Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / spa_misc.c
blob1ecd2294dba0eccf2764a1863197a0a21e0d546a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/vdev_trim.h>
44 #include <sys/vdev_file.h>
45 #include <sys/vdev_raidz.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fm/util.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/arc.h>
59 #include <sys/ddt.h>
60 #include <sys/kstat.h>
61 #include "zfs_prop.h"
62 #include <sys/btree.h>
63 #include <sys/zfeature.h>
64 #include <sys/qat.h>
65 #include <sys/zstd/zstd.h>
68 * SPA locking
70 * There are three basic locks for managing spa_t structures:
72 * spa_namespace_lock (global mutex)
74 * This lock must be acquired to do any of the following:
76 * - Lookup a spa_t by name
77 * - Add or remove a spa_t from the namespace
78 * - Increase spa_refcount from non-zero
79 * - Check if spa_refcount is zero
80 * - Rename a spa_t
81 * - add/remove/attach/detach devices
82 * - Held for the duration of create/destroy/import/export
84 * It does not need to handle recursion. A create or destroy may
85 * reference objects (files or zvols) in other pools, but by
86 * definition they must have an existing reference, and will never need
87 * to lookup a spa_t by name.
89 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
91 * This reference count keep track of any active users of the spa_t. The
92 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
93 * the refcount is never really 'zero' - opening a pool implicitly keeps
94 * some references in the DMU. Internally we check against spa_minref, but
95 * present the image of a zero/non-zero value to consumers.
97 * spa_config_lock[] (per-spa array of rwlocks)
99 * This protects the spa_t from config changes, and must be held in
100 * the following circumstances:
102 * - RW_READER to perform I/O to the spa
103 * - RW_WRITER to change the vdev config
105 * The locking order is fairly straightforward:
107 * spa_namespace_lock -> spa_refcount
109 * The namespace lock must be acquired to increase the refcount from 0
110 * or to check if it is zero.
112 * spa_refcount -> spa_config_lock[]
114 * There must be at least one valid reference on the spa_t to acquire
115 * the config lock.
117 * spa_namespace_lock -> spa_config_lock[]
119 * The namespace lock must always be taken before the config lock.
122 * The spa_namespace_lock can be acquired directly and is globally visible.
124 * The namespace is manipulated using the following functions, all of which
125 * require the spa_namespace_lock to be held.
127 * spa_lookup() Lookup a spa_t by name.
129 * spa_add() Create a new spa_t in the namespace.
131 * spa_remove() Remove a spa_t from the namespace. This also
132 * frees up any memory associated with the spa_t.
134 * spa_next() Returns the next spa_t in the system, or the
135 * first if NULL is passed.
137 * spa_evict_all() Shutdown and remove all spa_t structures in
138 * the system.
140 * spa_guid_exists() Determine whether a pool/device guid exists.
142 * The spa_refcount is manipulated using the following functions:
144 * spa_open_ref() Adds a reference to the given spa_t. Must be
145 * called with spa_namespace_lock held if the
146 * refcount is currently zero.
148 * spa_close() Remove a reference from the spa_t. This will
149 * not free the spa_t or remove it from the
150 * namespace. No locking is required.
152 * spa_refcount_zero() Returns true if the refcount is currently
153 * zero. Must be called with spa_namespace_lock
154 * held.
156 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
160 * To read the configuration, it suffices to hold one of these locks as reader.
161 * To modify the configuration, you must hold all locks as writer. To modify
162 * vdev state without altering the vdev tree's topology (e.g. online/offline),
163 * you must hold SCL_STATE and SCL_ZIO as writer.
165 * We use these distinct config locks to avoid recursive lock entry.
166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167 * block allocations (SCL_ALLOC), which may require reading space maps
168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
170 * The spa config locks cannot be normal rwlocks because we need the
171 * ability to hand off ownership. For example, SCL_ZIO is acquired
172 * by the issuing thread and later released by an interrupt thread.
173 * They do, however, obey the usual write-wanted semantics to prevent
174 * writer (i.e. system administrator) starvation.
176 * The lock acquisition rules are as follows:
178 * SCL_CONFIG
179 * Protects changes to the vdev tree topology, such as vdev
180 * add/remove/attach/detach. Protects the dirty config list
181 * (spa_config_dirty_list) and the set of spares and l2arc devices.
183 * SCL_STATE
184 * Protects changes to pool state and vdev state, such as vdev
185 * online/offline/fault/degrade/clear. Protects the dirty state list
186 * (spa_state_dirty_list) and global pool state (spa_state).
188 * SCL_ALLOC
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_alloc() and metaslab_claim().
192 * SCL_ZIO
193 * Held by bp-level zios (those which have no io_vd upon entry)
194 * to prevent changes to the vdev tree. The bp-level zio implicitly
195 * protects all of its vdev child zios, which do not hold SCL_ZIO.
197 * SCL_FREE
198 * Protects changes to metaslab groups and classes.
199 * Held as reader by metaslab_free(). SCL_FREE is distinct from
200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201 * blocks in zio_done() while another i/o that holds either
202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
204 * SCL_VDEV
205 * Held as reader to prevent changes to the vdev tree during trivial
206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
207 * other locks, and lower than all of them, to ensure that it's safe
208 * to acquire regardless of caller context.
210 * In addition, the following rules apply:
212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
213 * The lock ordering is SCL_CONFIG > spa_props_lock.
215 * (b) I/O operations on leaf vdevs. For any zio operation that takes
216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217 * or zio_write_phys() -- the caller must ensure that the config cannot
218 * cannot change in the interim, and that the vdev cannot be reopened.
219 * SCL_STATE as reader suffices for both.
221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
223 * spa_vdev_enter() Acquire the namespace lock and the config lock
224 * for writing.
226 * spa_vdev_exit() Release the config lock, wait for all I/O
227 * to complete, sync the updated configs to the
228 * cache, and release the namespace lock.
230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
235 static avl_tree_t spa_namespace_avl;
236 kmutex_t spa_namespace_lock;
237 static kcondvar_t spa_namespace_cv;
238 int spa_max_replication_override = SPA_DVAS_PER_BP;
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
245 kmem_cache_t *spa_buffer_pool;
246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
248 #ifdef ZFS_DEBUG
250 * Everything except dprintf, set_error, spa, and indirect_remap is on
251 * by default in debug builds.
253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
254 ZFS_DEBUG_INDIRECT_REMAP);
255 #else
256 int zfs_flags = 0;
257 #endif
260 * zfs_recover can be set to nonzero to attempt to recover from
261 * otherwise-fatal errors, typically caused by on-disk corruption. When
262 * set, calls to zfs_panic_recover() will turn into warning messages.
263 * This should only be used as a last resort, as it typically results
264 * in leaked space, or worse.
266 int zfs_recover = B_FALSE;
269 * If destroy encounters an EIO while reading metadata (e.g. indirect
270 * blocks), space referenced by the missing metadata can not be freed.
271 * Normally this causes the background destroy to become "stalled", as
272 * it is unable to make forward progress. While in this stalled state,
273 * all remaining space to free from the error-encountering filesystem is
274 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
275 * permanently leak the space from indirect blocks that can not be read,
276 * and continue to free everything else that it can.
278 * The default, "stalling" behavior is useful if the storage partially
279 * fails (i.e. some but not all i/os fail), and then later recovers. In
280 * this case, we will be able to continue pool operations while it is
281 * partially failed, and when it recovers, we can continue to free the
282 * space, with no leaks. However, note that this case is actually
283 * fairly rare.
285 * Typically pools either (a) fail completely (but perhaps temporarily,
286 * e.g. a top-level vdev going offline), or (b) have localized,
287 * permanent errors (e.g. disk returns the wrong data due to bit flip or
288 * firmware bug). In case (a), this setting does not matter because the
289 * pool will be suspended and the sync thread will not be able to make
290 * forward progress regardless. In case (b), because the error is
291 * permanent, the best we can do is leak the minimum amount of space,
292 * which is what setting this flag will do. Therefore, it is reasonable
293 * for this flag to normally be set, but we chose the more conservative
294 * approach of not setting it, so that there is no possibility of
295 * leaking space in the "partial temporary" failure case.
297 int zfs_free_leak_on_eio = B_FALSE;
300 * Expiration time in milliseconds. This value has two meanings. First it is
301 * used to determine when the spa_deadman() logic should fire. By default the
302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305 * in one of three behaviors controlled by zfs_deadman_failmode.
307 unsigned long zfs_deadman_synctime_ms = 600000UL;
310 * This value controls the maximum amount of time zio_wait() will block for an
311 * outstanding IO. By default this is 300 seconds at which point the "hung"
312 * behavior will be applied as described for zfs_deadman_synctime_ms.
314 unsigned long zfs_deadman_ziotime_ms = 300000UL;
317 * Check time in milliseconds. This defines the frequency at which we check
318 * for hung I/O.
320 unsigned long zfs_deadman_checktime_ms = 60000UL;
323 * By default the deadman is enabled.
325 int zfs_deadman_enabled = 1;
328 * Controls the behavior of the deadman when it detects a "hung" I/O.
329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
331 * wait - Wait for the "hung" I/O (default)
332 * continue - Attempt to recover from a "hung" I/O
333 * panic - Panic the system
335 char *zfs_deadman_failmode = "wait";
338 * The worst case is single-sector max-parity RAID-Z blocks, in which
339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340 * times the size; so just assume that. Add to this the fact that
341 * we can have up to 3 DVAs per bp, and one more factor of 2 because
342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
343 * the worst case is:
344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
346 int spa_asize_inflation = 24;
349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350 * the pool to be consumed (bounded by spa_max_slop). This ensures that we
351 * don't run the pool completely out of space, due to unaccounted changes (e.g.
