Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / vdev_removal.c
blobf762c1df96aad2b8c697f6d2dca79f68333ac622
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/arc.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
47 #include <sys/abd.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
53 * This file contains the necessary logic to remove vdevs from a
54 * storage pool. Currently, the only devices that can be removed
55 * are log, cache, and spare devices; and top level vdevs from a pool
56 * w/o raidz or mirrors. (Note that members of a mirror can be removed
57 * by the detach operation.)
59 * Log vdevs are removed by evacuating them and then turning the vdev
60 * into a hole vdev while holding spa config locks.
62 * Top level vdevs are removed and converted into an indirect vdev via
63 * a multi-step process:
65 * - Disable allocations from this device (spa_vdev_remove_top).
67 * - From a new thread (spa_vdev_remove_thread), copy data from
68 * the removing vdev to a different vdev. The copy happens in open
69 * context (spa_vdev_copy_impl) and issues a sync task
70 * (vdev_mapping_sync) so the sync thread can update the partial
71 * indirect mappings in core and on disk.
73 * - If a free happens during a removal, it is freed from the
74 * removing vdev, and if it has already been copied, from the new
75 * location as well (free_from_removing_vdev).
77 * - After the removal is completed, the copy thread converts the vdev
78 * into an indirect vdev (vdev_remove_complete) before instructing
79 * the sync thread to destroy the space maps and finish the removal
80 * (spa_finish_removal).
83 typedef struct vdev_copy_arg {
84 metaslab_t *vca_msp;
85 uint64_t vca_outstanding_bytes;
86 uint64_t vca_read_error_bytes;
87 uint64_t vca_write_error_bytes;
88 kcondvar_t vca_cv;
89 kmutex_t vca_lock;
90 } vdev_copy_arg_t;
93 * The maximum amount of memory we can use for outstanding i/o while
94 * doing a device removal. This determines how much i/o we can have
95 * in flight concurrently.
97 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
100 * The largest contiguous segment that we will attempt to allocate when
101 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
102 * there is a performance problem with attempting to allocate large blocks,
103 * consider decreasing this.
105 * See also the accessor function spa_remove_max_segment().
107 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
110 * Ignore hard IO errors during device removal. When set if a device
111 * encounters hard IO error during the removal process the removal will
112 * not be cancelled. This can result in a normally recoverable block
113 * becoming permanently damaged and is not recommended.
115 int zfs_removal_ignore_errors = 0;
118 * Allow a remap segment to span free chunks of at most this size. The main
119 * impact of a larger span is that we will read and write larger, more
120 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121 * for iops. The value here was chosen to align with
122 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123 * reads (but there's no reason it has to be the same).
125 * Additionally, a higher span will have the following relatively minor
126 * effects:
127 * - the mapping will be smaller, since one entry can cover more allocated
128 * segments
129 * - more of the fragmentation in the removing device will be preserved
130 * - we'll do larger allocations, which may fail and fall back on smaller
131 * allocations
133 int vdev_removal_max_span = 32 * 1024;
136 * This is used by the test suite so that it can ensure that certain
137 * actions happen while in the middle of a removal.
139 int zfs_removal_suspend_progress = 0;
141 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
143 static void spa_vdev_remove_thread(void *arg);
144 static int spa_vdev_remove_cancel_impl(spa_t *spa);
146 static void
147 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
149 VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
150 DMU_POOL_DIRECTORY_OBJECT,
151 DMU_POOL_REMOVING, sizeof (uint64_t),
152 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
153 &spa->spa_removing_phys, tx));
156 static nvlist_t *
157 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
159 for (int i = 0; i < count; i++) {
160 uint64_t guid =
161 fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
163 if (guid == target_guid)
164 return (nvpp[i]);
167 return (NULL);
170 static void
171 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
172 nvlist_t *dev_to_remove)
174 nvlist_t **newdev = NULL;
176 if (count > 1)
177 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
179 for (int i = 0, j = 0; i < count; i++) {
180 if (dev[i] == dev_to_remove)
181 continue;
182 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
185 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
186 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
188 for (int i = 0; i < count - 1; i++)
189 nvlist_free(newdev[i]);
191 if (count > 1)
192 kmem_free(newdev, (count - 1) * sizeof (void *));
195 static spa_vdev_removal_t *
196 spa_vdev_removal_create(vdev_t *vd)
198 spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
199 mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
200 cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
201 svr->svr_allocd_segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
202 svr->svr_vdev_id = vd->vdev_id;
204 for (int i = 0; i < TXG_SIZE; i++) {
205 svr->svr_frees[i] = range_tree_create(NULL, RANGE_SEG64, NULL,
206 0, 0);
207 list_create(&svr->svr_new_segments[i],
208 sizeof (vdev_indirect_mapping_entry_t),
209 offsetof(vdev_indirect_mapping_entry_t, vime_node));
212 return (svr);
215 void
216 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
218 for (int i = 0; i < TXG_SIZE; i++) {
219 ASSERT0(svr->svr_bytes_done[i]);
220 ASSERT0(svr->svr_max_offset_to_sync[i]);
221 range_tree_destroy(svr->svr_frees[i]);
222 list_destroy(&svr->svr_new_segments[i]);
225 range_tree_destroy(svr->svr_allocd_segs);
226 mutex_destroy(&svr->svr_lock);
227 cv_destroy(&svr->svr_cv);
228 kmem_free(svr, sizeof (*svr));
232 * This is called as a synctask in the txg in which we will mark this vdev
233 * as removing (in the config stored in the MOS).
235 * It begins the evacuation of a toplevel vdev by:
236 * - initializing the spa_removing_phys which tracks this removal
237 * - computing the amount of space to remove for accounting purposes
238 * - dirtying all dbufs in the spa_config_object
239 * - creating the spa_vdev_removal
240 * - starting the spa_vdev_remove_thread
242 static void
243 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
245 int vdev_id = (uintptr_t)arg;
246 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
247 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
248 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
249 objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
250 spa_vdev_removal_t *svr = NULL;
251 uint64_t txg __maybe_unused = dmu_tx_get_txg(tx);
253 ASSERT0(vdev_get_nparity(vd));
254 svr = spa_vdev_removal_create(vd);
256 ASSERT(vd->vdev_removing);
257 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
259 spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
260 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
262 * By activating the OBSOLETE_COUNTS feature, we prevent
263 * the pool from being downgraded and ensure that the
264 * refcounts are precise.
266 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
267 uint64_t one = 1;
268 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
269 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
270 &one, tx));
271 boolean_t are_precise __maybe_unused;
272 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
273 ASSERT3B(are_precise, ==, B_TRUE);
276 vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
277 vd->vdev_indirect_mapping =
278 vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
279 vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
280 vd->vdev_indirect_births =
281 vdev_indirect_births_open(mos, vic->vic_births_object);
282 spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
283 spa->spa_removing_phys.sr_start_time = gethrestime_sec();
284 spa->spa_removing_phys.sr_end_time = 0;
285 spa->spa_removing_phys.sr_state = DSS_SCANNING;
286 spa->spa_removing_phys.sr_to_copy = 0;
287 spa->spa_removing_phys.sr_copied = 0;
290 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
291 * there may be space in the defer tree, which is free, but still
292 * counted in vs_alloc.
294 for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
295 metaslab_t *ms = vd->vdev_ms[i];
296 if (ms->ms_sm == NULL)
297 continue;
299 spa->spa_removing_phys.sr_to_copy +=
300 metaslab_allocated_space(ms);
303 * Space which we are freeing this txg does not need to
304 * be copied.
306 spa->spa_removing_phys.sr_to_copy -=
307 range_tree_space(ms->ms_freeing);
309 ASSERT0(range_tree_space(ms->ms_freed));
310 for (int t = 0; t < TXG_SIZE; t++)
311 ASSERT0(range_tree_space(ms->ms_allocating[t]));
315 * Sync tasks are called before metaslab_sync(), so there should
316 * be no already-synced metaslabs in the TXG_CLEAN list.
318 ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
320 spa_sync_removing_state(spa, tx);
323 * All blocks that we need to read the most recent mapping must be
324 * stored on concrete vdevs. Therefore, we must dirty anything that
325 * is read before spa_remove_init(). Specifically, the
326 * spa_config_object. (Note that although we already modified the
327 * spa_config_object in spa_sync_removing_state, that may not have
328 * modified all blocks of the object.)
330 dmu_object_info_t doi;
331 VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
332 for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
333 dmu_buf_t *dbuf;
334 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
335 offset, FTAG, &dbuf, 0));
336 dmu_buf_will_dirty(dbuf, tx);
337 offset += dbuf->db_size;
338 dmu_buf_rele(dbuf, FTAG);
342 * Now that we've allocated the im_object, dirty the vdev to ensure
343 * that the object gets written to the config on disk.
