4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
53 * This file contains the necessary logic to remove vdevs from a
54 * storage pool. Currently, the only devices that can be removed
55 * are log, cache, and spare devices; and top level vdevs from a pool
56 * w/o raidz or mirrors. (Note that members of a mirror can be removed
57 * by the detach operation.)
59 * Log vdevs are removed by evacuating them and then turning the vdev
60 * into a hole vdev while holding spa config locks.
62 * Top level vdevs are removed and converted into an indirect vdev via
63 * a multi-step process:
65 * - Disable allocations from this device (spa_vdev_remove_top).
67 * - From a new thread (spa_vdev_remove_thread), copy data from
68 * the removing vdev to a different vdev. The copy happens in open
69 * context (spa_vdev_copy_impl) and issues a sync task
70 * (vdev_mapping_sync) so the sync thread can update the partial
71 * indirect mappings in core and on disk.
73 * - If a free happens during a removal, it is freed from the
74 * removing vdev, and if it has already been copied, from the new
75 * location as well (free_from_removing_vdev).
77 * - After the removal is completed, the copy thread converts the vdev
78 * into an indirect vdev (vdev_remove_complete) before instructing
79 * the sync thread to destroy the space maps and finish the removal
80 * (spa_finish_removal).
83 typedef struct vdev_copy_arg
{
85 uint64_t vca_outstanding_bytes
;
86 uint64_t vca_read_error_bytes
;
87 uint64_t vca_write_error_bytes
;
93 * The maximum amount of memory we can use for outstanding i/o while
94 * doing a device removal. This determines how much i/o we can have
95 * in flight concurrently.
97 int zfs_remove_max_copy_bytes
= 64 * 1024 * 1024;
100 * The largest contiguous segment that we will attempt to allocate when
101 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
102 * there is a performance problem with attempting to allocate large blocks,
103 * consider decreasing this.
105 * See also the accessor function spa_remove_max_segment().
107 int zfs_remove_max_segment
= SPA_MAXBLOCKSIZE
;
110 * Ignore hard IO errors during device removal. When set if a device
111 * encounters hard IO error during the removal process the removal will
112 * not be cancelled. This can result in a normally recoverable block
113 * becoming permanently damaged and is not recommended.
115 int zfs_removal_ignore_errors
= 0;
118 * Allow a remap segment to span free chunks of at most this size. The main
119 * impact of a larger span is that we will read and write larger, more
120 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121 * for iops. The value here was chosen to align with
122 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123 * reads (but there's no reason it has to be the same).
125 * Additionally, a higher span will have the following relatively minor
127 * - the mapping will be smaller, since one entry can cover more allocated
129 * - more of the fragmentation in the removing device will be preserved
130 * - we'll do larger allocations, which may fail and fall back on smaller
133 int vdev_removal_max_span
= 32 * 1024;
136 * This is used by the test suite so that it can ensure that certain
137 * actions happen while in the middle of a removal.
139 int zfs_removal_suspend_progress
= 0;
141 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
143 static void spa_vdev_remove_thread(void *arg
);
144 static int spa_vdev_remove_cancel_impl(spa_t
*spa
);
147 spa_sync_removing_state(spa_t
*spa
, dmu_tx_t
*tx
)
149 VERIFY0(zap_update(spa
->spa_dsl_pool
->dp_meta_objset
,
150 DMU_POOL_DIRECTORY_OBJECT
,
151 DMU_POOL_REMOVING
, sizeof (uint64_t),
152 sizeof (spa
->spa_removing_phys
) / sizeof (uint64_t),
153 &spa
->spa_removing_phys
, tx
));
157 spa_nvlist_lookup_by_guid(nvlist_t
**nvpp
, int count
, uint64_t target_guid
)
159 for (int i
= 0; i
< count
; i
++) {
161 fnvlist_lookup_uint64(nvpp
[i
], ZPOOL_CONFIG_GUID
);
163 if (guid
== target_guid
)
171 spa_vdev_remove_aux(nvlist_t
*config
, char *name
, nvlist_t
**dev
, int count
,
172 nvlist_t
*dev_to_remove
)
174 nvlist_t
**newdev
= NULL
;
177 newdev
= kmem_alloc((count
- 1) * sizeof (void *), KM_SLEEP
);
179 for (int i
= 0, j
= 0; i
< count
; i
++) {
180 if (dev
[i
] == dev_to_remove
)
182 VERIFY(nvlist_dup(dev
[i
], &newdev
[j
++], KM_SLEEP
) == 0);
185 VERIFY(nvlist_remove(config
, name
, DATA_TYPE_NVLIST_ARRAY
) == 0);
186 VERIFY(nvlist_add_nvlist_array(config
, name
, newdev
, count
- 1) == 0);
188 for (int i
= 0; i
< count
- 1; i
++)
189 nvlist_free(newdev
[i
]);
192 kmem_free(newdev
, (count
- 1) * sizeof (void *));
195 static spa_vdev_removal_t
*
196 spa_vdev_removal_create(vdev_t
*vd
)
198 spa_vdev_removal_t
*svr
= kmem_zalloc(sizeof (*svr
), KM_SLEEP
);
199 mutex_init(&svr
->svr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
200 cv_init(&svr
->svr_cv
, NULL
, CV_DEFAULT
, NULL
);
201 svr
->svr_allocd_segs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
202 svr
->svr_vdev_id
= vd
->vdev_id
;
204 for (int i
= 0; i
< TXG_SIZE
; i
++) {
205 svr
->svr_frees
[i
] = range_tree_create(NULL
, RANGE_SEG64
, NULL
,
207 list_create(&svr
->svr_new_segments
[i
],
208 sizeof (vdev_indirect_mapping_entry_t
),
209 offsetof(vdev_indirect_mapping_entry_t
, vime_node
));
216 spa_vdev_removal_destroy(spa_vdev_removal_t
*svr
)
218 for (int i
= 0; i
< TXG_SIZE
; i
++) {
219 ASSERT0(svr
->svr_bytes_done
[i
]);
220 ASSERT0(svr
->svr_max_offset_to_sync
[i
]);
221 range_tree_destroy(svr
->svr_frees
[i
]);
222 list_destroy(&svr
->svr_new_segments
[i
]);
225 range_tree_destroy(svr
->svr_allocd_segs
);
226 mutex_destroy(&svr
->svr_lock
);
227 cv_destroy(&svr
->svr_cv
);
228 kmem_free(svr
, sizeof (*svr
));
232 * This is called as a synctask in the txg in which we will mark this vdev
233 * as removing (in the config stored in the MOS).
235 * It begins the evacuation of a toplevel vdev by:
236 * - initializing the spa_removing_phys which tracks this removal
237 * - computing the amount of space to remove for accounting purposes
238 * - dirtying all dbufs in the spa_config_object
239 * - creating the spa_vdev_removal
240 * - starting the spa_vdev_remove_thread
243 vdev_remove_initiate_sync(void *arg
, dmu_tx_t
*tx
)
245 int vdev_id
= (uintptr_t)arg
;
246 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
247 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
248 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
249 objset_t
*mos
= spa
->spa_dsl_pool
->dp_meta_objset
;
250 spa_vdev_removal_t
*svr
= NULL
;
251 uint64_t txg __maybe_unused
= dmu_tx_get_txg(tx
);
253 ASSERT0(vdev_get_nparity(vd
));
254 svr
= spa_vdev_removal_create(vd
);
256 ASSERT(vd
->vdev_removing
);
257 ASSERT3P(vd
->vdev_indirect_mapping
, ==, NULL
);
259 spa_feature_incr(spa
, SPA_FEATURE_DEVICE_REMOVAL
, tx
);
260 if (spa_feature_is_enabled(spa
, SPA_FEATURE_OBSOLETE_COUNTS
)) {
262 * By activating the OBSOLETE_COUNTS feature, we prevent
263 * the pool from being downgraded and ensure that the
264 * refcounts are precise.
266 spa_feature_incr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
268 VERIFY0(zap_add(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
269 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE
, sizeof (one
), 1,
271 boolean_t are_precise __maybe_unused
;
272 ASSERT0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
273 ASSERT3B(are_precise
, ==, B_TRUE
);
276 vic
->vic_mapping_object
= vdev_indirect_mapping_alloc(mos
, tx
);
277 vd
->vdev_indirect_mapping
=
278 vdev_indirect_mapping_open(mos
, vic
->vic_mapping_object
);
279 vic
->vic_births_object
= vdev_indirect_births_alloc(mos
, tx
);
280 vd
->vdev_indirect_births
=
281 vdev_indirect_births_open(mos
, vic
->vic_births_object
);
282 spa
->spa_removing_phys
.sr_removing_vdev
= vd
->vdev_id
;
283 spa
->spa_removing_phys
.sr_start_time
= gethrestime_sec();
284 spa
->spa_removing_phys
.sr_end_time
= 0;
285 spa
->spa_removing_phys
.sr_state
= DSS_SCANNING
;
286 spa
->spa_removing_phys
.sr_to_copy
= 0;
287 spa
->spa_removing_phys
.sr_copied
= 0;
290 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
291 * there may be space in the defer tree, which is free, but still
292 * counted in vs_alloc.
294 for (uint64_t i
= 0; i
< vd
->vdev_ms_count
; i
++) {
295 metaslab_t
*ms
= vd
->vdev_ms
[i
];
296 if (ms
->ms_sm
== NULL
)
299 spa
->spa_removing_phys
.sr_to_copy
+=
300 metaslab_allocated_space(ms
);
303 * Space which we are freeing this txg does not need to
306 spa
->spa_removing_phys
.sr_to_copy
-=
307 range_tree_space(ms
->ms_freeing
);
309 ASSERT0(range_tree_space(ms
->ms_freed
));
310 for (int t
= 0; t
< TXG_SIZE
; t
++)
311 ASSERT0(range_tree_space(ms
->ms_allocating
[t
]));
315 * Sync tasks are called before metaslab_sync(), so there should
316 * be no already-synced metaslabs in the TXG_CLEAN list.
318 ASSERT3P(txg_list_head(&vd
->vdev_ms_list
, TXG_CLEAN(txg
)), ==, NULL
);
320 spa_sync_removing_state(spa
, tx
);
323 * All blocks that we need to read the most recent mapping must be
324 * stored on concrete vdevs. Therefore, we must dirty anything that
325 * is read before spa_remove_init(). Specifically, the
326 * spa_config_object. (Note that although we already modified the
327 * spa_config_object in spa_sync_removing_state, that may not have
328 * modified all blocks of the object.)
330 dmu_object_info_t doi
;
331 VERIFY0(dmu_object_info(mos
, DMU_POOL_DIRECTORY_OBJECT
, &doi
));
332 for (uint64_t offset
= 0; offset
< doi
.doi_max_offset
; ) {
334 VERIFY0(dmu_buf_hold(mos
, DMU_POOL_DIRECTORY_OBJECT
,
335 offset
, FTAG
, &dbuf
, 0));
336 dmu_buf_will_dirty(dbuf
, tx
);
337 offset
+= dbuf
->db_size
;
338 dmu_buf_rele(dbuf
, FTAG
);
342 * Now that we've allocated the im_object, dirty the vdev to ensure
343 * that the object gets written to the config on disk.