352 * to the MOS). It also limits the worst-case time to allocate space. If we
353 * have less than this amount of free space, most ZPL operations (e.g. write,
354 * create) will return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are
355 * also part of this 3.2% of space which can't be consumed by normal writes;
356 * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
357 * log space.
359 * Certain operations (e.g. file removal, most administrative actions) can
360 * use half the slop space. They will only return ENOSPC if less than half
361 * the slop space is free. Typically, once the pool has less than the slop
362 * space free, the user will use these operations to free up space in the pool.
363 * These are the operations that call dsl_pool_adjustedsize() with the netfree
364 * argument set to TRUE.
366 * Operations that are almost guaranteed to free up space in the absence of
367 * a pool checkpoint can use up to three quarters of the slop space
368 * (e.g zfs destroy).
370 * A very restricted set of operations are always permitted, regardless of
371 * the amount of free space. These are the operations that call
372 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
373 * increase in the amount of space used, it is possible to run the pool
374 * completely out of space, causing it to be permanently read-only.
376 * Note that on very small pools, the slop space will be larger than
377 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
378 * but we never allow it to be more than half the pool size.
380 * Further, on very large pools, the slop space will be smaller than
381 * 3.2%, to avoid reserving much more space than we actually need; bounded
382 * by spa_max_slop (128GB).
384 * See also the comments in zfs_space_check_t.
386 int spa_slop_shift = 5;
387 uint64_t spa_min_slop = 128ULL * 1024 * 1024;
388 uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
389 int spa_allocators = 4;
392 void
393 spa_load_failed(spa_t *spa, const char *fmt, ...)
395 va_list adx;
396 char buf[256];
398 va_start(adx, fmt);
399 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
400 va_end(adx);
402 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
403 spa->spa_trust_config ? "trusted" : "untrusted", buf);
406 void
407 spa_load_note(spa_t *spa, const char *fmt, ...)
409 va_list adx;
410 char buf[256];
412 va_start(adx, fmt);
413 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
414 va_end(adx);
416 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
417 spa->spa_trust_config ? "trusted" : "untrusted", buf);
421 * By default dedup and user data indirects land in the special class
423 int zfs_ddt_data_is_special = B_TRUE;
424 int zfs_user_indirect_is_special = B_TRUE;
427 * The percentage of special class final space reserved for metadata only.
428 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
429 * let metadata into the class.
431 int zfs_special_class_metadata_reserve_pct = 25;
434 * ==========================================================================
435 * SPA config locking
436 * ==========================================================================
438 static void
439 spa_config_lock_init(spa_t *spa)
441 for (int i = 0; i < SCL_LOCKS; i++) {
442 spa_config_lock_t *scl = &spa->spa_config_lock[i];
443 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
444 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
445 scl->scl_writer = NULL;
446 scl->scl_write_wanted = 0;
447 scl->scl_count = 0;
451 static void
452 spa_config_lock_destroy(spa_t *spa)
454 for (int i = 0; i < SCL_LOCKS; i++) {
455 spa_config_lock_t *scl = &spa->spa_config_lock[i];
456 mutex_destroy(&scl->scl_lock);
457 cv_destroy(&scl->scl_cv);
458 ASSERT(scl->scl_writer == NULL);
459 ASSERT(scl->scl_write_wanted == 0);
460 ASSERT(scl->scl_count == 0);
465 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
467 for (int i = 0; i < SCL_LOCKS; i++) {
468 spa_config_lock_t *scl = &spa->spa_config_lock[i];
469 if (!(locks & (1 << i)))
470 continue;
471 mutex_enter(&scl->scl_lock);
472 if (rw == RW_READER) {
473 if (scl->scl_writer || scl->scl_write_wanted) {
474 mutex_exit(&scl->scl_lock);
475 spa_config_exit(spa, locks & ((1 << i) - 1),
476 tag);
477 return (0);
479 } else {
480 ASSERT(scl->scl_writer != curthread);
481 if (scl->scl_count != 0) {
482 mutex_exit(&scl->scl_lock);
483 spa_config_exit(spa, locks & ((1 << i) - 1),
484 tag);
485 return (0);
487 scl->scl_writer = curthread;
489 scl->scl_count++;
490 mutex_exit(&scl->scl_lock);
492 return (1);
495 void
496 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
498 int wlocks_held = 0;
500 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
502 for (int i = 0; i < SCL_LOCKS; i++) {
503 spa_config_lock_t *scl = &spa->spa_config_lock[i];
504 if (scl->scl_writer == curthread)
505 wlocks_held |= (1 << i);
506 if (!(locks & (1 << i)))
507 continue;
508 mutex_enter(&scl->scl_lock);
509 if (rw == RW_READER) {
510 while (scl->scl_writer || scl->scl_write_wanted) {
511 cv_wait(&scl->scl_cv, &scl->scl_lock);
513 } else {
514 ASSERT(scl->scl_writer != curthread);
515 while (scl->scl_count != 0) {
516 scl->scl_write_wanted++;
517 cv_wait(&scl->scl_cv, &scl->scl_lock);
518 scl->scl_write_wanted--;
520 scl->scl_writer = curthread;
522 scl->scl_count++;
523 mutex_exit(&scl->scl_lock);
525 ASSERT3U(wlocks_held, <=, locks);
528 void
529 spa_config_exit(spa_t *spa, int locks, const void *tag)
531 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
532 spa_config_lock_t *scl = &spa->spa_config_lock[i];
533 if (!(locks & (1 << i)))
534 continue;
535 mutex_enter(&scl->scl_lock);
536 ASSERT(scl->scl_count > 0);
537 if (--scl->scl_count == 0) {
538 ASSERT(scl->scl_writer == NULL ||
539 scl->scl_writer == curthread);
540 scl->scl_writer = NULL; /* OK in either case */
541 cv_broadcast(&scl->scl_cv);
543 mutex_exit(&scl->scl_lock);
548 spa_config_held(spa_t *spa, int locks, krw_t rw)
550 int locks_held = 0;
552 for (int i = 0; i < SCL_LOCKS; i++) {
553 spa_config_lock_t *scl = &spa->spa_config_lock[i];
554 if (!(locks & (1 << i)))
555 continue;
556 if ((rw == RW_READER && scl->scl_count != 0) ||
557 (rw == RW_WRITER && scl->scl_writer == curthread))
558 locks_held |= 1 << i;
561 return (locks_held);
565 * ==========================================================================
566 * SPA namespace functions
567 * ==========================================================================
571 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
572 * Returns NULL if no matching spa_t is found.
574 spa_t *
575 spa_lookup(const char *name)
577 static spa_t search; /* spa_t is large; don't allocate on stack */
578 spa_t *spa;
579 avl_index_t where;
580 char *cp;
582 ASSERT(MUTEX_HELD(&spa_namespace_lock));
584 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
587 * If it's a full dataset name, figure out the pool name and
588 * just use that.
590 cp = strpbrk(search.spa_name, "/@#");
591 if (cp != NULL)
592 *cp = '\0';
594 spa = avl_find(&spa_namespace_avl, &search, &where);
596 return (spa);
600 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
601 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
602 * looking for potentially hung I/Os.
604 void
605 spa_deadman(void *arg)
607 spa_t *spa = arg;
609 /* Disable the deadman if the pool is suspended. */
610 if (spa_suspended(spa))
611 return;
613 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
614 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
615 (u_longlong_t)++spa->spa_deadman_calls);
616 if (zfs_deadman_enabled)
617 vdev_deadman(spa->spa_root_vdev, FTAG);
619 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
620 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
621 MSEC_TO_TICK(zfs_deadman_checktime_ms));
624 static int
625 spa_log_sm_sort_by_txg(const void *va, const void *vb)
627 const spa_log_sm_t *a = va;
628 const spa_log_sm_t *b = vb;
630 return (TREE_CMP(a->sls_txg, b->sls_txg));
634 * Create an uninitialized spa_t with the given name. Requires
635 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
636 * exist by calling spa_lookup() first.
638 spa_t *
639 spa_add(const char *name, nvlist_t *config, const char *altroot)
641 spa_t *spa;
642 spa_config_dirent_t *dp;
644 ASSERT(MUTEX_HELD(&spa_namespace_lock));
646 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
648 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
649 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
650 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
651 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
654 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
656 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
657 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
658 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
659 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
660 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
661 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
663 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
664 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
665 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
666 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
667 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
668 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
669 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
671 for (int t = 0; t < TXG_SIZE; t++)
672 bplist_create(&spa->spa_free_bplist[t]);
674 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
675 spa->spa_state = POOL_STATE_UNINITIALIZED;
676 spa->spa_freeze_txg = UINT64_MAX;
677 spa->spa_final_txg = UINT64_MAX;
678 spa->spa_load_max_txg = UINT64_MAX;
679 spa->spa_proc = &p0;
680 spa->spa_proc_state = SPA_PROC_NONE;
681 spa->spa_trust_config = B_TRUE;
682 spa->spa_hostid = zone_get_hostid(NULL);
684 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
685 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
686 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
688 zfs_refcount_create(&spa->spa_refcount);
689 spa_config_lock_init(spa);
690 spa_stats_init(spa);
692 avl_add(&spa_namespace_avl, spa);
695 * Set the alternate root, if there is one.