345 vdev_config_dirty(vd);
347 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
348 "im_obj=%llu", (u_longlong_t)vd->vdev_id, vd,
349 (u_longlong_t)dmu_tx_get_txg(tx),
350 (u_longlong_t)vic->vic_mapping_object);
352 spa_history_log_internal(spa, "vdev remove started", tx,
353 "%s vdev %llu %s", spa_name(spa), (u_longlong_t)vd->vdev_id,
354 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
356 * Setting spa_vdev_removal causes subsequent frees to call
357 * free_from_removing_vdev(). Note that we don't need any locking
358 * because we are the sync thread, and metaslab_free_impl() is only
359 * called from syncing context (potentially from a zio taskq thread,
360 * but in any case only when there are outstanding free i/os, which
361 * there are not).
363 ASSERT3P(spa->spa_vdev_removal, ==, NULL);
364 spa->spa_vdev_removal = svr;
365 svr->svr_thread = thread_create(NULL, 0,
366 spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
370 * When we are opening a pool, we must read the mapping for each
371 * indirect vdev in order from most recently removed to least
372 * recently removed. We do this because the blocks for the mapping
373 * of older indirect vdevs may be stored on more recently removed vdevs.
374 * In order to read each indirect mapping object, we must have
375 * initialized all more recently removed vdevs.
378 spa_remove_init(spa_t *spa)
380 int error;
382 error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
383 DMU_POOL_DIRECTORY_OBJECT,
384 DMU_POOL_REMOVING, sizeof (uint64_t),
385 sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
386 &spa->spa_removing_phys);
388 if (error == ENOENT) {
389 spa->spa_removing_phys.sr_state = DSS_NONE;
390 spa->spa_removing_phys.sr_removing_vdev = -1;
391 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
392 spa->spa_indirect_vdevs_loaded = B_TRUE;
393 return (0);
394 } else if (error != 0) {
395 return (error);
398 if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
400 * We are currently removing a vdev. Create and
401 * initialize a spa_vdev_removal_t from the bonus
402 * buffer of the removing vdevs vdev_im_object, and
403 * initialize its partial mapping.
405 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
406 vdev_t *vd = vdev_lookup_top(spa,
407 spa->spa_removing_phys.sr_removing_vdev);
409 if (vd == NULL) {
410 spa_config_exit(spa, SCL_STATE, FTAG);
411 return (EINVAL);
414 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
416 ASSERT(vdev_is_concrete(vd));
417 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
418 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
419 ASSERT(vd->vdev_removing);
421 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
422 spa->spa_meta_objset, vic->vic_mapping_object);
423 vd->vdev_indirect_births = vdev_indirect_births_open(
424 spa->spa_meta_objset, vic->vic_births_object);
425 spa_config_exit(spa, SCL_STATE, FTAG);
427 spa->spa_vdev_removal = svr;
430 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
431 uint64_t indirect_vdev_id =
432 spa->spa_removing_phys.sr_prev_indirect_vdev;
433 while (indirect_vdev_id != UINT64_MAX) {
434 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
435 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
437 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
438 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
439 spa->spa_meta_objset, vic->vic_mapping_object);
440 vd->vdev_indirect_births = vdev_indirect_births_open(
441 spa->spa_meta_objset, vic->vic_births_object);
443 indirect_vdev_id = vic->vic_prev_indirect_vdev;
445 spa_config_exit(spa, SCL_STATE, FTAG);
448 * Now that we've loaded all the indirect mappings, we can allow
449 * reads from other blocks (e.g. via predictive prefetch).
451 spa->spa_indirect_vdevs_loaded = B_TRUE;
452 return (0);
455 void
456 spa_restart_removal(spa_t *spa)
458 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
460 if (svr == NULL)
461 return;
464 * In general when this function is called there is no
465 * removal thread running. The only scenario where this
466 * is not true is during spa_import() where this function
467 * is called twice [once from spa_import_impl() and
468 * spa_async_resume()]. Thus, in the scenario where we
469 * import a pool that has an ongoing removal we don't
470 * want to spawn a second thread.
472 if (svr->svr_thread != NULL)
473 return;
475 if (!spa_writeable(spa))
476 return;
478 zfs_dbgmsg("restarting removal of %llu",
479 (u_longlong_t)svr->svr_vdev_id);
480 svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
481 0, &p0, TS_RUN, minclsyspri);
485 * Process freeing from a device which is in the middle of being removed.
486 * We must handle this carefully so that we attempt to copy freed data,
487 * and we correctly free already-copied data.
489 void
490 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
492 spa_t *spa = vd->vdev_spa;
493 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
494 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
495 uint64_t txg = spa_syncing_txg(spa);
496 uint64_t max_offset_yet = 0;
498 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
499 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
500 vdev_indirect_mapping_object(vim));
501 ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
503 mutex_enter(&svr->svr_lock);
506 * Remove the segment from the removing vdev's spacemap. This
507 * ensures that we will not attempt to copy this space (if the
508 * removal thread has not yet visited it), and also ensures
509 * that we know what is actually allocated on the new vdevs
510 * (needed if we cancel the removal).
512 * Note: we must do the metaslab_free_concrete() with the svr_lock
513 * held, so that the remove_thread can not load this metaslab and then
514 * visit this offset between the time that we metaslab_free_concrete()
515 * and when we check to see if it has been visited.
517 * Note: The checkpoint flag is set to false as having/taking
518 * a checkpoint and removing a device can't happen at the same
519 * time.
521 ASSERT(!spa_has_checkpoint(spa));
522 metaslab_free_concrete(vd, offset, size, B_FALSE);
524 uint64_t synced_size = 0;
525 uint64_t synced_offset = 0;
526 uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
527 if (offset < max_offset_synced) {
529 * The mapping for this offset is already on disk.
530 * Free from the new location.
532 * Note that we use svr_max_synced_offset because it is
533 * updated atomically with respect to the in-core mapping.
534 * By contrast, vim_max_offset is not.
536 * This block may be split between a synced entry and an
537 * in-flight or unvisited entry. Only process the synced
538 * portion of it here.
540 synced_size = MIN(size, max_offset_synced - offset);
541 synced_offset = offset;
543 ASSERT3U(max_offset_yet, <=, max_offset_synced);
544 max_offset_yet = max_offset_synced;
546 DTRACE_PROBE3(remove__free__synced,
547 spa_t *, spa,
548 uint64_t, offset,
549 uint64_t, synced_size);
551 size -= synced_size;
552 offset += synced_size;
556 * Look at all in-flight txgs starting from the currently syncing one
557 * and see if a section of this free is being copied. By starting from
558 * this txg and iterating forward, we might find that this region
559 * was copied in two different txgs and handle it appropriately.
561 for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
562 int txgoff = (txg + i) & TXG_MASK;
563 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
565 * The mapping for this offset is in flight, and
566 * will be synced in txg+i.
568 uint64_t inflight_size = MIN(size,
569 svr->svr_max_offset_to_sync[txgoff] - offset);
571 DTRACE_PROBE4(remove__free__inflight,
572 spa_t *, spa,
573 uint64_t, offset,
574 uint64_t, inflight_size,
575 uint64_t, txg + i);
578 * We copy data in order of increasing offset.
579 * Therefore the max_offset_to_sync[] must increase
580 * (or be zero, indicating that nothing is being
581 * copied in that txg).
583 if (svr->svr_max_offset_to_sync[txgoff] != 0) {
584 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
585 >=, max_offset_yet);
586 max_offset_yet =
587 svr->svr_max_offset_to_sync[txgoff];
591 * We've already committed to copying this segment:
592 * we have allocated space elsewhere in the pool for
593 * it and have an IO outstanding to copy the data. We
594 * cannot free the space before the copy has
595 * completed, or else the copy IO might overwrite any
596 * new data. To free that space, we record the
597 * segment in the appropriate svr_frees tree and free
598 * the mapped space later, in the txg where we have
599 * completed the copy and synced the mapping (see
600 * vdev_mapping_sync).
602 range_tree_add(svr->svr_frees[txgoff],
603 offset, inflight_size);
604 size -= inflight_size;
605 offset += inflight_size;
608 * This space is already accounted for as being
609 * done, because it is being copied in txg+i.
610 * However, if i!=0, then it is being copied in
611 * a future txg. If we crash after this txg
612 * syncs but before txg+i syncs, then the space
613 * will be free. Therefore we must account
614 * for the space being done in *this* txg
615 * (when it is freed) rather than the future txg
616 * (when it will be copied).
618 ASSERT3U(svr->svr_bytes_done[txgoff], >=,
619 inflight_size);
620 svr->svr_bytes_done[txgoff] -= inflight_size;
621 svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
624 ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
626 if (size > 0) {
628 * The copy thread has not yet visited this offset. Ensure
629 * that it doesn't.
