->zti_count;
963 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
964 uint_t cpus, flags = TASKQ_DYNAMIC;
965 boolean_t batch = B_FALSE;
967 switch (mode) {
968 case ZTI_MODE_FIXED:
969 ASSERT3U(value, >, 0);
970 break;
972 case ZTI_MODE_BATCH:
973 batch = B_TRUE;
974 flags |= TASKQ_THREADS_CPU_PCT;
975 value = MIN(zio_taskq_batch_pct, 100);
976 break;
978 case ZTI_MODE_SCALE:
979 flags |= TASKQ_THREADS_CPU_PCT;
981 * We want more taskqs to reduce lock contention, but we want
982 * less for better request ordering and CPU utilization.
984 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
985 if (zio_taskq_batch_tpq > 0) {
986 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
987 zio_taskq_batch_tpq);
988 } else {
990 * Prefer 6 threads per taskq, but no more taskqs
991 * than threads in them on large systems. For 80%:
993 * taskq taskq total
994 * cpus taskqs percent threads threads
995 * ------- ------- ------- ------- -------
996 * 1 1 80% 1 1
997 * 2 1 80% 1 1
998 * 4 1 80% 3 3
999 * 8 2 40% 3 6
1000 * 16 3 27% 4 12
1001 * 32 5 16% 5 25
1002 * 64 7 11% 7 49
1003 * 128 10 8% 10 100
1004 * 256 14 6% 15 210
1006 count = 1 + cpus / 6;
1007 while (count * count > cpus)
1008 count--;
1010 /* Limit each taskq within 100% to not trigger assertion. */
1011 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1012 value = (zio_taskq_batch_pct + count / 2) / count;
1013 break;
1015 case ZTI_MODE_NULL:
1016 tqs->stqs_count = 0;
1017 tqs->stqs_taskq = NULL;
1018 return;
1020 default:
1021 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1022 "spa_activate()",
1023 zio_type_name[t], zio_taskq_types[q], mode, value);
1024 break;
1027 ASSERT3U(count, >, 0);
1028 tqs->stqs_count = count;
1029 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1031 for (uint_t i = 0; i < count; i++) {
1032 taskq_t *tq;
1033 char name[32];
1035 if (count > 1)
1036 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1037 zio_type_name[t], zio_taskq_types[q], i);
1038 else
1039 (void) snprintf(name, sizeof (name), "%s_%s",
1040 zio_type_name[t], zio_taskq_types[q]);
1042 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1043 if (batch)
1044 flags |= TASKQ_DC_BATCH;
1046 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1047 spa->spa_proc, zio_taskq_basedc, flags);
1048 } else {
1049 pri_t pri = maxclsyspri;
1051 * The write issue taskq can be extremely CPU
1052 * intensive. Run it at slightly less important
1053 * priority than the other taskqs.
1055 * Under Linux and FreeBSD this means incrementing
1056 * the priority value as opposed to platforms like
1057 * illumos where it should be decremented.
1059 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1060 * are equal then a difference between them is
1061 * insignificant.
1063 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1064 #if defined(__linux__)
1065 pri++;
1066 #elif defined(__FreeBSD__)
1067 pri += 4;
1068 #else
1069 #error "unknown OS"
1070 #endif
1072 tq = taskq_create_proc(name, value, pri, 50,
1073 INT_MAX, spa->spa_proc, flags);
1076 tqs->stqs_taskq[i] = tq;
1080 static void
1081 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1083 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1085 if (tqs->stqs_taskq == NULL) {
1086 ASSERT3U(tqs->stqs_count, ==, 0);
1087 return;
1090 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1091 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1092 taskq_destroy(tqs->stqs_taskq[i]);
1095 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1096 tqs->stqs_taskq = NULL;
1100 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1101 * Note that a type may have multiple discrete taskqs to avoid lock contention
1102 * on the taskq itself. In that case we choose which taskq at random by using
1103 * the low bits of gethrtime().
1105 void
1106 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1107 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1109 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1110 taskq_t *tq;
1112 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1113 ASSERT3U(tqs->stqs_count, !=, 0);
1115 if (tqs->stqs_count == 1) {
1116 tq = tqs->stqs_taskq[0];
1117 } else {
1118 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1121 taskq_dispatch_ent(tq, func, arg, flags, ent);
1125 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1127 void
1128 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1129 task_func_t *func, void *arg, uint_t flags)
1131 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1132 taskq_t *tq;
1133 taskqid_t id;
1135 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1136 ASSERT3U(tqs->stqs_count, !=, 0);
1138 if (tqs->stqs_count == 1) {
1139 tq = tqs->stqs_taskq[0];
1140 } else {
1141 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1144 id = taskq_dispatch(tq, func, arg, flags);
1145 if (id)
1146 taskq_wait_id(tq, id);
1149 static void
1150 spa_create_zio_taskqs(spa_t *spa)
1152 for (int t = 0; t < ZIO_TYPES; t++) {
1153 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1154 spa_taskqs_init(spa, t, q);
1160 * Disabled until spa_thread() can be adapted for Linux.
1162 #undef HAVE_SPA_THREAD
1164 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1165 static void
1166 spa_thread(void *arg)
1168 psetid_t zio_taskq_psrset_bind = PS_NONE;
1169 callb_cpr_t cprinfo;
1171 spa_t *spa = arg;
1172 user_t *pu = PTOU(curproc);
1174 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1175 spa->spa_name);
1177 ASSERT(curproc != &p0);
1178 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1179 "zpool-%s", spa->spa_name);
1180 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1182 /* bind this thread to the requested psrset */
1183 if (zio_taskq_psrset_bind != PS_NONE) {
1184 pool_lock();
1185 mutex_enter(&cpu_lock);
1186 mutex_enter(&pidlock);
1187 mutex_enter(&curproc->p_lock);
1189 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1190 0, NULL, NULL) == 0) {
1191 curthread->t_bind_pset = zio_taskq_psrset_bind;
1192 } else {
1193 cmn_err(CE_WARN,
1194 "Couldn't bind process for zfs pool \"%s\" to "
1195 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1198 mutex_exit(&curproc->p_lock);
1199 mutex_exit(&pidlock);
1200 mutex_exit(&cpu_lock);
1201 pool_unlock();
1204 if (zio_taskq_sysdc) {
1205 sysdc_thread_enter(curthread, 100, 0);
1208 spa->spa_proc = curproc;
1209 spa->spa_did = curthread->t_did;
1211 spa_create_zio_taskqs(spa);
1213 mutex_enter(&spa->spa_proc_lock);
1214 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1216 spa->spa_proc_state = SPA_PROC_ACTIVE;
1217 cv_broadcast(&spa->spa_proc_cv);
1219 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1220 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1221 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1222 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1224 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1225 spa->spa_proc_state = SPA_PROC_GONE;
1226 spa->spa_proc = &p0;
1227 cv_broadcast(&spa->spa_proc_cv);
1228 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1230 mutex_enter(&curproc->p_lock);
1231 lwp_exit();
1233 #endif
1236 * Activate an uninitialized pool.
1238 static void
1239 spa_activate(spa_t *spa, spa_mode_t mode)
1241 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1243 spa->spa_state = POOL_STATE_ACTIVE;
1244 spa->spa_mode = mode;
1246 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1247 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1248 spa->spa_embedded_log_class =
1249 metaslab_class_create(spa, zfs_metaslab_ops);
1250 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1251 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1253 /* Try to create a covering process */
1254 mutex_enter(&spa->spa_proc_lock);
1255 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1256 ASSERT(spa->spa_proc == &p0);
1257 spa->spa_did = 0;
1259 #ifdef HAVE_SPA_THREAD
1260 /* Only create a process if we're going to be around a while. */
1261 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1262 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1263 NULL, 0) == 0) {
1264 spa->spa_proc_state = SPA_PROC_CREATED;
1265 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1266 cv_wait(&spa->spa_proc_cv,
1267 &spa->spa_proc_lock);
1269 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1270 ASSERT(spa->spa_proc != &p0);
1271 ASSERT(spa->spa_did != 0);
1272 } else {
1273 #ifdef _KERNEL
1274 cmn_err(CE_WARN,
1275 "Couldn't create process for zfs pool \"%s\"\n",
1276 spa->spa_name);
1277 #endif
1280 #endif /* HAVE_SPA_THREAD */
1281 mutex_exit(&spa->spa_proc_lock);
1283 /* If we didn't create a process, we need to create our taskqs. */
1284 if (spa->spa_proc == &p0) {
1285 spa_create_zio_taskqs(spa);
1288 for (size_t i = 0; i < TXG_SIZE; i++) {
1289 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1290 ZIO_FLAG_CANFAIL);
1293 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1294 offsetof(vdev_t, vdev_config_dirty_node));
1295 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1296 offsetof(objset_t, os_evicting_node));
1297 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1298 offsetof(vdev_t, vdev_state_dirty_node));
1300 txg_list_create(&spa->spa_vdev_txg_list, spa,
1301 offsetof(struct vdev, vdev_txg_node));
1303 avl_create(&spa->spa_errlist_scrub,
1304 spa_error_entry_compare, sizeof (spa_error_entry_t),
1305 offsetof(spa_error_entry_t, se_avl));
1306 avl_create(&spa->spa_errlist_last,
1307 spa_error_entry_compare, sizeof (spa_error_entry_t),
1308 offsetof(spa_error_entry_t, se_avl));
1310 spa_keystore_init(&spa->spa_keystore);
1313 * This taskq is used to perform zvol-minor-related tasks
1314 * asynchronously. This has several advantages, including easy
1315 * resolution of various deadlocks.
1317 * The taskq must be single threaded to ensure tasks are always
1318 * processed in the order in which they were dispatched.
1320 * A taskq per pool allows one to keep the pools independent.
1321 * This way if one pool is suspended, it will not impact another.
1323 * The preferred location to dispatch a zvol minor task is a sync
1324 * task. In this context, there is easy access to the spa_t and minimal
1325 * error handling is required because the sync task must succeed.
1327 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1328 1, INT_MAX, 0);
1331 * Taskq dedicated to prefetcher threads: this is used to prevent the
1332 * pool traverse code from monopolizing the global (and limited)
1333 * system_taskq by inappropriately scheduling long running tasks on it.
1335 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1336 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1339 * The taskq to upgrade datasets in this pool. Currently used by
1340 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1342 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1343 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1347 * Opposite of spa_activate().
1349 static void
1350 spa_deactivate(spa_t *spa)
1352 ASSERT(spa->spa_sync_on == B_FALSE);
1353 ASSERT(spa->spa_dsl_pool == NULL);
1354 ASSERT(spa->spa_root_vdev == NULL);
1355 ASSERT(spa->spa_async_zio_root == NULL);
1356 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1358 spa_evicting_os_wait(spa);
1360 if (spa->spa_zvol_taskq) {
1361 taskq_destroy(spa->spa_zvol_taskq);
1362 spa->spa_zvol_taskq = NULL;
1365 if (spa->spa_prefetch_taskq) {
1366 taskq_destroy(spa->spa_prefetch_taskq);
1367 spa->spa_prefetch_taskq = NULL;
1370 if (spa->spa_upgrade_taskq) {
1371 taskq_destroy(spa->spa_upgrade_taskq);
1372 spa->spa_upgrade_taskq = NULL;
1375 txg_list_destroy(&spa->spa_vdev_txg_list);
1377 list_destroy(&spa->spa_config_dirty_list);
1378 list_destroy(&spa->spa_evicting_os_list);
1379 list_destroy(&spa->spa_state_dirty_list);
1381 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1383 for (int t = 0; t < ZIO_TYPES; t++) {
1384 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1385 spa_taskqs_fini(spa, t, q);
1389 for (size_t i = 0; i < TXG_SIZE; i++) {
1390 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1391 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1392 spa->spa_txg_zio[i] = NULL;
1395 metaslab_class_destroy(spa->spa_normal_class);
1396 spa->spa_normal_class = NULL;
1398 metaslab_class_destroy(spa->spa_log_class);
1399 spa->spa_log_class = NULL;
1401 metaslab_class_destroy(spa->spa_embedded_log_class);
1402 spa->spa_embedded_log_class = NULL;
1404 metaslab_class_destroy(spa->spa_special_class);
1405 spa->spa_special_class = NULL;
1407 metaslab_class_destroy(spa->spa_dedup_class);
1408 spa->spa_dedup_class = NULL;
1411 * If this was part of an import or the open otherwise failed, we may
1412 * still have errors left in the queues. Empty them just in case.
1414 spa_errlog_drain(spa);
1415 avl_destroy(&spa->spa_errlist_scrub);
1416 avl_destroy(&spa->spa_errlist_last);
1418 spa_keystore_fini(&spa->spa_keystore);
1420 spa->spa_state = POOL_STATE_UNINITIALIZED;
1422 mutex_enter(&spa->spa_proc_lock);
1423 if (spa->spa_proc_state != SPA_PROC_NONE) {
1424 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1425 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1426 cv_broadcast(&spa->spa_proc_cv);
1427 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1428 ASSERT(spa->spa_proc != &p0);
1429 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1431 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1432 spa->spa_proc_state = SPA_PROC_NONE;
1434 ASSERT(spa->spa_proc == &p0);
1435 mutex_exit(&spa->spa_proc_lock);
1438 * We want to make sure spa_thread() has actually exited the ZFS
1439 * module, so that the module can't be unloaded out from underneath
1440 * it.
1442 if (spa->spa_did != 0) {
1443 thread_join(spa->spa_did);
1444 spa->spa_did = 0;
1449 * Verify a pool configuration, and construct the vdev tree appropriately. This
1450 * will create all the necessary vdevs in the appropriate layout, with each vdev
1451 * in the CLOSED state. This will prep the pool before open/creation/import.
1452 * All vdev validation is done by the vdev_alloc() routine.
1455 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1456 uint_t id, int atype)
1458 nvlist_t **child;
1459 uint_t children;
1460 int error;
1462 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1463 return (error);
1465 if ((*vdp)->vdev_ops->vdev_op_leaf)
1466 return (0);
1468 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1469 &child, &children);
1471 if (error == ENOENT)
1472 return (0);
1474 if (error) {
1475 vdev_free(*vdp);
1476 *vdp = NULL;
1477 return (SET_ERROR(EINVAL));
1480 for (int c = 0; c < children; c++) {
1481 vdev_t *vd;
1482 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1483 atype)) != 0) {
1484 vdev_free(*vdp);
1485 *vdp = NULL;
1486 return (error);
1490 ASSERT(*vdp != NULL);
1492 return (0);
1495 static boolean_t
1496 spa_should_flush_logs_on_unload(spa_t *spa)
1498 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1499 return (B_FALSE);
1501 if (!spa_writeable(spa))
1502 return (B_FALSE);
1504 if (!spa->spa_sync_on)
1505 return (B_FALSE);
1507 if (spa_state(spa) != POOL_STATE_EXPORTED)
1508 return (B_FALSE);
1510 if (zfs_keep_log_spacemaps_at_export)
1511 return (B_FALSE);
1513 return (B_TRUE);
1517 * Opens a transaction that will set the flag that will instruct
1518 * spa_sync to attempt to flush all the metaslabs for that txg.
1520 static void
1521 spa_unload_log_sm_flush_all(spa_t *spa)
1523 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1524 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1526 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1527 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1529 dmu_tx_commit(tx);
1530 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1533 static void
1534 spa_unload_log_sm_metadata(spa_t *spa)
1536 void *cookie = NULL;
1537 spa_log_sm_t *sls;
1538 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1539 &cookie)) != NULL) {
1540 VERIFY0(sls->sls_mscount);
1541 kmem_free(sls, sizeof (spa_log_sm_t));
1544 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1545 e != NULL; e = list_head(&spa->spa_log_summary)) {
1546 VERIFY0(e->lse_mscount);
1547 list_remove(&spa->spa_log_summary, e);
1548 kmem_free(e, sizeof (log_summary_entry_t));
1551 spa->spa_unflushed_stats.sus_nblocks = 0;
1552 spa->spa_unflushed_stats.sus_memused = 0;
1553 spa->spa_unflushed_stats.sus_blocklimit = 0;
1556 static void
1557 spa_destroy_aux_threads(spa_t *spa)
1559 if (spa->spa_condense_zthr != NULL) {
1560 zthr_destroy(spa->spa_condense_zthr);
1561 spa->spa_condense_zthr = NULL;
1563 if (spa->spa_checkpoint_discard_zthr != NULL) {
1564 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1565 spa->spa_checkpoint_discard_zthr = NULL;
1567 if (spa->spa_livelist_delete_zthr != NULL) {
1568 zthr_destroy(spa->spa_livelist_delete_zthr);
1569 spa->spa_livelist_delete_zthr = NULL;
1571 if (spa->spa_livelist_condense_zthr != NULL) {
1572 zthr_destroy(spa->spa_livelist_condense_zthr);
1573 spa->spa_livelist_condense_zthr = NULL;
1578 * Opposite of spa_load().
1580 static void
1581 spa_unload(spa_t *spa)
1583 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1584 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1586 spa_import_progress_remove(spa_guid(spa));
1587 spa_load_note(spa, "UNLOADING");
1589 spa_wake_waiters(spa);
1592 * If the log space map feature is enabled and the pool is getting
1593 * exported (but not destroyed), we want to spend some time flushing
1594 * as many metaslabs as we can in an attempt to destroy log space
1595 * maps and save import time.
1597 if (spa_should_flush_logs_on_unload(spa))
1598 spa_unload_log_sm_flush_all(spa);
1601 * Stop async tasks.
1603 spa_async_suspend(spa);
1605 if (spa->spa_root_vdev) {
1606 vdev_t *root_vdev = spa->spa_root_vdev;
1607 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1608 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1609 vdev_autotrim_stop_all(spa);
1610 vdev_rebuild_stop_all(spa);
1614 * Stop syncing.
1616 if (spa->spa_sync_on) {
1617 txg_sync_stop(spa->spa_dsl_pool);
1618 spa->spa_sync_on = B_FALSE;
1622 * This ensures that there is no async metaslab prefetching
1623 * while we attempt to unload the spa.
1625 if (spa->spa_root_vdev != NULL) {
1626 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1627 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1628 if (vc->vdev_mg != NULL)
1629 taskq_wait(vc->vdev_mg->mg_taskq);
1633 if (spa->spa_mmp.mmp_thread)
1634 mmp_thread_stop(spa);
1637 * Wait for any outstanding async I/O to complete.
1639 if (spa->spa_async_zio_root != NULL) {
1640 for (int i = 0; i < max_ncpus; i++)
1641 (void) zio_wait(spa->spa_async_zio_root[i]);
1642 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1643 spa->spa_async_zio_root = NULL;
1646 if (spa->spa_vdev_removal != NULL) {
1647 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1648 spa->spa_vdev_removal = NULL;
1651 spa_destroy_aux_threads(spa);
1653 spa_condense_fini(spa);
1655 bpobj_close(&spa->spa_deferred_bpobj);
1657 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1660 * Close all vdevs.
1662 if (spa->spa_root_vdev)
1663 vdev_free(spa->spa_root_vdev);
1664 ASSERT(spa->spa_root_vdev == NULL);
1667 * Close the dsl pool.
1669 if (spa->spa_dsl_pool) {
1670 dsl_pool_close(spa->spa_dsl_pool);
1671 spa->spa_dsl_pool = NULL;
1672 spa->spa_meta_objset = NULL;
1675 ddt_unload(spa);
1676 spa_unload_log_sm_metadata(spa);
1679 * Drop and purge level 2 cache
1681 spa_l2cache_drop(spa);
1683 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1684 vdev_free(spa->spa_spares.sav_vdevs[i]);
1685 if (spa->spa_spares.sav_vdevs) {
1686 kmem_free(spa->spa_spares.sav_vdevs,
1687 spa->spa_spares.sav_count * sizeof (void *));
1688 spa->spa_spares.sav_vdevs = NULL;
1690 if (spa->spa_spares.sav_config) {
1691 nvlist_free(spa->spa_spares.sav_config);
1692 spa->spa_spares.sav_config = NULL;
1694 spa->spa_spares.sav_count = 0;
1696 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1697 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1698 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1700 if (spa->spa_l2cache.sav_vdevs) {
1701 kmem_free(spa->spa_l2cache.sav_vdevs,
1702 spa->spa_l2cache.sav_count * sizeof (void *));
1703 spa->spa_l2cache.sav_vdevs = NULL;
1705 if (spa->spa_l2cache.sav_config) {
1706 nvlist_free(spa->spa_l2cache.sav_config);
1707 spa->spa_l2cache.sav_config = NULL;
1709 spa->spa_l2cache.sav_count = 0;
1711 spa->spa_async_suspended = 0;
1713 spa->spa_indirect_vdevs_loaded = B_FALSE;
1715 if (spa->spa_comment != NULL) {
1716 spa_strfree(spa->spa_comment);
1717 spa->spa_comment = NULL;
1719 if (spa->spa_compatibility != NULL) {
1720 spa_strfree(spa->spa_compatibility);
1721 spa->spa_compatibility = NULL;
1724 spa_config_exit(spa, SCL_ALL, spa);
1728 * Load (or re-load) the current list of vdevs describing the active spares for
1729 * this pool. When this is called, we have some form of basic information in
1730 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1731 * then re-generate a more complete list including status information.
1733 void
1734 spa_load_spares(spa_t *spa)
1736 nvlist_t **spares;
1737 uint_t nspares;
1738 int i;
1739 vdev_t *vd, *tvd;
1741 #ifndef _KERNEL
1743 * zdb opens both the current state of the pool and the
1744 * checkpointed state (if present), with a different spa_t.
1746 * As spare vdevs are shared among open pools, we skip loading
1747 * them when we load the checkpointed state of the pool.
1749 if (!spa_writeable(spa))
1750 return;
1751 #endif
1753 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1756 * First, close and free any existing spare vdevs.
1758 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1759 vd = spa->spa_spares.sav_vdevs[i];
1761 /* Undo the call to spa_activate() below */
1762 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1763 B_FALSE)) != NULL && tvd->vdev_isspare)
1764 spa_spare_remove(tvd);
1765 vdev_close(vd);
1766 vdev_free(vd);
1769 if (spa->spa_spares.sav_vdevs)
1770 kmem_free(spa->spa_spares.sav_vdevs,
1771 spa->spa_spares.sav_count * sizeof (void *));
1773 if (spa->spa_spares.sav_config == NULL)
1774 nspares = 0;
1775 else
1776 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1777 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1779 spa->spa_spares.sav_count = (int)nspares;
1780 spa->spa_spares.sav_vdevs = NULL;
1782 if (nspares == 0)
1783 return;
1786 * Construct the array of vdevs, opening them to get status in the
1787 * process. For each spare, there is potentially two different vdev_t
1788 * structures associated with it: one in the list of spares (used only
1789 * for basic validation purposes) and one in the active vdev
1790 * configuration (if it's spared in). During this phase we open and
1791 * validate each vdev on the spare list. If the vdev also exists in the
1792 * active configuration, then we also mark this vdev as an active spare.
1794 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1795 KM_SLEEP);
1796 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1797 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1798 VDEV_ALLOC_SPARE) == 0);
1799 ASSERT(vd != NULL);
1801 spa->spa_spares.sav_vdevs[i] = vd;
1803 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1804 B_FALSE)) != NULL) {
1805 if (!tvd->vdev_isspare)
1806 spa_spare_add(tvd);
1809 * We only mark the spare active if we were successfully
1810 * able to load the vdev. Otherwise, importing a pool
1811 * with a bad active spare would result in strange
1812 * behavior, because multiple pool would think the spare
1813 * is actively in use.
1815 * There is a vulnerability here to an equally bizarre
1816 * circumstance, where a dead active spare is later
1817 * brought back to life (onlined or otherwise). Given
1818 * the rarity of this scenario, and the extra complexity
1819 * it adds, we ignore the possibility.
1821 if (!vdev_is_dead(tvd))
1822 spa_spare_activate(tvd);
1825 vd->vdev_top = vd;
1826 vd->vdev_aux = &spa->spa_spares;
1828 if (vdev_open(vd) != 0)
1829 continue;
1831 if (vdev_validate_aux(vd) == 0)
1832 spa_spare_add(vd);
1836 * Recompute the stashed list of spares, with status information
1837 * this time.
1839 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1840 DATA_TYPE_NVLIST_ARRAY) == 0);
1842 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1843 KM_SLEEP);
1844 for (i = 0; i < spa->spa_spares.sav_count; i++)
1845 spares[i] = vdev_config_generate(spa,
1846 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1847 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1848 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1849 for (i = 0; i < spa->spa_spares.sav_count; i++)
1850 nvlist_free(spares[i]);
1851 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1855 * Load (or re-load) the current list of vdevs describing the active l2cache for
1856 * this pool. When this is called, we have some form of basic information in
1857 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1858 * then re-generate a more complete list including status information.
1859 * Devices which are already active have their details maintained, and are
1860 * not re-opened.
1862 void
1863 spa_load_l2cache(spa_t *spa)
1865 nvlist_t **l2cache = NULL;
1866 uint_t nl2cache;
1867 int i, j, oldnvdevs;
1868 uint64_t guid;
1869 vdev_t *vd, **oldvdevs, **newvdevs;
1870 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1872 #ifndef _KERNEL
1874 * zdb opens both the current state of the pool and the
1875 * checkpointed state (if present), with a different spa_t.
1877 * As L2 caches are part of the ARC which is shared among open
1878 * pools, we skip loading them when we load the checkpointed
1879 * state of the pool.
1881 if (!spa_writeable(spa))
1882 return;
1883 #endif
1885 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1887 oldvdevs = sav->sav_vdevs;
1888 oldnvdevs = sav->sav_count;
1889 sav->sav_vdevs = NULL;
1890 sav->sav_count = 0;
1892 if (sav->sav_config == NULL) {
1893 nl2cache = 0;
1894 newvdevs = NULL;
1895 goto out;
1898 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1899 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1900 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1903 * Process new nvlist of vdevs.
1905 for (i = 0; i < nl2cache; i++) {
1906 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1907 &guid) == 0);
1909 newvdevs[i] = NULL;
1910 for (j = 0; j < oldnvdevs; j++) {
1911 vd = oldvdevs[j];
1912 if (vd != NULL && guid == vd->vdev_guid) {
1914 * Retain previous vdev for add/remove ops.
1916 newvdevs[i] = vd;
1917 oldvdevs[j] = NULL;
1918 break;
1922 if (newvdevs[i] == NULL) {
1924 * Create new vdev
1926 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1927 VDEV_ALLOC_L2CACHE) == 0);
1928 ASSERT(vd != NULL);
1929 newvdevs[i] = vd;
1932 * Commit this vdev as an l2cache device,
1933 * even if it fails to open.
1935 spa_l2cache_add(vd);
1937 vd->vdev_top = vd;
1938 vd->vdev_aux = sav;
1940 spa_l2cache_activate(vd);
1942 if (vdev_open(vd) != 0)
1943 continue;
1945 (void) vdev_validate_aux(vd);
1947 if (!vdev_is_dead(vd))
1948 l2arc_add_vdev(spa, vd);
1951 * Upon cache device addition to a pool or pool
1952 * creation with a cache device or if the header
1953 * of the device is invalid we issue an async
1954 * TRIM command for the whole device which will
1955 * execute if l2arc_trim_ahead > 0.
1957 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
1961 sav->sav_vdevs = newvdevs;
1962 sav->sav_count = (int)nl2cache;
1965 * Recompute the stashed list of l2cache devices, with status
1966 * information this time.
1968 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1969 DATA_TYPE_NVLIST_ARRAY) == 0);
1971 if (sav->sav_count > 0)
1972 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1973 KM_SLEEP);
1974 for (i = 0; i < sav->sav_count; i++)
1975 l2cache[i] = vdev_config_generate(spa,
1976 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1977 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1978 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1980 out:
1982 * Purge vdevs that were dropped
1984 for (i = 0; i < oldnvdevs; i++) {
1985 uint64_t pool;
1987 vd = oldvdevs[i];
1988 if (vd != NULL) {
1989 ASSERT(vd->vdev_isl2cache);
1991 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1992 pool != 0ULL && l2arc_vdev_present(vd))
1993 l2arc_remove_vdev(vd);
1994 vdev_clear_stats(vd);
1995 vdev_free(vd);
1999 if (oldvdevs)
2000 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2002 for (i = 0; i < sav->sav_count; i++)
2003 nvlist_free(l2cache[i]);
2004 if (sav->sav_count)
2005 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2008 static int
2009 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2011 dmu_buf_t *db;
2012 char *packed = NULL;
2013 size_t nvsize = 0;
2014 int error;
2015 *value = NULL;
2017 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2018 if (error)
2019 return (error);
2021 nvsize = *(uint64_t *)db->db_data;
2022 dmu_buf_rele(db, FTAG);
2024 packed = vmem_alloc(nvsize, KM_SLEEP);
2025 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2026 DMU_READ_PREFETCH);
2027 if (error == 0)
2028 error = nvlist_unpack(packed, nvsize, value, 0);
2029 vmem_free(packed, nvsize);
2031 return (error);
2035 * Concrete top-level vdevs that are not missing and are not logs. At every
2036 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2038 static uint64_t
2039 spa_healthy_core_tvds(spa_t *spa)
2041 vdev_t *rvd = spa->spa_root_vdev;
2042 uint64_t tvds = 0;
2044 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2045 vdev_t *vd = rvd->vdev_child[i];
2046 if (vd->vdev_islog)
2047 continue;
2048 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2049 tvds++;
2052 return (tvds);
2056 * Checks to see if the given vdev could not be opened, in which case we post a
2057 * sysevent to notify the autoreplace code that the device has been removed.