697 if (altroot)
698 spa->spa_root = spa_strdup(altroot);
700 spa->spa_alloc_count = spa_allocators;
701 spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
702 sizeof (spa_alloc_t), KM_SLEEP);
703 for (int i = 0; i < spa->spa_alloc_count; i++) {
704 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
705 NULL);
706 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
707 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
709 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
710 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
711 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
712 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
713 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
714 offsetof(log_summary_entry_t, lse_node));
717 * Every pool starts with the default cachefile
719 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
720 offsetof(spa_config_dirent_t, scd_link));
722 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
723 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
724 list_insert_head(&spa->spa_config_list, dp);
726 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
727 KM_SLEEP) == 0);
729 if (config != NULL) {
730 nvlist_t *features;
732 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
733 &features) == 0) {
734 VERIFY(nvlist_dup(features, &spa->spa_label_features,
735 0) == 0);
738 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
741 if (spa->spa_label_features == NULL) {
742 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
743 KM_SLEEP) == 0);
746 spa->spa_min_ashift = INT_MAX;
747 spa->spa_max_ashift = 0;
748 spa->spa_min_alloc = INT_MAX;
750 /* Reset cached value */
751 spa->spa_dedup_dspace = ~0ULL;
754 * As a pool is being created, treat all features as disabled by
755 * setting SPA_FEATURE_DISABLED for all entries in the feature
756 * refcount cache.
758 for (int i = 0; i < SPA_FEATURES; i++) {
759 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
762 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
763 offsetof(vdev_t, vdev_leaf_node));
765 return (spa);
769 * Removes a spa_t from the namespace, freeing up any memory used. Requires
770 * spa_namespace_lock. This is called only after the spa_t has been closed and
771 * deactivated.
773 void
774 spa_remove(spa_t *spa)
776 spa_config_dirent_t *dp;
778 ASSERT(MUTEX_HELD(&spa_namespace_lock));
779 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
780 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
781 ASSERT0(spa->spa_waiters);
783 nvlist_free(spa->spa_config_splitting);
785 avl_remove(&spa_namespace_avl, spa);
786 cv_broadcast(&spa_namespace_cv);
788 if (spa->spa_root)
789 spa_strfree(spa->spa_root);
791 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
792 list_remove(&spa->spa_config_list, dp);
793 if (dp->scd_path != NULL)
794 spa_strfree(dp->scd_path);
795 kmem_free(dp, sizeof (spa_config_dirent_t));
798 for (int i = 0; i < spa->spa_alloc_count; i++) {
799 avl_destroy(&spa->spa_allocs[i].spaa_tree);
800 mutex_destroy(&spa->spa_allocs[i].spaa_lock);
802 kmem_free(spa->spa_allocs, spa->spa_alloc_count *
803 sizeof (spa_alloc_t));
805 avl_destroy(&spa->spa_metaslabs_by_flushed);
806 avl_destroy(&spa->spa_sm_logs_by_txg);
807 list_destroy(&spa->spa_log_summary);
808 list_destroy(&spa->spa_config_list);
809 list_destroy(&spa->spa_leaf_list);
811 nvlist_free(spa->spa_label_features);
812 nvlist_free(spa->spa_load_info);
813 nvlist_free(spa->spa_feat_stats);
814 spa_config_set(spa, NULL);
816 zfs_refcount_destroy(&spa->spa_refcount);
818 spa_stats_destroy(spa);
819 spa_config_lock_destroy(spa);
821 for (int t = 0; t < TXG_SIZE; t++)
822 bplist_destroy(&spa->spa_free_bplist[t]);
824 zio_checksum_templates_free(spa);
826 cv_destroy(&spa->spa_async_cv);
827 cv_destroy(&spa->spa_evicting_os_cv);
828 cv_destroy(&spa->spa_proc_cv);
829 cv_destroy(&spa->spa_scrub_io_cv);
830 cv_destroy(&spa->spa_suspend_cv);
831 cv_destroy(&spa->spa_activities_cv);
832 cv_destroy(&spa->spa_waiters_cv);
834 mutex_destroy(&spa->spa_flushed_ms_lock);
835 mutex_destroy(&spa->spa_async_lock);
836 mutex_destroy(&spa->spa_errlist_lock);
837 mutex_destroy(&spa->spa_errlog_lock);
838 mutex_destroy(&spa->spa_evicting_os_lock);
839 mutex_destroy(&spa->spa_history_lock);
840 mutex_destroy(&spa->spa_proc_lock);
841 mutex_destroy(&spa->spa_props_lock);
842 mutex_destroy(&spa->spa_cksum_tmpls_lock);
843 mutex_destroy(&spa->spa_scrub_lock);
844 mutex_destroy(&spa->spa_suspend_lock);
845 mutex_destroy(&spa->spa_vdev_top_lock);
846 mutex_destroy(&spa->spa_feat_stats_lock);
847 mutex_destroy(&spa->spa_activities_lock);
849 kmem_free(spa, sizeof (spa_t));
853 * Given a pool, return the next pool in the namespace, or NULL if there is
854 * none. If 'prev' is NULL, return the first pool.
856 spa_t *
857 spa_next(spa_t *prev)
859 ASSERT(MUTEX_HELD(&spa_namespace_lock));
861 if (prev)
862 return (AVL_NEXT(&spa_namespace_avl, prev));
863 else
864 return (avl_first(&spa_namespace_avl));
868 * ==========================================================================
869 * SPA refcount functions
870 * ==========================================================================
874 * Add a reference to the given spa_t. Must have at least one reference, or
875 * have the namespace lock held.
877 void
878 spa_open_ref(spa_t *spa, void *tag)
880 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
881 MUTEX_HELD(&spa_namespace_lock));
882 (void) zfs_refcount_add(&spa->spa_refcount, tag);
886 * Remove a reference to the given spa_t. Must have at least one reference, or
887 * have the namespace lock held.
889 void
890 spa_close(spa_t *spa, void *tag)
892 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
893 MUTEX_HELD(&spa_namespace_lock));
894 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
898 * Remove a reference to the given spa_t held by a dsl dir that is
899 * being asynchronously released. Async releases occur from a taskq
900 * performing eviction of dsl datasets and dirs. The namespace lock
901 * isn't held and the hold by the object being evicted may contribute to
902 * spa_minref (e.g. dataset or directory released during pool export),
903 * so the asserts in spa_close() do not apply.
905 void
906 spa_async_close(spa_t *spa, void *tag)
908 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
912 * Check to see if the spa refcount is zero. Must be called with
913 * spa_namespace_lock held. We really compare against spa_minref, which is the
914 * number of references acquired when opening a pool
916 boolean_t
917 spa_refcount_zero(spa_t *spa)
919 ASSERT(MUTEX_HELD(&spa_namespace_lock));
921 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
925 * ==========================================================================
926 * SPA spare and l2cache tracking
927 * ==========================================================================
931 * Hot spares and cache devices are tracked using the same code below,
932 * for 'auxiliary' devices.
935 typedef struct spa_aux {
936 uint64_t aux_guid;
937 uint64_t aux_pool;
938 avl_node_t aux_avl;
939 int aux_count;
940 } spa_aux_t;
942 static inline int
943 spa_aux_compare(const void *a, const void *b)
945 const spa_aux_t *sa = (const spa_aux_t *)a;
946 const spa_aux_t *sb = (const spa_aux_t *)b;
948 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
951 static void
952 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
954 avl_index_t where;
955 spa_aux_t search;
956 spa_aux_t *aux;
958 search.aux_guid = vd->vdev_guid;
959 if ((aux = avl_find(avl, &search, &where)) != NULL) {
960 aux->aux_count++;
961 } else {
962 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
963 aux->aux_guid = vd->vdev_guid;
964 aux->aux_count = 1;
965 avl_insert(avl, aux, where);
969 static void
970 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
972 spa_aux_t search;
973 spa_aux_t *aux;
974 avl_index_t where;
976 search.aux_guid = vd->vdev_guid;
977 aux = avl_find(avl, &search, &where);
979 ASSERT(aux != NULL);
981 if (--aux->aux_count == 0) {
982 avl_remove(avl, aux);
983 kmem_free(aux, sizeof (spa_aux_t));
984 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
985 aux->aux_pool = 0ULL;
989 static boolean_t
990 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
992 spa_aux_t search, *found;
994 search.aux_guid = guid;
995 found = avl_find(avl, &search, NULL);
997 if (pool) {
998 if (found)
999 *pool = found->aux_pool;
1000 else
1001 *pool = 0ULL;
1004 if (refcnt) {
1005 if (found)
1006 *refcnt = found->aux_count;
1007 else
1008 *refcnt = 0;
1011 return (found != NULL);
1014 static void
1015 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1017 spa_aux_t search, *found;
1018 avl_index_t where;
1020 search.aux_guid = vd->vdev_guid;
1021 found = avl_find(avl, &search, &where);
1022 ASSERT(found != NULL);
1023 ASSERT(found->aux_pool == 0ULL);
1025 found->aux_pool = spa_guid(vd->vdev_spa);
1029 * Spares are tracked globally due to the following constraints:
1031 * - A spare may be part of multiple pools.
1032 * - A spare may be added to a pool even if it's actively in use within
1033 * another pool.
1034 * - A spare in use in any pool can only be the source of a replacement if
1035 * the target is a spare in the same pool.
1037 * We keep track of all spares on the system through the use of a reference
1038 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1039 * spare, then we bump the reference count in the AVL tree. In addition, we set
1040 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1041 * inactive). When a spare is made active (used to replace a device in the
1042 * pool), we also keep track of which pool its been made a part of.
1044 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1045 * called under the spa_namespace lock as part of vdev reconfiguration. The
1046 * separate spare lock exists for the status query path, which does not need to
1047 * be completely consistent with respect to other vdev configuration changes.
