4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2018 Intel Corporation.
23 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
26 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_rebuild.h>
35 #include <sys/nvpair.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/fs/zfs.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <zfs_fletcher.h>
42 #include <sys/vdev.h> /* For vdev_xlate() in vdev_draid_io_verify() */
46 * dRAID is a distributed spare implementation for ZFS. A dRAID vdev is
47 * comprised of multiple raidz redundancy groups which are spread over the
48 * dRAID children. To ensure an even distribution, and avoid hot spots, a
49 * permutation mapping is applied to the order of the dRAID children.
50 * This mixing effectively distributes the parity columns evenly over all
51 * of the disks in the dRAID.
53 * This is beneficial because it means when resilvering all of the disks
54 * can participate thereby increasing the available IOPs and bandwidth.
55 * Furthermore, by reserving a small fraction of each child's total capacity
56 * virtual distributed spare disks can be created. These spares similarly
57 * benefit from the performance gains of spanning all of the children. The
58 * consequence of which is that resilvering to a distributed spare can
59 * substantially reduce the time required to restore full parity to pool
60 * with a failed disks.
62 * === dRAID group layout ===
64 * First, let's define a "row" in the configuration to be a 16M chunk from
65 * each physical drive at the same offset. This is the minimum allowable
66 * size since it must be possible to store a full 16M block when there is
67 * only a single data column. Next, we define a "group" to be a set of
68 * sequential disks containing both the parity and data columns. We allow
69 * groups to span multiple rows in order to align any group size to any
70 * number of physical drives. Finally, a "slice" is comprised of the rows
71 * which contain the target number of groups. The permutation mappings
72 * are applied in a round robin fashion to each slice.
74 * Given D+P drives in a group (including parity drives) and C-S physical
75 * drives (not including the spare drives), we can distribute the groups
76 * across R rows without remainder by selecting the least common multiple
77 * of D+P and C-S as the number of groups; i.e. ngroups = LCM(D+P, C-S).
79 * In the example below, there are C=14 physical drives in the configuration
80 * with S=2 drives worth of spare capacity. Each group has a width of 9
81 * which includes D=8 data and P=1 parity drive. There are 4 groups and
82 * 3 rows per slice. Each group has a size of 144M (16M * 9) and a slice
83 * size is 576M (144M * 4). When allocating from a dRAID each group is
84 * filled before moving on to the next as show in slice0 below.
86 * data disks (8 data + 1 parity) spares (2)
87 * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
88 * ^ | 2 | 6 | 1 | 11| 4 | 0 | 7 | 10| 8 | 9 | 13| 5 | 12| 3 | device map 0
89 * | +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
90 * | | group 0 | group 1..| |
91 * | +-----------------------------------+-----------+-------|
92 * | | 0 1 2 3 4 5 6 7 8 | 36 37 38| | r
93 * | | 9 10 11 12 13 14 15 16 17| 45 46 47| | o
94 * | | 18 19 20 21 22 23 24 25 26| 54 55 56| | w
95 * | 27 28 29 30 31 32 33 34 35| 63 64 65| | 0
96 * s +-----------------------+-----------------------+-------+
97 * l | ..group 1 | group 2.. | |
98 * i +-----------------------+-----------------------+-------+
99 * c | 39 40 41 42 43 44| 72 73 74 75 76 77| | r
100 * e | 48 49 50 51 52 53| 81 82 83 84 85 86| | o
101 * 0 | 57 58 59 60 61 62| 90 91 92 93 94 95| | w
102 * | 66 67 68 69 70 71| 99 100 101 102 103 104| | 1
103 * | +-----------+-----------+-----------------------+-------+
104 * | |..group 2 | group 3 | |
105 * | +-----------+-----------+-----------------------+-------+
106 * | | 78 79 80|108 109 110 111 112 113 114 115 116| | r
107 * | | 87 88 89|117 118 119 120 121 122 123 124 125| | o
108 * | | 96 97 98|126 127 128 129 130 131 132 133 134| | w
109 * v |105 106 107|135 136 137 138 139 140 141 142 143| | 2
110 * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
111 * | 9 | 11| 12| 2 | 4 | 1 | 3 | 0 | 10| 13| 8 | 5 | 6 | 7 | device map 1
112 * s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
113 * l | group 4 | group 5..| | row 3
114 * i +-----------------------+-----------+-----------+-------|
115 * c | ..group 5 | group 6.. | | row 4
116 * e +-----------+-----------+-----------------------+-------+
117 * 1 |..group 6 | group 7 | | row 5
118 * +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
119 * | 3 | 5 | 10| 8 | 6 | 11| 12| 0 | 2 | 4 | 7 | 1 | 9 | 13| device map 2
120 * s +===+===+===+===+===+===+===+===+===+===+===+===+===+===+
121 * l | group 8 | group 9..| | row 6
122 * i +-----------------------------------------------+-------|
123 * c | ..group 9 | group 10.. | | row 7
124 * e +-----------------------+-----------------------+-------+
125 * 2 |..group 10 | group 11 | | row 8
126 * +-----------+-----------------------------------+-------+
128 * This layout has several advantages over requiring that each row contain
129 * a whole number of groups.
131 * 1. The group count is not a relevant parameter when defining a dRAID
132 * layout. Only the group width is needed, and *all* groups will have
135 * 2. All possible group widths (<= physical disk count) can be supported.
137 * 3. The logic within vdev_draid.c is simplified when the group width is
138 * the same for all groups (although some of the logic around computing
139 * permutation numbers and drive offsets is more complicated).
141 * N.B. The following array describes all valid dRAID permutation maps.
142 * Each row is used to generate a permutation map for a different number
143 * of children from a unique seed. The seeds were generated and carefully
144 * evaluated by the 'draid' utility in order to provide balanced mappings.
145 * In addition to the seed a checksum of the in-memory mapping is stored
148 * The imbalance ratio of a given failure (e.g. 5 disks wide, child 3 failed,
149 * with a given permutation map) is the ratio of the amounts of I/O that will
150 * be sent to the least and most busy disks when resilvering. The average
151 * imbalance ratio (of a given number of disks and permutation map) is the
152 * average of the ratios of all possible single and double disk failures.
154 * In order to achieve a low imbalance ratio the number of permutations in
155 * the mapping must be significantly larger than the number of children.
156 * For dRAID the number of permutations has been limited to 512 to minimize
157 * the map size. This does result in a gradually increasing imbalance ratio
158 * as seen in the table below. Increasing the number of permutations for
159 * larger child counts would reduce the imbalance ratio. However, in practice
160 * when there are a large number of children each child is responsible for
161 * fewer total IOs so it's less of a concern.
163 * Note these values are hard coded and must never be changed. Existing
164 * pools depend on the same mapping always being generated in order to
165 * read and write from the correct locations. Any change would make
166 * existing pools completely inaccessible.
168 static const draid_map_t draid_maps
[VDEV_DRAID_MAX_MAPS
] = {
169 { 2, 256, 0x89ef3dabbcc7de37, 0x00000000433d433d }, /* 1.000 */
170 { 3, 256, 0x89a57f3de98121b4, 0x00000000bcd8b7b5 }, /* 1.000 */
171 { 4, 256, 0xc9ea9ec82340c885, 0x00000001819d7c69 }, /* 1.000 */
172 { 5, 256, 0xf46733b7f4d47dfd, 0x00000002a1648d74 }, /* 1.010 */
173 { 6, 256, 0x88c3c62d8585b362, 0x00000003d3b0c2c4 }, /* 1.031 */
174 { 7, 256, 0x3a65d809b4d1b9d5, 0x000000055c4183ee }, /* 1.043 */
175 { 8, 256, 0xe98930e3c5d2e90a, 0x00000006edfb0329 }, /* 1.059 */
176 { 9, 256, 0x5a5430036b982ccb, 0x00000008ceaf6934 }, /* 1.056 */
177 { 10, 256, 0x92bf389e9eadac74, 0x0000000b26668c09 }, /* 1.072 */
178 { 11, 256, 0x74ccebf1dcf3ae80, 0x0000000dd691358c }, /* 1.083 */
179 { 12, 256, 0x8847e41a1a9f5671, 0x00000010a0c63c8e }, /* 1.097 */
180 { 13, 256, 0x7481b56debf0e637, 0x0000001424121fe4 }, /* 1.100 */
181 { 14, 256, 0x559b8c44065f8967, 0x00000016ab2ff079 }, /* 1.121 */
182 { 15, 256, 0x34c49545a2ee7f01, 0x0000001a6028efd6 }, /* 1.103 */
183 { 16, 256, 0xb85f4fa81a7698f7, 0x0000001e95ff5e66 }, /* 1.111 */
184 { 17, 256, 0x6353e47b7e47aba0, 0x00000021a81fa0fe }, /* 1.133 */
185 { 18, 256, 0xaa549746b1cbb81c, 0x00000026f02494c9 }, /* 1.131 */
186 { 19, 256, 0x892e343f2f31d690, 0x00000029eb392835 }, /* 1.130 */
187 { 20, 256, 0x76914824db98cc3f, 0x0000003004f31a7c }, /* 1.141 */
188 { 21, 256, 0x4b3cbabf9cfb1d0f, 0x00000036363a2408 }, /* 1.139 */
189 { 22, 256, 0xf45c77abb4f035d4, 0x00000038dd0f3e84 }, /* 1.150 */
190 { 23, 256, 0x5e18bd7f3fd4baf4, 0x0000003f0660391f }, /* 1.174 */
191 { 24, 256, 0xa7b3a4d285d6503b, 0x000000443dfc9ff6 }, /* 1.168 */
192 { 25, 256, 0x56ac7dd967521f5a, 0x0000004b03a87eb7 }, /* 1.180 */
193 { 26, 256, 0x3a42dfda4eb880f7, 0x000000522c719bba }, /* 1.226 */
194 { 27, 256, 0xd200d2fc6b54bf60, 0x0000005760b4fdf5 }, /* 1.228 */
195 { 28, 256, 0xc52605bbd486c546, 0x0000005e00d8f74c }, /* 1.217 */
196 { 29, 256, 0xc761779e63cd762f, 0x00000067be3cd85c }, /* 1.239 */
197 { 30, 256, 0xca577b1e07f85ca5, 0x0000006f5517f3e4 }, /* 1.238 */
198 { 31, 256, 0xfd50a593c518b3d4, 0x0000007370e7778f }, /* 1.273 */
199 { 32, 512, 0xc6c87ba5b042650b, 0x000000f7eb08a156 }, /* 1.191 */
200 { 33, 512, 0xc3880d0c9d458304, 0x0000010734b5d160 }, /* 1.199 */
201 { 34, 512, 0xe920927e4d8b2c97, 0x00000118c1edbce0 }, /* 1.195 */
202 { 35, 512, 0x8da7fcda87bde316, 0x0000012a3e9f9110 }, /* 1.201 */
203 { 36, 512, 0xcf09937491514a29, 0x0000013bd6a24bef }, /* 1.194 */
204 { 37, 512, 0x9b5abbf345cbd7cc, 0x0000014b9d90fac3 }, /* 1.237 */
205 { 38, 512, 0x506312a44668d6a9, 0x0000015e1b5f6148 }, /* 1.242 */
206 { 39, 512, 0x71659ede62b4755f, 0x00000173ef029bcd }, /* 1.231 */
207 { 40, 512, 0xa7fde73fb74cf2d7, 0x000001866fb72748 }, /* 1.233 */
208 { 41, 512, 0x19e8b461a1dea1d3, 0x000001a046f76b23 }, /* 1.271 */
209 { 42, 512, 0x031c9b868cc3e976, 0x000001afa64c49d3 }, /* 1.263 */
210 { 43, 512, 0xbaa5125faa781854, 0x000001c76789e278 }, /* 1.270 */
211 { 44, 512, 0x4ed55052550d721b, 0x000001d800ccd8eb }, /* 1.281 */
212 { 45, 512, 0x0fd63ddbdff90677, 0x000001f08ad59ed2 }, /* 1.282 */
213 { 46, 512, 0x36d66546de7fdd6f, 0x000002016f09574b }, /* 1.286 */
214 { 47, 512, 0x99f997e7eafb69d7, 0x0000021e42e47cb6 }, /* 1.329 */
215 { 48, 512, 0xbecd9c2571312c5d, 0x000002320fe2872b }, /* 1.286 */
216 { 49, 512, 0xd97371329e488a32, 0x0000024cd73f2ca7 }, /* 1.322 */
217 { 50, 512, 0x30e9b136670749ee, 0x000002681c83b0e0 }, /* 1.335 */
218 { 51, 512, 0x11ad6bc8f47aaeb4, 0x0000027e9261b5d5 }, /* 1.305 */
