Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / space_map.c
blob11d4798925e41741d2b3ac008992e234c4f2e5ad
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zio.h>
36 #include <sys/space_map.h>
37 #include <sys/zfeature.h>
40 * Note on space map block size:
42 * The data for a given space map can be kept on blocks of any size.
43 * Larger blocks entail fewer I/O operations, but they also cause the
44 * DMU to keep more data in-core, and also to waste more I/O bandwidth
45 * when only a few blocks have changed since the last transaction group.
49 * Enabled whenever we want to stress test the use of double-word
50 * space map entries.
52 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
55 * Override the default indirect block size of 128K, instead use 16K for
56 * spacemaps (2^14 bytes). This dramatically reduces write inflation since
57 * appending to a spacemap typically has to write one data block (4KB) and one
58 * or two indirect blocks (16K-32K, rather than 128K).
60 int space_map_ibs = 14;
62 boolean_t
63 sm_entry_is_debug(uint64_t e)
65 return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
68 boolean_t
69 sm_entry_is_single_word(uint64_t e)
71 uint8_t prefix = SM_PREFIX_DECODE(e);
72 return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
75 boolean_t
76 sm_entry_is_double_word(uint64_t e)
78 return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
82 * Iterate through the space map, invoking the callback on each (non-debug)
83 * space map entry. Stop after reading 'end' bytes of the space map.
85 int
86 space_map_iterate(space_map_t *sm, uint64_t end, sm_cb_t callback, void *arg)
88 uint64_t blksz = sm->sm_blksz;
90 ASSERT3U(blksz, !=, 0);
91 ASSERT3U(end, <=, space_map_length(sm));
92 ASSERT0(P2PHASE(end, sizeof (uint64_t)));
94 dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, end,
95 ZIO_PRIORITY_SYNC_READ);
97 int error = 0;
98 uint64_t txg = 0, sync_pass = 0;
99 for (uint64_t block_base = 0; block_base < end && error == 0;
100 block_base += blksz) {
101 dmu_buf_t *db;
102 error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
103 block_base, FTAG, &db, DMU_READ_PREFETCH);
104 if (error != 0)
105 return (error);
107 uint64_t *block_start = db->db_data;
108 uint64_t block_length = MIN(end - block_base, blksz);
109 uint64_t *block_end = block_start +
110 (block_length / sizeof (uint64_t));
112 VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
113 VERIFY3U(block_length, !=, 0);
114 ASSERT3U(blksz, ==, db->db_size);
116 for (uint64_t *block_cursor = block_start;
117 block_cursor < block_end && error == 0; block_cursor++) {
118 uint64_t e = *block_cursor;
120 if (sm_entry_is_debug(e)) {
122 * Debug entries are only needed to record the
123 * current TXG and sync pass if available.
125 * Note though that sometimes there can be
126 * debug entries that are used as padding
127 * at the end of space map blocks in-order
128 * to not split a double-word entry in the
129 * middle between two blocks. These entries
130 * have their TXG field set to 0 and we
131 * skip them without recording the TXG.