1050 static int
1051 spa_spare_compare(const void *a, const void *b)
1053 return (spa_aux_compare(a, b));
1056 void
1057 spa_spare_add(vdev_t *vd)
1059 mutex_enter(&spa_spare_lock);
1060 ASSERT(!vd->vdev_isspare);
1061 spa_aux_add(vd, &spa_spare_avl);
1062 vd->vdev_isspare = B_TRUE;
1063 mutex_exit(&spa_spare_lock);
1066 void
1067 spa_spare_remove(vdev_t *vd)
1069 mutex_enter(&spa_spare_lock);
1070 ASSERT(vd->vdev_isspare);
1071 spa_aux_remove(vd, &spa_spare_avl);
1072 vd->vdev_isspare = B_FALSE;
1073 mutex_exit(&spa_spare_lock);
1076 boolean_t
1077 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1079 boolean_t found;
1081 mutex_enter(&spa_spare_lock);
1082 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1083 mutex_exit(&spa_spare_lock);
1085 return (found);
1088 void
1089 spa_spare_activate(vdev_t *vd)
1091 mutex_enter(&spa_spare_lock);
1092 ASSERT(vd->vdev_isspare);
1093 spa_aux_activate(vd, &spa_spare_avl);
1094 mutex_exit(&spa_spare_lock);
1098 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1099 * Cache devices currently only support one pool per cache device, and so
1100 * for these devices the aux reference count is currently unused beyond 1.
1103 static int
1104 spa_l2cache_compare(const void *a, const void *b)
1106 return (spa_aux_compare(a, b));
1109 void
1110 spa_l2cache_add(vdev_t *vd)
1112 mutex_enter(&spa_l2cache_lock);
1113 ASSERT(!vd->vdev_isl2cache);
1114 spa_aux_add(vd, &spa_l2cache_avl);
1115 vd->vdev_isl2cache = B_TRUE;
1116 mutex_exit(&spa_l2cache_lock);
1119 void
1120 spa_l2cache_remove(vdev_t *vd)
1122 mutex_enter(&spa_l2cache_lock);
1123 ASSERT(vd->vdev_isl2cache);
1124 spa_aux_remove(vd, &spa_l2cache_avl);
1125 vd->vdev_isl2cache = B_FALSE;
1126 mutex_exit(&spa_l2cache_lock);
1129 boolean_t
1130 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1132 boolean_t found;
1134 mutex_enter(&spa_l2cache_lock);
1135 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1136 mutex_exit(&spa_l2cache_lock);
1138 return (found);
1141 void
1142 spa_l2cache_activate(vdev_t *vd)
1144 mutex_enter(&spa_l2cache_lock);
1145 ASSERT(vd->vdev_isl2cache);
1146 spa_aux_activate(vd, &spa_l2cache_avl);
1147 mutex_exit(&spa_l2cache_lock);
1151 * ==========================================================================
1152 * SPA vdev locking
1153 * ==========================================================================
1157 * Lock the given spa_t for the purpose of adding or removing a vdev.
1158 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1159 * It returns the next transaction group for the spa_t.
1161 uint64_t
1162 spa_vdev_enter(spa_t *spa)
1164 mutex_enter(&spa->spa_vdev_top_lock);
1165 mutex_enter(&spa_namespace_lock);
1167 vdev_autotrim_stop_all(spa);
1169 return (spa_vdev_config_enter(spa));
1173 * The same as spa_vdev_enter() above but additionally takes the guid of
1174 * the vdev being detached. When there is a rebuild in process it will be
1175 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1176 * The rebuild is canceled if only a single child remains after the detach.
1178 uint64_t
1179 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1181 mutex_enter(&spa->spa_vdev_top_lock);
1182 mutex_enter(&spa_namespace_lock);
1184 vdev_autotrim_stop_all(spa);
1186 if (guid != 0) {
1187 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1188 if (vd) {
1189 vdev_rebuild_stop_wait(vd->vdev_top);
1193 return (spa_vdev_config_enter(spa));
1197 * Internal implementation for spa_vdev_enter(). Used when a vdev
1198 * operation requires multiple syncs (i.e. removing a device) while
1199 * keeping the spa_namespace_lock held.
1201 uint64_t
1202 spa_vdev_config_enter(spa_t *spa)
1204 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1208 return (spa_last_synced_txg(spa) + 1);
1212 * Used in combination with spa_vdev_config_enter() to allow the syncing
1213 * of multiple transactions without releasing the spa_namespace_lock.
1215 void
1216 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1218 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1220 int config_changed = B_FALSE;
1222 ASSERT(txg > spa_last_synced_txg(spa));
1224 spa->spa_pending_vdev = NULL;
1227 * Reassess the DTLs.
1229 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1231 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1232 config_changed = B_TRUE;
1233 spa->spa_config_generation++;
1237 * Verify the metaslab classes.
1239 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1240 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1241 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1242 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1243 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1245 spa_config_exit(spa, SCL_ALL, spa);
1248 * Panic the system if the specified tag requires it. This
1249 * is useful for ensuring that configurations are updated
1250 * transactionally.
1252 if (zio_injection_enabled)
1253 zio_handle_panic_injection(spa, tag, 0);
1256 * Note: this txg_wait_synced() is important because it ensures
1257 * that there won't be more than one config change per txg.
1258 * This allows us to use the txg as the generation number.
1260 if (error == 0)
1261 txg_wait_synced(spa->spa_dsl_pool, txg);
1263 if (vd != NULL) {
1264 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1265 if (vd->vdev_ops->vdev_op_leaf) {
1266 mutex_enter(&vd->vdev_initialize_lock);
1267 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1268 NULL);
1269 mutex_exit(&vd->vdev_initialize_lock);
1271 mutex_enter(&vd->vdev_trim_lock);
1272 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1273 mutex_exit(&vd->vdev_trim_lock);
1277 * The vdev may be both a leaf and top-level device.
1279 vdev_autotrim_stop_wait(vd);
1281 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1282 vdev_free(vd);
1283 spa_config_exit(spa, SCL_STATE_ALL, spa);
1287 * If the config changed, update the config cache.
1289 if (config_changed)
1290 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1294 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1295 * locking of spa_vdev_enter(), we also want make sure the transactions have
1296 * synced to disk, and then update the global configuration cache with the new
1297 * information.
1300 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1302 vdev_autotrim_restart(spa);
1303 vdev_rebuild_restart(spa);
1305 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1306 mutex_exit(&spa_namespace_lock);
1307 mutex_exit(&spa->spa_vdev_top_lock);
1309 return (error);
1313 * Lock the given spa_t for the purpose of changing vdev state.
1315 void
1316 spa_vdev_state_enter(spa_t *spa, int oplocks)
1318 int locks = SCL_STATE_ALL | oplocks;
1321 * Root pools may need to read of the underlying devfs filesystem
1322 * when opening up a vdev. Unfortunately if we're holding the
1323 * SCL_ZIO lock it will result in a deadlock when we try to issue
1324 * the read from the root filesystem. Instead we "prefetch"
1325 * the associated vnodes that we need prior to opening the
1326 * underlying devices and cache them so that we can prevent
1327 * any I/O when we are doing the actual open.
1329 if (spa_is_root(spa)) {
1330 int low = locks & ~(SCL_ZIO - 1);
1331 int high = locks & ~low;
1333 spa_config_enter(spa, high, spa, RW_WRITER);
1334 vdev_hold(spa->spa_root_vdev);
1335 spa_config_enter(spa, low, spa, RW_WRITER);
1336 } else {
1337 spa_config_enter(spa, locks, spa, RW_WRITER);
1339 spa->spa_vdev_locks = locks;
1343 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1345 boolean_t config_changed = B_FALSE;
1346 vdev_t *vdev_top;
1348 if (vd == NULL || vd == spa->spa_root_vdev) {
1349 vdev_top = spa->spa_root_vdev;
1350 } else {
1351 vdev_top = vd->vdev_top;
1354 if (vd != NULL || error == 0)
1355 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1357 if (vd != NULL) {
1358 if (vd != spa->spa_root_vdev)
1359 vdev_state_dirty(vdev_top);
1361 config_changed = B_TRUE;
1362 spa->spa_config_generation++;
1365 if (spa_is_root(spa))
1366 vdev_rele(spa->spa_root_vdev);
1368 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1369 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1372 * If anything changed, wait for it to sync. This ensures that,
1373 * from the system administrator's perspective, zpool(8) commands
1374 * are synchronous. This is important for things like zpool offline:
1375 * when the command completes, you expect no further I/O from ZFS.
1377 if (vd != NULL)
1378 txg_wait_synced(spa->spa_dsl_pool, 0);
1381 * If the config changed, update the config cache.
1383 if (config_changed) {
1384 mutex_enter(&spa_namespace_lock);
1385 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1386 mutex_exit(&spa_namespace_lock);
1389 return (error);
1393 * ==========================================================================
1394 * Miscellaneous functions
1395 * ==========================================================================
1398 void
1399 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1401 if (!nvlist_exists(spa->spa_label_features, feature)) {
1402 fnvlist_add_boolean(spa->spa_label_features, feature);
1404 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1405 * dirty the vdev config because lock SCL_CONFIG is not held.
1406 * Thankfully, in this case we don't need to dirty the config
1407 * because it will be written out anyway when we finish
1408 * creating the pool.
1410 if (tx->tx_txg != TXG_INITIAL)
1411 vdev_config_dirty(spa->spa_root_vdev);
1415 void
1416 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1418 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1419 vdev_config_dirty(spa->spa_root_vdev);
1423 * Return the spa_t associated with given pool_guid, if it exists. If
1424 * device_guid is non-zero, determine whether the pool exists *and* contains
1425 * a device with the specified device_guid.
1427 spa_t *
1428 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1430 spa_t *spa;
1431 avl_tree_t *t = &spa_namespace_avl;
1433 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1435 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1436 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1437 continue;
1438 if (spa->spa_root_vdev == NULL)
1439 continue;
1440 if (spa_guid(spa) == pool_guid) {
1441 if (device_guid == 0)
1442 break;
1444 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1445 device_guid) != NULL)
1446 break;
1449 * Check any devices we may be in the process of adding.