345 vdev_config_dirty(vd
);
347 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
348 "im_obj=%llu", (u_longlong_t
)vd
->vdev_id
, vd
,
349 (u_longlong_t
)dmu_tx_get_txg(tx
),
350 (u_longlong_t
)vic
->vic_mapping_object
);
352 spa_history_log_internal(spa
, "vdev remove started", tx
,
353 "%s vdev %llu %s", spa_name(spa
), (u_longlong_t
)vd
->vdev_id
,
354 (vd
->vdev_path
!= NULL
) ? vd
->vdev_path
: "-");
356 * Setting spa_vdev_removal causes subsequent frees to call
357 * free_from_removing_vdev(). Note that we don't need any locking
358 * because we are the sync thread, and metaslab_free_impl() is only
359 * called from syncing context (potentially from a zio taskq thread,
360 * but in any case only when there are outstanding free i/os, which
363 ASSERT3P(spa
->spa_vdev_removal
, ==, NULL
);
364 spa
->spa_vdev_removal
= svr
;
365 svr
->svr_thread
= thread_create(NULL
, 0,
366 spa_vdev_remove_thread
, spa
, 0, &p0
, TS_RUN
, minclsyspri
);
370 * When we are opening a pool, we must read the mapping for each
371 * indirect vdev in order from most recently removed to least
372 * recently removed. We do this because the blocks for the mapping
373 * of older indirect vdevs may be stored on more recently removed vdevs.
374 * In order to read each indirect mapping object, we must have
375 * initialized all more recently removed vdevs.
378 spa_remove_init(spa_t
*spa
)
382 error
= zap_lookup(spa
->spa_dsl_pool
->dp_meta_objset
,
383 DMU_POOL_DIRECTORY_OBJECT
,
384 DMU_POOL_REMOVING
, sizeof (uint64_t),
385 sizeof (spa
->spa_removing_phys
) / sizeof (uint64_t),
386 &spa
->spa_removing_phys
);
388 if (error
== ENOENT
) {
389 spa
->spa_removing_phys
.sr_state
= DSS_NONE
;
390 spa
->spa_removing_phys
.sr_removing_vdev
= -1;
391 spa
->spa_removing_phys
.sr_prev_indirect_vdev
= -1;
392 spa
->spa_indirect_vdevs_loaded
= B_TRUE
;
394 } else if (error
!= 0) {
398 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
) {
400 * We are currently removing a vdev. Create and
401 * initialize a spa_vdev_removal_t from the bonus
402 * buffer of the removing vdevs vdev_im_object, and
403 * initialize its partial mapping.
405 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
406 vdev_t
*vd
= vdev_lookup_top(spa
,
407 spa
->spa_removing_phys
.sr_removing_vdev
);
410 spa_config_exit(spa
, SCL_STATE
, FTAG
);
414 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
416 ASSERT(vdev_is_concrete(vd
));
417 spa_vdev_removal_t
*svr
= spa_vdev_removal_create(vd
);
418 ASSERT3U(svr
->svr_vdev_id
, ==, vd
->vdev_id
);
419 ASSERT(vd
->vdev_removing
);
421 vd
->vdev_indirect_mapping
= vdev_indirect_mapping_open(
422 spa
->spa_meta_objset
, vic
->vic_mapping_object
);
423 vd
->vdev_indirect_births
= vdev_indirect_births_open(
424 spa
->spa_meta_objset
, vic
->vic_births_object
);
425 spa_config_exit(spa
, SCL_STATE
, FTAG
);
427 spa
->spa_vdev_removal
= svr
;
430 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
431 uint64_t indirect_vdev_id
=
432 spa
->spa_removing_phys
.sr_prev_indirect_vdev
;
433 while (indirect_vdev_id
!= UINT64_MAX
) {
434 vdev_t
*vd
= vdev_lookup_top(spa
, indirect_vdev_id
);
435 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
437 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
438 vd
->vdev_indirect_mapping
= vdev_indirect_mapping_open(
439 spa
->spa_meta_objset
, vic
->vic_mapping_object
);
440 vd
->vdev_indirect_births
= vdev_indirect_births_open(
441 spa
->spa_meta_objset
, vic
->vic_births_object
);
443 indirect_vdev_id
= vic
->vic_prev_indirect_vdev
;
445 spa_config_exit(spa
, SCL_STATE
, FTAG
);
448 * Now that we've loaded all the indirect mappings, we can allow
449 * reads from other blocks (e.g. via predictive prefetch).
451 spa
->spa_indirect_vdevs_loaded
= B_TRUE
;
456 spa_restart_removal(spa_t
*spa
)
458 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
464 * In general when this function is called there is no
465 * removal thread running. The only scenario where this
466 * is not true is during spa_import() where this function
467 * is called twice [once from spa_import_impl() and
468 * spa_async_resume()]. Thus, in the scenario where we
469 * import a pool that has an ongoing removal we don't
470 * want to spawn a second thread.
472 if (svr
->svr_thread
!= NULL
)
475 if (!spa_writeable(spa
))
478 zfs_dbgmsg("restarting removal of %llu",
479 (u_longlong_t
)svr
->svr_vdev_id
);
480 svr
->svr_thread
= thread_create(NULL
, 0, spa_vdev_remove_thread
, spa
,
481 0, &p0
, TS_RUN
, minclsyspri
);
485 * Process freeing from a device which is in the middle of being removed.
486 * We must handle this carefully so that we attempt to copy freed data,
487 * and we correctly free already-copied data.
490 free_from_removing_vdev(vdev_t
*vd
, uint64_t offset
, uint64_t size
)
492 spa_t
*spa
= vd
->vdev_spa
;
493 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
494 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
495 uint64_t txg
= spa_syncing_txg(spa
);
496 uint64_t max_offset_yet
= 0;
498 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
499 ASSERT3U(vd
->vdev_indirect_config
.vic_mapping_object
, ==,
500 vdev_indirect_mapping_object(vim
));
501 ASSERT3U(vd
->vdev_id
, ==, svr
->svr_vdev_id
);
503 mutex_enter(&svr
->svr_lock
);
506 * Remove the segment from the removing vdev's spacemap. This
507 * ensures that we will not attempt to copy this space (if the
508 * removal thread has not yet visited it), and also ensures
509 * that we know what is actually allocated on the new vdevs
510 * (needed if we cancel the removal).
512 * Note: we must do the metaslab_free_concrete() with the svr_lock
513 * held, so that the remove_thread can not load this metaslab and then
514 * visit this offset between the time that we metaslab_free_concrete()
515 * and when we check to see if it has been visited.
517 * Note: The checkpoint flag is set to false as having/taking
518 * a checkpoint and removing a device can't happen at the same
521 ASSERT(!spa_has_checkpoint(spa
));
522 metaslab_free_concrete(vd
, offset
, size
, B_FALSE
);
524 uint64_t synced_size
= 0;
525 uint64_t synced_offset
= 0;
526 uint64_t max_offset_synced
= vdev_indirect_mapping_max_offset(vim
);
527 if (offset
< max_offset_synced
) {
529 * The mapping for this offset is already on disk.
530 * Free from the new location.
532 * Note that we use svr_max_synced_offset because it is
533 * updated atomically with respect to the in-core mapping.
534 * By contrast, vim_max_offset is not.
536 * This block may be split between a synced entry and an
537 * in-flight or unvisited entry. Only process the synced
538 * portion of it here.
540 synced_size
= MIN(size
, max_offset_synced
- offset
);
541 synced_offset
= offset
;
543 ASSERT3U(max_offset_yet
, <=, max_offset_synced
);
544 max_offset_yet
= max_offset_synced
;
546 DTRACE_PROBE3(remove__free__synced
,
549 uint64_t, synced_size
);
552 offset
+= synced_size
;
556 * Look at all in-flight txgs starting from the currently syncing one
557 * and see if a section of this free is being copied. By starting from
558 * this txg and iterating forward, we might find that this region
559 * was copied in two different txgs and handle it appropriately.
561 for (int i
= 0; i
< TXG_CONCURRENT_STATES
; i
++) {
562 int txgoff
= (txg
+ i
) & TXG_MASK
;
563 if (size
> 0 && offset
< svr
->svr_max_offset_to_sync
[txgoff
]) {
565 * The mapping for this offset is in flight, and
566 * will be synced in txg+i.
568 uint64_t inflight_size
= MIN(size
,
569 svr
->svr_max_offset_to_sync
[txgoff
] - offset
);
571 DTRACE_PROBE4(remove__free__inflight
,
574 uint64_t, inflight_size
,
578 * We copy data in order of increasing offset.
579 * Therefore the max_offset_to_sync[] must increase
580 * (or be zero, indicating that nothing is being
581 * copied in that txg).
583 if (svr
->svr_max_offset_to_sync
[txgoff
] != 0) {
584 ASSERT3U(svr
->svr_max_offset_to_sync
[txgoff
],
587 svr
->svr_max_offset_to_sync
[txgoff
];
591 * We've already committed to copying this segment:
592 * we have allocated space elsewhere in the pool for
593 * it and have an IO outstanding to copy the data. We
594 * cannot free the space before the copy has
595 * completed, or else the copy IO might overwrite any
596 * new data. To free that space, we record the
597 * segment in the appropriate svr_frees tree and free
598 * the mapped space later, in the txg where we have
599 * completed the copy and synced the mapping (see
600 * vdev_mapping_sync).
602 range_tree_add(svr
->svr_frees
[txgoff
],
603 offset
, inflight_size
);
604 size
-= inflight_size
;
605 offset
+= inflight_size
;
608 * This space is already accounted for as being
609 * done, because it is being copied in txg+i.
610 * However, if i!=0, then it is being copied in
611 * a future txg. If we crash after this txg
612 * syncs but before txg+i syncs, then the space
613 * will be free. Therefore we must account
614 * for the space being done in *this* txg
615 * (when it is freed) rather than the future txg
616 * (when it will be copied).