632 DTRACE_PROBE3(remove__free__unvisited,
633 spa_t *, spa,
634 uint64_t, offset,
635 uint64_t, size);
637 if (svr->svr_allocd_segs != NULL)
638 range_tree_clear(svr->svr_allocd_segs, offset, size);
641 * Since we now do not need to copy this data, for
642 * accounting purposes we have done our job and can count
643 * it as completed.
645 svr->svr_bytes_done[txg & TXG_MASK] += size;
647 mutex_exit(&svr->svr_lock);
650 * Now that we have dropped svr_lock, process the synced portion
651 * of this free.
653 if (synced_size > 0) {
654 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
657 * Note: this can only be called from syncing context,
658 * and the vdev_indirect_mapping is only changed from the
659 * sync thread, so we don't need svr_lock while doing
660 * metaslab_free_impl_cb.
662 boolean_t checkpoint = B_FALSE;
663 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
664 metaslab_free_impl_cb, &checkpoint);
669 * Stop an active removal and update the spa_removing phys.
671 static void
672 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
674 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
675 ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
677 /* Ensure the removal thread has completed before we free the svr. */
678 spa_vdev_remove_suspend(spa);
680 ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
682 if (state == DSS_FINISHED) {
683 spa_removing_phys_t *srp = &spa->spa_removing_phys;
684 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
685 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
687 if (srp->sr_prev_indirect_vdev != -1) {
688 vdev_t *pvd;
689 pvd = vdev_lookup_top(spa,
690 srp->sr_prev_indirect_vdev);
691 ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
694 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
695 srp->sr_prev_indirect_vdev = vd->vdev_id;
697 spa->spa_removing_phys.sr_state = state;
698 spa->spa_removing_phys.sr_end_time = gethrestime_sec();
700 spa->spa_vdev_removal = NULL;
701 spa_vdev_removal_destroy(svr);
703 spa_sync_removing_state(spa, tx);
704 spa_notify_waiters(spa);
706 vdev_config_dirty(spa->spa_root_vdev);
709 static void
710 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
712 vdev_t *vd = arg;
713 vdev_indirect_mark_obsolete(vd, offset, size);
714 boolean_t checkpoint = B_FALSE;
715 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
716 metaslab_free_impl_cb, &checkpoint);
720 * On behalf of the removal thread, syncs an incremental bit more of
721 * the indirect mapping to disk and updates the in-memory mapping.
722 * Called as a sync task in every txg that the removal thread makes progress.
724 static void
725 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
727 spa_vdev_removal_t *svr = arg;
728 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
729 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
730 vdev_indirect_config_t *vic __maybe_unused = &vd->vdev_indirect_config;
731 uint64_t txg = dmu_tx_get_txg(tx);
732 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
734 ASSERT(vic->vic_mapping_object != 0);
735 ASSERT3U(txg, ==, spa_syncing_txg(spa));
737 vdev_indirect_mapping_add_entries(vim,
738 &svr->svr_new_segments[txg & TXG_MASK], tx);
739 vdev_indirect_births_add_entry(vd->vdev_indirect_births,
740 vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
743 * Free the copied data for anything that was freed while the
744 * mapping entries were in flight.
746 mutex_enter(&svr->svr_lock);
747 range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
748 free_mapped_segment_cb, vd);
749 ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
750 vdev_indirect_mapping_max_offset(vim));
751 svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
752 mutex_exit(&svr->svr_lock);
754 spa_sync_removing_state(spa, tx);
757 typedef struct vdev_copy_segment_arg {
758 spa_t *vcsa_spa;
759 dva_t *vcsa_dest_dva;
760 uint64_t vcsa_txg;
761 range_tree_t *vcsa_obsolete_segs;
762 } vdev_copy_segment_arg_t;
764 static void
765 unalloc_seg(void *arg, uint64_t start, uint64_t size)
767 vdev_copy_segment_arg_t *vcsa = arg;
768 spa_t *spa = vcsa->vcsa_spa;
769 blkptr_t bp = { { { {0} } } };
771 BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
772 BP_SET_LSIZE(&bp, size);
773 BP_SET_PSIZE(&bp, size);
774 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
775 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
776 BP_SET_TYPE(&bp, DMU_OT_NONE);
777 BP_SET_LEVEL(&bp, 0);
778 BP_SET_DEDUP(&bp, 0);
779 BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
781 DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
782 DVA_SET_OFFSET(&bp.blk_dva[0],
783 DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
784 DVA_SET_ASIZE(&bp.blk_dva[0], size);
786 zio_free(spa, vcsa->vcsa_txg, &bp);
790 * All reads and writes associated with a call to spa_vdev_copy_segment()
791 * are done.
793 static void
794 spa_vdev_copy_segment_done(zio_t *zio)
796 vdev_copy_segment_arg_t *vcsa = zio->io_private;
798 range_tree_vacate(vcsa->vcsa_obsolete_segs,
799 unalloc_seg, vcsa);
800 range_tree_destroy(vcsa->vcsa_obsolete_segs);
801 kmem_free(vcsa, sizeof (*vcsa));
803 spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
807 * The write of the new location is done.
809 static void
810 spa_vdev_copy_segment_write_done(zio_t *zio)
812 vdev_copy_arg_t *vca = zio->io_private;
814 abd_free(zio->io_abd);
816 mutex_enter(&vca->vca_lock);
817 vca->vca_outstanding_bytes -= zio->io_size;
819 if (zio->io_error != 0)
820 vca->vca_write_error_bytes += zio->io_size;
822 cv_signal(&vca->vca_cv);
823 mutex_exit(&vca->vca_lock);
827 * The read of the old location is done. The parent zio is the write to
828 * the new location. Allow it to start.
830 static void
831 spa_vdev_copy_segment_read_done(zio_t *zio)
833 vdev_copy_arg_t *vca = zio->io_private;
835 if (zio->io_error != 0) {
836 mutex_enter(&vca->vca_lock);
837 vca->vca_read_error_bytes += zio->io_size;
838 mutex_exit(&vca->vca_lock);
841 zio_nowait(zio_unique_parent(zio));
845 * If the old and new vdevs are mirrors, we will read both sides of the old
846 * mirror, and write each copy to the corresponding side of the new mirror.
847 * If the old and new vdevs have a different number of children, we will do
848 * this as best as possible. Since we aren't verifying checksums, this
849 * ensures that as long as there's a good copy of the data, we'll have a
850 * good copy after the removal, even if there's silent damage to one side
851 * of the mirror. If we're removing a mirror that has some silent damage,
852 * we'll have exactly the same damage in the new location (assuming that
853 * the new location is also a mirror).
855 * We accomplish this by creating a tree of zio_t's, with as many writes as
856 * there are "children" of the new vdev (a non-redundant vdev counts as one
857 * child, a 2-way mirror has 2 children, etc). Each write has an associated
858 * read from a child of the old vdev. Typically there will be the same
859 * number of children of the old and new vdevs. However, if there are more
860 * children of the new vdev, some child(ren) of the old vdev will be issued
861 * multiple reads. If there are more children of the old vdev, some copies
862 * will be dropped.
864 * For example, the tree of zio_t's for a 2-way mirror is:
866 * null
867 * / \
868 * write(new vdev, child 0) write(new vdev, child 1)
869 * | |
870 * read(old vdev, child 0) read(old vdev, child 1)
872 * Child zio's complete before their parents complete. However, zio's
873 * created with zio_vdev_child_io() may be issued before their children
874 * complete. In this case we need to make sure that the children (reads)
875 * complete before the parents (writes) are *issued*. We do this by not
876 * calling zio_nowait() on each write until its corresponding read has
877 * completed.
879 * The spa_config_lock must be held while zio's created by
880 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
881 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
882 * zio is needed to release the spa_config_lock after all the reads and
883 * writes complete. (Note that we can't grab the config lock for each read,
884 * because it is not reentrant - we could deadlock with a thread waiting
885 * for a write lock.)
887 static void
888 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
889 vdev_t *source_vd, uint64_t source_offset,
890 vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
892 ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
895 * If the destination child in unwritable then there is no point
896 * in issuing the source reads which cannot be written.
898 if (!vdev_writeable(dest_child_vd))
899 return;
901 mutex_enter(&vca->vca_lock);
902 vca->vca_outstanding_bytes += size;
903 mutex_exit(&vca->vca_lock);
905 abd_t *abd = abd_alloc_for_io(size, B_FALSE);
907 vdev_t *source_child_vd = NULL;
908 if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
910 * Source and dest are both mirrors. Copy from the same
911 * child id as we are copying to (wrapping around if there
912 * are more dest children than source children). If the
913 * preferred source child is unreadable select another.
915 for (int i = 0; i < source_vd->vdev_children; i++) {
916 source_child_vd = source_vd->vdev_child[
917 (dest_id + i) % source_vd->vdev_children];
918 if (vdev_readable(source_child_vd))
919 break;
921 } else {
922 source_child_vd = source_vd;
926 * There should always be at least one readable source child or
927 * the pool would be in a suspended state. Somehow selecting an
928 * unreadable child would result in IO errors, the removal process
929 * being cancelled, and the pool reverting to its pre-removal state.