2059 static void
2060 spa_check_removed(vdev_t *vd)
2062 for (uint64_t c = 0; c < vd->vdev_children; c++)
2063 spa_check_removed(vd->vdev_child[c]);
2065 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2066 vdev_is_concrete(vd)) {
2067 zfs_post_autoreplace(vd->vdev_spa, vd);
2068 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2072 static int
2073 spa_check_for_missing_logs(spa_t *spa)
2075 vdev_t *rvd = spa->spa_root_vdev;
2078 * If we're doing a normal import, then build up any additional
2079 * diagnostic information about missing log devices.
2080 * We'll pass this up to the user for further processing.
2082 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2083 nvlist_t **child, *nv;
2084 uint64_t idx = 0;
2086 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2087 KM_SLEEP);
2088 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2090 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2091 vdev_t *tvd = rvd->vdev_child[c];
2094 * We consider a device as missing only if it failed
2095 * to open (i.e. offline or faulted is not considered
2096 * as missing).
2098 if (tvd->vdev_islog &&
2099 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2100 child[idx++] = vdev_config_generate(spa, tvd,
2101 B_FALSE, VDEV_CONFIG_MISSING);
2105 if (idx > 0) {
2106 fnvlist_add_nvlist_array(nv,
2107 ZPOOL_CONFIG_CHILDREN, child, idx);
2108 fnvlist_add_nvlist(spa->spa_load_info,
2109 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2111 for (uint64_t i = 0; i < idx; i++)
2112 nvlist_free(child[i]);
2114 nvlist_free(nv);
2115 kmem_free(child, rvd->vdev_children * sizeof (char **));
2117 if (idx > 0) {
2118 spa_load_failed(spa, "some log devices are missing");
2119 vdev_dbgmsg_print_tree(rvd, 2);
2120 return (SET_ERROR(ENXIO));
2122 } else {
2123 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2124 vdev_t *tvd = rvd->vdev_child[c];
2126 if (tvd->vdev_islog &&
2127 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2128 spa_set_log_state(spa, SPA_LOG_CLEAR);
2129 spa_load_note(spa, "some log devices are "
2130 "missing, ZIL is dropped.");
2131 vdev_dbgmsg_print_tree(rvd, 2);
2132 break;
2137 return (0);
2141 * Check for missing log devices
2143 static boolean_t
2144 spa_check_logs(spa_t *spa)
2146 boolean_t rv = B_FALSE;
2147 dsl_pool_t *dp = spa_get_dsl(spa);
2149 switch (spa->spa_log_state) {
2150 default:
2151 break;
2152 case SPA_LOG_MISSING:
2153 /* need to recheck in case slog has been restored */
2154 case SPA_LOG_UNKNOWN:
2155 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2156 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2157 if (rv)
2158 spa_set_log_state(spa, SPA_LOG_MISSING);
2159 break;
2161 return (rv);
2165 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2167 static boolean_t
2168 spa_passivate_log(spa_t *spa)
2170 vdev_t *rvd = spa->spa_root_vdev;
2171 boolean_t slog_found = B_FALSE;
2173 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2175 for (int c = 0; c < rvd->vdev_children; c++) {
2176 vdev_t *tvd = rvd->vdev_child[c];
2178 if (tvd->vdev_islog) {
2179 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2180 metaslab_group_passivate(tvd->vdev_mg);
2181 slog_found = B_TRUE;
2185 return (slog_found);
2189 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2191 static void
2192 spa_activate_log(spa_t *spa)
2194 vdev_t *rvd = spa->spa_root_vdev;
2196 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2198 for (int c = 0; c < rvd->vdev_children; c++) {
2199 vdev_t *tvd = rvd->vdev_child[c];
2201 if (tvd->vdev_islog) {
2202 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2203 metaslab_group_activate(tvd->vdev_mg);
2209 spa_reset_logs(spa_t *spa)
2211 int error;
2213 error = dmu_objset_find(spa_name(spa), zil_reset,
2214 NULL, DS_FIND_CHILDREN);
2215 if (error == 0) {
2217 * We successfully offlined the log device, sync out the
2218 * current txg so that the "stubby" block can be removed
2219 * by zil_sync().
2221 txg_wait_synced(spa->spa_dsl_pool, 0);
2223 return (error);
2226 static void
2227 spa_aux_check_removed(spa_aux_vdev_t *sav)
2229 for (int i = 0; i < sav->sav_count; i++)
2230 spa_check_removed(sav->sav_vdevs[i]);
2233 void
2234 spa_claim_notify(zio_t *zio)
2236 spa_t *spa = zio->io_spa;
2238 if (zio->io_error)
2239 return;
2241 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2242 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2243 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2244 mutex_exit(&spa->spa_props_lock);
2247 typedef struct spa_load_error {
2248 uint64_t sle_meta_count;
2249 uint64_t sle_data_count;
2250 } spa_load_error_t;
2252 static void
2253 spa_load_verify_done(zio_t *zio)
2255 blkptr_t *bp = zio->io_bp;
2256 spa_load_error_t *sle = zio->io_private;
2257 dmu_object_type_t type = BP_GET_TYPE(bp);
2258 int error = zio->io_error;
2259 spa_t *spa = zio->io_spa;
2261 abd_free(zio->io_abd);
2262 if (error) {
2263 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2264 type != DMU_OT_INTENT_LOG)
2265 atomic_inc_64(&sle->sle_meta_count);
2266 else
2267 atomic_inc_64(&sle->sle_data_count);
2270 mutex_enter(&spa->spa_scrub_lock);
2271 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2272 cv_broadcast(&spa->spa_scrub_io_cv);
2273 mutex_exit(&spa->spa_scrub_lock);
2277 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2278 * By default, we set it to 1/16th of the arc.
2280 int spa_load_verify_shift = 4;
2281 int spa_load_verify_metadata = B_TRUE;
2282 int spa_load_verify_data = B_TRUE;
2284 /*ARGSUSED*/
2285 static int
2286 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2287 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2289 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2290 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2291 return (0);
2293 * Note: normally this routine will not be called if
2294 * spa_load_verify_metadata is not set. However, it may be useful
2295 * to manually set the flag after the traversal has begun.
2297 if (!spa_load_verify_metadata)
2298 return (0);
2299 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2300 return (0);
2302 uint64_t maxinflight_bytes =
2303 arc_target_bytes() >> spa_load_verify_shift;
2304 zio_t *rio = arg;
2305 size_t size = BP_GET_PSIZE(bp);
2307 mutex_enter(&spa->spa_scrub_lock);
2308 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2309 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2310 spa->spa_load_verify_bytes += size;
2311 mutex_exit(&spa->spa_scrub_lock);
2313 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2314 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2315 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2316 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2317 return (0);
2320 /* ARGSUSED */
2321 static int
2322 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2324 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2325 return (SET_ERROR(ENAMETOOLONG));
2327 return (0);
2330 static int
2331 spa_load_verify(spa_t *spa)
2333 zio_t *rio;
2334 spa_load_error_t sle = { 0 };
2335 zpool_load_policy_t policy;
2336 boolean_t verify_ok = B_FALSE;
2337 int error = 0;
2339 zpool_get_load_policy(spa->spa_config, &policy);
2341 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2342 return (0);
2344 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2345 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2346 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2347 DS_FIND_CHILDREN);
2348 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2349 if (error != 0)
2350 return (error);
2352 rio = zio_root(spa, NULL, &sle,
2353 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2355 if (spa_load_verify_metadata) {
2356 if (spa->spa_extreme_rewind) {
2357 spa_load_note(spa, "performing a complete scan of the "
2358 "pool since extreme rewind is on. This may take "
2359 "a very long time.\n (spa_load_verify_data=%u, "
2360 "spa_load_verify_metadata=%u)",
2361 spa_load_verify_data, spa_load_verify_metadata);
2364 error = traverse_pool(spa, spa->spa_verify_min_txg,
2365 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2366 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2369 (void) zio_wait(rio);
2370 ASSERT0(spa->spa_load_verify_bytes);
2372 spa->spa_load_meta_errors = sle.sle_meta_count;
2373 spa->spa_load_data_errors = sle.sle_data_count;
2375 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2376 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2377 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2378 (u_longlong_t)sle.sle_data_count);
2381 if (spa_load_verify_dryrun ||
2382 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2383 sle.sle_data_count <= policy.zlp_maxdata)) {
2384 int64_t loss = 0;
2386 verify_ok = B_TRUE;
2387 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2388 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2390 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2391 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2392 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2393 VERIFY(nvlist_add_int64(spa->spa_load_info,
2394 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2395 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2396 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2397 } else {
2398 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2401 if (spa_load_verify_dryrun)
2402 return (0);
2404 if (error) {
2405 if (error != ENXIO && error != EIO)
2406 error = SET_ERROR(EIO);
2407 return (error);
2410 return (verify_ok ? 0 : EIO);
2414 * Find a value in the pool props object.
2416 static void
2417 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2419 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2420 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2424 * Find a value in the pool directory object.
2426 static int
2427 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2429 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2430 name, sizeof (uint64_t), 1, val);
2432 if (error != 0 && (error != ENOENT || log_enoent)) {
2433 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2434 "[error=%d]", name, error);
2437 return (error);
2440 static int
2441 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2443 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2444 return (SET_ERROR(err));
2447 boolean_t
2448 spa_livelist_delete_check(spa_t *spa)
2450 return (spa->spa_livelists_to_delete != 0);
2453 /* ARGSUSED */
2454 static boolean_t
2455 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2457 spa_t *spa = arg;
2458 return (spa_livelist_delete_check(spa));
2461 static int
2462 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2464 spa_t *spa = arg;
2465 zio_free(spa, tx->tx_txg, bp);
2466 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2467 -bp_get_dsize_sync(spa, bp),
2468 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2469 return (0);
2472 static int
2473 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2475 int err;
2476 zap_cursor_t zc;
2477 zap_attribute_t za;
2478 zap_cursor_init(&zc, os, zap_obj);
2479 err = zap_cursor_retrieve(&zc, &za);
2480 zap_cursor_fini(&zc);
2481 if (err == 0)
2482 *llp = za.za_first_integer;
2483 return (err);
2487 * Components of livelist deletion that must be performed in syncing
2488 * context: freeing block pointers and updating the pool-wide data
2489 * structures to indicate how much work is left to do
2491 typedef struct sublist_delete_arg {
2492 spa_t *spa;
2493 dsl_deadlist_t *ll;
2494 uint64_t key;
2495 bplist_t *to_free;
2496 } sublist_delete_arg_t;
2498 static void
2499 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2501 sublist_delete_arg_t *sda = arg;
2502 spa_t *spa = sda->spa;
2503 dsl_deadlist_t *ll = sda->ll;
2504 uint64_t key = sda->key;
2505 bplist_t *to_free = sda->to_free;
2507 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2508 dsl_deadlist_remove_entry(ll, key, tx);
2511 typedef struct livelist_delete_arg {
2512 spa_t *spa;
2513 uint64_t ll_obj;
2514 uint64_t zap_obj;
2515 } livelist_delete_arg_t;
2517 static void
2518 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2520 livelist_delete_arg_t *lda = arg;
2521 spa_t *spa = lda->spa;
2522 uint64_t ll_obj = lda->ll_obj;
2523 uint64_t zap_obj = lda->zap_obj;
2524 objset_t *mos = spa->spa_meta_objset;
2525 uint64_t count;
2527 /* free the livelist and decrement the feature count */
2528 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2529 dsl_deadlist_free(mos, ll_obj, tx);
2530 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2531 VERIFY0(zap_count(mos, zap_obj, &count));
2532 if (count == 0) {
2533 /* no more livelists to delete */
2534 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2535 DMU_POOL_DELETED_CLONES, tx));
2536 VERIFY0(zap_destroy(mos, zap_obj, tx));
2537 spa->spa_livelists_to_delete = 0;
2538 spa_notify_waiters(spa);
2543 * Load in the value for the livelist to be removed and open it. Then,
2544 * load its first sublist and determine which block pointers should actually
2545 * be freed. Then, call a synctask which performs the actual frees and updates
2546 * the pool-wide livelist data.
2548 /* ARGSUSED */
2549 static void
2550 spa_livelist_delete_cb(void *arg, zthr_t *z)
2552 spa_t *spa = arg;
2553 uint64_t ll_obj = 0, count;
2554 objset_t *mos = spa->spa_meta_objset;
2555 uint64_t zap_obj = spa->spa_livelists_to_delete;
2557 * Determine the next livelist to delete. This function should only
2558 * be called if there is at least one deleted clone.
2560 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2561 VERIFY0(zap_count(mos, ll_obj, &count));
2562 if (count > 0) {
2563 dsl_deadlist_t *ll;
2564 dsl_deadlist_entry_t *dle;
2565 bplist_t to_free;
2566 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2567 dsl_deadlist_open(ll, mos, ll_obj);
2568 dle = dsl_deadlist_first(ll);
2569 ASSERT3P(dle, !=, NULL);
2570 bplist_create(&to_free);
2571 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2572 z, NULL);
2573 if (err == 0) {
2574 sublist_delete_arg_t sync_arg = {
2575 .spa = spa,
2576 .ll = ll,
2577 .key = dle->dle_mintxg,
2578 .to_free = &to_free
2580 zfs_dbgmsg("deleting sublist (id %llu) from"
2581 " livelist %llu, %lld remaining",
2582 (u_longlong_t)dle->dle_bpobj.bpo_object,
2583 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2584 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2585 sublist_delete_sync, &sync_arg, 0,
2586 ZFS_SPACE_CHECK_DESTROY));
2587 } else {
2588 VERIFY3U(err, ==, EINTR);
2590 bplist_clear(&to_free);
2591 bplist_destroy(&to_free);
2592 dsl_deadlist_close(ll);
2593 kmem_free(ll, sizeof (dsl_deadlist_t));
2594 } else {
2595 livelist_delete_arg_t sync_arg = {
2596 .spa = spa,
2597 .ll_obj = ll_obj,
2598 .zap_obj = zap_obj
2600 zfs_dbgmsg("deletion of livelist %llu completed",
2601 (u_longlong_t)ll_obj);
2602 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2603 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2607 static void
2608 spa_start_livelist_destroy_thread(spa_t *spa)
2610 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2611 spa->spa_livelist_delete_zthr =
2612 zthr_create("z_livelist_destroy",
2613 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa);
2616 typedef struct livelist_new_arg {
2617 bplist_t *allocs;
2618 bplist_t *frees;
2619 } livelist_new_arg_t;
2621 static int
2622 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2623 dmu_tx_t *tx)
2625 ASSERT(tx == NULL);
2626 livelist_new_arg_t *lna = arg;
2627 if (bp_freed) {
2628 bplist_append(lna->frees, bp);
2629 } else {
2630 bplist_append(lna->allocs, bp);
2631 zfs_livelist_condense_new_alloc++;
2633 return (0);
2636 typedef struct livelist_condense_arg {
2637 spa_t *spa;
2638 bplist_t to_keep;
2639 uint64_t first_size;
2640 uint64_t next_size;
2641 } livelist_condense_arg_t;
2643 static void
2644 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2646 livelist_condense_arg_t *lca = arg;
2647 spa_t *spa = lca->spa;
2648 bplist_t new_frees;
2649 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2651 /* Have we been cancelled? */
2652 if (spa->spa_to_condense.cancelled) {
2653 zfs_livelist_condense_sync_cancel++;
2654 goto out;
2657 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2658 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2659 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2662 * It's possible that the livelist was changed while the zthr was
2663 * running. Therefore, we need to check for new blkptrs in the two
2664 * entries being condensed and continue to track them in the livelist.
2665 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2666 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2667 * we need to sort them into two different bplists.
2669 uint64_t first_obj = first->dle_bpobj.bpo_object;
2670 uint64_t next_obj = next->dle_bpobj.bpo_object;
2671 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2672 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2674 bplist_create(&new_frees);
2675 livelist_new_arg_t new_bps = {
2676 .allocs = &lca->to_keep,
2677 .frees = &new_frees,
2680 if (cur_first_size > lca->first_size) {
2681 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2682 livelist_track_new_cb, &new_bps, lca->first_size));
2684 if (cur_next_size > lca->next_size) {
2685 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2686 livelist_track_new_cb, &new_bps, lca->next_size));
2689 dsl_deadlist_clear_entry(first, ll, tx);
2690 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2691 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2693 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2694 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2695 bplist_destroy(&new_frees);
2697 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2698 dsl_dataset_name(ds, dsname);
2699 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2700 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2701 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2702 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2703 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2704 (u_longlong_t)cur_next_size,
2705 (u_longlong_t)first->dle_bpobj.bpo_object,
2706 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2707 out:
2708 dmu_buf_rele(ds->ds_dbuf, spa);
2709 spa->spa_to_condense.ds = NULL;
2710 bplist_clear(&lca->to_keep);
2711 bplist_destroy(&lca->to_keep);
2712 kmem_free(lca, sizeof (livelist_condense_arg_t));
2713 spa->spa_to_condense.syncing = B_FALSE;
2716 static void
2717 spa_livelist_condense_cb(void *arg, zthr_t *t)
2719 while (zfs_livelist_condense_zthr_pause &&
2720 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2721 delay(1);
2723 spa_t *spa = arg;
2724 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2725 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2726 uint64_t first_size, next_size;
2728 livelist_condense_arg_t *lca =
2729 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2730 bplist_create(&lca->to_keep);
2733 * Process the livelists (matching FREEs and ALLOCs) in open context
2734 * so we have minimal work in syncing context to condense.
2736 * We save bpobj sizes (first_size and next_size) to use later in
2737 * syncing context to determine if entries were added to these sublists
2738 * while in open context. This is possible because the clone is still
2739 * active and open for normal writes and we want to make sure the new,
2740 * unprocessed blockpointers are inserted into the livelist normally.
2742 * Note that dsl_process_sub_livelist() both stores the size number of
2743 * blockpointers and iterates over them while the bpobj's lock held, so
2744 * the sizes returned to us are consistent which what was actually
2745 * processed.
2747 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2748 &first_size);
2749 if (err == 0)
2750 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2751 t, &next_size);
2753 if (err == 0) {
2754 while (zfs_livelist_condense_sync_pause &&
2755 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2756 delay(1);
2758 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2759 dmu_tx_mark_netfree(tx);
2760 dmu_tx_hold_space(tx, 1);
2761 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2762 if (err == 0) {
2764 * Prevent the condense zthr restarting before
2765 * the synctask completes.
2767 spa->spa_to_condense.syncing = B_TRUE;
2768 lca->spa = spa;
2769 lca->first_size = first_size;
2770 lca->next_size = next_size;
2771 dsl_sync_task_nowait(spa_get_dsl(spa),
2772 spa_livelist_condense_sync, lca, tx);
2773 dmu_tx_commit(tx);
2774 return;
2778 * Condensing can not continue: either it was externally stopped or
2779 * we were unable to assign to a tx because the pool has run out of
2780 * space. In the second case, we'll just end up trying to condense
2781 * again in a later txg.
2783 ASSERT(err != 0);
2784 bplist_clear(&lca->to_keep);
2785 bplist_destroy(&lca->to_keep);
2786 kmem_free(lca, sizeof (livelist_condense_arg_t));
2787 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2788 spa->spa_to_condense.ds = NULL;
2789 if (err == EINTR)
2790 zfs_livelist_condense_zthr_cancel++;
2793 /* ARGSUSED */
2795 * Check that there is something to condense but that a condense is not
2796 * already in progress and that condensing has not been cancelled.
2798 static boolean_t
2799 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2801 spa_t *spa = arg;
2802 if ((spa->spa_to_condense.ds != NULL) &&
2803 (spa->spa_to_condense.syncing == B_FALSE) &&
2804 (spa->spa_to_condense.cancelled == B_FALSE)) {
2805 return (B_TRUE);
2807 return (B_FALSE);
2810 static void
2811 spa_start_livelist_condensing_thread(spa_t *spa)
2813 spa->spa_to_condense.ds = NULL;
2814 spa->spa_to_condense.first = NULL;
2815 spa->spa_to_condense.next = NULL;
2816 spa->spa_to_condense.syncing = B_FALSE;
2817 spa->spa_to_condense.cancelled = B_FALSE;
2819 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2820 spa->spa_livelist_condense_zthr =
2821 zthr_create("z_livelist_condense",
2822 spa_livelist_condense_cb_check,
2823 spa_livelist_condense_cb, spa);
2826 static void
2827 spa_spawn_aux_threads(spa_t *spa)
2829 ASSERT(spa_writeable(spa));
2831 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2833 spa_start_indirect_condensing_thread(spa);
2834 spa_start_livelist_destroy_thread(spa);
2835 spa_start_livelist_condensing_thread(spa);
2837 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2838 spa->spa_checkpoint_discard_zthr =
2839 zthr_create("z_checkpoint_discard",
2840 spa_checkpoint_discard_thread_check,
2841 spa_checkpoint_discard_thread, spa);
2845 * Fix up config after a partly-completed split. This is done with the
2846 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2847 * pool have that entry in their config, but only the splitting one contains
2848 * a list of all the guids of the vdevs that are being split off.
2850 * This function determines what to do with that list: either rejoin
2851 * all the disks to the pool, or complete the splitting process. To attempt
2852 * the rejoin, each disk that is offlined is marked online again, and
2853 * we do a reopen() call. If the vdev label for every disk that was
2854 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2855 * then we call vdev_split() on each disk, and complete the split.
2857 * Otherwise we leave the config alone, with all the vdevs in place in
2858 * the original pool.
2860 static void
2861 spa_try_repair(spa_t *spa, nvlist_t *config)
2863 uint_t extracted;
2864 uint64_t *glist;
2865 uint_t i, gcount;
2866 nvlist_t *nvl;
2867 vdev_t **vd;
2868 boolean_t attempt_reopen;
2870 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2871 return;
2873 /* check that the config is complete */
2874 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2875 &glist, &gcount) != 0)
2876 return;
2878 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2880 /* attempt to online all the vdevs & validate */
2881 attempt_reopen = B_TRUE;
2882 for (i = 0; i < gcount; i++) {
2883 if (glist[i] == 0) /* vdev is hole */
2884 continue;
2886 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2887 if (vd[i] == NULL) {
2889 * Don't bother attempting to reopen the disks;
2890 * just do the split.
2892 attempt_reopen = B_FALSE;
2893 } else {
2894 /* attempt to re-online it */
2895 vd[i]->vdev_offline = B_FALSE;
2899 if (attempt_reopen) {
2900 vdev_reopen(spa->spa_root_vdev);
2902 /* check each device to see what state it's in */
2903 for (extracted = 0, i = 0; i < gcount; i++) {
2904 if (vd[i] != NULL &&
2905 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2906 break;
2907 ++extracted;
2912 * If every disk has been moved to the new pool, or if we never
2913 * even attempted to look at them, then we split them off for
2914 * good.
2916 if (!attempt_reopen || gcount == extracted) {
2917 for (i = 0; i < gcount; i++)
2918 if (vd[i] != NULL)
2919 vdev_split(vd[i]);
2920 vdev_reopen(spa->spa_root_vdev);
2923 kmem_free(vd, gcount * sizeof (vdev_t *));
2926 static int
2927 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2929 char *ereport = FM_EREPORT_ZFS_POOL;
2930 int error;
2932 spa->spa_load_state = state;
2933 (void) spa_import_progress_set_state(spa_guid(spa),
2934 spa_load_state(spa));
2936 gethrestime(&spa->spa_loaded_ts);
2937 error = spa_load_impl(spa, type, &ereport);
2940 * Don't count references from objsets that are already closed
2941 * and are making their way through the eviction process.
2943 spa_evicting_os_wait(spa);
2944 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2945 if (error) {
2946 if (error != EEXIST) {
2947 spa->spa_loaded_ts.tv_sec = 0;
2948 spa->spa_loaded_ts.tv_nsec = 0;
2950 if (error != EBADF) {
2951 (void) zfs_ereport_post(ereport, spa,
2952 NULL, NULL, NULL, 0);
2955 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2956 spa->spa_ena = 0;
2958 (void) spa_import_progress_set_state(spa_guid(spa),
2959 spa_load_state(spa));
2961 return (error);
2964 #ifdef ZFS_DEBUG
2966 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2967 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2968 * spa's per-vdev ZAP list.
2970 static uint64_t
2971 vdev_count_verify_zaps(vdev_t *vd)
2973 spa_t *spa = vd->vdev_spa;
2974 uint64_t total = 0;
2976 if (vd->vdev_top_zap != 0) {
2977 total++;
2978 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2979 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2981 if (vd->vdev_leaf_zap != 0) {
2982 total++;
2983 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2984 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2987 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2988 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2991 return (total);
2993 #endif
2996 * Determine whether the activity check is required.
2998 static boolean_t
2999 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3000 nvlist_t *config)
3002 uint64_t state = 0;
3003 uint64_t hostid = 0;
3004 uint64_t tryconfig_txg = 0;
3005 uint64_t tryconfig_timestamp = 0;
3006 uint16_t tryconfig_mmp_seq = 0;
3007 nvlist_t *nvinfo;
3009 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3010 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3011 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3012 &tryconfig_txg);
3013 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3014 &tryconfig_timestamp);
3015 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3016 &tryconfig_mmp_seq);
3019 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3022 * Disable the MMP activity check - This is used by zdb which
3023 * is intended to be used on potentially active pools.
3025 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3026 return (B_FALSE);
3029 * Skip the activity check when the MMP feature is disabled.
3031 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3032 return (B_FALSE);
3035 * If the tryconfig_ values are nonzero, they are the results of an
3036 * earlier tryimport. If they all match the uberblock we just found,
3037 * then the pool has not changed and we return false so we do not test
3038 * a second time.
3040 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3041 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3042 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3043 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3044 return (B_FALSE);
3047 * Allow the activity check to be skipped when importing the pool
3048 * on the same host which last imported it. Since the hostid from
3049 * configuration may be stale use the one read from the label.
3051 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3052 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3054 if (hostid == spa_get_hostid(spa))
3055 return (B_FALSE);
3058 * Skip the activity test when the pool was cleanly exported.
3060 if (state != POOL_STATE_ACTIVE)
3061 return (B_FALSE);
3063 return (B_TRUE);
3067 * Nanoseconds the activity check must watch for changes on-disk.
3069 static uint64_t
3070 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3072 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3073 uint64_t multihost_interval = MSEC2NSEC(
3074 MMP_INTERVAL_OK(zfs_multihost_interval));
3075 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3076 multihost_interval);
3079 * Local tunables determine a minimum duration except for the case
3080 * where we know when the remote host will suspend the pool if MMP
3081 * writes do not land.
3083 * See Big Theory comment at the top of mmp.c for the reasoning behind
3084 * these cases and times.
3087 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3089 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3090 MMP_FAIL_INT(ub) > 0) {
3092 /* MMP on remote host will suspend pool after failed writes */
3093 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3094 MMP_IMPORT_SAFETY_FACTOR / 100;
3096 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3097 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3098 "import_intervals=%llu", (u_longlong_t)import_delay,
3099 (u_longlong_t)MMP_FAIL_INT(ub),
3100 (u_longlong_t)MMP_INTERVAL(ub),
3101 (u_longlong_t)import_intervals);
3103 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3104 MMP_FAIL_INT(ub) == 0) {
3106 /* MMP on remote host will never suspend pool */
3107 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3108 ub->ub_mmp_delay) * import_intervals);
3110 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3111 "mmp_interval=%llu ub_mmp_delay=%llu "
3112 "import_intervals=%llu", (u_longlong_t)import_delay,
3113 (u_longlong_t)MMP_INTERVAL(ub),
3114 (u_longlong_t)ub->ub_mmp_delay,
3115 (u_longlong_t)import_intervals);
3117 } else if (MMP_VALID(ub)) {
3119 * zfs-0.7 compatibility case
3122 import_delay = MAX(import_delay, (multihost_interval +
3123 ub->ub_mmp_delay) * import_intervals);
3125 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3126 "import_intervals=%llu leaves=%u",
3127 (u_longlong_t)import_delay,
3128 (u_longlong_t)ub->ub_mmp_delay,
3129 (u_longlong_t)import_intervals,
3130 vdev_count_leaves(spa));
3131 } else {
3132 /* Using local tunings is the only reasonable option */
3133 zfs_dbgmsg("pool last imported on non-MMP aware "
3134 "host using import_delay=%llu multihost_interval=%llu "
3135 "import_intervals=%llu", (u_longlong_t)import_delay,
3136 (u_longlong_t)multihost_interval,
3137 (u_longlong_t)import_intervals);
3140 return (import_delay);
3144 * Perform the import activity check. If the user canceled the import or
3145 * we detected activity then fail.
3147 static int
3148 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3150 uint64_t txg = ub->ub_txg;
3151 uint64_t timestamp = ub->ub_timestamp;
3152 uint64_t mmp_config = ub->ub_mmp_config;
3153 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3154 uint64_t import_delay;
3155 hrtime_t import_expire;
3156 nvlist_t *mmp_label = NULL;
3157 vdev_t *rvd = spa->spa_root_vdev;
3158 kcondvar_t cv;
3159 kmutex_t mtx;
3160 int error = 0;
3162 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3163 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3164 mutex_enter(&mtx);
3167 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3168 * during the earlier tryimport. If the txg recorded there is 0 then
3169 * the pool is known to be active on another host.
3171 * Otherwise, the pool might be in use on another host. Check for
3172 * changes in the uberblocks on disk if necessary.