219 { 52, 512, 0x68e445300af432c1, 0x0000029aa0eb7dbf }, /* 1.330 */
220 { 53, 512, 0x910fb561657ea98c, 0x000002b3dca04853 }, /* 1.365 */
221 { 54, 512, 0xd619693d8ce5e7a5, 0x000002cc280e9c97 }, /* 1.334 */
222 { 55, 512, 0x24e281f564dbb60a, 0x000002e9fa842713 }, /* 1.364 */
223 { 56, 512, 0x947a7d3bdaab44c5, 0x000003046680f72e }, /* 1.374 */
224 { 57, 512, 0x2d44fec9c093e0de, 0x00000324198ba810 }, /* 1.363 */
225 { 58, 512, 0x87743c272d29bb4c, 0x0000033ec48c9ac9 }, /* 1.401 */
226 { 59, 512, 0x96aa3b6f67f5d923, 0x0000034faead902c }, /* 1.392 */
227 { 60, 512, 0x94a4f1faf520b0d3, 0x0000037d713ab005 }, /* 1.360 */
228 { 61, 512, 0xb13ed3a272f711a2, 0x00000397368f3cbd }, /* 1.396 */
229 { 62, 512, 0x3b1b11805fa4a64a, 0x000003b8a5e2840c }, /* 1.453 */
230 { 63, 512, 0x4c74caad9172ba71, 0x000003d4be280290 }, /* 1.437 */
231 { 64, 512, 0x035ff643923dd29e, 0x000003fad6c355e1 }, /* 1.402 */
232 { 65, 512, 0x768e9171b11abd3c, 0x0000040eb07fed20 }, /* 1.459 */
233 { 66, 512, 0x75880e6f78a13ddd, 0x000004433d6acf14 }, /* 1.423 */
234 { 67, 512, 0x910b9714f698a877, 0x00000451ea65d5db }, /* 1.447 */
235 { 68, 512, 0x87f5db6f9fdcf5c7, 0x000004732169e3f7 }, /* 1.450 */
236 { 69, 512, 0x836d4968fbaa3706, 0x000004954068a380 }, /* 1.455 */
237 { 70, 512, 0xc567d73a036421ab, 0x000004bd7cb7bd3d }, /* 1.463 */
238 { 71, 512, 0x619df40f240b8fed, 0x000004e376c2e972 }, /* 1.463 */
239 { 72, 512, 0x42763a680d5bed8e, 0x000005084275c680 }, /* 1.452 */
240 { 73, 512, 0x5866f064b3230431, 0x0000052906f2c9ab }, /* 1.498 */
241 { 74, 512, 0x9fa08548b1621a44, 0x0000054708019247 }, /* 1.526 */
242 { 75, 512, 0xb6053078ce0fc303, 0x00000572cc5c72b0 }, /* 1.491 */
243 { 76, 512, 0x4a7aad7bf3890923, 0x0000058e987bc8e9 }, /* 1.470 */
244 { 77, 512, 0xe165613fd75b5a53, 0x000005c20473a211 }, /* 1.527 */
245 { 78, 512, 0x3ff154ac878163a6, 0x000005d659194bf3 }, /* 1.509 */
246 { 79, 512, 0x24b93ade0aa8a532, 0x0000060a201c4f8e }, /* 1.569 */
247 { 80, 512, 0xc18e2d14cd9bb554, 0x0000062c55cfe48c }, /* 1.555 */
248 { 81, 512, 0x98cc78302feb58b6, 0x0000066656a07194 }, /* 1.509 */
249 { 82, 512, 0xc6c5fd5a2abc0543, 0x0000067cff94fbf8 }, /* 1.596 */
250 { 83, 512, 0xa7962f514acbba21, 0x000006ab7b5afa2e }, /* 1.568 */
251 { 84, 512, 0xba02545069ddc6dc, 0x000006d19861364f }, /* 1.541 */
252 { 85, 512, 0x447c73192c35073e, 0x000006fce315ce35 }, /* 1.623 */
253 { 86, 512, 0x48beef9e2d42b0c2, 0x00000720a8e38b6b }, /* 1.620 */
254 { 87, 512, 0x4874cf98541a35e0, 0x00000758382a2273 }, /* 1.597 */
255 { 88, 512, 0xad4cf8333a31127a, 0x00000781e1651b1b }, /* 1.575 */
256 { 89, 512, 0x47ae4859d57888c1, 0x000007b27edbe5bc }, /* 1.627 */
257 { 90, 512, 0x06f7723cfe5d1891, 0x000007dc2a96d8eb }, /* 1.596 */
258 { 91, 512, 0xd4e44218d660576d, 0x0000080ac46f02d5 }, /* 1.622 */
259 { 92, 512, 0x7066702b0d5be1f2, 0x00000832c96d154e }, /* 1.695 */
260 { 93, 512, 0x011209b4f9e11fb9, 0x0000085eefda104c }, /* 1.605 */
261 { 94, 512, 0x47ffba30a0b35708, 0x00000899badc32dc }, /* 1.625 */
262 { 95, 512, 0x1a95a6ac4538aaa8, 0x000008b6b69a42b2 }, /* 1.687 */
263 { 96, 512, 0xbda2b239bb2008eb, 0x000008f22d2de38a }, /* 1.621 */
264 { 97, 512, 0x7ffa0bea90355c6c, 0x0000092e5b23b816 }, /* 1.699 */
265 { 98, 512, 0x1d56ba34be426795, 0x0000094f482e5d1b }, /* 1.688 */
266 { 99, 512, 0x0aa89d45c502e93d, 0x00000977d94a98ce }, /* 1.642 */
267 { 100, 512, 0x54369449f6857774, 0x000009c06c9b34cc }, /* 1.683 */
268 { 101, 512, 0xf7d4dd8445b46765, 0x000009e5dc542259 }, /* 1.755 */
269 { 102, 512, 0xfa8866312f169469, 0x00000a16b54eae93 }, /* 1.692 */
270 { 103, 512, 0xd8a5aea08aef3ff9, 0x00000a381d2cbfe7 }, /* 1.747 */
271 { 104, 512, 0x66bcd2c3d5f9ef0e, 0x00000a8191817be7 }, /* 1.751 */
272 { 105, 512, 0x3fb13a47a012ec81, 0x00000ab562b9a254 }, /* 1.751 */
273 { 106, 512, 0x43100f01c9e5e3ca, 0x00000aeee84c185f }, /* 1.726 */
274 { 107, 512, 0xca09c50ccee2d054, 0x00000b1c359c047d }, /* 1.788 */
275 { 108, 512, 0xd7176732ac503f9b, 0x00000b578bc52a73 }, /* 1.740 */
276 { 109, 512, 0xed206e51f8d9422d, 0x00000b8083e0d960 }, /* 1.780 */
277 { 110, 512, 0x17ead5dc6ba0dcd6, 0x00000bcfb1a32ca8 }, /* 1.836 */
278 { 111, 512, 0x5f1dc21e38a969eb, 0x00000c0171becdd6 }, /* 1.778 */
279 { 112, 512, 0xddaa973de33ec528, 0x00000c3edaba4b95 }, /* 1.831 */
280 { 113, 512, 0x2a5eccd7735a3630, 0x00000c630664e7df }, /* 1.825 */
281 { 114, 512, 0xafcccee5c0b71446, 0x00000cb65392f6e4 }, /* 1.826 */
282 { 115, 512, 0x8fa30c5e7b147e27, 0x00000cd4db391e55 }, /* 1.843 */
283 { 116, 512, 0x5afe0711fdfafd82, 0x00000d08cb4ec35d }, /* 1.826 */
284 { 117, 512, 0x533a6090238afd4c, 0x00000d336f115d1b }, /* 1.803 */
285 { 118, 512, 0x90cf11b595e39a84, 0x00000d8e041c2048 }, /* 1.857 */
286 { 119, 512, 0x0d61a3b809444009, 0x00000dcb798afe35 }, /* 1.877 */
287 { 120, 512, 0x7f34da0f54b0d114, 0x00000df3922664e1 }, /* 1.849 */
288 { 121, 512, 0xa52258d5b72f6551, 0x00000e4d37a9872d }, /* 1.867 */
289 { 122, 512, 0xc1de54d7672878db, 0x00000e6583a94cf6 }, /* 1.978 */
290 { 123, 512, 0x1d03354316a414ab, 0x00000ebffc50308d }, /* 1.947 */
291 { 124, 512, 0xcebdcc377665412c, 0x00000edee1997cea }, /* 1.865 */
292 { 125, 512, 0x4ddd4c04b1a12344, 0x00000f21d64b373f }, /* 1.881 */
293 { 126, 512, 0x64fc8f94e3973658, 0x00000f8f87a8896b }, /* 1.882 */
294 { 127, 512, 0x68765f78034a334e, 0x00000fb8fe62197e }, /* 1.867 */
295 { 128, 512, 0xaf36b871a303e816, 0x00000fec6f3afb1e }, /* 1.972 */
296 { 129, 512, 0x2a4cbf73866c3a28, 0x00001027febfe4e5 }, /* 1.896 */
297 { 130, 512, 0x9cb128aacdcd3b2f, 0x0000106aa8ac569d }, /* 1.965 */
298 { 131, 512, 0x5511d41c55869124, 0x000010bbd755ddf1 }, /* 1.963 */
299 { 132, 512, 0x42f92461937f284a, 0x000010fb8bceb3b5 }, /* 1.925 */
300 { 133, 512, 0xe2d89a1cf6f1f287, 0x0000114cf5331e34 }, /* 1.862 */
301 { 134, 512, 0xdc631a038956200e, 0x0000116428d2adc5 }, /* 2.042 */
302 { 135, 512, 0xb2e5ac222cd236be, 0x000011ca88e4d4d2 }, /* 1.935 */
303 { 136, 512, 0xbc7d8236655d88e7, 0x000011e39cb94e66 }, /* 2.005 */
304 { 137, 512, 0x073e02d88d2d8e75, 0x0000123136c7933c }, /* 2.041 */
305 { 138, 512, 0x3ddb9c3873166be0, 0x00001280e4ec6d52 }, /* 1.997 */
306 { 139, 512, 0x7d3b1a845420e1b5, 0x000012c2e7cd6a44 }, /* 1.996 */
307 { 140, 512, 0x60102308aa7b2a6c, 0x000012fc490e6c7d }, /* 2.053 */
308 { 141, 512, 0xdb22bb2f9eb894aa, 0x00001343f5a85a1a }, /* 1.971 */
309 { 142, 512, 0xd853f879a13b1606, 0x000013bb7d5f9048 }, /* 2.018 */
310 { 143, 512, 0x001620a03f804b1d, 0x000013e74cc794fd }, /* 1.961 */
311 { 144, 512, 0xfdb52dda76fbf667, 0x00001442d2f22480 }, /* 2.046 */
312 { 145, 512, 0xa9160110f66e24ff, 0x0000144b899f9dbb }, /* 1.968 */
313 { 146, 512, 0x77306a30379ae03b, 0x000014cb98eb1f81 }, /* 2.143 */
314 { 147, 512, 0x14f5985d2752319d, 0x000014feab821fc9 }, /* 2.064 */
315 { 148, 512, 0xa4b8ff11de7863f8, 0x0000154a0e60b9c9 }, /* 2.023 */
316 { 149, 512, 0x44b345426455c1b3, 0x000015999c3c569c }, /* 2.136 */
317 { 150, 512, 0x272677826049b46c, 0x000015c9697f4b92 }, /* 2.063 */
318 { 151, 512, 0x2f9216e2cd74fe40, 0x0000162b1f7bbd39 }, /* 1.974 */
319 { 152, 512, 0x706ae3e763ad8771, 0x00001661371c55e1 }, /* 2.210 */
320 { 153, 512, 0xf7fd345307c2480e, 0x000016e251f28b6a }, /* 2.006 */
321 { 154, 512, 0x6e94e3d26b3139eb, 0x000016f2429bb8c6 }, /* 2.193 */
322 { 155, 512, 0x5458bbfbb781fcba, 0x0000173efdeca1b9 }, /* 2.163 */
323 { 156, 512, 0xa80e2afeccd93b33, 0x000017bfdcb78adc }, /* 2.046 */
324 { 157, 512, 0x1e4ccbb22796cf9d, 0x00001826fdcc39c9 }, /* 2.084 */
325 { 158, 512, 0x8fba4b676aaa3663, 0x00001841a1379480 }, /* 2.264 */
326 { 159, 512, 0xf82b843814b315fa, 0x000018886e19b8a3 }, /* 2.074 */
327 { 160, 512, 0x7f21e920ecf753a3, 0x0000191812ca0ea7 }, /* 2.282 */
328 { 161, 512, 0x48bb8ea2c4caa620, 0x0000192f310faccf }, /* 2.148 */
329 { 162, 512, 0x5cdb652b4952c91b, 0x0000199e1d7437c7 }, /* 2.355 */
330 { 163, 512, 0x6ac1ba6f78c06cd4, 0x000019cd11f82c70 }, /* 2.164 */
331 { 164, 512, 0x9faf5f9ca2669a56, 0x00001a18d5431f6a }, /* 2.393 */
332 { 165, 512, 0xaa57e9383eb01194, 0x00001a9e7d253d85 }, /* 2.178 */
333 { 166, 512, 0x896967bf495c34d2, 0x00001afb8319b9fc }, /* 2.334 */
334 { 167, 512, 0xdfad5f05de225f1b, 0x00001b3a59c3093b }, /* 2.266 */
335 { 168, 512, 0xfd299a99f9f2abdd, 0x00001bb6f1a10799 }, /* 2.304 */
336 { 169, 512, 0xdda239e798fe9fd4, 0x00001bfae0c9692d }, /* 2.218 */
337 { 170, 512, 0x5fca670414a32c3e, 0x00001c22129dbcff }, /* 2.377 */
338 { 171, 512, 0x1bb8934314b087de, 0x00001c955db36cd0 }, /* 2.155 */
339 { 172, 512, 0xd96394b4b082200d, 0x00001cfc8619b7e6 }, /* 2.404 */
340 { 173, 512, 0xb612a7735b1c8cbc, 0x00001d303acdd585 }, /* 2.205 */
341 { 174, 512, 0x28e7430fe5875fe1, 0x00001d7ed5b3697d }, /* 2.359 */
342 { 175, 512, 0x5038e89efdd981b9, 0x00001dc40ec35c59 }, /* 2.158 */
343 { 176, 512, 0x075fd78f1d14db7c, 0x00001e31c83b4a2b }, /* 2.614 */
344 { 177, 512, 0xc50fafdb5021be15, 0x00001e7cdac82fbc }, /* 2.239 */
345 { 178, 512, 0xe6dc7572ce7b91c7, 0x00001edd8bb454fc }, /* 2.493 */
346 { 179, 512, 0x21f7843e7beda537, 0x00001f3a8e019d6c }, /* 2.327 */
347 { 180, 512, 0xc83385e20b43ec82, 0x00001f70735ec137 }, /* 2.231 */
348 { 181, 512, 0xca818217dddb21fd, 0x0000201ca44c5a3c }, /* 2.237 */
349 { 182, 512, 0xe6035defea48f933, 0x00002038e3346658 }, /* 2.691 */
350 { 183, 512, 0x47262a4f953dac5a, 0x000020c2e554314e }, /* 2.170 */
351 { 184, 512, 0xe24c7246260873ea, 0x000021197e618d64 }, /* 2.600 */
352 { 185, 512, 0xeef6b57c9b58e9e1, 0x0000217ea48ecddc }, /* 2.391 */
353 { 186, 512, 0x2becd3346e386142, 0x000021c496d4a5f9 }, /* 2.677 */
354 { 187, 512, 0x63c6207bdf3b40a3, 0x0000220e0f2eec0c }, /* 2.410 */
355 { 188, 512, 0x3056ce8989767d4b, 0x0000228eb76cd137 }, /* 2.776 */
356 { 189, 512, 0x91af61c307cee780, 0x000022e17e2ea501 }, /* 2.266 */
357 { 190, 512, 0xda359da225f6d54f, 0x00002358a2debc19 }, /* 2.717 */
358 { 191, 512, 0x0a5f7a2a55607ba0, 0x0000238a79dac18c }, /* 2.474 */
359 { 192, 512, 0x27bb75bf5224638a, 0x00002403a58e2351 }, /* 2.673 */
360 { 193, 512, 0x1ebfdb94630f5d0f, 0x00002492a10cb339 }, /* 2.420 */
361 { 194, 512, 0x6eae5e51d9c5f6fb, 0x000024ce4bf98715 }, /* 2.898 */
362 { 195, 512, 0x08d903b4daedc2e0, 0x0000250d1e15886c }, /* 2.363 */
363 { 196, 512, 0xc722a2f7fa7cd686, 0x0000258a99ed0c9e }, /* 2.747 */
364 { 197, 512, 0x8f71faf0e54e361d, 0x000025dee11976f5 }, /* 2.531 */
365 { 198, 512, 0x87f64695c91a54e7, 0x0000264e00a43da0 }, /* 2.707 */
366 { 199, 512, 0xc719cbac2c336b92, 0x000026d327277ac1 }, /* 2.315 */
367 { 200, 512, 0xe7e647afaf771ade, 0x000027523a5c44bf }, /* 3.012 */
368 { 201, 512, 0x12d4b5c38ce8c946, 0x0000273898432545 }, /* 2.378 */
369 { 202, 512, 0xf2e0cd4067bdc94a, 0x000027e47bb2c935 }, /* 2.969 */
370 { 203, 512, 0x21b79f14d6d947d3, 0x0000281e64977f0d }, /* 2.594 */
371 { 204, 512, 0x515093f952f18cd6, 0x0000289691a473fd }, /* 2.763 */
372 { 205, 512, 0xd47b160a1b1022c8, 0x00002903e8b52411 }, /* 2.457 */
373 { 206, 512, 0xc02fc96684715a16, 0x0000297515608601 }, /* 3.057 */
374 { 207, 512, 0xef51e68efba72ed0, 0x000029ef73604804 }, /* 2.590 */