132 * [see comment in space_map_write_seg()]
134 uint64_t e_txg = SM_DEBUG_TXG_DECODE(e);
135 if (e_txg != 0) {
136 txg = e_txg;
137 sync_pass = SM_DEBUG_SYNCPASS_DECODE(e);
138 } else {
139 ASSERT0(SM_DEBUG_SYNCPASS_DECODE(e));
141 continue;
144 uint64_t raw_offset, raw_run, vdev_id;
145 maptype_t type;
146 if (sm_entry_is_single_word(e)) {
147 type = SM_TYPE_DECODE(e);
148 vdev_id = SM_NO_VDEVID;
149 raw_offset = SM_OFFSET_DECODE(e);
150 raw_run = SM_RUN_DECODE(e);
151 } else {
152 /* it is a two-word entry */
153 ASSERT(sm_entry_is_double_word(e));
154 raw_run = SM2_RUN_DECODE(e);
155 vdev_id = SM2_VDEV_DECODE(e);
157 /* move on to the second word */
158 block_cursor++;
159 e = *block_cursor;
160 VERIFY3P(block_cursor, <=, block_end);
162 type = SM2_TYPE_DECODE(e);
163 raw_offset = SM2_OFFSET_DECODE(e);
166 uint64_t entry_offset = (raw_offset << sm->sm_shift) +
167 sm->sm_start;
168 uint64_t entry_run = raw_run << sm->sm_shift;
170 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
171 VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
172 ASSERT3U(entry_offset, >=, sm->sm_start);
173 ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
174 ASSERT3U(entry_run, <=, sm->sm_size);
175 ASSERT3U(entry_offset + entry_run, <=,
176 sm->sm_start + sm->sm_size);
178 space_map_entry_t sme = {
179 .sme_type = type,
180 .sme_vdev = vdev_id,
181 .sme_offset = entry_offset,
182 .sme_run = entry_run,
183 .sme_txg = txg,
184 .sme_sync_pass = sync_pass
186 error = callback(&sme, arg);
188 dmu_buf_rele(db, FTAG);
190 return (error);
194 * Reads the entries from the last block of the space map into
195 * buf in reverse order. Populates nwords with number of words
196 * in the last block.
198 * Refer to block comment within space_map_incremental_destroy()
199 * to understand why this function is needed.
201 static int
202 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
203 uint64_t bufsz, uint64_t *nwords)
205 int error = 0;
206 dmu_buf_t *db;
209 * Find the offset of the last word in the space map and use
210 * that to read the last block of the space map with
211 * dmu_buf_hold().
213 uint64_t last_word_offset =
214 sm->sm_phys->smp_length - sizeof (uint64_t);
215 error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
216 FTAG, &db, DMU_READ_NO_PREFETCH);
217 if (error != 0)
218 return (error);
220 ASSERT3U(sm->sm_object, ==, db->db_object);
221 ASSERT3U(sm->sm_blksz, ==, db->db_size);
222 ASSERT3U(bufsz, >=, db->db_size);
223 ASSERT(nwords != NULL);
225 uint64_t *words = db->db_data;
226 *nwords =
227 (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
229 ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
231 uint64_t n = *nwords;
232 uint64_t j = n - 1;
233 for (uint64_t i = 0; i < n; i++) {
234 uint64_t entry = words[i];
235 if (sm_entry_is_double_word(entry)) {
237 * Since we are populating the buffer backwards
238 * we have to be extra careful and add the two
239 * words of the double-word entry in the right
240 * order.
242 ASSERT3U(j, >, 0);
243 buf[j - 1] = entry;
245 i++;
246 ASSERT3U(i, <, n);
247 entry = words[i];
248 buf[j] = entry;
249 j -= 2;
250 } else {
251 ASSERT(sm_entry_is_debug(entry) ||
252 sm_entry_is_single_word(entry));
253 buf[j] = entry;
254 j--;
259 * Assert that we wrote backwards all the
260 * way to the beginning of the buffer.
262 ASSERT3S(j, ==, -1);
264 dmu_buf_rele(db, FTAG);
265 return (error);
269 * Note: This function performs destructive actions - specifically
270 * it deletes entries from the end of the space map. Thus, callers
271 * should ensure that they are holding the appropriate locks for
272 * the space map that they provide.
275 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
276 dmu_tx_t *tx)
278 uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
279 uint64_t *buf = zio_buf_alloc(bufsz);
281 dmu_buf_will_dirty(sm->sm_dbuf, tx);
284 * Ideally we would want to iterate from the beginning of the
285 * space map to the end in incremental steps. The issue with this
286 * approach is that we don't have any field on-disk that points
287 * us where to start between each step. We could try zeroing out
288 * entries that we've destroyed, but this doesn't work either as
289 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
291 * As a result, we destroy its entries incrementally starting from
292 * the end after applying the callback to each of them.