618 ASSERT3U(svr
->svr_bytes_done
[txgoff
], >=,
620 svr
->svr_bytes_done
[txgoff
] -= inflight_size
;
621 svr
->svr_bytes_done
[txg
& TXG_MASK
] += inflight_size
;
624 ASSERT0(svr
->svr_max_offset_to_sync
[TXG_CLEAN(txg
) & TXG_MASK
]);
628 * The copy thread has not yet visited this offset. Ensure
632 DTRACE_PROBE3(remove__free__unvisited
,
637 if (svr
->svr_allocd_segs
!= NULL
)
638 range_tree_clear(svr
->svr_allocd_segs
, offset
, size
);
641 * Since we now do not need to copy this data, for
642 * accounting purposes we have done our job and can count
645 svr
->svr_bytes_done
[txg
& TXG_MASK
] += size
;
647 mutex_exit(&svr
->svr_lock
);
650 * Now that we have dropped svr_lock, process the synced portion
653 if (synced_size
> 0) {
654 vdev_indirect_mark_obsolete(vd
, synced_offset
, synced_size
);
657 * Note: this can only be called from syncing context,
658 * and the vdev_indirect_mapping is only changed from the
659 * sync thread, so we don't need svr_lock while doing
660 * metaslab_free_impl_cb.
662 boolean_t checkpoint
= B_FALSE
;
663 vdev_indirect_ops
.vdev_op_remap(vd
, synced_offset
, synced_size
,
664 metaslab_free_impl_cb
, &checkpoint
);
669 * Stop an active removal and update the spa_removing phys.
672 spa_finish_removal(spa_t
*spa
, dsl_scan_state_t state
, dmu_tx_t
*tx
)
674 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
675 ASSERT3U(dmu_tx_get_txg(tx
), ==, spa_syncing_txg(spa
));
677 /* Ensure the removal thread has completed before we free the svr. */
678 spa_vdev_remove_suspend(spa
);
680 ASSERT(state
== DSS_FINISHED
|| state
== DSS_CANCELED
);
682 if (state
== DSS_FINISHED
) {
683 spa_removing_phys_t
*srp
= &spa
->spa_removing_phys
;
684 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
685 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
687 if (srp
->sr_prev_indirect_vdev
!= -1) {
689 pvd
= vdev_lookup_top(spa
,
690 srp
->sr_prev_indirect_vdev
);
691 ASSERT3P(pvd
->vdev_ops
, ==, &vdev_indirect_ops
);
694 vic
->vic_prev_indirect_vdev
= srp
->sr_prev_indirect_vdev
;
695 srp
->sr_prev_indirect_vdev
= vd
->vdev_id
;
697 spa
->spa_removing_phys
.sr_state
= state
;
698 spa
->spa_removing_phys
.sr_end_time
= gethrestime_sec();
700 spa
->spa_vdev_removal
= NULL
;
701 spa_vdev_removal_destroy(svr
);
703 spa_sync_removing_state(spa
, tx
);
704 spa_notify_waiters(spa
);
706 vdev_config_dirty(spa
->spa_root_vdev
);
710 free_mapped_segment_cb(void *arg
, uint64_t offset
, uint64_t size
)
713 vdev_indirect_mark_obsolete(vd
, offset
, size
);
714 boolean_t checkpoint
= B_FALSE
;
715 vdev_indirect_ops
.vdev_op_remap(vd
, offset
, size
,
716 metaslab_free_impl_cb
, &checkpoint
);
720 * On behalf of the removal thread, syncs an incremental bit more of
721 * the indirect mapping to disk and updates the in-memory mapping.
722 * Called as a sync task in every txg that the removal thread makes progress.
725 vdev_mapping_sync(void *arg
, dmu_tx_t
*tx
)
727 spa_vdev_removal_t
*svr
= arg
;
728 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
729 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
730 vdev_indirect_config_t
*vic __maybe_unused
= &vd
->vdev_indirect_config
;
731 uint64_t txg
= dmu_tx_get_txg(tx
);
732 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
734 ASSERT(vic
->vic_mapping_object
!= 0);
735 ASSERT3U(txg
, ==, spa_syncing_txg(spa
));
737 vdev_indirect_mapping_add_entries(vim
,
738 &svr
->svr_new_segments
[txg
& TXG_MASK
], tx
);
739 vdev_indirect_births_add_entry(vd
->vdev_indirect_births
,
740 vdev_indirect_mapping_max_offset(vim
), dmu_tx_get_txg(tx
), tx
);
743 * Free the copied data for anything that was freed while the
744 * mapping entries were in flight.
746 mutex_enter(&svr
->svr_lock
);
747 range_tree_vacate(svr
->svr_frees
[txg
& TXG_MASK
],
748 free_mapped_segment_cb
, vd
);
749 ASSERT3U(svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
], >=,
750 vdev_indirect_mapping_max_offset(vim
));
751 svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] = 0;
752 mutex_exit(&svr
->svr_lock
);
754 spa_sync_removing_state(spa
, tx
);
757 typedef struct vdev_copy_segment_arg
{
759 dva_t
*vcsa_dest_dva
;
761 range_tree_t
*vcsa_obsolete_segs
;
762 } vdev_copy_segment_arg_t
;
765 unalloc_seg(void *arg
, uint64_t start
, uint64_t size
)
767 vdev_copy_segment_arg_t
*vcsa
= arg
;
768 spa_t
*spa
= vcsa
->vcsa_spa
;
769 blkptr_t bp
= { { { {0} } } };
771 BP_SET_BIRTH(&bp
, TXG_INITIAL
, TXG_INITIAL
);
772 BP_SET_LSIZE(&bp
, size
);
773 BP_SET_PSIZE(&bp
, size
);
774 BP_SET_COMPRESS(&bp
, ZIO_COMPRESS_OFF
);
775 BP_SET_CHECKSUM(&bp
, ZIO_CHECKSUM_OFF
);
776 BP_SET_TYPE(&bp
, DMU_OT_NONE
);
777 BP_SET_LEVEL(&bp
, 0);
778 BP_SET_DEDUP(&bp
, 0);
779 BP_SET_BYTEORDER(&bp
, ZFS_HOST_BYTEORDER
);
781 DVA_SET_VDEV(&bp
.blk_dva
[0], DVA_GET_VDEV(vcsa
->vcsa_dest_dva
));
782 DVA_SET_OFFSET(&bp
.blk_dva
[0],
783 DVA_GET_OFFSET(vcsa
->vcsa_dest_dva
) + start
);
784 DVA_SET_ASIZE(&bp
.blk_dva
[0], size
);
786 zio_free(spa
, vcsa
->vcsa_txg
, &bp
);
790 * All reads and writes associated with a call to spa_vdev_copy_segment()
794 spa_vdev_copy_segment_done(zio_t
*zio
)
796 vdev_copy_segment_arg_t
*vcsa
= zio
->io_private
;
798 range_tree_vacate(vcsa
->vcsa_obsolete_segs
,
800 range_tree_destroy(vcsa
->vcsa_obsolete_segs
);
801 kmem_free(vcsa
, sizeof (*vcsa
));
803 spa_config_exit(zio
->io_spa
, SCL_STATE
, zio
->io_spa
);
807 * The write of the new location is done.
810 spa_vdev_copy_segment_write_done(zio_t
*zio
)
812 vdev_copy_arg_t
*vca
= zio
->io_private
;
814 abd_free(zio
->io_abd
);
816 mutex_enter(&vca
->vca_lock
);
817 vca
->vca_outstanding_bytes
-= zio
->io_size
;
819 if (zio
->io_error
!= 0)
820 vca
->vca_write_error_bytes
+= zio
->io_size
;
822 cv_signal(&vca
->vca_cv
);
823 mutex_exit(&vca
->vca_lock
);
827 * The read of the old location is done. The parent zio is the write to
828 * the new location. Allow it to start.
831 spa_vdev_copy_segment_read_done(zio_t
*zio
)
833 vdev_copy_arg_t
*vca
= zio
->io_private
;
835 if (zio
->io_error
!= 0) {
836 mutex_enter(&vca
->vca_lock
);
837 vca
->vca_read_error_bytes
+= zio
->io_size
;
838 mutex_exit(&vca
->vca_lock
);
841 zio_nowait(zio_unique_parent(zio
));
845 * If the old and new vdevs are mirrors, we will read both sides of the old
846 * mirror, and write each copy to the corresponding side of the new mirror.
847 * If the old and new vdevs have a different number of children, we will do
848 * this as best as possible. Since we aren't verifying checksums, this
849 * ensures that as long as there's a good copy of the data, we'll have a
850 * good copy after the removal, even if there's silent damage to one side
851 * of the mirror. If we're removing a mirror that has some silent damage,
852 * we'll have exactly the same damage in the new location (assuming that
853 * the new location is also a mirror).
855 * We accomplish this by creating a tree of zio_t's, with as many writes as
856 * there are "children" of the new vdev (a non-redundant vdev counts as one
857 * child, a 2-way mirror has 2 children, etc). Each write has an associated
858 * read from a child of the old vdev. Typically there will be the same
859 * number of children of the old and new vdevs. However, if there are more
860 * children of the new vdev, some child(ren) of the old vdev will be issued
861 * multiple reads. If there are more children of the old vdev, some copies
864 * For example, the tree of zio_t's for a 2-way mirror is:
868 * write(new vdev, child 0) write(new vdev, child 1)
870 * read(old vdev, child 0) read(old vdev, child 1)
872 * Child zio's complete before their parents complete. However, zio's
873 * created with zio_vdev_child_io() may be issued before their children
874 * complete. In this case we need to make sure that the children (reads)
875 * complete before the parents (writes) are *issued*. We do this by not
876 * calling zio_nowait() on each write until its corresponding read has
879 * The spa_config_lock must be held while zio's created by
880 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
881 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
882 * zio is needed to release the spa_config_lock after all the reads and
883 * writes complete. (Note that we can't grab the config lock for each read,
884 * because it is not reentrant - we could deadlock with a thread waiting
888 spa_vdev_copy_one_child(vdev_copy_arg_t
*vca
, zio_t
*nzio
,
889 vdev_t
*source_vd
, uint64_t source_offset
,
890 vdev_t
*dest_child_vd
, uint64_t dest_offset
, int dest_id
, uint64_t size
)
892 ASSERT3U(spa_config_held(nzio
->io_spa
, SCL_ALL
, RW_READER
), !=, 0);
895 * If the destination child in unwritable then there is no point
896 * in issuing the source reads which cannot be written.
898 if (!vdev_writeable(dest_child_vd
))
901 mutex_enter(&vca
->vca_lock
);
902 vca
->vca_outstanding_bytes
+= size
;
903 mutex_exit(&vca
->vca_lock
);
905 abd_t
*abd
= abd_alloc_for_io(size
, B_FALSE
);
907 vdev_t
*source_child_vd
= NULL
;
908 if (source_vd
->vdev_ops
== &vdev_mirror_ops
&& dest_id
!= -1) {
910 * Source and dest are both mirrors. Copy from the same
911 * child id as we are copying to (wrapping around if there
912 * are more dest children than source children). If the
913 * preferred source child is unreadable select another.
915 for (int i
= 0; i
< source_vd
->vdev_children
; i
++) {
916 source_child_vd
= source_vd
->vdev_child
[
917 (dest_id
+ i
) % source_vd
->vdev_children
];
918 if (vdev_readable(source_child_vd
))
922 source_child_vd
= source_vd
;
926 * There should always be at least one readable source child or
927 * the pool would be in a suspended state. Somehow selecting an
928 * unreadable child would result in IO errors, the removal process
929 * being cancelled, and the pool reverting to its pre-removal state.