375 { 208, 512, 0x9e3be6e5448b4f33, 0x00002a2846ed074b }, /* 3.047 */
376 { 209, 512, 0x81d446c6d5fec063, 0x00002a92ca693455 }, /* 2.676 */
377 { 210, 512, 0xff215de8224e57d5, 0x00002b2271fe3729 }, /* 2.993 */
378 { 211, 512, 0xe2524d9ba8f69796, 0x00002b64b99c3ba2 }, /* 2.457 */
379 { 212, 512, 0xf6b28e26097b7e4b, 0x00002bd768b6e068 }, /* 3.182 */
380 { 213, 512, 0x893a487f30ce1644, 0x00002c67f722b4b2 }, /* 2.563 */
381 { 214, 512, 0x386566c3fc9871df, 0x00002cc1cf8b4037 }, /* 3.025 */
382 { 215, 512, 0x1e0ed78edf1f558a, 0x00002d3948d36c7f }, /* 2.730 */
383 { 216, 512, 0xe3bc20c31e61f113, 0x00002d6d6b12e025 }, /* 3.036 */
384 { 217, 512, 0xd6c3ad2e23021882, 0x00002deff7572241 }, /* 2.722 */
385 { 218, 512, 0xb4a9f95cf0f69c5a, 0x00002e67d537aa36 }, /* 3.356 */
386 { 219, 512, 0x6e98ed6f6c38e82f, 0x00002e9720626789 }, /* 2.697 */
387 { 220, 512, 0x2e01edba33fddac7, 0x00002f407c6b0198 }, /* 2.979 */
388 { 221, 512, 0x559d02e1f5f57ccc, 0x00002fb6a5ab4f24 }, /* 2.858 */
389 { 222, 512, 0xac18f5a916adcd8e, 0x0000304ae1c5c57e }, /* 3.258 */
390 { 223, 512, 0x15789fbaddb86f4b, 0x0000306f6e019c78 }, /* 2.693 */
391 { 224, 512, 0xf4a9c36d5bc4c408, 0x000030da40434213 }, /* 3.259 */
392 { 225, 512, 0xf640f90fd2727f44, 0x00003189ed37b90c }, /* 2.733 */
393 { 226, 512, 0xb5313d390d61884a, 0x000031e152616b37 }, /* 3.235 */
394 { 227, 512, 0x4bae6b3ce9160939, 0x0000321f40aeac42 }, /* 2.983 */
395 { 228, 512, 0x838c34480f1a66a1, 0x000032f389c0f78e }, /* 3.308 */
396 { 229, 512, 0xb1c4a52c8e3d6060, 0x0000330062a40284 }, /* 2.715 */
397 { 230, 512, 0xe0f1110c6d0ed822, 0x0000338be435644f }, /* 3.540 */
398 { 231, 512, 0x9f1a8ccdcea68d4b, 0x000034045a4e97e1 }, /* 2.779 */
399 { 232, 512, 0x3261ed62223f3099, 0x000034702cfc401c }, /* 3.084 */
400 { 233, 512, 0xf2191e2311022d65, 0x00003509dd19c9fc }, /* 2.987 */
401 { 234, 512, 0xf102a395c2033abc, 0x000035654dc96fae }, /* 3.341 */
402 { 235, 512, 0x11fe378f027906b6, 0x000035b5193b0264 }, /* 2.793 */
403 { 236, 512, 0xf777f2c026b337aa, 0x000036704f5d9297 }, /* 3.518 */
404 { 237, 512, 0x1b04e9c2ee143f32, 0x000036dfbb7af218 }, /* 2.962 */
405 { 238, 512, 0x2fcec95266f9352c, 0x00003785c8df24a9 }, /* 3.196 */
406 { 239, 512, 0xfe2b0e47e427dd85, 0x000037cbdf5da729 }, /* 2.914 */
407 { 240, 512, 0x72b49bf2225f6c6d, 0x0000382227c15855 }, /* 3.408 */
408 { 241, 512, 0x50486b43df7df9c7, 0x0000389b88be6453 }, /* 2.903 */
409 { 242, 512, 0x5192a3e53181c8ab, 0x000038ddf3d67263 }, /* 3.778 */
410 { 243, 512, 0xe9f5d8365296fd5e, 0x0000399f1c6c9e9c }, /* 3.026 */
411 { 244, 512, 0xc740263f0301efa8, 0x00003a147146512d }, /* 3.347 */
412 { 245, 512, 0x23cd0f2b5671e67d, 0x00003ab10bcc0d9d }, /* 3.212 */
413 { 246, 512, 0x002ccc7e5cd41390, 0x00003ad6cd14a6c0 }, /* 3.482 */
414 { 247, 512, 0x9aafb3c02544b31b, 0x00003b8cb8779fb0 }, /* 3.146 */
415 { 248, 512, 0x72ba07a78b121999, 0x00003c24142a5a3f }, /* 3.626 */
416 { 249, 512, 0x3d784aa58edfc7b4, 0x00003cd084817d99 }, /* 2.952 */
417 { 250, 512, 0xaab750424d8004af, 0x00003d506a8e098e }, /* 3.463 */
418 { 251, 512, 0x84403fcf8e6b5ca2, 0x00003d4c54c2aec4 }, /* 3.131 */
419 { 252, 512, 0x71eb7455ec98e207, 0x00003e655715cf2c }, /* 3.538 */
420 { 253, 512, 0xd752b4f19301595b, 0x00003ecd7b2ca5ac }, /* 2.974 */
421 { 254, 512, 0xc4674129750499de, 0x00003e99e86d3e95 }, /* 3.843 */
422 { 255, 512, 0x9772baff5cd12ef5, 0x00003f895c019841 }, /* 3.088 */
426 * Verify the map is valid. Each device index must appear exactly
427 * once in every row, and the permutation array checksum must match.
430 verify_perms(uint8_t *perms
, uint64_t children
, uint64_t nperms
,
433 int countssz
= sizeof (uint16_t) * children
;
434 uint16_t *counts
= kmem_zalloc(countssz
, KM_SLEEP
);
436 for (int i
= 0; i
< nperms
; i
++) {
437 for (int j
= 0; j
< children
; j
++) {
438 uint8_t val
= perms
[(i
* children
) + j
];
440 if (val
>= children
|| counts
[val
] != i
) {
441 kmem_free(counts
, countssz
);
450 int permssz
= sizeof (uint8_t) * children
* nperms
;
453 fletcher_4_native_varsize(perms
, permssz
, &cksum
);
455 if (checksum
!= cksum
.zc_word
[0]) {
456 kmem_free(counts
, countssz
);
461 kmem_free(counts
, countssz
);
467 * Generate the permutation array for the draid_map_t. These maps control
468 * the placement of all data in a dRAID. Therefore it's critical that the
469 * seed always generates the same mapping. We provide our own pseudo-random
470 * number generator for this purpose.
473 vdev_draid_generate_perms(const draid_map_t
*map
, uint8_t **permsp
)
475 VERIFY3U(map
->dm_children
, >=, VDEV_DRAID_MIN_CHILDREN
);
476 VERIFY3U(map
->dm_children
, <=, VDEV_DRAID_MAX_CHILDREN
);
477 VERIFY3U(map
->dm_seed
, !=, 0);
478 VERIFY3U(map
->dm_nperms
, !=, 0);
479 VERIFY3P(map
->dm_perms
, ==, NULL
);
483 * The kernel code always provides both a map_seed and checksum.
484 * Only the tests/zfs-tests/cmd/draid/draid.c utility will provide
485 * a zero checksum when generating new candidate maps.
487 VERIFY3U(map
->dm_checksum
, !=, 0);
489 uint64_t children
= map
->dm_children
;
490 uint64_t nperms
= map
->dm_nperms
;
491 int rowsz
= sizeof (uint8_t) * children
;
492 int permssz
= rowsz
* nperms
;
495 /* Allocate the permutation array */
496 perms
= vmem_alloc(permssz
, KM_SLEEP
);
498 /* Setup an initial row with a known pattern */
499 uint8_t *initial_row
= kmem_alloc(rowsz
, KM_SLEEP
);
500 for (int i
= 0; i
< children
; i
++)
503 uint64_t draid_seed
[2] = { VDEV_DRAID_SEED
, map
->dm_seed
};
504 uint8_t *current_row
, *previous_row
= initial_row
;
507 * Perform a Fisher-Yates shuffle of each row using the previous
508 * row as the starting point. An initial_row with known pattern
509 * is used as the input for the first row.
511 for (int i
= 0; i
< nperms
; i
++) {
512 current_row
= &perms
[i
* children
];
513 memcpy(current_row
, previous_row
, rowsz
);
515 for (int j
= children
- 1; j
> 0; j
--) {
516 uint64_t k
= vdev_draid_rand(draid_seed
) % (j
+ 1);
517 uint8_t val
= current_row
[j
];
518 current_row
[j
] = current_row
[k
];
519 current_row
[k
] = val
;
522 previous_row
= current_row
;
525 kmem_free(initial_row
, rowsz
);
527 int error
= verify_perms(perms
, children
, nperms
, map
->dm_checksum
);
529 vmem_free(perms
, permssz
);
539 * Lookup the fixed draid_map_t for the requested number of children.
542 vdev_draid_lookup_map(uint64_t children
, const draid_map_t
**mapp
)
544 for (int i
= 0; i
<= VDEV_DRAID_MAX_MAPS
; i
++) {
545 if (draid_maps
[i
].dm_children
== children
) {
546 *mapp
= &draid_maps
[i
];
555 * Lookup the permutation array and iteration id for the provided offset.
558 vdev_draid_get_perm(vdev_draid_config_t
*vdc
, uint64_t pindex
,
559 uint8_t **base
, uint64_t *iter
)
561 uint64_t ncols
= vdc
->vdc_children
;
562 uint64_t poff
= pindex
% (vdc
->vdc_nperms
* ncols
);
564 *base
= vdc
->vdc_perms
+ (poff
/ ncols
) * ncols
;
565 *iter
= poff
% ncols
;
568 static inline uint64_t
569 vdev_draid_permute_id(vdev_draid_config_t
*vdc
,
570 uint8_t *base
, uint64_t iter
, uint64_t index
)
572 return ((base
[index
] + iter
) % vdc
->vdc_children
);
576 * Return the asize which is the psize rounded up to a full group width.
577 * i.e. vdev_draid_psize_to_asize().
580 vdev_draid_asize(vdev_t
*vd
, uint64_t psize
)
582 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
583 uint64_t ashift
= vd
->vdev_ashift
;
585 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
587 uint64_t rows
= ((psize
- 1) / (vdc
->vdc_ndata
<< ashift
)) + 1;
588 uint64_t asize
= (rows
* vdc
->vdc_groupwidth
) << ashift
;
590 ASSERT3U(asize
, !=, 0);
591 ASSERT3U(asize
% (vdc
->vdc_groupwidth
), ==, 0);
597 * Deflate the asize to the psize, this includes stripping parity.
600 vdev_draid_asize_to_psize(vdev_t
*vd
, uint64_t asize
)
602 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
604 ASSERT0(asize
% vdc
->vdc_groupwidth
);
606 return ((asize
/ vdc
->vdc_groupwidth
) * vdc
->vdc_ndata
);
610 * Convert a logical offset to the corresponding group number.
613 vdev_draid_offset_to_group(vdev_t
*vd
, uint64_t offset
)
615 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
617 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
619 return (offset
/ vdc
->vdc_groupsz
);
623 * Convert a group number to the logical starting offset for that group.
626 vdev_draid_group_to_offset(vdev_t
*vd
, uint64_t group
)
628 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
630 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
632 return (group
* vdc
->vdc_groupsz
);
636 * Full stripe writes. When writing, all columns (D+P) are required. Parity
637 * is calculated over all the columns, including empty zero filled sectors,
638 * and each is written to disk. While only the data columns are needed for
639 * a normal read, all of the columns are required for reconstruction when
640 * performing a sequential resilver.
642 * For "big columns" it's sufficient to map the correct range of the zio ABD.
643 * Partial columns require allocating a gang ABD in order to zero fill the
644 * empty sectors. When the column is empty a zero filled sector must be
645 * mapped. In all cases the data ABDs must be the same size as the parity
646 * ABDs (e.g. rc->rc_size == parity_size).
649 vdev_draid_map_alloc_write(zio_t
*zio
, uint64_t abd_offset
, raidz_row_t
*rr
)
651 uint64_t skip_size
= 1ULL << zio
->io_vd
->vdev_top
->vdev_ashift
;
652 uint64_t parity_size
= rr
->rr_col
[0].rc_size
;
653 uint64_t abd_off
= abd_offset
;
655 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
656 ASSERT3U(parity_size
, ==, abd_get_size(rr
->rr_col
[0].rc_abd
));
658 for (uint64_t c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
659 raidz_col_t
*rc
= &rr
->rr_col
[c
];
661 if (rc
->rc_size
== 0) {
662 /* empty data column (small write), add a skip sector */
663 ASSERT3U(skip_size
, ==, parity_size
);
664 rc
->rc_abd
= abd_get_zeros(skip_size
);
665 } else if (rc
->rc_size
== parity_size
) {
666 /* this is a "big column" */
667 rc
->rc_abd
= abd_get_offset_struct(&rc
->rc_abdstruct
,
668 zio
->io_abd
, abd_off
, rc
->rc_size
);
670 /* short data column, add a skip sector */
671 ASSERT3U(rc
->rc_size
+ skip_size
, ==, parity_size
);
672 rc
->rc_abd
= abd_alloc_gang();
673 abd_gang_add(rc
->rc_abd
, abd_get_offset_size(
674 zio
->io_abd
, abd_off
, rc
->rc_size
), B_TRUE
);
675 abd_gang_add(rc
->rc_abd
, abd_get_zeros(skip_size
),
679 ASSERT3U(abd_get_size(rc
->rc_abd
), ==, parity_size
);
681 abd_off
+= rc
->rc_size
;
682 rc
->rc_size
= parity_size
;
685 IMPLY(abd_offset
!= 0, abd_off
== zio
->io_size
);
689 * Scrub/resilver reads. In order to store the contents of the skip sectors
690 * an additional ABD is allocated. The columns are handled in the same way
691 * as a full stripe write except instead of using the zero ABD the newly
692 * allocated skip ABD is used to back the skip sectors. In all cases the
693 * data ABD must be the same size as the parity ABDs.