1451 if (spa->spa_pending_vdev) {
1452 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1453 device_guid) != NULL)
1454 break;
1459 return (spa);
1463 * Determine whether a pool with the given pool_guid exists.
1465 boolean_t
1466 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1468 return (spa_by_guid(pool_guid, device_guid) != NULL);
1471 char *
1472 spa_strdup(const char *s)
1474 size_t len;
1475 char *new;
1477 len = strlen(s);
1478 new = kmem_alloc(len + 1, KM_SLEEP);
1479 bcopy(s, new, len);
1480 new[len] = '\0';
1482 return (new);
1485 void
1486 spa_strfree(char *s)
1488 kmem_free(s, strlen(s) + 1);
1491 uint64_t
1492 spa_generate_guid(spa_t *spa)
1494 uint64_t guid;
1496 if (spa != NULL) {
1497 do {
1498 (void) random_get_pseudo_bytes((void *)&guid,
1499 sizeof (guid));
1500 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1501 } else {
1502 do {
1503 (void) random_get_pseudo_bytes((void *)&guid,
1504 sizeof (guid));
1505 } while (guid == 0 || spa_guid_exists(guid, 0));
1508 return (guid);
1511 void
1512 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1514 char type[256];
1515 char *checksum = NULL;
1516 char *compress = NULL;
1518 if (bp != NULL) {
1519 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1520 dmu_object_byteswap_t bswap =
1521 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1522 (void) snprintf(type, sizeof (type), "bswap %s %s",
1523 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1524 "metadata" : "data",
1525 dmu_ot_byteswap[bswap].ob_name);
1526 } else {
1527 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1528 sizeof (type));
1530 if (!BP_IS_EMBEDDED(bp)) {
1531 checksum =
1532 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1534 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1537 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1538 compress);
1541 void
1542 spa_freeze(spa_t *spa)
1544 uint64_t freeze_txg = 0;
1546 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1547 if (spa->spa_freeze_txg == UINT64_MAX) {
1548 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1549 spa->spa_freeze_txg = freeze_txg;
1551 spa_config_exit(spa, SCL_ALL, FTAG);
1552 if (freeze_txg != 0)
1553 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1556 void
1557 zfs_panic_recover(const char *fmt, ...)
1559 va_list adx;
1561 va_start(adx, fmt);
1562 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1563 va_end(adx);
1567 * This is a stripped-down version of strtoull, suitable only for converting
1568 * lowercase hexadecimal numbers that don't overflow.
1570 uint64_t
1571 zfs_strtonum(const char *str, char **nptr)
1573 uint64_t val = 0;
1574 char c;
1575 int digit;
1577 while ((c = *str) != '\0') {
1578 if (c >= '0' && c <= '9')
1579 digit = c - '0';
1580 else if (c >= 'a' && c <= 'f')
1581 digit = 10 + c - 'a';
1582 else
1583 break;
1585 val *= 16;
1586 val += digit;
1588 str++;
1591 if (nptr)
1592 *nptr = (char *)str;
1594 return (val);
1597 void
1598 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1601 * We bump the feature refcount for each special vdev added to the pool
1603 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1604 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1608 * ==========================================================================
1609 * Accessor functions
1610 * ==========================================================================
1613 boolean_t
1614 spa_shutting_down(spa_t *spa)
1616 return (spa->spa_async_suspended);
1619 dsl_pool_t *
1620 spa_get_dsl(spa_t *spa)
1622 return (spa->spa_dsl_pool);
1625 boolean_t
1626 spa_is_initializing(spa_t *spa)
1628 return (spa->spa_is_initializing);
1631 boolean_t
1632 spa_indirect_vdevs_loaded(spa_t *spa)
1634 return (spa->spa_indirect_vdevs_loaded);
1637 blkptr_t *
1638 spa_get_rootblkptr(spa_t *spa)
1640 return (&spa->spa_ubsync.ub_rootbp);
1643 void
1644 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1646 spa->spa_uberblock.ub_rootbp = *bp;
1649 void
1650 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1652 if (spa->spa_root == NULL)
1653 buf[0] = '\0';
1654 else
1655 (void) strncpy(buf, spa->spa_root, buflen);
1659 spa_sync_pass(spa_t *spa)
1661 return (spa->spa_sync_pass);
1664 char *
1665 spa_name(spa_t *spa)
1667 return (spa->spa_name);
1670 uint64_t
1671 spa_guid(spa_t *spa)
1673 dsl_pool_t *dp = spa_get_dsl(spa);
1674 uint64_t guid;
1677 * If we fail to parse the config during spa_load(), we can go through
1678 * the error path (which posts an ereport) and end up here with no root
1679 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1680 * this case.
1682 if (spa->spa_root_vdev == NULL)
1683 return (spa->spa_config_guid);
1685 guid = spa->spa_last_synced_guid != 0 ?
1686 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1689 * Return the most recently synced out guid unless we're
1690 * in syncing context.
1692 if (dp && dsl_pool_sync_context(dp))
1693 return (spa->spa_root_vdev->vdev_guid);
1694 else
1695 return (guid);
1698 uint64_t
1699 spa_load_guid(spa_t *spa)
1702 * This is a GUID that exists solely as a reference for the
1703 * purposes of the arc. It is generated at load time, and
1704 * is never written to persistent storage.
1706 return (spa->spa_load_guid);
1709 uint64_t
1710 spa_last_synced_txg(spa_t *spa)
1712 return (spa->spa_ubsync.ub_txg);
1715 uint64_t
1716 spa_first_txg(spa_t *spa)
1718 return (spa->spa_first_txg);
1721 uint64_t
1722 spa_syncing_txg(spa_t *spa)
1724 return (spa->spa_syncing_txg);
1728 * Return the last txg where data can be dirtied. The final txgs
1729 * will be used to just clear out any deferred frees that remain.
1731 uint64_t
1732 spa_final_dirty_txg(spa_t *spa)
1734 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1737 pool_state_t
1738 spa_state(spa_t *spa)
1740 return (spa->spa_state);
1743 spa_load_state_t
1744 spa_load_state(spa_t *spa)
1746 return (spa->spa_load_state);
1749 uint64_t
1750 spa_freeze_txg(spa_t *spa)
1752 return (spa->spa_freeze_txg);
1756 * Return the inflated asize for a logical write in bytes. This is used by the
1757 * DMU to calculate the space a logical write will require on disk.
1758 * If lsize is smaller than the largest physical block size allocatable on this
1759 * pool we use its value instead, since the write will end up using the whole
1760 * block anyway.
1762 uint64_t
1763 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1765 if (lsize == 0)
1766 return (0); /* No inflation needed */
1767 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1771 * Return the amount of slop space in bytes. It is typically 1/32 of the pool
1772 * (3.2%), minus the embedded log space. On very small pools, it may be
1773 * slightly larger than this. On very large pools, it will be capped to
1774 * the value of spa_max_slop. The embedded log space is not included in
1775 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a
1776 * constant 97% of the total space, regardless of metaslab size (assuming the
1777 * default spa_slop_shift=5 and a non-tiny pool).
1779 * See the comment above spa_slop_shift for more details.
1781 uint64_t
1782 spa_get_slop_space(spa_t *spa)
1784 uint64_t space = 0;
1785 uint64_t slop = 0;
1788 * Make sure spa_dedup_dspace has been set.
1790 if (spa->spa_dedup_dspace == ~0ULL)
1791 spa_update_dspace(spa);
1794 * spa_get_dspace() includes the space only logically "used" by
1795 * deduplicated data, so since it's not useful to reserve more
1796 * space with more deduplicated data, we subtract that out here.
1798 space = spa_get_dspace(spa) - spa->spa_dedup_dspace;
1799 slop = MIN(space >> spa_slop_shift, spa_max_slop);
1802 * Subtract the embedded log space, but no more than half the (3.2%)
1803 * unusable space. Note, the "no more than half" is only relevant if
1804 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1805 * default.
1807 uint64_t embedded_log =
1808 metaslab_class_get_dspace(spa_embedded_log_class(spa));
1809 slop -= MIN(embedded_log, slop >> 1);
1812 * Slop space should be at least spa_min_slop, but no more than half
1813 * the entire pool.
1815 slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1816 return (slop);
1819 uint64_t
1820 spa_get_dspace(spa_t *spa)
1822 return (spa->spa_dspace);
1825 uint64_t
1826 spa_get_checkpoint_space(spa_t *spa)
1828 return (spa->spa_checkpoint_info.sci_dspace);
1831 void
1832 spa_update_dspace(spa_t *spa)
1834 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1835 ddt_get_dedup_dspace(spa);
1836 if (spa->spa_vdev_removal != NULL) {
1838 * We can't allocate from the removing device, so subtract
1839 * its size if it was included in dspace (i.e. if this is a
1840 * normal-class vdev, not special/dedup). This prevents the
1841 * DMU/DSL from filling up the (now smaller) pool while we
1842 * are in the middle of removing the device.
1844 * Note that the DMU/DSL doesn't actually know or care
1845 * how much space is allocated (it does its own tracking
1846 * of how much space has been logically used). So it
1847 * doesn't matter that the data we are moving may be
1848 * allocated twice (on the old device and the new
1849 * device).
1851 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1852 vdev_t *vd =
1853 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1855 * If the stars align, we can wind up here after
1856 * vdev_remove_complete() has cleared vd->vdev_mg but before
1857 * spa->spa_vdev_removal gets cleared, so we must check before
1858 * we dereference.