931 ASSERT3P(source_child_vd
, !=, NULL
);
933 zio_t
*write_zio
= zio_vdev_child_io(nzio
, NULL
,
934 dest_child_vd
, dest_offset
, abd
, size
,
935 ZIO_TYPE_WRITE
, ZIO_PRIORITY_REMOVAL
,
937 spa_vdev_copy_segment_write_done
, vca
);
939 zio_nowait(zio_vdev_child_io(write_zio
, NULL
,
940 source_child_vd
, source_offset
, abd
, size
,
941 ZIO_TYPE_READ
, ZIO_PRIORITY_REMOVAL
,
943 spa_vdev_copy_segment_read_done
, vca
));
947 * Allocate a new location for this segment, and create the zio_t's to
948 * read from the old location and write to the new location.
951 spa_vdev_copy_segment(vdev_t
*vd
, range_tree_t
*segs
,
952 uint64_t maxalloc
, uint64_t txg
,
953 vdev_copy_arg_t
*vca
, zio_alloc_list_t
*zal
)
955 metaslab_group_t
*mg
= vd
->vdev_mg
;
956 spa_t
*spa
= vd
->vdev_spa
;
957 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
958 vdev_indirect_mapping_entry_t
*entry
;
960 uint64_t start
= range_tree_min(segs
);
961 ASSERT0(P2PHASE(start
, 1 << spa
->spa_min_ashift
));
963 ASSERT3U(maxalloc
, <=, SPA_MAXBLOCKSIZE
);
964 ASSERT0(P2PHASE(maxalloc
, 1 << spa
->spa_min_ashift
));
966 uint64_t size
= range_tree_span(segs
);
967 if (range_tree_span(segs
) > maxalloc
) {
969 * We can't allocate all the segments. Prefer to end
970 * the allocation at the end of a segment, thus avoiding
971 * additional split blocks.
973 range_seg_max_t search
;
974 zfs_btree_index_t where
;
975 rs_set_start(&search
, segs
, start
+ maxalloc
);
976 rs_set_end(&search
, segs
, start
+ maxalloc
);
977 (void) zfs_btree_find(&segs
->rt_root
, &search
, &where
);
978 range_seg_t
*rs
= zfs_btree_prev(&segs
->rt_root
, &where
,
981 size
= rs_get_end(rs
, segs
) - start
;
984 * There are no segments that end before maxalloc.
985 * I.e. the first segment is larger than maxalloc,
986 * so we must split it.
991 ASSERT3U(size
, <=, maxalloc
);
992 ASSERT0(P2PHASE(size
, 1 << spa
->spa_min_ashift
));
995 * An allocation class might not have any remaining vdevs or space
997 metaslab_class_t
*mc
= mg
->mg_class
;
998 if (mc
->mc_groups
== 0)
999 mc
= spa_normal_class(spa
);
1000 int error
= metaslab_alloc_dva(spa
, mc
, size
, &dst
, 0, NULL
, txg
, 0,
1002 if (error
== ENOSPC
&& mc
!= spa_normal_class(spa
)) {
1003 error
= metaslab_alloc_dva(spa
, spa_normal_class(spa
), size
,
1004 &dst
, 0, NULL
, txg
, 0, zal
, 0);
1010 * Determine the ranges that are not actually needed. Offsets are
1011 * relative to the start of the range to be copied (i.e. relative to the
1012 * local variable "start").
1014 range_tree_t
*obsolete_segs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
,
1017 zfs_btree_index_t where
;
1018 range_seg_t
*rs
= zfs_btree_first(&segs
->rt_root
, &where
);
1019 ASSERT3U(rs_get_start(rs
, segs
), ==, start
);
1020 uint64_t prev_seg_end
= rs_get_end(rs
, segs
);
1021 while ((rs
= zfs_btree_next(&segs
->rt_root
, &where
, &where
)) != NULL
) {
1022 if (rs_get_start(rs
, segs
) >= start
+ size
) {
1025 range_tree_add(obsolete_segs
,
1026 prev_seg_end
- start
,
1027 rs_get_start(rs
, segs
) - prev_seg_end
);
1029 prev_seg_end
= rs_get_end(rs
, segs
);
1031 /* We don't end in the middle of an obsolete range */
1032 ASSERT3U(start
+ size
, <=, prev_seg_end
);
1034 range_tree_clear(segs
, start
, size
);
1037 * We can't have any padding of the allocated size, otherwise we will
1038 * misunderstand what's allocated, and the size of the mapping. We
1039 * prevent padding by ensuring that all devices in the pool have the
1040 * same ashift, and the allocation size is a multiple of the ashift.
1042 VERIFY3U(DVA_GET_ASIZE(&dst
), ==, size
);
1044 entry
= kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t
), KM_SLEEP
);
1045 DVA_MAPPING_SET_SRC_OFFSET(&entry
->vime_mapping
, start
);
1046 entry
->vime_mapping
.vimep_dst
= dst
;
1047 if (spa_feature_is_enabled(spa
, SPA_FEATURE_OBSOLETE_COUNTS
)) {
1048 entry
->vime_obsolete_count
= range_tree_space(obsolete_segs
);
1051 vdev_copy_segment_arg_t
*vcsa
= kmem_zalloc(sizeof (*vcsa
), KM_SLEEP
);
1052 vcsa
->vcsa_dest_dva
= &entry
->vime_mapping
.vimep_dst
;
1053 vcsa
->vcsa_obsolete_segs
= obsolete_segs
;
1054 vcsa
->vcsa_spa
= spa
;
1055 vcsa
->vcsa_txg
= txg
;
1058 * See comment before spa_vdev_copy_one_child().
1060 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
1061 zio_t
*nzio
= zio_null(spa
->spa_txg_zio
[txg
& TXG_MASK
], spa
, NULL
,
1062 spa_vdev_copy_segment_done
, vcsa
, 0);
1063 vdev_t
*dest_vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(&dst
));
1064 if (dest_vd
->vdev_ops
== &vdev_mirror_ops
) {
1065 for (int i
= 0; i
< dest_vd
->vdev_children
; i
++) {
1066 vdev_t
*child
= dest_vd
->vdev_child
[i
];
1067 spa_vdev_copy_one_child(vca
, nzio
, vd
, start
,
1068 child
, DVA_GET_OFFSET(&dst
), i
, size
);
1071 spa_vdev_copy_one_child(vca
, nzio
, vd
, start
,
1072 dest_vd
, DVA_GET_OFFSET(&dst
), -1, size
);
1076 list_insert_tail(&svr
->svr_new_segments
[txg
& TXG_MASK
], entry
);
1077 ASSERT3U(start
+ size
, <=, vd
->vdev_ms_count
<< vd
->vdev_ms_shift
);
1078 vdev_dirty(vd
, 0, NULL
, txg
);
1084 * Complete the removal of a toplevel vdev. This is called as a
1085 * synctask in the same txg that we will sync out the new config (to the
1086 * MOS object) which indicates that this vdev is indirect.
1089 vdev_remove_complete_sync(void *arg
, dmu_tx_t
*tx
)
1091 spa_vdev_removal_t
*svr
= arg
;
1092 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1093 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
1095 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
1097 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1098 ASSERT0(svr
->svr_bytes_done
[i
]);
1101 ASSERT3U(spa
->spa_removing_phys
.sr_copied
, ==,
1102 spa
->spa_removing_phys
.sr_to_copy
);
1104 vdev_destroy_spacemaps(vd
, tx
);
1106 /* destroy leaf zaps, if any */
1107 ASSERT3P(svr
->svr_zaplist
, !=, NULL
);
1108 for (nvpair_t
*pair
= nvlist_next_nvpair(svr
->svr_zaplist
, NULL
);
1110 pair
= nvlist_next_nvpair(svr
->svr_zaplist
, pair
)) {
1111 vdev_destroy_unlink_zap(vd
, fnvpair_value_uint64(pair
), tx
);
1113 fnvlist_free(svr
->svr_zaplist
);
1115 spa_finish_removal(dmu_tx_pool(tx
)->dp_spa
, DSS_FINISHED
, tx
);
1116 /* vd->vdev_path is not available here */
1117 spa_history_log_internal(spa
, "vdev remove completed", tx
,
1118 "%s vdev %llu", spa_name(spa
), (u_longlong_t
)vd
->vdev_id
);
1122 vdev_remove_enlist_zaps(vdev_t
*vd
, nvlist_t
*zlist
)
1124 ASSERT3P(zlist
, !=, NULL
);
1125 ASSERT0(vdev_get_nparity(vd
));
1127 if (vd
->vdev_leaf_zap
!= 0) {
1129 (void) snprintf(zkey
, sizeof (zkey
), "%s-%llu",
1130 VDEV_REMOVAL_ZAP_OBJS
, (u_longlong_t
)vd
->vdev_leaf_zap
);
1131 fnvlist_add_uint64(zlist
, zkey
, vd
->vdev_leaf_zap
);
1134 for (uint64_t id
= 0; id
< vd
->vdev_children
; id
++) {
1135 vdev_remove_enlist_zaps(vd
->vdev_child
[id
], zlist
);
1140 vdev_remove_replace_with_indirect(vdev_t
*vd
, uint64_t txg
)
1144 spa_t
*spa
= vd
->vdev_spa
;
1145 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1148 * First, build a list of leaf zaps to be destroyed.
1149 * This is passed to the sync context thread,
1150 * which does the actual unlinking.
1152 svr
->svr_zaplist
= fnvlist_alloc();
1153 vdev_remove_enlist_zaps(vd
, svr
->svr_zaplist
);
1155 ivd
= vdev_add_parent(vd
, &vdev_indirect_ops
);
1156 ivd
->vdev_removing
= 0;
1158 vd
->vdev_leaf_zap
= 0;
1160 vdev_remove_child(ivd
, vd
);
1161 vdev_compact_children(ivd
);
1163 ASSERT(!list_link_active(&vd
->vdev_state_dirty_node
));
1165 mutex_enter(&svr
->svr_lock
);
1166 svr
->svr_thread
= NULL
;
1167 cv_broadcast(&svr
->svr_cv
);
1168 mutex_exit(&svr
->svr_lock
);
1170 /* After this, we can not use svr. */
1171 tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, txg
);
1172 dsl_sync_task_nowait(spa
->spa_dsl_pool
,
1173 vdev_remove_complete_sync
, svr
, tx
);
1178 * Complete the removal of a toplevel vdev. This is called in open
1179 * context by the removal thread after we have copied all vdev's data.