294 * The problem with this approach is that we cannot literally
295 * iterate through the words in the space map backwards as we
296 * can't distinguish two-word space map entries from their second
297 * word. Thus we do the following:
299 * 1] We get all the entries from the last block of the space map
300 * and put them into a buffer in reverse order. This way the
301 * last entry comes first in the buffer, the second to last is
302 * second, etc.
303 * 2] We iterate through the entries in the buffer and we apply
304 * the callback to each one. As we move from entry to entry we
305 * we decrease the size of the space map, deleting effectively
306 * each entry.
307 * 3] If there are no more entries in the space map or the callback
308 * returns a value other than 0, we stop iterating over the
309 * space map. If there are entries remaining and the callback
310 * returned 0, we go back to step [1].
312 int error = 0;
313 while (space_map_length(sm) > 0 && error == 0) {
314 uint64_t nwords = 0;
315 error = space_map_reversed_last_block_entries(sm, buf, bufsz,
316 &nwords);
317 if (error != 0)
318 break;
320 ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
322 for (uint64_t i = 0; i < nwords; i++) {
323 uint64_t e = buf[i];
325 if (sm_entry_is_debug(e)) {
326 sm->sm_phys->smp_length -= sizeof (uint64_t);
327 continue;
330 int words = 1;
331 uint64_t raw_offset, raw_run, vdev_id;
332 maptype_t type;
333 if (sm_entry_is_single_word(e)) {
334 type = SM_TYPE_DECODE(e);
335 vdev_id = SM_NO_VDEVID;
336 raw_offset = SM_OFFSET_DECODE(e);
337 raw_run = SM_RUN_DECODE(e);
338 } else {
339 ASSERT(sm_entry_is_double_word(e));
340 words = 2;
342 raw_run = SM2_RUN_DECODE(e);
343 vdev_id = SM2_VDEV_DECODE(e);
345 /* move to the second word */
346 i++;
347 e = buf[i];
349 ASSERT3P(i, <=, nwords);
351 type = SM2_TYPE_DECODE(e);
352 raw_offset = SM2_OFFSET_DECODE(e);
355 uint64_t entry_offset =
356 (raw_offset << sm->sm_shift) + sm->sm_start;
357 uint64_t entry_run = raw_run << sm->sm_shift;
359 VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
360 VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
361 VERIFY3U(entry_offset, >=, sm->sm_start);
362 VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
363 VERIFY3U(entry_run, <=, sm->sm_size);
364 VERIFY3U(entry_offset + entry_run, <=,
365 sm->sm_start + sm->sm_size);
367 space_map_entry_t sme = {
368 .sme_type = type,
369 .sme_vdev = vdev_id,
370 .sme_offset = entry_offset,
371 .sme_run = entry_run
373 error = callback(&sme, arg);
374 if (error != 0)
375 break;
377 if (type == SM_ALLOC)
378 sm->sm_phys->smp_alloc -= entry_run;
379 else
380 sm->sm_phys->smp_alloc += entry_run;
381 sm->sm_phys->smp_length -= words * sizeof (uint64_t);
385 if (space_map_length(sm) == 0) {
386 ASSERT0(error);
387 ASSERT0(space_map_allocated(sm));
390 zio_buf_free(buf, bufsz);
391 return (error);
394 typedef struct space_map_load_arg {
395 space_map_t *smla_sm;
396 range_tree_t *smla_rt;
397 maptype_t smla_type;
398 } space_map_load_arg_t;
400 static int
401 space_map_load_callback(space_map_entry_t *sme, void *arg)
403 space_map_load_arg_t *smla = arg;
404 if (sme->sme_type == smla->smla_type) {
405 VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
406 smla->smla_sm->sm_size);
407 range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
408 } else {
409 range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
412 return (0);
416 * Load the spacemap into the rangetree, like space_map_load. But only
417 * read the first 'length' bytes of the spacemap.