696 vdev_draid_map_alloc_scrub(zio_t
*zio
, uint64_t abd_offset
, raidz_row_t
*rr
)
698 uint64_t skip_size
= 1ULL << zio
->io_vd
->vdev_top
->vdev_ashift
;
699 uint64_t parity_size
= rr
->rr_col
[0].rc_size
;
700 uint64_t abd_off
= abd_offset
;
701 uint64_t skip_off
= 0;
703 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_READ
);
704 ASSERT3P(rr
->rr_abd_empty
, ==, NULL
);
706 if (rr
->rr_nempty
> 0) {
707 rr
->rr_abd_empty
= abd_alloc_linear(rr
->rr_nempty
* skip_size
,
711 for (uint64_t c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
712 raidz_col_t
*rc
= &rr
->rr_col
[c
];
714 if (rc
->rc_size
== 0) {
715 /* empty data column (small read), add a skip sector */
716 ASSERT3U(skip_size
, ==, parity_size
);
717 ASSERT3U(rr
->rr_nempty
, !=, 0);
718 rc
->rc_abd
= abd_get_offset_size(rr
->rr_abd_empty
,
719 skip_off
, skip_size
);
720 skip_off
+= skip_size
;
721 } else if (rc
->rc_size
== parity_size
) {
722 /* this is a "big column" */
723 rc
->rc_abd
= abd_get_offset_struct(&rc
->rc_abdstruct
,
724 zio
->io_abd
, abd_off
, rc
->rc_size
);
726 /* short data column, add a skip sector */
727 ASSERT3U(rc
->rc_size
+ skip_size
, ==, parity_size
);
728 ASSERT3U(rr
->rr_nempty
, !=, 0);
729 rc
->rc_abd
= abd_alloc_gang();
730 abd_gang_add(rc
->rc_abd
, abd_get_offset_size(
731 zio
->io_abd
, abd_off
, rc
->rc_size
), B_TRUE
);
732 abd_gang_add(rc
->rc_abd
, abd_get_offset_size(
733 rr
->rr_abd_empty
, skip_off
, skip_size
), B_TRUE
);
734 skip_off
+= skip_size
;
737 uint64_t abd_size
= abd_get_size(rc
->rc_abd
);
738 ASSERT3U(abd_size
, ==, abd_get_size(rr
->rr_col
[0].rc_abd
));
741 * Increase rc_size so the skip ABD is included in subsequent
742 * parity calculations.
744 abd_off
+= rc
->rc_size
;
745 rc
->rc_size
= abd_size
;
748 IMPLY(abd_offset
!= 0, abd_off
== zio
->io_size
);
749 ASSERT3U(skip_off
, ==, rr
->rr_nempty
* skip_size
);
753 * Normal reads. In this common case only the columns containing data
754 * are read in to the zio ABDs. Neither the parity columns or empty skip
755 * sectors are read unless the checksum fails verification. In which case
756 * vdev_raidz_read_all() will call vdev_draid_map_alloc_empty() to expand
757 * the raid map in order to allow reconstruction using the parity data and
761 vdev_draid_map_alloc_read(zio_t
*zio
, uint64_t abd_offset
, raidz_row_t
*rr
)
763 uint64_t abd_off
= abd_offset
;
765 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_READ
);
767 for (uint64_t c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
768 raidz_col_t
*rc
= &rr
->rr_col
[c
];
770 if (rc
->rc_size
> 0) {
771 rc
->rc_abd
= abd_get_offset_struct(&rc
->rc_abdstruct
,
772 zio
->io_abd
, abd_off
, rc
->rc_size
);
773 abd_off
+= rc
->rc_size
;
777 IMPLY(abd_offset
!= 0, abd_off
== zio
->io_size
);
781 * Converts a normal "read" raidz_row_t to a "scrub" raidz_row_t. The key
782 * difference is that an ABD is allocated to back skip sectors so they may
783 * be read in to memory, verified, and repaired if needed.
786 vdev_draid_map_alloc_empty(zio_t
*zio
, raidz_row_t
*rr
)
788 uint64_t skip_size
= 1ULL << zio
->io_vd
->vdev_top
->vdev_ashift
;
789 uint64_t parity_size
= rr
->rr_col
[0].rc_size
;
790 uint64_t skip_off
= 0;
792 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_READ
);
793 ASSERT3P(rr
->rr_abd_empty
, ==, NULL
);
795 if (rr
->rr_nempty
> 0) {
796 rr
->rr_abd_empty
= abd_alloc_linear(rr
->rr_nempty
* skip_size
,
800 for (uint64_t c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
801 raidz_col_t
*rc
= &rr
->rr_col
[c
];
803 if (rc
->rc_size
== 0) {
804 /* empty data column (small read), add a skip sector */
805 ASSERT3U(skip_size
, ==, parity_size
);
806 ASSERT3U(rr
->rr_nempty
, !=, 0);
807 ASSERT3P(rc
->rc_abd
, ==, NULL
);
808 rc
->rc_abd
= abd_get_offset_size(rr
->rr_abd_empty
,
809 skip_off
, skip_size
);
810 skip_off
+= skip_size
;
811 } else if (rc
->rc_size
== parity_size
) {
812 /* this is a "big column", nothing to add */
813 ASSERT3P(rc
->rc_abd
, !=, NULL
);
816 * short data column, add a skip sector and clear
817 * rc_tried to force the entire column to be re-read
818 * thereby including the missing skip sector data
819 * which is needed for reconstruction.
821 ASSERT3U(rc
->rc_size
+ skip_size
, ==, parity_size
);
822 ASSERT3U(rr
->rr_nempty
, !=, 0);
823 ASSERT3P(rc
->rc_abd
, !=, NULL
);
824 ASSERT(!abd_is_gang(rc
->rc_abd
));
825 abd_t
*read_abd
= rc
->rc_abd
;
826 rc
->rc_abd
= abd_alloc_gang();
827 abd_gang_add(rc
->rc_abd
, read_abd
, B_TRUE
);
828 abd_gang_add(rc
->rc_abd
, abd_get_offset_size(
829 rr
->rr_abd_empty
, skip_off
, skip_size
), B_TRUE
);
830 skip_off
+= skip_size
;
835 * Increase rc_size so the empty ABD is included in subsequent
836 * parity calculations.
838 rc
->rc_size
= parity_size
;
841 ASSERT3U(skip_off
, ==, rr
->rr_nempty
* skip_size
);
845 * Given a logical address within a dRAID configuration, return the physical
846 * address on the first drive in the group that this address maps to
847 * (at position 'start' in permutation number 'perm').
850 vdev_draid_logical_to_physical(vdev_t
*vd
, uint64_t logical_offset
,
851 uint64_t *perm
, uint64_t *start
)
853 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
855 /* b is the dRAID (parent) sector offset. */
856 uint64_t ashift
= vd
->vdev_top
->vdev_ashift
;
857 uint64_t b_offset
= logical_offset
>> ashift
;
860 * The height of a row in units of the vdev's minimum sector size.
861 * This is the amount of data written to each disk of each group
862 * in a given permutation.
864 uint64_t rowheight_sectors
= VDEV_DRAID_ROWHEIGHT
>> ashift
;
867 * We cycle through a disk permutation every groupsz * ngroups chunk
868 * of address space. Note that ngroups * groupsz must be a multiple
869 * of the number of data drives (ndisks) in order to guarantee
870 * alignment. So, for example, if our row height is 16MB, our group
871 * size is 10, and there are 13 data drives in the draid, then ngroups
872 * will be 13, we will change permutation every 2.08GB and each
873 * disk will have 160MB of data per chunk.
875 uint64_t groupwidth
= vdc
->vdc_groupwidth
;
876 uint64_t ngroups
= vdc
->vdc_ngroups
;
877 uint64_t ndisks
= vdc
->vdc_ndisks
;
880 * groupstart is where the group this IO will land in "starts" in
881 * the permutation array.
883 uint64_t group
= logical_offset
/ vdc
->vdc_groupsz
;
884 uint64_t groupstart
= (group
* groupwidth
) % ndisks
;
885 ASSERT3U(groupstart
+ groupwidth
, <=, ndisks
+ groupstart
);
888 /* b_offset is the sector offset within a group chunk */
889 b_offset
= b_offset
% (rowheight_sectors
* groupwidth
);
890 ASSERT0(b_offset
% groupwidth
);
893 * Find the starting byte offset on each child vdev:
894 * - within a permutation there are ngroups groups spread over the
895 * rows, where each row covers a slice portion of the disk
896 * - each permutation has (groupwidth * ngroups) / ndisks rows
897 * - so each permutation covers rows * slice portion of the disk
898 * - so we need to find the row where this IO group target begins
900 *perm
= group
/ ngroups
;
901 uint64_t row
= (*perm
* ((groupwidth
* ngroups
) / ndisks
)) +
902 (((group
% ngroups
) * groupwidth
) / ndisks
);
904 return (((rowheight_sectors
* row
) +
905 (b_offset
/ groupwidth
)) << ashift
);
909 vdev_draid_map_alloc_row(zio_t
*zio
, raidz_row_t
**rrp
, uint64_t io_offset
,
910 uint64_t abd_offset
, uint64_t abd_size
)
912 vdev_t
*vd
= zio
->io_vd
;
913 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
914 uint64_t ashift
= vd
->vdev_top
->vdev_ashift
;
915 uint64_t io_size
= abd_size
;
916 uint64_t io_asize
= vdev_draid_asize(vd
, io_size
);
917 uint64_t group
= vdev_draid_offset_to_group(vd
, io_offset
);
918 uint64_t start_offset
= vdev_draid_group_to_offset(vd
, group
+ 1);
921 * Limit the io_size to the space remaining in the group. A second
922 * row in the raidz_map_t is created for the remainder.
924 if (io_offset
+ io_asize
> start_offset
) {
925 io_size
= vdev_draid_asize_to_psize(vd
,
926 start_offset
- io_offset
);
930 * At most a block may span the logical end of one group and the start
931 * of the next group. Therefore, at the end of a group the io_size must
932 * span the group width evenly and the remainder must be aligned to the
933 * start of the next group.
935 IMPLY(abd_offset
== 0 && io_size
< zio
->io_size
,
936 (io_asize
>> ashift
) % vdc
->vdc_groupwidth
== 0);
937 IMPLY(abd_offset
!= 0,
938 vdev_draid_group_to_offset(vd
, group
) == io_offset
);
940 /* Lookup starting byte offset on each child vdev */
941 uint64_t groupstart
, perm
;
942 uint64_t physical_offset
= vdev_draid_logical_to_physical(vd
,
943 io_offset
, &perm
, &groupstart
);
946 * If there is less than groupwidth drives available after the group
947 * start, the group is going to wrap onto the next row. 'wrap' is the
948 * group disk number that starts on the next row.
950 uint64_t ndisks
= vdc
->vdc_ndisks
;
951 uint64_t groupwidth
= vdc
->vdc_groupwidth
;
952 uint64_t wrap
= groupwidth
;
954 if (groupstart
+ groupwidth
> ndisks
)
955 wrap
= ndisks
- groupstart
;
957 /* The io size in units of the vdev's minimum sector size. */
958 const uint64_t psize
= io_size
>> ashift
;
961 * "Quotient": The number of data sectors for this stripe on all but
962 * the "big column" child vdevs that also contain "remainder" data.
964 uint64_t q
= psize
/ vdc
->vdc_ndata
;
967 * "Remainder": The number of partial stripe data sectors in this I/O.
968 * This will add a sector to some, but not all, child vdevs.
970 uint64_t r
= psize
- q
* vdc
->vdc_ndata
;
972 /* The number of "big columns" - those which contain remainder data. */
973 uint64_t bc
= (r
== 0 ? 0 : r
+ vdc
->vdc_nparity
);
974 ASSERT3U(bc
, <, groupwidth
);
976 /* The total number of data and parity sectors for this I/O. */
977 uint64_t tot
= psize
+ (vdc
->vdc_nparity
* (q
+ (r
== 0 ? 0 : 1)));
980 rr
= kmem_alloc(offsetof(raidz_row_t
, rr_col
[groupwidth
]), KM_SLEEP
);
981 rr
->rr_cols
= groupwidth
;
982 rr
->rr_scols
= groupwidth
;
984 rr
->rr_missingdata
= 0;
985 rr
->rr_missingparity
= 0;
986 rr
->rr_firstdatacol
= vdc
->vdc_nparity
;
987 rr
->rr_abd_empty
= NULL
;
989 rr
->rr_offset
= io_offset
;
990 rr
->rr_size
= io_size
;
995 uint64_t iter
, asize
= 0;
996 vdev_draid_get_perm(vdc
, perm
, &base
, &iter
);
997 for (uint64_t i
= 0; i
< groupwidth
; i
++) {
998 raidz_col_t
*rc
= &rr
->rr_col
[i
];
999 uint64_t c
= (groupstart
+ i
) % ndisks
;
1001 /* increment the offset if we wrap to the next row */
1003 physical_offset
+= VDEV_DRAID_ROWHEIGHT
;
1005 rc
->rc_devidx
= vdev_draid_permute_id(vdc
, base
, iter
, c
);
1006 rc
->rc_offset
= physical_offset
;
1008 rc
->rc_orig_data
= NULL
;
1012 rc
->rc_force_repair
= 0;
1013 rc
->rc_allow_repair
= 1;
1014 rc
->rc_need_orig_restore
= B_FALSE
;
1016 if (q
== 0 && i
>= bc
)
1019 rc
->rc_size
= (q
+ 1) << ashift
;
1021 rc
->rc_size
= q
<< ashift
;
1023 asize
+= rc
->rc_size
;
1026 ASSERT3U(asize
, ==, tot
<< ashift
);
1027 rr
->rr_nempty
= roundup(tot
, groupwidth
) - tot
;
1028 IMPLY(bc
> 0, rr
->rr_nempty
== groupwidth
- bc
);
1030 /* Allocate buffers for the parity columns */
1031 for (uint64_t c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
1032 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1033 rc
->rc_abd
= abd_alloc_linear(rc
->rc_size
, B_FALSE
);
1037 * Map buffers for data columns and allocate/map buffers for skip
1038 * sectors. There are three distinct cases for dRAID which are
1039 * required to support sequential rebuild.
1041 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
1042 vdev_draid_map_alloc_write(zio
, abd_offset
, rr
);
1043 } else if ((rr
->rr_nempty
> 0) &&
1044 (zio
->io_flags
& (ZIO_FLAG_SCRUB
| ZIO_FLAG_RESILVER
))) {
1045 vdev_draid_map_alloc_scrub(zio
, abd_offset
, rr
);
1047 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_READ
);
1048 vdev_draid_map_alloc_read(zio
, abd_offset
, rr
);
1055 * Allocate the raidz mapping to be applied to the dRAID I/O. The parity
1056 * calculations for dRAID are identical to raidz however there are a few
1057 * differences in the layout.
1059 * - dRAID always allocates a full stripe width. Any extra sectors due
1060 * this padding are zero filled and written to disk. They will be read
1061 * back during a scrub or repair operation since they are included in
1062 * the parity calculation. This property enables sequential resilvering.
1064 * - When the block at the logical offset spans redundancy groups then two
1065 * rows are allocated in the raidz_map_t. One row resides at the end of
1066 * the first group and the other at the start of the following group.