3174 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3175 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3176 ZPOOL_CONFIG_LOAD_INFO);
3178 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3179 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3180 vdev_uberblock_load(rvd, ub, &mmp_label);
3181 error = SET_ERROR(EREMOTEIO);
3182 goto out;
3186 import_delay = spa_activity_check_duration(spa, ub);
3188 /* Add a small random factor in case of simultaneous imports (0-25%) */
3189 import_delay += import_delay * random_in_range(250) / 1000;
3191 import_expire = gethrtime() + import_delay;
3193 while (gethrtime() < import_expire) {
3194 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3195 NSEC2SEC(import_expire - gethrtime()));
3197 vdev_uberblock_load(rvd, ub, &mmp_label);
3199 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3200 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3201 zfs_dbgmsg("multihost activity detected "
3202 "txg %llu ub_txg %llu "
3203 "timestamp %llu ub_timestamp %llu "
3204 "mmp_config %#llx ub_mmp_config %#llx",
3205 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3206 (u_longlong_t)timestamp,
3207 (u_longlong_t)ub->ub_timestamp,
3208 (u_longlong_t)mmp_config,
3209 (u_longlong_t)ub->ub_mmp_config);
3211 error = SET_ERROR(EREMOTEIO);
3212 break;
3215 if (mmp_label) {
3216 nvlist_free(mmp_label);
3217 mmp_label = NULL;
3220 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3221 if (error != -1) {
3222 error = SET_ERROR(EINTR);
3223 break;
3225 error = 0;
3228 out:
3229 mutex_exit(&mtx);
3230 mutex_destroy(&mtx);
3231 cv_destroy(&cv);
3234 * If the pool is determined to be active store the status in the
3235 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3236 * available from configuration read from disk store them as well.
3237 * This allows 'zpool import' to generate a more useful message.
3239 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3240 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3241 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3243 if (error == EREMOTEIO) {
3244 char *hostname = "<unknown>";
3245 uint64_t hostid = 0;
3247 if (mmp_label) {
3248 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3249 hostname = fnvlist_lookup_string(mmp_label,
3250 ZPOOL_CONFIG_HOSTNAME);
3251 fnvlist_add_string(spa->spa_load_info,
3252 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3255 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3256 hostid = fnvlist_lookup_uint64(mmp_label,
3257 ZPOOL_CONFIG_HOSTID);
3258 fnvlist_add_uint64(spa->spa_load_info,
3259 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3263 fnvlist_add_uint64(spa->spa_load_info,
3264 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3265 fnvlist_add_uint64(spa->spa_load_info,
3266 ZPOOL_CONFIG_MMP_TXG, 0);
3268 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3271 if (mmp_label)
3272 nvlist_free(mmp_label);
3274 return (error);
3277 static int
3278 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3280 uint64_t hostid;
3281 char *hostname;
3282 uint64_t myhostid = 0;
3284 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3285 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3286 hostname = fnvlist_lookup_string(mos_config,
3287 ZPOOL_CONFIG_HOSTNAME);
3289 myhostid = zone_get_hostid(NULL);
3291 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3292 cmn_err(CE_WARN, "pool '%s' could not be "
3293 "loaded as it was last accessed by "
3294 "another system (host: %s hostid: 0x%llx). "
3295 "See: https://openzfs.github.io/openzfs-docs/msg/"
3296 "ZFS-8000-EY",
3297 spa_name(spa), hostname, (u_longlong_t)hostid);
3298 spa_load_failed(spa, "hostid verification failed: pool "
3299 "last accessed by host: %s (hostid: 0x%llx)",
3300 hostname, (u_longlong_t)hostid);
3301 return (SET_ERROR(EBADF));
3305 return (0);
3308 static int
3309 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3311 int error = 0;
3312 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3313 int parse;
3314 vdev_t *rvd;
3315 uint64_t pool_guid;
3316 char *comment;
3317 char *compatibility;
3320 * Versioning wasn't explicitly added to the label until later, so if
3321 * it's not present treat it as the initial version.
3323 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3324 &spa->spa_ubsync.ub_version) != 0)
3325 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3327 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3328 spa_load_failed(spa, "invalid config provided: '%s' missing",
3329 ZPOOL_CONFIG_POOL_GUID);
3330 return (SET_ERROR(EINVAL));
3334 * If we are doing an import, ensure that the pool is not already
3335 * imported by checking if its pool guid already exists in the
3336 * spa namespace.
3338 * The only case that we allow an already imported pool to be
3339 * imported again, is when the pool is checkpointed and we want to
3340 * look at its checkpointed state from userland tools like zdb.
3342 #ifdef _KERNEL
3343 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3344 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3345 spa_guid_exists(pool_guid, 0)) {
3346 #else
3347 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3348 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3349 spa_guid_exists(pool_guid, 0) &&
3350 !spa_importing_readonly_checkpoint(spa)) {
3351 #endif
3352 spa_load_failed(spa, "a pool with guid %llu is already open",
3353 (u_longlong_t)pool_guid);
3354 return (SET_ERROR(EEXIST));
3357 spa->spa_config_guid = pool_guid;
3359 nvlist_free(spa->spa_load_info);
3360 spa->spa_load_info = fnvlist_alloc();
3362 ASSERT(spa->spa_comment == NULL);
3363 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3364 spa->spa_comment = spa_strdup(comment);
3366 ASSERT(spa->spa_compatibility == NULL);
3367 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3368 &compatibility) == 0)
3369 spa->spa_compatibility = spa_strdup(compatibility);
3371 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3372 &spa->spa_config_txg);
3374 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3375 spa->spa_config_splitting = fnvlist_dup(nvl);
3377 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3378 spa_load_failed(spa, "invalid config provided: '%s' missing",
3379 ZPOOL_CONFIG_VDEV_TREE);
3380 return (SET_ERROR(EINVAL));
3384 * Create "The Godfather" zio to hold all async IOs
3386 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3387 KM_SLEEP);
3388 for (int i = 0; i < max_ncpus; i++) {
3389 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3390 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3391 ZIO_FLAG_GODFATHER);
3395 * Parse the configuration into a vdev tree. We explicitly set the
3396 * value that will be returned by spa_version() since parsing the
3397 * configuration requires knowing the version number.
3399 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3400 parse = (type == SPA_IMPORT_EXISTING ?
3401 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3402 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3403 spa_config_exit(spa, SCL_ALL, FTAG);
3405 if (error != 0) {
3406 spa_load_failed(spa, "unable to parse config [error=%d]",
3407 error);
3408 return (error);
3411 ASSERT(spa->spa_root_vdev == rvd);
3412 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3413 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3415 if (type != SPA_IMPORT_ASSEMBLE) {
3416 ASSERT(spa_guid(spa) == pool_guid);
3419 return (0);
3423 * Recursively open all vdevs in the vdev tree. This function is called twice:
3424 * first with the untrusted config, then with the trusted config.
3426 static int
3427 spa_ld_open_vdevs(spa_t *spa)
3429 int error = 0;
3432 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3433 * missing/unopenable for the root vdev to be still considered openable.
3435 if (spa->spa_trust_config) {
3436 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3437 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3438 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3439 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3440 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3441 } else {
3442 spa->spa_missing_tvds_allowed = 0;
3445 spa->spa_missing_tvds_allowed =
3446 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3448 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3449 error = vdev_open(spa->spa_root_vdev);
3450 spa_config_exit(spa, SCL_ALL, FTAG);
3452 if (spa->spa_missing_tvds != 0) {
3453 spa_load_note(spa, "vdev tree has %lld missing top-level "
3454 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3455 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3457 * Although theoretically we could allow users to open
3458 * incomplete pools in RW mode, we'd need to add a lot
3459 * of extra logic (e.g. adjust pool space to account
3460 * for missing vdevs).
3461 * This limitation also prevents users from accidentally
3462 * opening the pool in RW mode during data recovery and
3463 * damaging it further.
3465 spa_load_note(spa, "pools with missing top-level "
3466 "vdevs can only be opened in read-only mode.");
3467 error = SET_ERROR(ENXIO);
3468 } else {
3469 spa_load_note(spa, "current settings allow for maximum "
3470 "%lld missing top-level vdevs at this stage.",
3471 (u_longlong_t)spa->spa_missing_tvds_allowed);
3474 if (error != 0) {
3475 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3476 error);
3478 if (spa->spa_missing_tvds != 0 || error != 0)
3479 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3481 return (error);
3485 * We need to validate the vdev labels against the configuration that
3486 * we have in hand. This function is called twice: first with an untrusted
3487 * config, then with a trusted config. The validation is more strict when the
3488 * config is trusted.
3490 static int
3491 spa_ld_validate_vdevs(spa_t *spa)
3493 int error = 0;
3494 vdev_t *rvd = spa->spa_root_vdev;
3496 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3497 error = vdev_validate(rvd);
3498 spa_config_exit(spa, SCL_ALL, FTAG);
3500 if (error != 0) {
3501 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3502 return (error);
3505 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3506 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3507 "some vdevs");
3508 vdev_dbgmsg_print_tree(rvd, 2);
3509 return (SET_ERROR(ENXIO));
3512 return (0);
3515 static void
3516 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3518 spa->spa_state = POOL_STATE_ACTIVE;
3519 spa->spa_ubsync = spa->spa_uberblock;
3520 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3521 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3522 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3523 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3524 spa->spa_claim_max_txg = spa->spa_first_txg;
3525 spa->spa_prev_software_version = ub->ub_software_version;
3528 static int
3529 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3531 vdev_t *rvd = spa->spa_root_vdev;
3532 nvlist_t *label;
3533 uberblock_t *ub = &spa->spa_uberblock;
3534 boolean_t activity_check = B_FALSE;
3537 * If we are opening the checkpointed state of the pool by
3538 * rewinding to it, at this point we will have written the
3539 * checkpointed uberblock to the vdev labels, so searching
3540 * the labels will find the right uberblock. However, if
3541 * we are opening the checkpointed state read-only, we have
3542 * not modified the labels. Therefore, we must ignore the
3543 * labels and continue using the spa_uberblock that was set
3544 * by spa_ld_checkpoint_rewind.
3546 * Note that it would be fine to ignore the labels when
3547 * rewinding (opening writeable) as well. However, if we
3548 * crash just after writing the labels, we will end up
3549 * searching the labels. Doing so in the common case means
3550 * that this code path gets exercised normally, rather than
3551 * just in the edge case.
3553 if (ub->ub_checkpoint_txg != 0 &&
3554 spa_importing_readonly_checkpoint(spa)) {
3555 spa_ld_select_uberblock_done(spa, ub);
3556 return (0);
3560 * Find the best uberblock.
3562 vdev_uberblock_load(rvd, ub, &label);
3565 * If we weren't able to find a single valid uberblock, return failure.
3567 if (ub->ub_txg == 0) {
3568 nvlist_free(label);
3569 spa_load_failed(spa, "no valid uberblock found");
3570 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3573 if (spa->spa_load_max_txg != UINT64_MAX) {
3574 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3575 (u_longlong_t)spa->spa_load_max_txg);
3577 spa_load_note(spa, "using uberblock with txg=%llu",
3578 (u_longlong_t)ub->ub_txg);
3582 * For pools which have the multihost property on determine if the
3583 * pool is truly inactive and can be safely imported. Prevent
3584 * hosts which don't have a hostid set from importing the pool.
3586 activity_check = spa_activity_check_required(spa, ub, label,
3587 spa->spa_config);
3588 if (activity_check) {
3589 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3590 spa_get_hostid(spa) == 0) {
3591 nvlist_free(label);
3592 fnvlist_add_uint64(spa->spa_load_info,
3593 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3594 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3597 int error = spa_activity_check(spa, ub, spa->spa_config);
3598 if (error) {
3599 nvlist_free(label);
3600 return (error);
3603 fnvlist_add_uint64(spa->spa_load_info,
3604 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3605 fnvlist_add_uint64(spa->spa_load_info,
3606 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3607 fnvlist_add_uint16(spa->spa_load_info,
3608 ZPOOL_CONFIG_MMP_SEQ,
3609 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3613 * If the pool has an unsupported version we can't open it.
3615 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3616 nvlist_free(label);
3617 spa_load_failed(spa, "version %llu is not supported",
3618 (u_longlong_t)ub->ub_version);
3619 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3622 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3623 nvlist_t *features;
3626 * If we weren't able to find what's necessary for reading the
3627 * MOS in the label, return failure.
3629 if (label == NULL) {
3630 spa_load_failed(spa, "label config unavailable");
3631 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3632 ENXIO));
3635 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3636 &features) != 0) {
3637 nvlist_free(label);
3638 spa_load_failed(spa, "invalid label: '%s' missing",
3639 ZPOOL_CONFIG_FEATURES_FOR_READ);
3640 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3641 ENXIO));
3645 * Update our in-core representation with the definitive values
3646 * from the label.
3648 nvlist_free(spa->spa_label_features);
3649 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3652 nvlist_free(label);
3655 * Look through entries in the label nvlist's features_for_read. If
3656 * there is a feature listed there which we don't understand then we
3657 * cannot open a pool.
3659 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3660 nvlist_t *unsup_feat;
3662 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3665 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3666 NULL); nvp != NULL;
3667 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3668 if (!zfeature_is_supported(nvpair_name(nvp))) {
3669 VERIFY(nvlist_add_string(unsup_feat,
3670 nvpair_name(nvp), "") == 0);
3674 if (!nvlist_empty(unsup_feat)) {
3675 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3676 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3677 nvlist_free(unsup_feat);
3678 spa_load_failed(spa, "some features are unsupported");
3679 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3680 ENOTSUP));
3683 nvlist_free(unsup_feat);
3686 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3687 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3688 spa_try_repair(spa, spa->spa_config);
3689 spa_config_exit(spa, SCL_ALL, FTAG);
3690 nvlist_free(spa->spa_config_splitting);
3691 spa->spa_config_splitting = NULL;
3695 * Initialize internal SPA structures.
3697 spa_ld_select_uberblock_done(spa, ub);
3699 return (0);
3702 static int
3703 spa_ld_open_rootbp(spa_t *spa)
3705 int error = 0;
3706 vdev_t *rvd = spa->spa_root_vdev;
3708 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3709 if (error != 0) {
3710 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3711 "[error=%d]", error);
3712 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3714 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3716 return (0);
3719 static int
3720 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3721 boolean_t reloading)
3723 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3724 nvlist_t *nv, *mos_config, *policy;
3725 int error = 0, copy_error;
3726 uint64_t healthy_tvds, healthy_tvds_mos;
3727 uint64_t mos_config_txg;
3729 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3730 != 0)
3731 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3734 * If we're assembling a pool from a split, the config provided is
3735 * already trusted so there is nothing to do.
3737 if (type == SPA_IMPORT_ASSEMBLE)
3738 return (0);
3740 healthy_tvds = spa_healthy_core_tvds(spa);
3742 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3743 != 0) {
3744 spa_load_failed(spa, "unable to retrieve MOS config");
3745 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3749 * If we are doing an open, pool owner wasn't verified yet, thus do
3750 * the verification here.
3752 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3753 error = spa_verify_host(spa, mos_config);
3754 if (error != 0) {
3755 nvlist_free(mos_config);
3756 return (error);
3760 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3762 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3765 * Build a new vdev tree from the trusted config
3767 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3768 if (error != 0) {
3769 nvlist_free(mos_config);
3770 spa_config_exit(spa, SCL_ALL, FTAG);
3771 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3772 error);
3773 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3777 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3778 * obtained by scanning /dev/dsk, then it will have the right vdev
3779 * paths. We update the trusted MOS config with this information.
3780 * We first try to copy the paths with vdev_copy_path_strict, which
3781 * succeeds only when both configs have exactly the same vdev tree.
3782 * If that fails, we fall back to a more flexible method that has a
3783 * best effort policy.
3785 copy_error = vdev_copy_path_strict(rvd, mrvd);
3786 if (copy_error != 0 || spa_load_print_vdev_tree) {
3787 spa_load_note(spa, "provided vdev tree:");
3788 vdev_dbgmsg_print_tree(rvd, 2);
3789 spa_load_note(spa, "MOS vdev tree:");
3790 vdev_dbgmsg_print_tree(mrvd, 2);
3792 if (copy_error != 0) {
3793 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3794 "back to vdev_copy_path_relaxed");
3795 vdev_copy_path_relaxed(rvd, mrvd);
3798 vdev_close(rvd);
3799 vdev_free(rvd);
3800 spa->spa_root_vdev = mrvd;
3801 rvd = mrvd;
3802 spa_config_exit(spa, SCL_ALL, FTAG);
3805 * We will use spa_config if we decide to reload the spa or if spa_load
3806 * fails and we rewind. We must thus regenerate the config using the
3807 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3808 * pass settings on how to load the pool and is not stored in the MOS.
3809 * We copy it over to our new, trusted config.
3811 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3812 ZPOOL_CONFIG_POOL_TXG);
3813 nvlist_free(mos_config);
3814 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3815 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3816 &policy) == 0)
3817 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3818 spa_config_set(spa, mos_config);
3819 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3822 * Now that we got the config from the MOS, we should be more strict
3823 * in checking blkptrs and can make assumptions about the consistency
3824 * of the vdev tree. spa_trust_config must be set to true before opening
3825 * vdevs in order for them to be writeable.
3827 spa->spa_trust_config = B_TRUE;
3830 * Open and validate the new vdev tree
3832 error = spa_ld_open_vdevs(spa);
3833 if (error != 0)
3834 return (error);
3836 error = spa_ld_validate_vdevs(spa);
3837 if (error != 0)
3838 return (error);
3840 if (copy_error != 0 || spa_load_print_vdev_tree) {
3841 spa_load_note(spa, "final vdev tree:");
3842 vdev_dbgmsg_print_tree(rvd, 2);
3845 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3846 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3848 * Sanity check to make sure that we are indeed loading the
3849 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3850 * in the config provided and they happened to be the only ones
3851 * to have the latest uberblock, we could involuntarily perform
3852 * an extreme rewind.
3854 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3855 if (healthy_tvds_mos - healthy_tvds >=
3856 SPA_SYNC_MIN_VDEVS) {
3857 spa_load_note(spa, "config provided misses too many "
3858 "top-level vdevs compared to MOS (%lld vs %lld). ",
3859 (u_longlong_t)healthy_tvds,
3860 (u_longlong_t)healthy_tvds_mos);
3861 spa_load_note(spa, "vdev tree:");
3862 vdev_dbgmsg_print_tree(rvd, 2);
3863 if (reloading) {
3864 spa_load_failed(spa, "config was already "
3865 "provided from MOS. Aborting.");
3866 return (spa_vdev_err(rvd,
3867 VDEV_AUX_CORRUPT_DATA, EIO));
3869 spa_load_note(spa, "spa must be reloaded using MOS "
3870 "config");
3871 return (SET_ERROR(EAGAIN));
3875 error = spa_check_for_missing_logs(spa);
3876 if (error != 0)
3877 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3879 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3880 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3881 "guid sum (%llu != %llu)",
3882 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3883 (u_longlong_t)rvd->vdev_guid_sum);
3884 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3885 ENXIO));
3888 return (0);
3891 static int
3892 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3894 int error = 0;
3895 vdev_t *rvd = spa->spa_root_vdev;
3898 * Everything that we read before spa_remove_init() must be stored
3899 * on concreted vdevs. Therefore we do this as early as possible.
3901 error = spa_remove_init(spa);
3902 if (error != 0) {
3903 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3904 error);
3905 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3909 * Retrieve information needed to condense indirect vdev mappings.
3911 error = spa_condense_init(spa);
3912 if (error != 0) {
3913 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3914 error);
3915 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3918 return (0);
3921 static int
3922 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3924 int error = 0;
3925 vdev_t *rvd = spa->spa_root_vdev;
3927 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3928 boolean_t missing_feat_read = B_FALSE;
3929 nvlist_t *unsup_feat, *enabled_feat;
3931 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3932 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3933 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3936 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3937 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3938 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3941 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3942 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3943 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3946 enabled_feat = fnvlist_alloc();
3947 unsup_feat = fnvlist_alloc();
3949 if (!spa_features_check(spa, B_FALSE,
3950 unsup_feat, enabled_feat))
3951 missing_feat_read = B_TRUE;
3953 if (spa_writeable(spa) ||
3954 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3955 if (!spa_features_check(spa, B_TRUE,
3956 unsup_feat, enabled_feat)) {
3957 *missing_feat_writep = B_TRUE;
3961 fnvlist_add_nvlist(spa->spa_load_info,
3962 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3964 if (!nvlist_empty(unsup_feat)) {
3965 fnvlist_add_nvlist(spa->spa_load_info,
3966 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3969 fnvlist_free(enabled_feat);
3970 fnvlist_free(unsup_feat);
3972 if (!missing_feat_read) {
3973 fnvlist_add_boolean(spa->spa_load_info,
3974 ZPOOL_CONFIG_CAN_RDONLY);
3978 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3979 * twofold: to determine whether the pool is available for
3980 * import in read-write mode and (if it is not) whether the
3981 * pool is available for import in read-only mode. If the pool
3982 * is available for import in read-write mode, it is displayed
3983 * as available in userland; if it is not available for import
3984 * in read-only mode, it is displayed as unavailable in
3985 * userland. If the pool is available for import in read-only
3986 * mode but not read-write mode, it is displayed as unavailable
3987 * in userland with a special note that the pool is actually
3988 * available for open in read-only mode.
3990 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3991 * missing a feature for write, we must first determine whether
3992 * the pool can be opened read-only before returning to
3993 * userland in order to know whether to display the
3994 * abovementioned note.
3996 if (missing_feat_read || (*missing_feat_writep &&
3997 spa_writeable(spa))) {
3998 spa_load_failed(spa, "pool uses unsupported features");
3999 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4000 ENOTSUP));
4004 * Load refcounts for ZFS features from disk into an in-memory
4005 * cache during SPA initialization.
4007 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4008 uint64_t refcount;
4010 error = feature_get_refcount_from_disk(spa,
4011 &spa_feature_table[i], &refcount);
4012 if (error == 0) {
4013 spa->spa_feat_refcount_cache[i] = refcount;
4014 } else if (error == ENOTSUP) {
4015 spa->spa_feat_refcount_cache[i] =
4016 SPA_FEATURE_DISABLED;
4017 } else {
4018 spa_load_failed(spa, "error getting refcount "
4019 "for feature %s [error=%d]",
4020 spa_feature_table[i].fi_guid, error);
4021 return (spa_vdev_err(rvd,
4022 VDEV_AUX_CORRUPT_DATA, EIO));
4027 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4028 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4029 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4030 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4034 * Encryption was added before bookmark_v2, even though bookmark_v2
4035 * is now a dependency. If this pool has encryption enabled without
4036 * bookmark_v2, trigger an errata message.
4038 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4039 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4040 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4043 return (0);
4046 static int
4047 spa_ld_load_special_directories(spa_t *spa)
4049 int error = 0;
4050 vdev_t *rvd = spa->spa_root_vdev;
4052 spa->spa_is_initializing = B_TRUE;
4053 error = dsl_pool_open(spa->spa_dsl_pool);
4054 spa->spa_is_initializing = B_FALSE;
4055 if (error != 0) {
4056 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4057 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4060 return (0);
4063 static int
4064 spa_ld_get_props(spa_t *spa)
4066 int error = 0;
4067 uint64_t obj;
4068 vdev_t *rvd = spa->spa_root_vdev;
4070 /* Grab the checksum salt from the MOS. */
4071 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4072 DMU_POOL_CHECKSUM_SALT, 1,
4073 sizeof (spa->spa_cksum_salt.zcs_bytes),
4074 spa->spa_cksum_salt.zcs_bytes);
4075 if (error == ENOENT) {
4076 /* Generate a new salt for subsequent use */
4077 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4078 sizeof (spa->spa_cksum_salt.zcs_bytes));
4079 } else if (error != 0) {
4080 spa_load_failed(spa, "unable to retrieve checksum salt from "
4081 "MOS [error=%d]", error);
4082 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4085 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4086 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4087 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4088 if (error != 0) {
4089 spa_load_failed(spa, "error opening deferred-frees bpobj "
4090 "[error=%d]", error);
4091 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4095 * Load the bit that tells us to use the new accounting function
4096 * (raid-z deflation). If we have an older pool, this will not
4097 * be present.
4099 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4100 if (error != 0 && error != ENOENT)
4101 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4103 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4104 &spa->spa_creation_version, B_FALSE);
4105 if (error != 0 && error != ENOENT)
4106 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4109 * Load the persistent error log. If we have an older pool, this will
4110 * not be present.
4112 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4113 B_FALSE);
4114 if (error != 0 && error != ENOENT)
4115 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4117 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4118 &spa->spa_errlog_scrub, B_FALSE);
4119 if (error != 0 && error != ENOENT)
4120 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4123 * Load the livelist deletion field. If a livelist is queued for
4124 * deletion, indicate that in the spa
4126 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4127 &spa->spa_livelists_to_delete, B_FALSE);
4128 if (error != 0 && error != ENOENT)
4129 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4132 * Load the history object. If we have an older pool, this
4133 * will not be present.
4135 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4136 if (error != 0 && error != ENOENT)
4137 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4140 * Load the per-vdev ZAP map. If we have an older pool, this will not
4141 * be present; in this case, defer its creation to a later time to
4142 * avoid dirtying the MOS this early / out of sync context. See
4143 * spa_sync_config_object.
4146 /* The sentinel is only available in the MOS config. */
4147 nvlist_t *mos_config;
4148 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4149 spa_load_failed(spa, "unable to retrieve MOS config");
4150 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4153 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4154 &spa->spa_all_vdev_zaps, B_FALSE);
4156 if (error == ENOENT) {
4157 VERIFY(!nvlist_exists(mos_config,
4158 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4159 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4160 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4161 } else if (error != 0) {
4162 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4163 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4165 * An older version of ZFS overwrote the sentinel value, so
4166 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4167 * destruction to later; see spa_sync_config_object.
4169 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4171 * We're assuming that no vdevs have had their ZAPs created
4172 * before this. Better be sure of it.
4174 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4176 nvlist_free(mos_config);
4178 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4180 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4181 B_FALSE);
4182 if (error && error != ENOENT)
4183 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4185 if (error == 0) {
4186 uint64_t autoreplace = 0;
4188 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4189 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4190 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4191 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4192 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4193 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4194 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4195 spa->spa_autoreplace = (autoreplace != 0);
4199 * If we are importing a pool with missing top-level vdevs,
4200 * we enforce that the pool doesn't panic or get suspended on
4201 * error since the likelihood of missing data is extremely high.
4203 if (spa->spa_missing_tvds > 0 &&
4204 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4205 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4206 spa_load_note(spa, "forcing failmode to 'continue' "
4207 "as some top level vdevs are missing");
4208 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4211 return (0);
4214 static int
4215 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4217 int error = 0;
4218 vdev_t *rvd = spa->spa_root_vdev;
4221 * If we're assembling the pool from the split-off vdevs of
4222 * an existing pool, we don't want to attach the spares & cache
4223 * devices.
4227 * Load any hot spares for this pool.
4229 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4230 B_FALSE);
4231 if (error != 0 && error != ENOENT)
4232 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4233 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4234 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4235 if (load_nvlist(spa, spa->spa_spares.sav_object,
4236 &spa->spa_spares.sav_config) != 0) {
4237 spa_load_failed(spa, "error loading spares nvlist");
4238 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4241 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4242 spa_load_spares(spa);
4243 spa_config_exit(spa, SCL_ALL, FTAG);
4244 } else if (error == 0) {
4245 spa->spa_spares.sav_sync = B_TRUE;
4249 * Load any level 2 ARC devices for this pool.
4251 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4252 &spa->spa_l2cache.sav_object, B_FALSE);
4253 if (error != 0 && error != ENOENT)
4254 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4255 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4256 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4257 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4258 &spa->spa_l2cache.sav_config) != 0) {
4259 spa_load_failed(spa, "error loading l2cache nvlist");
4260 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4263 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4264 spa_load_l2cache(spa);
4265 spa_config_exit(spa, SCL_ALL, FTAG);
4266 } else if (error == 0) {
4267 spa->spa_l2cache.sav_sync = B_TRUE;
4270 return (0);
4273 static int
4274 spa_ld_load_vdev_metadata(spa_t *spa)
4276 int error = 0;
4277 vdev_t *rvd = spa->spa_root_vdev;
4280 * If the 'multihost' property is set, then never allow a pool to
4281 * be imported when the system hostid is zero. The exception to
4282 * this rule is zdb which is always allowed to access pools.
4284 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4285 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4286 fnvlist_add_uint64(spa->spa_load_info,
4287 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4288 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4292 * If the 'autoreplace' property is set, then post a resource notifying
4293 * the ZFS DE that it should not issue any faults for unopenable
4294 * devices. We also iterate over the vdevs, and post a sysevent for any
4295 * unopenable vdevs so that the normal autoreplace handler can take
4296 * over.
4298 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4299 spa_check_removed(spa->spa_root_vdev);
4301 * For the import case, this is done in spa_import(), because
4302 * at this point we're using the spare definitions from
4303 * the MOS config, not necessarily from the userland config.