1860 if (vd->vdev_mg &&
1861 vd->vdev_mg->mg_class == spa_normal_class(spa)) {
1862 spa->spa_dspace -= spa_deflate(spa) ?
1863 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1865 spa_config_exit(spa, SCL_VDEV, FTAG);
1870 * Return the failure mode that has been set to this pool. The default
1871 * behavior will be to block all I/Os when a complete failure occurs.
1873 uint64_t
1874 spa_get_failmode(spa_t *spa)
1876 return (spa->spa_failmode);
1879 boolean_t
1880 spa_suspended(spa_t *spa)
1882 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1885 uint64_t
1886 spa_version(spa_t *spa)
1888 return (spa->spa_ubsync.ub_version);
1891 boolean_t
1892 spa_deflate(spa_t *spa)
1894 return (spa->spa_deflate);
1897 metaslab_class_t *
1898 spa_normal_class(spa_t *spa)
1900 return (spa->spa_normal_class);
1903 metaslab_class_t *
1904 spa_log_class(spa_t *spa)
1906 return (spa->spa_log_class);
1909 metaslab_class_t *
1910 spa_embedded_log_class(spa_t *spa)
1912 return (spa->spa_embedded_log_class);
1915 metaslab_class_t *
1916 spa_special_class(spa_t *spa)
1918 return (spa->spa_special_class);
1921 metaslab_class_t *
1922 spa_dedup_class(spa_t *spa)
1924 return (spa->spa_dedup_class);
1928 * Locate an appropriate allocation class
1930 metaslab_class_t *
1931 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1932 uint_t level, uint_t special_smallblk)
1935 * ZIL allocations determine their class in zio_alloc_zil().
1937 ASSERT(objtype != DMU_OT_INTENT_LOG);
1939 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1941 if (DMU_OT_IS_DDT(objtype)) {
1942 if (spa->spa_dedup_class->mc_groups != 0)
1943 return (spa_dedup_class(spa));
1944 else if (has_special_class && zfs_ddt_data_is_special)
1945 return (spa_special_class(spa));
1946 else
1947 return (spa_normal_class(spa));
1950 /* Indirect blocks for user data can land in special if allowed */
1951 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1952 if (has_special_class && zfs_user_indirect_is_special)
1953 return (spa_special_class(spa));
1954 else
1955 return (spa_normal_class(spa));
1958 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1959 if (has_special_class)
1960 return (spa_special_class(spa));
1961 else
1962 return (spa_normal_class(spa));
1966 * Allow small file blocks in special class in some cases (like
1967 * for the dRAID vdev feature). But always leave a reserve of
1968 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1970 if (DMU_OT_IS_FILE(objtype) &&
1971 has_special_class && size <= special_smallblk) {
1972 metaslab_class_t *special = spa_special_class(spa);
1973 uint64_t alloc = metaslab_class_get_alloc(special);
1974 uint64_t space = metaslab_class_get_space(special);
1975 uint64_t limit =
1976 (space * (100 - zfs_special_class_metadata_reserve_pct))
1977 / 100;
1979 if (alloc < limit)
1980 return (special);
1983 return (spa_normal_class(spa));
1986 void
1987 spa_evicting_os_register(spa_t *spa, objset_t *os)
1989 mutex_enter(&spa->spa_evicting_os_lock);
1990 list_insert_head(&spa->spa_evicting_os_list, os);
1991 mutex_exit(&spa->spa_evicting_os_lock);
1994 void
1995 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1997 mutex_enter(&spa->spa_evicting_os_lock);
1998 list_remove(&spa->spa_evicting_os_list, os);
1999 cv_broadcast(&spa->spa_evicting_os_cv);
2000 mutex_exit(&spa->spa_evicting_os_lock);
2003 void
2004 spa_evicting_os_wait(spa_t *spa)
2006 mutex_enter(&spa->spa_evicting_os_lock);
2007 while (!list_is_empty(&spa->spa_evicting_os_list))
2008 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2009 mutex_exit(&spa->spa_evicting_os_lock);
2011 dmu_buf_user_evict_wait();
2015 spa_max_replication(spa_t *spa)
2018 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2019 * handle BPs with more than one DVA allocated. Set our max
2020 * replication level accordingly.
2022 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2023 return (1);
2024 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2028 spa_prev_software_version(spa_t *spa)
2030 return (spa->spa_prev_software_version);
2033 uint64_t
2034 spa_deadman_synctime(spa_t *spa)
2036 return (spa->spa_deadman_synctime);
2039 spa_autotrim_t
2040 spa_get_autotrim(spa_t *spa)
2042 return (spa->spa_autotrim);
2045 uint64_t
2046 spa_deadman_ziotime(spa_t *spa)
2048 return (spa->spa_deadman_ziotime);
2051 uint64_t
2052 spa_get_deadman_failmode(spa_t *spa)
2054 return (spa->spa_deadman_failmode);
2057 void
2058 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2060 if (strcmp(failmode, "wait") == 0)
2061 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2062 else if (strcmp(failmode, "continue") == 0)
2063 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2064 else if (strcmp(failmode, "panic") == 0)
2065 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2066 else
2067 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2070 void
2071 spa_set_deadman_ziotime(hrtime_t ns)
2073 spa_t *spa = NULL;
2075 if (spa_mode_global != SPA_MODE_UNINIT) {
2076 mutex_enter(&spa_namespace_lock);
2077 while ((spa = spa_next(spa)) != NULL)
2078 spa->spa_deadman_ziotime = ns;
2079 mutex_exit(&spa_namespace_lock);
2083 void
2084 spa_set_deadman_synctime(hrtime_t ns)
2086 spa_t *spa = NULL;
2088 if (spa_mode_global != SPA_MODE_UNINIT) {
2089 mutex_enter(&spa_namespace_lock);
2090 while ((spa = spa_next(spa)) != NULL)
2091 spa->spa_deadman_synctime = ns;
2092 mutex_exit(&spa_namespace_lock);
2096 uint64_t
2097 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2099 uint64_t asize = DVA_GET_ASIZE(dva);
2100 uint64_t dsize = asize;
2102 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2104 if (asize != 0 && spa->spa_deflate) {
2105 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2106 if (vd != NULL)
2107 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2108 vd->vdev_deflate_ratio;
2111 return (dsize);
2114 uint64_t
2115 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2117 uint64_t dsize = 0;
2119 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2120 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2122 return (dsize);
2125 uint64_t
2126 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2128 uint64_t dsize = 0;
2130 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2132 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2133 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2135 spa_config_exit(spa, SCL_VDEV, FTAG);
2137 return (dsize);
2140 uint64_t
2141 spa_dirty_data(spa_t *spa)
2143 return (spa->spa_dsl_pool->dp_dirty_total);
2147 * ==========================================================================
2148 * SPA Import Progress Routines
2149 * ==========================================================================
2152 typedef struct spa_import_progress {
2153 uint64_t pool_guid; /* unique id for updates */
2154 char *pool_name;
2155 spa_load_state_t spa_load_state;
2156 uint64_t mmp_sec_remaining; /* MMP activity check */
2157 uint64_t spa_load_max_txg; /* rewind txg */
2158 procfs_list_node_t smh_node;
2159 } spa_import_progress_t;
2161 spa_history_list_t *spa_import_progress_list = NULL;
2163 static int
2164 spa_import_progress_show_header(struct seq_file *f)
2166 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2167 "load_state", "multihost_secs", "max_txg",
2168 "pool_name");
2169 return (0);
2172 static int
2173 spa_import_progress_show(struct seq_file *f, void *data)
2175 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2177 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2178 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2179 (u_longlong_t)sip->mmp_sec_remaining,
2180 (u_longlong_t)sip->spa_load_max_txg,
2181 (sip->pool_name ? sip->pool_name : "-"));
2183 return (0);
2186 /* Remove oldest elements from list until there are no more than 'size' left */
2187 static void
2188 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2190 spa_import_progress_t *sip;
2191 while (shl->size > size) {
2192 sip = list_remove_head(&shl->procfs_list.pl_list);
2193 if (sip->pool_name)
2194 spa_strfree(sip->pool_name);
2195 kmem_free(sip, sizeof (spa_import_progress_t));
2196 shl->size--;
2199 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2202 static void
2203 spa_import_progress_init(void)
2205 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2206 KM_SLEEP);
2208 spa_import_progress_list->size = 0;
2210 spa_import_progress_list->procfs_list.pl_private =
2211 spa_import_progress_list;
2213 procfs_list_install("zfs",
2214 NULL,
2215 "import_progress",
2216 0644,
2217 &spa_import_progress_list->procfs_list,
2218 spa_import_progress_show,
2219 spa_import_progress_show_header,
2220 NULL,
2221 offsetof(spa_import_progress_t, smh_node));
2224 static void
2225 spa_import_progress_destroy(void)
2227 spa_history_list_t *shl = spa_import_progress_list;
2228 procfs_list_uninstall(&shl->procfs_list);
2229 spa_import_progress_truncate(shl, 0);
2230 procfs_list_destroy(&shl->procfs_list);
2231 kmem_free(shl, sizeof (spa_history_list_t));
2235 spa_import_progress_set_state(uint64_t pool_guid,
2236 spa_load_state_t load_state)
2238 spa_history_list_t *shl = spa_import_progress_list;
2239 spa_import_progress_t *sip;
2240 int error = ENOENT;
2242 if (shl->size == 0)
2243 return (0);
2245 mutex_enter(&shl->procfs_list.pl_lock);
2246 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2247 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2248 if (sip->pool_guid == pool_guid) {
2249 sip->spa_load_state = load_state;
2250 error = 0;
2251 break;
2254 mutex_exit(&shl->procfs_list.pl_lock);
2256 return (error);
2260 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2262 spa_history_list_t *shl = spa_import_progress_list;
2263 spa_import_progress_t *sip;
2264 int error = ENOENT;
2266 if (shl->size == 0)
2267 return (0);
2269 mutex_enter(&shl->procfs_list.pl_lock);
2270 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2271 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2272 if (sip->pool_guid == pool_guid) {
2273 sip->spa_load_max_txg = load_max_txg;
2274 error = 0;
2275 break;
2278 mutex_exit(&shl->procfs_list.pl_lock);
2280 return (error);
2284 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2285 uint64_t mmp_sec_remaining)
2287 spa_history_list_t *shl = spa_import_progress_list;
2288 spa_import_progress_t *sip;
2289 int error = ENOENT;
2291 if (shl->size == 0)
2292 return (0);
2294 mutex_enter(&shl->procfs_list.pl_lock);
2295 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2296 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2297 if (sip->pool_guid == pool_guid) {
2298 sip->mmp_sec_remaining = mmp_sec_remaining;
2299 error = 0;
2300 break;
2303 mutex_exit(&shl->procfs_list.pl_lock);
2305 return (error);
2309 * A new import is in progress, add an entry.