1182 vdev_remove_complete(spa_t
*spa
)
1187 * Wait for any deferred frees to be synced before we call
1188 * vdev_metaslab_fini()
1190 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1191 txg
= spa_vdev_enter(spa
);
1192 vdev_t
*vd
= vdev_lookup_top(spa
, spa
->spa_vdev_removal
->svr_vdev_id
);
1193 ASSERT3P(vd
->vdev_initialize_thread
, ==, NULL
);
1194 ASSERT3P(vd
->vdev_trim_thread
, ==, NULL
);
1195 ASSERT3P(vd
->vdev_autotrim_thread
, ==, NULL
);
1197 sysevent_t
*ev
= spa_event_create(spa
, vd
, NULL
,
1198 ESC_ZFS_VDEV_REMOVE_DEV
);
1200 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1201 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)txg
);
1204 * Discard allocation state.
1206 if (vd
->vdev_mg
!= NULL
) {
1207 vdev_metaslab_fini(vd
);
1208 metaslab_group_destroy(vd
->vdev_mg
);
1210 spa_log_sm_set_blocklimit(spa
);
1212 if (vd
->vdev_log_mg
!= NULL
) {
1213 ASSERT0(vd
->vdev_ms_count
);
1214 metaslab_group_destroy(vd
->vdev_log_mg
);
1215 vd
->vdev_log_mg
= NULL
;
1217 ASSERT0(vd
->vdev_stat
.vs_space
);
1218 ASSERT0(vd
->vdev_stat
.vs_dspace
);
1220 vdev_remove_replace_with_indirect(vd
, txg
);
1223 * We now release the locks, allowing spa_sync to run and finish the
1224 * removal via vdev_remove_complete_sync in syncing context.
1226 * Note that we hold on to the vdev_t that has been replaced. Since
1227 * it isn't part of the vdev tree any longer, it can't be concurrently
1228 * manipulated, even while we don't have the config lock.
1230 (void) spa_vdev_exit(spa
, NULL
, txg
, 0);
1233 * Top ZAP should have been transferred to the indirect vdev in
1234 * vdev_remove_replace_with_indirect.
1236 ASSERT0(vd
->vdev_top_zap
);
1239 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1241 ASSERT0(vd
->vdev_leaf_zap
);
1243 txg
= spa_vdev_enter(spa
);
1244 (void) vdev_label_init(vd
, 0, VDEV_LABEL_REMOVE
);
1246 * Request to update the config and the config cachefile.
1248 vdev_config_dirty(spa
->spa_root_vdev
);
1249 (void) spa_vdev_exit(spa
, vd
, txg
, 0);
1256 * Evacuates a segment of size at most max_alloc from the vdev
1257 * via repeated calls to spa_vdev_copy_segment. If an allocation
1258 * fails, the pool is probably too fragmented to handle such a
1259 * large size, so decrease max_alloc so that the caller will not try
1260 * this size again this txg.
1263 spa_vdev_copy_impl(vdev_t
*vd
, spa_vdev_removal_t
*svr
, vdev_copy_arg_t
*vca
,
1264 uint64_t *max_alloc
, dmu_tx_t
*tx
)
1266 uint64_t txg
= dmu_tx_get_txg(tx
);
1267 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1269 mutex_enter(&svr
->svr_lock
);
1272 * Determine how big of a chunk to copy. We can allocate up
1273 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1274 * bytes of unallocated space at a time. "segs" will track the
1275 * allocated segments that we are copying. We may also be copying
1276 * free segments (of up to vdev_removal_max_span bytes).
1278 range_tree_t
*segs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
1280 range_tree_t
*rt
= svr
->svr_allocd_segs
;
1281 range_seg_t
*rs
= range_tree_first(rt
);
1286 uint64_t seg_length
;
1288 if (range_tree_is_empty(segs
)) {
1289 /* need to truncate the first seg based on max_alloc */
1290 seg_length
= MIN(rs_get_end(rs
, rt
) - rs_get_start(rs
,
1293 if (rs_get_start(rs
, rt
) - range_tree_max(segs
) >
1294 vdev_removal_max_span
) {
1296 * Including this segment would cause us to
1297 * copy a larger unneeded chunk than is allowed.
1300 } else if (rs_get_end(rs
, rt
) - range_tree_min(segs
) >
1303 * This additional segment would extend past
1304 * max_alloc. Rather than splitting this
1305 * segment, leave it for the next mapping.
1309 seg_length
= rs_get_end(rs
, rt
) -
1310 rs_get_start(rs
, rt
);
1314 range_tree_add(segs
, rs_get_start(rs
, rt
), seg_length
);
1315 range_tree_remove(svr
->svr_allocd_segs
,
1316 rs_get_start(rs
, rt
), seg_length
);
1319 if (range_tree_is_empty(segs
)) {
1320 mutex_exit(&svr
->svr_lock
);
1321 range_tree_destroy(segs
);
1325 if (svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] == 0) {
1326 dsl_sync_task_nowait(dmu_tx_pool(tx
), vdev_mapping_sync
,
1330 svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] = range_tree_max(segs
);
1333 * Note: this is the amount of *allocated* space
1334 * that we are taking care of each txg.
1336 svr
->svr_bytes_done
[txg
& TXG_MASK
] += range_tree_space(segs
);
1338 mutex_exit(&svr
->svr_lock
);
1340 zio_alloc_list_t zal
;
1341 metaslab_trace_init(&zal
);
1342 uint64_t thismax
= SPA_MAXBLOCKSIZE
;
1343 while (!range_tree_is_empty(segs
)) {
1344 int error
= spa_vdev_copy_segment(vd
,
1345 segs
, thismax
, txg
, vca
, &zal
);
1347 if (error
== ENOSPC
) {
1349 * Cut our segment in half, and don't try this
1350 * segment size again this txg. Note that the
1351 * allocation size must be aligned to the highest
1352 * ashift in the pool, so that the allocation will
1353 * not be padded out to a multiple of the ashift,
1354 * which could cause us to think that this mapping
1355 * is larger than we intended.
1357 ASSERT3U(spa
->spa_max_ashift
, >=, SPA_MINBLOCKSHIFT
);
1358 ASSERT3U(spa
->spa_max_ashift
, ==, spa
->spa_min_ashift
);
1359 uint64_t attempted
=
1360 MIN(range_tree_span(segs
), thismax
);
1361 thismax
= P2ROUNDUP(attempted
/ 2,
1362 1 << spa
->spa_max_ashift
);
1364 * The minimum-size allocation can not fail.
1366 ASSERT3U(attempted
, >, 1 << spa
->spa_max_ashift
);
1367 *max_alloc
= attempted
- (1 << spa
->spa_max_ashift
);
1372 * We've performed an allocation, so reset the
1375 metaslab_trace_fini(&zal
);
1376 metaslab_trace_init(&zal
);
1379 metaslab_trace_fini(&zal
);
1380 range_tree_destroy(segs
);
1384 * The size of each removal mapping is limited by the tunable
1385 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1386 * pool's ashift, so that we don't try to split individual sectors regardless
1387 * of the tunable value. (Note that device removal requires that all devices
1388 * have the same ashift, so there's no difference between spa_min_ashift and
1389 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1392 spa_remove_max_segment(spa_t
*spa
)
1394 return (P2ROUNDUP(zfs_remove_max_segment
, 1 << spa
->spa_max_ashift
));
1398 * The removal thread operates in open context. It iterates over all
1399 * allocated space in the vdev, by loading each metaslab's spacemap.
1400 * For each contiguous segment of allocated space (capping the segment
1401 * size at SPA_MAXBLOCKSIZE), we:
1402 * - Allocate space for it on another vdev.
1403 * - Create a new mapping from the old location to the new location
1404 * (as a record in svr_new_segments).
1405 * - Initiate a physical read zio to get the data off the removing disk.
1406 * - In the read zio's done callback, initiate a physical write zio to
1407 * write it to the new vdev.
1408 * Note that all of this will take effect when a particular TXG syncs.
1409 * The sync thread ensures that all the phys reads and writes for the syncing
1410 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1411 * (see vdev_mapping_sync()).
1414 spa_vdev_remove_thread(void *arg
)
1417 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1418 vdev_copy_arg_t vca
;
1419 uint64_t max_alloc
= spa_remove_max_segment(spa
);
1420 uint64_t last_txg
= 0;
1422 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1423 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
1424 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1425 uint64_t start_offset
= vdev_indirect_mapping_max_offset(vim
);
1427 ASSERT3P(vd
->vdev_ops
, !=, &vdev_indirect_ops
);
1428 ASSERT(vdev_is_concrete(vd
));
1429 ASSERT(vd
->vdev_removing
);
1430 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
1431 ASSERT(vim
!= NULL
);
1433 mutex_init(&vca
.vca_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1434 cv_init(&vca
.vca_cv
, NULL
, CV_DEFAULT
, NULL
);
1435 vca
.vca_outstanding_bytes
= 0;
1436 vca
.vca_read_error_bytes
= 0;
1437 vca
.vca_write_error_bytes
= 0;
1439 mutex_enter(&svr
->svr_lock
);
1442 * Start from vim_max_offset so we pick up where we left off
1443 * if we are restarting the removal after opening the pool.
1446 for (msi
= start_offset
>> vd
->vdev_ms_shift
;
1447 msi
< vd
->vdev_ms_count
&& !svr
->svr_thread_exit
; msi
++) {
1448 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
1449 ASSERT3U(msi
, <=, vd
->vdev_ms_count
);
1451 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1453 mutex_enter(&msp
->ms_sync_lock
);
1454 mutex_enter(&msp
->ms_lock
);
1457 * Assert nothing in flight -- ms_*tree is empty.
1459 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1460 ASSERT0(range_tree_space(msp
->ms_allocating
[i
]));
1464 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1465 * read the allocated segments from the space map object
1466 * into svr_allocd_segs. Since we do this while holding
1467 * svr_lock and ms_sync_lock, concurrent frees (which
1468 * would have modified the space map) will wait for us
1469 * to finish loading the spacemap, and then take the
1470 * appropriate action (see free_from_removing_vdev()).
1472 if (msp
->ms_sm
!= NULL
) {
1473 VERIFY0(space_map_load(msp
->ms_sm
,
1474 svr
->svr_allocd_segs
, SM_ALLOC
));
1476 range_tree_walk(msp
->ms_unflushed_allocs
,
1477 range_tree_add
, svr
->svr_allocd_segs
);
1478 range_tree_walk(msp
->ms_unflushed_frees
,
1479 range_tree_remove
, svr
->svr_allocd_segs
);
1480 range_tree_walk(msp
->ms_freeing
,
1481 range_tree_remove
, svr
->svr_allocd_segs
);
1484 * When we are resuming from a paused removal (i.e.
1485 * when importing a pool with a removal in progress),
1486 * discard any state that we have already processed.