4305 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4306 spa_aux_check_removed(&spa->spa_spares);
4307 spa_aux_check_removed(&spa->spa_l2cache);
4312 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4314 error = vdev_load(rvd);
4315 if (error != 0) {
4316 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4317 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4320 error = spa_ld_log_spacemaps(spa);
4321 if (error != 0) {
4322 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]",
4323 error);
4324 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4328 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4330 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4331 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4332 spa_config_exit(spa, SCL_ALL, FTAG);
4334 return (0);
4337 static int
4338 spa_ld_load_dedup_tables(spa_t *spa)
4340 int error = 0;
4341 vdev_t *rvd = spa->spa_root_vdev;
4343 error = ddt_load(spa);
4344 if (error != 0) {
4345 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4346 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4349 return (0);
4352 static int
4353 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
4355 vdev_t *rvd = spa->spa_root_vdev;
4357 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4358 boolean_t missing = spa_check_logs(spa);
4359 if (missing) {
4360 if (spa->spa_missing_tvds != 0) {
4361 spa_load_note(spa, "spa_check_logs failed "
4362 "so dropping the logs");
4363 } else {
4364 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4365 spa_load_failed(spa, "spa_check_logs failed");
4366 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4367 ENXIO));
4372 return (0);
4375 static int
4376 spa_ld_verify_pool_data(spa_t *spa)
4378 int error = 0;
4379 vdev_t *rvd = spa->spa_root_vdev;
4382 * We've successfully opened the pool, verify that we're ready
4383 * to start pushing transactions.
4385 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4386 error = spa_load_verify(spa);
4387 if (error != 0) {
4388 spa_load_failed(spa, "spa_load_verify failed "
4389 "[error=%d]", error);
4390 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4391 error));
4395 return (0);
4398 static void
4399 spa_ld_claim_log_blocks(spa_t *spa)
4401 dmu_tx_t *tx;
4402 dsl_pool_t *dp = spa_get_dsl(spa);
4405 * Claim log blocks that haven't been committed yet.
4406 * This must all happen in a single txg.
4407 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4408 * invoked from zil_claim_log_block()'s i/o done callback.
4409 * Price of rollback is that we abandon the log.
4411 spa->spa_claiming = B_TRUE;
4413 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4414 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4415 zil_claim, tx, DS_FIND_CHILDREN);
4416 dmu_tx_commit(tx);
4418 spa->spa_claiming = B_FALSE;
4420 spa_set_log_state(spa, SPA_LOG_GOOD);
4423 static void
4424 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4425 boolean_t update_config_cache)
4427 vdev_t *rvd = spa->spa_root_vdev;
4428 int need_update = B_FALSE;
4431 * If the config cache is stale, or we have uninitialized
4432 * metaslabs (see spa_vdev_add()), then update the config.
4434 * If this is a verbatim import, trust the current
4435 * in-core spa_config and update the disk labels.
4437 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4438 spa->spa_load_state == SPA_LOAD_IMPORT ||
4439 spa->spa_load_state == SPA_LOAD_RECOVER ||
4440 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4441 need_update = B_TRUE;
4443 for (int c = 0; c < rvd->vdev_children; c++)
4444 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4445 need_update = B_TRUE;
4448 * Update the config cache asynchronously in case we're the
4449 * root pool, in which case the config cache isn't writable yet.
4451 if (need_update)
4452 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4455 static void
4456 spa_ld_prepare_for_reload(spa_t *spa)
4458 spa_mode_t mode = spa->spa_mode;
4459 int async_suspended = spa->spa_async_suspended;
4461 spa_unload(spa);
4462 spa_deactivate(spa);
4463 spa_activate(spa, mode);
4466 * We save the value of spa_async_suspended as it gets reset to 0 by
4467 * spa_unload(). We want to restore it back to the original value before
4468 * returning as we might be calling spa_async_resume() later.
4470 spa->spa_async_suspended = async_suspended;
4473 static int
4474 spa_ld_read_checkpoint_txg(spa_t *spa)
4476 uberblock_t checkpoint;
4477 int error = 0;
4479 ASSERT0(spa->spa_checkpoint_txg);
4480 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4482 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4483 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4484 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4486 if (error == ENOENT)
4487 return (0);
4489 if (error != 0)
4490 return (error);
4492 ASSERT3U(checkpoint.ub_txg, !=, 0);
4493 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4494 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4495 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4496 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4498 return (0);
4501 static int
4502 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4504 int error = 0;
4506 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4507 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4510 * Never trust the config that is provided unless we are assembling
4511 * a pool following a split.
4512 * This means don't trust blkptrs and the vdev tree in general. This
4513 * also effectively puts the spa in read-only mode since
4514 * spa_writeable() checks for spa_trust_config to be true.
4515 * We will later load a trusted config from the MOS.
4517 if (type != SPA_IMPORT_ASSEMBLE)
4518 spa->spa_trust_config = B_FALSE;
4521 * Parse the config provided to create a vdev tree.
4523 error = spa_ld_parse_config(spa, type);
4524 if (error != 0)
4525 return (error);
4527 spa_import_progress_add(spa);
4530 * Now that we have the vdev tree, try to open each vdev. This involves
4531 * opening the underlying physical device, retrieving its geometry and
4532 * probing the vdev with a dummy I/O. The state of each vdev will be set
4533 * based on the success of those operations. After this we'll be ready
4534 * to read from the vdevs.
4536 error = spa_ld_open_vdevs(spa);
4537 if (error != 0)
4538 return (error);
4541 * Read the label of each vdev and make sure that the GUIDs stored
4542 * there match the GUIDs in the config provided.
4543 * If we're assembling a new pool that's been split off from an
4544 * existing pool, the labels haven't yet been updated so we skip
4545 * validation for now.
4547 if (type != SPA_IMPORT_ASSEMBLE) {
4548 error = spa_ld_validate_vdevs(spa);
4549 if (error != 0)
4550 return (error);
4554 * Read all vdev labels to find the best uberblock (i.e. latest,
4555 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4556 * get the list of features required to read blkptrs in the MOS from
4557 * the vdev label with the best uberblock and verify that our version
4558 * of zfs supports them all.
4560 error = spa_ld_select_uberblock(spa, type);
4561 if (error != 0)
4562 return (error);
4565 * Pass that uberblock to the dsl_pool layer which will open the root
4566 * blkptr. This blkptr points to the latest version of the MOS and will
4567 * allow us to read its contents.
4569 error = spa_ld_open_rootbp(spa);
4570 if (error != 0)
4571 return (error);
4573 return (0);
4576 static int
4577 spa_ld_checkpoint_rewind(spa_t *spa)
4579 uberblock_t checkpoint;
4580 int error = 0;
4582 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4583 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4585 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4586 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4587 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4589 if (error != 0) {
4590 spa_load_failed(spa, "unable to retrieve checkpointed "
4591 "uberblock from the MOS config [error=%d]", error);
4593 if (error == ENOENT)
4594 error = ZFS_ERR_NO_CHECKPOINT;
4596 return (error);
4599 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4600 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4603 * We need to update the txg and timestamp of the checkpointed
4604 * uberblock to be higher than the latest one. This ensures that
4605 * the checkpointed uberblock is selected if we were to close and
4606 * reopen the pool right after we've written it in the vdev labels.
4607 * (also see block comment in vdev_uberblock_compare)
4609 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4610 checkpoint.ub_timestamp = gethrestime_sec();
4613 * Set current uberblock to be the checkpointed uberblock.
4615 spa->spa_uberblock = checkpoint;
4618 * If we are doing a normal rewind, then the pool is open for
4619 * writing and we sync the "updated" checkpointed uberblock to
4620 * disk. Once this is done, we've basically rewound the whole
4621 * pool and there is no way back.
4623 * There are cases when we don't want to attempt and sync the
4624 * checkpointed uberblock to disk because we are opening a
4625 * pool as read-only. Specifically, verifying the checkpointed
4626 * state with zdb, and importing the checkpointed state to get
4627 * a "preview" of its content.
4629 if (spa_writeable(spa)) {
4630 vdev_t *rvd = spa->spa_root_vdev;
4632 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4633 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4634 int svdcount = 0;
4635 int children = rvd->vdev_children;
4636 int c0 = random_in_range(children);
4638 for (int c = 0; c < children; c++) {
4639 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4641 /* Stop when revisiting the first vdev */
4642 if (c > 0 && svd[0] == vd)
4643 break;
4645 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4646 !vdev_is_concrete(vd))
4647 continue;
4649 svd[svdcount++] = vd;
4650 if (svdcount == SPA_SYNC_MIN_VDEVS)
4651 break;
4653 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4654 if (error == 0)
4655 spa->spa_last_synced_guid = rvd->vdev_guid;
4656 spa_config_exit(spa, SCL_ALL, FTAG);
4658 if (error != 0) {
4659 spa_load_failed(spa, "failed to write checkpointed "
4660 "uberblock to the vdev labels [error=%d]", error);
4661 return (error);
4665 return (0);
4668 static int
4669 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4670 boolean_t *update_config_cache)
4672 int error;
4675 * Parse the config for pool, open and validate vdevs,
4676 * select an uberblock, and use that uberblock to open
4677 * the MOS.
4679 error = spa_ld_mos_init(spa, type);
4680 if (error != 0)
4681 return (error);
4684 * Retrieve the trusted config stored in the MOS and use it to create
4685 * a new, exact version of the vdev tree, then reopen all vdevs.
4687 error = spa_ld_trusted_config(spa, type, B_FALSE);
4688 if (error == EAGAIN) {
4689 if (update_config_cache != NULL)
4690 *update_config_cache = B_TRUE;
4693 * Redo the loading process with the trusted config if it is
4694 * too different from the untrusted config.
4696 spa_ld_prepare_for_reload(spa);
4697 spa_load_note(spa, "RELOADING");
4698 error = spa_ld_mos_init(spa, type);
4699 if (error != 0)
4700 return (error);
4702 error = spa_ld_trusted_config(spa, type, B_TRUE);
4703 if (error != 0)
4704 return (error);
4706 } else if (error != 0) {
4707 return (error);
4710 return (0);
4714 * Load an existing storage pool, using the config provided. This config
4715 * describes which vdevs are part of the pool and is later validated against
4716 * partial configs present in each vdev's label and an entire copy of the
4717 * config stored in the MOS.
4719 static int
4720 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4722 int error = 0;
4723 boolean_t missing_feat_write = B_FALSE;
4724 boolean_t checkpoint_rewind =
4725 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4726 boolean_t update_config_cache = B_FALSE;
4728 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4729 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4731 spa_load_note(spa, "LOADING");
4733 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4734 if (error != 0)
4735 return (error);
4738 * If we are rewinding to the checkpoint then we need to repeat
4739 * everything we've done so far in this function but this time
4740 * selecting the checkpointed uberblock and using that to open
4741 * the MOS.
4743 if (checkpoint_rewind) {
4745 * If we are rewinding to the checkpoint update config cache
4746 * anyway.
4748 update_config_cache = B_TRUE;
4751 * Extract the checkpointed uberblock from the current MOS
4752 * and use this as the pool's uberblock from now on. If the
4753 * pool is imported as writeable we also write the checkpoint
4754 * uberblock to the labels, making the rewind permanent.
4756 error = spa_ld_checkpoint_rewind(spa);
4757 if (error != 0)
4758 return (error);
4761 * Redo the loading process again with the
4762 * checkpointed uberblock.
4764 spa_ld_prepare_for_reload(spa);
4765 spa_load_note(spa, "LOADING checkpointed uberblock");
4766 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4767 if (error != 0)
4768 return (error);
4772 * Retrieve the checkpoint txg if the pool has a checkpoint.
4774 error = spa_ld_read_checkpoint_txg(spa);
4775 if (error != 0)
4776 return (error);
4779 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4780 * from the pool and their contents were re-mapped to other vdevs. Note
4781 * that everything that we read before this step must have been
4782 * rewritten on concrete vdevs after the last device removal was
4783 * initiated. Otherwise we could be reading from indirect vdevs before
4784 * we have loaded their mappings.
4786 error = spa_ld_open_indirect_vdev_metadata(spa);
4787 if (error != 0)
4788 return (error);
4791 * Retrieve the full list of active features from the MOS and check if
4792 * they are all supported.
4794 error = spa_ld_check_features(spa, &missing_feat_write);
4795 if (error != 0)
4796 return (error);
4799 * Load several special directories from the MOS needed by the dsl_pool
4800 * layer.
4802 error = spa_ld_load_special_directories(spa);
4803 if (error != 0)
4804 return (error);
4807 * Retrieve pool properties from the MOS.
4809 error = spa_ld_get_props(spa);
4810 if (error != 0)
4811 return (error);
4814 * Retrieve the list of auxiliary devices - cache devices and spares -
4815 * and open them.
4817 error = spa_ld_open_aux_vdevs(spa, type);
4818 if (error != 0)
4819 return (error);
4822 * Load the metadata for all vdevs. Also check if unopenable devices
4823 * should be autoreplaced.
4825 error = spa_ld_load_vdev_metadata(spa);
4826 if (error != 0)
4827 return (error);
4829 error = spa_ld_load_dedup_tables(spa);
4830 if (error != 0)
4831 return (error);
4834 * Verify the logs now to make sure we don't have any unexpected errors
4835 * when we claim log blocks later.
4837 error = spa_ld_verify_logs(spa, type, ereport);
4838 if (error != 0)
4839 return (error);
4841 if (missing_feat_write) {
4842 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4845 * At this point, we know that we can open the pool in
4846 * read-only mode but not read-write mode. We now have enough
4847 * information and can return to userland.
4849 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4850 ENOTSUP));
4854 * Traverse the last txgs to make sure the pool was left off in a safe
4855 * state. When performing an extreme rewind, we verify the whole pool,
4856 * which can take a very long time.
4858 error = spa_ld_verify_pool_data(spa);
4859 if (error != 0)
4860 return (error);
4863 * Calculate the deflated space for the pool. This must be done before
4864 * we write anything to the pool because we'd need to update the space
4865 * accounting using the deflated sizes.
4867 spa_update_dspace(spa);
4870 * We have now retrieved all the information we needed to open the
4871 * pool. If we are importing the pool in read-write mode, a few
4872 * additional steps must be performed to finish the import.
4874 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4875 spa->spa_load_max_txg == UINT64_MAX)) {
4876 uint64_t config_cache_txg = spa->spa_config_txg;
4878 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4881 * In case of a checkpoint rewind, log the original txg
4882 * of the checkpointed uberblock.
4884 if (checkpoint_rewind) {
4885 spa_history_log_internal(spa, "checkpoint rewind",
4886 NULL, "rewound state to txg=%llu",
4887 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4891 * Traverse the ZIL and claim all blocks.
4893 spa_ld_claim_log_blocks(spa);
4896 * Kick-off the syncing thread.
4898 spa->spa_sync_on = B_TRUE;
4899 txg_sync_start(spa->spa_dsl_pool);
4900 mmp_thread_start(spa);
4903 * Wait for all claims to sync. We sync up to the highest
4904 * claimed log block birth time so that claimed log blocks
4905 * don't appear to be from the future. spa_claim_max_txg
4906 * will have been set for us by ZIL traversal operations
4907 * performed above.
4909 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4912 * Check if we need to request an update of the config. On the
4913 * next sync, we would update the config stored in vdev labels
4914 * and the cachefile (by default /etc/zfs/zpool.cache).
4916 spa_ld_check_for_config_update(spa, config_cache_txg,
4917 update_config_cache);
4920 * Check if a rebuild was in progress and if so resume it.
4921 * Then check all DTLs to see if anything needs resilvering.
4922 * The resilver will be deferred if a rebuild was started.
4924 if (vdev_rebuild_active(spa->spa_root_vdev)) {
4925 vdev_rebuild_restart(spa);
4926 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4927 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4928 spa_async_request(spa, SPA_ASYNC_RESILVER);
4932 * Log the fact that we booted up (so that we can detect if
4933 * we rebooted in the middle of an operation).
4935 spa_history_log_version(spa, "open", NULL);
4937 spa_restart_removal(spa);
4938 spa_spawn_aux_threads(spa);
4941 * Delete any inconsistent datasets.
4943 * Note:
4944 * Since we may be issuing deletes for clones here,
4945 * we make sure to do so after we've spawned all the
4946 * auxiliary threads above (from which the livelist
4947 * deletion zthr is part of).
4949 (void) dmu_objset_find(spa_name(spa),
4950 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4953 * Clean up any stale temporary dataset userrefs.
4955 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4957 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4958 vdev_initialize_restart(spa->spa_root_vdev);
4959 vdev_trim_restart(spa->spa_root_vdev);
4960 vdev_autotrim_restart(spa);
4961 spa_config_exit(spa, SCL_CONFIG, FTAG);
4964 spa_import_progress_remove(spa_guid(spa));
4965 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
4967 spa_load_note(spa, "LOADED");
4969 return (0);
4972 static int
4973 spa_load_retry(spa_t *spa, spa_load_state_t state)
4975 spa_mode_t mode = spa->spa_mode;
4977 spa_unload(spa);
4978 spa_deactivate(spa);
4980 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4982 spa_activate(spa, mode);
4983 spa_async_suspend(spa);
4985 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4986 (u_longlong_t)spa->spa_load_max_txg);
4988 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4992 * If spa_load() fails this function will try loading prior txg's. If
4993 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4994 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4995 * function will not rewind the pool and will return the same error as
4996 * spa_load().
4998 static int
4999 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5000 int rewind_flags)
5002 nvlist_t *loadinfo = NULL;
5003 nvlist_t *config = NULL;
5004 int load_error, rewind_error;
5005 uint64_t safe_rewind_txg;
5006 uint64_t min_txg;
5008 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5009 spa->spa_load_max_txg = spa->spa_load_txg;
5010 spa_set_log_state(spa, SPA_LOG_CLEAR);
5011 } else {
5012 spa->spa_load_max_txg = max_request;
5013 if (max_request != UINT64_MAX)
5014 spa->spa_extreme_rewind = B_TRUE;
5017 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5018 if (load_error == 0)
5019 return (0);
5020 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5022 * When attempting checkpoint-rewind on a pool with no
5023 * checkpoint, we should not attempt to load uberblocks
5024 * from previous txgs when spa_load fails.
5026 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5027 spa_import_progress_remove(spa_guid(spa));
5028 return (load_error);
5031 if (spa->spa_root_vdev != NULL)
5032 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5034 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5035 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5037 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5038 nvlist_free(config);
5039 spa_import_progress_remove(spa_guid(spa));
5040 return (load_error);
5043 if (state == SPA_LOAD_RECOVER) {
5044 /* Price of rolling back is discarding txgs, including log */
5045 spa_set_log_state(spa, SPA_LOG_CLEAR);
5046 } else {
5048 * If we aren't rolling back save the load info from our first
5049 * import attempt so that we can restore it after attempting
5050 * to rewind.
5052 loadinfo = spa->spa_load_info;
5053 spa->spa_load_info = fnvlist_alloc();
5056 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5057 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5058 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5059 TXG_INITIAL : safe_rewind_txg;
5062 * Continue as long as we're finding errors, we're still within
5063 * the acceptable rewind range, and we're still finding uberblocks
5065 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5066 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5067 if (spa->spa_load_max_txg < safe_rewind_txg)
5068 spa->spa_extreme_rewind = B_TRUE;
5069 rewind_error = spa_load_retry(spa, state);
5072 spa->spa_extreme_rewind = B_FALSE;
5073 spa->spa_load_max_txg = UINT64_MAX;
5075 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5076 spa_config_set(spa, config);
5077 else
5078 nvlist_free(config);
5080 if (state == SPA_LOAD_RECOVER) {
5081 ASSERT3P(loadinfo, ==, NULL);
5082 spa_import_progress_remove(spa_guid(spa));
5083 return (rewind_error);
5084 } else {
5085 /* Store the rewind info as part of the initial load info */
5086 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5087 spa->spa_load_info);
5089 /* Restore the initial load info */
5090 fnvlist_free(spa->spa_load_info);
5091 spa->spa_load_info = loadinfo;
5093 spa_import_progress_remove(spa_guid(spa));
5094 return (load_error);
5099 * Pool Open/Import
5101 * The import case is identical to an open except that the configuration is sent
5102 * down from userland, instead of grabbed from the configuration cache. For the
5103 * case of an open, the pool configuration will exist in the
5104 * POOL_STATE_UNINITIALIZED state.
5106 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5107 * the same time open the pool, without having to keep around the spa_t in some
5108 * ambiguous state.
5110 static int
5111 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
5112 nvlist_t **config)
5114 spa_t *spa;
5115 spa_load_state_t state = SPA_LOAD_OPEN;
5116 int error;
5117 int locked = B_FALSE;
5118 int firstopen = B_FALSE;
5120 *spapp = NULL;
5123 * As disgusting as this is, we need to support recursive calls to this
5124 * function because dsl_dir_open() is called during spa_load(), and ends
5125 * up calling spa_open() again. The real fix is to figure out how to
5126 * avoid dsl_dir_open() calling this in the first place.
5128 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5129 mutex_enter(&spa_namespace_lock);
5130 locked = B_TRUE;
5133 if ((spa = spa_lookup(pool)) == NULL) {
5134 if (locked)
5135 mutex_exit(&spa_namespace_lock);
5136 return (SET_ERROR(ENOENT));
5139 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5140 zpool_load_policy_t policy;
5142 firstopen = B_TRUE;
5144 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5145 &policy);
5146 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5147 state = SPA_LOAD_RECOVER;
5149 spa_activate(spa, spa_mode_global);
5151 if (state != SPA_LOAD_RECOVER)
5152 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5153 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5155 zfs_dbgmsg("spa_open_common: opening %s", pool);
5156 error = spa_load_best(spa, state, policy.zlp_txg,
5157 policy.zlp_rewind);
5159 if (error == EBADF) {
5161 * If vdev_validate() returns failure (indicated by
5162 * EBADF), it indicates that one of the vdevs indicates
5163 * that the pool has been exported or destroyed. If
5164 * this is the case, the config cache is out of sync and
5165 * we should remove the pool from the namespace.
5167 spa_unload(spa);
5168 spa_deactivate(spa);
5169 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5170 spa_remove(spa);
5171 if (locked)
5172 mutex_exit(&spa_namespace_lock);
5173 return (SET_ERROR(ENOENT));
5176 if (error) {
5178 * We can't open the pool, but we still have useful
5179 * information: the state of each vdev after the
5180 * attempted vdev_open(). Return this to the user.
5182 if (config != NULL && spa->spa_config) {
5183 VERIFY(nvlist_dup(spa->spa_config, config,
5184 KM_SLEEP) == 0);
5185 VERIFY(nvlist_add_nvlist(*config,
5186 ZPOOL_CONFIG_LOAD_INFO,
5187 spa->spa_load_info) == 0);
5189 spa_unload(spa);
5190 spa_deactivate(spa);
5191 spa->spa_last_open_failed = error;
5192 if (locked)
5193 mutex_exit(&spa_namespace_lock);
5194 *spapp = NULL;
5195 return (error);
5199 spa_open_ref(spa, tag);
5201 if (config != NULL)
5202 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5205 * If we've recovered the pool, pass back any information we
5206 * gathered while doing the load.
5208 if (state == SPA_LOAD_RECOVER) {
5209 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5210 spa->spa_load_info) == 0);
5213 if (locked) {
5214 spa->spa_last_open_failed = 0;
5215 spa->spa_last_ubsync_txg = 0;
5216 spa->spa_load_txg = 0;
5217 mutex_exit(&spa_namespace_lock);
5220 if (firstopen)
5221 zvol_create_minors_recursive(spa_name(spa));
5223 *spapp = spa;
5225 return (0);
5229 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
5230 nvlist_t **config)
5232 return (spa_open_common(name, spapp, tag, policy, config));
5236 spa_open(const char *name, spa_t **spapp, void *tag)
5238 return (spa_open_common(name, spapp, tag, NULL, NULL));
5242 * Lookup the given spa_t, incrementing the inject count in the process,
5243 * preventing it from being exported or destroyed.
5245 spa_t *
5246 spa_inject_addref(char *name)
5248 spa_t *spa;
5250 mutex_enter(&spa_namespace_lock);
5251 if ((spa = spa_lookup(name)) == NULL) {
5252 mutex_exit(&spa_namespace_lock);
5253 return (NULL);
5255 spa->spa_inject_ref++;
5256 mutex_exit(&spa_namespace_lock);
5258 return (spa);
5261 void
5262 spa_inject_delref(spa_t *spa)
5264 mutex_enter(&spa_namespace_lock);
5265 spa->spa_inject_ref--;
5266 mutex_exit(&spa_namespace_lock);
5270 * Add spares device information to the nvlist.
5272 static void
5273 spa_add_spares(spa_t *spa, nvlist_t *config)
5275 nvlist_t **spares;
5276 uint_t i, nspares;
5277 nvlist_t *nvroot;
5278 uint64_t guid;
5279 vdev_stat_t *vs;
5280 uint_t vsc;
5281 uint64_t pool;
5283 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5285 if (spa->spa_spares.sav_count == 0)
5286 return;
5288 VERIFY(nvlist_lookup_nvlist(config,
5289 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5290 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5291 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5292 if (nspares != 0) {
5293 VERIFY(nvlist_add_nvlist_array(nvroot,
5294 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5295 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5296 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
5299 * Go through and find any spares which have since been
5300 * repurposed as an active spare. If this is the case, update
5301 * their status appropriately.
5303 for (i = 0; i < nspares; i++) {
5304 VERIFY(nvlist_lookup_uint64(spares[i],
5305 ZPOOL_CONFIG_GUID, &guid) == 0);
5306 if (spa_spare_exists(guid, &pool, NULL) &&
5307 pool != 0ULL) {
5308 VERIFY(nvlist_lookup_uint64_array(
5309 spares[i], ZPOOL_CONFIG_VDEV_STATS,
5310 (uint64_t **)&vs, &vsc) == 0);
5311 vs->vs_state = VDEV_STATE_CANT_OPEN;
5312 vs->vs_aux = VDEV_AUX_SPARED;
5319 * Add l2cache device information to the nvlist, including vdev stats.
5321 static void
5322 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5324 nvlist_t **l2cache;
5325 uint_t i, j, nl2cache;
5326 nvlist_t *nvroot;
5327 uint64_t guid;
5328 vdev_t *vd;
5329 vdev_stat_t *vs;
5330 uint_t vsc;
5332 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5334 if (spa->spa_l2cache.sav_count == 0)
5335 return;
5337 VERIFY(nvlist_lookup_nvlist(config,
5338 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
5339 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5340 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5341 if (nl2cache != 0) {
5342 VERIFY(nvlist_add_nvlist_array(nvroot,
5343 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5344 VERIFY(nvlist_lookup_nvlist_array(nvroot,
5345 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
5348 * Update level 2 cache device stats.
5351 for (i = 0; i < nl2cache; i++) {
5352 VERIFY(nvlist_lookup_uint64(l2cache[i],
5353 ZPOOL_CONFIG_GUID, &guid) == 0);
5355 vd = NULL;
5356 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5357 if (guid ==
5358 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5359 vd = spa->spa_l2cache.sav_vdevs[j];
5360 break;
5363 ASSERT(vd != NULL);
5365 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
5366 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
5367 == 0);
5368 vdev_get_stats(vd, vs);
5369 vdev_config_generate_stats(vd, l2cache[i]);
5375 static void
5376 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5378 zap_cursor_t zc;
5379 zap_attribute_t za;
5381 if (spa->spa_feat_for_read_obj != 0) {
5382 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5383 spa->spa_feat_for_read_obj);
5384 zap_cursor_retrieve(&zc, &za) == 0;
5385 zap_cursor_advance(&zc)) {
5386 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5387 za.za_num_integers == 1);
5388 VERIFY0(nvlist_add_uint64(features, za.za_name,
5389 za.za_first_integer));
5391 zap_cursor_fini(&zc);
5394 if (spa->spa_feat_for_write_obj != 0) {
5395 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5396 spa->spa_feat_for_write_obj);
5397 zap_cursor_retrieve(&zc, &za) == 0;
5398 zap_cursor_advance(&zc)) {
5399 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5400 za.za_num_integers == 1);
5401 VERIFY0(nvlist_add_uint64(features, za.za_name,
5402 za.za_first_integer));
5404 zap_cursor_fini(&zc);
5408 static void
5409 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5411 int i;
5413 for (i = 0; i < SPA_FEATURES; i++) {
5414 zfeature_info_t feature = spa_feature_table[i];
5415 uint64_t refcount;
5417 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5418 continue;
5420 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5425 * Store a list of pool features and their reference counts in the
5426 * config.
5428 * The first time this is called on a spa, allocate a new nvlist, fetch
5429 * the pool features and reference counts from disk, then save the list
5430 * in the spa. In subsequent calls on the same spa use the saved nvlist
5431 * and refresh its values from the cached reference counts. This
5432 * ensures we don't block here on I/O on a suspended pool so 'zpool
5433 * clear' can resume the pool.
5435 static void
5436 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5438 nvlist_t *features;
5440 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5442 mutex_enter(&spa->spa_feat_stats_lock);
5443 features = spa->spa_feat_stats;
5445 if (features != NULL) {
5446 spa_feature_stats_from_cache(spa, features);
5447 } else {
5448 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5449 spa->spa_feat_stats = features;
5450 spa_feature_stats_from_disk(spa, features);
5453 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5454 features));
5456 mutex_exit(&spa->spa_feat_stats_lock);
5460 spa_get_stats(const char *name, nvlist_t **config,
5461 char *altroot, size_t buflen)
5463 int error;
5464 spa_t *spa;
5466 *config = NULL;
5467 error = spa_open_common(name, &spa, FTAG, NULL, config);
5469 if (spa != NULL) {
5471 * This still leaves a window of inconsistency where the spares
5472 * or l2cache devices could change and the config would be
5473 * self-inconsistent.