2311 void
2312 spa_import_progress_add(spa_t *spa)
2314 spa_history_list_t *shl = spa_import_progress_list;
2315 spa_import_progress_t *sip;
2316 char *poolname = NULL;
2318 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2319 sip->pool_guid = spa_guid(spa);
2321 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2322 &poolname);
2323 if (poolname == NULL)
2324 poolname = spa_name(spa);
2325 sip->pool_name = spa_strdup(poolname);
2326 sip->spa_load_state = spa_load_state(spa);
2328 mutex_enter(&shl->procfs_list.pl_lock);
2329 procfs_list_add(&shl->procfs_list, sip);
2330 shl->size++;
2331 mutex_exit(&shl->procfs_list.pl_lock);
2334 void
2335 spa_import_progress_remove(uint64_t pool_guid)
2337 spa_history_list_t *shl = spa_import_progress_list;
2338 spa_import_progress_t *sip;
2340 mutex_enter(&shl->procfs_list.pl_lock);
2341 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2342 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2343 if (sip->pool_guid == pool_guid) {
2344 if (sip->pool_name)
2345 spa_strfree(sip->pool_name);
2346 list_remove(&shl->procfs_list.pl_list, sip);
2347 shl->size--;
2348 kmem_free(sip, sizeof (spa_import_progress_t));
2349 break;
2352 mutex_exit(&shl->procfs_list.pl_lock);
2356 * ==========================================================================
2357 * Initialization and Termination
2358 * ==========================================================================
2361 static int
2362 spa_name_compare(const void *a1, const void *a2)
2364 const spa_t *s1 = a1;
2365 const spa_t *s2 = a2;
2366 int s;
2368 s = strcmp(s1->spa_name, s2->spa_name);
2370 return (TREE_ISIGN(s));
2373 void
2374 spa_boot_init(void)
2376 spa_config_load();
2379 void
2380 spa_init(spa_mode_t mode)
2382 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2383 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2384 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2385 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2387 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2388 offsetof(spa_t, spa_avl));
2390 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2391 offsetof(spa_aux_t, aux_avl));
2393 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2394 offsetof(spa_aux_t, aux_avl));
2396 spa_mode_global = mode;
2398 #ifndef _KERNEL
2399 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2400 struct sigaction sa;
2402 sa.sa_flags = SA_SIGINFO;
2403 sigemptyset(&sa.sa_mask);
2404 sa.sa_sigaction = arc_buf_sigsegv;
2406 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2407 perror("could not enable watchpoints: "
2408 "sigaction(SIGSEGV, ...) = ");
2409 } else {
2410 arc_watch = B_TRUE;
2413 #endif
2415 fm_init();
2416 zfs_refcount_init();
2417 unique_init();
2418 zfs_btree_init();
2419 metaslab_stat_init();
2420 ddt_init();
2421 zio_init();
2422 dmu_init();
2423 zil_init();
2424 vdev_cache_stat_init();
2425 vdev_mirror_stat_init();
2426 vdev_raidz_math_init();
2427 vdev_file_init();
2428 zfs_prop_init();
2429 zpool_prop_init();
2430 zpool_feature_init();
2431 spa_config_load();
2432 l2arc_start();
2433 scan_init();
2434 qat_init();
2435 spa_import_progress_init();
2438 void
2439 spa_fini(void)
2441 l2arc_stop();
2443 spa_evict_all();
2445 vdev_file_fini();
2446 vdev_cache_stat_fini();
2447 vdev_mirror_stat_fini();
2448 vdev_raidz_math_fini();
2449 zil_fini();
2450 dmu_fini();
2451 zio_fini();
2452 ddt_fini();
2453 metaslab_stat_fini();
2454 zfs_btree_fini();
2455 unique_fini();
2456 zfs_refcount_fini();
2457 fm_fini();
2458 scan_fini();
2459 qat_fini();
2460 spa_import_progress_destroy();
2462 avl_destroy(&spa_namespace_avl);
2463 avl_destroy(&spa_spare_avl);
2464 avl_destroy(&spa_l2cache_avl);
2466 cv_destroy(&spa_namespace_cv);
2467 mutex_destroy(&spa_namespace_lock);
2468 mutex_destroy(&spa_spare_lock);
2469 mutex_destroy(&spa_l2cache_lock);
2473 * Return whether this pool has a dedicated slog device. No locking needed.
2474 * It's not a problem if the wrong answer is returned as it's only for
2475 * performance and not correctness.
2477 boolean_t
2478 spa_has_slogs(spa_t *spa)
2480 return (spa->spa_log_class->mc_groups != 0);
2483 spa_log_state_t
2484 spa_get_log_state(spa_t *spa)
2486 return (spa->spa_log_state);
2489 void
2490 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2492 spa->spa_log_state = state;
2495 boolean_t
2496 spa_is_root(spa_t *spa)
2498 return (spa->spa_is_root);
2501 boolean_t
2502 spa_writeable(spa_t *spa)
2504 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2508 * Returns true if there is a pending sync task in any of the current
2509 * syncing txg, the current quiescing txg, or the current open txg.
2511 boolean_t
2512 spa_has_pending_synctask(spa_t *spa)
2514 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2515 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2518 spa_mode_t
2519 spa_mode(spa_t *spa)
2521 return (spa->spa_mode);
2524 uint64_t
2525 spa_bootfs(spa_t *spa)
2527 return (spa->spa_bootfs);
2530 uint64_t
2531 spa_delegation(spa_t *spa)
2533 return (spa->spa_delegation);
2536 objset_t *
2537 spa_meta_objset(spa_t *spa)
2539 return (spa->spa_meta_objset);
2542 enum zio_checksum
2543 spa_dedup_checksum(spa_t *spa)
2545 return (spa->spa_dedup_checksum);
2549 * Reset pool scan stat per scan pass (or reboot).
2551 void
2552 spa_scan_stat_init(spa_t *spa)
2554 /* data not stored on disk */
2555 spa->spa_scan_pass_start = gethrestime_sec();
2556 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2557 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2558 else
2559 spa->spa_scan_pass_scrub_pause = 0;
2560 spa->spa_scan_pass_scrub_spent_paused = 0;
2561 spa->spa_scan_pass_exam = 0;
2562 spa->spa_scan_pass_issued = 0;
2563 vdev_scan_stat_init(spa->spa_root_vdev);
2567 * Get scan stats for zpool status reports
2570 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2572 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2574 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2575 return (SET_ERROR(ENOENT));
2576 bzero(ps, sizeof (pool_scan_stat_t));
2578 /* data stored on disk */
2579 ps->pss_func = scn->scn_phys.scn_func;
2580 ps->pss_state = scn->scn_phys.scn_state;
2581 ps->pss_start_time = scn->scn_phys.scn_start_time;
2582 ps->pss_end_time = scn->scn_phys.scn_end_time;
2583 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2584 ps->pss_examined = scn->scn_phys.scn_examined;
2585 ps->pss_to_process = scn->scn_phys.scn_to_process;
2586 ps->pss_processed = scn->scn_phys.scn_processed;
2587 ps->pss_errors = scn->scn_phys.scn_errors;
2589 /* data not stored on disk */
2590 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2591 ps->pss_pass_start = spa->spa_scan_pass_start;
2592 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2593 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2594 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2595 ps->pss_issued =
2596 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2598 return (0);
2602 spa_maxblocksize(spa_t *spa)
2604 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2605 return (SPA_MAXBLOCKSIZE);
2606 else
2607 return (SPA_OLD_MAXBLOCKSIZE);
2612 * Returns the txg that the last device removal completed. No indirect mappings
2613 * have been added since this txg.
2615 uint64_t
2616 spa_get_last_removal_txg(spa_t *spa)
2618 uint64_t vdevid;
2619 uint64_t ret = -1ULL;
2621 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2623 * sr_prev_indirect_vdev is only modified while holding all the
2624 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2625 * examining it.
2627 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2629 while (vdevid != -1ULL) {
2630 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2631 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2633 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2636 * If the removal did not remap any data, we don't care.