1068 static raidz_map_t
*
1069 vdev_draid_map_alloc(zio_t
*zio
)
1072 uint64_t abd_offset
= 0;
1073 uint64_t abd_size
= zio
->io_size
;
1074 uint64_t io_offset
= zio
->io_offset
;
1078 size
= vdev_draid_map_alloc_row(zio
, &rr
[0], io_offset
,
1079 abd_offset
, abd_size
);
1080 if (size
< abd_size
) {
1081 vdev_t
*vd
= zio
->io_vd
;
1083 io_offset
+= vdev_draid_asize(vd
, size
);
1088 ASSERT3U(io_offset
, ==, vdev_draid_group_to_offset(
1089 vd
, vdev_draid_offset_to_group(vd
, io_offset
)));
1090 ASSERT3U(abd_offset
, <, zio
->io_size
);
1091 ASSERT3U(abd_size
, !=, 0);
1093 size
= vdev_draid_map_alloc_row(zio
, &rr
[1],
1094 io_offset
, abd_offset
, abd_size
);
1095 VERIFY3U(size
, ==, abd_size
);
1099 rm
= kmem_zalloc(offsetof(raidz_map_t
, rm_row
[nrows
]), KM_SLEEP
);
1100 rm
->rm_ops
= vdev_raidz_math_get_ops();
1101 rm
->rm_nrows
= nrows
;
1102 rm
->rm_row
[0] = rr
[0];
1104 rm
->rm_row
[1] = rr
[1];
1110 * Given an offset into a dRAID return the next group width aligned offset
1111 * which can be used to start an allocation.
1114 vdev_draid_get_astart(vdev_t
*vd
, const uint64_t start
)
1116 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
1118 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1120 return (roundup(start
, vdc
->vdc_groupwidth
<< vd
->vdev_ashift
));
1124 * Allocatable space for dRAID is (children - nspares) * sizeof(smallest child)
1125 * rounded down to the last full slice. So each child must provide at least
1126 * 1 / (children - nspares) of its asize.
1129 vdev_draid_min_asize(vdev_t
*vd
)
1131 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
1133 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1135 return (VDEV_DRAID_REFLOW_RESERVE
+
1136 (vd
->vdev_min_asize
+ vdc
->vdc_ndisks
- 1) / (vdc
->vdc_ndisks
));
1140 * When using dRAID the minimum allocation size is determined by the number
1141 * of data disks in the redundancy group. Full stripes are always used.
1144 vdev_draid_min_alloc(vdev_t
*vd
)
1146 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
1148 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1150 return (vdc
->vdc_ndata
<< vd
->vdev_ashift
);
1154 * Returns true if the txg range does not exist on any leaf vdev.
1156 * A dRAID spare does not fit into the DTL model. While it has child vdevs
1157 * there is no redundancy among them, and the effective child vdev is
1158 * determined by offset. Essentially we do a vdev_dtl_reassess() on the
1159 * fly by replacing a dRAID spare with the child vdev under the offset.
1160 * Note that it is a recursive process because the child vdev can be
1161 * another dRAID spare and so on.
1164 vdev_draid_missing(vdev_t
*vd
, uint64_t physical_offset
, uint64_t txg
,
1167 if (vd
->vdev_ops
== &vdev_spare_ops
||
1168 vd
->vdev_ops
== &vdev_replacing_ops
) {
1170 * Check all of the readable children, if any child
1171 * contains the txg range the data it is not missing.
1173 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1174 vdev_t
*cvd
= vd
->vdev_child
[c
];
1176 if (!vdev_readable(cvd
))
1179 if (!vdev_draid_missing(cvd
, physical_offset
,
1187 if (vd
->vdev_ops
== &vdev_draid_spare_ops
) {
1189 * When sequentially resilvering we don't have a proper
1190 * txg range so instead we must presume all txgs are
1191 * missing on this vdev until the resilver completes.
1193 if (vd
->vdev_rebuild_txg
!= 0)
1197 * DTL_MISSING is set for all prior txgs when a resilver
1198 * is started in spa_vdev_attach().
1200 if (vdev_dtl_contains(vd
, DTL_MISSING
, txg
, size
))
1204 * Consult the DTL on the relevant vdev. Either a vdev
1205 * leaf or spare/replace mirror child may be returned so
1206 * we must recursively call vdev_draid_missing_impl().
1208 vd
= vdev_draid_spare_get_child(vd
, physical_offset
);
1212 return (vdev_draid_missing(vd
, physical_offset
,
1216 return (vdev_dtl_contains(vd
, DTL_MISSING
, txg
, size
));
1220 * Returns true if the txg is only partially replicated on the leaf vdevs.
1223 vdev_draid_partial(vdev_t
*vd
, uint64_t physical_offset
, uint64_t txg
,
1226 if (vd
->vdev_ops
== &vdev_spare_ops
||
1227 vd
->vdev_ops
== &vdev_replacing_ops
) {
1229 * Check all of the readable children, if any child is
1230 * missing the txg range then it is partially replicated.
1232 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1233 vdev_t
*cvd
= vd
->vdev_child
[c
];
1235 if (!vdev_readable(cvd
))
1238 if (vdev_draid_partial(cvd
, physical_offset
, txg
, size
))
1245 if (vd
->vdev_ops
== &vdev_draid_spare_ops
) {
1247 * When sequentially resilvering we don't have a proper
1248 * txg range so instead we must presume all txgs are
1249 * missing on this vdev until the resilver completes.
1251 if (vd
->vdev_rebuild_txg
!= 0)
1255 * DTL_MISSING is set for all prior txgs when a resilver
1256 * is started in spa_vdev_attach().
1258 if (vdev_dtl_contains(vd
, DTL_MISSING
, txg
, size
))
1262 * Consult the DTL on the relevant vdev. Either a vdev
1263 * leaf or spare/replace mirror child may be returned so
1264 * we must recursively call vdev_draid_missing_impl().
1266 vd
= vdev_draid_spare_get_child(vd
, physical_offset
);
1270 return (vdev_draid_partial(vd
, physical_offset
, txg
, size
));
1273 return (vdev_dtl_contains(vd
, DTL_MISSING
, txg
, size
));
1277 * Determine if the vdev is readable at the given offset.
1280 vdev_draid_readable(vdev_t
*vd
, uint64_t physical_offset
)
1282 if (vd
->vdev_ops
== &vdev_draid_spare_ops
) {
1283 vd
= vdev_draid_spare_get_child(vd
, physical_offset
);
1288 if (vd
->vdev_ops
== &vdev_spare_ops
||
1289 vd
->vdev_ops
== &vdev_replacing_ops
) {
1291 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1292 vdev_t
*cvd
= vd
->vdev_child
[c
];
1294 if (!vdev_readable(cvd
))
1297 if (vdev_draid_readable(cvd
, physical_offset
))
1304 return (vdev_readable(vd
));
1308 * Returns the first distributed spare found under the provided vdev tree.
1311 vdev_draid_find_spare(vdev_t
*vd
)
1313 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
1316 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1317 vdev_t
*svd
= vdev_draid_find_spare(vd
->vdev_child
[c
]);
1326 * Returns B_TRUE if the passed in vdev is currently "faulted".
1327 * Faulted, in this context, means that the vdev represents a
1328 * replacing or sparing vdev tree.
1331 vdev_draid_faulted(vdev_t
*vd
, uint64_t physical_offset
)
1333 if (vd
->vdev_ops
== &vdev_draid_spare_ops
) {
1334 vd
= vdev_draid_spare_get_child(vd
, physical_offset
);
1339 * After resolving the distributed spare to a leaf vdev
1340 * check the parent to determine if it's "faulted".
1342 vd
= vd
->vdev_parent
;
1345 return (vd
->vdev_ops
== &vdev_replacing_ops
||
1346 vd
->vdev_ops
== &vdev_spare_ops
);
1350 * Determine if the dRAID block at the logical offset is degraded.
1351 * Used by sequential resilver.
1354 vdev_draid_group_degraded(vdev_t
*vd
, uint64_t offset
)
1356 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
1358 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1359 ASSERT3U(vdev_draid_get_astart(vd
, offset
), ==, offset
);
1361 uint64_t groupstart
, perm
;
1362 uint64_t physical_offset
= vdev_draid_logical_to_physical(vd
,
1363 offset
, &perm
, &groupstart
);
1367 vdev_draid_get_perm(vdc
, perm
, &base
, &iter
);
1369 for (uint64_t i
= 0; i
< vdc
->vdc_groupwidth
; i
++) {
1370 uint64_t c
= (groupstart
+ i
) % vdc
->vdc_ndisks
;
1371 uint64_t cid
= vdev_draid_permute_id(vdc
, base
, iter
, c
);
1372 vdev_t
*cvd
= vd
->vdev_child
[cid
];
1374 /* Group contains a faulted vdev. */
1375 if (vdev_draid_faulted(cvd
, physical_offset
))
1379 * Always check groups with active distributed spares
1380 * because any vdev failure in the pool will affect them.
1382 if (vdev_draid_find_spare(cvd
) != NULL
)
1390 * Determine if the txg is missing. Used by healing resilver.
1393 vdev_draid_group_missing(vdev_t
*vd
, uint64_t offset
, uint64_t txg
,
1396 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
1398 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1399 ASSERT3U(vdev_draid_get_astart(vd
, offset
), ==, offset
);
1401 uint64_t groupstart
, perm
;
1402 uint64_t physical_offset
= vdev_draid_logical_to_physical(vd
,
1403 offset
, &perm
, &groupstart
);
1407 vdev_draid_get_perm(vdc
, perm
, &base
, &iter
);
1409 for (uint64_t i
= 0; i
< vdc
->vdc_groupwidth
; i
++) {
1410 uint64_t c
= (groupstart
+ i
) % vdc
->vdc_ndisks
;
1411 uint64_t cid
= vdev_draid_permute_id(vdc
, base
, iter
, c
);
1412 vdev_t
*cvd
= vd
->vdev_child
[cid
];
1414 /* Transaction group is known to be partially replicated. */
1415 if (vdev_draid_partial(cvd
, physical_offset
, txg
, size
))
1419 * Always check groups with active distributed spares
1420 * because any vdev failure in the pool will affect them.
1422 if (vdev_draid_find_spare(cvd
) != NULL
)
1430 * Find the smallest child asize and largest sector size to calculate the
1431 * available capacity. Distributed spares are ignored since their capacity
1432 * is also based of the minimum child size in the top-level dRAID.
1435 vdev_draid_calculate_asize(vdev_t
*vd
, uint64_t *asizep
, uint64_t *max_asizep
,
1436 uint64_t *logical_ashiftp
, uint64_t *physical_ashiftp
)
1438 uint64_t logical_ashift
= 0, physical_ashift
= 0;
1439 uint64_t asize
= 0, max_asize
= 0;
1441 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1443 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1444 vdev_t
*cvd
= vd
->vdev_child
[c
];
1446 if (cvd
->vdev_ops
== &vdev_draid_spare_ops
)
1449 asize
= MIN(asize
- 1, cvd
->vdev_asize
- 1) + 1;
1450 max_asize
= MIN(max_asize
- 1, cvd
->vdev_max_asize
- 1) + 1;
1451 logical_ashift
= MAX(logical_ashift
, cvd
->vdev_ashift
);
1452 physical_ashift
= MAX(physical_ashift
,
1453 cvd
->vdev_physical_ashift
);
1457 *max_asizep
= max_asize
;
1458 *logical_ashiftp
= logical_ashift
;
1459 *physical_ashiftp
= physical_ashift
;
1466 vdev_draid_open_spares(vdev_t
*vd
)
1468 return (vd
->vdev_ops
== &vdev_draid_spare_ops
||
1469 vd
->vdev_ops
== &vdev_replacing_ops
||
1470 vd
->vdev_ops
== &vdev_spare_ops
);
1474 * Open all children, excluding spares.
1477 vdev_draid_open_children(vdev_t
*vd
)
1479 return (!vdev_draid_open_spares(vd
));
1483 * Open a top-level dRAID vdev.
1486 vdev_draid_open(vdev_t
*vd
, uint64_t *asize
, uint64_t *max_asize
,
1487 uint64_t *logical_ashift
, uint64_t *physical_ashift
)
1489 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
1490 uint64_t nparity
= vdc
->vdc_nparity
;
1491 int open_errors
= 0;
1493 if (nparity
> VDEV_DRAID_MAXPARITY
||
1494 vd
->vdev_children
< nparity
+ 1) {
1495 vd
->vdev_stat
.vs_aux
= VDEV_AUX_BAD_LABEL
;
1496 return (SET_ERROR(EINVAL
));
1500 * First open the normal children then the distributed spares. This
1501 * ordering is important to ensure the distributed spares calculate
1502 * the correct psize in the event that the dRAID vdevs were expanded.
1504 vdev_open_children_subset(vd
, vdev_draid_open_children
);
1505 vdev_open_children_subset(vd
, vdev_draid_open_spares
);
1507 /* Verify enough of the children are available to continue. */
1508 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1509 if (vd
->vdev_child
[c
]->vdev_open_error
!= 0) {
1510 if ((++open_errors
) > nparity
) {
1511 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NO_REPLICAS
;
1512 return (SET_ERROR(ENXIO
));
1518 * Allocatable capacity is the sum of the space on all children less
1519 * the number of distributed spares rounded down to last full row
1520 * and then to the last full group. An additional 32MB of scratch
1521 * space is reserved at the end of each child for use by the dRAID
1522 * expansion feature.
1524 uint64_t child_asize
, child_max_asize
;
1525 vdev_draid_calculate_asize(vd
, &child_asize
, &child_max_asize
,
1526 logical_ashift
, physical_ashift
);
1529 * Should be unreachable since the minimum child size is 64MB, but
1530 * we want to make sure an underflow absolutely cannot occur here.
1532 if (child_asize
< VDEV_DRAID_REFLOW_RESERVE
||
1533 child_max_asize
< VDEV_DRAID_REFLOW_RESERVE
) {
1534 return (SET_ERROR(ENXIO
));
1537 child_asize
= ((child_asize
- VDEV_DRAID_REFLOW_RESERVE
) /
1538 VDEV_DRAID_ROWHEIGHT
) * VDEV_DRAID_ROWHEIGHT
;
1539 child_max_asize
= ((child_max_asize
- VDEV_DRAID_REFLOW_RESERVE
) /
1540 VDEV_DRAID_ROWHEIGHT
) * VDEV_DRAID_ROWHEIGHT
;
1542 *asize
= (((child_asize
* vdc
->vdc_ndisks
) / vdc
->vdc_groupsz
) *
1544 *max_asize
= (((child_max_asize
* vdc
->vdc_ndisks
) / vdc
->vdc_groupsz
) *
1551 * Close a top-level dRAID vdev.
1554 vdev_draid_close(vdev_t
*vd
)
1556 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1557 if (vd
->vdev_child
[c
] != NULL
)
1558 vdev_close(vd
->vdev_child
[c
]);
1563 * Return the maximum asize for a rebuild zio in the provided range
1564 * given the following constraints. A dRAID chunks may not:
1566 * - Exceed the maximum allowed block size (SPA_MAXBLOCKSIZE), or
1567 * - Span dRAID redundancy groups.