420 space_map_load_length(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
421 uint64_t length)
423 space_map_load_arg_t smla;
425 VERIFY0(range_tree_space(rt));
427 if (maptype == SM_FREE)
428 range_tree_add(rt, sm->sm_start, sm->sm_size);
430 smla.smla_rt = rt;
431 smla.smla_sm = sm;
432 smla.smla_type = maptype;
433 int err = space_map_iterate(sm, length,
434 space_map_load_callback, &smla);
436 if (err != 0)
437 range_tree_vacate(rt, NULL, NULL);
439 return (err);
443 * Load the space map disk into the specified range tree. Segments of maptype
444 * are added to the range tree, other segment types are removed.
447 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
449 return (space_map_load_length(sm, rt, maptype, space_map_length(sm)));
452 void
453 space_map_histogram_clear(space_map_t *sm)
455 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
456 return;
458 bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
461 boolean_t
462 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
465 * Verify that the in-core range tree does not have any
466 * ranges smaller than our sm_shift size.
468 for (int i = 0; i < sm->sm_shift; i++) {
469 if (rt->rt_histogram[i] != 0)
470 return (B_FALSE);
472 return (B_TRUE);
475 void
476 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
478 int idx = 0;
480 ASSERT(dmu_tx_is_syncing(tx));
481 VERIFY3U(space_map_object(sm), !=, 0);
483 if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
484 return;
486 dmu_buf_will_dirty(sm->sm_dbuf, tx);
488 ASSERT(space_map_histogram_verify(sm, rt));
490 * Transfer the content of the range tree histogram to the space
491 * map histogram. The space map histogram contains 32 buckets ranging
492 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
493 * however, can represent ranges from 2^0 to 2^63. Since the space
494 * map only cares about allocatable blocks (minimum of sm_shift) we
495 * can safely ignore all ranges in the range tree smaller than sm_shift.
497 for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
500 * Since the largest histogram bucket in the space map is
501 * 2^(32+sm_shift-1), we need to normalize the values in
502 * the range tree for any bucket larger than that size. For
503 * example given an sm_shift of 9, ranges larger than 2^40
504 * would get normalized as if they were 1TB ranges. Assume
505 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
506 * the calculation below would normalize this to 5 * 2^4 (16).
508 ASSERT3U(i, >=, idx + sm->sm_shift);
509 sm->sm_phys->smp_histogram[idx] +=
510 rt->rt_histogram[i] << (i - idx - sm->sm_shift);
513 * Increment the space map's index as long as we haven't
514 * reached the maximum bucket size. Accumulate all ranges
515 * larger than the max bucket size into the last bucket.
517 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
518 ASSERT3U(idx + sm->sm_shift, ==, i);
519 idx++;
520 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
525 static void
526 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
528 dmu_buf_will_dirty(sm->sm_dbuf, tx);
530 uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
531 SM_DEBUG_ACTION_ENCODE(maptype) |
532 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
533 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
535 dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_length,
536 sizeof (dentry), &dentry, tx);
538 sm->sm_phys->smp_length += sizeof (dentry);
542 * Writes one or more entries given a segment.
544 * Note: The function may release the dbuf from the pointer initially
545 * passed to it, and return a different dbuf. Also, the space map's
546 * dbuf must be dirty for the changes in sm_phys to take effect.
548 static void
549 space_map_write_seg(space_map_t *sm, uint64_t rstart, uint64_t rend,
550 maptype_t maptype, uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp,
551 void *tag, dmu_tx_t *tx)
553 ASSERT3U(words, !=, 0);
554 ASSERT3U(words, <=, 2);
556 /* ensure the vdev_id can be represented by the space map */
557 ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
560 * if this is a single word entry, ensure that no vdev was
561 * specified.