5475 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5477 if (*config != NULL) {
5478 uint64_t loadtimes[2];
5480 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5481 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5482 VERIFY(nvlist_add_uint64_array(*config,
5483 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
5485 VERIFY(nvlist_add_uint64(*config,
5486 ZPOOL_CONFIG_ERRCOUNT,
5487 spa_get_errlog_size(spa)) == 0);
5489 if (spa_suspended(spa)) {
5490 VERIFY(nvlist_add_uint64(*config,
5491 ZPOOL_CONFIG_SUSPENDED,
5492 spa->spa_failmode) == 0);
5493 VERIFY(nvlist_add_uint64(*config,
5494 ZPOOL_CONFIG_SUSPENDED_REASON,
5495 spa->spa_suspended) == 0);
5498 spa_add_spares(spa, *config);
5499 spa_add_l2cache(spa, *config);
5500 spa_add_feature_stats(spa, *config);
5505 * We want to get the alternate root even for faulted pools, so we cheat
5506 * and call spa_lookup() directly.
5508 if (altroot) {
5509 if (spa == NULL) {
5510 mutex_enter(&spa_namespace_lock);
5511 spa = spa_lookup(name);
5512 if (spa)
5513 spa_altroot(spa, altroot, buflen);
5514 else
5515 altroot[0] = '\0';
5516 spa = NULL;
5517 mutex_exit(&spa_namespace_lock);
5518 } else {
5519 spa_altroot(spa, altroot, buflen);
5523 if (spa != NULL) {
5524 spa_config_exit(spa, SCL_CONFIG, FTAG);
5525 spa_close(spa, FTAG);
5528 return (error);
5532 * Validate that the auxiliary device array is well formed. We must have an
5533 * array of nvlists, each which describes a valid leaf vdev. If this is an
5534 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5535 * specified, as long as they are well-formed.
5537 static int
5538 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5539 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5540 vdev_labeltype_t label)
5542 nvlist_t **dev;
5543 uint_t i, ndev;
5544 vdev_t *vd;
5545 int error;
5547 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5550 * It's acceptable to have no devs specified.
5552 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5553 return (0);
5555 if (ndev == 0)
5556 return (SET_ERROR(EINVAL));
5559 * Make sure the pool is formatted with a version that supports this
5560 * device type.
5562 if (spa_version(spa) < version)
5563 return (SET_ERROR(ENOTSUP));
5566 * Set the pending device list so we correctly handle device in-use
5567 * checking.
5569 sav->sav_pending = dev;
5570 sav->sav_npending = ndev;
5572 for (i = 0; i < ndev; i++) {
5573 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5574 mode)) != 0)
5575 goto out;
5577 if (!vd->vdev_ops->vdev_op_leaf) {
5578 vdev_free(vd);
5579 error = SET_ERROR(EINVAL);
5580 goto out;
5583 vd->vdev_top = vd;
5585 if ((error = vdev_open(vd)) == 0 &&
5586 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5587 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5588 vd->vdev_guid) == 0);
5591 vdev_free(vd);
5593 if (error &&
5594 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5595 goto out;
5596 else
5597 error = 0;
5600 out:
5601 sav->sav_pending = NULL;
5602 sav->sav_npending = 0;
5603 return (error);
5606 static int
5607 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5609 int error;
5611 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5613 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5614 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5615 VDEV_LABEL_SPARE)) != 0) {
5616 return (error);
5619 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5620 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5621 VDEV_LABEL_L2CACHE));
5624 static void
5625 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5626 const char *config)
5628 int i;
5630 if (sav->sav_config != NULL) {
5631 nvlist_t **olddevs;
5632 uint_t oldndevs;
5633 nvlist_t **newdevs;
5636 * Generate new dev list by concatenating with the
5637 * current dev list.
5639 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
5640 &olddevs, &oldndevs) == 0);
5642 newdevs = kmem_alloc(sizeof (void *) *
5643 (ndevs + oldndevs), KM_SLEEP);
5644 for (i = 0; i < oldndevs; i++)
5645 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
5646 KM_SLEEP) == 0);
5647 for (i = 0; i < ndevs; i++)
5648 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
5649 KM_SLEEP) == 0);
5651 VERIFY(nvlist_remove(sav->sav_config, config,
5652 DATA_TYPE_NVLIST_ARRAY) == 0);
5654 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
5655 config, newdevs, ndevs + oldndevs) == 0);
5656 for (i = 0; i < oldndevs + ndevs; i++)
5657 nvlist_free(newdevs[i]);
5658 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5659 } else {
5661 * Generate a new dev list.
5663 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
5664 KM_SLEEP) == 0);
5665 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
5666 devs, ndevs) == 0);
5671 * Stop and drop level 2 ARC devices
5673 void
5674 spa_l2cache_drop(spa_t *spa)
5676 vdev_t *vd;
5677 int i;
5678 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5680 for (i = 0; i < sav->sav_count; i++) {
5681 uint64_t pool;
5683 vd = sav->sav_vdevs[i];
5684 ASSERT(vd != NULL);
5686 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5687 pool != 0ULL && l2arc_vdev_present(vd))
5688 l2arc_remove_vdev(vd);
5693 * Verify encryption parameters for spa creation. If we are encrypting, we must
5694 * have the encryption feature flag enabled.
5696 static int
5697 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5698 boolean_t has_encryption)
5700 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5701 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5702 !has_encryption)
5703 return (SET_ERROR(ENOTSUP));
5705 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5709 * Pool Creation
5712 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5713 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5715 spa_t *spa;
5716 char *altroot = NULL;
5717 vdev_t *rvd;
5718 dsl_pool_t *dp;
5719 dmu_tx_t *tx;
5720 int error = 0;
5721 uint64_t txg = TXG_INITIAL;
5722 nvlist_t **spares, **l2cache;
5723 uint_t nspares, nl2cache;
5724 uint64_t version, obj, ndraid = 0;
5725 boolean_t has_features;
5726 boolean_t has_encryption;
5727 boolean_t has_allocclass;
5728 spa_feature_t feat;
5729 char *feat_name;
5730 char *poolname;
5731 nvlist_t *nvl;
5733 if (props == NULL ||
5734 nvlist_lookup_string(props, "tname", &poolname) != 0)
5735 poolname = (char *)pool;
5738 * If this pool already exists, return failure.
5740 mutex_enter(&spa_namespace_lock);
5741 if (spa_lookup(poolname) != NULL) {
5742 mutex_exit(&spa_namespace_lock);
5743 return (SET_ERROR(EEXIST));
5747 * Allocate a new spa_t structure.
5749 nvl = fnvlist_alloc();
5750 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5751 (void) nvlist_lookup_string(props,
5752 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5753 spa = spa_add(poolname, nvl, altroot);
5754 fnvlist_free(nvl);
5755 spa_activate(spa, spa_mode_global);
5757 if (props && (error = spa_prop_validate(spa, props))) {
5758 spa_deactivate(spa);
5759 spa_remove(spa);
5760 mutex_exit(&spa_namespace_lock);
5761 return (error);
5765 * Temporary pool names should never be written to disk.
5767 if (poolname != pool)
5768 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5770 has_features = B_FALSE;
5771 has_encryption = B_FALSE;
5772 has_allocclass = B_FALSE;
5773 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5774 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5775 if (zpool_prop_feature(nvpair_name(elem))) {
5776 has_features = B_TRUE;
5778 feat_name = strchr(nvpair_name(elem), '@') + 1;
5779 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5780 if (feat == SPA_FEATURE_ENCRYPTION)
5781 has_encryption = B_TRUE;
5782 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5783 has_allocclass = B_TRUE;
5787 /* verify encryption params, if they were provided */
5788 if (dcp != NULL) {
5789 error = spa_create_check_encryption_params(dcp, has_encryption);
5790 if (error != 0) {
5791 spa_deactivate(spa);
5792 spa_remove(spa);
5793 mutex_exit(&spa_namespace_lock);
5794 return (error);
5797 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5798 spa_deactivate(spa);
5799 spa_remove(spa);
5800 mutex_exit(&spa_namespace_lock);
5801 return (ENOTSUP);
5804 if (has_features || nvlist_lookup_uint64(props,
5805 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5806 version = SPA_VERSION;
5808 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5810 spa->spa_first_txg = txg;
5811 spa->spa_uberblock.ub_txg = txg - 1;
5812 spa->spa_uberblock.ub_version = version;
5813 spa->spa_ubsync = spa->spa_uberblock;
5814 spa->spa_load_state = SPA_LOAD_CREATE;
5815 spa->spa_removing_phys.sr_state = DSS_NONE;
5816 spa->spa_removing_phys.sr_removing_vdev = -1;
5817 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5818 spa->spa_indirect_vdevs_loaded = B_TRUE;
5821 * Create "The Godfather" zio to hold all async IOs
5823 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5824 KM_SLEEP);
5825 for (int i = 0; i < max_ncpus; i++) {
5826 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5827 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5828 ZIO_FLAG_GODFATHER);
5832 * Create the root vdev.
5834 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5836 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5838 ASSERT(error != 0 || rvd != NULL);
5839 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5841 if (error == 0 && !zfs_allocatable_devs(nvroot))
5842 error = SET_ERROR(EINVAL);
5844 if (error == 0 &&
5845 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5846 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5847 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5849 * instantiate the metaslab groups (this will dirty the vdevs)
5850 * we can no longer error exit past this point
5852 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5853 vdev_t *vd = rvd->vdev_child[c];
5855 vdev_metaslab_set_size(vd);
5856 vdev_expand(vd, txg);
5860 spa_config_exit(spa, SCL_ALL, FTAG);
5862 if (error != 0) {
5863 spa_unload(spa);
5864 spa_deactivate(spa);
5865 spa_remove(spa);
5866 mutex_exit(&spa_namespace_lock);
5867 return (error);
5871 * Get the list of spares, if specified.
5873 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5874 &spares, &nspares) == 0) {
5875 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5876 KM_SLEEP) == 0);
5877 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5878 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5879 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5880 spa_load_spares(spa);
5881 spa_config_exit(spa, SCL_ALL, FTAG);
5882 spa->spa_spares.sav_sync = B_TRUE;
5886 * Get the list of level 2 cache devices, if specified.
5888 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5889 &l2cache, &nl2cache) == 0) {
5890 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5891 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5892 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5893 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5894 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5895 spa_load_l2cache(spa);
5896 spa_config_exit(spa, SCL_ALL, FTAG);
5897 spa->spa_l2cache.sav_sync = B_TRUE;
5900 spa->spa_is_initializing = B_TRUE;
5901 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5902 spa->spa_is_initializing = B_FALSE;
5905 * Create DDTs (dedup tables).
5907 ddt_create(spa);
5909 spa_update_dspace(spa);
5911 tx = dmu_tx_create_assigned(dp, txg);
5914 * Create the pool's history object.
5916 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5917 spa_history_create_obj(spa, tx);
5919 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5920 spa_history_log_version(spa, "create", tx);
5923 * Create the pool config object.
5925 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5926 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5927 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5929 if (zap_add(spa->spa_meta_objset,
5930 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5931 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5932 cmn_err(CE_PANIC, "failed to add pool config");
5935 if (zap_add(spa->spa_meta_objset,
5936 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5937 sizeof (uint64_t), 1, &version, tx) != 0) {
5938 cmn_err(CE_PANIC, "failed to add pool version");
5941 /* Newly created pools with the right version are always deflated. */
5942 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5943 spa->spa_deflate = TRUE;
5944 if (zap_add(spa->spa_meta_objset,
5945 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5946 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5947 cmn_err(CE_PANIC, "failed to add deflate");
5952 * Create the deferred-free bpobj. Turn off compression
5953 * because sync-to-convergence takes longer if the blocksize
5954 * keeps changing.
5956 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5957 dmu_object_set_compress(spa->spa_meta_objset, obj,
5958 ZIO_COMPRESS_OFF, tx);
5959 if (zap_add(spa->spa_meta_objset,
5960 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5961 sizeof (uint64_t), 1, &obj, tx) != 0) {
5962 cmn_err(CE_PANIC, "failed to add bpobj");
5964 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5965 spa->spa_meta_objset, obj));
5968 * Generate some random noise for salted checksums to operate on.
5970 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5971 sizeof (spa->spa_cksum_salt.zcs_bytes));
5974 * Set pool properties.
5976 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5977 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5978 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5979 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5980 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5981 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
5983 if (props != NULL) {
5984 spa_configfile_set(spa, props, B_FALSE);
5985 spa_sync_props(props, tx);
5988 for (int i = 0; i < ndraid; i++)
5989 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
5991 dmu_tx_commit(tx);
5993 spa->spa_sync_on = B_TRUE;
5994 txg_sync_start(dp);
5995 mmp_thread_start(spa);
5996 txg_wait_synced(dp, txg);
5998 spa_spawn_aux_threads(spa);
6000 spa_write_cachefile(spa, B_FALSE, B_TRUE);
6003 * Don't count references from objsets that are already closed
6004 * and are making their way through the eviction process.
6006 spa_evicting_os_wait(spa);
6007 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6008 spa->spa_load_state = SPA_LOAD_NONE;
6010 mutex_exit(&spa_namespace_lock);
6012 return (0);
6016 * Import a non-root pool into the system.
6019 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6021 spa_t *spa;
6022 char *altroot = NULL;
6023 spa_load_state_t state = SPA_LOAD_IMPORT;
6024 zpool_load_policy_t policy;
6025 spa_mode_t mode = spa_mode_global;
6026 uint64_t readonly = B_FALSE;
6027 int error;
6028 nvlist_t *nvroot;
6029 nvlist_t **spares, **l2cache;
6030 uint_t nspares, nl2cache;
6033 * If a pool with this name exists, return failure.
6035 mutex_enter(&spa_namespace_lock);
6036 if (spa_lookup(pool) != NULL) {
6037 mutex_exit(&spa_namespace_lock);
6038 return (SET_ERROR(EEXIST));
6042 * Create and initialize the spa structure.
6044 (void) nvlist_lookup_string(props,
6045 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6046 (void) nvlist_lookup_uint64(props,
6047 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6048 if (readonly)
6049 mode = SPA_MODE_READ;
6050 spa = spa_add(pool, config, altroot);
6051 spa->spa_import_flags = flags;
6054 * Verbatim import - Take a pool and insert it into the namespace
6055 * as if it had been loaded at boot.
6057 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6058 if (props != NULL)
6059 spa_configfile_set(spa, props, B_FALSE);
6061 spa_write_cachefile(spa, B_FALSE, B_TRUE);
6062 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6063 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6064 mutex_exit(&spa_namespace_lock);
6065 return (0);
6068 spa_activate(spa, mode);
6071 * Don't start async tasks until we know everything is healthy.
6073 spa_async_suspend(spa);
6075 zpool_get_load_policy(config, &policy);
6076 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6077 state = SPA_LOAD_RECOVER;
6079 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6081 if (state != SPA_LOAD_RECOVER) {
6082 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6083 zfs_dbgmsg("spa_import: importing %s", pool);
6084 } else {
6085 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6086 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6088 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6091 * Propagate anything learned while loading the pool and pass it
6092 * back to caller (i.e. rewind info, missing devices, etc).
6094 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6095 spa->spa_load_info) == 0);
6097 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6099 * Toss any existing sparelist, as it doesn't have any validity
6100 * anymore, and conflicts with spa_has_spare().
6102 if (spa->spa_spares.sav_config) {
6103 nvlist_free(spa->spa_spares.sav_config);
6104 spa->spa_spares.sav_config = NULL;
6105 spa_load_spares(spa);
6107 if (spa->spa_l2cache.sav_config) {
6108 nvlist_free(spa->spa_l2cache.sav_config);
6109 spa->spa_l2cache.sav_config = NULL;
6110 spa_load_l2cache(spa);
6113 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
6114 &nvroot) == 0);
6115 spa_config_exit(spa, SCL_ALL, FTAG);
6117 if (props != NULL)
6118 spa_configfile_set(spa, props, B_FALSE);
6120 if (error != 0 || (props && spa_writeable(spa) &&
6121 (error = spa_prop_set(spa, props)))) {
6122 spa_unload(spa);
6123 spa_deactivate(spa);
6124 spa_remove(spa);
6125 mutex_exit(&spa_namespace_lock);
6126 return (error);
6129 spa_async_resume(spa);
6132 * Override any spares and level 2 cache devices as specified by
6133 * the user, as these may have correct device names/devids, etc.
6135 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6136 &spares, &nspares) == 0) {
6137 if (spa->spa_spares.sav_config)
6138 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
6139 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
6140 else
6141 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
6142 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6143 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
6144 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
6145 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6146 spa_load_spares(spa);
6147 spa_config_exit(spa, SCL_ALL, FTAG);
6148 spa->spa_spares.sav_sync = B_TRUE;
6150 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6151 &l2cache, &nl2cache) == 0) {
6152 if (spa->spa_l2cache.sav_config)
6153 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
6154 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
6155 else
6156 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
6157 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6158 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6159 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
6160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6161 spa_load_l2cache(spa);
6162 spa_config_exit(spa, SCL_ALL, FTAG);
6163 spa->spa_l2cache.sav_sync = B_TRUE;
6167 * Check for any removed devices.
6169 if (spa->spa_autoreplace) {
6170 spa_aux_check_removed(&spa->spa_spares);
6171 spa_aux_check_removed(&spa->spa_l2cache);
6174 if (spa_writeable(spa)) {
6176 * Update the config cache to include the newly-imported pool.
6178 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6182 * It's possible that the pool was expanded while it was exported.
6183 * We kick off an async task to handle this for us.
6185 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6187 spa_history_log_version(spa, "import", NULL);
6189 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6191 mutex_exit(&spa_namespace_lock);
6193 zvol_create_minors_recursive(pool);
6195 return (0);
6198 nvlist_t *
6199 spa_tryimport(nvlist_t *tryconfig)
6201 nvlist_t *config = NULL;
6202 char *poolname, *cachefile;
6203 spa_t *spa;
6204 uint64_t state;
6205 int error;
6206 zpool_load_policy_t policy;
6208 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6209 return (NULL);
6211 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6212 return (NULL);
6215 * Create and initialize the spa structure.
6217 mutex_enter(&spa_namespace_lock);
6218 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6219 spa_activate(spa, SPA_MODE_READ);
6222 * Rewind pool if a max txg was provided.
6224 zpool_get_load_policy(spa->spa_config, &policy);
6225 if (policy.zlp_txg != UINT64_MAX) {
6226 spa->spa_load_max_txg = policy.zlp_txg;
6227 spa->spa_extreme_rewind = B_TRUE;
6228 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6229 poolname, (longlong_t)policy.zlp_txg);
6230 } else {
6231 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6234 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6235 == 0) {
6236 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6237 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6238 } else {
6239 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6242 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6245 * If 'tryconfig' was at least parsable, return the current config.
6247 if (spa->spa_root_vdev != NULL) {
6248 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6249 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
6250 poolname) == 0);
6251 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6252 state) == 0);
6253 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6254 spa->spa_uberblock.ub_timestamp) == 0);
6255 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6256 spa->spa_load_info) == 0);
6257 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6258 spa->spa_errata) == 0);
6261 * If the bootfs property exists on this pool then we
6262 * copy it out so that external consumers can tell which
6263 * pools are bootable.
6265 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6266 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6269 * We have to play games with the name since the
6270 * pool was opened as TRYIMPORT_NAME.
6272 if (dsl_dsobj_to_dsname(spa_name(spa),
6273 spa->spa_bootfs, tmpname) == 0) {
6274 char *cp;
6275 char *dsname;
6277 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6279 cp = strchr(tmpname, '/');
6280 if (cp == NULL) {
6281 (void) strlcpy(dsname, tmpname,
6282 MAXPATHLEN);
6283 } else {
6284 (void) snprintf(dsname, MAXPATHLEN,
6285 "%s/%s", poolname, ++cp);
6287 VERIFY(nvlist_add_string(config,
6288 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
6289 kmem_free(dsname, MAXPATHLEN);
6291 kmem_free(tmpname, MAXPATHLEN);
6295 * Add the list of hot spares and level 2 cache devices.
6297 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6298 spa_add_spares(spa, config);
6299 spa_add_l2cache(spa, config);
6300 spa_config_exit(spa, SCL_CONFIG, FTAG);
6303 spa_unload(spa);
6304 spa_deactivate(spa);
6305 spa_remove(spa);
6306 mutex_exit(&spa_namespace_lock);
6308 return (config);
6312 * Pool export/destroy
6314 * The act of destroying or exporting a pool is very simple. We make sure there
6315 * is no more pending I/O and any references to the pool are gone. Then, we
6316 * update the pool state and sync all the labels to disk, removing the
6317 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6318 * we don't sync the labels or remove the configuration cache.
6320 static int
6321 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6322 boolean_t force, boolean_t hardforce)
6324 int error;
6325 spa_t *spa;
6327 if (oldconfig)
6328 *oldconfig = NULL;
6330 if (!(spa_mode_global & SPA_MODE_WRITE))
6331 return (SET_ERROR(EROFS));
6333 mutex_enter(&spa_namespace_lock);
6334 if ((spa = spa_lookup(pool)) == NULL) {
6335 mutex_exit(&spa_namespace_lock);
6336 return (SET_ERROR(ENOENT));
6339 if (spa->spa_is_exporting) {
6340 /* the pool is being exported by another thread */
6341 mutex_exit(&spa_namespace_lock);
6342 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6344 spa->spa_is_exporting = B_TRUE;
6347 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6348 * reacquire the namespace lock, and see if we can export.
6350 spa_open_ref(spa, FTAG);
6351 mutex_exit(&spa_namespace_lock);
6352 spa_async_suspend(spa);
6353 if (spa->spa_zvol_taskq) {
6354 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6355 taskq_wait(spa->spa_zvol_taskq);
6357 mutex_enter(&spa_namespace_lock);
6358 spa_close(spa, FTAG);
6360 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6361 goto export_spa;
6363 * The pool will be in core if it's openable, in which case we can
6364 * modify its state. Objsets may be open only because they're dirty,
6365 * so we have to force it to sync before checking spa_refcnt.
6367 if (spa->spa_sync_on) {
6368 txg_wait_synced(spa->spa_dsl_pool, 0);
6369 spa_evicting_os_wait(spa);
6373 * A pool cannot be exported or destroyed if there are active
6374 * references. If we are resetting a pool, allow references by
6375 * fault injection handlers.
6377 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6378 error = SET_ERROR(EBUSY);
6379 goto fail;
6382 if (spa->spa_sync_on) {
6384 * A pool cannot be exported if it has an active shared spare.
6385 * This is to prevent other pools stealing the active spare
6386 * from an exported pool. At user's own will, such pool can
6387 * be forcedly exported.
6389 if (!force && new_state == POOL_STATE_EXPORTED &&
6390 spa_has_active_shared_spare(spa)) {
6391 error = SET_ERROR(EXDEV);
6392 goto fail;
6396 * We're about to export or destroy this pool. Make sure
6397 * we stop all initialization and trim activity here before
6398 * we set the spa_final_txg. This will ensure that all
6399 * dirty data resulting from the initialization is
6400 * committed to disk before we unload the pool.
6402 if (spa->spa_root_vdev != NULL) {
6403 vdev_t *rvd = spa->spa_root_vdev;
6404 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6405 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6406 vdev_autotrim_stop_all(spa);
6407 vdev_rebuild_stop_all(spa);
6411 * We want this to be reflected on every label,
6412 * so mark them all dirty. spa_unload() will do the
6413 * final sync that pushes these changes out.
6415 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6416 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6417 spa->spa_state = new_state;
6418 spa->spa_final_txg = spa_last_synced_txg(spa) +
6419 TXG_DEFER_SIZE + 1;
6420 vdev_config_dirty(spa->spa_root_vdev);
6421 spa_config_exit(spa, SCL_ALL, FTAG);
6425 export_spa:
6426 if (new_state == POOL_STATE_DESTROYED)
6427 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6428 else if (new_state == POOL_STATE_EXPORTED)
6429 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6431 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6432 spa_unload(spa);
6433 spa_deactivate(spa);
6436 if (oldconfig && spa->spa_config)
6437 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
6439 if (new_state != POOL_STATE_UNINITIALIZED) {
6440 if (!hardforce)
6441 spa_write_cachefile(spa, B_TRUE, B_TRUE);
6442 spa_remove(spa);
6443 } else {
6445 * If spa_remove() is not called for this spa_t and
6446 * there is any possibility that it can be reused,
6447 * we make sure to reset the exporting flag.
6449 spa->spa_is_exporting = B_FALSE;
6452 mutex_exit(&spa_namespace_lock);
6453 return (0);
6455 fail:
6456 spa->spa_is_exporting = B_FALSE;
6457 spa_async_resume(spa);
6458 mutex_exit(&spa_namespace_lock);
6459 return (error);
6463 * Destroy a storage pool.
6466 spa_destroy(const char *pool)
6468 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6469 B_FALSE, B_FALSE));
6473 * Export a storage pool.
6476 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6477 boolean_t hardforce)
6479 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6480 force, hardforce));
6484 * Similar to spa_export(), this unloads the spa_t without actually removing it
6485 * from the namespace in any way.
6488 spa_reset(const char *pool)
6490 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6491 B_FALSE, B_FALSE));
6495 * ==========================================================================
6496 * Device manipulation
6497 * ==========================================================================
6501 * This is called as a synctask to increment the draid feature flag
6503 static void
6504 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6506 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6507 int draid = (int)(uintptr_t)arg;
6509 for (int c = 0; c < draid; c++)
6510 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6514 * Add a device to a storage pool.
6517 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6519 uint64_t txg, ndraid = 0;
6520 int error;
6521 vdev_t *rvd = spa->spa_root_vdev;
6522 vdev_t *vd, *tvd;
6523 nvlist_t **spares, **l2cache;
6524 uint_t nspares, nl2cache;
6526 ASSERT(spa_writeable(spa));
6528 txg = spa_vdev_enter(spa);
6530 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6531 VDEV_ALLOC_ADD)) != 0)
6532 return (spa_vdev_exit(spa, NULL, txg, error));
6534 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6536 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6537 &nspares) != 0)
6538 nspares = 0;
6540 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6541 &nl2cache) != 0)
6542 nl2cache = 0;
6544 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6545 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6547 if (vd->vdev_children != 0 &&
6548 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6549 return (spa_vdev_exit(spa, vd, txg, error));
6553 * The virtual dRAID spares must be added after vdev tree is created
6554 * and the vdev guids are generated. The guid of their associated
6555 * dRAID is stored in the config and used when opening the spare.
6557 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6558 rvd->vdev_children)) == 0) {
6559 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6560 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6561 nspares = 0;
6562 } else {
6563 return (spa_vdev_exit(spa, vd, txg, error));
6567 * We must validate the spares and l2cache devices after checking the
6568 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6570 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6571 return (spa_vdev_exit(spa, vd, txg, error));
6574 * If we are in the middle of a device removal, we can only add
6575 * devices which match the existing devices in the pool.
6576 * If we are in the middle of a removal, or have some indirect
6577 * vdevs, we can not add raidz or dRAID top levels.
6579 if (spa->spa_vdev_removal != NULL ||
6580 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6581 for (int c = 0; c < vd->vdev_children; c++) {
6582 tvd = vd->vdev_child[c];
6583 if (spa->spa_vdev_removal != NULL &&
6584 tvd->vdev_ashift != spa->spa_max_ashift) {
6585 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6587 /* Fail if top level vdev is raidz or a dRAID */
6588 if (vdev_get_nparity(tvd) != 0)
6589 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6592 * Need the top level mirror to be
6593 * a mirror of leaf vdevs only
6595 if (tvd->vdev_ops == &vdev_mirror_ops) {
6596 for (uint64_t cid = 0;
6597 cid < tvd->vdev_children; cid++) {
6598 vdev_t *cvd = tvd->vdev_child[cid];
6599 if (!cvd->vdev_ops->vdev_op_leaf) {
6600 return (spa_vdev_exit(spa, vd,
6601 txg, EINVAL));
6608 for (int c = 0; c < vd->vdev_children; c++) {
6609 tvd = vd->vdev_child[c];
6610 vdev_remove_child(vd, tvd);
6611 tvd->vdev_id = rvd->vdev_children;
6612 vdev_add_child(rvd, tvd);
6613 vdev_config_dirty(tvd);
6616 if (nspares != 0) {
6617 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6618 ZPOOL_CONFIG_SPARES);
6619 spa_load_spares(spa);
6620 spa->spa_spares.sav_sync = B_TRUE;
6623 if (nl2cache != 0) {
6624 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6625 ZPOOL_CONFIG_L2CACHE);
6626 spa_load_l2cache(spa);
6627 spa->spa_l2cache.sav_sync = B_TRUE;
6631 * We can't increment a feature while holding spa_vdev so we
6632 * have to do it in a synctask.
6634 if (ndraid != 0) {
6635 dmu_tx_t *tx;
6637 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6638 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6639 (void *)(uintptr_t)ndraid, tx);
6640 dmu_tx_commit(tx);
6644 * We have to be careful when adding new vdevs to an existing pool.
6645 * If other threads start allocating from these vdevs before we
6646 * sync the config cache, and we lose power, then upon reboot we may
6647 * fail to open the pool because there are DVAs that the config cache
6648 * can't translate. Therefore, we first add the vdevs without
6649 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6650 * and then let spa_config_update() initialize the new metaslabs.
6652 * spa_load() checks for added-but-not-initialized vdevs, so that
6653 * if we lose power at any point in this sequence, the remaining
6654 * steps will be completed the next time we load the pool.
6656 (void) spa_vdev_exit(spa, vd, txg, 0);
6658 mutex_enter(&spa_namespace_lock);
6659 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6660 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6661 mutex_exit(&spa_namespace_lock);
6663 return (0);
6667 * Attach a device to a mirror. The arguments are the path to any device
6668 * in the mirror, and the nvroot for the new device. If the path specifies
6669 * a device that is not mirrored, we automatically insert the mirror vdev.