1570 vdev_draid_rebuild_asize(vdev_t
*vd
, uint64_t start
, uint64_t asize
,
1571 uint64_t max_segment
)
1573 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
1575 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1577 uint64_t ashift
= vd
->vdev_ashift
;
1578 uint64_t ndata
= vdc
->vdc_ndata
;
1579 uint64_t psize
= MIN(P2ROUNDUP(max_segment
* ndata
, 1 << ashift
),
1582 ASSERT3U(vdev_draid_get_astart(vd
, start
), ==, start
);
1583 ASSERT3U(asize
% (vdc
->vdc_groupwidth
<< ashift
), ==, 0);
1585 /* Chunks must evenly span all data columns in the group. */
1586 psize
= (((psize
>> ashift
) / ndata
) * ndata
) << ashift
;
1587 uint64_t chunk_size
= MIN(asize
, vdev_psize_to_asize(vd
, psize
));
1589 /* Reduce the chunk size to the group space remaining. */
1590 uint64_t group
= vdev_draid_offset_to_group(vd
, start
);
1591 uint64_t left
= vdev_draid_group_to_offset(vd
, group
+ 1) - start
;
1592 chunk_size
= MIN(chunk_size
, left
);
1594 ASSERT3U(chunk_size
% (vdc
->vdc_groupwidth
<< ashift
), ==, 0);
1595 ASSERT3U(vdev_draid_offset_to_group(vd
, start
), ==,
1596 vdev_draid_offset_to_group(vd
, start
+ chunk_size
- 1));
1598 return (chunk_size
);
1602 * Align the start of the metaslab to the group width and slightly reduce
1603 * its size to a multiple of the group width. Since full stripe writes are
1604 * required by dRAID this space is unallocable. Furthermore, aligning the
1605 * metaslab start is important for vdev initialize and TRIM which both operate
1606 * on metaslab boundaries which vdev_xlate() expects to be aligned.
1609 vdev_draid_metaslab_init(vdev_t
*vd
, uint64_t *ms_start
, uint64_t *ms_size
)
1611 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
1613 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1615 uint64_t sz
= vdc
->vdc_groupwidth
<< vd
->vdev_ashift
;
1616 uint64_t astart
= vdev_draid_get_astart(vd
, *ms_start
);
1617 uint64_t asize
= ((*ms_size
- (astart
- *ms_start
)) / sz
) * sz
;
1622 ASSERT0(*ms_start
% sz
);
1623 ASSERT0(*ms_size
% sz
);
1627 * Add virtual dRAID spares to the list of valid spares. In order to accomplish
1628 * this the existing array must be freed and reallocated with the additional
1632 vdev_draid_spare_create(nvlist_t
*nvroot
, vdev_t
*vd
, uint64_t *ndraidp
,
1633 uint64_t next_vdev_id
)
1635 uint64_t draid_nspares
= 0;
1636 uint64_t ndraid
= 0;
1639 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
1640 vdev_t
*cvd
= vd
->vdev_child
[i
];
1642 if (cvd
->vdev_ops
== &vdev_draid_ops
) {
1643 vdev_draid_config_t
*vdc
= cvd
->vdev_tsd
;
1644 draid_nspares
+= vdc
->vdc_nspares
;
1649 if (draid_nspares
== 0) {
1654 nvlist_t
**old_spares
, **new_spares
;
1656 error
= nvlist_lookup_nvlist_array(nvroot
, ZPOOL_CONFIG_SPARES
,
1657 &old_spares
, &old_nspares
);
1661 /* Allocate memory and copy of the existing spares. */
1662 new_spares
= kmem_alloc(sizeof (nvlist_t
*) *
1663 (draid_nspares
+ old_nspares
), KM_SLEEP
);
1664 for (uint_t i
= 0; i
< old_nspares
; i
++)
1665 new_spares
[i
] = fnvlist_dup(old_spares
[i
]);
1667 /* Add new distributed spares to ZPOOL_CONFIG_SPARES. */
1668 uint64_t n
= old_nspares
;
1669 for (uint64_t vdev_id
= 0; vdev_id
< vd
->vdev_children
; vdev_id
++) {
1670 vdev_t
*cvd
= vd
->vdev_child
[vdev_id
];
1673 if (cvd
->vdev_ops
!= &vdev_draid_ops
)
1676 vdev_draid_config_t
*vdc
= cvd
->vdev_tsd
;
1677 uint64_t nspares
= vdc
->vdc_nspares
;
1678 uint64_t nparity
= vdc
->vdc_nparity
;
1680 for (uint64_t spare_id
= 0; spare_id
< nspares
; spare_id
++) {
1681 bzero(path
, sizeof (path
));
1682 (void) snprintf(path
, sizeof (path
) - 1,
1683 "%s%llu-%llu-%llu", VDEV_TYPE_DRAID
,
1684 (u_longlong_t
)nparity
,
1685 (u_longlong_t
)next_vdev_id
+ vdev_id
,
1686 (u_longlong_t
)spare_id
);
1688 nvlist_t
*spare
= fnvlist_alloc();
1689 fnvlist_add_string(spare
, ZPOOL_CONFIG_PATH
, path
);
1690 fnvlist_add_string(spare
, ZPOOL_CONFIG_TYPE
,
1691 VDEV_TYPE_DRAID_SPARE
);
1692 fnvlist_add_uint64(spare
, ZPOOL_CONFIG_TOP_GUID
,
1694 fnvlist_add_uint64(spare
, ZPOOL_CONFIG_SPARE_ID
,
1696 fnvlist_add_uint64(spare
, ZPOOL_CONFIG_IS_LOG
, 0);
1697 fnvlist_add_uint64(spare
, ZPOOL_CONFIG_IS_SPARE
, 1);
1698 fnvlist_add_uint64(spare
, ZPOOL_CONFIG_WHOLE_DISK
, 1);
1699 fnvlist_add_uint64(spare
, ZPOOL_CONFIG_ASHIFT
,
1702 new_spares
[n
] = spare
;
1708 (void) nvlist_remove_all(nvroot
, ZPOOL_CONFIG_SPARES
);
1709 fnvlist_add_nvlist_array(nvroot
, ZPOOL_CONFIG_SPARES
,
1713 for (int i
= 0; i
< n
; i
++)
1714 nvlist_free(new_spares
[i
]);
1716 kmem_free(new_spares
, sizeof (*new_spares
) * n
);
1723 * Determine if any portion of the provided block resides on a child vdev
1724 * with a dirty DTL and therefore needs to be resilvered.
1727 vdev_draid_need_resilver(vdev_t
*vd
, const dva_t
*dva
, size_t psize
,
1728 uint64_t phys_birth
)
1730 uint64_t offset
= DVA_GET_OFFSET(dva
);
1731 uint64_t asize
= vdev_draid_asize(vd
, psize
);
1733 if (phys_birth
== TXG_UNKNOWN
) {
1735 * Sequential resilver. There is no meaningful phys_birth
1736 * for this block, we can only determine if block resides
1737 * in a degraded group in which case it must be resilvered.
1739 ASSERT3U(vdev_draid_offset_to_group(vd
, offset
), ==,
1740 vdev_draid_offset_to_group(vd
, offset
+ asize
- 1));
1742 return (vdev_draid_group_degraded(vd
, offset
));
1745 * Healing resilver. TXGs not in DTL_PARTIAL are intact,
1746 * as are blocks in non-degraded groups.
1748 if (!vdev_dtl_contains(vd
, DTL_PARTIAL
, phys_birth
, 1))
1751 if (vdev_draid_group_missing(vd
, offset
, phys_birth
, 1))
1754 /* The block may span groups in which case check both. */
1755 if (vdev_draid_offset_to_group(vd
, offset
) !=
1756 vdev_draid_offset_to_group(vd
, offset
+ asize
- 1)) {
1757 if (vdev_draid_group_missing(vd
,
1758 offset
+ asize
, phys_birth
, 1))
1767 vdev_draid_rebuilding(vdev_t
*vd
)
1769 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_rebuild_txg
)
1772 for (int i
= 0; i
< vd
->vdev_children
; i
++) {
1773 if (vdev_draid_rebuilding(vd
->vdev_child
[i
])) {
1782 vdev_draid_io_verify(vdev_t
*vd
, raidz_row_t
*rr
, int col
)
1785 range_seg64_t logical_rs
, physical_rs
, remain_rs
;
1786 logical_rs
.rs_start
= rr
->rr_offset
;
1787 logical_rs
.rs_end
= logical_rs
.rs_start
+
1788 vdev_draid_asize(vd
, rr
->rr_size
);
1790 raidz_col_t
*rc
= &rr
->rr_col
[col
];
1791 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
1793 vdev_xlate(cvd
, &logical_rs
, &physical_rs
, &remain_rs
);
1794 ASSERT(vdev_xlate_is_empty(&remain_rs
));
1795 ASSERT3U(rc
->rc_offset
, ==, physical_rs
.rs_start
);
1796 ASSERT3U(rc
->rc_offset
, <, physical_rs
.rs_end
);
1797 ASSERT3U(rc
->rc_offset
+ rc
->rc_size
, ==, physical_rs
.rs_end
);
1802 * For write operations:
1803 * 1. Generate the parity data
1804 * 2. Create child zio write operations to each column's vdev, for both
1805 * data and parity. A gang ABD is allocated by vdev_draid_map_alloc()
1806 * if a skip sector needs to be added to a column.
1809 vdev_draid_io_start_write(zio_t
*zio
, raidz_row_t
*rr
)
1811 vdev_t
*vd
= zio
->io_vd
;
1812 raidz_map_t
*rm
= zio
->io_vsd
;
1814 vdev_raidz_generate_parity_row(rm
, rr
);
1816 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
1817 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1820 * Empty columns are zero filled and included in the parity
1821 * calculation and therefore must be written.
1823 ASSERT3U(rc
->rc_size
, !=, 0);
1825 /* Verify physical to logical translation */
1826 vdev_draid_io_verify(vd
, rr
, c
);
1828 zio_nowait(zio_vdev_child_io(zio
, NULL
,
1829 vd
->vdev_child
[rc
->rc_devidx
], rc
->rc_offset
,
1830 rc
->rc_abd
, rc
->rc_size
, zio
->io_type
, zio
->io_priority
,
1831 0, vdev_raidz_child_done
, rc
));
1836 * For read operations:
1837 * 1. The vdev_draid_map_alloc() function will create a minimal raidz
1838 * mapping for the read based on the zio->io_flags. There are two
1839 * possible mappings either 1) a normal read, or 2) a scrub/resilver.
1840 * 2. Create the zio read operations. This will include all parity
1841 * columns and skip sectors for a scrub/resilver.
1844 vdev_draid_io_start_read(zio_t
*zio
, raidz_row_t
*rr
)
1846 vdev_t
*vd
= zio
->io_vd
;
1848 /* Sequential rebuild must do IO at redundancy group boundary. */
1849 IMPLY(zio
->io_priority
== ZIO_PRIORITY_REBUILD
, rr
->rr_nempty
== 0);
1852 * Iterate over the columns in reverse order so that we hit the parity
1853 * last. Any errors along the way will force us to read the parity.
1854 * For scrub/resilver IOs which verify skip sectors, a gang ABD will
1855 * have been allocated to store them and rc->rc_size is increased.
1857 for (int c
= rr
->rr_cols
- 1; c
>= 0; c
--) {
1858 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1859 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
1861 if (!vdev_draid_readable(cvd
, rc
->rc_offset
)) {
1862 if (c
>= rr
->rr_firstdatacol
)
1863 rr
->rr_missingdata
++;
1865 rr
->rr_missingparity
++;
1866 rc
->rc_error
= SET_ERROR(ENXIO
);
1872 if (vdev_draid_missing(cvd
, rc
->rc_offset
, zio
->io_txg
, 1)) {
1873 if (c
>= rr
->rr_firstdatacol
)
1874 rr
->rr_missingdata
++;
1876 rr
->rr_missingparity
++;
1877 rc
->rc_error
= SET_ERROR(ESTALE
);
1883 * Empty columns may be read during vdev_draid_io_done().
1884 * Only skip them after the readable and missing checks
1885 * verify they are available.
1887 if (rc
->rc_size
== 0) {
1892 if (zio
->io_flags
& ZIO_FLAG_RESILVER
) {
1896 * Sequential rebuilds need to always consider the data
1897 * on the child being rebuilt to be stale. This is
1898 * important when all columns are available to aid
1899 * known reconstruction in identifing which columns
1900 * contain incorrect data.
1902 * Furthermore, all repairs need to be constrained to
1903 * the devices being rebuilt because without a checksum
1904 * we cannot verify the data is actually correct and
1905 * performing an incorrect repair could result in
1906 * locking in damage and making the data unrecoverable.
1908 if (zio
->io_priority
== ZIO_PRIORITY_REBUILD
) {
1909 if (vdev_draid_rebuilding(cvd
)) {
1910 if (c
>= rr
->rr_firstdatacol
)
1911 rr
->rr_missingdata
++;
1913 rr
->rr_missingparity
++;
1914 rc
->rc_error
= SET_ERROR(ESTALE
);
1916 rc
->rc_allow_repair
= 1;
1919 rc
->rc_allow_repair
= 0;
1922 rc
->rc_allow_repair
= 1;
1926 * If this child is a distributed spare then the
1927 * offset might reside on the vdev being replaced.
1928 * In which case this data must be written to the
1929 * new device. Failure to do so would result in
1930 * checksum errors when the old device is detached
1931 * and the pool is scrubbed.
1933 if ((svd
= vdev_draid_find_spare(cvd
)) != NULL
) {
1934 svd
= vdev_draid_spare_get_child(svd
,
1936 if (svd
&& (svd
->vdev_ops
== &vdev_spare_ops
||
1937 svd
->vdev_ops
== &vdev_replacing_ops
)) {
1938 rc
->rc_force_repair
= 1;
1940 if (vdev_draid_rebuilding(svd
))
1941 rc
->rc_allow_repair
= 1;
1946 * Always issue a repair IO to this child when its
1947 * a spare or replacing vdev with an active rebuild.
1949 if ((cvd
->vdev_ops
== &vdev_spare_ops
||
1950 cvd
->vdev_ops
== &vdev_replacing_ops
) &&
1951 vdev_draid_rebuilding(cvd
)) {
1952 rc
->rc_force_repair
= 1;
1953 rc
->rc_allow_repair
= 1;
1959 * Either a parity or data column is missing this means a repair
1960 * may be attempted by vdev_draid_io_done(). Expand the raid map
1961 * to read in empty columns which are needed along with the parity
1962 * during reconstruction.