563 IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
565 dmu_buf_t *db = *dbp;
566 ASSERT3U(db->db_size, ==, sm->sm_blksz);
568 uint64_t *block_base = db->db_data;
569 uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
570 uint64_t *block_cursor = block_base +
571 (sm->sm_phys->smp_length - db->db_offset) / sizeof (uint64_t);
573 ASSERT3P(block_cursor, <=, block_end);
575 uint64_t size = (rend - rstart) >> sm->sm_shift;
576 uint64_t start = (rstart - sm->sm_start) >> sm->sm_shift;
577 uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
579 ASSERT3U(rstart, >=, sm->sm_start);
580 ASSERT3U(rstart, <, sm->sm_start + sm->sm_size);
581 ASSERT3U(rend - rstart, <=, sm->sm_size);
582 ASSERT3U(rend, <=, sm->sm_start + sm->sm_size);
584 while (size != 0) {
585 ASSERT3P(block_cursor, <=, block_end);
588 * If we are at the end of this block, flush it and start
589 * writing again from the beginning.
591 if (block_cursor == block_end) {
592 dmu_buf_rele(db, tag);
594 uint64_t next_word_offset = sm->sm_phys->smp_length;
595 VERIFY0(dmu_buf_hold(sm->sm_os,
596 space_map_object(sm), next_word_offset,
597 tag, &db, DMU_READ_PREFETCH));
598 dmu_buf_will_dirty(db, tx);
600 /* update caller's dbuf */
601 *dbp = db;
603 ASSERT3U(db->db_size, ==, sm->sm_blksz);
605 block_base = db->db_data;
606 block_cursor = block_base;
607 block_end = block_base +
608 (db->db_size / sizeof (uint64_t));
612 * If we are writing a two-word entry and we only have one
613 * word left on this block, just pad it with an empty debug
614 * entry and write the two-word entry in the next block.
616 uint64_t *next_entry = block_cursor + 1;
617 if (next_entry == block_end && words > 1) {
618 ASSERT3U(words, ==, 2);
619 *block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
620 SM_DEBUG_ACTION_ENCODE(0) |
621 SM_DEBUG_SYNCPASS_ENCODE(0) |
622 SM_DEBUG_TXG_ENCODE(0);
623 block_cursor++;
624 sm->sm_phys->smp_length += sizeof (uint64_t);
625 ASSERT3P(block_cursor, ==, block_end);
626 continue;
629 uint64_t run_len = MIN(size, run_max);
630 switch (words) {
631 case 1:
632 *block_cursor = SM_OFFSET_ENCODE(start) |
633 SM_TYPE_ENCODE(maptype) |
634 SM_RUN_ENCODE(run_len);
635 block_cursor++;
636 break;
637 case 2:
638 /* write the first word of the entry */
639 *block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
640 SM2_RUN_ENCODE(run_len) |
641 SM2_VDEV_ENCODE(vdev_id);
642 block_cursor++;
644 /* move on to the second word of the entry */
645 ASSERT3P(block_cursor, <, block_end);
646 *block_cursor = SM2_TYPE_ENCODE(maptype) |
647 SM2_OFFSET_ENCODE(start);
648 block_cursor++;
649 break;
650 default:
651 panic("%d-word space map entries are not supported",
652 words);
653 break;
655 sm->sm_phys->smp_length += words * sizeof (uint64_t);
657 start += run_len;
658 size -= run_len;
660 ASSERT0(size);
665 * Note: The space map's dbuf must be dirty for the changes in sm_phys to
666 * take effect.
668 static void
669 space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
670 uint64_t vdev_id, dmu_tx_t *tx)
672 spa_t *spa = tx->tx_pool->dp_spa;
673 dmu_buf_t *db;
675 space_map_write_intro_debug(sm, maptype, tx);
677 #ifdef ZFS_DEBUG
679 * We do this right after we write the intro debug entry
680 * because the estimate does not take it into account.
682 uint64_t initial_objsize = sm->sm_phys->smp_length;
683 uint64_t estimated_growth =
684 space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
685 uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
686 #endif
689 * Find the offset right after the last word in the space map
690 * and use that to get a hold of the last block, so we can
691 * start appending to it.