1488 range_tree_clear(svr
->svr_allocd_segs
, 0, start_offset
);
1490 mutex_exit(&msp
->ms_lock
);
1491 mutex_exit(&msp
->ms_sync_lock
);
1494 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1495 (u_longlong_t
)zfs_btree_numnodes(
1496 &svr
->svr_allocd_segs
->rt_root
),
1497 (u_longlong_t
)msp
->ms_id
);
1499 while (!svr
->svr_thread_exit
&&
1500 !range_tree_is_empty(svr
->svr_allocd_segs
)) {
1502 mutex_exit(&svr
->svr_lock
);
1505 * We need to periodically drop the config lock so that
1506 * writers can get in. Additionally, we can't wait
1507 * for a txg to sync while holding a config lock
1508 * (since a waiting writer could cause a 3-way deadlock
1509 * with the sync thread, which also gets a config
1510 * lock for reader). So we can't hold the config lock
1511 * while calling dmu_tx_assign().
1513 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1516 * This delay will pause the removal around the point
1517 * specified by zfs_removal_suspend_progress. We do this
1518 * solely from the test suite or during debugging.
1520 while (zfs_removal_suspend_progress
&&
1521 !svr
->svr_thread_exit
)
1524 mutex_enter(&vca
.vca_lock
);
1525 while (vca
.vca_outstanding_bytes
>
1526 zfs_remove_max_copy_bytes
) {
1527 cv_wait(&vca
.vca_cv
, &vca
.vca_lock
);
1529 mutex_exit(&vca
.vca_lock
);
1532 dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
1534 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
1535 uint64_t txg
= dmu_tx_get_txg(tx
);
1538 * Reacquire the vdev_config lock. The vdev_t
1539 * that we're removing may have changed, e.g. due
1540 * to a vdev_attach or vdev_detach.
1542 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1543 vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
1545 if (txg
!= last_txg
)
1546 max_alloc
= spa_remove_max_segment(spa
);
1549 spa_vdev_copy_impl(vd
, svr
, &vca
, &max_alloc
, tx
);
1552 mutex_enter(&svr
->svr_lock
);
1555 mutex_enter(&vca
.vca_lock
);
1556 if (zfs_removal_ignore_errors
== 0 &&
1557 (vca
.vca_read_error_bytes
> 0 ||
1558 vca
.vca_write_error_bytes
> 0)) {
1559 svr
->svr_thread_exit
= B_TRUE
;
1561 mutex_exit(&vca
.vca_lock
);
1564 mutex_exit(&svr
->svr_lock
);
1566 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1569 * Wait for all copies to finish before cleaning up the vca.
1571 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1572 ASSERT0(vca
.vca_outstanding_bytes
);
1574 mutex_destroy(&vca
.vca_lock
);
1575 cv_destroy(&vca
.vca_cv
);
1577 if (svr
->svr_thread_exit
) {
1578 mutex_enter(&svr
->svr_lock
);
1579 range_tree_vacate(svr
->svr_allocd_segs
, NULL
, NULL
);
1580 svr
->svr_thread
= NULL
;
1581 cv_broadcast(&svr
->svr_cv
);
1582 mutex_exit(&svr
->svr_lock
);
1585 * During the removal process an unrecoverable read or write
1586 * error was encountered. The removal process must be
1587 * cancelled or this damage may become permanent.
1589 if (zfs_removal_ignore_errors
== 0 &&
1590 (vca
.vca_read_error_bytes
> 0 ||
1591 vca
.vca_write_error_bytes
> 0)) {
1592 zfs_dbgmsg("canceling removal due to IO errors: "
1593 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1594 (u_longlong_t
)vca
.vca_read_error_bytes
,
1595 (u_longlong_t
)vca
.vca_write_error_bytes
);
1596 spa_vdev_remove_cancel_impl(spa
);
1599 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1600 vdev_remove_complete(spa
);
1607 spa_vdev_remove_suspend(spa_t
*spa
)
1609 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1614 mutex_enter(&svr
->svr_lock
);
1615 svr
->svr_thread_exit
= B_TRUE
;
1616 while (svr
->svr_thread
!= NULL
)
1617 cv_wait(&svr
->svr_cv
, &svr
->svr_lock
);
1618 svr
->svr_thread_exit
= B_FALSE
;
1619 mutex_exit(&svr
->svr_lock
);
1624 spa_vdev_remove_cancel_check(void *arg
, dmu_tx_t
*tx
)
1626 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1628 if (spa
->spa_vdev_removal
== NULL
)
1629 return (ENOTACTIVE
);
1634 * Cancel a removal by freeing all entries from the partial mapping
1635 * and marking the vdev as no longer being removing.
1639 spa_vdev_remove_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1641 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1642 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1643 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
1644 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
1645 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1646 objset_t
*mos
= spa
->spa_meta_objset
;
1648 ASSERT3P(svr
->svr_thread
, ==, NULL
);
1650 spa_feature_decr(spa
, SPA_FEATURE_DEVICE_REMOVAL
, tx
);
1652 boolean_t are_precise
;
1653 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
1655 spa_feature_decr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
1656 VERIFY0(zap_remove(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
1657 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE
, tx
));
1660 uint64_t obsolete_sm_object
;
1661 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
1662 if (obsolete_sm_object
!= 0) {
1663 ASSERT(vd
->vdev_obsolete_sm
!= NULL
);
1664 ASSERT3U(obsolete_sm_object
, ==,
1665 space_map_object(vd
->vdev_obsolete_sm
));
1667 space_map_free(vd
->vdev_obsolete_sm
, tx
);
1668 VERIFY0(zap_remove(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
1669 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM
, tx
));
1670 space_map_close(vd
->vdev_obsolete_sm
);
1671 vd
->vdev_obsolete_sm
= NULL
;
1672 spa_feature_decr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
1674 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1675 ASSERT(list_is_empty(&svr
->svr_new_segments
[i
]));
1676 ASSERT3U(svr
->svr_max_offset_to_sync
[i
], <=,
1677 vdev_indirect_mapping_max_offset(vim
));
1680 for (uint64_t msi
= 0; msi
< vd
->vdev_ms_count
; msi
++) {
1681 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
1683 if (msp
->ms_start
>= vdev_indirect_mapping_max_offset(vim
))
1686 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1688 mutex_enter(&msp
->ms_lock
);
1691 * Assert nothing in flight -- ms_*tree is empty.
1693 for (int i
= 0; i
< TXG_SIZE
; i
++)
1694 ASSERT0(range_tree_space(msp
->ms_allocating
[i
]));
1695 for (int i
= 0; i
< TXG_DEFER_SIZE
; i
++)
1696 ASSERT0(range_tree_space(msp
->ms_defer
[i
]));
1697 ASSERT0(range_tree_space(msp
->ms_freed
));
1699 if (msp
->ms_sm
!= NULL
) {
1700 mutex_enter(&svr
->svr_lock
);
1701 VERIFY0(space_map_load(msp
->ms_sm
,
1702 svr
->svr_allocd_segs
, SM_ALLOC
));
1704 range_tree_walk(msp
->ms_unflushed_allocs
,
1705 range_tree_add
, svr
->svr_allocd_segs
);
1706 range_tree_walk(msp
->ms_unflushed_frees
,
1707 range_tree_remove
, svr
->svr_allocd_segs
);
1708 range_tree_walk(msp
->ms_freeing
,
1709 range_tree_remove
, svr
->svr_allocd_segs
);
1712 * Clear everything past what has been synced,
1713 * because we have not allocated mappings for it yet.
1715 uint64_t syncd
= vdev_indirect_mapping_max_offset(vim
);
1716 uint64_t sm_end
= msp
->ms_sm
->sm_start
+
1717 msp
->ms_sm
->sm_size
;
1719 range_tree_clear(svr
->svr_allocd_segs
,
1720 syncd
, sm_end
- syncd
);
1722 mutex_exit(&svr
->svr_lock
);
1724 mutex_exit(&msp
->ms_lock
);
1726 mutex_enter(&svr
->svr_lock
);
1727 range_tree_vacate(svr
->svr_allocd_segs
,
1728 free_mapped_segment_cb
, vd
);
1729 mutex_exit(&svr
->svr_lock
);
1733 * Note: this must happen after we invoke free_mapped_segment_cb,
1734 * because it adds to the obsolete_segments.
1736 range_tree_vacate(vd
->vdev_obsolete_segments
, NULL
, NULL
);
1738 ASSERT3U(vic
->vic_mapping_object
, ==,
1739 vdev_indirect_mapping_object(vd
->vdev_indirect_mapping
));
1740 vdev_indirect_mapping_close(vd
->vdev_indirect_mapping
);
1741 vd
->vdev_indirect_mapping
= NULL
;
1742 vdev_indirect_mapping_free(mos
, vic
->vic_mapping_object
, tx
);
1743 vic
->vic_mapping_object
= 0;
1745 ASSERT3U(vic
->vic_births_object
, ==,
1746 vdev_indirect_births_object(vd
->vdev_indirect_births
));
1747 vdev_indirect_births_close(vd
->vdev_indirect_births
);
1748 vd
->vdev_indirect_births
= NULL
;
1749 vdev_indirect_births_free(mos
, vic
->vic_births_object
, tx
);
1750 vic
->vic_births_object
= 0;
1753 * We may have processed some frees from the removing vdev in this
1754 * txg, thus increasing svr_bytes_done; discard that here to
1755 * satisfy the assertions in spa_vdev_removal_destroy().
1756 * Note that future txg's can not have any bytes_done, because
1757 * future TXG's are only modified from open context, and we have
1758 * already shut down the copying thread.
1760 svr
->svr_bytes_done
[dmu_tx_get_txg(tx
) & TXG_MASK
] = 0;
1761 spa_finish_removal(spa
, DSS_CANCELED
, tx
);
1763 vd
->vdev_removing
= B_FALSE
;
1764 vdev_config_dirty(vd
);
1766 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1767 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)dmu_tx_get_txg(tx
));
1768 spa_history_log_internal(spa
, "vdev remove canceled", tx
,
1769 "%s vdev %llu %s", spa_name(spa
),
1770 (u_longlong_t
)vd
->vdev_id
,
1771 (vd
->vdev_path
!= NULL
) ? vd
->vdev_path
: "-");
1775 spa_vdev_remove_cancel_impl(spa_t
*spa
)
1777 uint64_t vdid
= spa
->spa_vdev_removal
->svr_vdev_id
;
1779 int error
= dsl_sync_task(spa
->spa_name
, spa_vdev_remove_cancel_check
,
1780 spa_vdev_remove_cancel_sync
, NULL
, 0,
1781 ZFS_SPACE_CHECK_EXTRA_RESERVED
);
1784 spa_config_enter(spa
, SCL_ALLOC
| SCL_VDEV
, FTAG
, RW_WRITER
);
1785 vdev_t
*vd
= vdev_lookup_top(spa
, vdid
);
1786 metaslab_group_activate(vd
->vdev_mg
);
1787 ASSERT(!vd
->vdev_islog
);
1788 metaslab_group_activate(vd
->vdev_log_mg
);
1789 spa_config_exit(spa
, SCL_ALLOC
| SCL_VDEV
, FTAG
);
1796 spa_vdev_remove_cancel(spa_t
*spa
)
1798 spa_vdev_remove_suspend(spa
);
1800 if (spa
->spa_vdev_removal
== NULL
)
1801 return (ENOTACTIVE
);
1803 return (spa_vdev_remove_cancel_impl(spa
));
1807 svr_sync(spa_t
*spa
, dmu_tx_t
*tx
)
1809 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1810 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
1816 * This check is necessary so that we do not dirty the
1817 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1818 * is nothing to do. Dirtying it every time would prevent us
1819 * from syncing-to-convergence.