6671 * If 'replacing' is specified, the new device is intended to replace the
6672 * existing device; in this case the two devices are made into their own
6673 * mirror using the 'replacing' vdev, which is functionally identical to
6674 * the mirror vdev (it actually reuses all the same ops) but has a few
6675 * extra rules: you can't attach to it after it's been created, and upon
6676 * completion of resilvering, the first disk (the one being replaced)
6677 * is automatically detached.
6679 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6680 * should be performed instead of traditional healing reconstruction. From
6681 * an administrators perspective these are both resilver operations.
6684 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6685 int rebuild)
6687 uint64_t txg, dtl_max_txg;
6688 vdev_t *rvd = spa->spa_root_vdev;
6689 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6690 vdev_ops_t *pvops;
6691 char *oldvdpath, *newvdpath;
6692 int newvd_isspare;
6693 int error;
6695 ASSERT(spa_writeable(spa));
6697 txg = spa_vdev_enter(spa);
6699 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6701 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6702 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6703 error = (spa_has_checkpoint(spa)) ?
6704 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6705 return (spa_vdev_exit(spa, NULL, txg, error));
6708 if (rebuild) {
6709 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6710 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6712 if (dsl_scan_resilvering(spa_get_dsl(spa)))
6713 return (spa_vdev_exit(spa, NULL, txg,
6714 ZFS_ERR_RESILVER_IN_PROGRESS));
6715 } else {
6716 if (vdev_rebuild_active(rvd))
6717 return (spa_vdev_exit(spa, NULL, txg,
6718 ZFS_ERR_REBUILD_IN_PROGRESS));
6721 if (spa->spa_vdev_removal != NULL)
6722 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6724 if (oldvd == NULL)
6725 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6727 if (!oldvd->vdev_ops->vdev_op_leaf)
6728 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6730 pvd = oldvd->vdev_parent;
6732 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6733 VDEV_ALLOC_ATTACH)) != 0)
6734 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6736 if (newrootvd->vdev_children != 1)
6737 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6739 newvd = newrootvd->vdev_child[0];
6741 if (!newvd->vdev_ops->vdev_op_leaf)
6742 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6744 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6745 return (spa_vdev_exit(spa, newrootvd, txg, error));
6748 * Spares can't replace logs
6750 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6751 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6754 * A dRAID spare can only replace a child of its parent dRAID vdev.
6756 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6757 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6758 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6761 if (rebuild) {
6763 * For rebuilds, the top vdev must support reconstruction
6764 * using only space maps. This means the only allowable
6765 * vdevs types are the root vdev, a mirror, or dRAID.
6767 tvd = pvd;
6768 if (pvd->vdev_top != NULL)
6769 tvd = pvd->vdev_top;
6771 if (tvd->vdev_ops != &vdev_mirror_ops &&
6772 tvd->vdev_ops != &vdev_root_ops &&
6773 tvd->vdev_ops != &vdev_draid_ops) {
6774 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6778 if (!replacing) {
6780 * For attach, the only allowable parent is a mirror or the root
6781 * vdev.
6783 if (pvd->vdev_ops != &vdev_mirror_ops &&
6784 pvd->vdev_ops != &vdev_root_ops)
6785 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6787 pvops = &vdev_mirror_ops;
6788 } else {
6790 * Active hot spares can only be replaced by inactive hot
6791 * spares.
6793 if (pvd->vdev_ops == &vdev_spare_ops &&
6794 oldvd->vdev_isspare &&
6795 !spa_has_spare(spa, newvd->vdev_guid))
6796 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6799 * If the source is a hot spare, and the parent isn't already a
6800 * spare, then we want to create a new hot spare. Otherwise, we
6801 * want to create a replacing vdev. The user is not allowed to
6802 * attach to a spared vdev child unless the 'isspare' state is
6803 * the same (spare replaces spare, non-spare replaces
6804 * non-spare).
6806 if (pvd->vdev_ops == &vdev_replacing_ops &&
6807 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6808 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6809 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6810 newvd->vdev_isspare != oldvd->vdev_isspare) {
6811 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6814 if (newvd->vdev_isspare)
6815 pvops = &vdev_spare_ops;
6816 else
6817 pvops = &vdev_replacing_ops;
6821 * Make sure the new device is big enough.
6823 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6824 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6827 * The new device cannot have a higher alignment requirement
6828 * than the top-level vdev.
6830 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6831 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6834 * If this is an in-place replacement, update oldvd's path and devid
6835 * to make it distinguishable from newvd, and unopenable from now on.
6837 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6838 spa_strfree(oldvd->vdev_path);
6839 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6840 KM_SLEEP);
6841 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
6842 "%s/%s", newvd->vdev_path, "old");
6843 if (oldvd->vdev_devid != NULL) {
6844 spa_strfree(oldvd->vdev_devid);
6845 oldvd->vdev_devid = NULL;
6850 * If the parent is not a mirror, or if we're replacing, insert the new
6851 * mirror/replacing/spare vdev above oldvd.
6853 if (pvd->vdev_ops != pvops)
6854 pvd = vdev_add_parent(oldvd, pvops);
6856 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6857 ASSERT(pvd->vdev_ops == pvops);
6858 ASSERT(oldvd->vdev_parent == pvd);
6861 * Extract the new device from its root and add it to pvd.
6863 vdev_remove_child(newrootvd, newvd);
6864 newvd->vdev_id = pvd->vdev_children;
6865 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6866 vdev_add_child(pvd, newvd);
6869 * Reevaluate the parent vdev state.
6871 vdev_propagate_state(pvd);
6873 tvd = newvd->vdev_top;
6874 ASSERT(pvd->vdev_top == tvd);
6875 ASSERT(tvd->vdev_parent == rvd);
6877 vdev_config_dirty(tvd);
6880 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6881 * for any dmu_sync-ed blocks. It will propagate upward when
6882 * spa_vdev_exit() calls vdev_dtl_reassess().
6884 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6886 vdev_dtl_dirty(newvd, DTL_MISSING,
6887 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
6889 if (newvd->vdev_isspare) {
6890 spa_spare_activate(newvd);
6891 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6894 oldvdpath = spa_strdup(oldvd->vdev_path);
6895 newvdpath = spa_strdup(newvd->vdev_path);
6896 newvd_isspare = newvd->vdev_isspare;
6899 * Mark newvd's DTL dirty in this txg.
6901 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6904 * Schedule the resilver or rebuild to restart in the future. We do
6905 * this to ensure that dmu_sync-ed blocks have been stitched into the
6906 * respective datasets.
6908 if (rebuild) {
6909 newvd->vdev_rebuild_txg = txg;
6911 vdev_rebuild(tvd);
6912 } else {
6913 newvd->vdev_resilver_txg = txg;
6915 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6916 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
6917 vdev_defer_resilver(newvd);
6918 } else {
6919 dsl_scan_restart_resilver(spa->spa_dsl_pool,
6920 dtl_max_txg);
6924 if (spa->spa_bootfs)
6925 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6927 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6930 * Commit the config
6932 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6934 spa_history_log_internal(spa, "vdev attach", NULL,
6935 "%s vdev=%s %s vdev=%s",
6936 replacing && newvd_isspare ? "spare in" :
6937 replacing ? "replace" : "attach", newvdpath,
6938 replacing ? "for" : "to", oldvdpath);
6940 spa_strfree(oldvdpath);
6941 spa_strfree(newvdpath);
6943 return (0);
6947 * Detach a device from a mirror or replacing vdev.
6949 * If 'replace_done' is specified, only detach if the parent
6950 * is a replacing vdev.
6953 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6955 uint64_t txg;
6956 int error;
6957 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
6958 vdev_t *vd, *pvd, *cvd, *tvd;
6959 boolean_t unspare = B_FALSE;
6960 uint64_t unspare_guid = 0;
6961 char *vdpath;
6963 ASSERT(spa_writeable(spa));
6965 txg = spa_vdev_detach_enter(spa, guid);
6967 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6970 * Besides being called directly from the userland through the
6971 * ioctl interface, spa_vdev_detach() can be potentially called
6972 * at the end of spa_vdev_resilver_done().
6974 * In the regular case, when we have a checkpoint this shouldn't
6975 * happen as we never empty the DTLs of a vdev during the scrub
6976 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6977 * should never get here when we have a checkpoint.
6979 * That said, even in a case when we checkpoint the pool exactly
6980 * as spa_vdev_resilver_done() calls this function everything
6981 * should be fine as the resilver will return right away.
6983 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6984 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6985 error = (spa_has_checkpoint(spa)) ?
6986 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6987 return (spa_vdev_exit(spa, NULL, txg, error));
6990 if (vd == NULL)
6991 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6993 if (!vd->vdev_ops->vdev_op_leaf)
6994 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6996 pvd = vd->vdev_parent;
6999 * If the parent/child relationship is not as expected, don't do it.
7000 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7001 * vdev that's replacing B with C. The user's intent in replacing
7002 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7003 * the replace by detaching C, the expected behavior is to end up
7004 * M(A,B). But suppose that right after deciding to detach C,
7005 * the replacement of B completes. We would have M(A,C), and then
7006 * ask to detach C, which would leave us with just A -- not what
7007 * the user wanted. To prevent this, we make sure that the
7008 * parent/child relationship hasn't changed -- in this example,
7009 * that C's parent is still the replacing vdev R.
7011 if (pvd->vdev_guid != pguid && pguid != 0)
7012 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7015 * Only 'replacing' or 'spare' vdevs can be replaced.
7017 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7018 pvd->vdev_ops != &vdev_spare_ops)
7019 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7021 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7022 spa_version(spa) >= SPA_VERSION_SPARES);
7025 * Only mirror, replacing, and spare vdevs support detach.
7027 if (pvd->vdev_ops != &vdev_replacing_ops &&
7028 pvd->vdev_ops != &vdev_mirror_ops &&
7029 pvd->vdev_ops != &vdev_spare_ops)
7030 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7033 * If this device has the only valid copy of some data,
7034 * we cannot safely detach it.
7036 if (vdev_dtl_required(vd))
7037 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7039 ASSERT(pvd->vdev_children >= 2);
7042 * If we are detaching the second disk from a replacing vdev, then
7043 * check to see if we changed the original vdev's path to have "/old"
7044 * at the end in spa_vdev_attach(). If so, undo that change now.
7046 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7047 vd->vdev_path != NULL) {
7048 size_t len = strlen(vd->vdev_path);
7050 for (int c = 0; c < pvd->vdev_children; c++) {
7051 cvd = pvd->vdev_child[c];
7053 if (cvd == vd || cvd->vdev_path == NULL)
7054 continue;
7056 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7057 strcmp(cvd->vdev_path + len, "/old") == 0) {
7058 spa_strfree(cvd->vdev_path);
7059 cvd->vdev_path = spa_strdup(vd->vdev_path);
7060 break;
7066 * If we are detaching the original disk from a normal spare, then it
7067 * implies that the spare should become a real disk, and be removed
7068 * from the active spare list for the pool. dRAID spares on the
7069 * other hand are coupled to the pool and thus should never be removed
7070 * from the spares list.
7072 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7073 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7075 if (last_cvd->vdev_isspare &&
7076 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7077 unspare = B_TRUE;
7082 * Erase the disk labels so the disk can be used for other things.
7083 * This must be done after all other error cases are handled,
7084 * but before we disembowel vd (so we can still do I/O to it).
7085 * But if we can't do it, don't treat the error as fatal --
7086 * it may be that the unwritability of the disk is the reason
7087 * it's being detached!
7089 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7092 * Remove vd from its parent and compact the parent's children.
7094 vdev_remove_child(pvd, vd);
7095 vdev_compact_children(pvd);
7098 * Remember one of the remaining children so we can get tvd below.
7100 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7103 * If we need to remove the remaining child from the list of hot spares,
7104 * do it now, marking the vdev as no longer a spare in the process.
7105 * We must do this before vdev_remove_parent(), because that can
7106 * change the GUID if it creates a new toplevel GUID. For a similar
7107 * reason, we must remove the spare now, in the same txg as the detach;
7108 * otherwise someone could attach a new sibling, change the GUID, and
7109 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7111 if (unspare) {
7112 ASSERT(cvd->vdev_isspare);
7113 spa_spare_remove(cvd);
7114 unspare_guid = cvd->vdev_guid;
7115 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7116 cvd->vdev_unspare = B_TRUE;
7120 * If the parent mirror/replacing vdev only has one child,
7121 * the parent is no longer needed. Remove it from the tree.
7123 if (pvd->vdev_children == 1) {
7124 if (pvd->vdev_ops == &vdev_spare_ops)
7125 cvd->vdev_unspare = B_FALSE;
7126 vdev_remove_parent(cvd);
7130 * We don't set tvd until now because the parent we just removed
7131 * may have been the previous top-level vdev.
7133 tvd = cvd->vdev_top;
7134 ASSERT(tvd->vdev_parent == rvd);
7137 * Reevaluate the parent vdev state.
7139 vdev_propagate_state(cvd);
7142 * If the 'autoexpand' property is set on the pool then automatically
7143 * try to expand the size of the pool. For example if the device we
7144 * just detached was smaller than the others, it may be possible to
7145 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7146 * first so that we can obtain the updated sizes of the leaf vdevs.
7148 if (spa->spa_autoexpand) {
7149 vdev_reopen(tvd);
7150 vdev_expand(tvd, txg);
7153 vdev_config_dirty(tvd);
7156 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7157 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7158 * But first make sure we're not on any *other* txg's DTL list, to
7159 * prevent vd from being accessed after it's freed.
7161 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7162 for (int t = 0; t < TXG_SIZE; t++)
7163 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7164 vd->vdev_detached = B_TRUE;
7165 vdev_dirty(tvd, VDD_DTL, vd, txg);
7167 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7168 spa_notify_waiters(spa);
7170 /* hang on to the spa before we release the lock */
7171 spa_open_ref(spa, FTAG);
7173 error = spa_vdev_exit(spa, vd, txg, 0);
7175 spa_history_log_internal(spa, "detach", NULL,
7176 "vdev=%s", vdpath);
7177 spa_strfree(vdpath);
7180 * If this was the removal of the original device in a hot spare vdev,
7181 * then we want to go through and remove the device from the hot spare
7182 * list of every other pool.
7184 if (unspare) {
7185 spa_t *altspa = NULL;
7187 mutex_enter(&spa_namespace_lock);
7188 while ((altspa = spa_next(altspa)) != NULL) {
7189 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7190 altspa == spa)
7191 continue;
7193 spa_open_ref(altspa, FTAG);
7194 mutex_exit(&spa_namespace_lock);
7195 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7196 mutex_enter(&spa_namespace_lock);
7197 spa_close(altspa, FTAG);
7199 mutex_exit(&spa_namespace_lock);
7201 /* search the rest of the vdevs for spares to remove */
7202 spa_vdev_resilver_done(spa);
7205 /* all done with the spa; OK to release */
7206 mutex_enter(&spa_namespace_lock);
7207 spa_close(spa, FTAG);
7208 mutex_exit(&spa_namespace_lock);
7210 return (error);
7213 static int
7214 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7215 list_t *vd_list)
7217 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7219 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7221 /* Look up vdev and ensure it's a leaf. */
7222 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7223 if (vd == NULL || vd->vdev_detached) {
7224 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7225 return (SET_ERROR(ENODEV));
7226 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7227 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7228 return (SET_ERROR(EINVAL));
7229 } else if (!vdev_writeable(vd)) {
7230 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7231 return (SET_ERROR(EROFS));
7233 mutex_enter(&vd->vdev_initialize_lock);
7234 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7237 * When we activate an initialize action we check to see
7238 * if the vdev_initialize_thread is NULL. We do this instead
7239 * of using the vdev_initialize_state since there might be
7240 * a previous initialization process which has completed but
7241 * the thread is not exited.
7243 if (cmd_type == POOL_INITIALIZE_START &&
7244 (vd->vdev_initialize_thread != NULL ||
7245 vd->vdev_top->vdev_removing)) {
7246 mutex_exit(&vd->vdev_initialize_lock);
7247 return (SET_ERROR(EBUSY));
7248 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7249 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7250 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7251 mutex_exit(&vd->vdev_initialize_lock);
7252 return (SET_ERROR(ESRCH));
7253 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7254 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7255 mutex_exit(&vd->vdev_initialize_lock);
7256 return (SET_ERROR(ESRCH));
7259 switch (cmd_type) {
7260 case POOL_INITIALIZE_START:
7261 vdev_initialize(vd);
7262 break;
7263 case POOL_INITIALIZE_CANCEL:
7264 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7265 break;
7266 case POOL_INITIALIZE_SUSPEND:
7267 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7268 break;
7269 default:
7270 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7272 mutex_exit(&vd->vdev_initialize_lock);
7274 return (0);
7278 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7279 nvlist_t *vdev_errlist)
7281 int total_errors = 0;
7282 list_t vd_list;
7284 list_create(&vd_list, sizeof (vdev_t),
7285 offsetof(vdev_t, vdev_initialize_node));
7288 * We hold the namespace lock through the whole function
7289 * to prevent any changes to the pool while we're starting or
7290 * stopping initialization. The config and state locks are held so that
7291 * we can properly assess the vdev state before we commit to
7292 * the initializing operation.
7294 mutex_enter(&spa_namespace_lock);
7296 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7297 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7298 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7300 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7301 &vd_list);
7302 if (error != 0) {
7303 char guid_as_str[MAXNAMELEN];
7305 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7306 "%llu", (unsigned long long)vdev_guid);
7307 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7308 total_errors++;
7312 /* Wait for all initialize threads to stop. */
7313 vdev_initialize_stop_wait(spa, &vd_list);
7315 /* Sync out the initializing state */
7316 txg_wait_synced(spa->spa_dsl_pool, 0);
7317 mutex_exit(&spa_namespace_lock);
7319 list_destroy(&vd_list);
7321 return (total_errors);
7324 static int
7325 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7326 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7328 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7330 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7332 /* Look up vdev and ensure it's a leaf. */
7333 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7334 if (vd == NULL || vd->vdev_detached) {
7335 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7336 return (SET_ERROR(ENODEV));
7337 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7338 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7339 return (SET_ERROR(EINVAL));
7340 } else if (!vdev_writeable(vd)) {
7341 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7342 return (SET_ERROR(EROFS));
7343 } else if (!vd->vdev_has_trim) {
7344 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7345 return (SET_ERROR(EOPNOTSUPP));
7346 } else if (secure && !vd->vdev_has_securetrim) {
7347 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7348 return (SET_ERROR(EOPNOTSUPP));
7350 mutex_enter(&vd->vdev_trim_lock);
7351 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7354 * When we activate a TRIM action we check to see if the
7355 * vdev_trim_thread is NULL. We do this instead of using the
7356 * vdev_trim_state since there might be a previous TRIM process
7357 * which has completed but the thread is not exited.
7359 if (cmd_type == POOL_TRIM_START &&
7360 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7361 mutex_exit(&vd->vdev_trim_lock);
7362 return (SET_ERROR(EBUSY));
7363 } else if (cmd_type == POOL_TRIM_CANCEL &&
7364 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7365 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7366 mutex_exit(&vd->vdev_trim_lock);
7367 return (SET_ERROR(ESRCH));
7368 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7369 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7370 mutex_exit(&vd->vdev_trim_lock);
7371 return (SET_ERROR(ESRCH));
7374 switch (cmd_type) {
7375 case POOL_TRIM_START:
7376 vdev_trim(vd, rate, partial, secure);
7377 break;
7378 case POOL_TRIM_CANCEL:
7379 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7380 break;
7381 case POOL_TRIM_SUSPEND:
7382 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7383 break;
7384 default:
7385 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7387 mutex_exit(&vd->vdev_trim_lock);
7389 return (0);
7393 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7394 * TRIM threads for each child vdev. These threads pass over all of the free
7395 * space in the vdev's metaslabs and issues TRIM commands for that space.
7398 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7399 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7401 int total_errors = 0;
7402 list_t vd_list;
7404 list_create(&vd_list, sizeof (vdev_t),
7405 offsetof(vdev_t, vdev_trim_node));
7408 * We hold the namespace lock through the whole function
7409 * to prevent any changes to the pool while we're starting or
7410 * stopping TRIM. The config and state locks are held so that
7411 * we can properly assess the vdev state before we commit to
7412 * the TRIM operation.
7414 mutex_enter(&spa_namespace_lock);
7416 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7417 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7418 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7420 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7421 rate, partial, secure, &vd_list);
7422 if (error != 0) {
7423 char guid_as_str[MAXNAMELEN];
7425 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7426 "%llu", (unsigned long long)vdev_guid);
7427 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7428 total_errors++;
7432 /* Wait for all TRIM threads to stop. */
7433 vdev_trim_stop_wait(spa, &vd_list);
7435 /* Sync out the TRIM state */
7436 txg_wait_synced(spa->spa_dsl_pool, 0);
7437 mutex_exit(&spa_namespace_lock);
7439 list_destroy(&vd_list);
7441 return (total_errors);
7445 * Split a set of devices from their mirrors, and create a new pool from them.
7448 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
7449 nvlist_t *props, boolean_t exp)
7451 int error = 0;
7452 uint64_t txg, *glist;
7453 spa_t *newspa;
7454 uint_t c, children, lastlog;
7455 nvlist_t **child, *nvl, *tmp;
7456 dmu_tx_t *tx;
7457 char *altroot = NULL;
7458 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7459 boolean_t activate_slog;
7461 ASSERT(spa_writeable(spa));
7463 txg = spa_vdev_enter(spa);
7465 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7466 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7467 error = (spa_has_checkpoint(spa)) ?
7468 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7469 return (spa_vdev_exit(spa, NULL, txg, error));
7472 /* clear the log and flush everything up to now */
7473 activate_slog = spa_passivate_log(spa);
7474 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7475 error = spa_reset_logs(spa);
7476 txg = spa_vdev_config_enter(spa);
7478 if (activate_slog)
7479 spa_activate_log(spa);
7481 if (error != 0)
7482 return (spa_vdev_exit(spa, NULL, txg, error));
7484 /* check new spa name before going any further */
7485 if (spa_lookup(newname) != NULL)
7486 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7489 * scan through all the children to ensure they're all mirrors
7491 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7492 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7493 &children) != 0)
7494 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7496 /* first, check to ensure we've got the right child count */
7497 rvd = spa->spa_root_vdev;
7498 lastlog = 0;
7499 for (c = 0; c < rvd->vdev_children; c++) {
7500 vdev_t *vd = rvd->vdev_child[c];
7502 /* don't count the holes & logs as children */
7503 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7504 !vdev_is_concrete(vd))) {
7505 if (lastlog == 0)
7506 lastlog = c;
7507 continue;
7510 lastlog = 0;
7512 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7513 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7515 /* next, ensure no spare or cache devices are part of the split */
7516 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7517 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7518 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7520 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7521 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7523 /* then, loop over each vdev and validate it */
7524 for (c = 0; c < children; c++) {
7525 uint64_t is_hole = 0;
7527 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7528 &is_hole);
7530 if (is_hole != 0) {
7531 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7532 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7533 continue;
7534 } else {
7535 error = SET_ERROR(EINVAL);
7536 break;
7540 /* deal with indirect vdevs */
7541 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7542 &vdev_indirect_ops)
7543 continue;
7545 /* which disk is going to be split? */
7546 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7547 &glist[c]) != 0) {
7548 error = SET_ERROR(EINVAL);
7549 break;
7552 /* look it up in the spa */
7553 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7554 if (vml[c] == NULL) {
7555 error = SET_ERROR(ENODEV);
7556 break;
7559 /* make sure there's nothing stopping the split */
7560 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7561 vml[c]->vdev_islog ||
7562 !vdev_is_concrete(vml[c]) ||
7563 vml[c]->vdev_isspare ||
7564 vml[c]->vdev_isl2cache ||
7565 !vdev_writeable(vml[c]) ||
7566 vml[c]->vdev_children != 0 ||
7567 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7568 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7569 error = SET_ERROR(EINVAL);
7570 break;
7573 if (vdev_dtl_required(vml[c]) ||
7574 vdev_resilver_needed(vml[c], NULL, NULL)) {
7575 error = SET_ERROR(EBUSY);
7576 break;
7579 /* we need certain info from the top level */
7580 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7581 vml[c]->vdev_top->vdev_ms_array) == 0);
7582 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7583 vml[c]->vdev_top->vdev_ms_shift) == 0);
7584 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7585 vml[c]->vdev_top->vdev_asize) == 0);
7586 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7587 vml[c]->vdev_top->vdev_ashift) == 0);
7589 /* transfer per-vdev ZAPs */
7590 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7591 VERIFY0(nvlist_add_uint64(child[c],
7592 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7594 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7595 VERIFY0(nvlist_add_uint64(child[c],
7596 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7597 vml[c]->vdev_parent->vdev_top_zap));
7600 if (error != 0) {
7601 kmem_free(vml, children * sizeof (vdev_t *));
7602 kmem_free(glist, children * sizeof (uint64_t));
7603 return (spa_vdev_exit(spa, NULL, txg, error));
7606 /* stop writers from using the disks */
7607 for (c = 0; c < children; c++) {
7608 if (vml[c] != NULL)
7609 vml[c]->vdev_offline = B_TRUE;
7611 vdev_reopen(spa->spa_root_vdev);
7614 * Temporarily record the splitting vdevs in the spa config. This
7615 * will disappear once the config is regenerated.
7617 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7618 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
7619 glist, children) == 0);
7620 kmem_free(glist, children * sizeof (uint64_t));
7622 mutex_enter(&spa->spa_props_lock);
7623 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
7624 nvl) == 0);
7625 mutex_exit(&spa->spa_props_lock);
7626 spa->spa_config_splitting = nvl;
7627 vdev_config_dirty(spa->spa_root_vdev);
7629 /* configure and create the new pool */
7630 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
7631 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7632 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
7633 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7634 spa_version(spa)) == 0);
7635 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
7636 spa->spa_config_txg) == 0);
7637 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7638 spa_generate_guid(NULL)) == 0);
7639 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7640 (void) nvlist_lookup_string(props,
7641 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7643 /* add the new pool to the namespace */
7644 newspa = spa_add(newname, config, altroot);
7645 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7646 newspa->spa_config_txg = spa->spa_config_txg;
7647 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7649 /* release the spa config lock, retaining the namespace lock */
7650 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7652 if (zio_injection_enabled)
7653 zio_handle_panic_injection(spa, FTAG, 1);
7655 spa_activate(newspa, spa_mode_global);
7656 spa_async_suspend(newspa);
7659 * Temporarily stop the initializing and TRIM activity. We set the
7660 * state to ACTIVE so that we know to resume initializing or TRIM
7661 * once the split has completed.
7663 list_t vd_initialize_list;
7664 list_create(&vd_initialize_list, sizeof (vdev_t),
7665 offsetof(vdev_t, vdev_initialize_node));
7667 list_t vd_trim_list;
7668 list_create(&vd_trim_list, sizeof (vdev_t),
7669 offsetof(vdev_t, vdev_trim_node));
7671 for (c = 0; c < children; c++) {
7672 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7673 mutex_enter(&vml[c]->vdev_initialize_lock);
7674 vdev_initialize_stop(vml[c],
7675 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7676 mutex_exit(&vml[c]->vdev_initialize_lock);
7678 mutex_enter(&vml[c]->vdev_trim_lock);
7679 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7680 mutex_exit(&vml[c]->vdev_trim_lock);
7684 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7685 vdev_trim_stop_wait(spa, &vd_trim_list);
7687 list_destroy(&vd_initialize_list);
7688 list_destroy(&vd_trim_list);
7690 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7691 newspa->spa_is_splitting = B_TRUE;
7693 /* create the new pool from the disks of the original pool */
7694 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7695 if (error)
7696 goto out;
7698 /* if that worked, generate a real config for the new pool */
7699 if (newspa->spa_root_vdev != NULL) {
7700 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
7701 NV_UNIQUE_NAME, KM_SLEEP) == 0);
7702 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
7703 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
7704 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7705 B_TRUE));
7708 /* set the props */
7709 if (props != NULL) {
7710 spa_configfile_set(newspa, props, B_FALSE);
7711 error = spa_prop_set(newspa, props);
7712 if (error)
7713 goto out;
7716 /* flush everything */
7717 txg = spa_vdev_config_enter(newspa);
7718 vdev_config_dirty(newspa->spa_root_vdev);
7719 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7721 if (zio_injection_enabled)
7722 zio_handle_panic_injection(spa, FTAG, 2);
7724 spa_async_resume(newspa);
7726 /* finally, update the original pool's config */
7727 txg = spa_vdev_config_enter(spa);
7728 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7729 error = dmu_tx_assign(tx, TXG_WAIT);
7730 if (error != 0)
7731 dmu_tx_abort(tx);
7732 for (c = 0; c < children; c++) {
7733 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7734 vdev_t *tvd = vml[c]->vdev_top;
7737 * Need to be sure the detachable VDEV is not
7738 * on any *other* txg's DTL list to prevent it
7739 * from being accessed after it's freed.