931 ASSERT3P(source_child_vd, !=, NULL);
933 zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
934 dest_child_vd, dest_offset, abd, size,
935 ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
936 ZIO_FLAG_CANFAIL,
937 spa_vdev_copy_segment_write_done, vca);
939 zio_nowait(zio_vdev_child_io(write_zio, NULL,
940 source_child_vd, source_offset, abd, size,
941 ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
942 ZIO_FLAG_CANFAIL,
943 spa_vdev_copy_segment_read_done, vca));
947 * Allocate a new location for this segment, and create the zio_t's to
948 * read from the old location and write to the new location.
950 static int
951 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
952 uint64_t maxalloc, uint64_t txg,
953 vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
955 metaslab_group_t *mg = vd->vdev_mg;
956 spa_t *spa = vd->vdev_spa;
957 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
958 vdev_indirect_mapping_entry_t *entry;
959 dva_t dst = {{ 0 }};
960 uint64_t start = range_tree_min(segs);
961 ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
963 ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
964 ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
966 uint64_t size = range_tree_span(segs);
967 if (range_tree_span(segs) > maxalloc) {
969 * We can't allocate all the segments. Prefer to end
970 * the allocation at the end of a segment, thus avoiding
971 * additional split blocks.
973 range_seg_max_t search;
974 zfs_btree_index_t where;
975 rs_set_start(&search, segs, start + maxalloc);
976 rs_set_end(&search, segs, start + maxalloc);
977 (void) zfs_btree_find(&segs->rt_root, &search, &where);
978 range_seg_t *rs = zfs_btree_prev(&segs->rt_root, &where,
979 &where);
980 if (rs != NULL) {
981 size = rs_get_end(rs, segs) - start;
982 } else {
984 * There are no segments that end before maxalloc.
985 * I.e. the first segment is larger than maxalloc,
986 * so we must split it.
988 size = maxalloc;
991 ASSERT3U(size, <=, maxalloc);
992 ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
995 * An allocation class might not have any remaining vdevs or space
997 metaslab_class_t *mc = mg->mg_class;
998 if (mc->mc_groups == 0)
999 mc = spa_normal_class(spa);
1000 int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
1001 zal, 0);
1002 if (error == ENOSPC && mc != spa_normal_class(spa)) {
1003 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1004 &dst, 0, NULL, txg, 0, zal, 0);
1006 if (error != 0)
1007 return (error);
1010 * Determine the ranges that are not actually needed. Offsets are
1011 * relative to the start of the range to be copied (i.e. relative to the
1012 * local variable "start").
1014 range_tree_t *obsolete_segs = range_tree_create(NULL, RANGE_SEG64, NULL,
1015 0, 0);
1017 zfs_btree_index_t where;
1018 range_seg_t *rs = zfs_btree_first(&segs->rt_root, &where);
1019 ASSERT3U(rs_get_start(rs, segs), ==, start);
1020 uint64_t prev_seg_end = rs_get_end(rs, segs);
1021 while ((rs = zfs_btree_next(&segs->rt_root, &where, &where)) != NULL) {
1022 if (rs_get_start(rs, segs) >= start + size) {
1023 break;
1024 } else {
1025 range_tree_add(obsolete_segs,
1026 prev_seg_end - start,
1027 rs_get_start(rs, segs) - prev_seg_end);
1029 prev_seg_end = rs_get_end(rs, segs);
1031 /* We don't end in the middle of an obsolete range */
1032 ASSERT3U(start + size, <=, prev_seg_end);
1034 range_tree_clear(segs, start, size);
1037 * We can't have any padding of the allocated size, otherwise we will
1038 * misunderstand what's allocated, and the size of the mapping. We
1039 * prevent padding by ensuring that all devices in the pool have the
1040 * same ashift, and the allocation size is a multiple of the ashift.
1042 VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1044 entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1045 DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1046 entry->vime_mapping.vimep_dst = dst;
1047 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1048 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1051 vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1052 vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1053 vcsa->vcsa_obsolete_segs = obsolete_segs;
1054 vcsa->vcsa_spa = spa;
1055 vcsa->vcsa_txg = txg;
1058 * See comment before spa_vdev_copy_one_child().
1060 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1061 zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1062 spa_vdev_copy_segment_done, vcsa, 0);
1063 vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1064 if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1065 for (int i = 0; i < dest_vd->vdev_children; i++) {
1066 vdev_t *child = dest_vd->vdev_child[i];
1067 spa_vdev_copy_one_child(vca, nzio, vd, start,
1068 child, DVA_GET_OFFSET(&dst), i, size);
1070 } else {
1071 spa_vdev_copy_one_child(vca, nzio, vd, start,
1072 dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1074 zio_nowait(nzio);
1076 list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1077 ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1078 vdev_dirty(vd, 0, NULL, txg);
1080 return (0);
1084 * Complete the removal of a toplevel vdev. This is called as a
1085 * synctask in the same txg that we will sync out the new config (to the
1086 * MOS object) which indicates that this vdev is indirect.
1088 static void
1089 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1091 spa_vdev_removal_t *svr = arg;
1092 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1093 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1095 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1097 for (int i = 0; i < TXG_SIZE; i++) {
1098 ASSERT0(svr->svr_bytes_done[i]);
1101 ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1102 spa->spa_removing_phys.sr_to_copy);
1104 vdev_destroy_spacemaps(vd, tx);
1106 /* destroy leaf zaps, if any */
1107 ASSERT3P(svr->svr_zaplist, !=, NULL);
1108 for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1109 pair != NULL;
1110 pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1111 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1113 fnvlist_free(svr->svr_zaplist);
1115 spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1116 /* vd->vdev_path is not available here */
1117 spa_history_log_internal(spa, "vdev remove completed", tx,
1118 "%s vdev %llu", spa_name(spa), (u_longlong_t)vd->vdev_id);
1121 static void
1122 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1124 ASSERT3P(zlist, !=, NULL);
1125 ASSERT0(vdev_get_nparity(vd));
1127 if (vd->vdev_leaf_zap != 0) {
1128 char zkey[32];
1129 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1130 VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1131 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1134 for (uint64_t id = 0; id < vd->vdev_children; id++) {
1135 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1139 static void
1140 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1142 vdev_t *ivd;
1143 dmu_tx_t *tx;
1144 spa_t *spa = vd->vdev_spa;
1145 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1148 * First, build a list of leaf zaps to be destroyed.
1149 * This is passed to the sync context thread,
1150 * which does the actual unlinking.
1152 svr->svr_zaplist = fnvlist_alloc();
1153 vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1155 ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1156 ivd->vdev_removing = 0;
1158 vd->vdev_leaf_zap = 0;
1160 vdev_remove_child(ivd, vd);
1161 vdev_compact_children(ivd);
1163 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1165 mutex_enter(&svr->svr_lock);
1166 svr->svr_thread = NULL;
1167 cv_broadcast(&svr->svr_cv);
1168 mutex_exit(&svr->svr_lock);
1170 /* After this, we can not use svr. */
1171 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1172 dsl_sync_task_nowait(spa->spa_dsl_pool,
1173 vdev_remove_complete_sync, svr, tx);
1174 dmu_tx_commit(tx);
1178 * Complete the removal of a toplevel vdev. This is called in open
1179 * context by the removal thread after we have copied all vdev's data.
1181 static void
1182 vdev_remove_complete(spa_t *spa)
1184 uint64_t txg;
1187 * Wait for any deferred frees to be synced before we call
1188 * vdev_metaslab_fini()
1190 txg_wait_synced(spa->spa_dsl_pool, 0);
1191 txg = spa_vdev_enter(spa);
1192 vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1193 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1194 ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1195 ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1197 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1198 ESC_ZFS_VDEV_REMOVE_DEV);
1200 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1201 (u_longlong_t)vd->vdev_id, (u_longlong_t)txg);
1204 * Discard allocation state.
1206 if (vd->vdev_mg != NULL) {
1207 vdev_metaslab_fini(vd);
1208 metaslab_group_destroy(vd->vdev_mg);
1209 vd->vdev_mg = NULL;
1210 spa_log_sm_set_blocklimit(spa);
1212 if (vd->vdev_log_mg != NULL) {
1213 ASSERT0(vd->vdev_ms_count);
1214 metaslab_group_destroy(vd->vdev_log_mg);
1215 vd->vdev_log_mg = NULL;
1217 ASSERT0(vd->vdev_stat.vs_space);
1218 ASSERT0(vd->vdev_stat.vs_dspace);
1220 vdev_remove_replace_with_indirect(vd, txg);
1223 * We now release the locks, allowing spa_sync to run and finish the
1224 * removal via vdev_remove_complete_sync in syncing context.