1964 if ((rr
->rr_missingdata
> 0 || rr
->rr_missingparity
> 0) &&
1965 rr
->rr_nempty
> 0 && rr
->rr_abd_empty
== NULL
) {
1966 vdev_draid_map_alloc_empty(zio
, rr
);
1969 for (int c
= rr
->rr_cols
- 1; c
>= 0; c
--) {
1970 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1971 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
1973 if (rc
->rc_error
|| rc
->rc_size
== 0)
1976 if (c
>= rr
->rr_firstdatacol
|| rr
->rr_missingdata
> 0 ||
1977 (zio
->io_flags
& (ZIO_FLAG_SCRUB
| ZIO_FLAG_RESILVER
))) {
1978 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
1979 rc
->rc_offset
, rc
->rc_abd
, rc
->rc_size
,
1980 zio
->io_type
, zio
->io_priority
, 0,
1981 vdev_raidz_child_done
, rc
));
1987 * Start an IO operation to a dRAID vdev.
1990 vdev_draid_io_start(zio_t
*zio
)
1992 vdev_t
*vd __maybe_unused
= zio
->io_vd
;
1994 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
1995 ASSERT3U(zio
->io_offset
, ==, vdev_draid_get_astart(vd
, zio
->io_offset
));
1997 raidz_map_t
*rm
= vdev_draid_map_alloc(zio
);
1999 zio
->io_vsd_ops
= &vdev_raidz_vsd_ops
;
2001 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
2002 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2003 vdev_draid_io_start_write(zio
, rm
->rm_row
[i
]);
2006 ASSERT(zio
->io_type
== ZIO_TYPE_READ
);
2008 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2009 vdev_draid_io_start_read(zio
, rm
->rm_row
[i
]);
2017 * Complete an IO operation on a dRAID vdev. The raidz logic can be applied
2018 * to dRAID since the layout is fully described by the raidz_map_t.
2021 vdev_draid_io_done(zio_t
*zio
)
2023 vdev_raidz_io_done(zio
);
2027 vdev_draid_state_change(vdev_t
*vd
, int faulted
, int degraded
)
2029 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
2030 ASSERT(vd
->vdev_ops
== &vdev_draid_ops
);
2032 if (faulted
> vdc
->vdc_nparity
)
2033 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2034 VDEV_AUX_NO_REPLICAS
);
2035 else if (degraded
+ faulted
!= 0)
2036 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_DEGRADED
, VDEV_AUX_NONE
);
2038 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_HEALTHY
, VDEV_AUX_NONE
);
2042 vdev_draid_xlate(vdev_t
*cvd
, const range_seg64_t
*logical_rs
,
2043 range_seg64_t
*physical_rs
, range_seg64_t
*remain_rs
)
2045 vdev_t
*raidvd
= cvd
->vdev_parent
;
2046 ASSERT(raidvd
->vdev_ops
== &vdev_draid_ops
);
2048 vdev_draid_config_t
*vdc
= raidvd
->vdev_tsd
;
2049 uint64_t ashift
= raidvd
->vdev_top
->vdev_ashift
;
2051 /* Make sure the offsets are block-aligned */
2052 ASSERT0(logical_rs
->rs_start
% (1 << ashift
));
2053 ASSERT0(logical_rs
->rs_end
% (1 << ashift
));
2055 uint64_t logical_start
= logical_rs
->rs_start
;
2056 uint64_t logical_end
= logical_rs
->rs_end
;
2059 * Unaligned ranges must be skipped. All metaslabs are correctly
2060 * aligned so this should not happen, but this case is handled in
2061 * case it's needed by future callers.
2063 uint64_t astart
= vdev_draid_get_astart(raidvd
, logical_start
);
2064 if (astart
!= logical_start
) {
2065 physical_rs
->rs_start
= logical_start
;
2066 physical_rs
->rs_end
= logical_start
;
2067 remain_rs
->rs_start
= MIN(astart
, logical_end
);
2068 remain_rs
->rs_end
= logical_end
;
2073 * Unlike with mirrors and raidz a dRAID logical range can map
2074 * to multiple non-contiguous physical ranges. This is handled by
2075 * limiting the size of the logical range to a single group and
2076 * setting the remain argument such that it describes the remaining
2077 * unmapped logical range. This is stricter than absolutely
2078 * necessary but helps simplify the logic below.
2080 uint64_t group
= vdev_draid_offset_to_group(raidvd
, logical_start
);
2081 uint64_t nextstart
= vdev_draid_group_to_offset(raidvd
, group
+ 1);
2082 if (logical_end
> nextstart
)
2083 logical_end
= nextstart
;
2085 /* Find the starting offset for each vdev in the group */
2086 uint64_t perm
, groupstart
;
2087 uint64_t start
= vdev_draid_logical_to_physical(raidvd
,
2088 logical_start
, &perm
, &groupstart
);
2089 uint64_t end
= start
;
2093 vdev_draid_get_perm(vdc
, perm
, &base
, &iter
);
2096 * Check if the passed child falls within the group. If it does
2097 * update the start and end to reflect the physical range.
2098 * Otherwise, leave them unmodified which will result in an empty
2099 * (zero-length) physical range being returned.
2101 for (uint64_t i
= 0; i
< vdc
->vdc_groupwidth
; i
++) {
2102 uint64_t c
= (groupstart
+ i
) % vdc
->vdc_ndisks
;
2104 if (c
== 0 && i
!= 0) {
2105 /* the group wrapped, increment the start */
2106 start
+= VDEV_DRAID_ROWHEIGHT
;
2110 id
= vdev_draid_permute_id(vdc
, base
, iter
, c
);
2111 if (id
== cvd
->vdev_id
) {
2112 uint64_t b_size
= (logical_end
>> ashift
) -
2113 (logical_start
>> ashift
);
2114 ASSERT3U(b_size
, >, 0);
2115 end
= start
+ ((((b_size
- 1) /
2116 vdc
->vdc_groupwidth
) + 1) << ashift
);
2120 physical_rs
->rs_start
= start
;
2121 physical_rs
->rs_end
= end
;
2124 * Only top-level vdevs are allowed to set remain_rs because
2125 * when .vdev_op_xlate() is called for their children the full
2126 * logical range is not provided by vdev_xlate().
2128 remain_rs
->rs_start
= logical_end
;
2129 remain_rs
->rs_end
= logical_rs
->rs_end
;
2131 ASSERT3U(physical_rs
->rs_start
, <=, logical_start
);
2132 ASSERT3U(physical_rs
->rs_end
- physical_rs
->rs_start
, <=,
2133 logical_end
- logical_start
);
2137 * Add dRAID specific fields to the config nvlist.
2140 vdev_draid_config_generate(vdev_t
*vd
, nvlist_t
*nv
)
2142 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_ops
);
2143 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
2145 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_NPARITY
, vdc
->vdc_nparity
);
2146 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_DRAID_NDATA
, vdc
->vdc_ndata
);
2147 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_DRAID_NSPARES
, vdc
->vdc_nspares
);
2148 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_DRAID_NGROUPS
, vdc
->vdc_ngroups
);
2152 * Initialize private dRAID specific fields from the nvlist.
2155 vdev_draid_init(spa_t
*spa
, nvlist_t
*nv
, void **tsd
)
2157 uint64_t ndata
, nparity
, nspares
, ngroups
;
2160 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_DRAID_NDATA
, &ndata
))
2161 return (SET_ERROR(EINVAL
));
2163 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_NPARITY
, &nparity
) ||
2164 nparity
== 0 || nparity
> VDEV_DRAID_MAXPARITY
) {
2165 return (SET_ERROR(EINVAL
));
2170 if (nvlist_lookup_nvlist_array(nv
, ZPOOL_CONFIG_CHILDREN
,
2171 &child
, &children
) != 0 || children
== 0 ||
2172 children
> VDEV_DRAID_MAX_CHILDREN
) {
2173 return (SET_ERROR(EINVAL
));
2176 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_DRAID_NSPARES
, &nspares
) ||
2177 nspares
> 100 || nspares
> (children
- (ndata
+ nparity
))) {
2178 return (SET_ERROR(EINVAL
));
2181 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_DRAID_NGROUPS
, &ngroups
) ||
2182 ngroups
== 0 || ngroups
> VDEV_DRAID_MAX_CHILDREN
) {
2183 return (SET_ERROR(EINVAL
));
2187 * Validate the minimum number of children exist per group for the
2188 * specified parity level (draid1 >= 2, draid2 >= 3, draid3 >= 4).
2190 if (children
< (ndata
+ nparity
+ nspares
))
2191 return (SET_ERROR(EINVAL
));
2194 * Create the dRAID configuration using the pool nvlist configuration
2195 * and the fixed mapping for the correct number of children.
2197 vdev_draid_config_t
*vdc
;
2198 const draid_map_t
*map
;
2200 error
= vdev_draid_lookup_map(children
, &map
);
2202 return (SET_ERROR(EINVAL
));
2204 vdc
= kmem_zalloc(sizeof (*vdc
), KM_SLEEP
);
2205 vdc
->vdc_ndata
= ndata
;
2206 vdc
->vdc_nparity
= nparity
;
2207 vdc
->vdc_nspares
= nspares
;
2208 vdc
->vdc_children
= children
;
2209 vdc
->vdc_ngroups
= ngroups
;
2210 vdc
->vdc_nperms
= map
->dm_nperms
;
2212 error
= vdev_draid_generate_perms(map
, &vdc
->vdc_perms
);
2214 kmem_free(vdc
, sizeof (*vdc
));
2215 return (SET_ERROR(EINVAL
));
2219 * Derived constants.
2221 vdc
->vdc_groupwidth
= vdc
->vdc_ndata
+ vdc
->vdc_nparity
;
2222 vdc
->vdc_ndisks
= vdc
->vdc_children
- vdc
->vdc_nspares
;
2223 vdc
->vdc_groupsz
= vdc
->vdc_groupwidth
* VDEV_DRAID_ROWHEIGHT
;
2224 vdc
->vdc_devslicesz
= (vdc
->vdc_groupsz
* vdc
->vdc_ngroups
) /
2227 ASSERT3U(vdc
->vdc_groupwidth
, >=, 2);
2228 ASSERT3U(vdc
->vdc_groupwidth
, <=, vdc
->vdc_ndisks
);
2229 ASSERT3U(vdc
->vdc_groupsz
, >=, 2 * VDEV_DRAID_ROWHEIGHT
);
2230 ASSERT3U(vdc
->vdc_devslicesz
, >=, VDEV_DRAID_ROWHEIGHT
);
2231 ASSERT3U(vdc
->vdc_devslicesz
% VDEV_DRAID_ROWHEIGHT
, ==, 0);
2232 ASSERT3U((vdc
->vdc_groupwidth
* vdc
->vdc_ngroups
) %
2233 vdc
->vdc_ndisks
, ==, 0);
2241 vdev_draid_fini(vdev_t
*vd
)
2243 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
2245 vmem_free(vdc
->vdc_perms
, sizeof (uint8_t) *
2246 vdc
->vdc_children
* vdc
->vdc_nperms
);
2247 kmem_free(vdc
, sizeof (*vdc
));
2251 vdev_draid_nparity(vdev_t
*vd
)
2253 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
2255 return (vdc
->vdc_nparity
);
2259 vdev_draid_ndisks(vdev_t
*vd
)
2261 vdev_draid_config_t
*vdc
= vd
->vdev_tsd
;
2263 return (vdc
->vdc_ndisks
);
2266 vdev_ops_t vdev_draid_ops
= {
2267 .vdev_op_init
= vdev_draid_init
,
2268 .vdev_op_fini
= vdev_draid_fini
,
2269 .vdev_op_open
= vdev_draid_open
,
2270 .vdev_op_close
= vdev_draid_close
,
2271 .vdev_op_asize
= vdev_draid_asize
,
2272 .vdev_op_min_asize
= vdev_draid_min_asize
,
2273 .vdev_op_min_alloc
= vdev_draid_min_alloc
,
2274 .vdev_op_io_start
= vdev_draid_io_start
,
2275 .vdev_op_io_done
= vdev_draid_io_done
,
2276 .vdev_op_state_change
= vdev_draid_state_change
,
2277 .vdev_op_need_resilver
= vdev_draid_need_resilver
,
2278 .vdev_op_hold
= NULL
,
2279 .vdev_op_rele
= NULL
,
2280 .vdev_op_remap
= NULL
,
2281 .vdev_op_xlate
= vdev_draid_xlate
,
2282 .vdev_op_rebuild_asize
= vdev_draid_rebuild_asize
,
2283 .vdev_op_metaslab_init
= vdev_draid_metaslab_init
,
2284 .vdev_op_config_generate
= vdev_draid_config_generate
,
2285 .vdev_op_nparity
= vdev_draid_nparity
,
2286 .vdev_op_ndisks
= vdev_draid_ndisks
,
2287 .vdev_op_type
= VDEV_TYPE_DRAID
,
2288 .vdev_op_leaf
= B_FALSE
,
2293 * A dRAID distributed spare is a virtual leaf vdev which is included in the
2294 * parent dRAID configuration. The last N columns of the dRAID permutation
2295 * table are used to determine on which dRAID children a specific offset
2296 * should be written. These spare leaf vdevs can only be used to replace
2297 * faulted children in the same dRAID configuration.
2301 * Distributed spare state. All fields are set when the distributed spare is
2302 * first opened and are immutable.
2305 vdev_t
*vds_draid_vdev
; /* top-level parent dRAID vdev */
2306 uint64_t vds_top_guid
; /* top-level parent dRAID guid */
2307 uint64_t vds_spare_id
; /* spare id (0 - vdc->vdc_nspares-1) */
2308 } vdev_draid_spare_t
;
2311 * Returns the parent dRAID vdev to which the distributed spare belongs.
2312 * This may be safely called even when the vdev is not open.
2315 vdev_draid_spare_get_parent(vdev_t
*vd
)
2317 vdev_draid_spare_t
*vds
= vd
->vdev_tsd
;
2319 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_spare_ops
);
2321 if (vds
->vds_draid_vdev
!= NULL
)
2322 return (vds
->vds_draid_vdev
);
2324 return (vdev_lookup_by_guid(vd
->vdev_spa
->spa_root_vdev
,
2325 vds
->vds_top_guid
));
2329 * A dRAID space is active when it's the child of a vdev using the
2330 * vdev_spare_ops, vdev_replacing_ops or vdev_draid_ops.