7741 for (int t = 0; t < TXG_SIZE; t++) {
7742 (void) txg_list_remove_this(
7743 &tvd->vdev_dtl_list, vml[c], t);
7746 vdev_split(vml[c]);
7747 if (error == 0)
7748 spa_history_log_internal(spa, "detach", tx,
7749 "vdev=%s", vml[c]->vdev_path);
7751 vdev_free(vml[c]);
7754 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7755 vdev_config_dirty(spa->spa_root_vdev);
7756 spa->spa_config_splitting = NULL;
7757 nvlist_free(nvl);
7758 if (error == 0)
7759 dmu_tx_commit(tx);
7760 (void) spa_vdev_exit(spa, NULL, txg, 0);
7762 if (zio_injection_enabled)
7763 zio_handle_panic_injection(spa, FTAG, 3);
7765 /* split is complete; log a history record */
7766 spa_history_log_internal(newspa, "split", NULL,
7767 "from pool %s", spa_name(spa));
7769 newspa->spa_is_splitting = B_FALSE;
7770 kmem_free(vml, children * sizeof (vdev_t *));
7772 /* if we're not going to mount the filesystems in userland, export */
7773 if (exp)
7774 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7775 B_FALSE, B_FALSE);
7777 return (error);
7779 out:
7780 spa_unload(newspa);
7781 spa_deactivate(newspa);
7782 spa_remove(newspa);
7784 txg = spa_vdev_config_enter(spa);
7786 /* re-online all offlined disks */
7787 for (c = 0; c < children; c++) {
7788 if (vml[c] != NULL)
7789 vml[c]->vdev_offline = B_FALSE;
7792 /* restart initializing or trimming disks as necessary */
7793 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7794 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7795 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7797 vdev_reopen(spa->spa_root_vdev);
7799 nvlist_free(spa->spa_config_splitting);
7800 spa->spa_config_splitting = NULL;
7801 (void) spa_vdev_exit(spa, NULL, txg, error);
7803 kmem_free(vml, children * sizeof (vdev_t *));
7804 return (error);
7808 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7809 * currently spared, so we can detach it.
7811 static vdev_t *
7812 spa_vdev_resilver_done_hunt(vdev_t *vd)
7814 vdev_t *newvd, *oldvd;
7816 for (int c = 0; c < vd->vdev_children; c++) {
7817 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7818 if (oldvd != NULL)
7819 return (oldvd);
7823 * Check for a completed replacement. We always consider the first
7824 * vdev in the list to be the oldest vdev, and the last one to be
7825 * the newest (see spa_vdev_attach() for how that works). In
7826 * the case where the newest vdev is faulted, we will not automatically
7827 * remove it after a resilver completes. This is OK as it will require
7828 * user intervention to determine which disk the admin wishes to keep.
7830 if (vd->vdev_ops == &vdev_replacing_ops) {
7831 ASSERT(vd->vdev_children > 1);
7833 newvd = vd->vdev_child[vd->vdev_children - 1];
7834 oldvd = vd->vdev_child[0];
7836 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
7837 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7838 !vdev_dtl_required(oldvd))
7839 return (oldvd);
7843 * Check for a completed resilver with the 'unspare' flag set.
7844 * Also potentially update faulted state.
7846 if (vd->vdev_ops == &vdev_spare_ops) {
7847 vdev_t *first = vd->vdev_child[0];
7848 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
7850 if (last->vdev_unspare) {
7851 oldvd = first;
7852 newvd = last;
7853 } else if (first->vdev_unspare) {
7854 oldvd = last;
7855 newvd = first;
7856 } else {
7857 oldvd = NULL;
7860 if (oldvd != NULL &&
7861 vdev_dtl_empty(newvd, DTL_MISSING) &&
7862 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
7863 !vdev_dtl_required(oldvd))
7864 return (oldvd);
7866 vdev_propagate_state(vd);
7869 * If there are more than two spares attached to a disk,
7870 * and those spares are not required, then we want to
7871 * attempt to free them up now so that they can be used
7872 * by other pools. Once we're back down to a single
7873 * disk+spare, we stop removing them.
7875 if (vd->vdev_children > 2) {
7876 newvd = vd->vdev_child[1];
7878 if (newvd->vdev_isspare && last->vdev_isspare &&
7879 vdev_dtl_empty(last, DTL_MISSING) &&
7880 vdev_dtl_empty(last, DTL_OUTAGE) &&
7881 !vdev_dtl_required(newvd))
7882 return (newvd);
7886 return (NULL);
7889 static void
7890 spa_vdev_resilver_done(spa_t *spa)
7892 vdev_t *vd, *pvd, *ppvd;
7893 uint64_t guid, sguid, pguid, ppguid;
7895 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7897 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
7898 pvd = vd->vdev_parent;
7899 ppvd = pvd->vdev_parent;
7900 guid = vd->vdev_guid;
7901 pguid = pvd->vdev_guid;
7902 ppguid = ppvd->vdev_guid;
7903 sguid = 0;
7905 * If we have just finished replacing a hot spared device, then
7906 * we need to detach the parent's first child (the original hot
7907 * spare) as well.
7909 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
7910 ppvd->vdev_children == 2) {
7911 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
7912 sguid = ppvd->vdev_child[1]->vdev_guid;
7914 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
7916 spa_config_exit(spa, SCL_ALL, FTAG);
7917 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
7918 return;
7919 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
7920 return;
7921 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7924 spa_config_exit(spa, SCL_ALL, FTAG);
7927 * If a detach was not performed above replace waiters will not have
7928 * been notified. In which case we must do so now.
7930 spa_notify_waiters(spa);
7934 * Update the stored path or FRU for this vdev.
7936 static int
7937 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7938 boolean_t ispath)
7940 vdev_t *vd;
7941 boolean_t sync = B_FALSE;
7943 ASSERT(spa_writeable(spa));
7945 spa_vdev_state_enter(spa, SCL_ALL);
7947 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7948 return (spa_vdev_state_exit(spa, NULL, ENOENT));
7950 if (!vd->vdev_ops->vdev_op_leaf)
7951 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7953 if (ispath) {
7954 if (strcmp(value, vd->vdev_path) != 0) {
7955 spa_strfree(vd->vdev_path);
7956 vd->vdev_path = spa_strdup(value);
7957 sync = B_TRUE;
7959 } else {
7960 if (vd->vdev_fru == NULL) {
7961 vd->vdev_fru = spa_strdup(value);
7962 sync = B_TRUE;
7963 } else if (strcmp(value, vd->vdev_fru) != 0) {
7964 spa_strfree(vd->vdev_fru);
7965 vd->vdev_fru = spa_strdup(value);
7966 sync = B_TRUE;
7970 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7974 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7976 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7980 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7982 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7986 * ==========================================================================
7987 * SPA Scanning
7988 * ==========================================================================
7991 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7993 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7995 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7996 return (SET_ERROR(EBUSY));
7998 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8002 spa_scan_stop(spa_t *spa)
8004 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8005 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8006 return (SET_ERROR(EBUSY));
8007 return (dsl_scan_cancel(spa->spa_dsl_pool));
8011 spa_scan(spa_t *spa, pool_scan_func_t func)
8013 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8015 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8016 return (SET_ERROR(ENOTSUP));
8018 if (func == POOL_SCAN_RESILVER &&
8019 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8020 return (SET_ERROR(ENOTSUP));
8023 * If a resilver was requested, but there is no DTL on a
8024 * writeable leaf device, we have nothing to do.
8026 if (func == POOL_SCAN_RESILVER &&
8027 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8028 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8029 return (0);
8032 return (dsl_scan(spa->spa_dsl_pool, func));
8036 * ==========================================================================
8037 * SPA async task processing
8038 * ==========================================================================
8041 static void
8042 spa_async_remove(spa_t *spa, vdev_t *vd)
8044 if (vd->vdev_remove_wanted) {
8045 vd->vdev_remove_wanted = B_FALSE;
8046 vd->vdev_delayed_close = B_FALSE;
8047 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8050 * We want to clear the stats, but we don't want to do a full
8051 * vdev_clear() as that will cause us to throw away
8052 * degraded/faulted state as well as attempt to reopen the
8053 * device, all of which is a waste.
8055 vd->vdev_stat.vs_read_errors = 0;
8056 vd->vdev_stat.vs_write_errors = 0;
8057 vd->vdev_stat.vs_checksum_errors = 0;
8059 vdev_state_dirty(vd->vdev_top);
8061 /* Tell userspace that the vdev is gone. */
8062 zfs_post_remove(spa, vd);
8065 for (int c = 0; c < vd->vdev_children; c++)
8066 spa_async_remove(spa, vd->vdev_child[c]);
8069 static void
8070 spa_async_probe(spa_t *spa, vdev_t *vd)
8072 if (vd->vdev_probe_wanted) {
8073 vd->vdev_probe_wanted = B_FALSE;
8074 vdev_reopen(vd); /* vdev_open() does the actual probe */
8077 for (int c = 0; c < vd->vdev_children; c++)
8078 spa_async_probe(spa, vd->vdev_child[c]);
8081 static void
8082 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8084 if (!spa->spa_autoexpand)
8085 return;
8087 for (int c = 0; c < vd->vdev_children; c++) {
8088 vdev_t *cvd = vd->vdev_child[c];
8089 spa_async_autoexpand(spa, cvd);
8092 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8093 return;
8095 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8098 static void
8099 spa_async_thread(void *arg)
8101 spa_t *spa = (spa_t *)arg;
8102 dsl_pool_t *dp = spa->spa_dsl_pool;
8103 int tasks;
8105 ASSERT(spa->spa_sync_on);
8107 mutex_enter(&spa->spa_async_lock);
8108 tasks = spa->spa_async_tasks;
8109 spa->spa_async_tasks = 0;
8110 mutex_exit(&spa->spa_async_lock);
8113 * See if the config needs to be updated.
8115 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8116 uint64_t old_space, new_space;
8118 mutex_enter(&spa_namespace_lock);
8119 old_space = metaslab_class_get_space(spa_normal_class(spa));
8120 old_space += metaslab_class_get_space(spa_special_class(spa));
8121 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8122 old_space += metaslab_class_get_space(
8123 spa_embedded_log_class(spa));
8125 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8127 new_space = metaslab_class_get_space(spa_normal_class(spa));
8128 new_space += metaslab_class_get_space(spa_special_class(spa));
8129 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8130 new_space += metaslab_class_get_space(
8131 spa_embedded_log_class(spa));
8132 mutex_exit(&spa_namespace_lock);
8135 * If the pool grew as a result of the config update,
8136 * then log an internal history event.
8138 if (new_space != old_space) {
8139 spa_history_log_internal(spa, "vdev online", NULL,
8140 "pool '%s' size: %llu(+%llu)",
8141 spa_name(spa), (u_longlong_t)new_space,
8142 (u_longlong_t)(new_space - old_space));
8147 * See if any devices need to be marked REMOVED.
8149 if (tasks & SPA_ASYNC_REMOVE) {
8150 spa_vdev_state_enter(spa, SCL_NONE);
8151 spa_async_remove(spa, spa->spa_root_vdev);
8152 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8153 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8154 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8155 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8156 (void) spa_vdev_state_exit(spa, NULL, 0);
8159 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8160 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8161 spa_async_autoexpand(spa, spa->spa_root_vdev);
8162 spa_config_exit(spa, SCL_CONFIG, FTAG);
8166 * See if any devices need to be probed.
8168 if (tasks & SPA_ASYNC_PROBE) {
8169 spa_vdev_state_enter(spa, SCL_NONE);
8170 spa_async_probe(spa, spa->spa_root_vdev);
8171 (void) spa_vdev_state_exit(spa, NULL, 0);
8175 * If any devices are done replacing, detach them.
8177 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8178 tasks & SPA_ASYNC_REBUILD_DONE) {
8179 spa_vdev_resilver_done(spa);
8183 * Kick off a resilver.
8185 if (tasks & SPA_ASYNC_RESILVER &&
8186 !vdev_rebuild_active(spa->spa_root_vdev) &&
8187 (!dsl_scan_resilvering(dp) ||
8188 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8189 dsl_scan_restart_resilver(dp, 0);
8191 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8192 mutex_enter(&spa_namespace_lock);
8193 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8194 vdev_initialize_restart(spa->spa_root_vdev);
8195 spa_config_exit(spa, SCL_CONFIG, FTAG);
8196 mutex_exit(&spa_namespace_lock);
8199 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8200 mutex_enter(&spa_namespace_lock);
8201 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8202 vdev_trim_restart(spa->spa_root_vdev);
8203 spa_config_exit(spa, SCL_CONFIG, FTAG);
8204 mutex_exit(&spa_namespace_lock);
8207 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8208 mutex_enter(&spa_namespace_lock);
8209 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8210 vdev_autotrim_restart(spa);
8211 spa_config_exit(spa, SCL_CONFIG, FTAG);
8212 mutex_exit(&spa_namespace_lock);
8216 * Kick off L2 cache whole device TRIM.
8218 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8219 mutex_enter(&spa_namespace_lock);
8220 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8221 vdev_trim_l2arc(spa);
8222 spa_config_exit(spa, SCL_CONFIG, FTAG);
8223 mutex_exit(&spa_namespace_lock);
8227 * Kick off L2 cache rebuilding.
8229 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8230 mutex_enter(&spa_namespace_lock);
8231 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8232 l2arc_spa_rebuild_start(spa);
8233 spa_config_exit(spa, SCL_L2ARC, FTAG);
8234 mutex_exit(&spa_namespace_lock);
8238 * Let the world know that we're done.
8240 mutex_enter(&spa->spa_async_lock);
8241 spa->spa_async_thread = NULL;
8242 cv_broadcast(&spa->spa_async_cv);
8243 mutex_exit(&spa->spa_async_lock);
8244 thread_exit();
8247 void
8248 spa_async_suspend(spa_t *spa)
8250 mutex_enter(&spa->spa_async_lock);
8251 spa->spa_async_suspended++;
8252 while (spa->spa_async_thread != NULL)
8253 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8254 mutex_exit(&spa->spa_async_lock);
8256 spa_vdev_remove_suspend(spa);
8258 zthr_t *condense_thread = spa->spa_condense_zthr;
8259 if (condense_thread != NULL)
8260 zthr_cancel(condense_thread);
8262 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8263 if (discard_thread != NULL)
8264 zthr_cancel(discard_thread);
8266 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8267 if (ll_delete_thread != NULL)
8268 zthr_cancel(ll_delete_thread);
8270 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8271 if (ll_condense_thread != NULL)
8272 zthr_cancel(ll_condense_thread);
8275 void
8276 spa_async_resume(spa_t *spa)
8278 mutex_enter(&spa->spa_async_lock);
8279 ASSERT(spa->spa_async_suspended != 0);
8280 spa->spa_async_suspended--;
8281 mutex_exit(&spa->spa_async_lock);
8282 spa_restart_removal(spa);
8284 zthr_t *condense_thread = spa->spa_condense_zthr;
8285 if (condense_thread != NULL)
8286 zthr_resume(condense_thread);
8288 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8289 if (discard_thread != NULL)
8290 zthr_resume(discard_thread);
8292 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8293 if (ll_delete_thread != NULL)
8294 zthr_resume(ll_delete_thread);
8296 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8297 if (ll_condense_thread != NULL)
8298 zthr_resume(ll_condense_thread);
8301 static boolean_t
8302 spa_async_tasks_pending(spa_t *spa)
8304 uint_t non_config_tasks;
8305 uint_t config_task;
8306 boolean_t config_task_suspended;
8308 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8309 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8310 if (spa->spa_ccw_fail_time == 0) {
8311 config_task_suspended = B_FALSE;
8312 } else {
8313 config_task_suspended =
8314 (gethrtime() - spa->spa_ccw_fail_time) <
8315 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8318 return (non_config_tasks || (config_task && !config_task_suspended));
8321 static void
8322 spa_async_dispatch(spa_t *spa)
8324 mutex_enter(&spa->spa_async_lock);
8325 if (spa_async_tasks_pending(spa) &&
8326 !spa->spa_async_suspended &&
8327 spa->spa_async_thread == NULL)
8328 spa->spa_async_thread = thread_create(NULL, 0,
8329 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8330 mutex_exit(&spa->spa_async_lock);
8333 void
8334 spa_async_request(spa_t *spa, int task)
8336 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8337 mutex_enter(&spa->spa_async_lock);
8338 spa->spa_async_tasks |= task;
8339 mutex_exit(&spa->spa_async_lock);
8343 spa_async_tasks(spa_t *spa)
8345 return (spa->spa_async_tasks);
8349 * ==========================================================================
8350 * SPA syncing routines
8351 * ==========================================================================
8355 static int
8356 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8357 dmu_tx_t *tx)
8359 bpobj_t *bpo = arg;
8360 bpobj_enqueue(bpo, bp, bp_freed, tx);
8361 return (0);
8365 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8367 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8371 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8373 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8376 static int
8377 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8379 zio_t *pio = arg;
8381 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8382 pio->io_flags));
8383 return (0);
8386 static int
8387 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8388 dmu_tx_t *tx)
8390 ASSERT(!bp_freed);
8391 return (spa_free_sync_cb(arg, bp, tx));
8395 * Note: this simple function is not inlined to make it easier to dtrace the
8396 * amount of time spent syncing frees.
8398 static void
8399 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8401 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8402 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8403 VERIFY(zio_wait(zio) == 0);
8407 * Note: this simple function is not inlined to make it easier to dtrace the
8408 * amount of time spent syncing deferred frees.
8410 static void
8411 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8413 if (spa_sync_pass(spa) != 1)
8414 return;
8417 * Note:
8418 * If the log space map feature is active, we stop deferring
8419 * frees to the next TXG and therefore running this function
8420 * would be considered a no-op as spa_deferred_bpobj should
8421 * not have any entries.
8423 * That said we run this function anyway (instead of returning
8424 * immediately) for the edge-case scenario where we just
8425 * activated the log space map feature in this TXG but we have
8426 * deferred frees from the previous TXG.
8428 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8429 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8430 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8431 VERIFY0(zio_wait(zio));
8434 static void
8435 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8437 char *packed = NULL;
8438 size_t bufsize;
8439 size_t nvsize = 0;
8440 dmu_buf_t *db;
8442 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8445 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8446 * information. This avoids the dmu_buf_will_dirty() path and
8447 * saves us a pre-read to get data we don't actually care about.
8449 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8450 packed = vmem_alloc(bufsize, KM_SLEEP);
8452 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8453 KM_SLEEP) == 0);
8454 bzero(packed + nvsize, bufsize - nvsize);
8456 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8458 vmem_free(packed, bufsize);
8460 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8461 dmu_buf_will_dirty(db, tx);
8462 *(uint64_t *)db->db_data = nvsize;
8463 dmu_buf_rele(db, FTAG);
8466 static void
8467 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8468 const char *config, const char *entry)
8470 nvlist_t *nvroot;
8471 nvlist_t **list;
8472 int i;
8474 if (!sav->sav_sync)
8475 return;
8478 * Update the MOS nvlist describing the list of available devices.
8479 * spa_validate_aux() will have already made sure this nvlist is
8480 * valid and the vdevs are labeled appropriately.
8482 if (sav->sav_object == 0) {
8483 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8484 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8485 sizeof (uint64_t), tx);
8486 VERIFY(zap_update(spa->spa_meta_objset,
8487 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8488 &sav->sav_object, tx) == 0);
8491 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
8492 if (sav->sav_count == 0) {
8493 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
8494 } else {
8495 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8496 for (i = 0; i < sav->sav_count; i++)
8497 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8498 B_FALSE, VDEV_CONFIG_L2CACHE);
8499 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
8500 sav->sav_count) == 0);
8501 for (i = 0; i < sav->sav_count; i++)
8502 nvlist_free(list[i]);
8503 kmem_free(list, sav->sav_count * sizeof (void *));
8506 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8507 nvlist_free(nvroot);
8509 sav->sav_sync = B_FALSE;
8513 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8514 * The all-vdev ZAP must be empty.
8516 static void
8517 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8519 spa_t *spa = vd->vdev_spa;
8521 if (vd->vdev_top_zap != 0) {
8522 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8523 vd->vdev_top_zap, tx));
8525 if (vd->vdev_leaf_zap != 0) {
8526 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8527 vd->vdev_leaf_zap, tx));
8529 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8530 spa_avz_build(vd->vdev_child[i], avz, tx);
8534 static void
8535 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8537 nvlist_t *config;
8540 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8541 * its config may not be dirty but we still need to build per-vdev ZAPs.
8542 * Similarly, if the pool is being assembled (e.g. after a split), we
8543 * need to rebuild the AVZ although the config may not be dirty.
8545 if (list_is_empty(&spa->spa_config_dirty_list) &&
8546 spa->spa_avz_action == AVZ_ACTION_NONE)
8547 return;
8549 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8551 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8552 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8553 spa->spa_all_vdev_zaps != 0);
8555 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8556 /* Make and build the new AVZ */
8557 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8558 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8559 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8561 /* Diff old AVZ with new one */
8562 zap_cursor_t zc;
8563 zap_attribute_t za;
8565 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8566 spa->spa_all_vdev_zaps);
8567 zap_cursor_retrieve(&zc, &za) == 0;
8568 zap_cursor_advance(&zc)) {
8569 uint64_t vdzap = za.za_first_integer;
8570 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8571 vdzap) == ENOENT) {
8573 * ZAP is listed in old AVZ but not in new one;
8574 * destroy it
8576 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8577 tx));
8581 zap_cursor_fini(&zc);
8583 /* Destroy the old AVZ */
8584 VERIFY0(zap_destroy(spa->spa_meta_objset,
8585 spa->spa_all_vdev_zaps, tx));
8587 /* Replace the old AVZ in the dir obj with the new one */
8588 VERIFY0(zap_update(spa->spa_meta_objset,
8589 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8590 sizeof (new_avz), 1, &new_avz, tx));
8592 spa->spa_all_vdev_zaps = new_avz;
8593 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8594 zap_cursor_t zc;
8595 zap_attribute_t za;
8597 /* Walk through the AVZ and destroy all listed ZAPs */
8598 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8599 spa->spa_all_vdev_zaps);
8600 zap_cursor_retrieve(&zc, &za) == 0;
8601 zap_cursor_advance(&zc)) {
8602 uint64_t zap = za.za_first_integer;
8603 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8606 zap_cursor_fini(&zc);
8608 /* Destroy and unlink the AVZ itself */
8609 VERIFY0(zap_destroy(spa->spa_meta_objset,
8610 spa->spa_all_vdev_zaps, tx));
8611 VERIFY0(zap_remove(spa->spa_meta_objset,
8612 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8613 spa->spa_all_vdev_zaps = 0;
8616 if (spa->spa_all_vdev_zaps == 0) {
8617 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8618 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8619 DMU_POOL_VDEV_ZAP_MAP, tx);
8621 spa->spa_avz_action = AVZ_ACTION_NONE;
8623 /* Create ZAPs for vdevs that don't have them. */
8624 vdev_construct_zaps(spa->spa_root_vdev, tx);
8626 config = spa_config_generate(spa, spa->spa_root_vdev,
8627 dmu_tx_get_txg(tx), B_FALSE);
8630 * If we're upgrading the spa version then make sure that
8631 * the config object gets updated with the correct version.
8633 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8634 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8635 spa->spa_uberblock.ub_version);
8637 spa_config_exit(spa, SCL_STATE, FTAG);
8639 nvlist_free(spa->spa_config_syncing);
8640 spa->spa_config_syncing = config;
8642 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8645 static void
8646 spa_sync_version(void *arg, dmu_tx_t *tx)
8648 uint64_t *versionp = arg;
8649 uint64_t version = *versionp;
8650 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8653 * Setting the version is special cased when first creating the pool.
8655 ASSERT(tx->tx_txg != TXG_INITIAL);
8657 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8658 ASSERT(version >= spa_version(spa));
8660 spa->spa_uberblock.ub_version = version;
8661 vdev_config_dirty(spa->spa_root_vdev);
8662 spa_history_log_internal(spa, "set", tx, "version=%lld",
8663 (longlong_t)version);
8667 * Set zpool properties.
8669 static void
8670 spa_sync_props(void *arg, dmu_tx_t *tx)
8672 nvlist_t *nvp = arg;
8673 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8674 objset_t *mos = spa->spa_meta_objset;
8675 nvpair_t *elem = NULL;
8677 mutex_enter(&spa->spa_props_lock);
8679 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8680 uint64_t intval;
8681 char *strval, *fname;
8682 zpool_prop_t prop;
8683 const char *propname;
8684 zprop_type_t proptype;
8685 spa_feature_t fid;
8687 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
8688 case ZPOOL_PROP_INVAL:
8690 * We checked this earlier in spa_prop_validate().
8692 ASSERT(zpool_prop_feature(nvpair_name(elem)));
8694 fname = strchr(nvpair_name(elem), '@') + 1;
8695 VERIFY0(zfeature_lookup_name(fname, &fid));
8697 spa_feature_enable(spa, fid, tx);
8698 spa_history_log_internal(spa, "set", tx,
8699 "%s=enabled", nvpair_name(elem));
8700 break;
8702 case ZPOOL_PROP_VERSION:
8703 intval = fnvpair_value_uint64(elem);
8705 * The version is synced separately before other
8706 * properties and should be correct by now.
8708 ASSERT3U(spa_version(spa), >=, intval);
8709 break;
8711 case ZPOOL_PROP_ALTROOT:
8713 * 'altroot' is a non-persistent property. It should
8714 * have been set temporarily at creation or import time.
8716 ASSERT(spa->spa_root != NULL);
8717 break;
8719 case ZPOOL_PROP_READONLY:
8720 case ZPOOL_PROP_CACHEFILE:
8722 * 'readonly' and 'cachefile' are also non-persistent
8723 * properties.
8725 break;
8726 case ZPOOL_PROP_COMMENT:
8727 strval = fnvpair_value_string(elem);
8728 if (spa->spa_comment != NULL)
8729 spa_strfree(spa->spa_comment);
8730 spa->spa_comment = spa_strdup(strval);
8732 * We need to dirty the configuration on all the vdevs
8733 * so that their labels get updated. We also need to
8734 * update the cache file to keep it in sync with the
8735 * MOS version. It's unnecessary to do this for pool
8736 * creation since the vdev's configuration has already
8737 * been dirtied.
8739 if (tx->tx_txg != TXG_INITIAL) {
8740 vdev_config_dirty(spa->spa_root_vdev);
8741 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8743 spa_history_log_internal(spa, "set", tx,
8744 "%s=%s", nvpair_name(elem), strval);
8745 break;
8746 case ZPOOL_PROP_COMPATIBILITY:
8747 strval = fnvpair_value_string(elem);
8748 if (spa->spa_compatibility != NULL)
8749 spa_strfree(spa->spa_compatibility);
8750 spa->spa_compatibility = spa_strdup(strval);
8752 * Dirty the configuration on vdevs as above.
8754 if (tx->tx_txg != TXG_INITIAL) {
8755 vdev_config_dirty(spa->spa_root_vdev);
8756 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8759 spa_history_log_internal(spa, "set", tx,
8760 "%s=%s", nvpair_name(elem), strval);
8761 break;
8763 default:
8765 * Set pool property values in the poolprops mos object.
8767 if (spa->spa_pool_props_object == 0) {
8768 spa->spa_pool_props_object =
8769 zap_create_link(mos, DMU_OT_POOL_PROPS,
8770 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8771 tx);
8774 /* normalize the property name */
8775 propname = zpool_prop_to_name(prop);
8776 proptype = zpool_prop_get_type(prop);
8778 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8779 ASSERT(proptype == PROP_TYPE_STRING);
8780 strval = fnvpair_value_string(elem);
8781 VERIFY0(zap_update(mos,
8782 spa->spa_pool_props_object, propname,
8783 1, strlen(strval) + 1, strval, tx));
8784 spa_history_log_internal(spa, "set", tx,
8785 "%s=%s", nvpair_name(elem), strval);
8786 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8787 intval = fnvpair_value_uint64(elem);
8789 if (proptype == PROP_TYPE_INDEX) {
8790 const char *unused;
8791 VERIFY0(zpool_prop_index_to_string(
8792 prop, intval, &unused));
8794 VERIFY0(zap_update(mos,
8795 spa->spa_pool_props_object, propname,
8796 8, 1, &intval, tx));
8797 spa_history_log_internal(spa, "set", tx,
8798 "%s=%lld", nvpair_name(elem),
8799 (longlong_t)intval);
8800 } else {
8801 ASSERT(0); /* not allowed */
8804 switch (prop) {
8805 case ZPOOL_PROP_DELEGATION:
8806 spa->spa_delegation = intval;
8807 break;
8808 case ZPOOL_PROP_BOOTFS:
8809 spa->spa_bootfs = intval;
8810 break;
8811 case ZPOOL_PROP_FAILUREMODE:
8812 spa->spa_failmode = intval;
8813 break;
8814 case ZPOOL_PROP_AUTOTRIM:
8815 spa->spa_autotrim = intval;
8816 spa_async_request(spa,
8817 SPA_ASYNC_AUTOTRIM_RESTART);
8818 break;
8819 case ZPOOL_PROP_AUTOEXPAND:
8820 spa->spa_autoexpand = intval;
8821 if (tx->tx_txg != TXG_INITIAL)
8822 spa_async_request(spa,
8823 SPA_ASYNC_AUTOEXPAND);
8824 break;
8825 case ZPOOL_PROP_MULTIHOST:
8826 spa->spa_multihost = intval;
8827 break;
8828 default:
8829 break;
8835 mutex_exit(&spa->spa_props_lock);
8839 * Perform one-time upgrade on-disk changes. spa_version() does not
8840 * reflect the new version this txg, so there must be no changes this
8841 * txg to anything that the upgrade code depends on after it executes.
8842 * Therefore this must be called after dsl_pool_sync() does the sync
8843 * tasks.