1226 * Note that we hold on to the vdev_t that has been replaced. Since
1227 * it isn't part of the vdev tree any longer, it can't be concurrently
1228 * manipulated, even while we don't have the config lock.
1230 (void) spa_vdev_exit(spa, NULL, txg, 0);
1233 * Top ZAP should have been transferred to the indirect vdev in
1234 * vdev_remove_replace_with_indirect.
1236 ASSERT0(vd->vdev_top_zap);
1239 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1241 ASSERT0(vd->vdev_leaf_zap);
1243 txg = spa_vdev_enter(spa);
1244 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1246 * Request to update the config and the config cachefile.
1248 vdev_config_dirty(spa->spa_root_vdev);
1249 (void) spa_vdev_exit(spa, vd, txg, 0);
1251 if (ev != NULL)
1252 spa_event_post(ev);
1256 * Evacuates a segment of size at most max_alloc from the vdev
1257 * via repeated calls to spa_vdev_copy_segment. If an allocation
1258 * fails, the pool is probably too fragmented to handle such a
1259 * large size, so decrease max_alloc so that the caller will not try
1260 * this size again this txg.
1262 static void
1263 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1264 uint64_t *max_alloc, dmu_tx_t *tx)
1266 uint64_t txg = dmu_tx_get_txg(tx);
1267 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1269 mutex_enter(&svr->svr_lock);
1272 * Determine how big of a chunk to copy. We can allocate up
1273 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1274 * bytes of unallocated space at a time. "segs" will track the
1275 * allocated segments that we are copying. We may also be copying
1276 * free segments (of up to vdev_removal_max_span bytes).
1278 range_tree_t *segs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
1279 for (;;) {
1280 range_tree_t *rt = svr->svr_allocd_segs;
1281 range_seg_t *rs = range_tree_first(rt);
1283 if (rs == NULL)
1284 break;
1286 uint64_t seg_length;
1288 if (range_tree_is_empty(segs)) {
1289 /* need to truncate the first seg based on max_alloc */
1290 seg_length = MIN(rs_get_end(rs, rt) - rs_get_start(rs,
1291 rt), *max_alloc);
1292 } else {
1293 if (rs_get_start(rs, rt) - range_tree_max(segs) >
1294 vdev_removal_max_span) {
1296 * Including this segment would cause us to
1297 * copy a larger unneeded chunk than is allowed.
1299 break;
1300 } else if (rs_get_end(rs, rt) - range_tree_min(segs) >
1301 *max_alloc) {
1303 * This additional segment would extend past
1304 * max_alloc. Rather than splitting this
1305 * segment, leave it for the next mapping.
1307 break;
1308 } else {
1309 seg_length = rs_get_end(rs, rt) -
1310 rs_get_start(rs, rt);
1314 range_tree_add(segs, rs_get_start(rs, rt), seg_length);
1315 range_tree_remove(svr->svr_allocd_segs,
1316 rs_get_start(rs, rt), seg_length);
1319 if (range_tree_is_empty(segs)) {
1320 mutex_exit(&svr->svr_lock);
1321 range_tree_destroy(segs);
1322 return;
1325 if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1326 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1327 svr, tx);
1330 svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1333 * Note: this is the amount of *allocated* space
1334 * that we are taking care of each txg.
1336 svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1338 mutex_exit(&svr->svr_lock);
1340 zio_alloc_list_t zal;
1341 metaslab_trace_init(&zal);
1342 uint64_t thismax = SPA_MAXBLOCKSIZE;
1343 while (!range_tree_is_empty(segs)) {
1344 int error = spa_vdev_copy_segment(vd,
1345 segs, thismax, txg, vca, &zal);
1347 if (error == ENOSPC) {
1349 * Cut our segment in half, and don't try this
1350 * segment size again this txg. Note that the
1351 * allocation size must be aligned to the highest
1352 * ashift in the pool, so that the allocation will
1353 * not be padded out to a multiple of the ashift,
1354 * which could cause us to think that this mapping
1355 * is larger than we intended.
1357 ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1358 ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1359 uint64_t attempted =
1360 MIN(range_tree_span(segs), thismax);
1361 thismax = P2ROUNDUP(attempted / 2,
1362 1 << spa->spa_max_ashift);
1364 * The minimum-size allocation can not fail.
1366 ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1367 *max_alloc = attempted - (1 << spa->spa_max_ashift);
1368 } else {
1369 ASSERT0(error);
1372 * We've performed an allocation, so reset the
1373 * alloc trace list.
1375 metaslab_trace_fini(&zal);
1376 metaslab_trace_init(&zal);
1379 metaslab_trace_fini(&zal);
1380 range_tree_destroy(segs);
1384 * The size of each removal mapping is limited by the tunable
1385 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1386 * pool's ashift, so that we don't try to split individual sectors regardless
1387 * of the tunable value. (Note that device removal requires that all devices
1388 * have the same ashift, so there's no difference between spa_min_ashift and
1389 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1391 uint64_t
1392 spa_remove_max_segment(spa_t *spa)
1394 return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1398 * The removal thread operates in open context. It iterates over all
1399 * allocated space in the vdev, by loading each metaslab's spacemap.
1400 * For each contiguous segment of allocated space (capping the segment
1401 * size at SPA_MAXBLOCKSIZE), we:
1402 * - Allocate space for it on another vdev.
1403 * - Create a new mapping from the old location to the new location
1404 * (as a record in svr_new_segments).
1405 * - Initiate a physical read zio to get the data off the removing disk.
1406 * - In the read zio's done callback, initiate a physical write zio to
1407 * write it to the new vdev.
1408 * Note that all of this will take effect when a particular TXG syncs.
1409 * The sync thread ensures that all the phys reads and writes for the syncing
1410 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1411 * (see vdev_mapping_sync()).
1413 static void
1414 spa_vdev_remove_thread(void *arg)
1416 spa_t *spa = arg;
1417 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1418 vdev_copy_arg_t vca;
1419 uint64_t max_alloc = spa_remove_max_segment(spa);
1420 uint64_t last_txg = 0;
1422 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1423 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1424 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1425 uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1427 ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1428 ASSERT(vdev_is_concrete(vd));
1429 ASSERT(vd->vdev_removing);
1430 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1431 ASSERT(vim != NULL);
1433 mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1434 cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1435 vca.vca_outstanding_bytes = 0;
1436 vca.vca_read_error_bytes = 0;
1437 vca.vca_write_error_bytes = 0;
1439 mutex_enter(&svr->svr_lock);
1442 * Start from vim_max_offset so we pick up where we left off
1443 * if we are restarting the removal after opening the pool.
1445 uint64_t msi;
1446 for (msi = start_offset >> vd->vdev_ms_shift;
1447 msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1448 metaslab_t *msp = vd->vdev_ms[msi];
1449 ASSERT3U(msi, <=, vd->vdev_ms_count);
1451 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1453 mutex_enter(&msp->ms_sync_lock);
1454 mutex_enter(&msp->ms_lock);
1457 * Assert nothing in flight -- ms_*tree is empty.
1459 for (int i = 0; i < TXG_SIZE; i++) {
1460 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1464 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1465 * read the allocated segments from the space map object
1466 * into svr_allocd_segs. Since we do this while holding
1467 * svr_lock and ms_sync_lock, concurrent frees (which
1468 * would have modified the space map) will wait for us
1469 * to finish loading the spacemap, and then take the
1470 * appropriate action (see free_from_removing_vdev()).
1472 if (msp->ms_sm != NULL) {
1473 VERIFY0(space_map_load(msp->ms_sm,
1474 svr->svr_allocd_segs, SM_ALLOC));
1476 range_tree_walk(msp->ms_unflushed_allocs,
1477 range_tree_add, svr->svr_allocd_segs);
1478 range_tree_walk(msp->ms_unflushed_frees,
1479 range_tree_remove, svr->svr_allocd_segs);
1480 range_tree_walk(msp->ms_freeing,
1481 range_tree_remove, svr->svr_allocd_segs);
1484 * When we are resuming from a paused removal (i.e.
1485 * when importing a pool with a removal in progress),
1486 * discard any state that we have already processed.
1488 range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1490 mutex_exit(&msp->ms_lock);
1491 mutex_exit(&msp->ms_sync_lock);
1493 vca.vca_msp = msp;
1494 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1495 (u_longlong_t)zfs_btree_numnodes(
1496 &svr->svr_allocd_segs->rt_root),
1497 (u_longlong_t)msp->ms_id);
1499 while (!svr->svr_thread_exit &&
1500 !range_tree_is_empty(svr->svr_allocd_segs)) {
1502 mutex_exit(&svr->svr_lock);
1505 * We need to periodically drop the config lock so that
1506 * writers can get in. Additionally, we can't wait
1507 * for a txg to sync while holding a config lock
1508 * (since a waiting writer could cause a 3-way deadlock
1509 * with the sync thread, which also gets a config
1510 * lock for reader). So we can't hold the config lock
1511 * while calling dmu_tx_assign().