693 uint64_t next_word_offset = sm->sm_phys->smp_length;
694 VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
695 next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
696 ASSERT3U(db->db_size, ==, sm->sm_blksz);
698 dmu_buf_will_dirty(db, tx);
700 zfs_btree_t *t = &rt->rt_root;
701 zfs_btree_index_t where;
702 for (range_seg_t *rs = zfs_btree_first(t, &where); rs != NULL;
703 rs = zfs_btree_next(t, &where, &where)) {
704 uint64_t offset = (rs_get_start(rs, rt) - sm->sm_start) >>
705 sm->sm_shift;
706 uint64_t length = (rs_get_end(rs, rt) - rs_get_start(rs, rt)) >>
707 sm->sm_shift;
708 uint8_t words = 1;
711 * We only write two-word entries when both of the following
712 * are true:
714 * [1] The feature is enabled.
715 * [2] The offset or run is too big for a single-word entry,
716 * or the vdev_id is set (meaning not equal to
717 * SM_NO_VDEVID).
719 * Note that for purposes of testing we've added the case that
720 * we write two-word entries occasionally when the feature is
721 * enabled and zfs_force_some_double_word_sm_entries has been
722 * set.
724 if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
725 (offset >= (1ULL << SM_OFFSET_BITS) ||
726 length > SM_RUN_MAX ||
727 vdev_id != SM_NO_VDEVID ||
728 (zfs_force_some_double_word_sm_entries &&
729 random_in_range(100) == 0)))
730 words = 2;
732 space_map_write_seg(sm, rs_get_start(rs, rt), rs_get_end(rs,
733 rt), maptype, vdev_id, words, &db, FTAG, tx);
736 dmu_buf_rele(db, FTAG);
738 #ifdef ZFS_DEBUG
740 * We expect our estimation to be based on the worst case
741 * scenario [see comment in space_map_estimate_optimal_size()].
742 * Therefore we expect the actual objsize to be equal or less
743 * than whatever we estimated it to be.
745 ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_length);
746 #endif
750 * Note: This function manipulates the state of the given space map but
751 * does not hold any locks implicitly. Thus the caller is responsible
752 * for synchronizing writes to the space map.
754 void
755 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
756 uint64_t vdev_id, dmu_tx_t *tx)
758 ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm->sm_os)));
759 VERIFY3U(space_map_object(sm), !=, 0);
761 dmu_buf_will_dirty(sm->sm_dbuf, tx);
764 * This field is no longer necessary since the in-core space map
765 * now contains the object number but is maintained for backwards
766 * compatibility.
768 sm->sm_phys->smp_object = sm->sm_object;
770 if (range_tree_is_empty(rt)) {
771 VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
772 return;
775 if (maptype == SM_ALLOC)
776 sm->sm_phys->smp_alloc += range_tree_space(rt);
777 else
778 sm->sm_phys->smp_alloc -= range_tree_space(rt);
780 uint64_t nodes = zfs_btree_numnodes(&rt->rt_root);
781 uint64_t rt_space = range_tree_space(rt);
783 space_map_write_impl(sm, rt, maptype, vdev_id, tx);
786 * Ensure that the space_map's accounting wasn't changed
787 * while we were in the middle of writing it out.
789 VERIFY3U(nodes, ==, zfs_btree_numnodes(&rt->rt_root));
790 VERIFY3U(range_tree_space(rt), ==, rt_space);
793 static int
794 space_map_open_impl(space_map_t *sm)
796 int error;
797 u_longlong_t blocks;
799 error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
800 if (error)
801 return (error);
803 dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
804 sm->sm_phys = sm->sm_dbuf->db_data;
805 return (0);
809 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
810 uint64_t start, uint64_t size, uint8_t shift)
812 space_map_t *sm;
813 int error;
815 ASSERT(*smp == NULL);
816 ASSERT(os != NULL);
817 ASSERT(object != 0);
819 sm = kmem_alloc(sizeof (space_map_t), KM_SLEEP);
821 sm->sm_start = start;
822 sm->sm_size = size;
823 sm->sm_shift = shift;
824 sm->sm_os = os;
825 sm->sm_object = object;
826 sm->sm_blksz = 0;
827 sm->sm_dbuf = NULL;
828 sm->sm_phys = NULL;
830 error = space_map_open_impl(sm);
831 if (error != 0) {
832 space_map_close(sm);
833 return (error);
835 *smp = sm;
837 return (0);
840 void
841 space_map_close(space_map_t *sm)
843 if (sm == NULL)
844 return;
846 if (sm->sm_dbuf != NULL)
847 dmu_buf_rele(sm->sm_dbuf, sm);
848 sm->sm_dbuf = NULL;
849 sm->sm_phys = NULL;
851 kmem_free(sm, sizeof (*sm));
854 void
855 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
857 objset_t *os = sm->sm_os;
858 spa_t *spa = dmu_objset_spa(os);
859 dmu_object_info_t doi;
861 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
862 ASSERT(dmu_tx_is_syncing(tx));
863 VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
865 dmu_object_info_from_db(sm->sm_dbuf, &doi);
868 * If the space map has the wrong bonus size (because
869 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
870 * the wrong block size (because space_map_blksz has changed),
871 * free and re-allocate its object with the updated sizes.