1821 if (svr
->svr_bytes_done
[txgoff
] == 0)
1825 * Update progress accounting.
1827 spa
->spa_removing_phys
.sr_copied
+= svr
->svr_bytes_done
[txgoff
];
1828 svr
->svr_bytes_done
[txgoff
] = 0;
1830 spa_sync_removing_state(spa
, tx
);
1834 vdev_remove_make_hole_and_free(vdev_t
*vd
)
1836 uint64_t id
= vd
->vdev_id
;
1837 spa_t
*spa
= vd
->vdev_spa
;
1838 vdev_t
*rvd
= spa
->spa_root_vdev
;
1840 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1841 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1845 vd
= vdev_alloc_common(spa
, id
, 0, &vdev_hole_ops
);
1846 vdev_add_child(rvd
, vd
);
1847 vdev_config_dirty(rvd
);
1850 * Reassess the health of our root vdev.
1856 * Remove a log device. The config lock is held for the specified TXG.
1859 spa_vdev_remove_log(vdev_t
*vd
, uint64_t *txg
)
1861 metaslab_group_t
*mg
= vd
->vdev_mg
;
1862 spa_t
*spa
= vd
->vdev_spa
;
1865 ASSERT(vd
->vdev_islog
);
1866 ASSERT(vd
== vd
->vdev_top
);
1867 ASSERT3P(vd
->vdev_log_mg
, ==, NULL
);
1868 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1871 * Stop allocating from this vdev.
1873 metaslab_group_passivate(mg
);
1876 * Wait for the youngest allocations and frees to sync,
1877 * and then wait for the deferral of those frees to finish.
1879 spa_vdev_config_exit(spa
, NULL
,
1880 *txg
+ TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
, 0, FTAG
);
1883 * Cancel any initialize or TRIM which was in progress.
1885 vdev_initialize_stop_all(vd
, VDEV_INITIALIZE_CANCELED
);
1886 vdev_trim_stop_all(vd
, VDEV_TRIM_CANCELED
);
1887 vdev_autotrim_stop_wait(vd
);
1890 * Evacuate the device. We don't hold the config lock as
1891 * writer since we need to do I/O but we do keep the
1892 * spa_namespace_lock held. Once this completes the device
1893 * should no longer have any blocks allocated on it.
1895 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1896 if (vd
->vdev_stat
.vs_alloc
!= 0)
1897 error
= spa_reset_logs(spa
);
1899 *txg
= spa_vdev_config_enter(spa
);
1902 metaslab_group_activate(mg
);
1903 ASSERT3P(vd
->vdev_log_mg
, ==, NULL
);
1906 ASSERT0(vd
->vdev_stat
.vs_alloc
);
1909 * The evacuation succeeded. Remove any remaining MOS metadata
1910 * associated with this vdev, and wait for these changes to sync.
1912 vd
->vdev_removing
= B_TRUE
;
1914 vdev_dirty_leaves(vd
, VDD_DTL
, *txg
);
1915 vdev_config_dirty(vd
);
1918 * When the log space map feature is enabled we look at
1919 * the vdev's top_zap to find the on-disk flush data of
1920 * the metaslab we just flushed. Thus, while removing a
1921 * log vdev we make sure to call vdev_metaslab_fini()
1922 * first, which removes all metaslabs of this vdev from
1923 * spa_metaslabs_by_flushed before vdev_remove_empty()
1924 * destroys the top_zap of this log vdev.
1926 * This avoids the scenario where we flush a metaslab
1927 * from the log vdev being removed that doesn't have a
1928 * top_zap and end up failing to lookup its on-disk flush
1931 * We don't call metaslab_group_destroy() right away
1932 * though (it will be called in vdev_free() later) as
1933 * during metaslab_sync() of metaslabs from other vdevs
1934 * we may touch the metaslab group of this vdev through
1935 * metaslab_class_histogram_verify()
1937 vdev_metaslab_fini(vd
);
1938 spa_log_sm_set_blocklimit(spa
);
1940 spa_vdev_config_exit(spa
, NULL
, *txg
, 0, FTAG
);
1941 *txg
= spa_vdev_config_enter(spa
);
1943 sysevent_t
*ev
= spa_event_create(spa
, vd
, NULL
,
1944 ESC_ZFS_VDEV_REMOVE_DEV
);
1945 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1946 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1948 /* The top ZAP should have been destroyed by vdev_remove_empty. */
1949 ASSERT0(vd
->vdev_top_zap
);
1950 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1951 ASSERT0(vd
->vdev_leaf_zap
);
1953 (void) vdev_label_init(vd
, 0, VDEV_LABEL_REMOVE
);
1955 if (list_link_active(&vd
->vdev_state_dirty_node
))
1956 vdev_state_clean(vd
);
1957 if (list_link_active(&vd
->vdev_config_dirty_node
))
1958 vdev_config_clean(vd
);
1960 ASSERT0(vd
->vdev_stat
.vs_alloc
);
1963 * Clean up the vdev namespace.
1965 vdev_remove_make_hole_and_free(vd
);
1974 spa_vdev_remove_top_check(vdev_t
*vd
)
1976 spa_t
*spa
= vd
->vdev_spa
;
1978 if (vd
!= vd
->vdev_top
)
1979 return (SET_ERROR(ENOTSUP
));
1981 if (!vdev_is_concrete(vd
))
1982 return (SET_ERROR(ENOTSUP
));
1984 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REMOVAL
))
1985 return (SET_ERROR(ENOTSUP
));
1988 metaslab_class_t
*mc
= vd
->vdev_mg
->mg_class
;
1989 metaslab_class_t
*normal
= spa_normal_class(spa
);
1992 * Space allocated from the special (or dedup) class is
1993 * included in the DMU's space usage, but it's not included
1994 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
1995 * there is always at least as much free space in the normal
1996 * class, as is allocated from the special (and dedup) class.
1997 * As a backup check, we will return ENOSPC if this is
1998 * violated. See also spa_update_dspace().
2000 uint64_t available
= metaslab_class_get_space(normal
) -
2001 metaslab_class_get_alloc(normal
);
2002 ASSERT3U(available
, >=, vd
->vdev_stat
.vs_alloc
);
2003 if (available
< vd
->vdev_stat
.vs_alloc
)
2004 return (SET_ERROR(ENOSPC
));
2006 /* available space in the pool's normal class */
2007 uint64_t available
= dsl_dir_space_available(
2008 spa
->spa_dsl_pool
->dp_root_dir
, NULL
, 0, B_TRUE
);
2010 vd
->vdev_stat
.vs_dspace
+ spa_get_slop_space(spa
)) {
2012 * This is a normal device. There has to be enough free
2013 * space to remove the device and leave double the
2014 * "slop" space (i.e. we must leave at least 3% of the
2015 * pool free, in addition to the normal slop space).
2017 return (SET_ERROR(ENOSPC
));
2022 * There can not be a removal in progress.
2024 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
2025 return (SET_ERROR(EBUSY
));
2028 * The device must have all its data.
2030 if (!vdev_dtl_empty(vd
, DTL_MISSING
) ||
2031 !vdev_dtl_empty(vd
, DTL_OUTAGE
))
2032 return (SET_ERROR(EBUSY
));
2035 * The device must be healthy.
2037 if (!vdev_readable(vd
))
2038 return (SET_ERROR(EIO
));
2041 * All vdevs in normal class must have the same ashift.
2043 if (spa
->spa_max_ashift
!= spa
->spa_min_ashift
) {
2044 return (SET_ERROR(EINVAL
));
2048 * A removed special/dedup vdev must have same ashift as normal class.
2050 ASSERT(!vd
->vdev_islog
);
2051 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_NONE
&&
2052 vd
->vdev_ashift
!= spa
->spa_max_ashift
) {
2053 return (SET_ERROR(EINVAL
));
2057 * All vdevs in normal class must have the same ashift
2058 * and not be raidz or draid.
2060 vdev_t
*rvd
= spa
->spa_root_vdev
;
2061 int num_indirect
= 0;
2062 for (uint64_t id
= 0; id
< rvd
->vdev_children
; id
++) {
2063 vdev_t
*cvd
= rvd
->vdev_child
[id
];
2066 * A removed special/dedup vdev must have the same ashift
2067 * across all vdevs in its class.
2069 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_NONE
&&
2070 cvd
->vdev_alloc_bias
== vd
->vdev_alloc_bias
&&
2071 cvd
->vdev_ashift
!= vd
->vdev_ashift
) {
2072 return (SET_ERROR(EINVAL
));
2074 if (cvd
->vdev_ashift
!= 0 &&
2075 cvd
->vdev_alloc_bias
== VDEV_BIAS_NONE
)
2076 ASSERT3U(cvd
->vdev_ashift
, ==, spa
->spa_max_ashift
);
2077 if (cvd
->vdev_ops
== &vdev_indirect_ops
)
2079 if (!vdev_is_concrete(cvd
))
2081 if (vdev_get_nparity(cvd
) != 0)
2082 return (SET_ERROR(EINVAL
));
2084 * Need the mirror to be mirror of leaf vdevs only
2086 if (cvd
->vdev_ops
== &vdev_mirror_ops
) {
2087 for (uint64_t cid
= 0;
2088 cid
< cvd
->vdev_children
; cid
++) {
2089 if (!cvd
->vdev_child
[cid
]->vdev_ops
->
2091 return (SET_ERROR(EINVAL
));
2100 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2101 * The config lock is held for the specified TXG. Once initiated,
2102 * evacuation of all allocated space (copying it to other vdevs) happens
2103 * in the background (see spa_vdev_remove_thread()), and can be canceled
2104 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2105 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2108 spa_vdev_remove_top(vdev_t
*vd
, uint64_t *txg
)
2110 spa_t
*spa
= vd
->vdev_spa
;
2114 * Check for errors up-front, so that we don't waste time
2115 * passivating the metaslab group and clearing the ZIL if there
2118 error
= spa_vdev_remove_top_check(vd
);
2123 * Stop allocating from this vdev. Note that we must check
2124 * that this is not the only device in the pool before
2125 * passivating, otherwise we will not be able to make
2126 * progress because we can't allocate from any vdevs.