1513 spa_config_exit(spa, SCL_CONFIG, FTAG);
1516 * This delay will pause the removal around the point
1517 * specified by zfs_removal_suspend_progress. We do this
1518 * solely from the test suite or during debugging.
1520 while (zfs_removal_suspend_progress &&
1521 !svr->svr_thread_exit)
1522 delay(hz);
1524 mutex_enter(&vca.vca_lock);
1525 while (vca.vca_outstanding_bytes >
1526 zfs_remove_max_copy_bytes) {
1527 cv_wait(&vca.vca_cv, &vca.vca_lock);
1529 mutex_exit(&vca.vca_lock);
1531 dmu_tx_t *tx =
1532 dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1534 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1535 uint64_t txg = dmu_tx_get_txg(tx);
1538 * Reacquire the vdev_config lock. The vdev_t
1539 * that we're removing may have changed, e.g. due
1540 * to a vdev_attach or vdev_detach.
1542 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1543 vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1545 if (txg != last_txg)
1546 max_alloc = spa_remove_max_segment(spa);
1547 last_txg = txg;
1549 spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1551 dmu_tx_commit(tx);
1552 mutex_enter(&svr->svr_lock);
1555 mutex_enter(&vca.vca_lock);
1556 if (zfs_removal_ignore_errors == 0 &&
1557 (vca.vca_read_error_bytes > 0 ||
1558 vca.vca_write_error_bytes > 0)) {
1559 svr->svr_thread_exit = B_TRUE;
1561 mutex_exit(&vca.vca_lock);
1564 mutex_exit(&svr->svr_lock);
1566 spa_config_exit(spa, SCL_CONFIG, FTAG);
1569 * Wait for all copies to finish before cleaning up the vca.
1571 txg_wait_synced(spa->spa_dsl_pool, 0);
1572 ASSERT0(vca.vca_outstanding_bytes);
1574 mutex_destroy(&vca.vca_lock);
1575 cv_destroy(&vca.vca_cv);
1577 if (svr->svr_thread_exit) {
1578 mutex_enter(&svr->svr_lock);
1579 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1580 svr->svr_thread = NULL;
1581 cv_broadcast(&svr->svr_cv);
1582 mutex_exit(&svr->svr_lock);
1585 * During the removal process an unrecoverable read or write
1586 * error was encountered. The removal process must be
1587 * cancelled or this damage may become permanent.
1589 if (zfs_removal_ignore_errors == 0 &&
1590 (vca.vca_read_error_bytes > 0 ||
1591 vca.vca_write_error_bytes > 0)) {
1592 zfs_dbgmsg("canceling removal due to IO errors: "
1593 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1594 (u_longlong_t)vca.vca_read_error_bytes,
1595 (u_longlong_t)vca.vca_write_error_bytes);
1596 spa_vdev_remove_cancel_impl(spa);
1598 } else {
1599 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1600 vdev_remove_complete(spa);
1603 thread_exit();
1606 void
1607 spa_vdev_remove_suspend(spa_t *spa)
1609 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1611 if (svr == NULL)
1612 return;
1614 mutex_enter(&svr->svr_lock);
1615 svr->svr_thread_exit = B_TRUE;
1616 while (svr->svr_thread != NULL)
1617 cv_wait(&svr->svr_cv, &svr->svr_lock);
1618 svr->svr_thread_exit = B_FALSE;
1619 mutex_exit(&svr->svr_lock);
1622 /* ARGSUSED */
1623 static int
1624 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1626 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1628 if (spa->spa_vdev_removal == NULL)
1629 return (ENOTACTIVE);
1630 return (0);
1634 * Cancel a removal by freeing all entries from the partial mapping
1635 * and marking the vdev as no longer being removing.
1637 /* ARGSUSED */
1638 static void
1639 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1641 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1642 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1643 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1644 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1645 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1646 objset_t *mos = spa->spa_meta_objset;
1648 ASSERT3P(svr->svr_thread, ==, NULL);
1650 spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1652 boolean_t are_precise;
1653 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1654 if (are_precise) {
1655 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1656 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1657 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1660 uint64_t obsolete_sm_object;
1661 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1662 if (obsolete_sm_object != 0) {
1663 ASSERT(vd->vdev_obsolete_sm != NULL);
1664 ASSERT3U(obsolete_sm_object, ==,
1665 space_map_object(vd->vdev_obsolete_sm));
1667 space_map_free(vd->vdev_obsolete_sm, tx);
1668 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1669 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1670 space_map_close(vd->vdev_obsolete_sm);
1671 vd->vdev_obsolete_sm = NULL;
1672 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1674 for (int i = 0; i < TXG_SIZE; i++) {
1675 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1676 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1677 vdev_indirect_mapping_max_offset(vim));
1680 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1681 metaslab_t *msp = vd->vdev_ms[msi];
1683 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1684 break;
1686 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1688 mutex_enter(&msp->ms_lock);
1691 * Assert nothing in flight -- ms_*tree is empty.
1693 for (int i = 0; i < TXG_SIZE; i++)
1694 ASSERT0(range_tree_space(msp->ms_allocating[i]));
1695 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1696 ASSERT0(range_tree_space(msp->ms_defer[i]));
1697 ASSERT0(range_tree_space(msp->ms_freed));
1699 if (msp->ms_sm != NULL) {
1700 mutex_enter(&svr->svr_lock);
1701 VERIFY0(space_map_load(msp->ms_sm,
1702 svr->svr_allocd_segs, SM_ALLOC));
1704 range_tree_walk(msp->ms_unflushed_allocs,
1705 range_tree_add, svr->svr_allocd_segs);
1706 range_tree_walk(msp->ms_unflushed_frees,
1707 range_tree_remove, svr->svr_allocd_segs);
1708 range_tree_walk(msp->ms_freeing,
1709 range_tree_remove, svr->svr_allocd_segs);
1712 * Clear everything past what has been synced,
1713 * because we have not allocated mappings for it yet.
1715 uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1716 uint64_t sm_end = msp->ms_sm->sm_start +
1717 msp->ms_sm->sm_size;
1718 if (sm_end > syncd)
1719 range_tree_clear(svr->svr_allocd_segs,
1720 syncd, sm_end - syncd);
1722 mutex_exit(&svr->svr_lock);
1724 mutex_exit(&msp->ms_lock);
1726 mutex_enter(&svr->svr_lock);
1727 range_tree_vacate(svr->svr_allocd_segs,
1728 free_mapped_segment_cb, vd);
1729 mutex_exit(&svr->svr_lock);
1733 * Note: this must happen after we invoke free_mapped_segment_cb,
1734 * because it adds to the obsolete_segments.
1736 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1738 ASSERT3U(vic->vic_mapping_object, ==,
1739 vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1740 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1741 vd->vdev_indirect_mapping = NULL;
1742 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1743 vic->vic_mapping_object = 0;
1745 ASSERT3U(vic->vic_births_object, ==,
1746 vdev_indirect_births_object(vd->vdev_indirect_births));
1747 vdev_indirect_births_close(vd->vdev_indirect_births);
1748 vd->vdev_indirect_births = NULL;
1749 vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1750 vic->vic_births_object = 0;
1753 * We may have processed some frees from the removing vdev in this
1754 * txg, thus increasing svr_bytes_done; discard that here to
1755 * satisfy the assertions in spa_vdev_removal_destroy().
1756 * Note that future txg's can not have any bytes_done, because
1757 * future TXG's are only modified from open context, and we have
1758 * already shut down the copying thread.
1760 svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1761 spa_finish_removal(spa, DSS_CANCELED, tx);
1763 vd->vdev_removing = B_FALSE;
1764 vdev_config_dirty(vd);
1766 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1767 (u_longlong_t)vd->vdev_id, (u_longlong_t)dmu_tx_get_txg(tx));
1768 spa_history_log_internal(spa, "vdev remove canceled", tx,
1769 "%s vdev %llu %s", spa_name(spa),
1770 (u_longlong_t)vd->vdev_id,
1771 (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1774 static int
1775 spa_vdev_remove_cancel_impl(spa_t *spa)
1777 uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1779 int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1780 spa_vdev_remove_cancel_sync, NULL, 0,
1781 ZFS_SPACE_CHECK_EXTRA_RESERVED);
1783 if (error == 0) {
1784 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1785 vdev_t *vd = vdev_lookup_top(spa, vdid);
1786 metaslab_group_activate(vd->vdev_mg);
1787 ASSERT(!vd->vdev_islog);
1788 metaslab_group_activate(vd->vdev_log_mg);
1789 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1792 return (error);
1796 spa_vdev_remove_cancel(spa_t *spa)
1798 spa_vdev_remove_suspend(spa);
1800 if (spa->spa_vdev_removal == NULL)
1801 return (ENOTACTIVE);
1803 return (spa_vdev_remove_cancel_impl(spa));
1806 void
1807 svr_sync(spa_t *spa, dmu_tx_t *tx)
1809 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1810 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1812 if (svr == NULL)
1813 return;
1816 * This check is necessary so that we do not dirty the
1817 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1818 * is nothing to do. Dirtying it every time would prevent us
1819 * from syncing-to-convergence.