873 * Otherwise, just truncate the current object.
875 if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
876 doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
877 doi.doi_data_block_size != blocksize ||
878 doi.doi_metadata_block_size != 1 << space_map_ibs) {
879 zfs_dbgmsg("txg %llu, spa %s, sm %px, reallocating "
880 "object[%llu]: old bonus %llu, old blocksz %u",
881 (u_longlong_t)dmu_tx_get_txg(tx), spa_name(spa), sm,
882 (u_longlong_t)sm->sm_object,
883 (u_longlong_t)doi.doi_bonus_size,
884 doi.doi_data_block_size);
886 space_map_free(sm, tx);
887 dmu_buf_rele(sm->sm_dbuf, sm);
889 sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
890 VERIFY0(space_map_open_impl(sm));
891 } else {
892 VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
895 * If the spacemap is reallocated, its histogram
896 * will be reset. Do the same in the common case so that
897 * bugs related to the uncommon case do not go unnoticed.
899 bzero(sm->sm_phys->smp_histogram,
900 sizeof (sm->sm_phys->smp_histogram));
903 dmu_buf_will_dirty(sm->sm_dbuf, tx);
904 sm->sm_phys->smp_length = 0;
905 sm->sm_phys->smp_alloc = 0;
908 uint64_t
909 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
911 spa_t *spa = dmu_objset_spa(os);
912 uint64_t object;
913 int bonuslen;
915 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
916 spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
917 bonuslen = sizeof (space_map_phys_t);
918 ASSERT3U(bonuslen, <=, dmu_bonus_max());
919 } else {
920 bonuslen = SPACE_MAP_SIZE_V0;
923 object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
924 space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
926 return (object);
929 void
930 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
932 spa_t *spa = dmu_objset_spa(os);
933 if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
934 dmu_object_info_t doi;
936 VERIFY0(dmu_object_info(os, smobj, &doi));
937 if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
938 spa_feature_decr(spa,
939 SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
943 VERIFY0(dmu_object_free(os, smobj, tx));
946 void
947 space_map_free(space_map_t *sm, dmu_tx_t *tx)
949 if (sm == NULL)
950 return;
952 space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
953 sm->sm_object = 0;
957 * Given a range tree, it makes a worst-case estimate of how much
958 * space would the tree's segments take if they were written to
959 * the given space map.
961 uint64_t
962 space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
963 uint64_t vdev_id)
965 spa_t *spa = dmu_objset_spa(sm->sm_os);
966 uint64_t shift = sm->sm_shift;
967 uint64_t *histogram = rt->rt_histogram;
968 uint64_t entries_for_seg = 0;
971 * In order to get a quick estimate of the optimal size that this
972 * range tree would have on-disk as a space map, we iterate through
973 * its histogram buckets instead of iterating through its nodes.
975 * Note that this is a highest-bound/worst-case estimate for the
976 * following reasons:
978 * 1] We assume that we always add a debug padding for each block
979 * we write and we also assume that we start at the last word
980 * of a block attempting to write a two-word entry.