2127 * The above check for sufficient free space serves this
2130 metaslab_group_t
*mg
= vd
->vdev_mg
;
2131 metaslab_group_passivate(mg
);
2132 ASSERT(!vd
->vdev_islog
);
2133 metaslab_group_passivate(vd
->vdev_log_mg
);
2136 * Wait for the youngest allocations and frees to sync,
2137 * and then wait for the deferral of those frees to finish.
2139 spa_vdev_config_exit(spa
, NULL
,
2140 *txg
+ TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
, 0, FTAG
);
2143 * We must ensure that no "stubby" log blocks are allocated
2144 * on the device to be removed. These blocks could be
2145 * written at any time, including while we are in the middle
2148 error
= spa_reset_logs(spa
);
2151 * We stop any initializing and TRIM that is currently in progress
2152 * but leave the state as "active". This will allow the process to
2153 * resume if the removal is canceled sometime later.
2155 vdev_initialize_stop_all(vd
, VDEV_INITIALIZE_ACTIVE
);
2156 vdev_trim_stop_all(vd
, VDEV_TRIM_ACTIVE
);
2157 vdev_autotrim_stop_wait(vd
);
2159 *txg
= spa_vdev_config_enter(spa
);
2162 * Things might have changed while the config lock was dropped
2163 * (e.g. space usage). Check for errors again.
2166 error
= spa_vdev_remove_top_check(vd
);
2169 metaslab_group_activate(mg
);
2170 ASSERT(!vd
->vdev_islog
);
2171 metaslab_group_activate(vd
->vdev_log_mg
);
2172 spa_async_request(spa
, SPA_ASYNC_INITIALIZE_RESTART
);
2173 spa_async_request(spa
, SPA_ASYNC_TRIM_RESTART
);
2174 spa_async_request(spa
, SPA_ASYNC_AUTOTRIM_RESTART
);
2178 vd
->vdev_removing
= B_TRUE
;
2180 vdev_dirty_leaves(vd
, VDD_DTL
, *txg
);
2181 vdev_config_dirty(vd
);
2182 dmu_tx_t
*tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, *txg
);
2183 dsl_sync_task_nowait(spa
->spa_dsl_pool
,
2184 vdev_remove_initiate_sync
, (void *)(uintptr_t)vd
->vdev_id
, tx
);
2191 * Remove a device from the pool.
2193 * Removing a device from the vdev namespace requires several steps
2194 * and can take a significant amount of time. As a result we use
2195 * the spa_vdev_config_[enter/exit] functions which allow us to
2196 * grab and release the spa_config_lock while still holding the namespace
2197 * lock. During each step the configuration is synced out.
2200 spa_vdev_remove(spa_t
*spa
, uint64_t guid
, boolean_t unspare
)
2203 nvlist_t
**spares
, **l2cache
, *nv
;
2205 uint_t nspares
, nl2cache
;
2206 int error
= 0, error_log
;
2207 boolean_t locked
= MUTEX_HELD(&spa_namespace_lock
);
2208 sysevent_t
*ev
= NULL
;
2209 char *vd_type
= NULL
, *vd_path
= NULL
;
2211 ASSERT(spa_writeable(spa
));
2214 txg
= spa_vdev_enter(spa
);
2216 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
2217 if (spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
)) {
2218 error
= (spa_has_checkpoint(spa
)) ?
2219 ZFS_ERR_CHECKPOINT_EXISTS
: ZFS_ERR_DISCARDING_CHECKPOINT
;
2222 return (spa_vdev_exit(spa
, NULL
, txg
, error
));
2227 vd
= spa_lookup_by_guid(spa
, guid
, B_FALSE
);
2229 if (spa
->spa_spares
.sav_vdevs
!= NULL
&&
2230 nvlist_lookup_nvlist_array(spa
->spa_spares
.sav_config
,
2231 ZPOOL_CONFIG_SPARES
, &spares
, &nspares
) == 0 &&
2232 (nv
= spa_nvlist_lookup_by_guid(spares
, nspares
, guid
)) != NULL
) {
2234 * Only remove the hot spare if it's not currently in use
2237 if (vd
== NULL
|| unspare
) {
2239 boolean_t draid_spare
= B_FALSE
;
2241 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_TYPE
, &type
)
2242 == 0 && strcmp(type
, VDEV_TYPE_DRAID_SPARE
) == 0)
2243 draid_spare
= B_TRUE
;
2245 if (vd
== NULL
&& draid_spare
) {
2246 error
= SET_ERROR(ENOTSUP
);
2249 vd
= spa_lookup_by_guid(spa
,
2251 ev
= spa_event_create(spa
, vd
, NULL
,
2252 ESC_ZFS_VDEV_REMOVE_AUX
);
2254 vd_type
= VDEV_TYPE_SPARE
;
2255 vd_path
= spa_strdup(fnvlist_lookup_string(
2256 nv
, ZPOOL_CONFIG_PATH
));
2257 spa_vdev_remove_aux(spa
->spa_spares
.sav_config
,
2258 ZPOOL_CONFIG_SPARES
, spares
, nspares
, nv
);
2259 spa_load_spares(spa
);
2260 spa
->spa_spares
.sav_sync
= B_TRUE
;
2263 error
= SET_ERROR(EBUSY
);
2265 } else if (spa
->spa_l2cache
.sav_vdevs
!= NULL
&&
2266 nvlist_lookup_nvlist_array(spa
->spa_l2cache
.sav_config
,
2267 ZPOOL_CONFIG_L2CACHE
, &l2cache
, &nl2cache
) == 0 &&
2268 (nv
= spa_nvlist_lookup_by_guid(l2cache
, nl2cache
, guid
)) != NULL
) {
2269 vd_type
= VDEV_TYPE_L2CACHE
;
2270 vd_path
= spa_strdup(fnvlist_lookup_string(
2271 nv
, ZPOOL_CONFIG_PATH
));
2273 * Cache devices can always be removed.
2275 vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
);
2278 * Stop trimming the cache device. We need to release the
2279 * config lock to allow the syncing of TRIM transactions
2280 * without releasing the spa_namespace_lock. The same
2281 * strategy is employed in spa_vdev_remove_top().
2283 spa_vdev_config_exit(spa
, NULL
,
2284 txg
+ TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
, 0, FTAG
);
2285 mutex_enter(&vd
->vdev_trim_lock
);
2286 vdev_trim_stop(vd
, VDEV_TRIM_CANCELED
, NULL
);
2287 mutex_exit(&vd
->vdev_trim_lock
);
2288 txg
= spa_vdev_config_enter(spa
);
2290 ev
= spa_event_create(spa
, vd
, NULL
, ESC_ZFS_VDEV_REMOVE_AUX
);
2291 spa_vdev_remove_aux(spa
->spa_l2cache
.sav_config
,
2292 ZPOOL_CONFIG_L2CACHE
, l2cache
, nl2cache
, nv
);
2293 spa_load_l2cache(spa
);
2294 spa
->spa_l2cache
.sav_sync
= B_TRUE
;
2295 } else if (vd
!= NULL
&& vd
->vdev_islog
) {
2297 vd_type
= VDEV_TYPE_LOG
;
2298 vd_path
= spa_strdup((vd
->vdev_path
!= NULL
) ?
2299 vd
->vdev_path
: "-");
2300 error
= spa_vdev_remove_log(vd
, &txg
);
2301 } else if (vd
!= NULL
) {
2303 error
= spa_vdev_remove_top(vd
, &txg
);
2306 * There is no vdev of any kind with the specified guid.
2308 error
= SET_ERROR(ENOENT
);
2314 error
= spa_vdev_exit(spa
, NULL
, txg
, error
);
2317 * Logging must be done outside the spa config lock. Otherwise,
2318 * this code path could end up holding the spa config lock while
2319 * waiting for a txg_sync so it can write to the internal log.
2320 * Doing that would prevent the txg sync from actually happening,
2321 * causing a deadlock.
2323 if (error_log
== 0 && vd_type
!= NULL
&& vd_path
!= NULL
) {
2324 spa_history_log_internal(spa
, "vdev remove", NULL
,
2325 "%s vdev (%s) %s", spa_name(spa
), vd_type
, vd_path
);
2327 if (vd_path
!= NULL
)
2328 spa_strfree(vd_path
);
2337 spa_removal_get_stats(spa_t
*spa
, pool_removal_stat_t
*prs
)
2339 prs
->prs_state
= spa
->spa_removing_phys
.sr_state
;
2341 if (prs
->prs_state
== DSS_NONE
)
2342 return (SET_ERROR(ENOENT
));
2344 prs
->prs_removing_vdev
= spa
->spa_removing_phys
.sr_removing_vdev
;
2345 prs
->prs_start_time
= spa
->spa_removing_phys
.sr_start_time
;
2346 prs
->prs_end_time
= spa
->spa_removing_phys
.sr_end_time
;
2347 prs
->prs_to_copy
= spa
->spa_removing_phys
.sr_to_copy
;
2348 prs
->prs_copied
= spa
->spa_removing_phys
.sr_copied
;
2350 prs
->prs_mapping_memory
= 0;
2351 uint64_t indirect_vdev_id
=
2352 spa
->spa_removing_phys
.sr_prev_indirect_vdev
;
2353 while (indirect_vdev_id
!= -1) {
2354 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[indirect_vdev_id
];
2355 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
2356 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
2358 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
2359 prs
->prs_mapping_memory
+= vdev_indirect_mapping_size(vim
);
2360 indirect_vdev_id
= vic
->vic_prev_indirect_vdev
;
2367 ZFS_MODULE_PARAM(zfs_vdev
, zfs_
, removal_ignore_errors
, INT
, ZMOD_RW
,
2368 "Ignore hard IO errors when removing device");
2370 ZFS_MODULE_PARAM(zfs_vdev
, zfs_
, remove_max_segment
, INT
, ZMOD_RW
,
2371 "Largest contiguous segment to allocate when removing device");
2373 ZFS_MODULE_PARAM(zfs_vdev
, vdev_
, removal_max_span
, INT
, ZMOD_RW
,
2374 "Largest span of free chunks a remap segment can span");
2376 ZFS_MODULE_PARAM(zfs_vdev
, zfs_
, removal_suspend_progress
, INT
, ZMOD_RW
,
2377 "Pause device removal after this many bytes are copied "
2378 "(debug use only - causes removal to hang)");
2381 EXPORT_SYMBOL(free_from_removing_vdev
);
2382 EXPORT_SYMBOL(spa_removal_get_stats
);
2383 EXPORT_SYMBOL(spa_remove_init
);
2384 EXPORT_SYMBOL(spa_restart_removal
);
2385 EXPORT_SYMBOL(spa_vdev_removal_destroy
);
2386 EXPORT_SYMBOL(spa_vdev_remove
);
2387 EXPORT_SYMBOL(spa_vdev_remove_cancel
);
2388 EXPORT_SYMBOL(spa_vdev_remove_suspend
);
2389 EXPORT_SYMBOL(svr_sync
);