1821 if (svr->svr_bytes_done[txgoff] == 0)
1822 return;
1825 * Update progress accounting.
1827 spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1828 svr->svr_bytes_done[txgoff] = 0;
1830 spa_sync_removing_state(spa, tx);
1833 static void
1834 vdev_remove_make_hole_and_free(vdev_t *vd)
1836 uint64_t id = vd->vdev_id;
1837 spa_t *spa = vd->vdev_spa;
1838 vdev_t *rvd = spa->spa_root_vdev;
1840 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1841 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1843 vdev_free(vd);
1845 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1846 vdev_add_child(rvd, vd);
1847 vdev_config_dirty(rvd);
1850 * Reassess the health of our root vdev.
1852 vdev_reopen(rvd);
1856 * Remove a log device. The config lock is held for the specified TXG.
1858 static int
1859 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1861 metaslab_group_t *mg = vd->vdev_mg;
1862 spa_t *spa = vd->vdev_spa;
1863 int error = 0;
1865 ASSERT(vd->vdev_islog);
1866 ASSERT(vd == vd->vdev_top);
1867 ASSERT3P(vd->vdev_log_mg, ==, NULL);
1868 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1871 * Stop allocating from this vdev.
1873 metaslab_group_passivate(mg);
1876 * Wait for the youngest allocations and frees to sync,
1877 * and then wait for the deferral of those frees to finish.
1879 spa_vdev_config_exit(spa, NULL,
1880 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1883 * Cancel any initialize or TRIM which was in progress.
1885 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1886 vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
1887 vdev_autotrim_stop_wait(vd);
1890 * Evacuate the device. We don't hold the config lock as
1891 * writer since we need to do I/O but we do keep the
1892 * spa_namespace_lock held. Once this completes the device
1893 * should no longer have any blocks allocated on it.
1895 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1896 if (vd->vdev_stat.vs_alloc != 0)
1897 error = spa_reset_logs(spa);
1899 *txg = spa_vdev_config_enter(spa);
1901 if (error != 0) {
1902 metaslab_group_activate(mg);
1903 ASSERT3P(vd->vdev_log_mg, ==, NULL);
1904 return (error);
1906 ASSERT0(vd->vdev_stat.vs_alloc);
1909 * The evacuation succeeded. Remove any remaining MOS metadata
1910 * associated with this vdev, and wait for these changes to sync.
1912 vd->vdev_removing = B_TRUE;
1914 vdev_dirty_leaves(vd, VDD_DTL, *txg);
1915 vdev_config_dirty(vd);
1918 * When the log space map feature is enabled we look at
1919 * the vdev's top_zap to find the on-disk flush data of
1920 * the metaslab we just flushed. Thus, while removing a
1921 * log vdev we make sure to call vdev_metaslab_fini()
1922 * first, which removes all metaslabs of this vdev from
1923 * spa_metaslabs_by_flushed before vdev_remove_empty()
1924 * destroys the top_zap of this log vdev.
1926 * This avoids the scenario where we flush a metaslab
1927 * from the log vdev being removed that doesn't have a
1928 * top_zap and end up failing to lookup its on-disk flush
1929 * data.
1931 * We don't call metaslab_group_destroy() right away
1932 * though (it will be called in vdev_free() later) as
1933 * during metaslab_sync() of metaslabs from other vdevs
1934 * we may touch the metaslab group of this vdev through
1935 * metaslab_class_histogram_verify()
1937 vdev_metaslab_fini(vd);
1938 spa_log_sm_set_blocklimit(spa);
1940 spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1941 *txg = spa_vdev_config_enter(spa);
1943 sysevent_t *ev = spa_event_create(spa, vd, NULL,
1944 ESC_ZFS_VDEV_REMOVE_DEV);
1945 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1946 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1948 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1949 ASSERT0(vd->vdev_top_zap);
1950 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1951 ASSERT0(vd->vdev_leaf_zap);
1953 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1955 if (list_link_active(&vd->vdev_state_dirty_node))
1956 vdev_state_clean(vd);
1957 if (list_link_active(&vd->vdev_config_dirty_node))
1958 vdev_config_clean(vd);
1960 ASSERT0(vd->vdev_stat.vs_alloc);
1963 * Clean up the vdev namespace.
1965 vdev_remove_make_hole_and_free(vd);
1967 if (ev != NULL)
1968 spa_event_post(ev);
1970 return (0);
1973 static int
1974 spa_vdev_remove_top_check(vdev_t *vd)
1976 spa_t *spa = vd->vdev_spa;
1978 if (vd != vd->vdev_top)
1979 return (SET_ERROR(ENOTSUP));
1981 if (!vdev_is_concrete(vd))
1982 return (SET_ERROR(ENOTSUP));
1984 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1985 return (SET_ERROR(ENOTSUP));
1988 metaslab_class_t *mc = vd->vdev_mg->mg_class;
1989 metaslab_class_t *normal = spa_normal_class(spa);
1990 if (mc != normal) {
1992 * Space allocated from the special (or dedup) class is
1993 * included in the DMU's space usage, but it's not included
1994 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
1995 * there is always at least as much free space in the normal
1996 * class, as is allocated from the special (and dedup) class.
1997 * As a backup check, we will return ENOSPC if this is
1998 * violated. See also spa_update_dspace().
2000 uint64_t available = metaslab_class_get_space(normal) -
2001 metaslab_class_get_alloc(normal);
2002 ASSERT3U(available, >=, vd->vdev_stat.vs_alloc);
2003 if (available < vd->vdev_stat.vs_alloc)
2004 return (SET_ERROR(ENOSPC));
2005 } else {
2006 /* available space in the pool's normal class */
2007 uint64_t available = dsl_dir_space_available(
2008 spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
2009 if (available <
2010 vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
2012 * This is a normal device. There has to be enough free
2013 * space to remove the device and leave double the
2014 * "slop" space (i.e. we must leave at least 3% of the
2015 * pool free, in addition to the normal slop space).
2017 return (SET_ERROR(ENOSPC));
2022 * There can not be a removal in progress.
2024 if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
2025 return (SET_ERROR(EBUSY));
2028 * The device must have all its data.
2030 if (!vdev_dtl_empty(vd, DTL_MISSING) ||
2031 !vdev_dtl_empty(vd, DTL_OUTAGE))
2032 return (SET_ERROR(EBUSY));
2035 * The device must be healthy.
2037 if (!vdev_readable(vd))
2038 return (SET_ERROR(EIO));
2041 * All vdevs in normal class must have the same ashift.
2043 if (spa->spa_max_ashift != spa->spa_min_ashift) {
2044 return (SET_ERROR(EINVAL));
2048 * A removed special/dedup vdev must have same ashift as normal class.
2050 ASSERT(!vd->vdev_islog);
2051 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2052 vd->vdev_ashift != spa->spa_max_ashift) {
2053 return (SET_ERROR(EINVAL));
2057 * All vdevs in normal class must have the same ashift
2058 * and not be raidz or draid.
2060 vdev_t *rvd = spa->spa_root_vdev;
2061 int num_indirect = 0;
2062 for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2063 vdev_t *cvd = rvd->vdev_child[id];
2066 * A removed special/dedup vdev must have the same ashift
2067 * across all vdevs in its class.
2069 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE &&
2070 cvd->vdev_alloc_bias == vd->vdev_alloc_bias &&
2071 cvd->vdev_ashift != vd->vdev_ashift) {
2072 return (SET_ERROR(EINVAL));
2074 if (cvd->vdev_ashift != 0 &&
2075 cvd->vdev_alloc_bias == VDEV_BIAS_NONE)
2076 ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2077 if (cvd->vdev_ops == &vdev_indirect_ops)
2078 num_indirect++;
2079 if (!vdev_is_concrete(cvd))
2080 continue;
2081 if (vdev_get_nparity(cvd) != 0)
2082 return (SET_ERROR(EINVAL));
2084 * Need the mirror to be mirror of leaf vdevs only
2086 if (cvd->vdev_ops == &vdev_mirror_ops) {
2087 for (uint64_t cid = 0;
2088 cid < cvd->vdev_children; cid++) {
2089 if (!cvd->vdev_child[cid]->vdev_ops->
2090 vdev_op_leaf)
2091 return (SET_ERROR(EINVAL));
2096 return (0);
2100 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2101 * The config lock is held for the specified TXG. Once initiated,
2102 * evacuation of all allocated space (copying it to other vdevs) happens
2103 * in the background (see spa_vdev_remove_thread()), and can be canceled
2104 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2105 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2107 static int
2108 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2110 spa_t *spa = vd->vdev_spa;
2111 int error;
2114 * Check for errors up-front, so that we don't waste time
2115 * passivating the metaslab group and clearing the ZIL if there
2116 * are errors.