2638 if (vdev_indirect_births_count(vib) != 0) {
2639 ret = vdev_indirect_births_last_entry_txg(vib);
2640 break;
2643 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2645 spa_config_exit(spa, SCL_VDEV, FTAG);
2647 IMPLY(ret != -1ULL,
2648 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2650 return (ret);
2654 spa_maxdnodesize(spa_t *spa)
2656 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2657 return (DNODE_MAX_SIZE);
2658 else
2659 return (DNODE_MIN_SIZE);
2662 boolean_t
2663 spa_multihost(spa_t *spa)
2665 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2668 uint32_t
2669 spa_get_hostid(spa_t *spa)
2671 return (spa->spa_hostid);
2674 boolean_t
2675 spa_trust_config(spa_t *spa)
2677 return (spa->spa_trust_config);
2680 uint64_t
2681 spa_missing_tvds_allowed(spa_t *spa)
2683 return (spa->spa_missing_tvds_allowed);
2686 space_map_t *
2687 spa_syncing_log_sm(spa_t *spa)
2689 return (spa->spa_syncing_log_sm);
2692 void
2693 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2695 spa->spa_missing_tvds = missing;
2699 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2701 const char *
2702 spa_state_to_name(spa_t *spa)
2704 ASSERT3P(spa, !=, NULL);
2707 * it is possible for the spa to exist, without root vdev
2708 * as the spa transitions during import/export
2710 vdev_t *rvd = spa->spa_root_vdev;
2711 if (rvd == NULL) {
2712 return ("TRANSITIONING");
2714 vdev_state_t state = rvd->vdev_state;
2715 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2717 if (spa_suspended(spa) &&
2718 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2719 return ("SUSPENDED");
2721 switch (state) {
2722 case VDEV_STATE_CLOSED:
2723 case VDEV_STATE_OFFLINE:
2724 return ("OFFLINE");
2725 case VDEV_STATE_REMOVED:
2726 return ("REMOVED");
2727 case VDEV_STATE_CANT_OPEN:
2728 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2729 return ("FAULTED");
2730 else if (aux == VDEV_AUX_SPLIT_POOL)
2731 return ("SPLIT");
2732 else
2733 return ("UNAVAIL");
2734 case VDEV_STATE_FAULTED:
2735 return ("FAULTED");
2736 case VDEV_STATE_DEGRADED:
2737 return ("DEGRADED");
2738 case VDEV_STATE_HEALTHY:
2739 return ("ONLINE");
2740 default:
2741 break;
2744 return ("UNKNOWN");
2747 boolean_t
2748 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2750 vdev_t *rvd = spa->spa_root_vdev;
2751 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2752 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2753 return (B_FALSE);
2755 return (B_TRUE);
2758 boolean_t
2759 spa_has_checkpoint(spa_t *spa)
2761 return (spa->spa_checkpoint_txg != 0);
2764 boolean_t
2765 spa_importing_readonly_checkpoint(spa_t *spa)
2767 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2768 spa->spa_mode == SPA_MODE_READ);
2771 uint64_t
2772 spa_min_claim_txg(spa_t *spa)
2774 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2776 if (checkpoint_txg != 0)
2777 return (checkpoint_txg + 1);
2779 return (spa->spa_first_txg);
2783 * If there is a checkpoint, async destroys may consume more space from
2784 * the pool instead of freeing it. In an attempt to save the pool from
2785 * getting suspended when it is about to run out of space, we stop
2786 * processing async destroys.
2788 boolean_t
2789 spa_suspend_async_destroy(spa_t *spa)
2791 dsl_pool_t *dp = spa_get_dsl(spa);
2793 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2794 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2795 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2796 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2798 if (spa_has_checkpoint(spa) && avail == 0)
2799 return (B_TRUE);
2801 return (B_FALSE);
2804 #if defined(_KERNEL)
2807 param_set_deadman_failmode_common(const char *val)
2809 spa_t *spa = NULL;
2810 char *p;
2812 if (val == NULL)
2813 return (SET_ERROR(EINVAL));
2815 if ((p = strchr(val, '\n')) != NULL)
2816 *p = '\0';
2818 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2819 strcmp(val, "panic"))
2820 return (SET_ERROR(EINVAL));
2822 if (spa_mode_global != SPA_MODE_UNINIT) {
2823 mutex_enter(&spa_namespace_lock);
2824 while ((spa = spa_next(spa)) != NULL)
2825 spa_set_deadman_failmode(spa, val);
2826 mutex_exit(&spa_namespace_lock);
2829 return (0);
2831 #endif
2833 /* Namespace manipulation */
2834 EXPORT_SYMBOL(spa_lookup);
2835 EXPORT_SYMBOL(spa_add);
2836 EXPORT_SYMBOL(spa_remove);
2837 EXPORT_SYMBOL(spa_next);
2839 /* Refcount functions */
2840 EXPORT_SYMBOL(spa_open_ref);
2841 EXPORT_SYMBOL(spa_close);
2842 EXPORT_SYMBOL(spa_refcount_zero);
2844 /* Pool configuration lock */
2845 EXPORT_SYMBOL(spa_config_tryenter);
2846 EXPORT_SYMBOL(spa_config_enter);
2847 EXPORT_SYMBOL(spa_config_exit);
2848 EXPORT_SYMBOL(spa_config_held);
2850 /* Pool vdev add/remove lock */
2851 EXPORT_SYMBOL(spa_vdev_enter);
2852 EXPORT_SYMBOL(spa_vdev_exit);
2854 /* Pool vdev state change lock */
2855 EXPORT_SYMBOL(spa_vdev_state_enter);
2856 EXPORT_SYMBOL(spa_vdev_state_exit);
2858 /* Accessor functions */
2859 EXPORT_SYMBOL(spa_shutting_down);
2860 EXPORT_SYMBOL(spa_get_dsl);
2861 EXPORT_SYMBOL(spa_get_rootblkptr);
2862 EXPORT_SYMBOL(spa_set_rootblkptr);
2863 EXPORT_SYMBOL(spa_altroot);
2864 EXPORT_SYMBOL(spa_sync_pass);
2865 EXPORT_SYMBOL(spa_name);
2866 EXPORT_SYMBOL(spa_guid);
2867 EXPORT_SYMBOL(spa_last_synced_txg);
2868 EXPORT_SYMBOL(spa_first_txg);
2869 EXPORT_SYMBOL(spa_syncing_txg);
2870 EXPORT_SYMBOL(spa_version);
2871 EXPORT_SYMBOL(spa_state);
2872 EXPORT_SYMBOL(spa_load_state);
2873 EXPORT_SYMBOL(spa_freeze_txg);
2874 EXPORT_SYMBOL(spa_get_dspace);
2875 EXPORT_SYMBOL(spa_update_dspace);
2876 EXPORT_SYMBOL(spa_deflate);
2877 EXPORT_SYMBOL(spa_normal_class);
2878 EXPORT_SYMBOL(spa_log_class);
2879 EXPORT_SYMBOL(spa_special_class);
2880 EXPORT_SYMBOL(spa_preferred_class);
2881 EXPORT_SYMBOL(spa_max_replication);
2882 EXPORT_SYMBOL(spa_prev_software_version);
2883 EXPORT_SYMBOL(spa_get_failmode);
2884 EXPORT_SYMBOL(spa_suspended);
2885 EXPORT_SYMBOL(spa_bootfs);
2886 EXPORT_SYMBOL(spa_delegation);
2887 EXPORT_SYMBOL(spa_meta_objset);
2888 EXPORT_SYMBOL(spa_maxblocksize);
2889 EXPORT_SYMBOL(spa_maxdnodesize);
2891 /* Miscellaneous support routines */
2892 EXPORT_SYMBOL(spa_guid_exists);
2893 EXPORT_SYMBOL(spa_strdup);
2894 EXPORT_SYMBOL(spa_strfree);
2895 EXPORT_SYMBOL(spa_generate_guid);
2896 EXPORT_SYMBOL(snprintf_blkptr);
2897 EXPORT_SYMBOL(spa_freeze);
2898 EXPORT_SYMBOL(spa_upgrade);
2899 EXPORT_SYMBOL(spa_evict_all);
2900 EXPORT_SYMBOL(spa_lookup_by_guid);
2901 EXPORT_SYMBOL(spa_has_spare);
2902 EXPORT_SYMBOL(dva_get_dsize_sync);
2903 EXPORT_SYMBOL(bp_get_dsize_sync);
2904 EXPORT_SYMBOL(bp_get_dsize);
2905 EXPORT_SYMBOL(spa_has_slogs);
2906 EXPORT_SYMBOL(spa_is_root);
2907 EXPORT_SYMBOL(spa_writeable);
2908 EXPORT_SYMBOL(spa_mode);
2909 EXPORT_SYMBOL(spa_namespace_lock);
2910 EXPORT_SYMBOL(spa_trust_config);
2911 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2912 EXPORT_SYMBOL(spa_set_missing_tvds);
2913 EXPORT_SYMBOL(spa_state_to_name);
2914 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2915 EXPORT_SYMBOL(spa_min_claim_txg);
2916 EXPORT_SYMBOL(spa_suspend_async_destroy);
2917 EXPORT_SYMBOL(spa_has_checkpoint);
2918 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2920 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2921 "Set additional debugging flags");
2923 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2924 "Set to attempt to recover from fatal errors");
2926 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2927 "Set to ignore IO errors during free and permanently leak the space");
2929 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, ULONG, ZMOD_RW,
2930 "Dead I/O check interval in milliseconds");
2932 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
2933 "Enable deadman timer");
2935 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2936 "SPA size estimate multiplication factor");
2938 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2939 "Place DDT data into the special class");
2941 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2942 "Place user data indirect blocks into the special class");
2944 /* BEGIN CSTYLED */
2945 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2946 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2947 "Failmode for deadman timer");
2949 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2950 param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2951 "Pool sync expiration time in milliseconds");
2953 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2954 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2955 "IO expiration time in milliseconds");
2957 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
2958 "Small file blocks in special vdevs depends on this much "
2959 "free space available");
2960 /* END CSTYLED */
2962 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2963 param_get_int, ZMOD_RW, "Reserved free space in pool");