8845 static void
8846 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
8848 if (spa_sync_pass(spa) != 1)
8849 return;
8851 dsl_pool_t *dp = spa->spa_dsl_pool;
8852 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
8854 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
8855 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
8856 dsl_pool_create_origin(dp, tx);
8858 /* Keeping the origin open increases spa_minref */
8859 spa->spa_minref += 3;
8862 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
8863 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
8864 dsl_pool_upgrade_clones(dp, tx);
8867 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
8868 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
8869 dsl_pool_upgrade_dir_clones(dp, tx);
8871 /* Keeping the freedir open increases spa_minref */
8872 spa->spa_minref += 3;
8875 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
8876 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8877 spa_feature_create_zap_objects(spa, tx);
8881 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
8882 * when possibility to use lz4 compression for metadata was added
8883 * Old pools that have this feature enabled must be upgraded to have
8884 * this feature active
8886 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
8887 boolean_t lz4_en = spa_feature_is_enabled(spa,
8888 SPA_FEATURE_LZ4_COMPRESS);
8889 boolean_t lz4_ac = spa_feature_is_active(spa,
8890 SPA_FEATURE_LZ4_COMPRESS);
8892 if (lz4_en && !lz4_ac)
8893 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
8897 * If we haven't written the salt, do so now. Note that the
8898 * feature may not be activated yet, but that's fine since
8899 * the presence of this ZAP entry is backwards compatible.
8901 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
8902 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
8903 VERIFY0(zap_add(spa->spa_meta_objset,
8904 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
8905 sizeof (spa->spa_cksum_salt.zcs_bytes),
8906 spa->spa_cksum_salt.zcs_bytes, tx));
8909 rrw_exit(&dp->dp_config_rwlock, FTAG);
8912 static void
8913 vdev_indirect_state_sync_verify(vdev_t *vd)
8915 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
8916 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
8918 if (vd->vdev_ops == &vdev_indirect_ops) {
8919 ASSERT(vim != NULL);
8920 ASSERT(vib != NULL);
8923 uint64_t obsolete_sm_object = 0;
8924 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
8925 if (obsolete_sm_object != 0) {
8926 ASSERT(vd->vdev_obsolete_sm != NULL);
8927 ASSERT(vd->vdev_removing ||
8928 vd->vdev_ops == &vdev_indirect_ops);
8929 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
8930 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
8931 ASSERT3U(obsolete_sm_object, ==,
8932 space_map_object(vd->vdev_obsolete_sm));
8933 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
8934 space_map_allocated(vd->vdev_obsolete_sm));
8936 ASSERT(vd->vdev_obsolete_segments != NULL);
8939 * Since frees / remaps to an indirect vdev can only
8940 * happen in syncing context, the obsolete segments
8941 * tree must be empty when we start syncing.
8943 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
8947 * Set the top-level vdev's max queue depth. Evaluate each top-level's
8948 * async write queue depth in case it changed. The max queue depth will
8949 * not change in the middle of syncing out this txg.
8951 static void
8952 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
8954 ASSERT(spa_writeable(spa));
8956 vdev_t *rvd = spa->spa_root_vdev;
8957 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
8958 zfs_vdev_queue_depth_pct / 100;
8959 metaslab_class_t *normal = spa_normal_class(spa);
8960 metaslab_class_t *special = spa_special_class(spa);
8961 metaslab_class_t *dedup = spa_dedup_class(spa);
8963 uint64_t slots_per_allocator = 0;
8964 for (int c = 0; c < rvd->vdev_children; c++) {
8965 vdev_t *tvd = rvd->vdev_child[c];
8967 metaslab_group_t *mg = tvd->vdev_mg;
8968 if (mg == NULL || !metaslab_group_initialized(mg))
8969 continue;
8971 metaslab_class_t *mc = mg->mg_class;
8972 if (mc != normal && mc != special && mc != dedup)
8973 continue;
8976 * It is safe to do a lock-free check here because only async
8977 * allocations look at mg_max_alloc_queue_depth, and async
8978 * allocations all happen from spa_sync().
8980 for (int i = 0; i < mg->mg_allocators; i++) {
8981 ASSERT0(zfs_refcount_count(
8982 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
8984 mg->mg_max_alloc_queue_depth = max_queue_depth;
8986 for (int i = 0; i < mg->mg_allocators; i++) {
8987 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
8988 zfs_vdev_def_queue_depth;
8990 slots_per_allocator += zfs_vdev_def_queue_depth;
8993 for (int i = 0; i < spa->spa_alloc_count; i++) {
8994 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
8995 mca_alloc_slots));
8996 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
8997 mca_alloc_slots));
8998 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
8999 mca_alloc_slots));
9000 normal->mc_allocator[i].mca_alloc_max_slots =
9001 slots_per_allocator;
9002 special->mc_allocator[i].mca_alloc_max_slots =
9003 slots_per_allocator;
9004 dedup->mc_allocator[i].mca_alloc_max_slots =
9005 slots_per_allocator;
9007 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9008 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9009 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9012 static void
9013 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9015 ASSERT(spa_writeable(spa));
9017 vdev_t *rvd = spa->spa_root_vdev;
9018 for (int c = 0; c < rvd->vdev_children; c++) {
9019 vdev_t *vd = rvd->vdev_child[c];
9020 vdev_indirect_state_sync_verify(vd);
9022 if (vdev_indirect_should_condense(vd)) {
9023 spa_condense_indirect_start_sync(vd, tx);
9024 break;
9029 static void
9030 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9032 objset_t *mos = spa->spa_meta_objset;
9033 dsl_pool_t *dp = spa->spa_dsl_pool;
9034 uint64_t txg = tx->tx_txg;
9035 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9037 do {
9038 int pass = ++spa->spa_sync_pass;
9040 spa_sync_config_object(spa, tx);
9041 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9042 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9043 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9044 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9045 spa_errlog_sync(spa, txg);
9046 dsl_pool_sync(dp, txg);
9048 if (pass < zfs_sync_pass_deferred_free ||
9049 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9051 * If the log space map feature is active we don't
9052 * care about deferred frees and the deferred bpobj
9053 * as the log space map should effectively have the
9054 * same results (i.e. appending only to one object).
9056 spa_sync_frees(spa, free_bpl, tx);
9057 } else {
9059 * We can not defer frees in pass 1, because
9060 * we sync the deferred frees later in pass 1.
9062 ASSERT3U(pass, >, 1);
9063 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9064 &spa->spa_deferred_bpobj, tx);
9067 ddt_sync(spa, txg);
9068 dsl_scan_sync(dp, tx);
9069 svr_sync(spa, tx);
9070 spa_sync_upgrades(spa, tx);
9072 spa_flush_metaslabs(spa, tx);
9074 vdev_t *vd = NULL;
9075 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9076 != NULL)
9077 vdev_sync(vd, txg);
9080 * Note: We need to check if the MOS is dirty because we could
9081 * have marked the MOS dirty without updating the uberblock
9082 * (e.g. if we have sync tasks but no dirty user data). We need
9083 * to check the uberblock's rootbp because it is updated if we
9084 * have synced out dirty data (though in this case the MOS will
9085 * most likely also be dirty due to second order effects, we
9086 * don't want to rely on that here).
9088 if (pass == 1 &&
9089 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9090 !dmu_objset_is_dirty(mos, txg)) {
9092 * Nothing changed on the first pass, therefore this
9093 * TXG is a no-op. Avoid syncing deferred frees, so
9094 * that we can keep this TXG as a no-op.
9096 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9097 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9098 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9099 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9100 break;
9103 spa_sync_deferred_frees(spa, tx);
9104 } while (dmu_objset_is_dirty(mos, txg));
9108 * Rewrite the vdev configuration (which includes the uberblock) to
9109 * commit the transaction group.
9111 * If there are no dirty vdevs, we sync the uberblock to a few random
9112 * top-level vdevs that are known to be visible in the config cache
9113 * (see spa_vdev_add() for a complete description). If there *are* dirty
9114 * vdevs, sync the uberblock to all vdevs.
9116 static void
9117 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9119 vdev_t *rvd = spa->spa_root_vdev;
9120 uint64_t txg = tx->tx_txg;
9122 for (;;) {
9123 int error = 0;
9126 * We hold SCL_STATE to prevent vdev open/close/etc.
9127 * while we're attempting to write the vdev labels.
9129 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9131 if (list_is_empty(&spa->spa_config_dirty_list)) {
9132 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9133 int svdcount = 0;
9134 int children = rvd->vdev_children;
9135 int c0 = random_in_range(children);
9137 for (int c = 0; c < children; c++) {
9138 vdev_t *vd =
9139 rvd->vdev_child[(c0 + c) % children];
9141 /* Stop when revisiting the first vdev */
9142 if (c > 0 && svd[0] == vd)
9143 break;
9145 if (vd->vdev_ms_array == 0 ||
9146 vd->vdev_islog ||
9147 !vdev_is_concrete(vd))
9148 continue;
9150 svd[svdcount++] = vd;
9151 if (svdcount == SPA_SYNC_MIN_VDEVS)
9152 break;
9154 error = vdev_config_sync(svd, svdcount, txg);
9155 } else {
9156 error = vdev_config_sync(rvd->vdev_child,
9157 rvd->vdev_children, txg);
9160 if (error == 0)
9161 spa->spa_last_synced_guid = rvd->vdev_guid;
9163 spa_config_exit(spa, SCL_STATE, FTAG);
9165 if (error == 0)
9166 break;
9167 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9168 zio_resume_wait(spa);
9173 * Sync the specified transaction group. New blocks may be dirtied as
9174 * part of the process, so we iterate until it converges.
9176 void
9177 spa_sync(spa_t *spa, uint64_t txg)
9179 vdev_t *vd = NULL;
9181 VERIFY(spa_writeable(spa));
9184 * Wait for i/os issued in open context that need to complete
9185 * before this txg syncs.
9187 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9188 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9189 ZIO_FLAG_CANFAIL);
9192 * Lock out configuration changes.
9194 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9196 spa->spa_syncing_txg = txg;
9197 spa->spa_sync_pass = 0;
9199 for (int i = 0; i < spa->spa_alloc_count; i++) {
9200 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9201 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9202 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9206 * If there are any pending vdev state changes, convert them
9207 * into config changes that go out with this transaction group.
9209 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9210 while (list_head(&spa->spa_state_dirty_list) != NULL) {
9212 * We need the write lock here because, for aux vdevs,
9213 * calling vdev_config_dirty() modifies sav_config.
9214 * This is ugly and will become unnecessary when we
9215 * eliminate the aux vdev wart by integrating all vdevs
9216 * into the root vdev tree.
9218 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9219 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9220 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9221 vdev_state_clean(vd);
9222 vdev_config_dirty(vd);
9224 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9225 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9227 spa_config_exit(spa, SCL_STATE, FTAG);
9229 dsl_pool_t *dp = spa->spa_dsl_pool;
9230 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9232 spa->spa_sync_starttime = gethrtime();
9233 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9234 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9235 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9236 NSEC_TO_TICK(spa->spa_deadman_synctime));
9239 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9240 * set spa_deflate if we have no raid-z vdevs.
9242 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9243 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9244 vdev_t *rvd = spa->spa_root_vdev;
9246 int i;
9247 for (i = 0; i < rvd->vdev_children; i++) {
9248 vd = rvd->vdev_child[i];
9249 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9250 break;
9252 if (i == rvd->vdev_children) {
9253 spa->spa_deflate = TRUE;
9254 VERIFY0(zap_add(spa->spa_meta_objset,
9255 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9256 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9260 spa_sync_adjust_vdev_max_queue_depth(spa);
9262 spa_sync_condense_indirect(spa, tx);
9264 spa_sync_iterate_to_convergence(spa, tx);
9266 #ifdef ZFS_DEBUG
9267 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9269 * Make sure that the number of ZAPs for all the vdevs matches
9270 * the number of ZAPs in the per-vdev ZAP list. This only gets
9271 * called if the config is dirty; otherwise there may be
9272 * outstanding AVZ operations that weren't completed in
9273 * spa_sync_config_object.
9275 uint64_t all_vdev_zap_entry_count;
9276 ASSERT0(zap_count(spa->spa_meta_objset,
9277 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9278 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9279 all_vdev_zap_entry_count);
9281 #endif
9283 if (spa->spa_vdev_removal != NULL) {
9284 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9287 spa_sync_rewrite_vdev_config(spa, tx);
9288 dmu_tx_commit(tx);
9290 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9291 spa->spa_deadman_tqid = 0;
9294 * Clear the dirty config list.
9296 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9297 vdev_config_clean(vd);
9300 * Now that the new config has synced transactionally,
9301 * let it become visible to the config cache.
9303 if (spa->spa_config_syncing != NULL) {
9304 spa_config_set(spa, spa->spa_config_syncing);
9305 spa->spa_config_txg = txg;
9306 spa->spa_config_syncing = NULL;
9309 dsl_pool_sync_done(dp, txg);
9311 for (int i = 0; i < spa->spa_alloc_count; i++) {
9312 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9313 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9314 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9318 * Update usable space statistics.
9320 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9321 != NULL)
9322 vdev_sync_done(vd, txg);
9324 metaslab_class_evict_old(spa->spa_normal_class, txg);
9325 metaslab_class_evict_old(spa->spa_log_class, txg);
9327 spa_sync_close_syncing_log_sm(spa);
9329 spa_update_dspace(spa);
9332 * It had better be the case that we didn't dirty anything
9333 * since vdev_config_sync().
9335 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9336 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9337 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9339 while (zfs_pause_spa_sync)
9340 delay(1);
9342 spa->spa_sync_pass = 0;
9345 * Update the last synced uberblock here. We want to do this at
9346 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9347 * will be guaranteed that all the processing associated with
9348 * that txg has been completed.
9350 spa->spa_ubsync = spa->spa_uberblock;
9351 spa_config_exit(spa, SCL_CONFIG, FTAG);
9353 spa_handle_ignored_writes(spa);
9356 * If any async tasks have been requested, kick them off.
9358 spa_async_dispatch(spa);
9362 * Sync all pools. We don't want to hold the namespace lock across these
9363 * operations, so we take a reference on the spa_t and drop the lock during the
9364 * sync.
9366 void
9367 spa_sync_allpools(void)
9369 spa_t *spa = NULL;
9370 mutex_enter(&spa_namespace_lock);
9371 while ((spa = spa_next(spa)) != NULL) {
9372 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9373 !spa_writeable(spa) || spa_suspended(spa))
9374 continue;
9375 spa_open_ref(spa, FTAG);
9376 mutex_exit(&spa_namespace_lock);
9377 txg_wait_synced(spa_get_dsl(spa), 0);
9378 mutex_enter(&spa_namespace_lock);
9379 spa_close(spa, FTAG);
9381 mutex_exit(&spa_namespace_lock);
9385 * ==========================================================================
9386 * Miscellaneous routines
9387 * ==========================================================================
9391 * Remove all pools in the system.
9393 void
9394 spa_evict_all(void)
9396 spa_t *spa;
9399 * Remove all cached state. All pools should be closed now,
9400 * so every spa in the AVL tree should be unreferenced.
9402 mutex_enter(&spa_namespace_lock);
9403 while ((spa = spa_next(NULL)) != NULL) {
9405 * Stop async tasks. The async thread may need to detach
9406 * a device that's been replaced, which requires grabbing
9407 * spa_namespace_lock, so we must drop it here.
9409 spa_open_ref(spa, FTAG);
9410 mutex_exit(&spa_namespace_lock);
9411 spa_async_suspend(spa);
9412 mutex_enter(&spa_namespace_lock);
9413 spa_close(spa, FTAG);
9415 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9416 spa_unload(spa);
9417 spa_deactivate(spa);
9419 spa_remove(spa);
9421 mutex_exit(&spa_namespace_lock);
9424 vdev_t *
9425 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9427 vdev_t *vd;
9428 int i;
9430 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9431 return (vd);
9433 if (aux) {
9434 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9435 vd = spa->spa_l2cache.sav_vdevs[i];
9436 if (vd->vdev_guid == guid)
9437 return (vd);
9440 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9441 vd = spa->spa_spares.sav_vdevs[i];
9442 if (vd->vdev_guid == guid)
9443 return (vd);
9447 return (NULL);
9450 void
9451 spa_upgrade(spa_t *spa, uint64_t version)
9453 ASSERT(spa_writeable(spa));
9455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9458 * This should only be called for a non-faulted pool, and since a
9459 * future version would result in an unopenable pool, this shouldn't be
9460 * possible.
9462 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9463 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9465 spa->spa_uberblock.ub_version = version;
9466 vdev_config_dirty(spa->spa_root_vdev);
9468 spa_config_exit(spa, SCL_ALL, FTAG);
9470 txg_wait_synced(spa_get_dsl(spa), 0);
9473 boolean_t
9474 spa_has_spare(spa_t *spa, uint64_t guid)
9476 int i;
9477 uint64_t spareguid;
9478 spa_aux_vdev_t *sav = &spa->spa_spares;
9480 for (i = 0; i < sav->sav_count; i++)
9481 if (sav->sav_vdevs[i]->vdev_guid == guid)
9482 return (B_TRUE);
9484 for (i = 0; i < sav->sav_npending; i++) {
9485 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9486 &spareguid) == 0 && spareguid == guid)
9487 return (B_TRUE);
9490 return (B_FALSE);
9494 * Check if a pool has an active shared spare device.
9495 * Note: reference count of an active spare is 2, as a spare and as a replace
9497 static boolean_t
9498 spa_has_active_shared_spare(spa_t *spa)
9500 int i, refcnt;
9501 uint64_t pool;
9502 spa_aux_vdev_t *sav = &spa->spa_spares;
9504 for (i = 0; i < sav->sav_count; i++) {
9505 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9506 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9507 refcnt > 2)
9508 return (B_TRUE);
9511 return (B_FALSE);
9514 uint64_t
9515 spa_total_metaslabs(spa_t *spa)
9517 vdev_t *rvd = spa->spa_root_vdev;
9519 uint64_t m = 0;
9520 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9521 vdev_t *vd = rvd->vdev_child[c];
9522 if (!vdev_is_concrete(vd))
9523 continue;
9524 m += vd->vdev_ms_count;
9526 return (m);
9530 * Notify any waiting threads that some activity has switched from being in-
9531 * progress to not-in-progress so that the thread can wake up and determine
9532 * whether it is finished waiting.
9534 void
9535 spa_notify_waiters(spa_t *spa)
9538 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9539 * happening between the waiting thread's check and cv_wait.
9541 mutex_enter(&spa->spa_activities_lock);
9542 cv_broadcast(&spa->spa_activities_cv);
9543 mutex_exit(&spa->spa_activities_lock);
9547 * Notify any waiting threads that the pool is exporting, and then block until
9548 * they are finished using the spa_t.
9550 void
9551 spa_wake_waiters(spa_t *spa)
9553 mutex_enter(&spa->spa_activities_lock);
9554 spa->spa_waiters_cancel = B_TRUE;
9555 cv_broadcast(&spa->spa_activities_cv);
9556 while (spa->spa_waiters != 0)
9557 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9558 spa->spa_waiters_cancel = B_FALSE;
9559 mutex_exit(&spa->spa_activities_lock);
9562 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9563 static boolean_t
9564 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9566 spa_t *spa = vd->vdev_spa;
9568 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9569 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9570 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9571 activity == ZPOOL_WAIT_TRIM);
9573 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9574 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9576 mutex_exit(&spa->spa_activities_lock);
9577 mutex_enter(lock);
9578 mutex_enter(&spa->spa_activities_lock);
9580 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9581 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9582 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9583 mutex_exit(lock);
9585 if (in_progress)
9586 return (B_TRUE);
9588 for (int i = 0; i < vd->vdev_children; i++) {
9589 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9590 activity))
9591 return (B_TRUE);
9594 return (B_FALSE);
9598 * If use_guid is true, this checks whether the vdev specified by guid is
9599 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9600 * is being initialized/trimmed. The caller must hold the config lock and
9601 * spa_activities_lock.
9603 static int
9604 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9605 zpool_wait_activity_t activity, boolean_t *in_progress)
9607 mutex_exit(&spa->spa_activities_lock);
9608 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9609 mutex_enter(&spa->spa_activities_lock);
9611 vdev_t *vd;
9612 if (use_guid) {
9613 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9614 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9615 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9616 return (EINVAL);
9618 } else {
9619 vd = spa->spa_root_vdev;
9622 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9624 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9625 return (0);
9629 * Locking for waiting threads
9630 * ---------------------------
9632 * Waiting threads need a way to check whether a given activity is in progress,
9633 * and then, if it is, wait for it to complete. Each activity will have some
9634 * in-memory representation of the relevant on-disk state which can be used to
9635 * determine whether or not the activity is in progress. The in-memory state and
9636 * the locking used to protect it will be different for each activity, and may
9637 * not be suitable for use with a cvar (e.g., some state is protected by the
9638 * config lock). To allow waiting threads to wait without any races, another
9639 * lock, spa_activities_lock, is used.
9641 * When the state is checked, both the activity-specific lock (if there is one)
9642 * and spa_activities_lock are held. In some cases, the activity-specific lock
9643 * is acquired explicitly (e.g. the config lock). In others, the locking is
9644 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9645 * thread releases the activity-specific lock and, if the activity is in
9646 * progress, then cv_waits using spa_activities_lock.
9648 * The waiting thread is woken when another thread, one completing some
9649 * activity, updates the state of the activity and then calls
9650 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9651 * needs to hold its activity-specific lock when updating the state, and this
9652 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9654 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9655 * and because it is held when the waiting thread checks the state of the
9656 * activity, it can never be the case that the completing thread both updates
9657 * the activity state and cv_broadcasts in between the waiting thread's check
9658 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9660 * In order to prevent deadlock, when the waiting thread does its check, in some
9661 * cases it will temporarily drop spa_activities_lock in order to acquire the
9662 * activity-specific lock. The order in which spa_activities_lock and the
9663 * activity specific lock are acquired in the waiting thread is determined by
9664 * the order in which they are acquired in the completing thread; if the
9665 * completing thread calls spa_notify_waiters with the activity-specific lock
9666 * held, then the waiting thread must also acquire the activity-specific lock
9667 * first.
9670 static int
9671 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9672 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9674 int error = 0;
9676 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9678 switch (activity) {
9679 case ZPOOL_WAIT_CKPT_DISCARD:
9680 *in_progress =
9681 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9682 zap_contains(spa_meta_objset(spa),
9683 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9684 ENOENT);
9685 break;
9686 case ZPOOL_WAIT_FREE:
9687 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9688 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9689 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9690 spa_livelist_delete_check(spa));
9691 break;
9692 case ZPOOL_WAIT_INITIALIZE:
9693 case ZPOOL_WAIT_TRIM:
9694 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9695 activity, in_progress);
9696 break;
9697 case ZPOOL_WAIT_REPLACE:
9698 mutex_exit(&spa->spa_activities_lock);
9699 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9700 mutex_enter(&spa->spa_activities_lock);
9702 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9703 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9704 break;
9705 case ZPOOL_WAIT_REMOVE:
9706 *in_progress = (spa->spa_removing_phys.sr_state ==
9707 DSS_SCANNING);
9708 break;
9709 case ZPOOL_WAIT_RESILVER:
9710 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9711 break;
9712 /* fall through */
9713 case ZPOOL_WAIT_SCRUB:
9715 boolean_t scanning, paused, is_scrub;
9716 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9718 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9719 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9720 paused = dsl_scan_is_paused_scrub(scn);
9721 *in_progress = (scanning && !paused &&
9722 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9723 break;
9725 default:
9726 panic("unrecognized value for activity %d", activity);
9729 return (error);
9732 static int
9733 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9734 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9737 * The tag is used to distinguish between instances of an activity.
9738 * 'initialize' and 'trim' are the only activities that we use this for.
9739 * The other activities can only have a single instance in progress in a
9740 * pool at one time, making the tag unnecessary.
9742 * There can be multiple devices being replaced at once, but since they
9743 * all finish once resilvering finishes, we don't bother keeping track
9744 * of them individually, we just wait for them all to finish.
9746 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9747 activity != ZPOOL_WAIT_TRIM)
9748 return (EINVAL);
9750 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9751 return (EINVAL);
9753 spa_t *spa;
9754 int error = spa_open(pool, &spa, FTAG);
9755 if (error != 0)
9756 return (error);
9759 * Increment the spa's waiter count so that we can call spa_close and
9760 * still ensure that the spa_t doesn't get freed before this thread is
9761 * finished with it when the pool is exported. We want to call spa_close
9762 * before we start waiting because otherwise the additional ref would
9763 * prevent the pool from being exported or destroyed throughout the
9764 * potentially long wait.
9766 mutex_enter(&spa->spa_activities_lock);
9767 spa->spa_waiters++;
9768 spa_close(spa, FTAG);
9770 *waited = B_FALSE;
9771 for (;;) {
9772 boolean_t in_progress;
9773 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9774 &in_progress);
9776 if (error || !in_progress || spa->spa_waiters_cancel)
9777 break;
9779 *waited = B_TRUE;
9781 if (cv_wait_sig(&spa->spa_activities_cv,
9782 &spa->spa_activities_lock) == 0) {
9783 error = EINTR;
9784 break;
9788 spa->spa_waiters--;
9789 cv_signal(&spa->spa_waiters_cv);
9790 mutex_exit(&spa->spa_activities_lock);
9792 return (error);
9796 * Wait for a particular instance of the specified activity to complete, where
9797 * the instance is identified by 'tag'
9800 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
9801 boolean_t *waited)
9803 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
9807 * Wait for all instances of the specified activity complete
9810 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
9813 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
9816 sysevent_t *
9817 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9819 sysevent_t *ev = NULL;
9820 #ifdef _KERNEL
9821 nvlist_t *resource;
9823 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
9824 if (resource) {
9825 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
9826 ev->resource = resource;
9828 #endif
9829 return (ev);
9832 void
9833 spa_event_post(sysevent_t *ev)
9835 #ifdef _KERNEL
9836 if (ev) {
9837 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
9838 kmem_free(ev, sizeof (*ev));
9840 #endif
9844 * Post a zevent corresponding to the given sysevent. The 'name' must be one
9845 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
9846 * filled in from the spa and (optionally) the vdev. This doesn't do anything
9847 * in the userland libzpool, as we don't want consumers to misinterpret ztest
9848 * or zdb as real changes.
9850 void
9851 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
9853 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
9856 /* state manipulation functions */
9857 EXPORT_SYMBOL(spa_open);
9858 EXPORT_SYMBOL(spa_open_rewind);
9859 EXPORT_SYMBOL(spa_get_stats);
9860 EXPORT_SYMBOL(spa_create);
9861 EXPORT_SYMBOL(spa_import);
9862 EXPORT_SYMBOL(spa_tryimport);
9863 EXPORT_SYMBOL(spa_destroy);
9864 EXPORT_SYMBOL(spa_export);
9865 EXPORT_SYMBOL(spa_reset);
9866 EXPORT_SYMBOL(spa_async_request);
9867 EXPORT_SYMBOL(spa_async_suspend);
9868 EXPORT_SYMBOL(spa_async_resume);
9869 EXPORT_SYMBOL(spa_inject_addref);
9870 EXPORT_SYMBOL(spa_inject_delref);
9871 EXPORT_SYMBOL(spa_scan_stat_init);
9872 EXPORT_SYMBOL(spa_scan_get_stats);
9874 /* device manipulation */
9875 EXPORT_SYMBOL(spa_vdev_add);
9876 EXPORT_SYMBOL(spa_vdev_attach);
9877 EXPORT_SYMBOL(spa_vdev_detach);
9878 EXPORT_SYMBOL(spa_vdev_setpath);
9879 EXPORT_SYMBOL(spa_vdev_setfru);
9880 EXPORT_SYMBOL(spa_vdev_split_mirror);
9882 /* spare statech is global across all pools) */
9883 EXPORT_SYMBOL(spa_spare_add);
9884 EXPORT_SYMBOL(spa_spare_remove);
9885 EXPORT_SYMBOL(spa_spare_exists);
9886 EXPORT_SYMBOL(spa_spare_activate);
9888 /* L2ARC statech is global across all pools) */
9889 EXPORT_SYMBOL(spa_l2cache_add);
9890 EXPORT_SYMBOL(spa_l2cache_remove);
9891 EXPORT_SYMBOL(spa_l2cache_exists);
9892 EXPORT_SYMBOL(spa_l2cache_activate);
9893 EXPORT_SYMBOL(spa_l2cache_drop);
9895 /* scanning */
9896 EXPORT_SYMBOL(spa_scan);
9897 EXPORT_SYMBOL(spa_scan_stop);
9899 /* spa syncing */
9900 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
9901 EXPORT_SYMBOL(spa_sync_allpools);
9903 /* properties */
9904 EXPORT_SYMBOL(spa_prop_set);
9905 EXPORT_SYMBOL(spa_prop_get);
9906 EXPORT_SYMBOL(spa_prop_clear_bootfs);
9908 /* asynchronous event notification */
9909 EXPORT_SYMBOL(spa_event_notify);
9911 /* BEGIN CSTYLED */
9912 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW,
9913 "log2 fraction of arc that can be used by inflight I/Os when "
9914 "verifying pool during import");
9916 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
9917 "Set to traverse metadata on pool import");
9919 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
9920 "Set to traverse data on pool import");
9922 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
9923 "Print vdev tree to zfs_dbgmsg during pool import");
9925 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
9926 "Percentage of CPUs to run an IO worker thread");
9928 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
9929 "Number of threads per IO worker taskqueue");
9931 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW,
9932 "Allow importing pool with up to this number of missing top-level "
9933 "vdevs (in read-only mode)");
9935 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW,
9936 "Set the livelist condense zthr to pause");
9938 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW,
9939 "Set the livelist condense synctask to pause");
9941 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW,
9942 "Whether livelist condensing was canceled in the synctask");
9944 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW,
9945 "Whether livelist condensing was canceled in the zthr function");
9947 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW,
9948 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
9949 "was being condensed");
9950 /* END CSTYLED */