2118 error = spa_vdev_remove_top_check(vd);
2119 if (error != 0)
2120 return (error);
2123 * Stop allocating from this vdev. Note that we must check
2124 * that this is not the only device in the pool before
2125 * passivating, otherwise we will not be able to make
2126 * progress because we can't allocate from any vdevs.
2127 * The above check for sufficient free space serves this
2128 * purpose.
2130 metaslab_group_t *mg = vd->vdev_mg;
2131 metaslab_group_passivate(mg);
2132 ASSERT(!vd->vdev_islog);
2133 metaslab_group_passivate(vd->vdev_log_mg);
2136 * Wait for the youngest allocations and frees to sync,
2137 * and then wait for the deferral of those frees to finish.
2139 spa_vdev_config_exit(spa, NULL,
2140 *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2143 * We must ensure that no "stubby" log blocks are allocated
2144 * on the device to be removed. These blocks could be
2145 * written at any time, including while we are in the middle
2146 * of copying them.
2148 error = spa_reset_logs(spa);
2151 * We stop any initializing and TRIM that is currently in progress
2152 * but leave the state as "active". This will allow the process to
2153 * resume if the removal is canceled sometime later.
2155 vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2156 vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2157 vdev_autotrim_stop_wait(vd);
2159 *txg = spa_vdev_config_enter(spa);
2162 * Things might have changed while the config lock was dropped
2163 * (e.g. space usage). Check for errors again.
2165 if (error == 0)
2166 error = spa_vdev_remove_top_check(vd);
2168 if (error != 0) {
2169 metaslab_group_activate(mg);
2170 ASSERT(!vd->vdev_islog);
2171 metaslab_group_activate(vd->vdev_log_mg);
2172 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2173 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2174 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2175 return (error);
2178 vd->vdev_removing = B_TRUE;
2180 vdev_dirty_leaves(vd, VDD_DTL, *txg);
2181 vdev_config_dirty(vd);
2182 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2183 dsl_sync_task_nowait(spa->spa_dsl_pool,
2184 vdev_remove_initiate_sync, (void *)(uintptr_t)vd->vdev_id, tx);
2185 dmu_tx_commit(tx);
2187 return (0);
2191 * Remove a device from the pool.
2193 * Removing a device from the vdev namespace requires several steps
2194 * and can take a significant amount of time. As a result we use
2195 * the spa_vdev_config_[enter/exit] functions which allow us to
2196 * grab and release the spa_config_lock while still holding the namespace
2197 * lock. During each step the configuration is synced out.
2200 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2202 vdev_t *vd;
2203 nvlist_t **spares, **l2cache, *nv;
2204 uint64_t txg = 0;
2205 uint_t nspares, nl2cache;
2206 int error = 0, error_log;
2207 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2208 sysevent_t *ev = NULL;
2209 char *vd_type = NULL, *vd_path = NULL;
2211 ASSERT(spa_writeable(spa));
2213 if (!locked)
2214 txg = spa_vdev_enter(spa);
2216 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2217 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2218 error = (spa_has_checkpoint(spa)) ?
2219 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2221 if (!locked)
2222 return (spa_vdev_exit(spa, NULL, txg, error));
2224 return (error);
2227 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2229 if (spa->spa_spares.sav_vdevs != NULL &&
2230 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2231 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2232 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2234 * Only remove the hot spare if it's not currently in use
2235 * in this pool.
2237 if (vd == NULL || unspare) {
2238 char *type;
2239 boolean_t draid_spare = B_FALSE;
2241 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type)
2242 == 0 && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0)
2243 draid_spare = B_TRUE;
2245 if (vd == NULL && draid_spare) {
2246 error = SET_ERROR(ENOTSUP);
2247 } else {
2248 if (vd == NULL)
2249 vd = spa_lookup_by_guid(spa,
2250 guid, B_TRUE);
2251 ev = spa_event_create(spa, vd, NULL,
2252 ESC_ZFS_VDEV_REMOVE_AUX);
2254 vd_type = VDEV_TYPE_SPARE;
2255 vd_path = spa_strdup(fnvlist_lookup_string(
2256 nv, ZPOOL_CONFIG_PATH));
2257 spa_vdev_remove_aux(spa->spa_spares.sav_config,
2258 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2259 spa_load_spares(spa);
2260 spa->spa_spares.sav_sync = B_TRUE;
2262 } else {
2263 error = SET_ERROR(EBUSY);
2265 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2266 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2267 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2268 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2269 vd_type = VDEV_TYPE_L2CACHE;
2270 vd_path = spa_strdup(fnvlist_lookup_string(
2271 nv, ZPOOL_CONFIG_PATH));
2273 * Cache devices can always be removed.
2275 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2278 * Stop trimming the cache device. We need to release the
2279 * config lock to allow the syncing of TRIM transactions
2280 * without releasing the spa_namespace_lock. The same
2281 * strategy is employed in spa_vdev_remove_top().
2283 spa_vdev_config_exit(spa, NULL,
2284 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2285 mutex_enter(&vd->vdev_trim_lock);
2286 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
2287 mutex_exit(&vd->vdev_trim_lock);
2288 txg = spa_vdev_config_enter(spa);
2290 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2291 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2292 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2293 spa_load_l2cache(spa);
2294 spa->spa_l2cache.sav_sync = B_TRUE;
2295 } else if (vd != NULL && vd->vdev_islog) {
2296 ASSERT(!locked);
2297 vd_type = VDEV_TYPE_LOG;
2298 vd_path = spa_strdup((vd->vdev_path != NULL) ?
2299 vd->vdev_path : "-");
2300 error = spa_vdev_remove_log(vd, &txg);
2301 } else if (vd != NULL) {
2302 ASSERT(!locked);
2303 error = spa_vdev_remove_top(vd, &txg);
2304 } else {
2306 * There is no vdev of any kind with the specified guid.
2308 error = SET_ERROR(ENOENT);
2311 error_log = error;
2313 if (!locked)
2314 error = spa_vdev_exit(spa, NULL, txg, error);
2317 * Logging must be done outside the spa config lock. Otherwise,
2318 * this code path could end up holding the spa config lock while
2319 * waiting for a txg_sync so it can write to the internal log.
2320 * Doing that would prevent the txg sync from actually happening,
2321 * causing a deadlock.
2323 if (error_log == 0 && vd_type != NULL && vd_path != NULL) {
2324 spa_history_log_internal(spa, "vdev remove", NULL,
2325 "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path);
2327 if (vd_path != NULL)
2328 spa_strfree(vd_path);
2330 if (ev != NULL)
2331 spa_event_post(ev);
2333 return (error);
2337 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2339 prs->prs_state = spa->spa_removing_phys.sr_state;
2341 if (prs->prs_state == DSS_NONE)
2342 return (SET_ERROR(ENOENT));
2344 prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2345 prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2346 prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2347 prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2348 prs->prs_copied = spa->spa_removing_phys.sr_copied;
2350 prs->prs_mapping_memory = 0;
2351 uint64_t indirect_vdev_id =
2352 spa->spa_removing_phys.sr_prev_indirect_vdev;
2353 while (indirect_vdev_id != -1) {
2354 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2355 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2356 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2358 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2359 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2360 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2363 return (0);
2366 /* BEGIN CSTYLED */
2367 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_ignore_errors, INT, ZMOD_RW,
2368 "Ignore hard IO errors when removing device");
2370 ZFS_MODULE_PARAM(zfs_vdev, zfs_, remove_max_segment, INT, ZMOD_RW,
2371 "Largest contiguous segment to allocate when removing device");
2373 ZFS_MODULE_PARAM(zfs_vdev, vdev_, removal_max_span, INT, ZMOD_RW,
2374 "Largest span of free chunks a remap segment can span");
2376 ZFS_MODULE_PARAM(zfs_vdev, zfs_, removal_suspend_progress, INT, ZMOD_RW,
2377 "Pause device removal after this many bytes are copied "
2378 "(debug use only - causes removal to hang)");
2379 /* END CSTYLED */
2381 EXPORT_SYMBOL(free_from_removing_vdev);
2382 EXPORT_SYMBOL(spa_removal_get_stats);
2383 EXPORT_SYMBOL(spa_remove_init);
2384 EXPORT_SYMBOL(spa_restart_removal);
2385 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2386 EXPORT_SYMBOL(spa_vdev_remove);
2387 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2388 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2389 EXPORT_SYMBOL(svr_sync);