981 * 2] Rounding up errors due to the way segments are distributed
982 * in the buckets of the range tree's histogram.
983 * 3] The activation of zfs_force_some_double_word_sm_entries
984 * (tunable) when testing.
986 * = Math and Rounding Errors =
988 * rt_histogram[i] bucket of a range tree represents the number
989 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
990 * that, we want to divide the buckets into groups: Buckets that
991 * can be represented using a single-word entry, ones that can
992 * be represented with a double-word entry, and ones that can
993 * only be represented with multiple two-word entries.
995 * [Note that if the new encoding feature is not enabled there
996 * are only two groups: single-word entry buckets and multiple
997 * single-word entry buckets. The information below assumes
998 * two-word entries enabled, but it can easily applied when
999 * the feature is not enabled]
1001 * To find the highest bucket that can be represented with a
1002 * single-word entry we look at the maximum run that such entry
1003 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
1004 * the run of a space map entry is shifted by sm_shift, thus we
1005 * add it to the exponent]. This way, excluding the value of the
1006 * maximum run that can be represented by a single-word entry,
1007 * all runs that are smaller exist in buckets 0 to
1008 * SM_RUN_BITS + shift - 1.
1010 * To find the highest bucket that can be represented with a
1011 * double-word entry, we follow the same approach. Finally, any
1012 * bucket higher than that are represented with multiple two-word
1013 * entries. To be more specific, if the highest bucket whose
1014 * segments can be represented with a single two-word entry is X,
1015 * then bucket X+1 will need 2 two-word entries for each of its
1016 * segments, X+2 will need 4, X+3 will need 8, ...etc.
1018 * With all of the above we make our estimation based on bucket
1019 * groups. There is a rounding error though. As we mentioned in
1020 * the example with the one-word entry, the maximum run that can
1021 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
1022 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
1023 * that length fall into the next bucket (and bucket group) where
1024 * we start counting two-word entries and this is one more reason
1025 * why the estimated size may end up being bigger than the actual
1026 * size written.
1028 uint64_t size = 0;
1029 uint64_t idx = 0;
1031 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
1032 (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
1035 * If we are trying to force some double word entries just
1036 * assume the worst-case of every single word entry being
1037 * written as a double word entry.
1039 uint64_t entry_size =
1040 (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
1041 zfs_force_some_double_word_sm_entries) ?
1042 (2 * sizeof (uint64_t)) : sizeof (uint64_t);
1044 uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
1045 for (; idx <= single_entry_max_bucket; idx++)
1046 size += histogram[idx] * entry_size;
1048 if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
1049 for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1050 ASSERT3U(idx, >=, single_entry_max_bucket);
1051 entries_for_seg =
1052 1ULL << (idx - single_entry_max_bucket);
1053 size += histogram[idx] *
1054 entries_for_seg * entry_size;
1056 return (size);
1060 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
1062 uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
1063 for (; idx <= double_entry_max_bucket; idx++)
1064 size += histogram[idx] * 2 * sizeof (uint64_t);
1066 for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1067 ASSERT3U(idx, >=, double_entry_max_bucket);
1068 entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
1069 size += histogram[idx] *
1070 entries_for_seg * 2 * sizeof (uint64_t);
1074 * Assume the worst case where we start with the padding at the end
1075 * of the current block and we add an extra padding entry at the end
1076 * of all subsequent blocks.
1078 size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
1080 return (size);
1083 uint64_t
1084 space_map_object(space_map_t *sm)
1086 return (sm != NULL ? sm->sm_object : 0);
1089 int64_t
1090 space_map_allocated(space_map_t *sm)
1092 return (sm != NULL ? sm->sm_phys->smp_alloc : 0);
1095 uint64_t
1096 space_map_length(space_map_t *sm)
1098 return (sm != NULL ? sm->sm_phys->smp_length : 0);
1101 uint64_t
1102 space_map_nblocks(space_map_t *sm)
1104 if (sm == NULL)
1105 return (0);
1106 return (DIV_ROUND_UP(space_map_length(sm), sm->sm_blksz));