2333 vdev_draid_spare_is_active(vdev_t
*vd
)
2335 vdev_t
*pvd
= vd
->vdev_parent
;
2337 if (pvd
!= NULL
&& (pvd
->vdev_ops
== &vdev_spare_ops
||
2338 pvd
->vdev_ops
== &vdev_replacing_ops
||
2339 pvd
->vdev_ops
== &vdev_draid_ops
)) {
2347 * Given a dRAID distribute spare vdev, returns the physical child vdev
2348 * on which the provided offset resides. This may involve recursing through
2349 * multiple layers of distributed spares. Note that offset is relative to
2353 vdev_draid_spare_get_child(vdev_t
*vd
, uint64_t physical_offset
)
2355 vdev_draid_spare_t
*vds
= vd
->vdev_tsd
;
2357 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_spare_ops
);
2359 /* The vdev is closed */
2360 if (vds
->vds_draid_vdev
== NULL
)
2363 vdev_t
*tvd
= vds
->vds_draid_vdev
;
2364 vdev_draid_config_t
*vdc
= tvd
->vdev_tsd
;
2366 ASSERT3P(tvd
->vdev_ops
, ==, &vdev_draid_ops
);
2367 ASSERT3U(vds
->vds_spare_id
, <, vdc
->vdc_nspares
);
2371 uint64_t perm
= physical_offset
/ vdc
->vdc_devslicesz
;
2373 vdev_draid_get_perm(vdc
, perm
, &base
, &iter
);
2375 uint64_t cid
= vdev_draid_permute_id(vdc
, base
, iter
,
2376 (tvd
->vdev_children
- 1) - vds
->vds_spare_id
);
2377 vdev_t
*cvd
= tvd
->vdev_child
[cid
];
2379 if (cvd
->vdev_ops
== &vdev_draid_spare_ops
)
2380 return (vdev_draid_spare_get_child(cvd
, physical_offset
));
2387 vdev_draid_spare_close(vdev_t
*vd
)
2389 vdev_draid_spare_t
*vds
= vd
->vdev_tsd
;
2390 vds
->vds_draid_vdev
= NULL
;
2394 * Opening a dRAID spare device is done by looking up the associated dRAID
2395 * top-level vdev guid from the spare configuration.
2398 vdev_draid_spare_open(vdev_t
*vd
, uint64_t *psize
, uint64_t *max_psize
,
2399 uint64_t *logical_ashift
, uint64_t *physical_ashift
)
2401 vdev_draid_spare_t
*vds
= vd
->vdev_tsd
;
2402 vdev_t
*rvd
= vd
->vdev_spa
->spa_root_vdev
;
2403 uint64_t asize
, max_asize
;
2405 vdev_t
*tvd
= vdev_lookup_by_guid(rvd
, vds
->vds_top_guid
);
2408 * When spa_vdev_add() is labeling new spares the
2409 * associated dRAID is not attached to the root vdev
2410 * nor does this spare have a parent. Simulate a valid
2411 * device in order to allow the label to be initialized
2412 * and the distributed spare added to the configuration.
2414 if (vd
->vdev_parent
== NULL
) {
2415 *psize
= *max_psize
= SPA_MINDEVSIZE
;
2416 *logical_ashift
= *physical_ashift
= ASHIFT_MIN
;
2420 return (SET_ERROR(EINVAL
));
2423 vdev_draid_config_t
*vdc
= tvd
->vdev_tsd
;
2424 if (tvd
->vdev_ops
!= &vdev_draid_ops
|| vdc
== NULL
)
2425 return (SET_ERROR(EINVAL
));
2427 if (vds
->vds_spare_id
>= vdc
->vdc_nspares
)
2428 return (SET_ERROR(EINVAL
));
2431 * Neither tvd->vdev_asize or tvd->vdev_max_asize can be used here
2432 * because the caller may be vdev_draid_open() in which case the
2433 * values are stale as they haven't yet been updated by vdev_open().
2434 * To avoid this always recalculate the dRAID asize and max_asize.
2436 vdev_draid_calculate_asize(tvd
, &asize
, &max_asize
,
2437 logical_ashift
, physical_ashift
);
2439 *psize
= asize
+ VDEV_LABEL_START_SIZE
+ VDEV_LABEL_END_SIZE
;
2440 *max_psize
= max_asize
+ VDEV_LABEL_START_SIZE
+ VDEV_LABEL_END_SIZE
;
2442 vds
->vds_draid_vdev
= tvd
;
2448 * Completed distributed spare IO. Store the result in the parent zio
2449 * as if it had performed the operation itself. Only the first error is
2450 * preserved if there are multiple errors.
2453 vdev_draid_spare_child_done(zio_t
*zio
)
2455 zio_t
*pio
= zio
->io_private
;
2458 * IOs are issued to non-writable vdevs in order to keep their
2459 * DTLs accurate. However, we don't want to propagate the
2460 * error in to the distributed spare's DTL. When resilvering
2461 * vdev_draid_need_resilver() will consult the relevant DTL
2462 * to determine if the data is missing and must be repaired.
2464 if (!vdev_writeable(zio
->io_vd
))
2467 if (pio
->io_error
== 0)
2468 pio
->io_error
= zio
->io_error
;
2472 * Returns a valid label nvlist for the distributed spare vdev. This is
2473 * used to bypass the IO pipeline to avoid the complexity of constructing
2474 * a complete label with valid checksum to return when read.
2477 vdev_draid_read_config_spare(vdev_t
*vd
)
2479 spa_t
*spa
= vd
->vdev_spa
;
2480 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
2481 uint64_t guid
= vd
->vdev_guid
;
2483 nvlist_t
*nv
= fnvlist_alloc();
2484 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_SPARE
, 1);
2485 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_CREATE_TXG
, vd
->vdev_crtxg
);
2486 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_VERSION
, spa_version(spa
));
2487 fnvlist_add_string(nv
, ZPOOL_CONFIG_POOL_NAME
, spa_name(spa
));
2488 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_POOL_GUID
, spa_guid(spa
));
2489 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_POOL_TXG
, spa
->spa_config_txg
);
2490 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_TOP_GUID
, vd
->vdev_top
->vdev_guid
);
2491 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_POOL_STATE
,
2492 vdev_draid_spare_is_active(vd
) ?
2493 POOL_STATE_ACTIVE
: POOL_STATE_SPARE
);
2495 /* Set the vdev guid based on the vdev list in sav_count. */
2496 for (int i
= 0; i
< sav
->sav_count
; i
++) {
2497 if (sav
->sav_vdevs
[i
]->vdev_ops
== &vdev_draid_spare_ops
&&
2498 strcmp(sav
->sav_vdevs
[i
]->vdev_path
, vd
->vdev_path
) == 0) {
2499 guid
= sav
->sav_vdevs
[i
]->vdev_guid
;
2504 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_GUID
, guid
);
2510 * Handle any ioctl requested of the distributed spare. Only flushes
2511 * are supported in which case all children must be flushed.
2514 vdev_draid_spare_ioctl(zio_t
*zio
)
2516 vdev_t
*vd
= zio
->io_vd
;
2519 if (zio
->io_cmd
== DKIOCFLUSHWRITECACHE
) {
2520 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
2521 zio_nowait(zio_vdev_child_io(zio
, NULL
,
2522 vd
->vdev_child
[c
], zio
->io_offset
, zio
->io_abd
,
2523 zio
->io_size
, zio
->io_type
, zio
->io_priority
, 0,
2524 vdev_draid_spare_child_done
, zio
));
2527 error
= SET_ERROR(ENOTSUP
);
2534 * Initiate an IO to the distributed spare. For normal IOs this entails using
2535 * the zio->io_offset and permutation table to calculate which child dRAID vdev
2536 * is responsible for the data. Then passing along the zio to that child to
2537 * perform the actual IO. The label ranges are not stored on disk and require
2538 * some special handling which is described below.
2541 vdev_draid_spare_io_start(zio_t
*zio
)
2543 vdev_t
*cvd
= NULL
, *vd
= zio
->io_vd
;
2544 vdev_draid_spare_t
*vds
= vd
->vdev_tsd
;
2545 uint64_t offset
= zio
->io_offset
- VDEV_LABEL_START_SIZE
;
2548 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
2549 * Nothing to be done here but return failure.
2552 zio
->io_error
= ENXIO
;
2557 switch (zio
->io_type
) {
2558 case ZIO_TYPE_IOCTL
:
2559 zio
->io_error
= vdev_draid_spare_ioctl(zio
);
2562 case ZIO_TYPE_WRITE
:
2563 if (VDEV_OFFSET_IS_LABEL(vd
, zio
->io_offset
)) {
2565 * Accept probe IOs and config writers to simulate the
2566 * existence of an on disk label. vdev_label_sync(),
2567 * vdev_uberblock_sync() and vdev_copy_uberblocks()
2568 * skip the distributed spares. This only leaves
2569 * vdev_label_init() which is allowed to succeed to
2570 * avoid adding special cases the function.
2572 if (zio
->io_flags
& ZIO_FLAG_PROBE
||
2573 zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
) {
2576 zio
->io_error
= SET_ERROR(EIO
);
2579 cvd
= vdev_draid_spare_get_child(vd
, offset
);
2582 zio
->io_error
= SET_ERROR(ENXIO
);
2584 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
2585 offset
, zio
->io_abd
, zio
->io_size
,
2586 zio
->io_type
, zio
->io_priority
, 0,
2587 vdev_draid_spare_child_done
, zio
));
2593 if (VDEV_OFFSET_IS_LABEL(vd
, zio
->io_offset
)) {
2595 * Accept probe IOs to simulate the existence of a
2596 * label. vdev_label_read_config() bypasses the
2597 * pipeline to read the label configuration and
2598 * vdev_uberblock_load() skips distributed spares
2599 * when attempting to locate the best uberblock.
2601 if (zio
->io_flags
& ZIO_FLAG_PROBE
) {
2604 zio
->io_error
= SET_ERROR(EIO
);
2607 cvd
= vdev_draid_spare_get_child(vd
, offset
);
2609 if (cvd
== NULL
|| !vdev_readable(cvd
)) {
2610 zio
->io_error
= SET_ERROR(ENXIO
);
2612 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
2613 offset
, zio
->io_abd
, zio
->io_size
,
2614 zio
->io_type
, zio
->io_priority
, 0,
2615 vdev_draid_spare_child_done
, zio
));
2621 /* The vdev label ranges are never trimmed */
2622 ASSERT0(VDEV_OFFSET_IS_LABEL(vd
, zio
->io_offset
));
2624 cvd
= vdev_draid_spare_get_child(vd
, offset
);
2626 if (cvd
== NULL
|| !cvd
->vdev_has_trim
) {
2627 zio
->io_error
= SET_ERROR(ENXIO
);
2629 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
2630 offset
, zio
->io_abd
, zio
->io_size
,
2631 zio
->io_type
, zio
->io_priority
, 0,
2632 vdev_draid_spare_child_done
, zio
));
2637 zio
->io_error
= SET_ERROR(ENOTSUP
);
2646 vdev_draid_spare_io_done(zio_t
*zio
)
2651 * Lookup the full spare config in spa->spa_spares.sav_config and
2652 * return the top_guid and spare_id for the named spare.
2655 vdev_draid_spare_lookup(spa_t
*spa
, nvlist_t
*nv
, uint64_t *top_guidp
,
2656 uint64_t *spare_idp
)
2662 if ((spa
->spa_spares
.sav_config
== NULL
) ||
2663 (nvlist_lookup_nvlist_array(spa
->spa_spares
.sav_config
,
2664 ZPOOL_CONFIG_SPARES
, &spares
, &nspares
) != 0)) {
2665 return (SET_ERROR(ENOENT
));
2669 error
= nvlist_lookup_string(nv
, ZPOOL_CONFIG_PATH
, &spare_name
);
2671 return (SET_ERROR(EINVAL
));
2673 for (int i
= 0; i
< nspares
; i
++) {
2674 nvlist_t
*spare
= spares
[i
];
2675 uint64_t top_guid
, spare_id
;
2678 /* Skip non-distributed spares */
2679 error
= nvlist_lookup_string(spare
, ZPOOL_CONFIG_TYPE
, &type
);
2680 if (error
!= 0 || strcmp(type
, VDEV_TYPE_DRAID_SPARE
) != 0)
2683 /* Skip spares with the wrong name */
2684 error
= nvlist_lookup_string(spare
, ZPOOL_CONFIG_PATH
, &path
);
2685 if (error
!= 0 || strcmp(path
, spare_name
) != 0)
2688 /* Found the matching spare */
2689 error
= nvlist_lookup_uint64(spare
,
2690 ZPOOL_CONFIG_TOP_GUID
, &top_guid
);
2692 error
= nvlist_lookup_uint64(spare
,
2693 ZPOOL_CONFIG_SPARE_ID
, &spare_id
);
2697 return (SET_ERROR(EINVAL
));
2699 *top_guidp
= top_guid
;
2700 *spare_idp
= spare_id
;
2705 return (SET_ERROR(ENOENT
));
2709 * Initialize private dRAID spare specific fields from the nvlist.
2712 vdev_draid_spare_init(spa_t
*spa
, nvlist_t
*nv
, void **tsd
)
2714 vdev_draid_spare_t
*vds
;
2715 uint64_t top_guid
= 0;
2719 * In the normal case check the list of spares stored in the spa
2720 * to lookup the top_guid and spare_id for provided spare config.
2721 * When creating a new pool or adding vdevs the spare list is not
2722 * yet populated and the values are provided in the passed config.
2724 if (vdev_draid_spare_lookup(spa
, nv
, &top_guid
, &spare_id
) != 0) {
2725 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_TOP_GUID
,
2727 return (SET_ERROR(EINVAL
));
2729 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_SPARE_ID
,
2731 return (SET_ERROR(EINVAL
));
2734 vds
= kmem_alloc(sizeof (vdev_draid_spare_t
), KM_SLEEP
);
2735 vds
->vds_draid_vdev
= NULL
;
2736 vds
->vds_top_guid
= top_guid
;
2737 vds
->vds_spare_id
= spare_id
;
2745 vdev_draid_spare_fini(vdev_t
*vd
)
2747 kmem_free(vd
->vdev_tsd
, sizeof (vdev_draid_spare_t
));
2751 vdev_draid_spare_config_generate(vdev_t
*vd
, nvlist_t
*nv
)
2753 vdev_draid_spare_t
*vds
= vd
->vdev_tsd
;
2755 ASSERT3P(vd
->vdev_ops
, ==, &vdev_draid_spare_ops
);
2757 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_TOP_GUID
, vds
->vds_top_guid
);
2758 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_SPARE_ID
, vds
->vds_spare_id
);
2761 vdev_ops_t vdev_draid_spare_ops
= {
2762 .vdev_op_init
= vdev_draid_spare_init
,
2763 .vdev_op_fini
= vdev_draid_spare_fini
,
2764 .vdev_op_open
= vdev_draid_spare_open
,
2765 .vdev_op_close
= vdev_draid_spare_close
,
2766 .vdev_op_asize
= vdev_default_asize
,
2767 .vdev_op_min_asize
= vdev_default_min_asize
,
2768 .vdev_op_min_alloc
= NULL
,
2769 .vdev_op_io_start
= vdev_draid_spare_io_start
,
2770 .vdev_op_io_done
= vdev_draid_spare_io_done
,
2771 .vdev_op_state_change
= NULL
,
2772 .vdev_op_need_resilver
= NULL
,
2773 .vdev_op_hold
= NULL
,
2774 .vdev_op_rele
= NULL
,
2775 .vdev_op_remap
= NULL
,
2776 .vdev_op_xlate
= vdev_default_xlate
,
2777 .vdev_op_rebuild_asize
= NULL
,
2778 .vdev_op_metaslab_init
= NULL
,
2779 .vdev_op_config_generate
= vdev_draid_spare_config_generate
,
2780 .vdev_op_nparity
= NULL
,
2781 .vdev_op_ndisks
= NULL
,
2782 .vdev_op_type
= VDEV_TYPE_DRAID_SPARE
,
2783 .vdev_op_leaf
= B_TRUE
,